perf/core: Fix sideband list-iteration vs. event ordering NULL pointer deference...
[cascardo/linux.git] / kernel / events / core.c
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49
50 #include "internal.h"
51
52 #include <asm/irq_regs.h>
53
54 typedef int (*remote_function_f)(void *);
55
56 struct remote_function_call {
57         struct task_struct      *p;
58         remote_function_f       func;
59         void                    *info;
60         int                     ret;
61 };
62
63 static void remote_function(void *data)
64 {
65         struct remote_function_call *tfc = data;
66         struct task_struct *p = tfc->p;
67
68         if (p) {
69                 /* -EAGAIN */
70                 if (task_cpu(p) != smp_processor_id())
71                         return;
72
73                 /*
74                  * Now that we're on right CPU with IRQs disabled, we can test
75                  * if we hit the right task without races.
76                  */
77
78                 tfc->ret = -ESRCH; /* No such (running) process */
79                 if (p != current)
80                         return;
81         }
82
83         tfc->ret = tfc->func(tfc->info);
84 }
85
86 /**
87  * task_function_call - call a function on the cpu on which a task runs
88  * @p:          the task to evaluate
89  * @func:       the function to be called
90  * @info:       the function call argument
91  *
92  * Calls the function @func when the task is currently running. This might
93  * be on the current CPU, which just calls the function directly
94  *
95  * returns: @func return value, or
96  *          -ESRCH  - when the process isn't running
97  *          -EAGAIN - when the process moved away
98  */
99 static int
100 task_function_call(struct task_struct *p, remote_function_f func, void *info)
101 {
102         struct remote_function_call data = {
103                 .p      = p,
104                 .func   = func,
105                 .info   = info,
106                 .ret    = -EAGAIN,
107         };
108         int ret;
109
110         do {
111                 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
112                 if (!ret)
113                         ret = data.ret;
114         } while (ret == -EAGAIN);
115
116         return ret;
117 }
118
119 /**
120  * cpu_function_call - call a function on the cpu
121  * @func:       the function to be called
122  * @info:       the function call argument
123  *
124  * Calls the function @func on the remote cpu.
125  *
126  * returns: @func return value or -ENXIO when the cpu is offline
127  */
128 static int cpu_function_call(int cpu, remote_function_f func, void *info)
129 {
130         struct remote_function_call data = {
131                 .p      = NULL,
132                 .func   = func,
133                 .info   = info,
134                 .ret    = -ENXIO, /* No such CPU */
135         };
136
137         smp_call_function_single(cpu, remote_function, &data, 1);
138
139         return data.ret;
140 }
141
142 static inline struct perf_cpu_context *
143 __get_cpu_context(struct perf_event_context *ctx)
144 {
145         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
146 }
147
148 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
149                           struct perf_event_context *ctx)
150 {
151         raw_spin_lock(&cpuctx->ctx.lock);
152         if (ctx)
153                 raw_spin_lock(&ctx->lock);
154 }
155
156 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
157                             struct perf_event_context *ctx)
158 {
159         if (ctx)
160                 raw_spin_unlock(&ctx->lock);
161         raw_spin_unlock(&cpuctx->ctx.lock);
162 }
163
164 #define TASK_TOMBSTONE ((void *)-1L)
165
166 static bool is_kernel_event(struct perf_event *event)
167 {
168         return READ_ONCE(event->owner) == TASK_TOMBSTONE;
169 }
170
171 /*
172  * On task ctx scheduling...
173  *
174  * When !ctx->nr_events a task context will not be scheduled. This means
175  * we can disable the scheduler hooks (for performance) without leaving
176  * pending task ctx state.
177  *
178  * This however results in two special cases:
179  *
180  *  - removing the last event from a task ctx; this is relatively straight
181  *    forward and is done in __perf_remove_from_context.
182  *
183  *  - adding the first event to a task ctx; this is tricky because we cannot
184  *    rely on ctx->is_active and therefore cannot use event_function_call().
185  *    See perf_install_in_context().
186  *
187  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
188  */
189
190 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
191                         struct perf_event_context *, void *);
192
193 struct event_function_struct {
194         struct perf_event *event;
195         event_f func;
196         void *data;
197 };
198
199 static int event_function(void *info)
200 {
201         struct event_function_struct *efs = info;
202         struct perf_event *event = efs->event;
203         struct perf_event_context *ctx = event->ctx;
204         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
205         struct perf_event_context *task_ctx = cpuctx->task_ctx;
206         int ret = 0;
207
208         WARN_ON_ONCE(!irqs_disabled());
209
210         perf_ctx_lock(cpuctx, task_ctx);
211         /*
212          * Since we do the IPI call without holding ctx->lock things can have
213          * changed, double check we hit the task we set out to hit.
214          */
215         if (ctx->task) {
216                 if (ctx->task != current) {
217                         ret = -ESRCH;
218                         goto unlock;
219                 }
220
221                 /*
222                  * We only use event_function_call() on established contexts,
223                  * and event_function() is only ever called when active (or
224                  * rather, we'll have bailed in task_function_call() or the
225                  * above ctx->task != current test), therefore we must have
226                  * ctx->is_active here.
227                  */
228                 WARN_ON_ONCE(!ctx->is_active);
229                 /*
230                  * And since we have ctx->is_active, cpuctx->task_ctx must
231                  * match.
232                  */
233                 WARN_ON_ONCE(task_ctx != ctx);
234         } else {
235                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
236         }
237
238         efs->func(event, cpuctx, ctx, efs->data);
239 unlock:
240         perf_ctx_unlock(cpuctx, task_ctx);
241
242         return ret;
243 }
244
245 static void event_function_local(struct perf_event *event, event_f func, void *data)
246 {
247         struct event_function_struct efs = {
248                 .event = event,
249                 .func = func,
250                 .data = data,
251         };
252
253         int ret = event_function(&efs);
254         WARN_ON_ONCE(ret);
255 }
256
257 static void event_function_call(struct perf_event *event, event_f func, void *data)
258 {
259         struct perf_event_context *ctx = event->ctx;
260         struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
261         struct event_function_struct efs = {
262                 .event = event,
263                 .func = func,
264                 .data = data,
265         };
266
267         if (!event->parent) {
268                 /*
269                  * If this is a !child event, we must hold ctx::mutex to
270                  * stabilize the the event->ctx relation. See
271                  * perf_event_ctx_lock().
272                  */
273                 lockdep_assert_held(&ctx->mutex);
274         }
275
276         if (!task) {
277                 cpu_function_call(event->cpu, event_function, &efs);
278                 return;
279         }
280
281         if (task == TASK_TOMBSTONE)
282                 return;
283
284 again:
285         if (!task_function_call(task, event_function, &efs))
286                 return;
287
288         raw_spin_lock_irq(&ctx->lock);
289         /*
290          * Reload the task pointer, it might have been changed by
291          * a concurrent perf_event_context_sched_out().
292          */
293         task = ctx->task;
294         if (task == TASK_TOMBSTONE) {
295                 raw_spin_unlock_irq(&ctx->lock);
296                 return;
297         }
298         if (ctx->is_active) {
299                 raw_spin_unlock_irq(&ctx->lock);
300                 goto again;
301         }
302         func(event, NULL, ctx, data);
303         raw_spin_unlock_irq(&ctx->lock);
304 }
305
306 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
307                        PERF_FLAG_FD_OUTPUT  |\
308                        PERF_FLAG_PID_CGROUP |\
309                        PERF_FLAG_FD_CLOEXEC)
310
311 /*
312  * branch priv levels that need permission checks
313  */
314 #define PERF_SAMPLE_BRANCH_PERM_PLM \
315         (PERF_SAMPLE_BRANCH_KERNEL |\
316          PERF_SAMPLE_BRANCH_HV)
317
318 enum event_type_t {
319         EVENT_FLEXIBLE = 0x1,
320         EVENT_PINNED = 0x2,
321         EVENT_TIME = 0x4,
322         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
323 };
324
325 /*
326  * perf_sched_events : >0 events exist
327  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
328  */
329
330 static void perf_sched_delayed(struct work_struct *work);
331 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
332 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
333 static DEFINE_MUTEX(perf_sched_mutex);
334 static atomic_t perf_sched_count;
335
336 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
337 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
338 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
339
340 static atomic_t nr_mmap_events __read_mostly;
341 static atomic_t nr_comm_events __read_mostly;
342 static atomic_t nr_task_events __read_mostly;
343 static atomic_t nr_freq_events __read_mostly;
344 static atomic_t nr_switch_events __read_mostly;
345
346 static LIST_HEAD(pmus);
347 static DEFINE_MUTEX(pmus_lock);
348 static struct srcu_struct pmus_srcu;
349
350 /*
351  * perf event paranoia level:
352  *  -1 - not paranoid at all
353  *   0 - disallow raw tracepoint access for unpriv
354  *   1 - disallow cpu events for unpriv
355  *   2 - disallow kernel profiling for unpriv
356  */
357 int sysctl_perf_event_paranoid __read_mostly = 2;
358
359 /* Minimum for 512 kiB + 1 user control page */
360 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
361
362 /*
363  * max perf event sample rate
364  */
365 #define DEFAULT_MAX_SAMPLE_RATE         100000
366 #define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
367 #define DEFAULT_CPU_TIME_MAX_PERCENT    25
368
369 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
370
371 static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
372 static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
373
374 static int perf_sample_allowed_ns __read_mostly =
375         DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
376
377 static void update_perf_cpu_limits(void)
378 {
379         u64 tmp = perf_sample_period_ns;
380
381         tmp *= sysctl_perf_cpu_time_max_percent;
382         tmp = div_u64(tmp, 100);
383         if (!tmp)
384                 tmp = 1;
385
386         WRITE_ONCE(perf_sample_allowed_ns, tmp);
387 }
388
389 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
390
391 int perf_proc_update_handler(struct ctl_table *table, int write,
392                 void __user *buffer, size_t *lenp,
393                 loff_t *ppos)
394 {
395         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
396
397         if (ret || !write)
398                 return ret;
399
400         /*
401          * If throttling is disabled don't allow the write:
402          */
403         if (sysctl_perf_cpu_time_max_percent == 100 ||
404             sysctl_perf_cpu_time_max_percent == 0)
405                 return -EINVAL;
406
407         max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
408         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
409         update_perf_cpu_limits();
410
411         return 0;
412 }
413
414 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
415
416 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
417                                 void __user *buffer, size_t *lenp,
418                                 loff_t *ppos)
419 {
420         int ret = proc_dointvec(table, write, buffer, lenp, ppos);
421
422         if (ret || !write)
423                 return ret;
424
425         if (sysctl_perf_cpu_time_max_percent == 100 ||
426             sysctl_perf_cpu_time_max_percent == 0) {
427                 printk(KERN_WARNING
428                        "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
429                 WRITE_ONCE(perf_sample_allowed_ns, 0);
430         } else {
431                 update_perf_cpu_limits();
432         }
433
434         return 0;
435 }
436
437 /*
438  * perf samples are done in some very critical code paths (NMIs).
439  * If they take too much CPU time, the system can lock up and not
440  * get any real work done.  This will drop the sample rate when
441  * we detect that events are taking too long.
442  */
443 #define NR_ACCUMULATED_SAMPLES 128
444 static DEFINE_PER_CPU(u64, running_sample_length);
445
446 static u64 __report_avg;
447 static u64 __report_allowed;
448
449 static void perf_duration_warn(struct irq_work *w)
450 {
451         printk_ratelimited(KERN_INFO
452                 "perf: interrupt took too long (%lld > %lld), lowering "
453                 "kernel.perf_event_max_sample_rate to %d\n",
454                 __report_avg, __report_allowed,
455                 sysctl_perf_event_sample_rate);
456 }
457
458 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
459
460 void perf_sample_event_took(u64 sample_len_ns)
461 {
462         u64 max_len = READ_ONCE(perf_sample_allowed_ns);
463         u64 running_len;
464         u64 avg_len;
465         u32 max;
466
467         if (max_len == 0)
468                 return;
469
470         /* Decay the counter by 1 average sample. */
471         running_len = __this_cpu_read(running_sample_length);
472         running_len -= running_len/NR_ACCUMULATED_SAMPLES;
473         running_len += sample_len_ns;
474         __this_cpu_write(running_sample_length, running_len);
475
476         /*
477          * Note: this will be biased artifically low until we have
478          * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
479          * from having to maintain a count.
480          */
481         avg_len = running_len/NR_ACCUMULATED_SAMPLES;
482         if (avg_len <= max_len)
483                 return;
484
485         __report_avg = avg_len;
486         __report_allowed = max_len;
487
488         /*
489          * Compute a throttle threshold 25% below the current duration.
490          */
491         avg_len += avg_len / 4;
492         max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
493         if (avg_len < max)
494                 max /= (u32)avg_len;
495         else
496                 max = 1;
497
498         WRITE_ONCE(perf_sample_allowed_ns, avg_len);
499         WRITE_ONCE(max_samples_per_tick, max);
500
501         sysctl_perf_event_sample_rate = max * HZ;
502         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
503
504         if (!irq_work_queue(&perf_duration_work)) {
505                 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
506                              "kernel.perf_event_max_sample_rate to %d\n",
507                              __report_avg, __report_allowed,
508                              sysctl_perf_event_sample_rate);
509         }
510 }
511
512 static atomic64_t perf_event_id;
513
514 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
515                               enum event_type_t event_type);
516
517 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
518                              enum event_type_t event_type,
519                              struct task_struct *task);
520
521 static void update_context_time(struct perf_event_context *ctx);
522 static u64 perf_event_time(struct perf_event *event);
523
524 void __weak perf_event_print_debug(void)        { }
525
526 extern __weak const char *perf_pmu_name(void)
527 {
528         return "pmu";
529 }
530
531 static inline u64 perf_clock(void)
532 {
533         return local_clock();
534 }
535
536 static inline u64 perf_event_clock(struct perf_event *event)
537 {
538         return event->clock();
539 }
540
541 #ifdef CONFIG_CGROUP_PERF
542
543 static inline bool
544 perf_cgroup_match(struct perf_event *event)
545 {
546         struct perf_event_context *ctx = event->ctx;
547         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
548
549         /* @event doesn't care about cgroup */
550         if (!event->cgrp)
551                 return true;
552
553         /* wants specific cgroup scope but @cpuctx isn't associated with any */
554         if (!cpuctx->cgrp)
555                 return false;
556
557         /*
558          * Cgroup scoping is recursive.  An event enabled for a cgroup is
559          * also enabled for all its descendant cgroups.  If @cpuctx's
560          * cgroup is a descendant of @event's (the test covers identity
561          * case), it's a match.
562          */
563         return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
564                                     event->cgrp->css.cgroup);
565 }
566
567 static inline void perf_detach_cgroup(struct perf_event *event)
568 {
569         css_put(&event->cgrp->css);
570         event->cgrp = NULL;
571 }
572
573 static inline int is_cgroup_event(struct perf_event *event)
574 {
575         return event->cgrp != NULL;
576 }
577
578 static inline u64 perf_cgroup_event_time(struct perf_event *event)
579 {
580         struct perf_cgroup_info *t;
581
582         t = per_cpu_ptr(event->cgrp->info, event->cpu);
583         return t->time;
584 }
585
586 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
587 {
588         struct perf_cgroup_info *info;
589         u64 now;
590
591         now = perf_clock();
592
593         info = this_cpu_ptr(cgrp->info);
594
595         info->time += now - info->timestamp;
596         info->timestamp = now;
597 }
598
599 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
600 {
601         struct perf_cgroup *cgrp_out = cpuctx->cgrp;
602         if (cgrp_out)
603                 __update_cgrp_time(cgrp_out);
604 }
605
606 static inline void update_cgrp_time_from_event(struct perf_event *event)
607 {
608         struct perf_cgroup *cgrp;
609
610         /*
611          * ensure we access cgroup data only when needed and
612          * when we know the cgroup is pinned (css_get)
613          */
614         if (!is_cgroup_event(event))
615                 return;
616
617         cgrp = perf_cgroup_from_task(current, event->ctx);
618         /*
619          * Do not update time when cgroup is not active
620          */
621         if (cgrp == event->cgrp)
622                 __update_cgrp_time(event->cgrp);
623 }
624
625 static inline void
626 perf_cgroup_set_timestamp(struct task_struct *task,
627                           struct perf_event_context *ctx)
628 {
629         struct perf_cgroup *cgrp;
630         struct perf_cgroup_info *info;
631
632         /*
633          * ctx->lock held by caller
634          * ensure we do not access cgroup data
635          * unless we have the cgroup pinned (css_get)
636          */
637         if (!task || !ctx->nr_cgroups)
638                 return;
639
640         cgrp = perf_cgroup_from_task(task, ctx);
641         info = this_cpu_ptr(cgrp->info);
642         info->timestamp = ctx->timestamp;
643 }
644
645 #define PERF_CGROUP_SWOUT       0x1 /* cgroup switch out every event */
646 #define PERF_CGROUP_SWIN        0x2 /* cgroup switch in events based on task */
647
648 /*
649  * reschedule events based on the cgroup constraint of task.
650  *
651  * mode SWOUT : schedule out everything
652  * mode SWIN : schedule in based on cgroup for next
653  */
654 static void perf_cgroup_switch(struct task_struct *task, int mode)
655 {
656         struct perf_cpu_context *cpuctx;
657         struct pmu *pmu;
658         unsigned long flags;
659
660         /*
661          * disable interrupts to avoid geting nr_cgroup
662          * changes via __perf_event_disable(). Also
663          * avoids preemption.
664          */
665         local_irq_save(flags);
666
667         /*
668          * we reschedule only in the presence of cgroup
669          * constrained events.
670          */
671
672         list_for_each_entry_rcu(pmu, &pmus, entry) {
673                 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
674                 if (cpuctx->unique_pmu != pmu)
675                         continue; /* ensure we process each cpuctx once */
676
677                 /*
678                  * perf_cgroup_events says at least one
679                  * context on this CPU has cgroup events.
680                  *
681                  * ctx->nr_cgroups reports the number of cgroup
682                  * events for a context.
683                  */
684                 if (cpuctx->ctx.nr_cgroups > 0) {
685                         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
686                         perf_pmu_disable(cpuctx->ctx.pmu);
687
688                         if (mode & PERF_CGROUP_SWOUT) {
689                                 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
690                                 /*
691                                  * must not be done before ctxswout due
692                                  * to event_filter_match() in event_sched_out()
693                                  */
694                                 cpuctx->cgrp = NULL;
695                         }
696
697                         if (mode & PERF_CGROUP_SWIN) {
698                                 WARN_ON_ONCE(cpuctx->cgrp);
699                                 /*
700                                  * set cgrp before ctxsw in to allow
701                                  * event_filter_match() to not have to pass
702                                  * task around
703                                  * we pass the cpuctx->ctx to perf_cgroup_from_task()
704                                  * because cgorup events are only per-cpu
705                                  */
706                                 cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
707                                 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
708                         }
709                         perf_pmu_enable(cpuctx->ctx.pmu);
710                         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
711                 }
712         }
713
714         local_irq_restore(flags);
715 }
716
717 static inline void perf_cgroup_sched_out(struct task_struct *task,
718                                          struct task_struct *next)
719 {
720         struct perf_cgroup *cgrp1;
721         struct perf_cgroup *cgrp2 = NULL;
722
723         rcu_read_lock();
724         /*
725          * we come here when we know perf_cgroup_events > 0
726          * we do not need to pass the ctx here because we know
727          * we are holding the rcu lock
728          */
729         cgrp1 = perf_cgroup_from_task(task, NULL);
730         cgrp2 = perf_cgroup_from_task(next, NULL);
731
732         /*
733          * only schedule out current cgroup events if we know
734          * that we are switching to a different cgroup. Otherwise,
735          * do no touch the cgroup events.
736          */
737         if (cgrp1 != cgrp2)
738                 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
739
740         rcu_read_unlock();
741 }
742
743 static inline void perf_cgroup_sched_in(struct task_struct *prev,
744                                         struct task_struct *task)
745 {
746         struct perf_cgroup *cgrp1;
747         struct perf_cgroup *cgrp2 = NULL;
748
749         rcu_read_lock();
750         /*
751          * we come here when we know perf_cgroup_events > 0
752          * we do not need to pass the ctx here because we know
753          * we are holding the rcu lock
754          */
755         cgrp1 = perf_cgroup_from_task(task, NULL);
756         cgrp2 = perf_cgroup_from_task(prev, NULL);
757
758         /*
759          * only need to schedule in cgroup events if we are changing
760          * cgroup during ctxsw. Cgroup events were not scheduled
761          * out of ctxsw out if that was not the case.
762          */
763         if (cgrp1 != cgrp2)
764                 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
765
766         rcu_read_unlock();
767 }
768
769 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
770                                       struct perf_event_attr *attr,
771                                       struct perf_event *group_leader)
772 {
773         struct perf_cgroup *cgrp;
774         struct cgroup_subsys_state *css;
775         struct fd f = fdget(fd);
776         int ret = 0;
777
778         if (!f.file)
779                 return -EBADF;
780
781         css = css_tryget_online_from_dir(f.file->f_path.dentry,
782                                          &perf_event_cgrp_subsys);
783         if (IS_ERR(css)) {
784                 ret = PTR_ERR(css);
785                 goto out;
786         }
787
788         cgrp = container_of(css, struct perf_cgroup, css);
789         event->cgrp = cgrp;
790
791         /*
792          * all events in a group must monitor
793          * the same cgroup because a task belongs
794          * to only one perf cgroup at a time
795          */
796         if (group_leader && group_leader->cgrp != cgrp) {
797                 perf_detach_cgroup(event);
798                 ret = -EINVAL;
799         }
800 out:
801         fdput(f);
802         return ret;
803 }
804
805 static inline void
806 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
807 {
808         struct perf_cgroup_info *t;
809         t = per_cpu_ptr(event->cgrp->info, event->cpu);
810         event->shadow_ctx_time = now - t->timestamp;
811 }
812
813 static inline void
814 perf_cgroup_defer_enabled(struct perf_event *event)
815 {
816         /*
817          * when the current task's perf cgroup does not match
818          * the event's, we need to remember to call the
819          * perf_mark_enable() function the first time a task with
820          * a matching perf cgroup is scheduled in.
821          */
822         if (is_cgroup_event(event) && !perf_cgroup_match(event))
823                 event->cgrp_defer_enabled = 1;
824 }
825
826 static inline void
827 perf_cgroup_mark_enabled(struct perf_event *event,
828                          struct perf_event_context *ctx)
829 {
830         struct perf_event *sub;
831         u64 tstamp = perf_event_time(event);
832
833         if (!event->cgrp_defer_enabled)
834                 return;
835
836         event->cgrp_defer_enabled = 0;
837
838         event->tstamp_enabled = tstamp - event->total_time_enabled;
839         list_for_each_entry(sub, &event->sibling_list, group_entry) {
840                 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
841                         sub->tstamp_enabled = tstamp - sub->total_time_enabled;
842                         sub->cgrp_defer_enabled = 0;
843                 }
844         }
845 }
846 #else /* !CONFIG_CGROUP_PERF */
847
848 static inline bool
849 perf_cgroup_match(struct perf_event *event)
850 {
851         return true;
852 }
853
854 static inline void perf_detach_cgroup(struct perf_event *event)
855 {}
856
857 static inline int is_cgroup_event(struct perf_event *event)
858 {
859         return 0;
860 }
861
862 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
863 {
864         return 0;
865 }
866
867 static inline void update_cgrp_time_from_event(struct perf_event *event)
868 {
869 }
870
871 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
872 {
873 }
874
875 static inline void perf_cgroup_sched_out(struct task_struct *task,
876                                          struct task_struct *next)
877 {
878 }
879
880 static inline void perf_cgroup_sched_in(struct task_struct *prev,
881                                         struct task_struct *task)
882 {
883 }
884
885 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
886                                       struct perf_event_attr *attr,
887                                       struct perf_event *group_leader)
888 {
889         return -EINVAL;
890 }
891
892 static inline void
893 perf_cgroup_set_timestamp(struct task_struct *task,
894                           struct perf_event_context *ctx)
895 {
896 }
897
898 void
899 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
900 {
901 }
902
903 static inline void
904 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
905 {
906 }
907
908 static inline u64 perf_cgroup_event_time(struct perf_event *event)
909 {
910         return 0;
911 }
912
913 static inline void
914 perf_cgroup_defer_enabled(struct perf_event *event)
915 {
916 }
917
918 static inline void
919 perf_cgroup_mark_enabled(struct perf_event *event,
920                          struct perf_event_context *ctx)
921 {
922 }
923 #endif
924
925 /*
926  * set default to be dependent on timer tick just
927  * like original code
928  */
929 #define PERF_CPU_HRTIMER (1000 / HZ)
930 /*
931  * function must be called with interrupts disbled
932  */
933 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
934 {
935         struct perf_cpu_context *cpuctx;
936         int rotations = 0;
937
938         WARN_ON(!irqs_disabled());
939
940         cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
941         rotations = perf_rotate_context(cpuctx);
942
943         raw_spin_lock(&cpuctx->hrtimer_lock);
944         if (rotations)
945                 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
946         else
947                 cpuctx->hrtimer_active = 0;
948         raw_spin_unlock(&cpuctx->hrtimer_lock);
949
950         return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
951 }
952
953 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
954 {
955         struct hrtimer *timer = &cpuctx->hrtimer;
956         struct pmu *pmu = cpuctx->ctx.pmu;
957         u64 interval;
958
959         /* no multiplexing needed for SW PMU */
960         if (pmu->task_ctx_nr == perf_sw_context)
961                 return;
962
963         /*
964          * check default is sane, if not set then force to
965          * default interval (1/tick)
966          */
967         interval = pmu->hrtimer_interval_ms;
968         if (interval < 1)
969                 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
970
971         cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
972
973         raw_spin_lock_init(&cpuctx->hrtimer_lock);
974         hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
975         timer->function = perf_mux_hrtimer_handler;
976 }
977
978 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
979 {
980         struct hrtimer *timer = &cpuctx->hrtimer;
981         struct pmu *pmu = cpuctx->ctx.pmu;
982         unsigned long flags;
983
984         /* not for SW PMU */
985         if (pmu->task_ctx_nr == perf_sw_context)
986                 return 0;
987
988         raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
989         if (!cpuctx->hrtimer_active) {
990                 cpuctx->hrtimer_active = 1;
991                 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
992                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
993         }
994         raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
995
996         return 0;
997 }
998
999 void perf_pmu_disable(struct pmu *pmu)
1000 {
1001         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1002         if (!(*count)++)
1003                 pmu->pmu_disable(pmu);
1004 }
1005
1006 void perf_pmu_enable(struct pmu *pmu)
1007 {
1008         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1009         if (!--(*count))
1010                 pmu->pmu_enable(pmu);
1011 }
1012
1013 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1014
1015 /*
1016  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1017  * perf_event_task_tick() are fully serialized because they're strictly cpu
1018  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1019  * disabled, while perf_event_task_tick is called from IRQ context.
1020  */
1021 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1022 {
1023         struct list_head *head = this_cpu_ptr(&active_ctx_list);
1024
1025         WARN_ON(!irqs_disabled());
1026
1027         WARN_ON(!list_empty(&ctx->active_ctx_list));
1028
1029         list_add(&ctx->active_ctx_list, head);
1030 }
1031
1032 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1033 {
1034         WARN_ON(!irqs_disabled());
1035
1036         WARN_ON(list_empty(&ctx->active_ctx_list));
1037
1038         list_del_init(&ctx->active_ctx_list);
1039 }
1040
1041 static void get_ctx(struct perf_event_context *ctx)
1042 {
1043         WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1044 }
1045
1046 static void free_ctx(struct rcu_head *head)
1047 {
1048         struct perf_event_context *ctx;
1049
1050         ctx = container_of(head, struct perf_event_context, rcu_head);
1051         kfree(ctx->task_ctx_data);
1052         kfree(ctx);
1053 }
1054
1055 static void put_ctx(struct perf_event_context *ctx)
1056 {
1057         if (atomic_dec_and_test(&ctx->refcount)) {
1058                 if (ctx->parent_ctx)
1059                         put_ctx(ctx->parent_ctx);
1060                 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1061                         put_task_struct(ctx->task);
1062                 call_rcu(&ctx->rcu_head, free_ctx);
1063         }
1064 }
1065
1066 /*
1067  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1068  * perf_pmu_migrate_context() we need some magic.
1069  *
1070  * Those places that change perf_event::ctx will hold both
1071  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1072  *
1073  * Lock ordering is by mutex address. There are two other sites where
1074  * perf_event_context::mutex nests and those are:
1075  *
1076  *  - perf_event_exit_task_context()    [ child , 0 ]
1077  *      perf_event_exit_event()
1078  *        put_event()                   [ parent, 1 ]
1079  *
1080  *  - perf_event_init_context()         [ parent, 0 ]
1081  *      inherit_task_group()
1082  *        inherit_group()
1083  *          inherit_event()
1084  *            perf_event_alloc()
1085  *              perf_init_event()
1086  *                perf_try_init_event() [ child , 1 ]
1087  *
1088  * While it appears there is an obvious deadlock here -- the parent and child
1089  * nesting levels are inverted between the two. This is in fact safe because
1090  * life-time rules separate them. That is an exiting task cannot fork, and a
1091  * spawning task cannot (yet) exit.
1092  *
1093  * But remember that that these are parent<->child context relations, and
1094  * migration does not affect children, therefore these two orderings should not
1095  * interact.
1096  *
1097  * The change in perf_event::ctx does not affect children (as claimed above)
1098  * because the sys_perf_event_open() case will install a new event and break
1099  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1100  * concerned with cpuctx and that doesn't have children.
1101  *
1102  * The places that change perf_event::ctx will issue:
1103  *
1104  *   perf_remove_from_context();
1105  *   synchronize_rcu();
1106  *   perf_install_in_context();
1107  *
1108  * to affect the change. The remove_from_context() + synchronize_rcu() should
1109  * quiesce the event, after which we can install it in the new location. This
1110  * means that only external vectors (perf_fops, prctl) can perturb the event
1111  * while in transit. Therefore all such accessors should also acquire
1112  * perf_event_context::mutex to serialize against this.
1113  *
1114  * However; because event->ctx can change while we're waiting to acquire
1115  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1116  * function.
1117  *
1118  * Lock order:
1119  *    cred_guard_mutex
1120  *      task_struct::perf_event_mutex
1121  *        perf_event_context::mutex
1122  *          perf_event::child_mutex;
1123  *            perf_event_context::lock
1124  *          perf_event::mmap_mutex
1125  *          mmap_sem
1126  */
1127 static struct perf_event_context *
1128 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1129 {
1130         struct perf_event_context *ctx;
1131
1132 again:
1133         rcu_read_lock();
1134         ctx = ACCESS_ONCE(event->ctx);
1135         if (!atomic_inc_not_zero(&ctx->refcount)) {
1136                 rcu_read_unlock();
1137                 goto again;
1138         }
1139         rcu_read_unlock();
1140
1141         mutex_lock_nested(&ctx->mutex, nesting);
1142         if (event->ctx != ctx) {
1143                 mutex_unlock(&ctx->mutex);
1144                 put_ctx(ctx);
1145                 goto again;
1146         }
1147
1148         return ctx;
1149 }
1150
1151 static inline struct perf_event_context *
1152 perf_event_ctx_lock(struct perf_event *event)
1153 {
1154         return perf_event_ctx_lock_nested(event, 0);
1155 }
1156
1157 static void perf_event_ctx_unlock(struct perf_event *event,
1158                                   struct perf_event_context *ctx)
1159 {
1160         mutex_unlock(&ctx->mutex);
1161         put_ctx(ctx);
1162 }
1163
1164 /*
1165  * This must be done under the ctx->lock, such as to serialize against
1166  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1167  * calling scheduler related locks and ctx->lock nests inside those.
1168  */
1169 static __must_check struct perf_event_context *
1170 unclone_ctx(struct perf_event_context *ctx)
1171 {
1172         struct perf_event_context *parent_ctx = ctx->parent_ctx;
1173
1174         lockdep_assert_held(&ctx->lock);
1175
1176         if (parent_ctx)
1177                 ctx->parent_ctx = NULL;
1178         ctx->generation++;
1179
1180         return parent_ctx;
1181 }
1182
1183 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1184 {
1185         /*
1186          * only top level events have the pid namespace they were created in
1187          */
1188         if (event->parent)
1189                 event = event->parent;
1190
1191         return task_tgid_nr_ns(p, event->ns);
1192 }
1193
1194 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1195 {
1196         /*
1197          * only top level events have the pid namespace they were created in
1198          */
1199         if (event->parent)
1200                 event = event->parent;
1201
1202         return task_pid_nr_ns(p, event->ns);
1203 }
1204
1205 /*
1206  * If we inherit events we want to return the parent event id
1207  * to userspace.
1208  */
1209 static u64 primary_event_id(struct perf_event *event)
1210 {
1211         u64 id = event->id;
1212
1213         if (event->parent)
1214                 id = event->parent->id;
1215
1216         return id;
1217 }
1218
1219 /*
1220  * Get the perf_event_context for a task and lock it.
1221  *
1222  * This has to cope with with the fact that until it is locked,
1223  * the context could get moved to another task.
1224  */
1225 static struct perf_event_context *
1226 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1227 {
1228         struct perf_event_context *ctx;
1229
1230 retry:
1231         /*
1232          * One of the few rules of preemptible RCU is that one cannot do
1233          * rcu_read_unlock() while holding a scheduler (or nested) lock when
1234          * part of the read side critical section was irqs-enabled -- see
1235          * rcu_read_unlock_special().
1236          *
1237          * Since ctx->lock nests under rq->lock we must ensure the entire read
1238          * side critical section has interrupts disabled.
1239          */
1240         local_irq_save(*flags);
1241         rcu_read_lock();
1242         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1243         if (ctx) {
1244                 /*
1245                  * If this context is a clone of another, it might
1246                  * get swapped for another underneath us by
1247                  * perf_event_task_sched_out, though the
1248                  * rcu_read_lock() protects us from any context
1249                  * getting freed.  Lock the context and check if it
1250                  * got swapped before we could get the lock, and retry
1251                  * if so.  If we locked the right context, then it
1252                  * can't get swapped on us any more.
1253                  */
1254                 raw_spin_lock(&ctx->lock);
1255                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1256                         raw_spin_unlock(&ctx->lock);
1257                         rcu_read_unlock();
1258                         local_irq_restore(*flags);
1259                         goto retry;
1260                 }
1261
1262                 if (ctx->task == TASK_TOMBSTONE ||
1263                     !atomic_inc_not_zero(&ctx->refcount)) {
1264                         raw_spin_unlock(&ctx->lock);
1265                         ctx = NULL;
1266                 } else {
1267                         WARN_ON_ONCE(ctx->task != task);
1268                 }
1269         }
1270         rcu_read_unlock();
1271         if (!ctx)
1272                 local_irq_restore(*flags);
1273         return ctx;
1274 }
1275
1276 /*
1277  * Get the context for a task and increment its pin_count so it
1278  * can't get swapped to another task.  This also increments its
1279  * reference count so that the context can't get freed.
1280  */
1281 static struct perf_event_context *
1282 perf_pin_task_context(struct task_struct *task, int ctxn)
1283 {
1284         struct perf_event_context *ctx;
1285         unsigned long flags;
1286
1287         ctx = perf_lock_task_context(task, ctxn, &flags);
1288         if (ctx) {
1289                 ++ctx->pin_count;
1290                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1291         }
1292         return ctx;
1293 }
1294
1295 static void perf_unpin_context(struct perf_event_context *ctx)
1296 {
1297         unsigned long flags;
1298
1299         raw_spin_lock_irqsave(&ctx->lock, flags);
1300         --ctx->pin_count;
1301         raw_spin_unlock_irqrestore(&ctx->lock, flags);
1302 }
1303
1304 /*
1305  * Update the record of the current time in a context.
1306  */
1307 static void update_context_time(struct perf_event_context *ctx)
1308 {
1309         u64 now = perf_clock();
1310
1311         ctx->time += now - ctx->timestamp;
1312         ctx->timestamp = now;
1313 }
1314
1315 static u64 perf_event_time(struct perf_event *event)
1316 {
1317         struct perf_event_context *ctx = event->ctx;
1318
1319         if (is_cgroup_event(event))
1320                 return perf_cgroup_event_time(event);
1321
1322         return ctx ? ctx->time : 0;
1323 }
1324
1325 /*
1326  * Update the total_time_enabled and total_time_running fields for a event.
1327  */
1328 static void update_event_times(struct perf_event *event)
1329 {
1330         struct perf_event_context *ctx = event->ctx;
1331         u64 run_end;
1332
1333         lockdep_assert_held(&ctx->lock);
1334
1335         if (event->state < PERF_EVENT_STATE_INACTIVE ||
1336             event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1337                 return;
1338
1339         /*
1340          * in cgroup mode, time_enabled represents
1341          * the time the event was enabled AND active
1342          * tasks were in the monitored cgroup. This is
1343          * independent of the activity of the context as
1344          * there may be a mix of cgroup and non-cgroup events.
1345          *
1346          * That is why we treat cgroup events differently
1347          * here.
1348          */
1349         if (is_cgroup_event(event))
1350                 run_end = perf_cgroup_event_time(event);
1351         else if (ctx->is_active)
1352                 run_end = ctx->time;
1353         else
1354                 run_end = event->tstamp_stopped;
1355
1356         event->total_time_enabled = run_end - event->tstamp_enabled;
1357
1358         if (event->state == PERF_EVENT_STATE_INACTIVE)
1359                 run_end = event->tstamp_stopped;
1360         else
1361                 run_end = perf_event_time(event);
1362
1363         event->total_time_running = run_end - event->tstamp_running;
1364
1365 }
1366
1367 /*
1368  * Update total_time_enabled and total_time_running for all events in a group.
1369  */
1370 static void update_group_times(struct perf_event *leader)
1371 {
1372         struct perf_event *event;
1373
1374         update_event_times(leader);
1375         list_for_each_entry(event, &leader->sibling_list, group_entry)
1376                 update_event_times(event);
1377 }
1378
1379 static struct list_head *
1380 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1381 {
1382         if (event->attr.pinned)
1383                 return &ctx->pinned_groups;
1384         else
1385                 return &ctx->flexible_groups;
1386 }
1387
1388 /*
1389  * Add a event from the lists for its context.
1390  * Must be called with ctx->mutex and ctx->lock held.
1391  */
1392 static void
1393 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1394 {
1395         lockdep_assert_held(&ctx->lock);
1396
1397         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1398         event->attach_state |= PERF_ATTACH_CONTEXT;
1399
1400         /*
1401          * If we're a stand alone event or group leader, we go to the context
1402          * list, group events are kept attached to the group so that
1403          * perf_group_detach can, at all times, locate all siblings.
1404          */
1405         if (event->group_leader == event) {
1406                 struct list_head *list;
1407
1408                 if (is_software_event(event))
1409                         event->group_flags |= PERF_GROUP_SOFTWARE;
1410
1411                 list = ctx_group_list(event, ctx);
1412                 list_add_tail(&event->group_entry, list);
1413         }
1414
1415         if (is_cgroup_event(event))
1416                 ctx->nr_cgroups++;
1417
1418         list_add_rcu(&event->event_entry, &ctx->event_list);
1419         ctx->nr_events++;
1420         if (event->attr.inherit_stat)
1421                 ctx->nr_stat++;
1422
1423         ctx->generation++;
1424 }
1425
1426 /*
1427  * Initialize event state based on the perf_event_attr::disabled.
1428  */
1429 static inline void perf_event__state_init(struct perf_event *event)
1430 {
1431         event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1432                                               PERF_EVENT_STATE_INACTIVE;
1433 }
1434
1435 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1436 {
1437         int entry = sizeof(u64); /* value */
1438         int size = 0;
1439         int nr = 1;
1440
1441         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1442                 size += sizeof(u64);
1443
1444         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1445                 size += sizeof(u64);
1446
1447         if (event->attr.read_format & PERF_FORMAT_ID)
1448                 entry += sizeof(u64);
1449
1450         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1451                 nr += nr_siblings;
1452                 size += sizeof(u64);
1453         }
1454
1455         size += entry * nr;
1456         event->read_size = size;
1457 }
1458
1459 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1460 {
1461         struct perf_sample_data *data;
1462         u16 size = 0;
1463
1464         if (sample_type & PERF_SAMPLE_IP)
1465                 size += sizeof(data->ip);
1466
1467         if (sample_type & PERF_SAMPLE_ADDR)
1468                 size += sizeof(data->addr);
1469
1470         if (sample_type & PERF_SAMPLE_PERIOD)
1471                 size += sizeof(data->period);
1472
1473         if (sample_type & PERF_SAMPLE_WEIGHT)
1474                 size += sizeof(data->weight);
1475
1476         if (sample_type & PERF_SAMPLE_READ)
1477                 size += event->read_size;
1478
1479         if (sample_type & PERF_SAMPLE_DATA_SRC)
1480                 size += sizeof(data->data_src.val);
1481
1482         if (sample_type & PERF_SAMPLE_TRANSACTION)
1483                 size += sizeof(data->txn);
1484
1485         event->header_size = size;
1486 }
1487
1488 /*
1489  * Called at perf_event creation and when events are attached/detached from a
1490  * group.
1491  */
1492 static void perf_event__header_size(struct perf_event *event)
1493 {
1494         __perf_event_read_size(event,
1495                                event->group_leader->nr_siblings);
1496         __perf_event_header_size(event, event->attr.sample_type);
1497 }
1498
1499 static void perf_event__id_header_size(struct perf_event *event)
1500 {
1501         struct perf_sample_data *data;
1502         u64 sample_type = event->attr.sample_type;
1503         u16 size = 0;
1504
1505         if (sample_type & PERF_SAMPLE_TID)
1506                 size += sizeof(data->tid_entry);
1507
1508         if (sample_type & PERF_SAMPLE_TIME)
1509                 size += sizeof(data->time);
1510
1511         if (sample_type & PERF_SAMPLE_IDENTIFIER)
1512                 size += sizeof(data->id);
1513
1514         if (sample_type & PERF_SAMPLE_ID)
1515                 size += sizeof(data->id);
1516
1517         if (sample_type & PERF_SAMPLE_STREAM_ID)
1518                 size += sizeof(data->stream_id);
1519
1520         if (sample_type & PERF_SAMPLE_CPU)
1521                 size += sizeof(data->cpu_entry);
1522
1523         event->id_header_size = size;
1524 }
1525
1526 static bool perf_event_validate_size(struct perf_event *event)
1527 {
1528         /*
1529          * The values computed here will be over-written when we actually
1530          * attach the event.
1531          */
1532         __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1533         __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1534         perf_event__id_header_size(event);
1535
1536         /*
1537          * Sum the lot; should not exceed the 64k limit we have on records.
1538          * Conservative limit to allow for callchains and other variable fields.
1539          */
1540         if (event->read_size + event->header_size +
1541             event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1542                 return false;
1543
1544         return true;
1545 }
1546
1547 static void perf_group_attach(struct perf_event *event)
1548 {
1549         struct perf_event *group_leader = event->group_leader, *pos;
1550
1551         /*
1552          * We can have double attach due to group movement in perf_event_open.
1553          */
1554         if (event->attach_state & PERF_ATTACH_GROUP)
1555                 return;
1556
1557         event->attach_state |= PERF_ATTACH_GROUP;
1558
1559         if (group_leader == event)
1560                 return;
1561
1562         WARN_ON_ONCE(group_leader->ctx != event->ctx);
1563
1564         if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1565                         !is_software_event(event))
1566                 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1567
1568         list_add_tail(&event->group_entry, &group_leader->sibling_list);
1569         group_leader->nr_siblings++;
1570
1571         perf_event__header_size(group_leader);
1572
1573         list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1574                 perf_event__header_size(pos);
1575 }
1576
1577 /*
1578  * Remove a event from the lists for its context.
1579  * Must be called with ctx->mutex and ctx->lock held.
1580  */
1581 static void
1582 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1583 {
1584         struct perf_cpu_context *cpuctx;
1585
1586         WARN_ON_ONCE(event->ctx != ctx);
1587         lockdep_assert_held(&ctx->lock);
1588
1589         /*
1590          * We can have double detach due to exit/hot-unplug + close.
1591          */
1592         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1593                 return;
1594
1595         event->attach_state &= ~PERF_ATTACH_CONTEXT;
1596
1597         if (is_cgroup_event(event)) {
1598                 ctx->nr_cgroups--;
1599                 /*
1600                  * Because cgroup events are always per-cpu events, this will
1601                  * always be called from the right CPU.
1602                  */
1603                 cpuctx = __get_cpu_context(ctx);
1604                 /*
1605                  * If there are no more cgroup events then clear cgrp to avoid
1606                  * stale pointer in update_cgrp_time_from_cpuctx().
1607                  */
1608                 if (!ctx->nr_cgroups)
1609                         cpuctx->cgrp = NULL;
1610         }
1611
1612         ctx->nr_events--;
1613         if (event->attr.inherit_stat)
1614                 ctx->nr_stat--;
1615
1616         list_del_rcu(&event->event_entry);
1617
1618         if (event->group_leader == event)
1619                 list_del_init(&event->group_entry);
1620
1621         update_group_times(event);
1622
1623         /*
1624          * If event was in error state, then keep it
1625          * that way, otherwise bogus counts will be
1626          * returned on read(). The only way to get out
1627          * of error state is by explicit re-enabling
1628          * of the event
1629          */
1630         if (event->state > PERF_EVENT_STATE_OFF)
1631                 event->state = PERF_EVENT_STATE_OFF;
1632
1633         ctx->generation++;
1634 }
1635
1636 static void perf_group_detach(struct perf_event *event)
1637 {
1638         struct perf_event *sibling, *tmp;
1639         struct list_head *list = NULL;
1640
1641         /*
1642          * We can have double detach due to exit/hot-unplug + close.
1643          */
1644         if (!(event->attach_state & PERF_ATTACH_GROUP))
1645                 return;
1646
1647         event->attach_state &= ~PERF_ATTACH_GROUP;
1648
1649         /*
1650          * If this is a sibling, remove it from its group.
1651          */
1652         if (event->group_leader != event) {
1653                 list_del_init(&event->group_entry);
1654                 event->group_leader->nr_siblings--;
1655                 goto out;
1656         }
1657
1658         if (!list_empty(&event->group_entry))
1659                 list = &event->group_entry;
1660
1661         /*
1662          * If this was a group event with sibling events then
1663          * upgrade the siblings to singleton events by adding them
1664          * to whatever list we are on.
1665          */
1666         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1667                 if (list)
1668                         list_move_tail(&sibling->group_entry, list);
1669                 sibling->group_leader = sibling;
1670
1671                 /* Inherit group flags from the previous leader */
1672                 sibling->group_flags = event->group_flags;
1673
1674                 WARN_ON_ONCE(sibling->ctx != event->ctx);
1675         }
1676
1677 out:
1678         perf_event__header_size(event->group_leader);
1679
1680         list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1681                 perf_event__header_size(tmp);
1682 }
1683
1684 static bool is_orphaned_event(struct perf_event *event)
1685 {
1686         return event->state == PERF_EVENT_STATE_DEAD;
1687 }
1688
1689 static inline int __pmu_filter_match(struct perf_event *event)
1690 {
1691         struct pmu *pmu = event->pmu;
1692         return pmu->filter_match ? pmu->filter_match(event) : 1;
1693 }
1694
1695 /*
1696  * Check whether we should attempt to schedule an event group based on
1697  * PMU-specific filtering. An event group can consist of HW and SW events,
1698  * potentially with a SW leader, so we must check all the filters, to
1699  * determine whether a group is schedulable:
1700  */
1701 static inline int pmu_filter_match(struct perf_event *event)
1702 {
1703         struct perf_event *child;
1704
1705         if (!__pmu_filter_match(event))
1706                 return 0;
1707
1708         list_for_each_entry(child, &event->sibling_list, group_entry) {
1709                 if (!__pmu_filter_match(child))
1710                         return 0;
1711         }
1712
1713         return 1;
1714 }
1715
1716 static inline int
1717 event_filter_match(struct perf_event *event)
1718 {
1719         return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1720                perf_cgroup_match(event) && pmu_filter_match(event);
1721 }
1722
1723 static void
1724 event_sched_out(struct perf_event *event,
1725                   struct perf_cpu_context *cpuctx,
1726                   struct perf_event_context *ctx)
1727 {
1728         u64 tstamp = perf_event_time(event);
1729         u64 delta;
1730
1731         WARN_ON_ONCE(event->ctx != ctx);
1732         lockdep_assert_held(&ctx->lock);
1733
1734         /*
1735          * An event which could not be activated because of
1736          * filter mismatch still needs to have its timings
1737          * maintained, otherwise bogus information is return
1738          * via read() for time_enabled, time_running:
1739          */
1740         if (event->state == PERF_EVENT_STATE_INACTIVE &&
1741             !event_filter_match(event)) {
1742                 delta = tstamp - event->tstamp_stopped;
1743                 event->tstamp_running += delta;
1744                 event->tstamp_stopped = tstamp;
1745         }
1746
1747         if (event->state != PERF_EVENT_STATE_ACTIVE)
1748                 return;
1749
1750         perf_pmu_disable(event->pmu);
1751
1752         event->tstamp_stopped = tstamp;
1753         event->pmu->del(event, 0);
1754         event->oncpu = -1;
1755         event->state = PERF_EVENT_STATE_INACTIVE;
1756         if (event->pending_disable) {
1757                 event->pending_disable = 0;
1758                 event->state = PERF_EVENT_STATE_OFF;
1759         }
1760
1761         if (!is_software_event(event))
1762                 cpuctx->active_oncpu--;
1763         if (!--ctx->nr_active)
1764                 perf_event_ctx_deactivate(ctx);
1765         if (event->attr.freq && event->attr.sample_freq)
1766                 ctx->nr_freq--;
1767         if (event->attr.exclusive || !cpuctx->active_oncpu)
1768                 cpuctx->exclusive = 0;
1769
1770         perf_pmu_enable(event->pmu);
1771 }
1772
1773 static void
1774 group_sched_out(struct perf_event *group_event,
1775                 struct perf_cpu_context *cpuctx,
1776                 struct perf_event_context *ctx)
1777 {
1778         struct perf_event *event;
1779         int state = group_event->state;
1780
1781         event_sched_out(group_event, cpuctx, ctx);
1782
1783         /*
1784          * Schedule out siblings (if any):
1785          */
1786         list_for_each_entry(event, &group_event->sibling_list, group_entry)
1787                 event_sched_out(event, cpuctx, ctx);
1788
1789         if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1790                 cpuctx->exclusive = 0;
1791 }
1792
1793 #define DETACH_GROUP    0x01UL
1794
1795 /*
1796  * Cross CPU call to remove a performance event
1797  *
1798  * We disable the event on the hardware level first. After that we
1799  * remove it from the context list.
1800  */
1801 static void
1802 __perf_remove_from_context(struct perf_event *event,
1803                            struct perf_cpu_context *cpuctx,
1804                            struct perf_event_context *ctx,
1805                            void *info)
1806 {
1807         unsigned long flags = (unsigned long)info;
1808
1809         event_sched_out(event, cpuctx, ctx);
1810         if (flags & DETACH_GROUP)
1811                 perf_group_detach(event);
1812         list_del_event(event, ctx);
1813
1814         if (!ctx->nr_events && ctx->is_active) {
1815                 ctx->is_active = 0;
1816                 if (ctx->task) {
1817                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1818                         cpuctx->task_ctx = NULL;
1819                 }
1820         }
1821 }
1822
1823 /*
1824  * Remove the event from a task's (or a CPU's) list of events.
1825  *
1826  * If event->ctx is a cloned context, callers must make sure that
1827  * every task struct that event->ctx->task could possibly point to
1828  * remains valid.  This is OK when called from perf_release since
1829  * that only calls us on the top-level context, which can't be a clone.
1830  * When called from perf_event_exit_task, it's OK because the
1831  * context has been detached from its task.
1832  */
1833 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
1834 {
1835         lockdep_assert_held(&event->ctx->mutex);
1836
1837         event_function_call(event, __perf_remove_from_context, (void *)flags);
1838 }
1839
1840 /*
1841  * Cross CPU call to disable a performance event
1842  */
1843 static void __perf_event_disable(struct perf_event *event,
1844                                  struct perf_cpu_context *cpuctx,
1845                                  struct perf_event_context *ctx,
1846                                  void *info)
1847 {
1848         if (event->state < PERF_EVENT_STATE_INACTIVE)
1849                 return;
1850
1851         update_context_time(ctx);
1852         update_cgrp_time_from_event(event);
1853         update_group_times(event);
1854         if (event == event->group_leader)
1855                 group_sched_out(event, cpuctx, ctx);
1856         else
1857                 event_sched_out(event, cpuctx, ctx);
1858         event->state = PERF_EVENT_STATE_OFF;
1859 }
1860
1861 /*
1862  * Disable a event.
1863  *
1864  * If event->ctx is a cloned context, callers must make sure that
1865  * every task struct that event->ctx->task could possibly point to
1866  * remains valid.  This condition is satisifed when called through
1867  * perf_event_for_each_child or perf_event_for_each because they
1868  * hold the top-level event's child_mutex, so any descendant that
1869  * goes to exit will block in perf_event_exit_event().
1870  *
1871  * When called from perf_pending_event it's OK because event->ctx
1872  * is the current context on this CPU and preemption is disabled,
1873  * hence we can't get into perf_event_task_sched_out for this context.
1874  */
1875 static void _perf_event_disable(struct perf_event *event)
1876 {
1877         struct perf_event_context *ctx = event->ctx;
1878
1879         raw_spin_lock_irq(&ctx->lock);
1880         if (event->state <= PERF_EVENT_STATE_OFF) {
1881                 raw_spin_unlock_irq(&ctx->lock);
1882                 return;
1883         }
1884         raw_spin_unlock_irq(&ctx->lock);
1885
1886         event_function_call(event, __perf_event_disable, NULL);
1887 }
1888
1889 void perf_event_disable_local(struct perf_event *event)
1890 {
1891         event_function_local(event, __perf_event_disable, NULL);
1892 }
1893
1894 /*
1895  * Strictly speaking kernel users cannot create groups and therefore this
1896  * interface does not need the perf_event_ctx_lock() magic.
1897  */
1898 void perf_event_disable(struct perf_event *event)
1899 {
1900         struct perf_event_context *ctx;
1901
1902         ctx = perf_event_ctx_lock(event);
1903         _perf_event_disable(event);
1904         perf_event_ctx_unlock(event, ctx);
1905 }
1906 EXPORT_SYMBOL_GPL(perf_event_disable);
1907
1908 static void perf_set_shadow_time(struct perf_event *event,
1909                                  struct perf_event_context *ctx,
1910                                  u64 tstamp)
1911 {
1912         /*
1913          * use the correct time source for the time snapshot
1914          *
1915          * We could get by without this by leveraging the
1916          * fact that to get to this function, the caller
1917          * has most likely already called update_context_time()
1918          * and update_cgrp_time_xx() and thus both timestamp
1919          * are identical (or very close). Given that tstamp is,
1920          * already adjusted for cgroup, we could say that:
1921          *    tstamp - ctx->timestamp
1922          * is equivalent to
1923          *    tstamp - cgrp->timestamp.
1924          *
1925          * Then, in perf_output_read(), the calculation would
1926          * work with no changes because:
1927          * - event is guaranteed scheduled in
1928          * - no scheduled out in between
1929          * - thus the timestamp would be the same
1930          *
1931          * But this is a bit hairy.
1932          *
1933          * So instead, we have an explicit cgroup call to remain
1934          * within the time time source all along. We believe it
1935          * is cleaner and simpler to understand.
1936          */
1937         if (is_cgroup_event(event))
1938                 perf_cgroup_set_shadow_time(event, tstamp);
1939         else
1940                 event->shadow_ctx_time = tstamp - ctx->timestamp;
1941 }
1942
1943 #define MAX_INTERRUPTS (~0ULL)
1944
1945 static void perf_log_throttle(struct perf_event *event, int enable);
1946 static void perf_log_itrace_start(struct perf_event *event);
1947
1948 static int
1949 event_sched_in(struct perf_event *event,
1950                  struct perf_cpu_context *cpuctx,
1951                  struct perf_event_context *ctx)
1952 {
1953         u64 tstamp = perf_event_time(event);
1954         int ret = 0;
1955
1956         lockdep_assert_held(&ctx->lock);
1957
1958         if (event->state <= PERF_EVENT_STATE_OFF)
1959                 return 0;
1960
1961         WRITE_ONCE(event->oncpu, smp_processor_id());
1962         /*
1963          * Order event::oncpu write to happen before the ACTIVE state
1964          * is visible.
1965          */
1966         smp_wmb();
1967         WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
1968
1969         /*
1970          * Unthrottle events, since we scheduled we might have missed several
1971          * ticks already, also for a heavily scheduling task there is little
1972          * guarantee it'll get a tick in a timely manner.
1973          */
1974         if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1975                 perf_log_throttle(event, 1);
1976                 event->hw.interrupts = 0;
1977         }
1978
1979         /*
1980          * The new state must be visible before we turn it on in the hardware:
1981          */
1982         smp_wmb();
1983
1984         perf_pmu_disable(event->pmu);
1985
1986         perf_set_shadow_time(event, ctx, tstamp);
1987
1988         perf_log_itrace_start(event);
1989
1990         if (event->pmu->add(event, PERF_EF_START)) {
1991                 event->state = PERF_EVENT_STATE_INACTIVE;
1992                 event->oncpu = -1;
1993                 ret = -EAGAIN;
1994                 goto out;
1995         }
1996
1997         event->tstamp_running += tstamp - event->tstamp_stopped;
1998
1999         if (!is_software_event(event))
2000                 cpuctx->active_oncpu++;
2001         if (!ctx->nr_active++)
2002                 perf_event_ctx_activate(ctx);
2003         if (event->attr.freq && event->attr.sample_freq)
2004                 ctx->nr_freq++;
2005
2006         if (event->attr.exclusive)
2007                 cpuctx->exclusive = 1;
2008
2009 out:
2010         perf_pmu_enable(event->pmu);
2011
2012         return ret;
2013 }
2014
2015 static int
2016 group_sched_in(struct perf_event *group_event,
2017                struct perf_cpu_context *cpuctx,
2018                struct perf_event_context *ctx)
2019 {
2020         struct perf_event *event, *partial_group = NULL;
2021         struct pmu *pmu = ctx->pmu;
2022         u64 now = ctx->time;
2023         bool simulate = false;
2024
2025         if (group_event->state == PERF_EVENT_STATE_OFF)
2026                 return 0;
2027
2028         pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2029
2030         if (event_sched_in(group_event, cpuctx, ctx)) {
2031                 pmu->cancel_txn(pmu);
2032                 perf_mux_hrtimer_restart(cpuctx);
2033                 return -EAGAIN;
2034         }
2035
2036         /*
2037          * Schedule in siblings as one group (if any):
2038          */
2039         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2040                 if (event_sched_in(event, cpuctx, ctx)) {
2041                         partial_group = event;
2042                         goto group_error;
2043                 }
2044         }
2045
2046         if (!pmu->commit_txn(pmu))
2047                 return 0;
2048
2049 group_error:
2050         /*
2051          * Groups can be scheduled in as one unit only, so undo any
2052          * partial group before returning:
2053          * The events up to the failed event are scheduled out normally,
2054          * tstamp_stopped will be updated.
2055          *
2056          * The failed events and the remaining siblings need to have
2057          * their timings updated as if they had gone thru event_sched_in()
2058          * and event_sched_out(). This is required to get consistent timings
2059          * across the group. This also takes care of the case where the group
2060          * could never be scheduled by ensuring tstamp_stopped is set to mark
2061          * the time the event was actually stopped, such that time delta
2062          * calculation in update_event_times() is correct.
2063          */
2064         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2065                 if (event == partial_group)
2066                         simulate = true;
2067
2068                 if (simulate) {
2069                         event->tstamp_running += now - event->tstamp_stopped;
2070                         event->tstamp_stopped = now;
2071                 } else {
2072                         event_sched_out(event, cpuctx, ctx);
2073                 }
2074         }
2075         event_sched_out(group_event, cpuctx, ctx);
2076
2077         pmu->cancel_txn(pmu);
2078
2079         perf_mux_hrtimer_restart(cpuctx);
2080
2081         return -EAGAIN;
2082 }
2083
2084 /*
2085  * Work out whether we can put this event group on the CPU now.
2086  */
2087 static int group_can_go_on(struct perf_event *event,
2088                            struct perf_cpu_context *cpuctx,
2089                            int can_add_hw)
2090 {
2091         /*
2092          * Groups consisting entirely of software events can always go on.
2093          */
2094         if (event->group_flags & PERF_GROUP_SOFTWARE)
2095                 return 1;
2096         /*
2097          * If an exclusive group is already on, no other hardware
2098          * events can go on.
2099          */
2100         if (cpuctx->exclusive)
2101                 return 0;
2102         /*
2103          * If this group is exclusive and there are already
2104          * events on the CPU, it can't go on.
2105          */
2106         if (event->attr.exclusive && cpuctx->active_oncpu)
2107                 return 0;
2108         /*
2109          * Otherwise, try to add it if all previous groups were able
2110          * to go on.
2111          */
2112         return can_add_hw;
2113 }
2114
2115 static void add_event_to_ctx(struct perf_event *event,
2116                                struct perf_event_context *ctx)
2117 {
2118         u64 tstamp = perf_event_time(event);
2119
2120         list_add_event(event, ctx);
2121         perf_group_attach(event);
2122         event->tstamp_enabled = tstamp;
2123         event->tstamp_running = tstamp;
2124         event->tstamp_stopped = tstamp;
2125 }
2126
2127 static void ctx_sched_out(struct perf_event_context *ctx,
2128                           struct perf_cpu_context *cpuctx,
2129                           enum event_type_t event_type);
2130 static void
2131 ctx_sched_in(struct perf_event_context *ctx,
2132              struct perf_cpu_context *cpuctx,
2133              enum event_type_t event_type,
2134              struct task_struct *task);
2135
2136 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2137                                struct perf_event_context *ctx)
2138 {
2139         if (!cpuctx->task_ctx)
2140                 return;
2141
2142         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2143                 return;
2144
2145         ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2146 }
2147
2148 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2149                                 struct perf_event_context *ctx,
2150                                 struct task_struct *task)
2151 {
2152         cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2153         if (ctx)
2154                 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2155         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2156         if (ctx)
2157                 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2158 }
2159
2160 static void ctx_resched(struct perf_cpu_context *cpuctx,
2161                         struct perf_event_context *task_ctx)
2162 {
2163         perf_pmu_disable(cpuctx->ctx.pmu);
2164         if (task_ctx)
2165                 task_ctx_sched_out(cpuctx, task_ctx);
2166         cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2167         perf_event_sched_in(cpuctx, task_ctx, current);
2168         perf_pmu_enable(cpuctx->ctx.pmu);
2169 }
2170
2171 /*
2172  * Cross CPU call to install and enable a performance event
2173  *
2174  * Very similar to remote_function() + event_function() but cannot assume that
2175  * things like ctx->is_active and cpuctx->task_ctx are set.
2176  */
2177 static int  __perf_install_in_context(void *info)
2178 {
2179         struct perf_event *event = info;
2180         struct perf_event_context *ctx = event->ctx;
2181         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2182         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2183         bool activate = true;
2184         int ret = 0;
2185
2186         raw_spin_lock(&cpuctx->ctx.lock);
2187         if (ctx->task) {
2188                 raw_spin_lock(&ctx->lock);
2189                 task_ctx = ctx;
2190
2191                 /* If we're on the wrong CPU, try again */
2192                 if (task_cpu(ctx->task) != smp_processor_id()) {
2193                         ret = -ESRCH;
2194                         goto unlock;
2195                 }
2196
2197                 /*
2198                  * If we're on the right CPU, see if the task we target is
2199                  * current, if not we don't have to activate the ctx, a future
2200                  * context switch will do that for us.
2201                  */
2202                 if (ctx->task != current)
2203                         activate = false;
2204                 else
2205                         WARN_ON_ONCE(cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2206
2207         } else if (task_ctx) {
2208                 raw_spin_lock(&task_ctx->lock);
2209         }
2210
2211         if (activate) {
2212                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2213                 add_event_to_ctx(event, ctx);
2214                 ctx_resched(cpuctx, task_ctx);
2215         } else {
2216                 add_event_to_ctx(event, ctx);
2217         }
2218
2219 unlock:
2220         perf_ctx_unlock(cpuctx, task_ctx);
2221
2222         return ret;
2223 }
2224
2225 /*
2226  * Attach a performance event to a context.
2227  *
2228  * Very similar to event_function_call, see comment there.
2229  */
2230 static void
2231 perf_install_in_context(struct perf_event_context *ctx,
2232                         struct perf_event *event,
2233                         int cpu)
2234 {
2235         struct task_struct *task = READ_ONCE(ctx->task);
2236
2237         lockdep_assert_held(&ctx->mutex);
2238
2239         if (event->cpu != -1)
2240                 event->cpu = cpu;
2241
2242         /*
2243          * Ensures that if we can observe event->ctx, both the event and ctx
2244          * will be 'complete'. See perf_iterate_sb_cpu().
2245          */
2246         smp_store_release(&event->ctx, ctx);
2247
2248         if (!task) {
2249                 cpu_function_call(cpu, __perf_install_in_context, event);
2250                 return;
2251         }
2252
2253         /*
2254          * Should not happen, we validate the ctx is still alive before calling.
2255          */
2256         if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2257                 return;
2258
2259         /*
2260          * Installing events is tricky because we cannot rely on ctx->is_active
2261          * to be set in case this is the nr_events 0 -> 1 transition.
2262          */
2263 again:
2264         /*
2265          * Cannot use task_function_call() because we need to run on the task's
2266          * CPU regardless of whether its current or not.
2267          */
2268         if (!cpu_function_call(task_cpu(task), __perf_install_in_context, event))
2269                 return;
2270
2271         raw_spin_lock_irq(&ctx->lock);
2272         task = ctx->task;
2273         if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2274                 /*
2275                  * Cannot happen because we already checked above (which also
2276                  * cannot happen), and we hold ctx->mutex, which serializes us
2277                  * against perf_event_exit_task_context().
2278                  */
2279                 raw_spin_unlock_irq(&ctx->lock);
2280                 return;
2281         }
2282         raw_spin_unlock_irq(&ctx->lock);
2283         /*
2284          * Since !ctx->is_active doesn't mean anything, we must IPI
2285          * unconditionally.
2286          */
2287         goto again;
2288 }
2289
2290 /*
2291  * Put a event into inactive state and update time fields.
2292  * Enabling the leader of a group effectively enables all
2293  * the group members that aren't explicitly disabled, so we
2294  * have to update their ->tstamp_enabled also.
2295  * Note: this works for group members as well as group leaders
2296  * since the non-leader members' sibling_lists will be empty.
2297  */
2298 static void __perf_event_mark_enabled(struct perf_event *event)
2299 {
2300         struct perf_event *sub;
2301         u64 tstamp = perf_event_time(event);
2302
2303         event->state = PERF_EVENT_STATE_INACTIVE;
2304         event->tstamp_enabled = tstamp - event->total_time_enabled;
2305         list_for_each_entry(sub, &event->sibling_list, group_entry) {
2306                 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2307                         sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2308         }
2309 }
2310
2311 /*
2312  * Cross CPU call to enable a performance event
2313  */
2314 static void __perf_event_enable(struct perf_event *event,
2315                                 struct perf_cpu_context *cpuctx,
2316                                 struct perf_event_context *ctx,
2317                                 void *info)
2318 {
2319         struct perf_event *leader = event->group_leader;
2320         struct perf_event_context *task_ctx;
2321
2322         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2323             event->state <= PERF_EVENT_STATE_ERROR)
2324                 return;
2325
2326         if (ctx->is_active)
2327                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2328
2329         __perf_event_mark_enabled(event);
2330
2331         if (!ctx->is_active)
2332                 return;
2333
2334         if (!event_filter_match(event)) {
2335                 if (is_cgroup_event(event))
2336                         perf_cgroup_defer_enabled(event);
2337                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2338                 return;
2339         }
2340
2341         /*
2342          * If the event is in a group and isn't the group leader,
2343          * then don't put it on unless the group is on.
2344          */
2345         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2346                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2347                 return;
2348         }
2349
2350         task_ctx = cpuctx->task_ctx;
2351         if (ctx->task)
2352                 WARN_ON_ONCE(task_ctx != ctx);
2353
2354         ctx_resched(cpuctx, task_ctx);
2355 }
2356
2357 /*
2358  * Enable a event.
2359  *
2360  * If event->ctx is a cloned context, callers must make sure that
2361  * every task struct that event->ctx->task could possibly point to
2362  * remains valid.  This condition is satisfied when called through
2363  * perf_event_for_each_child or perf_event_for_each as described
2364  * for perf_event_disable.
2365  */
2366 static void _perf_event_enable(struct perf_event *event)
2367 {
2368         struct perf_event_context *ctx = event->ctx;
2369
2370         raw_spin_lock_irq(&ctx->lock);
2371         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2372             event->state <  PERF_EVENT_STATE_ERROR) {
2373                 raw_spin_unlock_irq(&ctx->lock);
2374                 return;
2375         }
2376
2377         /*
2378          * If the event is in error state, clear that first.
2379          *
2380          * That way, if we see the event in error state below, we know that it
2381          * has gone back into error state, as distinct from the task having
2382          * been scheduled away before the cross-call arrived.
2383          */
2384         if (event->state == PERF_EVENT_STATE_ERROR)
2385                 event->state = PERF_EVENT_STATE_OFF;
2386         raw_spin_unlock_irq(&ctx->lock);
2387
2388         event_function_call(event, __perf_event_enable, NULL);
2389 }
2390
2391 /*
2392  * See perf_event_disable();
2393  */
2394 void perf_event_enable(struct perf_event *event)
2395 {
2396         struct perf_event_context *ctx;
2397
2398         ctx = perf_event_ctx_lock(event);
2399         _perf_event_enable(event);
2400         perf_event_ctx_unlock(event, ctx);
2401 }
2402 EXPORT_SYMBOL_GPL(perf_event_enable);
2403
2404 struct stop_event_data {
2405         struct perf_event       *event;
2406         unsigned int            restart;
2407 };
2408
2409 static int __perf_event_stop(void *info)
2410 {
2411         struct stop_event_data *sd = info;
2412         struct perf_event *event = sd->event;
2413
2414         /* if it's already INACTIVE, do nothing */
2415         if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2416                 return 0;
2417
2418         /* matches smp_wmb() in event_sched_in() */
2419         smp_rmb();
2420
2421         /*
2422          * There is a window with interrupts enabled before we get here,
2423          * so we need to check again lest we try to stop another CPU's event.
2424          */
2425         if (READ_ONCE(event->oncpu) != smp_processor_id())
2426                 return -EAGAIN;
2427
2428         event->pmu->stop(event, PERF_EF_UPDATE);
2429
2430         /*
2431          * May race with the actual stop (through perf_pmu_output_stop()),
2432          * but it is only used for events with AUX ring buffer, and such
2433          * events will refuse to restart because of rb::aux_mmap_count==0,
2434          * see comments in perf_aux_output_begin().
2435          *
2436          * Since this is happening on a event-local CPU, no trace is lost
2437          * while restarting.
2438          */
2439         if (sd->restart)
2440                 event->pmu->start(event, PERF_EF_START);
2441
2442         return 0;
2443 }
2444
2445 static int perf_event_restart(struct perf_event *event)
2446 {
2447         struct stop_event_data sd = {
2448                 .event          = event,
2449                 .restart        = 1,
2450         };
2451         int ret = 0;
2452
2453         do {
2454                 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2455                         return 0;
2456
2457                 /* matches smp_wmb() in event_sched_in() */
2458                 smp_rmb();
2459
2460                 /*
2461                  * We only want to restart ACTIVE events, so if the event goes
2462                  * inactive here (event->oncpu==-1), there's nothing more to do;
2463                  * fall through with ret==-ENXIO.
2464                  */
2465                 ret = cpu_function_call(READ_ONCE(event->oncpu),
2466                                         __perf_event_stop, &sd);
2467         } while (ret == -EAGAIN);
2468
2469         return ret;
2470 }
2471
2472 /*
2473  * In order to contain the amount of racy and tricky in the address filter
2474  * configuration management, it is a two part process:
2475  *
2476  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2477  *      we update the addresses of corresponding vmas in
2478  *      event::addr_filters_offs array and bump the event::addr_filters_gen;
2479  * (p2) when an event is scheduled in (pmu::add), it calls
2480  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2481  *      if the generation has changed since the previous call.
2482  *
2483  * If (p1) happens while the event is active, we restart it to force (p2).
2484  *
2485  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2486  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2487  *     ioctl;
2488  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2489  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2490  *     for reading;
2491  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2492  *     of exec.
2493  */
2494 void perf_event_addr_filters_sync(struct perf_event *event)
2495 {
2496         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2497
2498         if (!has_addr_filter(event))
2499                 return;
2500
2501         raw_spin_lock(&ifh->lock);
2502         if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2503                 event->pmu->addr_filters_sync(event);
2504                 event->hw.addr_filters_gen = event->addr_filters_gen;
2505         }
2506         raw_spin_unlock(&ifh->lock);
2507 }
2508 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2509
2510 static int _perf_event_refresh(struct perf_event *event, int refresh)
2511 {
2512         /*
2513          * not supported on inherited events
2514          */
2515         if (event->attr.inherit || !is_sampling_event(event))
2516                 return -EINVAL;
2517
2518         atomic_add(refresh, &event->event_limit);
2519         _perf_event_enable(event);
2520
2521         return 0;
2522 }
2523
2524 /*
2525  * See perf_event_disable()
2526  */
2527 int perf_event_refresh(struct perf_event *event, int refresh)
2528 {
2529         struct perf_event_context *ctx;
2530         int ret;
2531
2532         ctx = perf_event_ctx_lock(event);
2533         ret = _perf_event_refresh(event, refresh);
2534         perf_event_ctx_unlock(event, ctx);
2535
2536         return ret;
2537 }
2538 EXPORT_SYMBOL_GPL(perf_event_refresh);
2539
2540 static void ctx_sched_out(struct perf_event_context *ctx,
2541                           struct perf_cpu_context *cpuctx,
2542                           enum event_type_t event_type)
2543 {
2544         int is_active = ctx->is_active;
2545         struct perf_event *event;
2546
2547         lockdep_assert_held(&ctx->lock);
2548
2549         if (likely(!ctx->nr_events)) {
2550                 /*
2551                  * See __perf_remove_from_context().
2552                  */
2553                 WARN_ON_ONCE(ctx->is_active);
2554                 if (ctx->task)
2555                         WARN_ON_ONCE(cpuctx->task_ctx);
2556                 return;
2557         }
2558
2559         ctx->is_active &= ~event_type;
2560         if (!(ctx->is_active & EVENT_ALL))
2561                 ctx->is_active = 0;
2562
2563         if (ctx->task) {
2564                 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2565                 if (!ctx->is_active)
2566                         cpuctx->task_ctx = NULL;
2567         }
2568
2569         /*
2570          * Always update time if it was set; not only when it changes.
2571          * Otherwise we can 'forget' to update time for any but the last
2572          * context we sched out. For example:
2573          *
2574          *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2575          *   ctx_sched_out(.event_type = EVENT_PINNED)
2576          *
2577          * would only update time for the pinned events.
2578          */
2579         if (is_active & EVENT_TIME) {
2580                 /* update (and stop) ctx time */
2581                 update_context_time(ctx);
2582                 update_cgrp_time_from_cpuctx(cpuctx);
2583         }
2584
2585         is_active ^= ctx->is_active; /* changed bits */
2586
2587         if (!ctx->nr_active || !(is_active & EVENT_ALL))
2588                 return;
2589
2590         perf_pmu_disable(ctx->pmu);
2591         if (is_active & EVENT_PINNED) {
2592                 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2593                         group_sched_out(event, cpuctx, ctx);
2594         }
2595
2596         if (is_active & EVENT_FLEXIBLE) {
2597                 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2598                         group_sched_out(event, cpuctx, ctx);
2599         }
2600         perf_pmu_enable(ctx->pmu);
2601 }
2602
2603 /*
2604  * Test whether two contexts are equivalent, i.e. whether they have both been
2605  * cloned from the same version of the same context.
2606  *
2607  * Equivalence is measured using a generation number in the context that is
2608  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2609  * and list_del_event().
2610  */
2611 static int context_equiv(struct perf_event_context *ctx1,
2612                          struct perf_event_context *ctx2)
2613 {
2614         lockdep_assert_held(&ctx1->lock);
2615         lockdep_assert_held(&ctx2->lock);
2616
2617         /* Pinning disables the swap optimization */
2618         if (ctx1->pin_count || ctx2->pin_count)
2619                 return 0;
2620
2621         /* If ctx1 is the parent of ctx2 */
2622         if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2623                 return 1;
2624
2625         /* If ctx2 is the parent of ctx1 */
2626         if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2627                 return 1;
2628
2629         /*
2630          * If ctx1 and ctx2 have the same parent; we flatten the parent
2631          * hierarchy, see perf_event_init_context().
2632          */
2633         if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2634                         ctx1->parent_gen == ctx2->parent_gen)
2635                 return 1;
2636
2637         /* Unmatched */
2638         return 0;
2639 }
2640
2641 static void __perf_event_sync_stat(struct perf_event *event,
2642                                      struct perf_event *next_event)
2643 {
2644         u64 value;
2645
2646         if (!event->attr.inherit_stat)
2647                 return;
2648
2649         /*
2650          * Update the event value, we cannot use perf_event_read()
2651          * because we're in the middle of a context switch and have IRQs
2652          * disabled, which upsets smp_call_function_single(), however
2653          * we know the event must be on the current CPU, therefore we
2654          * don't need to use it.
2655          */
2656         switch (event->state) {
2657         case PERF_EVENT_STATE_ACTIVE:
2658                 event->pmu->read(event);
2659                 /* fall-through */
2660
2661         case PERF_EVENT_STATE_INACTIVE:
2662                 update_event_times(event);
2663                 break;
2664
2665         default:
2666                 break;
2667         }
2668
2669         /*
2670          * In order to keep per-task stats reliable we need to flip the event
2671          * values when we flip the contexts.
2672          */
2673         value = local64_read(&next_event->count);
2674         value = local64_xchg(&event->count, value);
2675         local64_set(&next_event->count, value);
2676
2677         swap(event->total_time_enabled, next_event->total_time_enabled);
2678         swap(event->total_time_running, next_event->total_time_running);
2679
2680         /*
2681          * Since we swizzled the values, update the user visible data too.
2682          */
2683         perf_event_update_userpage(event);
2684         perf_event_update_userpage(next_event);
2685 }
2686
2687 static void perf_event_sync_stat(struct perf_event_context *ctx,
2688                                    struct perf_event_context *next_ctx)
2689 {
2690         struct perf_event *event, *next_event;
2691
2692         if (!ctx->nr_stat)
2693                 return;
2694
2695         update_context_time(ctx);
2696
2697         event = list_first_entry(&ctx->event_list,
2698                                    struct perf_event, event_entry);
2699
2700         next_event = list_first_entry(&next_ctx->event_list,
2701                                         struct perf_event, event_entry);
2702
2703         while (&event->event_entry != &ctx->event_list &&
2704                &next_event->event_entry != &next_ctx->event_list) {
2705
2706                 __perf_event_sync_stat(event, next_event);
2707
2708                 event = list_next_entry(event, event_entry);
2709                 next_event = list_next_entry(next_event, event_entry);
2710         }
2711 }
2712
2713 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2714                                          struct task_struct *next)
2715 {
2716         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2717         struct perf_event_context *next_ctx;
2718         struct perf_event_context *parent, *next_parent;
2719         struct perf_cpu_context *cpuctx;
2720         int do_switch = 1;
2721
2722         if (likely(!ctx))
2723                 return;
2724
2725         cpuctx = __get_cpu_context(ctx);
2726         if (!cpuctx->task_ctx)
2727                 return;
2728
2729         rcu_read_lock();
2730         next_ctx = next->perf_event_ctxp[ctxn];
2731         if (!next_ctx)
2732                 goto unlock;
2733
2734         parent = rcu_dereference(ctx->parent_ctx);
2735         next_parent = rcu_dereference(next_ctx->parent_ctx);
2736
2737         /* If neither context have a parent context; they cannot be clones. */
2738         if (!parent && !next_parent)
2739                 goto unlock;
2740
2741         if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2742                 /*
2743                  * Looks like the two contexts are clones, so we might be
2744                  * able to optimize the context switch.  We lock both
2745                  * contexts and check that they are clones under the
2746                  * lock (including re-checking that neither has been
2747                  * uncloned in the meantime).  It doesn't matter which
2748                  * order we take the locks because no other cpu could
2749                  * be trying to lock both of these tasks.
2750                  */
2751                 raw_spin_lock(&ctx->lock);
2752                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2753                 if (context_equiv(ctx, next_ctx)) {
2754                         WRITE_ONCE(ctx->task, next);
2755                         WRITE_ONCE(next_ctx->task, task);
2756
2757                         swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2758
2759                         /*
2760                          * RCU_INIT_POINTER here is safe because we've not
2761                          * modified the ctx and the above modification of
2762                          * ctx->task and ctx->task_ctx_data are immaterial
2763                          * since those values are always verified under
2764                          * ctx->lock which we're now holding.
2765                          */
2766                         RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2767                         RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2768
2769                         do_switch = 0;
2770
2771                         perf_event_sync_stat(ctx, next_ctx);
2772                 }
2773                 raw_spin_unlock(&next_ctx->lock);
2774                 raw_spin_unlock(&ctx->lock);
2775         }
2776 unlock:
2777         rcu_read_unlock();
2778
2779         if (do_switch) {
2780                 raw_spin_lock(&ctx->lock);
2781                 task_ctx_sched_out(cpuctx, ctx);
2782                 raw_spin_unlock(&ctx->lock);
2783         }
2784 }
2785
2786 void perf_sched_cb_dec(struct pmu *pmu)
2787 {
2788         this_cpu_dec(perf_sched_cb_usages);
2789 }
2790
2791 void perf_sched_cb_inc(struct pmu *pmu)
2792 {
2793         this_cpu_inc(perf_sched_cb_usages);
2794 }
2795
2796 /*
2797  * This function provides the context switch callback to the lower code
2798  * layer. It is invoked ONLY when the context switch callback is enabled.
2799  */
2800 static void perf_pmu_sched_task(struct task_struct *prev,
2801                                 struct task_struct *next,
2802                                 bool sched_in)
2803 {
2804         struct perf_cpu_context *cpuctx;
2805         struct pmu *pmu;
2806         unsigned long flags;
2807
2808         if (prev == next)
2809                 return;
2810
2811         local_irq_save(flags);
2812
2813         rcu_read_lock();
2814
2815         list_for_each_entry_rcu(pmu, &pmus, entry) {
2816                 if (pmu->sched_task) {
2817                         cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2818
2819                         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2820
2821                         perf_pmu_disable(pmu);
2822
2823                         pmu->sched_task(cpuctx->task_ctx, sched_in);
2824
2825                         perf_pmu_enable(pmu);
2826
2827                         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2828                 }
2829         }
2830
2831         rcu_read_unlock();
2832
2833         local_irq_restore(flags);
2834 }
2835
2836 static void perf_event_switch(struct task_struct *task,
2837                               struct task_struct *next_prev, bool sched_in);
2838
2839 #define for_each_task_context_nr(ctxn)                                  \
2840         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2841
2842 /*
2843  * Called from scheduler to remove the events of the current task,
2844  * with interrupts disabled.
2845  *
2846  * We stop each event and update the event value in event->count.
2847  *
2848  * This does not protect us against NMI, but disable()
2849  * sets the disabled bit in the control field of event _before_
2850  * accessing the event control register. If a NMI hits, then it will
2851  * not restart the event.
2852  */
2853 void __perf_event_task_sched_out(struct task_struct *task,
2854                                  struct task_struct *next)
2855 {
2856         int ctxn;
2857
2858         if (__this_cpu_read(perf_sched_cb_usages))
2859                 perf_pmu_sched_task(task, next, false);
2860
2861         if (atomic_read(&nr_switch_events))
2862                 perf_event_switch(task, next, false);
2863
2864         for_each_task_context_nr(ctxn)
2865                 perf_event_context_sched_out(task, ctxn, next);
2866
2867         /*
2868          * if cgroup events exist on this CPU, then we need
2869          * to check if we have to switch out PMU state.
2870          * cgroup event are system-wide mode only
2871          */
2872         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2873                 perf_cgroup_sched_out(task, next);
2874 }
2875
2876 /*
2877  * Called with IRQs disabled
2878  */
2879 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2880                               enum event_type_t event_type)
2881 {
2882         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2883 }
2884
2885 static void
2886 ctx_pinned_sched_in(struct perf_event_context *ctx,
2887                     struct perf_cpu_context *cpuctx)
2888 {
2889         struct perf_event *event;
2890
2891         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2892                 if (event->state <= PERF_EVENT_STATE_OFF)
2893                         continue;
2894                 if (!event_filter_match(event))
2895                         continue;
2896
2897                 /* may need to reset tstamp_enabled */
2898                 if (is_cgroup_event(event))
2899                         perf_cgroup_mark_enabled(event, ctx);
2900
2901                 if (group_can_go_on(event, cpuctx, 1))
2902                         group_sched_in(event, cpuctx, ctx);
2903
2904                 /*
2905                  * If this pinned group hasn't been scheduled,
2906                  * put it in error state.
2907                  */
2908                 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2909                         update_group_times(event);
2910                         event->state = PERF_EVENT_STATE_ERROR;
2911                 }
2912         }
2913 }
2914
2915 static void
2916 ctx_flexible_sched_in(struct perf_event_context *ctx,
2917                       struct perf_cpu_context *cpuctx)
2918 {
2919         struct perf_event *event;
2920         int can_add_hw = 1;
2921
2922         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2923                 /* Ignore events in OFF or ERROR state */
2924                 if (event->state <= PERF_EVENT_STATE_OFF)
2925                         continue;
2926                 /*
2927                  * Listen to the 'cpu' scheduling filter constraint
2928                  * of events:
2929                  */
2930                 if (!event_filter_match(event))
2931                         continue;
2932
2933                 /* may need to reset tstamp_enabled */
2934                 if (is_cgroup_event(event))
2935                         perf_cgroup_mark_enabled(event, ctx);
2936
2937                 if (group_can_go_on(event, cpuctx, can_add_hw)) {
2938                         if (group_sched_in(event, cpuctx, ctx))
2939                                 can_add_hw = 0;
2940                 }
2941         }
2942 }
2943
2944 static void
2945 ctx_sched_in(struct perf_event_context *ctx,
2946              struct perf_cpu_context *cpuctx,
2947              enum event_type_t event_type,
2948              struct task_struct *task)
2949 {
2950         int is_active = ctx->is_active;
2951         u64 now;
2952
2953         lockdep_assert_held(&ctx->lock);
2954
2955         if (likely(!ctx->nr_events))
2956                 return;
2957
2958         ctx->is_active |= (event_type | EVENT_TIME);
2959         if (ctx->task) {
2960                 if (!is_active)
2961                         cpuctx->task_ctx = ctx;
2962                 else
2963                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2964         }
2965
2966         is_active ^= ctx->is_active; /* changed bits */
2967
2968         if (is_active & EVENT_TIME) {
2969                 /* start ctx time */
2970                 now = perf_clock();
2971                 ctx->timestamp = now;
2972                 perf_cgroup_set_timestamp(task, ctx);
2973         }
2974
2975         /*
2976          * First go through the list and put on any pinned groups
2977          * in order to give them the best chance of going on.
2978          */
2979         if (is_active & EVENT_PINNED)
2980                 ctx_pinned_sched_in(ctx, cpuctx);
2981
2982         /* Then walk through the lower prio flexible groups */
2983         if (is_active & EVENT_FLEXIBLE)
2984                 ctx_flexible_sched_in(ctx, cpuctx);
2985 }
2986
2987 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2988                              enum event_type_t event_type,
2989                              struct task_struct *task)
2990 {
2991         struct perf_event_context *ctx = &cpuctx->ctx;
2992
2993         ctx_sched_in(ctx, cpuctx, event_type, task);
2994 }
2995
2996 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2997                                         struct task_struct *task)
2998 {
2999         struct perf_cpu_context *cpuctx;
3000
3001         cpuctx = __get_cpu_context(ctx);
3002         if (cpuctx->task_ctx == ctx)
3003                 return;
3004
3005         perf_ctx_lock(cpuctx, ctx);
3006         perf_pmu_disable(ctx->pmu);
3007         /*
3008          * We want to keep the following priority order:
3009          * cpu pinned (that don't need to move), task pinned,
3010          * cpu flexible, task flexible.
3011          */
3012         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3013         perf_event_sched_in(cpuctx, ctx, task);
3014         perf_pmu_enable(ctx->pmu);
3015         perf_ctx_unlock(cpuctx, ctx);
3016 }
3017
3018 /*
3019  * Called from scheduler to add the events of the current task
3020  * with interrupts disabled.
3021  *
3022  * We restore the event value and then enable it.
3023  *
3024  * This does not protect us against NMI, but enable()
3025  * sets the enabled bit in the control field of event _before_
3026  * accessing the event control register. If a NMI hits, then it will
3027  * keep the event running.
3028  */
3029 void __perf_event_task_sched_in(struct task_struct *prev,
3030                                 struct task_struct *task)
3031 {
3032         struct perf_event_context *ctx;
3033         int ctxn;
3034
3035         /*
3036          * If cgroup events exist on this CPU, then we need to check if we have
3037          * to switch in PMU state; cgroup event are system-wide mode only.
3038          *
3039          * Since cgroup events are CPU events, we must schedule these in before
3040          * we schedule in the task events.
3041          */
3042         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3043                 perf_cgroup_sched_in(prev, task);
3044
3045         for_each_task_context_nr(ctxn) {
3046                 ctx = task->perf_event_ctxp[ctxn];
3047                 if (likely(!ctx))
3048                         continue;
3049
3050                 perf_event_context_sched_in(ctx, task);
3051         }
3052
3053         if (atomic_read(&nr_switch_events))
3054                 perf_event_switch(task, prev, true);
3055
3056         if (__this_cpu_read(perf_sched_cb_usages))
3057                 perf_pmu_sched_task(prev, task, true);
3058 }
3059
3060 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3061 {
3062         u64 frequency = event->attr.sample_freq;
3063         u64 sec = NSEC_PER_SEC;
3064         u64 divisor, dividend;
3065
3066         int count_fls, nsec_fls, frequency_fls, sec_fls;
3067
3068         count_fls = fls64(count);
3069         nsec_fls = fls64(nsec);
3070         frequency_fls = fls64(frequency);
3071         sec_fls = 30;
3072
3073         /*
3074          * We got @count in @nsec, with a target of sample_freq HZ
3075          * the target period becomes:
3076          *
3077          *             @count * 10^9
3078          * period = -------------------
3079          *          @nsec * sample_freq
3080          *
3081          */
3082
3083         /*
3084          * Reduce accuracy by one bit such that @a and @b converge
3085          * to a similar magnitude.
3086          */
3087 #define REDUCE_FLS(a, b)                \
3088 do {                                    \
3089         if (a##_fls > b##_fls) {        \
3090                 a >>= 1;                \
3091                 a##_fls--;              \
3092         } else {                        \
3093                 b >>= 1;                \
3094                 b##_fls--;              \
3095         }                               \
3096 } while (0)
3097
3098         /*
3099          * Reduce accuracy until either term fits in a u64, then proceed with
3100          * the other, so that finally we can do a u64/u64 division.
3101          */
3102         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3103                 REDUCE_FLS(nsec, frequency);
3104                 REDUCE_FLS(sec, count);
3105         }
3106
3107         if (count_fls + sec_fls > 64) {
3108                 divisor = nsec * frequency;
3109
3110                 while (count_fls + sec_fls > 64) {
3111                         REDUCE_FLS(count, sec);
3112                         divisor >>= 1;
3113                 }
3114
3115                 dividend = count * sec;
3116         } else {
3117                 dividend = count * sec;
3118
3119                 while (nsec_fls + frequency_fls > 64) {
3120                         REDUCE_FLS(nsec, frequency);
3121                         dividend >>= 1;
3122                 }
3123
3124                 divisor = nsec * frequency;
3125         }
3126
3127         if (!divisor)
3128                 return dividend;
3129
3130         return div64_u64(dividend, divisor);
3131 }
3132
3133 static DEFINE_PER_CPU(int, perf_throttled_count);
3134 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3135
3136 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3137 {
3138         struct hw_perf_event *hwc = &event->hw;
3139         s64 period, sample_period;
3140         s64 delta;
3141
3142         period = perf_calculate_period(event, nsec, count);
3143
3144         delta = (s64)(period - hwc->sample_period);
3145         delta = (delta + 7) / 8; /* low pass filter */
3146
3147         sample_period = hwc->sample_period + delta;
3148
3149         if (!sample_period)
3150                 sample_period = 1;
3151
3152         hwc->sample_period = sample_period;
3153
3154         if (local64_read(&hwc->period_left) > 8*sample_period) {
3155                 if (disable)
3156                         event->pmu->stop(event, PERF_EF_UPDATE);
3157
3158                 local64_set(&hwc->period_left, 0);
3159
3160                 if (disable)
3161                         event->pmu->start(event, PERF_EF_RELOAD);
3162         }
3163 }
3164
3165 /*
3166  * combine freq adjustment with unthrottling to avoid two passes over the
3167  * events. At the same time, make sure, having freq events does not change
3168  * the rate of unthrottling as that would introduce bias.
3169  */
3170 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3171                                            int needs_unthr)
3172 {
3173         struct perf_event *event;
3174         struct hw_perf_event *hwc;
3175         u64 now, period = TICK_NSEC;
3176         s64 delta;
3177
3178         /*
3179          * only need to iterate over all events iff:
3180          * - context have events in frequency mode (needs freq adjust)
3181          * - there are events to unthrottle on this cpu
3182          */
3183         if (!(ctx->nr_freq || needs_unthr))
3184                 return;
3185
3186         raw_spin_lock(&ctx->lock);
3187         perf_pmu_disable(ctx->pmu);
3188
3189         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3190                 if (event->state != PERF_EVENT_STATE_ACTIVE)
3191                         continue;
3192
3193                 if (!event_filter_match(event))
3194                         continue;
3195
3196                 perf_pmu_disable(event->pmu);
3197
3198                 hwc = &event->hw;
3199
3200                 if (hwc->interrupts == MAX_INTERRUPTS) {
3201                         hwc->interrupts = 0;
3202                         perf_log_throttle(event, 1);
3203                         event->pmu->start(event, 0);
3204                 }
3205
3206                 if (!event->attr.freq || !event->attr.sample_freq)
3207                         goto next;
3208
3209                 /*
3210                  * stop the event and update event->count
3211                  */
3212                 event->pmu->stop(event, PERF_EF_UPDATE);
3213
3214                 now = local64_read(&event->count);
3215                 delta = now - hwc->freq_count_stamp;
3216                 hwc->freq_count_stamp = now;
3217
3218                 /*
3219                  * restart the event
3220                  * reload only if value has changed
3221                  * we have stopped the event so tell that
3222                  * to perf_adjust_period() to avoid stopping it
3223                  * twice.
3224                  */
3225                 if (delta > 0)
3226                         perf_adjust_period(event, period, delta, false);
3227
3228                 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3229         next:
3230                 perf_pmu_enable(event->pmu);
3231         }
3232
3233         perf_pmu_enable(ctx->pmu);
3234         raw_spin_unlock(&ctx->lock);
3235 }
3236
3237 /*
3238  * Round-robin a context's events:
3239  */
3240 static void rotate_ctx(struct perf_event_context *ctx)
3241 {
3242         /*
3243          * Rotate the first entry last of non-pinned groups. Rotation might be
3244          * disabled by the inheritance code.
3245          */
3246         if (!ctx->rotate_disable)
3247                 list_rotate_left(&ctx->flexible_groups);
3248 }
3249
3250 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3251 {
3252         struct perf_event_context *ctx = NULL;
3253         int rotate = 0;
3254
3255         if (cpuctx->ctx.nr_events) {
3256                 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3257                         rotate = 1;
3258         }
3259
3260         ctx = cpuctx->task_ctx;
3261         if (ctx && ctx->nr_events) {
3262                 if (ctx->nr_events != ctx->nr_active)
3263                         rotate = 1;
3264         }
3265
3266         if (!rotate)
3267                 goto done;
3268
3269         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3270         perf_pmu_disable(cpuctx->ctx.pmu);
3271
3272         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3273         if (ctx)
3274                 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3275
3276         rotate_ctx(&cpuctx->ctx);
3277         if (ctx)
3278                 rotate_ctx(ctx);
3279
3280         perf_event_sched_in(cpuctx, ctx, current);
3281
3282         perf_pmu_enable(cpuctx->ctx.pmu);
3283         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3284 done:
3285
3286         return rotate;
3287 }
3288
3289 void perf_event_task_tick(void)
3290 {
3291         struct list_head *head = this_cpu_ptr(&active_ctx_list);
3292         struct perf_event_context *ctx, *tmp;
3293         int throttled;
3294
3295         WARN_ON(!irqs_disabled());
3296
3297         __this_cpu_inc(perf_throttled_seq);
3298         throttled = __this_cpu_xchg(perf_throttled_count, 0);
3299         tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3300
3301         list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3302                 perf_adjust_freq_unthr_context(ctx, throttled);
3303 }
3304
3305 static int event_enable_on_exec(struct perf_event *event,
3306                                 struct perf_event_context *ctx)
3307 {
3308         if (!event->attr.enable_on_exec)
3309                 return 0;
3310
3311         event->attr.enable_on_exec = 0;
3312         if (event->state >= PERF_EVENT_STATE_INACTIVE)
3313                 return 0;
3314
3315         __perf_event_mark_enabled(event);
3316
3317         return 1;
3318 }
3319
3320 /*
3321  * Enable all of a task's events that have been marked enable-on-exec.
3322  * This expects task == current.
3323  */
3324 static void perf_event_enable_on_exec(int ctxn)
3325 {
3326         struct perf_event_context *ctx, *clone_ctx = NULL;
3327         struct perf_cpu_context *cpuctx;
3328         struct perf_event *event;
3329         unsigned long flags;
3330         int enabled = 0;
3331
3332         local_irq_save(flags);
3333         ctx = current->perf_event_ctxp[ctxn];
3334         if (!ctx || !ctx->nr_events)
3335                 goto out;
3336
3337         cpuctx = __get_cpu_context(ctx);
3338         perf_ctx_lock(cpuctx, ctx);
3339         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3340         list_for_each_entry(event, &ctx->event_list, event_entry)
3341                 enabled |= event_enable_on_exec(event, ctx);
3342
3343         /*
3344          * Unclone and reschedule this context if we enabled any event.
3345          */
3346         if (enabled) {
3347                 clone_ctx = unclone_ctx(ctx);
3348                 ctx_resched(cpuctx, ctx);
3349         }
3350         perf_ctx_unlock(cpuctx, ctx);
3351
3352 out:
3353         local_irq_restore(flags);
3354
3355         if (clone_ctx)
3356                 put_ctx(clone_ctx);
3357 }
3358
3359 struct perf_read_data {
3360         struct perf_event *event;
3361         bool group;
3362         int ret;
3363 };
3364
3365 /*
3366  * Cross CPU call to read the hardware event
3367  */
3368 static void __perf_event_read(void *info)
3369 {
3370         struct perf_read_data *data = info;
3371         struct perf_event *sub, *event = data->event;
3372         struct perf_event_context *ctx = event->ctx;
3373         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3374         struct pmu *pmu = event->pmu;
3375
3376         /*
3377          * If this is a task context, we need to check whether it is
3378          * the current task context of this cpu.  If not it has been
3379          * scheduled out before the smp call arrived.  In that case
3380          * event->count would have been updated to a recent sample
3381          * when the event was scheduled out.
3382          */
3383         if (ctx->task && cpuctx->task_ctx != ctx)
3384                 return;
3385
3386         raw_spin_lock(&ctx->lock);
3387         if (ctx->is_active) {
3388                 update_context_time(ctx);
3389                 update_cgrp_time_from_event(event);
3390         }
3391
3392         update_event_times(event);
3393         if (event->state != PERF_EVENT_STATE_ACTIVE)
3394                 goto unlock;
3395
3396         if (!data->group) {
3397                 pmu->read(event);
3398                 data->ret = 0;
3399                 goto unlock;
3400         }
3401
3402         pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3403
3404         pmu->read(event);
3405
3406         list_for_each_entry(sub, &event->sibling_list, group_entry) {
3407                 update_event_times(sub);
3408                 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3409                         /*
3410                          * Use sibling's PMU rather than @event's since
3411                          * sibling could be on different (eg: software) PMU.
3412                          */
3413                         sub->pmu->read(sub);
3414                 }
3415         }
3416
3417         data->ret = pmu->commit_txn(pmu);
3418
3419 unlock:
3420         raw_spin_unlock(&ctx->lock);
3421 }
3422
3423 static inline u64 perf_event_count(struct perf_event *event)
3424 {
3425         if (event->pmu->count)
3426                 return event->pmu->count(event);
3427
3428         return __perf_event_count(event);
3429 }
3430
3431 /*
3432  * NMI-safe method to read a local event, that is an event that
3433  * is:
3434  *   - either for the current task, or for this CPU
3435  *   - does not have inherit set, for inherited task events
3436  *     will not be local and we cannot read them atomically
3437  *   - must not have a pmu::count method
3438  */
3439 u64 perf_event_read_local(struct perf_event *event)
3440 {
3441         unsigned long flags;
3442         u64 val;
3443
3444         /*
3445          * Disabling interrupts avoids all counter scheduling (context
3446          * switches, timer based rotation and IPIs).
3447          */
3448         local_irq_save(flags);
3449
3450         /* If this is a per-task event, it must be for current */
3451         WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3452                      event->hw.target != current);
3453
3454         /* If this is a per-CPU event, it must be for this CPU */
3455         WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3456                      event->cpu != smp_processor_id());
3457
3458         /*
3459          * It must not be an event with inherit set, we cannot read
3460          * all child counters from atomic context.
3461          */
3462         WARN_ON_ONCE(event->attr.inherit);
3463
3464         /*
3465          * It must not have a pmu::count method, those are not
3466          * NMI safe.
3467          */
3468         WARN_ON_ONCE(event->pmu->count);
3469
3470         /*
3471          * If the event is currently on this CPU, its either a per-task event,
3472          * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3473          * oncpu == -1).
3474          */
3475         if (event->oncpu == smp_processor_id())
3476                 event->pmu->read(event);
3477
3478         val = local64_read(&event->count);
3479         local_irq_restore(flags);
3480
3481         return val;
3482 }
3483
3484 static int perf_event_read(struct perf_event *event, bool group)
3485 {
3486         int ret = 0;
3487
3488         /*
3489          * If event is enabled and currently active on a CPU, update the
3490          * value in the event structure:
3491          */
3492         if (event->state == PERF_EVENT_STATE_ACTIVE) {
3493                 struct perf_read_data data = {
3494                         .event = event,
3495                         .group = group,
3496                         .ret = 0,
3497                 };
3498                 smp_call_function_single(event->oncpu,
3499                                          __perf_event_read, &data, 1);
3500                 ret = data.ret;
3501         } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3502                 struct perf_event_context *ctx = event->ctx;
3503                 unsigned long flags;
3504
3505                 raw_spin_lock_irqsave(&ctx->lock, flags);
3506                 /*
3507                  * may read while context is not active
3508                  * (e.g., thread is blocked), in that case
3509                  * we cannot update context time
3510                  */
3511                 if (ctx->is_active) {
3512                         update_context_time(ctx);
3513                         update_cgrp_time_from_event(event);
3514                 }
3515                 if (group)
3516                         update_group_times(event);
3517                 else
3518                         update_event_times(event);
3519                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3520         }
3521
3522         return ret;
3523 }
3524
3525 /*
3526  * Initialize the perf_event context in a task_struct:
3527  */
3528 static void __perf_event_init_context(struct perf_event_context *ctx)
3529 {
3530         raw_spin_lock_init(&ctx->lock);
3531         mutex_init(&ctx->mutex);
3532         INIT_LIST_HEAD(&ctx->active_ctx_list);
3533         INIT_LIST_HEAD(&ctx->pinned_groups);
3534         INIT_LIST_HEAD(&ctx->flexible_groups);
3535         INIT_LIST_HEAD(&ctx->event_list);
3536         atomic_set(&ctx->refcount, 1);
3537 }
3538
3539 static struct perf_event_context *
3540 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3541 {
3542         struct perf_event_context *ctx;
3543
3544         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3545         if (!ctx)
3546                 return NULL;
3547
3548         __perf_event_init_context(ctx);
3549         if (task) {
3550                 ctx->task = task;
3551                 get_task_struct(task);
3552         }
3553         ctx->pmu = pmu;
3554
3555         return ctx;
3556 }
3557
3558 static struct task_struct *
3559 find_lively_task_by_vpid(pid_t vpid)
3560 {
3561         struct task_struct *task;
3562
3563         rcu_read_lock();
3564         if (!vpid)
3565                 task = current;
3566         else
3567                 task = find_task_by_vpid(vpid);
3568         if (task)
3569                 get_task_struct(task);
3570         rcu_read_unlock();
3571
3572         if (!task)
3573                 return ERR_PTR(-ESRCH);
3574
3575         return task;
3576 }
3577
3578 /*
3579  * Returns a matching context with refcount and pincount.
3580  */
3581 static struct perf_event_context *
3582 find_get_context(struct pmu *pmu, struct task_struct *task,
3583                 struct perf_event *event)
3584 {
3585         struct perf_event_context *ctx, *clone_ctx = NULL;
3586         struct perf_cpu_context *cpuctx;
3587         void *task_ctx_data = NULL;
3588         unsigned long flags;
3589         int ctxn, err;
3590         int cpu = event->cpu;
3591
3592         if (!task) {
3593                 /* Must be root to operate on a CPU event: */
3594                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3595                         return ERR_PTR(-EACCES);
3596
3597                 /*
3598                  * We could be clever and allow to attach a event to an
3599                  * offline CPU and activate it when the CPU comes up, but
3600                  * that's for later.
3601                  */
3602                 if (!cpu_online(cpu))
3603                         return ERR_PTR(-ENODEV);
3604
3605                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3606                 ctx = &cpuctx->ctx;
3607                 get_ctx(ctx);
3608                 ++ctx->pin_count;
3609
3610                 return ctx;
3611         }
3612
3613         err = -EINVAL;
3614         ctxn = pmu->task_ctx_nr;
3615         if (ctxn < 0)
3616                 goto errout;
3617
3618         if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3619                 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3620                 if (!task_ctx_data) {
3621                         err = -ENOMEM;
3622                         goto errout;
3623                 }
3624         }
3625
3626 retry:
3627         ctx = perf_lock_task_context(task, ctxn, &flags);
3628         if (ctx) {
3629                 clone_ctx = unclone_ctx(ctx);
3630                 ++ctx->pin_count;
3631
3632                 if (task_ctx_data && !ctx->task_ctx_data) {
3633                         ctx->task_ctx_data = task_ctx_data;
3634                         task_ctx_data = NULL;
3635                 }
3636                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3637
3638                 if (clone_ctx)
3639                         put_ctx(clone_ctx);
3640         } else {
3641                 ctx = alloc_perf_context(pmu, task);
3642                 err = -ENOMEM;
3643                 if (!ctx)
3644                         goto errout;
3645
3646                 if (task_ctx_data) {
3647                         ctx->task_ctx_data = task_ctx_data;
3648                         task_ctx_data = NULL;
3649                 }
3650
3651                 err = 0;
3652                 mutex_lock(&task->perf_event_mutex);
3653                 /*
3654                  * If it has already passed perf_event_exit_task().
3655                  * we must see PF_EXITING, it takes this mutex too.
3656                  */
3657                 if (task->flags & PF_EXITING)
3658                         err = -ESRCH;
3659                 else if (task->perf_event_ctxp[ctxn])
3660                         err = -EAGAIN;
3661                 else {
3662                         get_ctx(ctx);
3663                         ++ctx->pin_count;
3664                         rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3665                 }
3666                 mutex_unlock(&task->perf_event_mutex);
3667
3668                 if (unlikely(err)) {
3669                         put_ctx(ctx);
3670
3671                         if (err == -EAGAIN)
3672                                 goto retry;
3673                         goto errout;
3674                 }
3675         }
3676
3677         kfree(task_ctx_data);
3678         return ctx;
3679
3680 errout:
3681         kfree(task_ctx_data);
3682         return ERR_PTR(err);
3683 }
3684
3685 static void perf_event_free_filter(struct perf_event *event);
3686 static void perf_event_free_bpf_prog(struct perf_event *event);
3687
3688 static void free_event_rcu(struct rcu_head *head)
3689 {
3690         struct perf_event *event;
3691
3692         event = container_of(head, struct perf_event, rcu_head);
3693         if (event->ns)
3694                 put_pid_ns(event->ns);
3695         perf_event_free_filter(event);
3696         kfree(event);
3697 }
3698
3699 static void ring_buffer_attach(struct perf_event *event,
3700                                struct ring_buffer *rb);
3701
3702 static void detach_sb_event(struct perf_event *event)
3703 {
3704         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3705
3706         raw_spin_lock(&pel->lock);
3707         list_del_rcu(&event->sb_list);
3708         raw_spin_unlock(&pel->lock);
3709 }
3710
3711 static bool is_sb_event(struct perf_event *event)
3712 {
3713         struct perf_event_attr *attr = &event->attr;
3714
3715         if (event->parent)
3716                 return false;
3717
3718         if (event->attach_state & PERF_ATTACH_TASK)
3719                 return false;
3720
3721         if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3722             attr->comm || attr->comm_exec ||
3723             attr->task ||
3724             attr->context_switch)
3725                 return true;
3726         return false;
3727 }
3728
3729 static void unaccount_pmu_sb_event(struct perf_event *event)
3730 {
3731         if (is_sb_event(event))
3732                 detach_sb_event(event);
3733 }
3734
3735 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3736 {
3737         if (event->parent)
3738                 return;
3739
3740         if (is_cgroup_event(event))
3741                 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3742 }
3743
3744 #ifdef CONFIG_NO_HZ_FULL
3745 static DEFINE_SPINLOCK(nr_freq_lock);
3746 #endif
3747
3748 static void unaccount_freq_event_nohz(void)
3749 {
3750 #ifdef CONFIG_NO_HZ_FULL
3751         spin_lock(&nr_freq_lock);
3752         if (atomic_dec_and_test(&nr_freq_events))
3753                 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3754         spin_unlock(&nr_freq_lock);
3755 #endif
3756 }
3757
3758 static void unaccount_freq_event(void)
3759 {
3760         if (tick_nohz_full_enabled())
3761                 unaccount_freq_event_nohz();
3762         else
3763                 atomic_dec(&nr_freq_events);
3764 }
3765
3766 static void unaccount_event(struct perf_event *event)
3767 {
3768         bool dec = false;
3769
3770         if (event->parent)
3771                 return;
3772
3773         if (event->attach_state & PERF_ATTACH_TASK)
3774                 dec = true;
3775         if (event->attr.mmap || event->attr.mmap_data)
3776                 atomic_dec(&nr_mmap_events);
3777         if (event->attr.comm)
3778                 atomic_dec(&nr_comm_events);
3779         if (event->attr.task)
3780                 atomic_dec(&nr_task_events);
3781         if (event->attr.freq)
3782                 unaccount_freq_event();
3783         if (event->attr.context_switch) {
3784                 dec = true;
3785                 atomic_dec(&nr_switch_events);
3786         }
3787         if (is_cgroup_event(event))
3788                 dec = true;
3789         if (has_branch_stack(event))
3790                 dec = true;
3791
3792         if (dec) {
3793                 if (!atomic_add_unless(&perf_sched_count, -1, 1))
3794                         schedule_delayed_work(&perf_sched_work, HZ);
3795         }
3796
3797         unaccount_event_cpu(event, event->cpu);
3798
3799         unaccount_pmu_sb_event(event);
3800 }
3801
3802 static void perf_sched_delayed(struct work_struct *work)
3803 {
3804         mutex_lock(&perf_sched_mutex);
3805         if (atomic_dec_and_test(&perf_sched_count))
3806                 static_branch_disable(&perf_sched_events);
3807         mutex_unlock(&perf_sched_mutex);
3808 }
3809
3810 /*
3811  * The following implement mutual exclusion of events on "exclusive" pmus
3812  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3813  * at a time, so we disallow creating events that might conflict, namely:
3814  *
3815  *  1) cpu-wide events in the presence of per-task events,
3816  *  2) per-task events in the presence of cpu-wide events,
3817  *  3) two matching events on the same context.
3818  *
3819  * The former two cases are handled in the allocation path (perf_event_alloc(),
3820  * _free_event()), the latter -- before the first perf_install_in_context().
3821  */
3822 static int exclusive_event_init(struct perf_event *event)
3823 {
3824         struct pmu *pmu = event->pmu;
3825
3826         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3827                 return 0;
3828
3829         /*
3830          * Prevent co-existence of per-task and cpu-wide events on the
3831          * same exclusive pmu.
3832          *
3833          * Negative pmu::exclusive_cnt means there are cpu-wide
3834          * events on this "exclusive" pmu, positive means there are
3835          * per-task events.
3836          *
3837          * Since this is called in perf_event_alloc() path, event::ctx
3838          * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3839          * to mean "per-task event", because unlike other attach states it
3840          * never gets cleared.
3841          */
3842         if (event->attach_state & PERF_ATTACH_TASK) {
3843                 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3844                         return -EBUSY;
3845         } else {
3846                 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3847                         return -EBUSY;
3848         }
3849
3850         return 0;
3851 }
3852
3853 static void exclusive_event_destroy(struct perf_event *event)
3854 {
3855         struct pmu *pmu = event->pmu;
3856
3857         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3858                 return;
3859
3860         /* see comment in exclusive_event_init() */
3861         if (event->attach_state & PERF_ATTACH_TASK)
3862                 atomic_dec(&pmu->exclusive_cnt);
3863         else
3864                 atomic_inc(&pmu->exclusive_cnt);
3865 }
3866
3867 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3868 {
3869         if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3870             (e1->cpu == e2->cpu ||
3871              e1->cpu == -1 ||
3872              e2->cpu == -1))
3873                 return true;
3874         return false;
3875 }
3876
3877 /* Called under the same ctx::mutex as perf_install_in_context() */
3878 static bool exclusive_event_installable(struct perf_event *event,
3879                                         struct perf_event_context *ctx)
3880 {
3881         struct perf_event *iter_event;
3882         struct pmu *pmu = event->pmu;
3883
3884         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3885                 return true;
3886
3887         list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3888                 if (exclusive_event_match(iter_event, event))
3889                         return false;
3890         }
3891
3892         return true;
3893 }
3894
3895 static void perf_addr_filters_splice(struct perf_event *event,
3896                                        struct list_head *head);
3897
3898 static void _free_event(struct perf_event *event)
3899 {
3900         irq_work_sync(&event->pending);
3901
3902         unaccount_event(event);
3903
3904         if (event->rb) {
3905                 /*
3906                  * Can happen when we close an event with re-directed output.
3907                  *
3908                  * Since we have a 0 refcount, perf_mmap_close() will skip
3909                  * over us; possibly making our ring_buffer_put() the last.
3910                  */
3911                 mutex_lock(&event->mmap_mutex);
3912                 ring_buffer_attach(event, NULL);
3913                 mutex_unlock(&event->mmap_mutex);
3914         }
3915
3916         if (is_cgroup_event(event))
3917                 perf_detach_cgroup(event);
3918
3919         if (!event->parent) {
3920                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3921                         put_callchain_buffers();
3922         }
3923
3924         perf_event_free_bpf_prog(event);
3925         perf_addr_filters_splice(event, NULL);
3926         kfree(event->addr_filters_offs);
3927
3928         if (event->destroy)
3929                 event->destroy(event);
3930
3931         if (event->ctx)
3932                 put_ctx(event->ctx);
3933
3934         exclusive_event_destroy(event);
3935         module_put(event->pmu->module);
3936
3937         call_rcu(&event->rcu_head, free_event_rcu);
3938 }
3939
3940 /*
3941  * Used to free events which have a known refcount of 1, such as in error paths
3942  * where the event isn't exposed yet and inherited events.
3943  */
3944 static void free_event(struct perf_event *event)
3945 {
3946         if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3947                                 "unexpected event refcount: %ld; ptr=%p\n",
3948                                 atomic_long_read(&event->refcount), event)) {
3949                 /* leak to avoid use-after-free */
3950                 return;
3951         }
3952
3953         _free_event(event);
3954 }
3955
3956 /*
3957  * Remove user event from the owner task.
3958  */
3959 static void perf_remove_from_owner(struct perf_event *event)
3960 {
3961         struct task_struct *owner;
3962
3963         rcu_read_lock();
3964         /*
3965          * Matches the smp_store_release() in perf_event_exit_task(). If we
3966          * observe !owner it means the list deletion is complete and we can
3967          * indeed free this event, otherwise we need to serialize on
3968          * owner->perf_event_mutex.
3969          */
3970         owner = lockless_dereference(event->owner);
3971         if (owner) {
3972                 /*
3973                  * Since delayed_put_task_struct() also drops the last
3974                  * task reference we can safely take a new reference
3975                  * while holding the rcu_read_lock().
3976                  */
3977                 get_task_struct(owner);
3978         }
3979         rcu_read_unlock();
3980
3981         if (owner) {
3982                 /*
3983                  * If we're here through perf_event_exit_task() we're already
3984                  * holding ctx->mutex which would be an inversion wrt. the
3985                  * normal lock order.
3986                  *
3987                  * However we can safely take this lock because its the child
3988                  * ctx->mutex.
3989                  */
3990                 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
3991
3992                 /*
3993                  * We have to re-check the event->owner field, if it is cleared
3994                  * we raced with perf_event_exit_task(), acquiring the mutex
3995                  * ensured they're done, and we can proceed with freeing the
3996                  * event.
3997                  */
3998                 if (event->owner) {
3999                         list_del_init(&event->owner_entry);
4000                         smp_store_release(&event->owner, NULL);
4001                 }
4002                 mutex_unlock(&owner->perf_event_mutex);
4003                 put_task_struct(owner);
4004         }
4005 }
4006
4007 static void put_event(struct perf_event *event)
4008 {
4009         if (!atomic_long_dec_and_test(&event->refcount))
4010                 return;
4011
4012         _free_event(event);
4013 }
4014
4015 /*
4016  * Kill an event dead; while event:refcount will preserve the event
4017  * object, it will not preserve its functionality. Once the last 'user'
4018  * gives up the object, we'll destroy the thing.
4019  */
4020 int perf_event_release_kernel(struct perf_event *event)
4021 {
4022         struct perf_event_context *ctx = event->ctx;
4023         struct perf_event *child, *tmp;
4024
4025         /*
4026          * If we got here through err_file: fput(event_file); we will not have
4027          * attached to a context yet.
4028          */
4029         if (!ctx) {
4030                 WARN_ON_ONCE(event->attach_state &
4031                                 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4032                 goto no_ctx;
4033         }
4034
4035         if (!is_kernel_event(event))
4036                 perf_remove_from_owner(event);
4037
4038         ctx = perf_event_ctx_lock(event);
4039         WARN_ON_ONCE(ctx->parent_ctx);
4040         perf_remove_from_context(event, DETACH_GROUP);
4041
4042         raw_spin_lock_irq(&ctx->lock);
4043         /*
4044          * Mark this even as STATE_DEAD, there is no external reference to it
4045          * anymore.
4046          *
4047          * Anybody acquiring event->child_mutex after the below loop _must_
4048          * also see this, most importantly inherit_event() which will avoid
4049          * placing more children on the list.
4050          *
4051          * Thus this guarantees that we will in fact observe and kill _ALL_
4052          * child events.
4053          */
4054         event->state = PERF_EVENT_STATE_DEAD;
4055         raw_spin_unlock_irq(&ctx->lock);
4056
4057         perf_event_ctx_unlock(event, ctx);
4058
4059 again:
4060         mutex_lock(&event->child_mutex);
4061         list_for_each_entry(child, &event->child_list, child_list) {
4062
4063                 /*
4064                  * Cannot change, child events are not migrated, see the
4065                  * comment with perf_event_ctx_lock_nested().
4066                  */
4067                 ctx = lockless_dereference(child->ctx);
4068                 /*
4069                  * Since child_mutex nests inside ctx::mutex, we must jump
4070                  * through hoops. We start by grabbing a reference on the ctx.
4071                  *
4072                  * Since the event cannot get freed while we hold the
4073                  * child_mutex, the context must also exist and have a !0
4074                  * reference count.
4075                  */
4076                 get_ctx(ctx);
4077
4078                 /*
4079                  * Now that we have a ctx ref, we can drop child_mutex, and
4080                  * acquire ctx::mutex without fear of it going away. Then we
4081                  * can re-acquire child_mutex.
4082                  */
4083                 mutex_unlock(&event->child_mutex);
4084                 mutex_lock(&ctx->mutex);
4085                 mutex_lock(&event->child_mutex);
4086
4087                 /*
4088                  * Now that we hold ctx::mutex and child_mutex, revalidate our
4089                  * state, if child is still the first entry, it didn't get freed
4090                  * and we can continue doing so.
4091                  */
4092                 tmp = list_first_entry_or_null(&event->child_list,
4093                                                struct perf_event, child_list);
4094                 if (tmp == child) {
4095                         perf_remove_from_context(child, DETACH_GROUP);
4096                         list_del(&child->child_list);
4097                         free_event(child);
4098                         /*
4099                          * This matches the refcount bump in inherit_event();
4100                          * this can't be the last reference.
4101                          */
4102                         put_event(event);
4103                 }
4104
4105                 mutex_unlock(&event->child_mutex);
4106                 mutex_unlock(&ctx->mutex);
4107                 put_ctx(ctx);
4108                 goto again;
4109         }
4110         mutex_unlock(&event->child_mutex);
4111
4112 no_ctx:
4113         put_event(event); /* Must be the 'last' reference */
4114         return 0;
4115 }
4116 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4117
4118 /*
4119  * Called when the last reference to the file is gone.
4120  */
4121 static int perf_release(struct inode *inode, struct file *file)
4122 {
4123         perf_event_release_kernel(file->private_data);
4124         return 0;
4125 }
4126
4127 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4128 {
4129         struct perf_event *child;
4130         u64 total = 0;
4131
4132         *enabled = 0;
4133         *running = 0;
4134
4135         mutex_lock(&event->child_mutex);
4136
4137         (void)perf_event_read(event, false);
4138         total += perf_event_count(event);
4139
4140         *enabled += event->total_time_enabled +
4141                         atomic64_read(&event->child_total_time_enabled);
4142         *running += event->total_time_running +
4143                         atomic64_read(&event->child_total_time_running);
4144
4145         list_for_each_entry(child, &event->child_list, child_list) {
4146                 (void)perf_event_read(child, false);
4147                 total += perf_event_count(child);
4148                 *enabled += child->total_time_enabled;
4149                 *running += child->total_time_running;
4150         }
4151         mutex_unlock(&event->child_mutex);
4152
4153         return total;
4154 }
4155 EXPORT_SYMBOL_GPL(perf_event_read_value);
4156
4157 static int __perf_read_group_add(struct perf_event *leader,
4158                                         u64 read_format, u64 *values)
4159 {
4160         struct perf_event *sub;
4161         int n = 1; /* skip @nr */
4162         int ret;
4163
4164         ret = perf_event_read(leader, true);
4165         if (ret)
4166                 return ret;
4167
4168         /*
4169          * Since we co-schedule groups, {enabled,running} times of siblings
4170          * will be identical to those of the leader, so we only publish one
4171          * set.
4172          */
4173         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4174                 values[n++] += leader->total_time_enabled +
4175                         atomic64_read(&leader->child_total_time_enabled);
4176         }
4177
4178         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4179                 values[n++] += leader->total_time_running +
4180                         atomic64_read(&leader->child_total_time_running);
4181         }
4182
4183         /*
4184          * Write {count,id} tuples for every sibling.
4185          */
4186         values[n++] += perf_event_count(leader);
4187         if (read_format & PERF_FORMAT_ID)
4188                 values[n++] = primary_event_id(leader);
4189
4190         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4191                 values[n++] += perf_event_count(sub);
4192                 if (read_format & PERF_FORMAT_ID)
4193                         values[n++] = primary_event_id(sub);
4194         }
4195
4196         return 0;
4197 }
4198
4199 static int perf_read_group(struct perf_event *event,
4200                                    u64 read_format, char __user *buf)
4201 {
4202         struct perf_event *leader = event->group_leader, *child;
4203         struct perf_event_context *ctx = leader->ctx;
4204         int ret;
4205         u64 *values;
4206
4207         lockdep_assert_held(&ctx->mutex);
4208
4209         values = kzalloc(event->read_size, GFP_KERNEL);
4210         if (!values)
4211                 return -ENOMEM;
4212
4213         values[0] = 1 + leader->nr_siblings;
4214
4215         /*
4216          * By locking the child_mutex of the leader we effectively
4217          * lock the child list of all siblings.. XXX explain how.
4218          */
4219         mutex_lock(&leader->child_mutex);
4220
4221         ret = __perf_read_group_add(leader, read_format, values);
4222         if (ret)
4223                 goto unlock;
4224
4225         list_for_each_entry(child, &leader->child_list, child_list) {
4226                 ret = __perf_read_group_add(child, read_format, values);
4227                 if (ret)
4228                         goto unlock;
4229         }
4230
4231         mutex_unlock(&leader->child_mutex);
4232
4233         ret = event->read_size;
4234         if (copy_to_user(buf, values, event->read_size))
4235                 ret = -EFAULT;
4236         goto out;
4237
4238 unlock:
4239         mutex_unlock(&leader->child_mutex);
4240 out:
4241         kfree(values);
4242         return ret;
4243 }
4244
4245 static int perf_read_one(struct perf_event *event,
4246                                  u64 read_format, char __user *buf)
4247 {
4248         u64 enabled, running;
4249         u64 values[4];
4250         int n = 0;
4251
4252         values[n++] = perf_event_read_value(event, &enabled, &running);
4253         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4254                 values[n++] = enabled;
4255         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4256                 values[n++] = running;
4257         if (read_format & PERF_FORMAT_ID)
4258                 values[n++] = primary_event_id(event);
4259
4260         if (copy_to_user(buf, values, n * sizeof(u64)))
4261                 return -EFAULT;
4262
4263         return n * sizeof(u64);
4264 }
4265
4266 static bool is_event_hup(struct perf_event *event)
4267 {
4268         bool no_children;
4269
4270         if (event->state > PERF_EVENT_STATE_EXIT)
4271                 return false;
4272
4273         mutex_lock(&event->child_mutex);
4274         no_children = list_empty(&event->child_list);
4275         mutex_unlock(&event->child_mutex);
4276         return no_children;
4277 }
4278
4279 /*
4280  * Read the performance event - simple non blocking version for now
4281  */
4282 static ssize_t
4283 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4284 {
4285         u64 read_format = event->attr.read_format;
4286         int ret;
4287
4288         /*
4289          * Return end-of-file for a read on a event that is in
4290          * error state (i.e. because it was pinned but it couldn't be
4291          * scheduled on to the CPU at some point).
4292          */
4293         if (event->state == PERF_EVENT_STATE_ERROR)
4294                 return 0;
4295
4296         if (count < event->read_size)
4297                 return -ENOSPC;
4298
4299         WARN_ON_ONCE(event->ctx->parent_ctx);
4300         if (read_format & PERF_FORMAT_GROUP)
4301                 ret = perf_read_group(event, read_format, buf);
4302         else
4303                 ret = perf_read_one(event, read_format, buf);
4304
4305         return ret;
4306 }
4307
4308 static ssize_t
4309 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4310 {
4311         struct perf_event *event = file->private_data;
4312         struct perf_event_context *ctx;
4313         int ret;
4314
4315         ctx = perf_event_ctx_lock(event);
4316         ret = __perf_read(event, buf, count);
4317         perf_event_ctx_unlock(event, ctx);
4318
4319         return ret;
4320 }
4321
4322 static unsigned int perf_poll(struct file *file, poll_table *wait)
4323 {
4324         struct perf_event *event = file->private_data;
4325         struct ring_buffer *rb;
4326         unsigned int events = POLLHUP;
4327
4328         poll_wait(file, &event->waitq, wait);
4329
4330         if (is_event_hup(event))
4331                 return events;
4332
4333         /*
4334          * Pin the event->rb by taking event->mmap_mutex; otherwise
4335          * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4336          */
4337         mutex_lock(&event->mmap_mutex);
4338         rb = event->rb;
4339         if (rb)
4340                 events = atomic_xchg(&rb->poll, 0);
4341         mutex_unlock(&event->mmap_mutex);
4342         return events;
4343 }
4344
4345 static void _perf_event_reset(struct perf_event *event)
4346 {
4347         (void)perf_event_read(event, false);
4348         local64_set(&event->count, 0);
4349         perf_event_update_userpage(event);
4350 }
4351
4352 /*
4353  * Holding the top-level event's child_mutex means that any
4354  * descendant process that has inherited this event will block
4355  * in perf_event_exit_event() if it goes to exit, thus satisfying the
4356  * task existence requirements of perf_event_enable/disable.
4357  */
4358 static void perf_event_for_each_child(struct perf_event *event,
4359                                         void (*func)(struct perf_event *))
4360 {
4361         struct perf_event *child;
4362
4363         WARN_ON_ONCE(event->ctx->parent_ctx);
4364
4365         mutex_lock(&event->child_mutex);
4366         func(event);
4367         list_for_each_entry(child, &event->child_list, child_list)
4368                 func(child);
4369         mutex_unlock(&event->child_mutex);
4370 }
4371
4372 static void perf_event_for_each(struct perf_event *event,
4373                                   void (*func)(struct perf_event *))
4374 {
4375         struct perf_event_context *ctx = event->ctx;
4376         struct perf_event *sibling;
4377
4378         lockdep_assert_held(&ctx->mutex);
4379
4380         event = event->group_leader;
4381
4382         perf_event_for_each_child(event, func);
4383         list_for_each_entry(sibling, &event->sibling_list, group_entry)
4384                 perf_event_for_each_child(sibling, func);
4385 }
4386
4387 static void __perf_event_period(struct perf_event *event,
4388                                 struct perf_cpu_context *cpuctx,
4389                                 struct perf_event_context *ctx,
4390                                 void *info)
4391 {
4392         u64 value = *((u64 *)info);
4393         bool active;
4394
4395         if (event->attr.freq) {
4396                 event->attr.sample_freq = value;
4397         } else {
4398                 event->attr.sample_period = value;
4399                 event->hw.sample_period = value;
4400         }
4401
4402         active = (event->state == PERF_EVENT_STATE_ACTIVE);
4403         if (active) {
4404                 perf_pmu_disable(ctx->pmu);
4405                 /*
4406                  * We could be throttled; unthrottle now to avoid the tick
4407                  * trying to unthrottle while we already re-started the event.
4408                  */
4409                 if (event->hw.interrupts == MAX_INTERRUPTS) {
4410                         event->hw.interrupts = 0;
4411                         perf_log_throttle(event, 1);
4412                 }
4413                 event->pmu->stop(event, PERF_EF_UPDATE);
4414         }
4415
4416         local64_set(&event->hw.period_left, 0);
4417
4418         if (active) {
4419                 event->pmu->start(event, PERF_EF_RELOAD);
4420                 perf_pmu_enable(ctx->pmu);
4421         }
4422 }
4423
4424 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4425 {
4426         u64 value;
4427
4428         if (!is_sampling_event(event))
4429                 return -EINVAL;
4430
4431         if (copy_from_user(&value, arg, sizeof(value)))
4432                 return -EFAULT;
4433
4434         if (!value)
4435                 return -EINVAL;
4436
4437         if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4438                 return -EINVAL;
4439
4440         event_function_call(event, __perf_event_period, &value);
4441
4442         return 0;
4443 }
4444
4445 static const struct file_operations perf_fops;
4446
4447 static inline int perf_fget_light(int fd, struct fd *p)
4448 {
4449         struct fd f = fdget(fd);
4450         if (!f.file)
4451                 return -EBADF;
4452
4453         if (f.file->f_op != &perf_fops) {
4454                 fdput(f);
4455                 return -EBADF;
4456         }
4457         *p = f;
4458         return 0;
4459 }
4460
4461 static int perf_event_set_output(struct perf_event *event,
4462                                  struct perf_event *output_event);
4463 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4464 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4465
4466 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4467 {
4468         void (*func)(struct perf_event *);
4469         u32 flags = arg;
4470
4471         switch (cmd) {
4472         case PERF_EVENT_IOC_ENABLE:
4473                 func = _perf_event_enable;
4474                 break;
4475         case PERF_EVENT_IOC_DISABLE:
4476                 func = _perf_event_disable;
4477                 break;
4478         case PERF_EVENT_IOC_RESET:
4479                 func = _perf_event_reset;
4480                 break;
4481
4482         case PERF_EVENT_IOC_REFRESH:
4483                 return _perf_event_refresh(event, arg);
4484
4485         case PERF_EVENT_IOC_PERIOD:
4486                 return perf_event_period(event, (u64 __user *)arg);
4487
4488         case PERF_EVENT_IOC_ID:
4489         {
4490                 u64 id = primary_event_id(event);
4491
4492                 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4493                         return -EFAULT;
4494                 return 0;
4495         }
4496
4497         case PERF_EVENT_IOC_SET_OUTPUT:
4498         {
4499                 int ret;
4500                 if (arg != -1) {
4501                         struct perf_event *output_event;
4502                         struct fd output;
4503                         ret = perf_fget_light(arg, &output);
4504                         if (ret)
4505                                 return ret;
4506                         output_event = output.file->private_data;
4507                         ret = perf_event_set_output(event, output_event);
4508                         fdput(output);
4509                 } else {
4510                         ret = perf_event_set_output(event, NULL);
4511                 }
4512                 return ret;
4513         }
4514
4515         case PERF_EVENT_IOC_SET_FILTER:
4516                 return perf_event_set_filter(event, (void __user *)arg);
4517
4518         case PERF_EVENT_IOC_SET_BPF:
4519                 return perf_event_set_bpf_prog(event, arg);
4520
4521         case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4522                 struct ring_buffer *rb;
4523
4524                 rcu_read_lock();
4525                 rb = rcu_dereference(event->rb);
4526                 if (!rb || !rb->nr_pages) {
4527                         rcu_read_unlock();
4528                         return -EINVAL;
4529                 }
4530                 rb_toggle_paused(rb, !!arg);
4531                 rcu_read_unlock();
4532                 return 0;
4533         }
4534         default:
4535                 return -ENOTTY;
4536         }
4537
4538         if (flags & PERF_IOC_FLAG_GROUP)
4539                 perf_event_for_each(event, func);
4540         else
4541                 perf_event_for_each_child(event, func);
4542
4543         return 0;
4544 }
4545
4546 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4547 {
4548         struct perf_event *event = file->private_data;
4549         struct perf_event_context *ctx;
4550         long ret;
4551
4552         ctx = perf_event_ctx_lock(event);
4553         ret = _perf_ioctl(event, cmd, arg);
4554         perf_event_ctx_unlock(event, ctx);
4555
4556         return ret;
4557 }
4558
4559 #ifdef CONFIG_COMPAT
4560 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4561                                 unsigned long arg)
4562 {
4563         switch (_IOC_NR(cmd)) {
4564         case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4565         case _IOC_NR(PERF_EVENT_IOC_ID):
4566                 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4567                 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4568                         cmd &= ~IOCSIZE_MASK;
4569                         cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4570                 }
4571                 break;
4572         }
4573         return perf_ioctl(file, cmd, arg);
4574 }
4575 #else
4576 # define perf_compat_ioctl NULL
4577 #endif
4578
4579 int perf_event_task_enable(void)
4580 {
4581         struct perf_event_context *ctx;
4582         struct perf_event *event;
4583
4584         mutex_lock(&current->perf_event_mutex);
4585         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4586                 ctx = perf_event_ctx_lock(event);
4587                 perf_event_for_each_child(event, _perf_event_enable);
4588                 perf_event_ctx_unlock(event, ctx);
4589         }
4590         mutex_unlock(&current->perf_event_mutex);
4591
4592         return 0;
4593 }
4594
4595 int perf_event_task_disable(void)
4596 {
4597         struct perf_event_context *ctx;
4598         struct perf_event *event;
4599
4600         mutex_lock(&current->perf_event_mutex);
4601         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4602                 ctx = perf_event_ctx_lock(event);
4603                 perf_event_for_each_child(event, _perf_event_disable);
4604                 perf_event_ctx_unlock(event, ctx);
4605         }
4606         mutex_unlock(&current->perf_event_mutex);
4607
4608         return 0;
4609 }
4610
4611 static int perf_event_index(struct perf_event *event)
4612 {
4613         if (event->hw.state & PERF_HES_STOPPED)
4614                 return 0;
4615
4616         if (event->state != PERF_EVENT_STATE_ACTIVE)
4617                 return 0;
4618
4619         return event->pmu->event_idx(event);
4620 }
4621
4622 static void calc_timer_values(struct perf_event *event,
4623                                 u64 *now,
4624                                 u64 *enabled,
4625                                 u64 *running)
4626 {
4627         u64 ctx_time;
4628
4629         *now = perf_clock();
4630         ctx_time = event->shadow_ctx_time + *now;
4631         *enabled = ctx_time - event->tstamp_enabled;
4632         *running = ctx_time - event->tstamp_running;
4633 }
4634
4635 static void perf_event_init_userpage(struct perf_event *event)
4636 {
4637         struct perf_event_mmap_page *userpg;
4638         struct ring_buffer *rb;
4639
4640         rcu_read_lock();
4641         rb = rcu_dereference(event->rb);
4642         if (!rb)
4643                 goto unlock;
4644
4645         userpg = rb->user_page;
4646
4647         /* Allow new userspace to detect that bit 0 is deprecated */
4648         userpg->cap_bit0_is_deprecated = 1;
4649         userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4650         userpg->data_offset = PAGE_SIZE;
4651         userpg->data_size = perf_data_size(rb);
4652
4653 unlock:
4654         rcu_read_unlock();
4655 }
4656
4657 void __weak arch_perf_update_userpage(
4658         struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4659 {
4660 }
4661
4662 /*
4663  * Callers need to ensure there can be no nesting of this function, otherwise
4664  * the seqlock logic goes bad. We can not serialize this because the arch
4665  * code calls this from NMI context.
4666  */
4667 void perf_event_update_userpage(struct perf_event *event)
4668 {
4669         struct perf_event_mmap_page *userpg;
4670         struct ring_buffer *rb;
4671         u64 enabled, running, now;
4672
4673         rcu_read_lock();
4674         rb = rcu_dereference(event->rb);
4675         if (!rb)
4676                 goto unlock;
4677
4678         /*
4679          * compute total_time_enabled, total_time_running
4680          * based on snapshot values taken when the event
4681          * was last scheduled in.
4682          *
4683          * we cannot simply called update_context_time()
4684          * because of locking issue as we can be called in
4685          * NMI context
4686          */
4687         calc_timer_values(event, &now, &enabled, &running);
4688
4689         userpg = rb->user_page;
4690         /*
4691          * Disable preemption so as to not let the corresponding user-space
4692          * spin too long if we get preempted.
4693          */
4694         preempt_disable();
4695         ++userpg->lock;
4696         barrier();
4697         userpg->index = perf_event_index(event);
4698         userpg->offset = perf_event_count(event);
4699         if (userpg->index)
4700                 userpg->offset -= local64_read(&event->hw.prev_count);
4701
4702         userpg->time_enabled = enabled +
4703                         atomic64_read(&event->child_total_time_enabled);
4704
4705         userpg->time_running = running +
4706                         atomic64_read(&event->child_total_time_running);
4707
4708         arch_perf_update_userpage(event, userpg, now);
4709
4710         barrier();
4711         ++userpg->lock;
4712         preempt_enable();
4713 unlock:
4714         rcu_read_unlock();
4715 }
4716
4717 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4718 {
4719         struct perf_event *event = vma->vm_file->private_data;
4720         struct ring_buffer *rb;
4721         int ret = VM_FAULT_SIGBUS;
4722
4723         if (vmf->flags & FAULT_FLAG_MKWRITE) {
4724                 if (vmf->pgoff == 0)
4725                         ret = 0;
4726                 return ret;
4727         }
4728
4729         rcu_read_lock();
4730         rb = rcu_dereference(event->rb);
4731         if (!rb)
4732                 goto unlock;
4733
4734         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4735                 goto unlock;
4736
4737         vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4738         if (!vmf->page)
4739                 goto unlock;
4740
4741         get_page(vmf->page);
4742         vmf->page->mapping = vma->vm_file->f_mapping;
4743         vmf->page->index   = vmf->pgoff;
4744
4745         ret = 0;
4746 unlock:
4747         rcu_read_unlock();
4748
4749         return ret;
4750 }
4751
4752 static void ring_buffer_attach(struct perf_event *event,
4753                                struct ring_buffer *rb)
4754 {
4755         struct ring_buffer *old_rb = NULL;
4756         unsigned long flags;
4757
4758         if (event->rb) {
4759                 /*
4760                  * Should be impossible, we set this when removing
4761                  * event->rb_entry and wait/clear when adding event->rb_entry.
4762                  */
4763                 WARN_ON_ONCE(event->rcu_pending);
4764
4765                 old_rb = event->rb;
4766                 spin_lock_irqsave(&old_rb->event_lock, flags);
4767                 list_del_rcu(&event->rb_entry);
4768                 spin_unlock_irqrestore(&old_rb->event_lock, flags);
4769
4770                 event->rcu_batches = get_state_synchronize_rcu();
4771                 event->rcu_pending = 1;
4772         }
4773
4774         if (rb) {
4775                 if (event->rcu_pending) {
4776                         cond_synchronize_rcu(event->rcu_batches);
4777                         event->rcu_pending = 0;
4778                 }
4779
4780                 spin_lock_irqsave(&rb->event_lock, flags);
4781                 list_add_rcu(&event->rb_entry, &rb->event_list);
4782                 spin_unlock_irqrestore(&rb->event_lock, flags);
4783         }
4784
4785         rcu_assign_pointer(event->rb, rb);
4786
4787         if (old_rb) {
4788                 ring_buffer_put(old_rb);
4789                 /*
4790                  * Since we detached before setting the new rb, so that we
4791                  * could attach the new rb, we could have missed a wakeup.
4792                  * Provide it now.
4793                  */
4794                 wake_up_all(&event->waitq);
4795         }
4796 }
4797
4798 static void ring_buffer_wakeup(struct perf_event *event)
4799 {
4800         struct ring_buffer *rb;
4801
4802         rcu_read_lock();
4803         rb = rcu_dereference(event->rb);
4804         if (rb) {
4805                 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4806                         wake_up_all(&event->waitq);
4807         }
4808         rcu_read_unlock();
4809 }
4810
4811 struct ring_buffer *ring_buffer_get(struct perf_event *event)
4812 {
4813         struct ring_buffer *rb;
4814
4815         rcu_read_lock();
4816         rb = rcu_dereference(event->rb);
4817         if (rb) {
4818                 if (!atomic_inc_not_zero(&rb->refcount))
4819                         rb = NULL;
4820         }
4821         rcu_read_unlock();
4822
4823         return rb;
4824 }
4825
4826 void ring_buffer_put(struct ring_buffer *rb)
4827 {
4828         if (!atomic_dec_and_test(&rb->refcount))
4829                 return;
4830
4831         WARN_ON_ONCE(!list_empty(&rb->event_list));
4832
4833         call_rcu(&rb->rcu_head, rb_free_rcu);
4834 }
4835
4836 static void perf_mmap_open(struct vm_area_struct *vma)
4837 {
4838         struct perf_event *event = vma->vm_file->private_data;
4839
4840         atomic_inc(&event->mmap_count);
4841         atomic_inc(&event->rb->mmap_count);
4842
4843         if (vma->vm_pgoff)
4844                 atomic_inc(&event->rb->aux_mmap_count);
4845
4846         if (event->pmu->event_mapped)
4847                 event->pmu->event_mapped(event);
4848 }
4849
4850 static void perf_pmu_output_stop(struct perf_event *event);
4851
4852 /*
4853  * A buffer can be mmap()ed multiple times; either directly through the same
4854  * event, or through other events by use of perf_event_set_output().
4855  *
4856  * In order to undo the VM accounting done by perf_mmap() we need to destroy
4857  * the buffer here, where we still have a VM context. This means we need
4858  * to detach all events redirecting to us.
4859  */
4860 static void perf_mmap_close(struct vm_area_struct *vma)
4861 {
4862         struct perf_event *event = vma->vm_file->private_data;
4863
4864         struct ring_buffer *rb = ring_buffer_get(event);
4865         struct user_struct *mmap_user = rb->mmap_user;
4866         int mmap_locked = rb->mmap_locked;
4867         unsigned long size = perf_data_size(rb);
4868
4869         if (event->pmu->event_unmapped)
4870                 event->pmu->event_unmapped(event);
4871
4872         /*
4873          * rb->aux_mmap_count will always drop before rb->mmap_count and
4874          * event->mmap_count, so it is ok to use event->mmap_mutex to
4875          * serialize with perf_mmap here.
4876          */
4877         if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4878             atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4879                 /*
4880                  * Stop all AUX events that are writing to this buffer,
4881                  * so that we can free its AUX pages and corresponding PMU
4882                  * data. Note that after rb::aux_mmap_count dropped to zero,
4883                  * they won't start any more (see perf_aux_output_begin()).
4884                  */
4885                 perf_pmu_output_stop(event);
4886
4887                 /* now it's safe to free the pages */
4888                 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4889                 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4890
4891                 /* this has to be the last one */
4892                 rb_free_aux(rb);
4893                 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
4894
4895                 mutex_unlock(&event->mmap_mutex);
4896         }
4897
4898         atomic_dec(&rb->mmap_count);
4899
4900         if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4901                 goto out_put;
4902
4903         ring_buffer_attach(event, NULL);
4904         mutex_unlock(&event->mmap_mutex);
4905
4906         /* If there's still other mmap()s of this buffer, we're done. */
4907         if (atomic_read(&rb->mmap_count))
4908                 goto out_put;
4909
4910         /*
4911          * No other mmap()s, detach from all other events that might redirect
4912          * into the now unreachable buffer. Somewhat complicated by the
4913          * fact that rb::event_lock otherwise nests inside mmap_mutex.
4914          */
4915 again:
4916         rcu_read_lock();
4917         list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4918                 if (!atomic_long_inc_not_zero(&event->refcount)) {
4919                         /*
4920                          * This event is en-route to free_event() which will
4921                          * detach it and remove it from the list.
4922                          */
4923                         continue;
4924                 }
4925                 rcu_read_unlock();
4926
4927                 mutex_lock(&event->mmap_mutex);
4928                 /*
4929                  * Check we didn't race with perf_event_set_output() which can
4930                  * swizzle the rb from under us while we were waiting to
4931                  * acquire mmap_mutex.
4932                  *
4933                  * If we find a different rb; ignore this event, a next
4934                  * iteration will no longer find it on the list. We have to
4935                  * still restart the iteration to make sure we're not now
4936                  * iterating the wrong list.
4937                  */
4938                 if (event->rb == rb)
4939                         ring_buffer_attach(event, NULL);
4940
4941                 mutex_unlock(&event->mmap_mutex);
4942                 put_event(event);
4943
4944                 /*
4945                  * Restart the iteration; either we're on the wrong list or
4946                  * destroyed its integrity by doing a deletion.
4947                  */
4948                 goto again;
4949         }
4950         rcu_read_unlock();
4951
4952         /*
4953          * It could be there's still a few 0-ref events on the list; they'll
4954          * get cleaned up by free_event() -- they'll also still have their
4955          * ref on the rb and will free it whenever they are done with it.
4956          *
4957          * Aside from that, this buffer is 'fully' detached and unmapped,
4958          * undo the VM accounting.
4959          */
4960
4961         atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4962         vma->vm_mm->pinned_vm -= mmap_locked;
4963         free_uid(mmap_user);
4964
4965 out_put:
4966         ring_buffer_put(rb); /* could be last */
4967 }
4968
4969 static const struct vm_operations_struct perf_mmap_vmops = {
4970         .open           = perf_mmap_open,
4971         .close          = perf_mmap_close, /* non mergable */
4972         .fault          = perf_mmap_fault,
4973         .page_mkwrite   = perf_mmap_fault,
4974 };
4975
4976 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4977 {
4978         struct perf_event *event = file->private_data;
4979         unsigned long user_locked, user_lock_limit;
4980         struct user_struct *user = current_user();
4981         unsigned long locked, lock_limit;
4982         struct ring_buffer *rb = NULL;
4983         unsigned long vma_size;
4984         unsigned long nr_pages;
4985         long user_extra = 0, extra = 0;
4986         int ret = 0, flags = 0;
4987
4988         /*
4989          * Don't allow mmap() of inherited per-task counters. This would
4990          * create a performance issue due to all children writing to the
4991          * same rb.
4992          */
4993         if (event->cpu == -1 && event->attr.inherit)
4994                 return -EINVAL;
4995
4996         if (!(vma->vm_flags & VM_SHARED))
4997                 return -EINVAL;
4998
4999         vma_size = vma->vm_end - vma->vm_start;
5000
5001         if (vma->vm_pgoff == 0) {
5002                 nr_pages = (vma_size / PAGE_SIZE) - 1;
5003         } else {
5004                 /*
5005                  * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5006                  * mapped, all subsequent mappings should have the same size
5007                  * and offset. Must be above the normal perf buffer.
5008                  */
5009                 u64 aux_offset, aux_size;
5010
5011                 if (!event->rb)
5012                         return -EINVAL;
5013
5014                 nr_pages = vma_size / PAGE_SIZE;
5015
5016                 mutex_lock(&event->mmap_mutex);
5017                 ret = -EINVAL;
5018
5019                 rb = event->rb;
5020                 if (!rb)
5021                         goto aux_unlock;
5022
5023                 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
5024                 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
5025
5026                 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5027                         goto aux_unlock;
5028
5029                 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5030                         goto aux_unlock;
5031
5032                 /* already mapped with a different offset */
5033                 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5034                         goto aux_unlock;
5035
5036                 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5037                         goto aux_unlock;
5038
5039                 /* already mapped with a different size */
5040                 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5041                         goto aux_unlock;
5042
5043                 if (!is_power_of_2(nr_pages))
5044                         goto aux_unlock;
5045
5046                 if (!atomic_inc_not_zero(&rb->mmap_count))
5047                         goto aux_unlock;
5048
5049                 if (rb_has_aux(rb)) {
5050                         atomic_inc(&rb->aux_mmap_count);
5051                         ret = 0;
5052                         goto unlock;
5053                 }
5054
5055                 atomic_set(&rb->aux_mmap_count, 1);
5056                 user_extra = nr_pages;
5057
5058                 goto accounting;
5059         }
5060
5061         /*
5062          * If we have rb pages ensure they're a power-of-two number, so we
5063          * can do bitmasks instead of modulo.
5064          */
5065         if (nr_pages != 0 && !is_power_of_2(nr_pages))
5066                 return -EINVAL;
5067
5068         if (vma_size != PAGE_SIZE * (1 + nr_pages))
5069                 return -EINVAL;
5070
5071         WARN_ON_ONCE(event->ctx->parent_ctx);
5072 again:
5073         mutex_lock(&event->mmap_mutex);
5074         if (event->rb) {
5075                 if (event->rb->nr_pages != nr_pages) {
5076                         ret = -EINVAL;
5077                         goto unlock;
5078                 }
5079
5080                 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5081                         /*
5082                          * Raced against perf_mmap_close() through
5083                          * perf_event_set_output(). Try again, hope for better
5084                          * luck.
5085                          */
5086                         mutex_unlock(&event->mmap_mutex);
5087                         goto again;
5088                 }
5089
5090                 goto unlock;
5091         }
5092
5093         user_extra = nr_pages + 1;
5094
5095 accounting:
5096         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5097
5098         /*
5099          * Increase the limit linearly with more CPUs:
5100          */
5101         user_lock_limit *= num_online_cpus();
5102
5103         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5104
5105         if (user_locked > user_lock_limit)
5106                 extra = user_locked - user_lock_limit;
5107
5108         lock_limit = rlimit(RLIMIT_MEMLOCK);
5109         lock_limit >>= PAGE_SHIFT;
5110         locked = vma->vm_mm->pinned_vm + extra;
5111
5112         if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5113                 !capable(CAP_IPC_LOCK)) {
5114                 ret = -EPERM;
5115                 goto unlock;
5116         }
5117
5118         WARN_ON(!rb && event->rb);
5119
5120         if (vma->vm_flags & VM_WRITE)
5121                 flags |= RING_BUFFER_WRITABLE;
5122
5123         if (!rb) {
5124                 rb = rb_alloc(nr_pages,
5125                               event->attr.watermark ? event->attr.wakeup_watermark : 0,
5126                               event->cpu, flags);
5127
5128                 if (!rb) {
5129                         ret = -ENOMEM;
5130                         goto unlock;
5131                 }
5132
5133                 atomic_set(&rb->mmap_count, 1);
5134                 rb->mmap_user = get_current_user();
5135                 rb->mmap_locked = extra;
5136
5137                 ring_buffer_attach(event, rb);
5138
5139                 perf_event_init_userpage(event);
5140                 perf_event_update_userpage(event);
5141         } else {
5142                 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5143                                    event->attr.aux_watermark, flags);
5144                 if (!ret)
5145                         rb->aux_mmap_locked = extra;
5146         }
5147
5148 unlock:
5149         if (!ret) {
5150                 atomic_long_add(user_extra, &user->locked_vm);
5151                 vma->vm_mm->pinned_vm += extra;
5152
5153                 atomic_inc(&event->mmap_count);
5154         } else if (rb) {
5155                 atomic_dec(&rb->mmap_count);
5156         }
5157 aux_unlock:
5158         mutex_unlock(&event->mmap_mutex);
5159
5160         /*
5161          * Since pinned accounting is per vm we cannot allow fork() to copy our
5162          * vma.
5163          */
5164         vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5165         vma->vm_ops = &perf_mmap_vmops;
5166
5167         if (event->pmu->event_mapped)
5168                 event->pmu->event_mapped(event);
5169
5170         return ret;
5171 }
5172
5173 static int perf_fasync(int fd, struct file *filp, int on)
5174 {
5175         struct inode *inode = file_inode(filp);
5176         struct perf_event *event = filp->private_data;
5177         int retval;
5178
5179         inode_lock(inode);
5180         retval = fasync_helper(fd, filp, on, &event->fasync);
5181         inode_unlock(inode);
5182
5183         if (retval < 0)
5184                 return retval;
5185
5186         return 0;
5187 }
5188
5189 static const struct file_operations perf_fops = {
5190         .llseek                 = no_llseek,
5191         .release                = perf_release,
5192         .read                   = perf_read,
5193         .poll                   = perf_poll,
5194         .unlocked_ioctl         = perf_ioctl,
5195         .compat_ioctl           = perf_compat_ioctl,
5196         .mmap                   = perf_mmap,
5197         .fasync                 = perf_fasync,
5198 };
5199
5200 /*
5201  * Perf event wakeup
5202  *
5203  * If there's data, ensure we set the poll() state and publish everything
5204  * to user-space before waking everybody up.
5205  */
5206
5207 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5208 {
5209         /* only the parent has fasync state */
5210         if (event->parent)
5211                 event = event->parent;
5212         return &event->fasync;
5213 }
5214
5215 void perf_event_wakeup(struct perf_event *event)
5216 {
5217         ring_buffer_wakeup(event);
5218
5219         if (event->pending_kill) {
5220                 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5221                 event->pending_kill = 0;
5222         }
5223 }
5224
5225 static void perf_pending_event(struct irq_work *entry)
5226 {
5227         struct perf_event *event = container_of(entry,
5228                         struct perf_event, pending);
5229         int rctx;
5230
5231         rctx = perf_swevent_get_recursion_context();
5232         /*
5233          * If we 'fail' here, that's OK, it means recursion is already disabled
5234          * and we won't recurse 'further'.
5235          */
5236
5237         if (event->pending_disable) {
5238                 event->pending_disable = 0;
5239                 perf_event_disable_local(event);
5240         }
5241
5242         if (event->pending_wakeup) {
5243                 event->pending_wakeup = 0;
5244                 perf_event_wakeup(event);
5245         }
5246
5247         if (rctx >= 0)
5248                 perf_swevent_put_recursion_context(rctx);
5249 }
5250
5251 /*
5252  * We assume there is only KVM supporting the callbacks.
5253  * Later on, we might change it to a list if there is
5254  * another virtualization implementation supporting the callbacks.
5255  */
5256 struct perf_guest_info_callbacks *perf_guest_cbs;
5257
5258 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5259 {
5260         perf_guest_cbs = cbs;
5261         return 0;
5262 }
5263 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5264
5265 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5266 {
5267         perf_guest_cbs = NULL;
5268         return 0;
5269 }
5270 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5271
5272 static void
5273 perf_output_sample_regs(struct perf_output_handle *handle,
5274                         struct pt_regs *regs, u64 mask)
5275 {
5276         int bit;
5277
5278         for_each_set_bit(bit, (const unsigned long *) &mask,
5279                          sizeof(mask) * BITS_PER_BYTE) {
5280                 u64 val;
5281
5282                 val = perf_reg_value(regs, bit);
5283                 perf_output_put(handle, val);
5284         }
5285 }
5286
5287 static void perf_sample_regs_user(struct perf_regs *regs_user,
5288                                   struct pt_regs *regs,
5289                                   struct pt_regs *regs_user_copy)
5290 {
5291         if (user_mode(regs)) {
5292                 regs_user->abi = perf_reg_abi(current);
5293                 regs_user->regs = regs;
5294         } else if (current->mm) {
5295                 perf_get_regs_user(regs_user, regs, regs_user_copy);
5296         } else {
5297                 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5298                 regs_user->regs = NULL;
5299         }
5300 }
5301
5302 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5303                                   struct pt_regs *regs)
5304 {
5305         regs_intr->regs = regs;
5306         regs_intr->abi  = perf_reg_abi(current);
5307 }
5308
5309
5310 /*
5311  * Get remaining task size from user stack pointer.
5312  *
5313  * It'd be better to take stack vma map and limit this more
5314  * precisly, but there's no way to get it safely under interrupt,
5315  * so using TASK_SIZE as limit.
5316  */
5317 static u64 perf_ustack_task_size(struct pt_regs *regs)
5318 {
5319         unsigned long addr = perf_user_stack_pointer(regs);
5320
5321         if (!addr || addr >= TASK_SIZE)
5322                 return 0;
5323
5324         return TASK_SIZE - addr;
5325 }
5326
5327 static u16
5328 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5329                         struct pt_regs *regs)
5330 {
5331         u64 task_size;
5332
5333         /* No regs, no stack pointer, no dump. */
5334         if (!regs)
5335                 return 0;
5336
5337         /*
5338          * Check if we fit in with the requested stack size into the:
5339          * - TASK_SIZE
5340          *   If we don't, we limit the size to the TASK_SIZE.
5341          *
5342          * - remaining sample size
5343          *   If we don't, we customize the stack size to
5344          *   fit in to the remaining sample size.
5345          */
5346
5347         task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5348         stack_size = min(stack_size, (u16) task_size);
5349
5350         /* Current header size plus static size and dynamic size. */
5351         header_size += 2 * sizeof(u64);
5352
5353         /* Do we fit in with the current stack dump size? */
5354         if ((u16) (header_size + stack_size) < header_size) {
5355                 /*
5356                  * If we overflow the maximum size for the sample,
5357                  * we customize the stack dump size to fit in.
5358                  */
5359                 stack_size = USHRT_MAX - header_size - sizeof(u64);
5360                 stack_size = round_up(stack_size, sizeof(u64));
5361         }
5362
5363         return stack_size;
5364 }
5365
5366 static void
5367 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5368                           struct pt_regs *regs)
5369 {
5370         /* Case of a kernel thread, nothing to dump */
5371         if (!regs) {
5372                 u64 size = 0;
5373                 perf_output_put(handle, size);
5374         } else {
5375                 unsigned long sp;
5376                 unsigned int rem;
5377                 u64 dyn_size;
5378
5379                 /*
5380                  * We dump:
5381                  * static size
5382                  *   - the size requested by user or the best one we can fit
5383                  *     in to the sample max size
5384                  * data
5385                  *   - user stack dump data
5386                  * dynamic size
5387                  *   - the actual dumped size
5388                  */
5389
5390                 /* Static size. */
5391                 perf_output_put(handle, dump_size);
5392
5393                 /* Data. */
5394                 sp = perf_user_stack_pointer(regs);
5395                 rem = __output_copy_user(handle, (void *) sp, dump_size);
5396                 dyn_size = dump_size - rem;
5397
5398                 perf_output_skip(handle, rem);
5399
5400                 /* Dynamic size. */
5401                 perf_output_put(handle, dyn_size);
5402         }
5403 }
5404
5405 static void __perf_event_header__init_id(struct perf_event_header *header,
5406                                          struct perf_sample_data *data,
5407                                          struct perf_event *event)
5408 {
5409         u64 sample_type = event->attr.sample_type;
5410
5411         data->type = sample_type;
5412         header->size += event->id_header_size;
5413
5414         if (sample_type & PERF_SAMPLE_TID) {
5415                 /* namespace issues */
5416                 data->tid_entry.pid = perf_event_pid(event, current);
5417                 data->tid_entry.tid = perf_event_tid(event, current);
5418         }
5419
5420         if (sample_type & PERF_SAMPLE_TIME)
5421                 data->time = perf_event_clock(event);
5422
5423         if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5424                 data->id = primary_event_id(event);
5425
5426         if (sample_type & PERF_SAMPLE_STREAM_ID)
5427                 data->stream_id = event->id;
5428
5429         if (sample_type & PERF_SAMPLE_CPU) {
5430                 data->cpu_entry.cpu      = raw_smp_processor_id();
5431                 data->cpu_entry.reserved = 0;
5432         }
5433 }
5434
5435 void perf_event_header__init_id(struct perf_event_header *header,
5436                                 struct perf_sample_data *data,
5437                                 struct perf_event *event)
5438 {
5439         if (event->attr.sample_id_all)
5440                 __perf_event_header__init_id(header, data, event);
5441 }
5442
5443 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5444                                            struct perf_sample_data *data)
5445 {
5446         u64 sample_type = data->type;
5447
5448         if (sample_type & PERF_SAMPLE_TID)
5449                 perf_output_put(handle, data->tid_entry);
5450
5451         if (sample_type & PERF_SAMPLE_TIME)
5452                 perf_output_put(handle, data->time);
5453
5454         if (sample_type & PERF_SAMPLE_ID)
5455                 perf_output_put(handle, data->id);
5456
5457         if (sample_type & PERF_SAMPLE_STREAM_ID)
5458                 perf_output_put(handle, data->stream_id);
5459
5460         if (sample_type & PERF_SAMPLE_CPU)
5461                 perf_output_put(handle, data->cpu_entry);
5462
5463         if (sample_type & PERF_SAMPLE_IDENTIFIER)
5464                 perf_output_put(handle, data->id);
5465 }
5466
5467 void perf_event__output_id_sample(struct perf_event *event,
5468                                   struct perf_output_handle *handle,
5469                                   struct perf_sample_data *sample)
5470 {
5471         if (event->attr.sample_id_all)
5472                 __perf_event__output_id_sample(handle, sample);
5473 }
5474
5475 static void perf_output_read_one(struct perf_output_handle *handle,
5476                                  struct perf_event *event,
5477                                  u64 enabled, u64 running)
5478 {
5479         u64 read_format = event->attr.read_format;
5480         u64 values[4];
5481         int n = 0;
5482
5483         values[n++] = perf_event_count(event);
5484         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5485                 values[n++] = enabled +
5486                         atomic64_read(&event->child_total_time_enabled);
5487         }
5488         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5489                 values[n++] = running +
5490                         atomic64_read(&event->child_total_time_running);
5491         }
5492         if (read_format & PERF_FORMAT_ID)
5493                 values[n++] = primary_event_id(event);
5494
5495         __output_copy(handle, values, n * sizeof(u64));
5496 }
5497
5498 /*
5499  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5500  */
5501 static void perf_output_read_group(struct perf_output_handle *handle,
5502                             struct perf_event *event,
5503                             u64 enabled, u64 running)
5504 {
5505         struct perf_event *leader = event->group_leader, *sub;
5506         u64 read_format = event->attr.read_format;
5507         u64 values[5];
5508         int n = 0;
5509
5510         values[n++] = 1 + leader->nr_siblings;
5511
5512         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5513                 values[n++] = enabled;
5514
5515         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5516                 values[n++] = running;
5517
5518         if (leader != event)
5519                 leader->pmu->read(leader);
5520
5521         values[n++] = perf_event_count(leader);
5522         if (read_format & PERF_FORMAT_ID)
5523                 values[n++] = primary_event_id(leader);
5524
5525         __output_copy(handle, values, n * sizeof(u64));
5526
5527         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5528                 n = 0;
5529
5530                 if ((sub != event) &&
5531                     (sub->state == PERF_EVENT_STATE_ACTIVE))
5532                         sub->pmu->read(sub);
5533
5534                 values[n++] = perf_event_count(sub);
5535                 if (read_format & PERF_FORMAT_ID)
5536                         values[n++] = primary_event_id(sub);
5537
5538                 __output_copy(handle, values, n * sizeof(u64));
5539         }
5540 }
5541
5542 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5543                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
5544
5545 static void perf_output_read(struct perf_output_handle *handle,
5546                              struct perf_event *event)
5547 {
5548         u64 enabled = 0, running = 0, now;
5549         u64 read_format = event->attr.read_format;
5550
5551         /*
5552          * compute total_time_enabled, total_time_running
5553          * based on snapshot values taken when the event
5554          * was last scheduled in.
5555          *
5556          * we cannot simply called update_context_time()
5557          * because of locking issue as we are called in
5558          * NMI context
5559          */
5560         if (read_format & PERF_FORMAT_TOTAL_TIMES)
5561                 calc_timer_values(event, &now, &enabled, &running);
5562
5563         if (event->attr.read_format & PERF_FORMAT_GROUP)
5564                 perf_output_read_group(handle, event, enabled, running);
5565         else
5566                 perf_output_read_one(handle, event, enabled, running);
5567 }
5568
5569 void perf_output_sample(struct perf_output_handle *handle,
5570                         struct perf_event_header *header,
5571                         struct perf_sample_data *data,
5572                         struct perf_event *event)
5573 {
5574         u64 sample_type = data->type;
5575
5576         perf_output_put(handle, *header);
5577
5578         if (sample_type & PERF_SAMPLE_IDENTIFIER)
5579                 perf_output_put(handle, data->id);
5580
5581         if (sample_type & PERF_SAMPLE_IP)
5582                 perf_output_put(handle, data->ip);
5583
5584         if (sample_type & PERF_SAMPLE_TID)
5585                 perf_output_put(handle, data->tid_entry);
5586
5587         if (sample_type & PERF_SAMPLE_TIME)
5588                 perf_output_put(handle, data->time);
5589
5590         if (sample_type & PERF_SAMPLE_ADDR)
5591                 perf_output_put(handle, data->addr);
5592
5593         if (sample_type & PERF_SAMPLE_ID)
5594                 perf_output_put(handle, data->id);
5595
5596         if (sample_type & PERF_SAMPLE_STREAM_ID)
5597                 perf_output_put(handle, data->stream_id);
5598
5599         if (sample_type & PERF_SAMPLE_CPU)
5600                 perf_output_put(handle, data->cpu_entry);
5601
5602         if (sample_type & PERF_SAMPLE_PERIOD)
5603                 perf_output_put(handle, data->period);
5604
5605         if (sample_type & PERF_SAMPLE_READ)
5606                 perf_output_read(handle, event);
5607
5608         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5609                 if (data->callchain) {
5610                         int size = 1;
5611
5612                         if (data->callchain)
5613                                 size += data->callchain->nr;
5614
5615                         size *= sizeof(u64);
5616
5617                         __output_copy(handle, data->callchain, size);
5618                 } else {
5619                         u64 nr = 0;
5620                         perf_output_put(handle, nr);
5621                 }
5622         }
5623
5624         if (sample_type & PERF_SAMPLE_RAW) {
5625                 struct perf_raw_record *raw = data->raw;
5626
5627                 if (raw) {
5628                         struct perf_raw_frag *frag = &raw->frag;
5629
5630                         perf_output_put(handle, raw->size);
5631                         do {
5632                                 if (frag->copy) {
5633                                         __output_custom(handle, frag->copy,
5634                                                         frag->data, frag->size);
5635                                 } else {
5636                                         __output_copy(handle, frag->data,
5637                                                       frag->size);
5638                                 }
5639                                 if (perf_raw_frag_last(frag))
5640                                         break;
5641                                 frag = frag->next;
5642                         } while (1);
5643                         if (frag->pad)
5644                                 __output_skip(handle, NULL, frag->pad);
5645                 } else {
5646                         struct {
5647                                 u32     size;
5648                                 u32     data;
5649                         } raw = {
5650                                 .size = sizeof(u32),
5651                                 .data = 0,
5652                         };
5653                         perf_output_put(handle, raw);
5654                 }
5655         }
5656
5657         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5658                 if (data->br_stack) {
5659                         size_t size;
5660
5661                         size = data->br_stack->nr
5662                              * sizeof(struct perf_branch_entry);
5663
5664                         perf_output_put(handle, data->br_stack->nr);
5665                         perf_output_copy(handle, data->br_stack->entries, size);
5666                 } else {
5667                         /*
5668                          * we always store at least the value of nr
5669                          */
5670                         u64 nr = 0;
5671                         perf_output_put(handle, nr);
5672                 }
5673         }
5674
5675         if (sample_type & PERF_SAMPLE_REGS_USER) {
5676                 u64 abi = data->regs_user.abi;
5677
5678                 /*
5679                  * If there are no regs to dump, notice it through
5680                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5681                  */
5682                 perf_output_put(handle, abi);
5683
5684                 if (abi) {
5685                         u64 mask = event->attr.sample_regs_user;
5686                         perf_output_sample_regs(handle,
5687                                                 data->regs_user.regs,
5688                                                 mask);
5689                 }
5690         }
5691
5692         if (sample_type & PERF_SAMPLE_STACK_USER) {
5693                 perf_output_sample_ustack(handle,
5694                                           data->stack_user_size,
5695                                           data->regs_user.regs);
5696         }
5697
5698         if (sample_type & PERF_SAMPLE_WEIGHT)
5699                 perf_output_put(handle, data->weight);
5700
5701         if (sample_type & PERF_SAMPLE_DATA_SRC)
5702                 perf_output_put(handle, data->data_src.val);
5703
5704         if (sample_type & PERF_SAMPLE_TRANSACTION)
5705                 perf_output_put(handle, data->txn);
5706
5707         if (sample_type & PERF_SAMPLE_REGS_INTR) {
5708                 u64 abi = data->regs_intr.abi;
5709                 /*
5710                  * If there are no regs to dump, notice it through
5711                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5712                  */
5713                 perf_output_put(handle, abi);
5714
5715                 if (abi) {
5716                         u64 mask = event->attr.sample_regs_intr;
5717
5718                         perf_output_sample_regs(handle,
5719                                                 data->regs_intr.regs,
5720                                                 mask);
5721                 }
5722         }
5723
5724         if (!event->attr.watermark) {
5725                 int wakeup_events = event->attr.wakeup_events;
5726
5727                 if (wakeup_events) {
5728                         struct ring_buffer *rb = handle->rb;
5729                         int events = local_inc_return(&rb->events);
5730
5731                         if (events >= wakeup_events) {
5732                                 local_sub(wakeup_events, &rb->events);
5733                                 local_inc(&rb->wakeup);
5734                         }
5735                 }
5736         }
5737 }
5738
5739 void perf_prepare_sample(struct perf_event_header *header,
5740                          struct perf_sample_data *data,
5741                          struct perf_event *event,
5742                          struct pt_regs *regs)
5743 {
5744         u64 sample_type = event->attr.sample_type;
5745
5746         header->type = PERF_RECORD_SAMPLE;
5747         header->size = sizeof(*header) + event->header_size;
5748
5749         header->misc = 0;
5750         header->misc |= perf_misc_flags(regs);
5751
5752         __perf_event_header__init_id(header, data, event);
5753
5754         if (sample_type & PERF_SAMPLE_IP)
5755                 data->ip = perf_instruction_pointer(regs);
5756
5757         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5758                 int size = 1;
5759
5760                 data->callchain = perf_callchain(event, regs);
5761
5762                 if (data->callchain)
5763                         size += data->callchain->nr;
5764
5765                 header->size += size * sizeof(u64);
5766         }
5767
5768         if (sample_type & PERF_SAMPLE_RAW) {
5769                 struct perf_raw_record *raw = data->raw;
5770                 int size;
5771
5772                 if (raw) {
5773                         struct perf_raw_frag *frag = &raw->frag;
5774                         u32 sum = 0;
5775
5776                         do {
5777                                 sum += frag->size;
5778                                 if (perf_raw_frag_last(frag))
5779                                         break;
5780                                 frag = frag->next;
5781                         } while (1);
5782
5783                         size = round_up(sum + sizeof(u32), sizeof(u64));
5784                         raw->size = size - sizeof(u32);
5785                         frag->pad = raw->size - sum;
5786                 } else {
5787                         size = sizeof(u64);
5788                 }
5789
5790                 header->size += size;
5791         }
5792
5793         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5794                 int size = sizeof(u64); /* nr */
5795                 if (data->br_stack) {
5796                         size += data->br_stack->nr
5797                               * sizeof(struct perf_branch_entry);
5798                 }
5799                 header->size += size;
5800         }
5801
5802         if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5803                 perf_sample_regs_user(&data->regs_user, regs,
5804                                       &data->regs_user_copy);
5805
5806         if (sample_type & PERF_SAMPLE_REGS_USER) {
5807                 /* regs dump ABI info */
5808                 int size = sizeof(u64);
5809
5810                 if (data->regs_user.regs) {
5811                         u64 mask = event->attr.sample_regs_user;
5812                         size += hweight64(mask) * sizeof(u64);
5813                 }
5814
5815                 header->size += size;
5816         }
5817
5818         if (sample_type & PERF_SAMPLE_STACK_USER) {
5819                 /*
5820                  * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5821                  * processed as the last one or have additional check added
5822                  * in case new sample type is added, because we could eat
5823                  * up the rest of the sample size.
5824                  */
5825                 u16 stack_size = event->attr.sample_stack_user;
5826                 u16 size = sizeof(u64);
5827
5828                 stack_size = perf_sample_ustack_size(stack_size, header->size,
5829                                                      data->regs_user.regs);
5830
5831                 /*
5832                  * If there is something to dump, add space for the dump
5833                  * itself and for the field that tells the dynamic size,
5834                  * which is how many have been actually dumped.
5835                  */
5836                 if (stack_size)
5837                         size += sizeof(u64) + stack_size;
5838
5839                 data->stack_user_size = stack_size;
5840                 header->size += size;
5841         }
5842
5843         if (sample_type & PERF_SAMPLE_REGS_INTR) {
5844                 /* regs dump ABI info */
5845                 int size = sizeof(u64);
5846
5847                 perf_sample_regs_intr(&data->regs_intr, regs);
5848
5849                 if (data->regs_intr.regs) {
5850                         u64 mask = event->attr.sample_regs_intr;
5851
5852                         size += hweight64(mask) * sizeof(u64);
5853                 }
5854
5855                 header->size += size;
5856         }
5857 }
5858
5859 static void __always_inline
5860 __perf_event_output(struct perf_event *event,
5861                     struct perf_sample_data *data,
5862                     struct pt_regs *regs,
5863                     int (*output_begin)(struct perf_output_handle *,
5864                                         struct perf_event *,
5865                                         unsigned int))
5866 {
5867         struct perf_output_handle handle;
5868         struct perf_event_header header;
5869
5870         /* protect the callchain buffers */
5871         rcu_read_lock();
5872
5873         perf_prepare_sample(&header, data, event, regs);
5874
5875         if (output_begin(&handle, event, header.size))
5876                 goto exit;
5877
5878         perf_output_sample(&handle, &header, data, event);
5879
5880         perf_output_end(&handle);
5881
5882 exit:
5883         rcu_read_unlock();
5884 }
5885
5886 void
5887 perf_event_output_forward(struct perf_event *event,
5888                          struct perf_sample_data *data,
5889                          struct pt_regs *regs)
5890 {
5891         __perf_event_output(event, data, regs, perf_output_begin_forward);
5892 }
5893
5894 void
5895 perf_event_output_backward(struct perf_event *event,
5896                            struct perf_sample_data *data,
5897                            struct pt_regs *regs)
5898 {
5899         __perf_event_output(event, data, regs, perf_output_begin_backward);
5900 }
5901
5902 void
5903 perf_event_output(struct perf_event *event,
5904                   struct perf_sample_data *data,
5905                   struct pt_regs *regs)
5906 {
5907         __perf_event_output(event, data, regs, perf_output_begin);
5908 }
5909
5910 /*
5911  * read event_id
5912  */
5913
5914 struct perf_read_event {
5915         struct perf_event_header        header;
5916
5917         u32                             pid;
5918         u32                             tid;
5919 };
5920
5921 static void
5922 perf_event_read_event(struct perf_event *event,
5923                         struct task_struct *task)
5924 {
5925         struct perf_output_handle handle;
5926         struct perf_sample_data sample;
5927         struct perf_read_event read_event = {
5928                 .header = {
5929                         .type = PERF_RECORD_READ,
5930                         .misc = 0,
5931                         .size = sizeof(read_event) + event->read_size,
5932                 },
5933                 .pid = perf_event_pid(event, task),
5934                 .tid = perf_event_tid(event, task),
5935         };
5936         int ret;
5937
5938         perf_event_header__init_id(&read_event.header, &sample, event);
5939         ret = perf_output_begin(&handle, event, read_event.header.size);
5940         if (ret)
5941                 return;
5942
5943         perf_output_put(&handle, read_event);
5944         perf_output_read(&handle, event);
5945         perf_event__output_id_sample(event, &handle, &sample);
5946
5947         perf_output_end(&handle);
5948 }
5949
5950 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
5951
5952 static void
5953 perf_iterate_ctx(struct perf_event_context *ctx,
5954                    perf_iterate_f output,
5955                    void *data, bool all)
5956 {
5957         struct perf_event *event;
5958
5959         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5960                 if (!all) {
5961                         if (event->state < PERF_EVENT_STATE_INACTIVE)
5962                                 continue;
5963                         if (!event_filter_match(event))
5964                                 continue;
5965                 }
5966
5967                 output(event, data);
5968         }
5969 }
5970
5971 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
5972 {
5973         struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
5974         struct perf_event *event;
5975
5976         list_for_each_entry_rcu(event, &pel->list, sb_list) {
5977                 /*
5978                  * Skip events that are not fully formed yet; ensure that
5979                  * if we observe event->ctx, both event and ctx will be
5980                  * complete enough. See perf_install_in_context().
5981                  */
5982                 if (!smp_load_acquire(&event->ctx))
5983                         continue;
5984
5985                 if (event->state < PERF_EVENT_STATE_INACTIVE)
5986                         continue;
5987                 if (!event_filter_match(event))
5988                         continue;
5989                 output(event, data);
5990         }
5991 }
5992
5993 /*
5994  * Iterate all events that need to receive side-band events.
5995  *
5996  * For new callers; ensure that account_pmu_sb_event() includes
5997  * your event, otherwise it might not get delivered.
5998  */
5999 static void
6000 perf_iterate_sb(perf_iterate_f output, void *data,
6001                struct perf_event_context *task_ctx)
6002 {
6003         struct perf_event_context *ctx;
6004         int ctxn;
6005
6006         rcu_read_lock();
6007         preempt_disable();
6008
6009         /*
6010          * If we have task_ctx != NULL we only notify the task context itself.
6011          * The task_ctx is set only for EXIT events before releasing task
6012          * context.
6013          */
6014         if (task_ctx) {
6015                 perf_iterate_ctx(task_ctx, output, data, false);
6016                 goto done;
6017         }
6018
6019         perf_iterate_sb_cpu(output, data);
6020
6021         for_each_task_context_nr(ctxn) {
6022                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6023                 if (ctx)
6024                         perf_iterate_ctx(ctx, output, data, false);
6025         }
6026 done:
6027         preempt_enable();
6028         rcu_read_unlock();
6029 }
6030
6031 /*
6032  * Clear all file-based filters at exec, they'll have to be
6033  * re-instated when/if these objects are mmapped again.
6034  */
6035 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6036 {
6037         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6038         struct perf_addr_filter *filter;
6039         unsigned int restart = 0, count = 0;
6040         unsigned long flags;
6041
6042         if (!has_addr_filter(event))
6043                 return;
6044
6045         raw_spin_lock_irqsave(&ifh->lock, flags);
6046         list_for_each_entry(filter, &ifh->list, entry) {
6047                 if (filter->inode) {
6048                         event->addr_filters_offs[count] = 0;
6049                         restart++;
6050                 }
6051
6052                 count++;
6053         }
6054
6055         if (restart)
6056                 event->addr_filters_gen++;
6057         raw_spin_unlock_irqrestore(&ifh->lock, flags);
6058
6059         if (restart)
6060                 perf_event_restart(event);
6061 }
6062
6063 void perf_event_exec(void)
6064 {
6065         struct perf_event_context *ctx;
6066         int ctxn;
6067
6068         rcu_read_lock();
6069         for_each_task_context_nr(ctxn) {
6070                 ctx = current->perf_event_ctxp[ctxn];
6071                 if (!ctx)
6072                         continue;
6073
6074                 perf_event_enable_on_exec(ctxn);
6075
6076                 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6077                                    true);
6078         }
6079         rcu_read_unlock();
6080 }
6081
6082 struct remote_output {
6083         struct ring_buffer      *rb;
6084         int                     err;
6085 };
6086
6087 static void __perf_event_output_stop(struct perf_event *event, void *data)
6088 {
6089         struct perf_event *parent = event->parent;
6090         struct remote_output *ro = data;
6091         struct ring_buffer *rb = ro->rb;
6092         struct stop_event_data sd = {
6093                 .event  = event,
6094         };
6095
6096         if (!has_aux(event))
6097                 return;
6098
6099         if (!parent)
6100                 parent = event;
6101
6102         /*
6103          * In case of inheritance, it will be the parent that links to the
6104          * ring-buffer, but it will be the child that's actually using it:
6105          */
6106         if (rcu_dereference(parent->rb) == rb)
6107                 ro->err = __perf_event_stop(&sd);
6108 }
6109
6110 static int __perf_pmu_output_stop(void *info)
6111 {
6112         struct perf_event *event = info;
6113         struct pmu *pmu = event->pmu;
6114         struct perf_cpu_context *cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
6115         struct remote_output ro = {
6116                 .rb     = event->rb,
6117         };
6118
6119         rcu_read_lock();
6120         perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6121         if (cpuctx->task_ctx)
6122                 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6123                                    &ro, false);
6124         rcu_read_unlock();
6125
6126         return ro.err;
6127 }
6128
6129 static void perf_pmu_output_stop(struct perf_event *event)
6130 {
6131         struct perf_event *iter;
6132         int err, cpu;
6133
6134 restart:
6135         rcu_read_lock();
6136         list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6137                 /*
6138                  * For per-CPU events, we need to make sure that neither they
6139                  * nor their children are running; for cpu==-1 events it's
6140                  * sufficient to stop the event itself if it's active, since
6141                  * it can't have children.
6142                  */
6143                 cpu = iter->cpu;
6144                 if (cpu == -1)
6145                         cpu = READ_ONCE(iter->oncpu);
6146
6147                 if (cpu == -1)
6148                         continue;
6149
6150                 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6151                 if (err == -EAGAIN) {
6152                         rcu_read_unlock();
6153                         goto restart;
6154                 }
6155         }
6156         rcu_read_unlock();
6157 }
6158
6159 /*
6160  * task tracking -- fork/exit
6161  *
6162  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6163  */
6164
6165 struct perf_task_event {
6166         struct task_struct              *task;
6167         struct perf_event_context       *task_ctx;
6168
6169         struct {
6170                 struct perf_event_header        header;
6171
6172                 u32                             pid;
6173                 u32                             ppid;
6174                 u32                             tid;
6175                 u32                             ptid;
6176                 u64                             time;
6177         } event_id;
6178 };
6179
6180 static int perf_event_task_match(struct perf_event *event)
6181 {
6182         return event->attr.comm  || event->attr.mmap ||
6183                event->attr.mmap2 || event->attr.mmap_data ||
6184                event->attr.task;
6185 }
6186
6187 static void perf_event_task_output(struct perf_event *event,
6188                                    void *data)
6189 {
6190         struct perf_task_event *task_event = data;
6191         struct perf_output_handle handle;
6192         struct perf_sample_data sample;
6193         struct task_struct *task = task_event->task;
6194         int ret, size = task_event->event_id.header.size;
6195
6196         if (!perf_event_task_match(event))
6197                 return;
6198
6199         perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6200
6201         ret = perf_output_begin(&handle, event,
6202                                 task_event->event_id.header.size);
6203         if (ret)
6204                 goto out;
6205
6206         task_event->event_id.pid = perf_event_pid(event, task);
6207         task_event->event_id.ppid = perf_event_pid(event, current);
6208
6209         task_event->event_id.tid = perf_event_tid(event, task);
6210         task_event->event_id.ptid = perf_event_tid(event, current);
6211
6212         task_event->event_id.time = perf_event_clock(event);
6213
6214         perf_output_put(&handle, task_event->event_id);
6215
6216         perf_event__output_id_sample(event, &handle, &sample);
6217
6218         perf_output_end(&handle);
6219 out:
6220         task_event->event_id.header.size = size;
6221 }
6222
6223 static void perf_event_task(struct task_struct *task,
6224                               struct perf_event_context *task_ctx,
6225                               int new)
6226 {
6227         struct perf_task_event task_event;
6228
6229         if (!atomic_read(&nr_comm_events) &&
6230             !atomic_read(&nr_mmap_events) &&
6231             !atomic_read(&nr_task_events))
6232                 return;
6233
6234         task_event = (struct perf_task_event){
6235                 .task     = task,
6236                 .task_ctx = task_ctx,
6237                 .event_id    = {
6238                         .header = {
6239                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6240                                 .misc = 0,
6241                                 .size = sizeof(task_event.event_id),
6242                         },
6243                         /* .pid  */
6244                         /* .ppid */
6245                         /* .tid  */
6246                         /* .ptid */
6247                         /* .time */
6248                 },
6249         };
6250
6251         perf_iterate_sb(perf_event_task_output,
6252                        &task_event,
6253                        task_ctx);
6254 }
6255
6256 void perf_event_fork(struct task_struct *task)
6257 {
6258         perf_event_task(task, NULL, 1);
6259 }
6260
6261 /*
6262  * comm tracking
6263  */
6264
6265 struct perf_comm_event {
6266         struct task_struct      *task;
6267         char                    *comm;
6268         int                     comm_size;
6269
6270         struct {
6271                 struct perf_event_header        header;
6272
6273                 u32                             pid;
6274                 u32                             tid;
6275         } event_id;
6276 };
6277
6278 static int perf_event_comm_match(struct perf_event *event)
6279 {
6280         return event->attr.comm;
6281 }
6282
6283 static void perf_event_comm_output(struct perf_event *event,
6284                                    void *data)
6285 {
6286         struct perf_comm_event *comm_event = data;
6287         struct perf_output_handle handle;
6288         struct perf_sample_data sample;
6289         int size = comm_event->event_id.header.size;
6290         int ret;
6291
6292         if (!perf_event_comm_match(event))
6293                 return;
6294
6295         perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6296         ret = perf_output_begin(&handle, event,
6297                                 comm_event->event_id.header.size);
6298
6299         if (ret)
6300                 goto out;
6301
6302         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6303         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6304
6305         perf_output_put(&handle, comm_event->event_id);
6306         __output_copy(&handle, comm_event->comm,
6307                                    comm_event->comm_size);
6308
6309         perf_event__output_id_sample(event, &handle, &sample);
6310
6311         perf_output_end(&handle);
6312 out:
6313         comm_event->event_id.header.size = size;
6314 }
6315
6316 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6317 {
6318         char comm[TASK_COMM_LEN];
6319         unsigned int size;
6320
6321         memset(comm, 0, sizeof(comm));
6322         strlcpy(comm, comm_event->task->comm, sizeof(comm));
6323         size = ALIGN(strlen(comm)+1, sizeof(u64));
6324
6325         comm_event->comm = comm;
6326         comm_event->comm_size = size;
6327
6328         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6329
6330         perf_iterate_sb(perf_event_comm_output,
6331                        comm_event,
6332                        NULL);
6333 }
6334
6335 void perf_event_comm(struct task_struct *task, bool exec)
6336 {
6337         struct perf_comm_event comm_event;
6338
6339         if (!atomic_read(&nr_comm_events))
6340                 return;
6341
6342         comm_event = (struct perf_comm_event){
6343                 .task   = task,
6344                 /* .comm      */
6345                 /* .comm_size */
6346                 .event_id  = {
6347                         .header = {
6348                                 .type = PERF_RECORD_COMM,
6349                                 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6350                                 /* .size */
6351                         },
6352                         /* .pid */
6353                         /* .tid */
6354                 },
6355         };
6356
6357         perf_event_comm_event(&comm_event);
6358 }
6359
6360 /*
6361  * mmap tracking
6362  */
6363
6364 struct perf_mmap_event {
6365         struct vm_area_struct   *vma;
6366
6367         const char              *file_name;
6368         int                     file_size;
6369         int                     maj, min;
6370         u64                     ino;
6371         u64                     ino_generation;
6372         u32                     prot, flags;
6373
6374         struct {
6375                 struct perf_event_header        header;
6376
6377                 u32                             pid;
6378                 u32                             tid;
6379                 u64                             start;
6380                 u64                             len;
6381                 u64                             pgoff;
6382         } event_id;
6383 };
6384
6385 static int perf_event_mmap_match(struct perf_event *event,
6386                                  void *data)
6387 {
6388         struct perf_mmap_event *mmap_event = data;
6389         struct vm_area_struct *vma = mmap_event->vma;
6390         int executable = vma->vm_flags & VM_EXEC;
6391
6392         return (!executable && event->attr.mmap_data) ||
6393                (executable && (event->attr.mmap || event->attr.mmap2));
6394 }
6395
6396 static void perf_event_mmap_output(struct perf_event *event,
6397                                    void *data)
6398 {
6399         struct perf_mmap_event *mmap_event = data;
6400         struct perf_output_handle handle;
6401         struct perf_sample_data sample;
6402         int size = mmap_event->event_id.header.size;
6403         int ret;
6404
6405         if (!perf_event_mmap_match(event, data))
6406                 return;
6407
6408         if (event->attr.mmap2) {
6409                 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6410                 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6411                 mmap_event->event_id.header.size += sizeof(mmap_event->min);
6412                 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6413                 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6414                 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6415                 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6416         }
6417
6418         perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6419         ret = perf_output_begin(&handle, event,
6420                                 mmap_event->event_id.header.size);
6421         if (ret)
6422                 goto out;
6423
6424         mmap_event->event_id.pid = perf_event_pid(event, current);
6425         mmap_event->event_id.tid = perf_event_tid(event, current);
6426
6427         perf_output_put(&handle, mmap_event->event_id);
6428
6429         if (event->attr.mmap2) {
6430                 perf_output_put(&handle, mmap_event->maj);
6431                 perf_output_put(&handle, mmap_event->min);
6432                 perf_output_put(&handle, mmap_event->ino);
6433                 perf_output_put(&handle, mmap_event->ino_generation);
6434                 perf_output_put(&handle, mmap_event->prot);
6435                 perf_output_put(&handle, mmap_event->flags);
6436         }
6437
6438         __output_copy(&handle, mmap_event->file_name,
6439                                    mmap_event->file_size);
6440
6441         perf_event__output_id_sample(event, &handle, &sample);
6442
6443         perf_output_end(&handle);
6444 out:
6445         mmap_event->event_id.header.size = size;
6446 }
6447
6448 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6449 {
6450         struct vm_area_struct *vma = mmap_event->vma;
6451         struct file *file = vma->vm_file;
6452         int maj = 0, min = 0;
6453         u64 ino = 0, gen = 0;
6454         u32 prot = 0, flags = 0;
6455         unsigned int size;
6456         char tmp[16];
6457         char *buf = NULL;
6458         char *name;
6459
6460         if (file) {
6461                 struct inode *inode;
6462                 dev_t dev;
6463
6464                 buf = kmalloc(PATH_MAX, GFP_KERNEL);
6465                 if (!buf) {
6466                         name = "//enomem";
6467                         goto cpy_name;
6468                 }
6469                 /*
6470                  * d_path() works from the end of the rb backwards, so we
6471                  * need to add enough zero bytes after the string to handle
6472                  * the 64bit alignment we do later.
6473                  */
6474                 name = file_path(file, buf, PATH_MAX - sizeof(u64));
6475                 if (IS_ERR(name)) {
6476                         name = "//toolong";
6477                         goto cpy_name;
6478                 }
6479                 inode = file_inode(vma->vm_file);
6480                 dev = inode->i_sb->s_dev;
6481                 ino = inode->i_ino;
6482                 gen = inode->i_generation;
6483                 maj = MAJOR(dev);
6484                 min = MINOR(dev);
6485
6486                 if (vma->vm_flags & VM_READ)
6487                         prot |= PROT_READ;
6488                 if (vma->vm_flags & VM_WRITE)
6489                         prot |= PROT_WRITE;
6490                 if (vma->vm_flags & VM_EXEC)
6491                         prot |= PROT_EXEC;
6492
6493                 if (vma->vm_flags & VM_MAYSHARE)
6494                         flags = MAP_SHARED;
6495                 else
6496                         flags = MAP_PRIVATE;
6497
6498                 if (vma->vm_flags & VM_DENYWRITE)
6499                         flags |= MAP_DENYWRITE;
6500                 if (vma->vm_flags & VM_MAYEXEC)
6501                         flags |= MAP_EXECUTABLE;
6502                 if (vma->vm_flags & VM_LOCKED)
6503                         flags |= MAP_LOCKED;
6504                 if (vma->vm_flags & VM_HUGETLB)
6505                         flags |= MAP_HUGETLB;
6506
6507                 goto got_name;
6508         } else {
6509                 if (vma->vm_ops && vma->vm_ops->name) {
6510                         name = (char *) vma->vm_ops->name(vma);
6511                         if (name)
6512                                 goto cpy_name;
6513                 }
6514
6515                 name = (char *)arch_vma_name(vma);
6516                 if (name)
6517                         goto cpy_name;
6518
6519                 if (vma->vm_start <= vma->vm_mm->start_brk &&
6520                                 vma->vm_end >= vma->vm_mm->brk) {
6521                         name = "[heap]";
6522                         goto cpy_name;
6523                 }
6524                 if (vma->vm_start <= vma->vm_mm->start_stack &&
6525                                 vma->vm_end >= vma->vm_mm->start_stack) {
6526                         name = "[stack]";
6527                         goto cpy_name;
6528                 }
6529
6530                 name = "//anon";
6531                 goto cpy_name;
6532         }
6533
6534 cpy_name:
6535         strlcpy(tmp, name, sizeof(tmp));
6536         name = tmp;
6537 got_name:
6538         /*
6539          * Since our buffer works in 8 byte units we need to align our string
6540          * size to a multiple of 8. However, we must guarantee the tail end is
6541          * zero'd out to avoid leaking random bits to userspace.
6542          */
6543         size = strlen(name)+1;
6544         while (!IS_ALIGNED(size, sizeof(u64)))
6545                 name[size++] = '\0';
6546
6547         mmap_event->file_name = name;
6548         mmap_event->file_size = size;
6549         mmap_event->maj = maj;
6550         mmap_event->min = min;
6551         mmap_event->ino = ino;
6552         mmap_event->ino_generation = gen;
6553         mmap_event->prot = prot;
6554         mmap_event->flags = flags;
6555
6556         if (!(vma->vm_flags & VM_EXEC))
6557                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6558
6559         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6560
6561         perf_iterate_sb(perf_event_mmap_output,
6562                        mmap_event,
6563                        NULL);
6564
6565         kfree(buf);
6566 }
6567
6568 /*
6569  * Whether this @filter depends on a dynamic object which is not loaded
6570  * yet or its load addresses are not known.
6571  */
6572 static bool perf_addr_filter_needs_mmap(struct perf_addr_filter *filter)
6573 {
6574         return filter->filter && filter->inode;
6575 }
6576
6577 /*
6578  * Check whether inode and address range match filter criteria.
6579  */
6580 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
6581                                      struct file *file, unsigned long offset,
6582                                      unsigned long size)
6583 {
6584         if (filter->inode != file->f_inode)
6585                 return false;
6586
6587         if (filter->offset > offset + size)
6588                 return false;
6589
6590         if (filter->offset + filter->size < offset)
6591                 return false;
6592
6593         return true;
6594 }
6595
6596 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
6597 {
6598         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6599         struct vm_area_struct *vma = data;
6600         unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
6601         struct file *file = vma->vm_file;
6602         struct perf_addr_filter *filter;
6603         unsigned int restart = 0, count = 0;
6604
6605         if (!has_addr_filter(event))
6606                 return;
6607
6608         if (!file)
6609                 return;
6610
6611         raw_spin_lock_irqsave(&ifh->lock, flags);
6612         list_for_each_entry(filter, &ifh->list, entry) {
6613                 if (perf_addr_filter_match(filter, file, off,
6614                                              vma->vm_end - vma->vm_start)) {
6615                         event->addr_filters_offs[count] = vma->vm_start;
6616                         restart++;
6617                 }
6618
6619                 count++;
6620         }
6621
6622         if (restart)
6623                 event->addr_filters_gen++;
6624         raw_spin_unlock_irqrestore(&ifh->lock, flags);
6625
6626         if (restart)
6627                 perf_event_restart(event);
6628 }
6629
6630 /*
6631  * Adjust all task's events' filters to the new vma
6632  */
6633 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
6634 {
6635         struct perf_event_context *ctx;
6636         int ctxn;
6637
6638         rcu_read_lock();
6639         for_each_task_context_nr(ctxn) {
6640                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6641                 if (!ctx)
6642                         continue;
6643
6644                 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
6645         }
6646         rcu_read_unlock();
6647 }
6648
6649 void perf_event_mmap(struct vm_area_struct *vma)
6650 {
6651         struct perf_mmap_event mmap_event;
6652
6653         if (!atomic_read(&nr_mmap_events))
6654                 return;
6655
6656         mmap_event = (struct perf_mmap_event){
6657                 .vma    = vma,
6658                 /* .file_name */
6659                 /* .file_size */
6660                 .event_id  = {
6661                         .header = {
6662                                 .type = PERF_RECORD_MMAP,
6663                                 .misc = PERF_RECORD_MISC_USER,
6664                                 /* .size */
6665                         },
6666                         /* .pid */
6667                         /* .tid */
6668                         .start  = vma->vm_start,
6669                         .len    = vma->vm_end - vma->vm_start,
6670                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
6671                 },
6672                 /* .maj (attr_mmap2 only) */
6673                 /* .min (attr_mmap2 only) */
6674                 /* .ino (attr_mmap2 only) */
6675                 /* .ino_generation (attr_mmap2 only) */
6676                 /* .prot (attr_mmap2 only) */
6677                 /* .flags (attr_mmap2 only) */
6678         };
6679
6680         perf_addr_filters_adjust(vma);
6681         perf_event_mmap_event(&mmap_event);
6682 }
6683
6684 void perf_event_aux_event(struct perf_event *event, unsigned long head,
6685                           unsigned long size, u64 flags)
6686 {
6687         struct perf_output_handle handle;
6688         struct perf_sample_data sample;
6689         struct perf_aux_event {
6690                 struct perf_event_header        header;
6691                 u64                             offset;
6692                 u64                             size;
6693                 u64                             flags;
6694         } rec = {
6695                 .header = {
6696                         .type = PERF_RECORD_AUX,
6697                         .misc = 0,
6698                         .size = sizeof(rec),
6699                 },
6700                 .offset         = head,
6701                 .size           = size,
6702                 .flags          = flags,
6703         };
6704         int ret;
6705
6706         perf_event_header__init_id(&rec.header, &sample, event);
6707         ret = perf_output_begin(&handle, event, rec.header.size);
6708
6709         if (ret)
6710                 return;
6711
6712         perf_output_put(&handle, rec);
6713         perf_event__output_id_sample(event, &handle, &sample);
6714
6715         perf_output_end(&handle);
6716 }
6717
6718 /*
6719  * Lost/dropped samples logging
6720  */
6721 void perf_log_lost_samples(struct perf_event *event, u64 lost)
6722 {
6723         struct perf_output_handle handle;
6724         struct perf_sample_data sample;
6725         int ret;
6726
6727         struct {
6728                 struct perf_event_header        header;
6729                 u64                             lost;
6730         } lost_samples_event = {
6731                 .header = {
6732                         .type = PERF_RECORD_LOST_SAMPLES,
6733                         .misc = 0,
6734                         .size = sizeof(lost_samples_event),
6735                 },
6736                 .lost           = lost,
6737         };
6738
6739         perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6740
6741         ret = perf_output_begin(&handle, event,
6742                                 lost_samples_event.header.size);
6743         if (ret)
6744                 return;
6745
6746         perf_output_put(&handle, lost_samples_event);
6747         perf_event__output_id_sample(event, &handle, &sample);
6748         perf_output_end(&handle);
6749 }
6750
6751 /*
6752  * context_switch tracking
6753  */
6754
6755 struct perf_switch_event {
6756         struct task_struct      *task;
6757         struct task_struct      *next_prev;
6758
6759         struct {
6760                 struct perf_event_header        header;
6761                 u32                             next_prev_pid;
6762                 u32                             next_prev_tid;
6763         } event_id;
6764 };
6765
6766 static int perf_event_switch_match(struct perf_event *event)
6767 {
6768         return event->attr.context_switch;
6769 }
6770
6771 static void perf_event_switch_output(struct perf_event *event, void *data)
6772 {
6773         struct perf_switch_event *se = data;
6774         struct perf_output_handle handle;
6775         struct perf_sample_data sample;
6776         int ret;
6777
6778         if (!perf_event_switch_match(event))
6779                 return;
6780
6781         /* Only CPU-wide events are allowed to see next/prev pid/tid */
6782         if (event->ctx->task) {
6783                 se->event_id.header.type = PERF_RECORD_SWITCH;
6784                 se->event_id.header.size = sizeof(se->event_id.header);
6785         } else {
6786                 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6787                 se->event_id.header.size = sizeof(se->event_id);
6788                 se->event_id.next_prev_pid =
6789                                         perf_event_pid(event, se->next_prev);
6790                 se->event_id.next_prev_tid =
6791                                         perf_event_tid(event, se->next_prev);
6792         }
6793
6794         perf_event_header__init_id(&se->event_id.header, &sample, event);
6795
6796         ret = perf_output_begin(&handle, event, se->event_id.header.size);
6797         if (ret)
6798                 return;
6799
6800         if (event->ctx->task)
6801                 perf_output_put(&handle, se->event_id.header);
6802         else
6803                 perf_output_put(&handle, se->event_id);
6804
6805         perf_event__output_id_sample(event, &handle, &sample);
6806
6807         perf_output_end(&handle);
6808 }
6809
6810 static void perf_event_switch(struct task_struct *task,
6811                               struct task_struct *next_prev, bool sched_in)
6812 {
6813         struct perf_switch_event switch_event;
6814
6815         /* N.B. caller checks nr_switch_events != 0 */
6816
6817         switch_event = (struct perf_switch_event){
6818                 .task           = task,
6819                 .next_prev      = next_prev,
6820                 .event_id       = {
6821                         .header = {
6822                                 /* .type */
6823                                 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6824                                 /* .size */
6825                         },
6826                         /* .next_prev_pid */
6827                         /* .next_prev_tid */
6828                 },
6829         };
6830
6831         perf_iterate_sb(perf_event_switch_output,
6832                        &switch_event,
6833                        NULL);
6834 }
6835
6836 /*
6837  * IRQ throttle logging
6838  */
6839
6840 static void perf_log_throttle(struct perf_event *event, int enable)
6841 {
6842         struct perf_output_handle handle;
6843         struct perf_sample_data sample;
6844         int ret;
6845
6846         struct {
6847                 struct perf_event_header        header;
6848                 u64                             time;
6849                 u64                             id;
6850                 u64                             stream_id;
6851         } throttle_event = {
6852                 .header = {
6853                         .type = PERF_RECORD_THROTTLE,
6854                         .misc = 0,
6855                         .size = sizeof(throttle_event),
6856                 },
6857                 .time           = perf_event_clock(event),
6858                 .id             = primary_event_id(event),
6859                 .stream_id      = event->id,
6860         };
6861
6862         if (enable)
6863                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6864
6865         perf_event_header__init_id(&throttle_event.header, &sample, event);
6866
6867         ret = perf_output_begin(&handle, event,
6868                                 throttle_event.header.size);
6869         if (ret)
6870                 return;
6871
6872         perf_output_put(&handle, throttle_event);
6873         perf_event__output_id_sample(event, &handle, &sample);
6874         perf_output_end(&handle);
6875 }
6876
6877 static void perf_log_itrace_start(struct perf_event *event)
6878 {
6879         struct perf_output_handle handle;
6880         struct perf_sample_data sample;
6881         struct perf_aux_event {
6882                 struct perf_event_header        header;
6883                 u32                             pid;
6884                 u32                             tid;
6885         } rec;
6886         int ret;
6887
6888         if (event->parent)
6889                 event = event->parent;
6890
6891         if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
6892             event->hw.itrace_started)
6893                 return;
6894
6895         rec.header.type = PERF_RECORD_ITRACE_START;
6896         rec.header.misc = 0;
6897         rec.header.size = sizeof(rec);
6898         rec.pid = perf_event_pid(event, current);
6899         rec.tid = perf_event_tid(event, current);
6900
6901         perf_event_header__init_id(&rec.header, &sample, event);
6902         ret = perf_output_begin(&handle, event, rec.header.size);
6903
6904         if (ret)
6905                 return;
6906
6907         perf_output_put(&handle, rec);
6908         perf_event__output_id_sample(event, &handle, &sample);
6909
6910         perf_output_end(&handle);
6911 }
6912
6913 /*
6914  * Generic event overflow handling, sampling.
6915  */
6916
6917 static int __perf_event_overflow(struct perf_event *event,
6918                                    int throttle, struct perf_sample_data *data,
6919                                    struct pt_regs *regs)
6920 {
6921         int events = atomic_read(&event->event_limit);
6922         struct hw_perf_event *hwc = &event->hw;
6923         u64 seq;
6924         int ret = 0;
6925
6926         /*
6927          * Non-sampling counters might still use the PMI to fold short
6928          * hardware counters, ignore those.
6929          */
6930         if (unlikely(!is_sampling_event(event)))
6931                 return 0;
6932
6933         seq = __this_cpu_read(perf_throttled_seq);
6934         if (seq != hwc->interrupts_seq) {
6935                 hwc->interrupts_seq = seq;
6936                 hwc->interrupts = 1;
6937         } else {
6938                 hwc->interrupts++;
6939                 if (unlikely(throttle
6940                              && hwc->interrupts >= max_samples_per_tick)) {
6941                         __this_cpu_inc(perf_throttled_count);
6942                         tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
6943                         hwc->interrupts = MAX_INTERRUPTS;
6944                         perf_log_throttle(event, 0);
6945                         ret = 1;
6946                 }
6947         }
6948
6949         if (event->attr.freq) {
6950                 u64 now = perf_clock();
6951                 s64 delta = now - hwc->freq_time_stamp;
6952
6953                 hwc->freq_time_stamp = now;
6954
6955                 if (delta > 0 && delta < 2*TICK_NSEC)
6956                         perf_adjust_period(event, delta, hwc->last_period, true);
6957         }
6958
6959         /*
6960          * XXX event_limit might not quite work as expected on inherited
6961          * events
6962          */
6963
6964         event->pending_kill = POLL_IN;
6965         if (events && atomic_dec_and_test(&event->event_limit)) {
6966                 ret = 1;
6967                 event->pending_kill = POLL_HUP;
6968                 event->pending_disable = 1;
6969                 irq_work_queue(&event->pending);
6970         }
6971
6972         event->overflow_handler(event, data, regs);
6973
6974         if (*perf_event_fasync(event) && event->pending_kill) {
6975                 event->pending_wakeup = 1;
6976                 irq_work_queue(&event->pending);
6977         }
6978
6979         return ret;
6980 }
6981
6982 int perf_event_overflow(struct perf_event *event,
6983                           struct perf_sample_data *data,
6984                           struct pt_regs *regs)
6985 {
6986         return __perf_event_overflow(event, 1, data, regs);
6987 }
6988
6989 /*
6990  * Generic software event infrastructure
6991  */
6992
6993 struct swevent_htable {
6994         struct swevent_hlist            *swevent_hlist;
6995         struct mutex                    hlist_mutex;
6996         int                             hlist_refcount;
6997
6998         /* Recursion avoidance in each contexts */
6999         int                             recursion[PERF_NR_CONTEXTS];
7000 };
7001
7002 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7003
7004 /*
7005  * We directly increment event->count and keep a second value in
7006  * event->hw.period_left to count intervals. This period event
7007  * is kept in the range [-sample_period, 0] so that we can use the
7008  * sign as trigger.
7009  */
7010
7011 u64 perf_swevent_set_period(struct perf_event *event)
7012 {
7013         struct hw_perf_event *hwc = &event->hw;
7014         u64 period = hwc->last_period;
7015         u64 nr, offset;
7016         s64 old, val;
7017
7018         hwc->last_period = hwc->sample_period;
7019
7020 again:
7021         old = val = local64_read(&hwc->period_left);
7022         if (val < 0)
7023                 return 0;
7024
7025         nr = div64_u64(period + val, period);
7026         offset = nr * period;
7027         val -= offset;
7028         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7029                 goto again;
7030
7031         return nr;
7032 }
7033
7034 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7035                                     struct perf_sample_data *data,
7036                                     struct pt_regs *regs)
7037 {
7038         struct hw_perf_event *hwc = &event->hw;
7039         int throttle = 0;
7040
7041         if (!overflow)
7042                 overflow = perf_swevent_set_period(event);
7043
7044         if (hwc->interrupts == MAX_INTERRUPTS)
7045                 return;
7046
7047         for (; overflow; overflow--) {
7048                 if (__perf_event_overflow(event, throttle,
7049                                             data, regs)) {
7050                         /*
7051                          * We inhibit the overflow from happening when
7052                          * hwc->interrupts == MAX_INTERRUPTS.
7053                          */
7054                         break;
7055                 }
7056                 throttle = 1;
7057         }
7058 }
7059
7060 static void perf_swevent_event(struct perf_event *event, u64 nr,
7061                                struct perf_sample_data *data,
7062                                struct pt_regs *regs)
7063 {
7064         struct hw_perf_event *hwc = &event->hw;
7065
7066         local64_add(nr, &event->count);
7067
7068         if (!regs)
7069                 return;
7070
7071         if (!is_sampling_event(event))
7072                 return;
7073
7074         if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7075                 data->period = nr;
7076                 return perf_swevent_overflow(event, 1, data, regs);
7077         } else
7078                 data->period = event->hw.last_period;
7079
7080         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7081                 return perf_swevent_overflow(event, 1, data, regs);
7082
7083         if (local64_add_negative(nr, &hwc->period_left))
7084                 return;
7085
7086         perf_swevent_overflow(event, 0, data, regs);
7087 }
7088
7089 static int perf_exclude_event(struct perf_event *event,
7090                               struct pt_regs *regs)
7091 {
7092         if (event->hw.state & PERF_HES_STOPPED)
7093                 return 1;
7094
7095         if (regs) {
7096                 if (event->attr.exclude_user && user_mode(regs))
7097                         return 1;
7098
7099                 if (event->attr.exclude_kernel && !user_mode(regs))
7100                         return 1;
7101         }
7102
7103         return 0;
7104 }
7105
7106 static int perf_swevent_match(struct perf_event *event,
7107                                 enum perf_type_id type,
7108                                 u32 event_id,
7109                                 struct perf_sample_data *data,
7110                                 struct pt_regs *regs)
7111 {
7112         if (event->attr.type != type)
7113                 return 0;
7114
7115         if (event->attr.config != event_id)
7116                 return 0;
7117
7118         if (perf_exclude_event(event, regs))
7119                 return 0;
7120
7121         return 1;
7122 }
7123
7124 static inline u64 swevent_hash(u64 type, u32 event_id)
7125 {
7126         u64 val = event_id | (type << 32);
7127
7128         return hash_64(val, SWEVENT_HLIST_BITS);
7129 }
7130
7131 static inline struct hlist_head *
7132 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7133 {
7134         u64 hash = swevent_hash(type, event_id);
7135
7136         return &hlist->heads[hash];
7137 }
7138
7139 /* For the read side: events when they trigger */
7140 static inline struct hlist_head *
7141 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7142 {
7143         struct swevent_hlist *hlist;
7144
7145         hlist = rcu_dereference(swhash->swevent_hlist);
7146         if (!hlist)
7147                 return NULL;
7148
7149         return __find_swevent_head(hlist, type, event_id);
7150 }
7151
7152 /* For the event head insertion and removal in the hlist */
7153 static inline struct hlist_head *
7154 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7155 {
7156         struct swevent_hlist *hlist;
7157         u32 event_id = event->attr.config;
7158         u64 type = event->attr.type;
7159
7160         /*
7161          * Event scheduling is always serialized against hlist allocation
7162          * and release. Which makes the protected version suitable here.
7163          * The context lock guarantees that.
7164          */
7165         hlist = rcu_dereference_protected(swhash->swevent_hlist,
7166                                           lockdep_is_held(&event->ctx->lock));
7167         if (!hlist)
7168                 return NULL;
7169
7170         return __find_swevent_head(hlist, type, event_id);
7171 }
7172
7173 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7174                                     u64 nr,
7175                                     struct perf_sample_data *data,
7176                                     struct pt_regs *regs)
7177 {
7178         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7179         struct perf_event *event;
7180         struct hlist_head *head;
7181
7182         rcu_read_lock();
7183         head = find_swevent_head_rcu(swhash, type, event_id);
7184         if (!head)
7185                 goto end;
7186
7187         hlist_for_each_entry_rcu(event, head, hlist_entry) {
7188                 if (perf_swevent_match(event, type, event_id, data, regs))
7189                         perf_swevent_event(event, nr, data, regs);
7190         }
7191 end:
7192         rcu_read_unlock();
7193 }
7194
7195 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7196
7197 int perf_swevent_get_recursion_context(void)
7198 {
7199         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7200
7201         return get_recursion_context(swhash->recursion);
7202 }
7203 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
7204
7205 void perf_swevent_put_recursion_context(int rctx)
7206 {
7207         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7208
7209         put_recursion_context(swhash->recursion, rctx);
7210 }
7211
7212 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7213 {
7214         struct perf_sample_data data;
7215
7216         if (WARN_ON_ONCE(!regs))
7217                 return;
7218
7219         perf_sample_data_init(&data, addr, 0);
7220         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7221 }
7222
7223 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7224 {
7225         int rctx;
7226
7227         preempt_disable_notrace();
7228         rctx = perf_swevent_get_recursion_context();
7229         if (unlikely(rctx < 0))
7230                 goto fail;
7231
7232         ___perf_sw_event(event_id, nr, regs, addr);
7233
7234         perf_swevent_put_recursion_context(rctx);
7235 fail:
7236         preempt_enable_notrace();
7237 }
7238
7239 static void perf_swevent_read(struct perf_event *event)
7240 {
7241 }
7242
7243 static int perf_swevent_add(struct perf_event *event, int flags)
7244 {
7245         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7246         struct hw_perf_event *hwc = &event->hw;
7247         struct hlist_head *head;
7248
7249         if (is_sampling_event(event)) {
7250                 hwc->last_period = hwc->sample_period;
7251                 perf_swevent_set_period(event);
7252         }
7253
7254         hwc->state = !(flags & PERF_EF_START);
7255
7256         head = find_swevent_head(swhash, event);
7257         if (WARN_ON_ONCE(!head))
7258                 return -EINVAL;
7259
7260         hlist_add_head_rcu(&event->hlist_entry, head);
7261         perf_event_update_userpage(event);
7262
7263         return 0;
7264 }
7265
7266 static void perf_swevent_del(struct perf_event *event, int flags)
7267 {
7268         hlist_del_rcu(&event->hlist_entry);
7269 }
7270
7271 static void perf_swevent_start(struct perf_event *event, int flags)
7272 {
7273         event->hw.state = 0;
7274 }
7275
7276 static void perf_swevent_stop(struct perf_event *event, int flags)
7277 {
7278         event->hw.state = PERF_HES_STOPPED;
7279 }
7280
7281 /* Deref the hlist from the update side */
7282 static inline struct swevent_hlist *
7283 swevent_hlist_deref(struct swevent_htable *swhash)
7284 {
7285         return rcu_dereference_protected(swhash->swevent_hlist,
7286                                          lockdep_is_held(&swhash->hlist_mutex));
7287 }
7288
7289 static void swevent_hlist_release(struct swevent_htable *swhash)
7290 {
7291         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7292
7293         if (!hlist)
7294                 return;
7295
7296         RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7297         kfree_rcu(hlist, rcu_head);
7298 }
7299
7300 static void swevent_hlist_put_cpu(int cpu)
7301 {
7302         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7303
7304         mutex_lock(&swhash->hlist_mutex);
7305
7306         if (!--swhash->hlist_refcount)
7307                 swevent_hlist_release(swhash);
7308
7309         mutex_unlock(&swhash->hlist_mutex);
7310 }
7311
7312 static void swevent_hlist_put(void)
7313 {
7314         int cpu;
7315
7316         for_each_possible_cpu(cpu)
7317                 swevent_hlist_put_cpu(cpu);
7318 }
7319
7320 static int swevent_hlist_get_cpu(int cpu)
7321 {
7322         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7323         int err = 0;
7324
7325         mutex_lock(&swhash->hlist_mutex);
7326         if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
7327                 struct swevent_hlist *hlist;
7328
7329                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7330                 if (!hlist) {
7331                         err = -ENOMEM;
7332                         goto exit;
7333                 }
7334                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
7335         }
7336         swhash->hlist_refcount++;
7337 exit:
7338         mutex_unlock(&swhash->hlist_mutex);
7339
7340         return err;
7341 }
7342
7343 static int swevent_hlist_get(void)
7344 {
7345         int err, cpu, failed_cpu;
7346
7347         get_online_cpus();
7348         for_each_possible_cpu(cpu) {
7349                 err = swevent_hlist_get_cpu(cpu);
7350                 if (err) {
7351                         failed_cpu = cpu;
7352                         goto fail;
7353                 }
7354         }
7355         put_online_cpus();
7356
7357         return 0;
7358 fail:
7359         for_each_possible_cpu(cpu) {
7360                 if (cpu == failed_cpu)
7361                         break;
7362                 swevent_hlist_put_cpu(cpu);
7363         }
7364
7365         put_online_cpus();
7366         return err;
7367 }
7368
7369 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7370
7371 static void sw_perf_event_destroy(struct perf_event *event)
7372 {
7373         u64 event_id = event->attr.config;
7374
7375         WARN_ON(event->parent);
7376
7377         static_key_slow_dec(&perf_swevent_enabled[event_id]);
7378         swevent_hlist_put();
7379 }
7380
7381 static int perf_swevent_init(struct perf_event *event)
7382 {
7383         u64 event_id = event->attr.config;
7384
7385         if (event->attr.type != PERF_TYPE_SOFTWARE)
7386                 return -ENOENT;
7387
7388         /*
7389          * no branch sampling for software events
7390          */
7391         if (has_branch_stack(event))
7392                 return -EOPNOTSUPP;
7393
7394         switch (event_id) {
7395         case PERF_COUNT_SW_CPU_CLOCK:
7396         case PERF_COUNT_SW_TASK_CLOCK:
7397                 return -ENOENT;
7398
7399         default:
7400                 break;
7401         }
7402
7403         if (event_id >= PERF_COUNT_SW_MAX)
7404                 return -ENOENT;
7405
7406         if (!event->parent) {
7407                 int err;
7408
7409                 err = swevent_hlist_get();
7410                 if (err)
7411                         return err;
7412
7413                 static_key_slow_inc(&perf_swevent_enabled[event_id]);
7414                 event->destroy = sw_perf_event_destroy;
7415         }
7416
7417         return 0;
7418 }
7419
7420 static struct pmu perf_swevent = {
7421         .task_ctx_nr    = perf_sw_context,
7422
7423         .capabilities   = PERF_PMU_CAP_NO_NMI,
7424
7425         .event_init     = perf_swevent_init,
7426         .add            = perf_swevent_add,
7427         .del            = perf_swevent_del,
7428         .start          = perf_swevent_start,
7429         .stop           = perf_swevent_stop,
7430         .read           = perf_swevent_read,
7431 };
7432
7433 #ifdef CONFIG_EVENT_TRACING
7434
7435 static int perf_tp_filter_match(struct perf_event *event,
7436                                 struct perf_sample_data *data)
7437 {
7438         void *record = data->raw->frag.data;
7439
7440         /* only top level events have filters set */
7441         if (event->parent)
7442                 event = event->parent;
7443
7444         if (likely(!event->filter) || filter_match_preds(event->filter, record))
7445                 return 1;
7446         return 0;
7447 }
7448
7449 static int perf_tp_event_match(struct perf_event *event,
7450                                 struct perf_sample_data *data,
7451                                 struct pt_regs *regs)
7452 {
7453         if (event->hw.state & PERF_HES_STOPPED)
7454                 return 0;
7455         /*
7456          * All tracepoints are from kernel-space.
7457          */
7458         if (event->attr.exclude_kernel)
7459                 return 0;
7460
7461         if (!perf_tp_filter_match(event, data))
7462                 return 0;
7463
7464         return 1;
7465 }
7466
7467 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7468                                struct trace_event_call *call, u64 count,
7469                                struct pt_regs *regs, struct hlist_head *head,
7470                                struct task_struct *task)
7471 {
7472         struct bpf_prog *prog = call->prog;
7473
7474         if (prog) {
7475                 *(struct pt_regs **)raw_data = regs;
7476                 if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
7477                         perf_swevent_put_recursion_context(rctx);
7478                         return;
7479                 }
7480         }
7481         perf_tp_event(call->event.type, count, raw_data, size, regs, head,
7482                       rctx, task);
7483 }
7484 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7485
7486 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
7487                    struct pt_regs *regs, struct hlist_head *head, int rctx,
7488                    struct task_struct *task)
7489 {
7490         struct perf_sample_data data;
7491         struct perf_event *event;
7492
7493         struct perf_raw_record raw = {
7494                 .frag = {
7495                         .size = entry_size,
7496                         .data = record,
7497                 },
7498         };
7499
7500         perf_sample_data_init(&data, 0, 0);
7501         data.raw = &raw;
7502
7503         perf_trace_buf_update(record, event_type);
7504
7505         hlist_for_each_entry_rcu(event, head, hlist_entry) {
7506                 if (perf_tp_event_match(event, &data, regs))
7507                         perf_swevent_event(event, count, &data, regs);
7508         }
7509
7510         /*
7511          * If we got specified a target task, also iterate its context and
7512          * deliver this event there too.
7513          */
7514         if (task && task != current) {
7515                 struct perf_event_context *ctx;
7516                 struct trace_entry *entry = record;
7517
7518                 rcu_read_lock();
7519                 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7520                 if (!ctx)
7521                         goto unlock;
7522
7523                 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7524                         if (event->attr.type != PERF_TYPE_TRACEPOINT)
7525                                 continue;
7526                         if (event->attr.config != entry->type)
7527                                 continue;
7528                         if (perf_tp_event_match(event, &data, regs))
7529                                 perf_swevent_event(event, count, &data, regs);
7530                 }
7531 unlock:
7532                 rcu_read_unlock();
7533         }
7534
7535         perf_swevent_put_recursion_context(rctx);
7536 }
7537 EXPORT_SYMBOL_GPL(perf_tp_event);
7538
7539 static void tp_perf_event_destroy(struct perf_event *event)
7540 {
7541         perf_trace_destroy(event);
7542 }
7543
7544 static int perf_tp_event_init(struct perf_event *event)
7545 {
7546         int err;
7547
7548         if (event->attr.type != PERF_TYPE_TRACEPOINT)
7549                 return -ENOENT;
7550
7551         /*
7552          * no branch sampling for tracepoint events
7553          */
7554         if (has_branch_stack(event))
7555                 return -EOPNOTSUPP;
7556
7557         err = perf_trace_init(event);
7558         if (err)
7559                 return err;
7560
7561         event->destroy = tp_perf_event_destroy;
7562
7563         return 0;
7564 }
7565
7566 static struct pmu perf_tracepoint = {
7567         .task_ctx_nr    = perf_sw_context,
7568
7569         .event_init     = perf_tp_event_init,
7570         .add            = perf_trace_add,
7571         .del            = perf_trace_del,
7572         .start          = perf_swevent_start,
7573         .stop           = perf_swevent_stop,
7574         .read           = perf_swevent_read,
7575 };
7576
7577 static inline void perf_tp_register(void)
7578 {
7579         perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7580 }
7581
7582 static void perf_event_free_filter(struct perf_event *event)
7583 {
7584         ftrace_profile_free_filter(event);
7585 }
7586
7587 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7588 {
7589         bool is_kprobe, is_tracepoint;
7590         struct bpf_prog *prog;
7591
7592         if (event->attr.type != PERF_TYPE_TRACEPOINT)
7593                 return -EINVAL;
7594
7595         if (event->tp_event->prog)
7596                 return -EEXIST;
7597
7598         is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
7599         is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
7600         if (!is_kprobe && !is_tracepoint)
7601                 /* bpf programs can only be attached to u/kprobe or tracepoint */
7602                 return -EINVAL;
7603
7604         prog = bpf_prog_get(prog_fd);
7605         if (IS_ERR(prog))
7606                 return PTR_ERR(prog);
7607
7608         if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
7609             (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
7610                 /* valid fd, but invalid bpf program type */
7611                 bpf_prog_put(prog);
7612                 return -EINVAL;
7613         }
7614
7615         if (is_tracepoint) {
7616                 int off = trace_event_get_offsets(event->tp_event);
7617
7618                 if (prog->aux->max_ctx_offset > off) {
7619                         bpf_prog_put(prog);
7620                         return -EACCES;
7621                 }
7622         }
7623         event->tp_event->prog = prog;
7624
7625         return 0;
7626 }
7627
7628 static void perf_event_free_bpf_prog(struct perf_event *event)
7629 {
7630         struct bpf_prog *prog;
7631
7632         if (!event->tp_event)
7633                 return;
7634
7635         prog = event->tp_event->prog;
7636         if (prog) {
7637                 event->tp_event->prog = NULL;
7638                 bpf_prog_put(prog);
7639         }
7640 }
7641
7642 #else
7643
7644 static inline void perf_tp_register(void)
7645 {
7646 }
7647
7648 static void perf_event_free_filter(struct perf_event *event)
7649 {
7650 }
7651
7652 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7653 {
7654         return -ENOENT;
7655 }
7656
7657 static void perf_event_free_bpf_prog(struct perf_event *event)
7658 {
7659 }
7660 #endif /* CONFIG_EVENT_TRACING */
7661
7662 #ifdef CONFIG_HAVE_HW_BREAKPOINT
7663 void perf_bp_event(struct perf_event *bp, void *data)
7664 {
7665         struct perf_sample_data sample;
7666         struct pt_regs *regs = data;
7667
7668         perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7669
7670         if (!bp->hw.state && !perf_exclude_event(bp, regs))
7671                 perf_swevent_event(bp, 1, &sample, regs);
7672 }
7673 #endif
7674
7675 /*
7676  * Allocate a new address filter
7677  */
7678 static struct perf_addr_filter *
7679 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
7680 {
7681         int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
7682         struct perf_addr_filter *filter;
7683
7684         filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
7685         if (!filter)
7686                 return NULL;
7687
7688         INIT_LIST_HEAD(&filter->entry);
7689         list_add_tail(&filter->entry, filters);
7690
7691         return filter;
7692 }
7693
7694 static void free_filters_list(struct list_head *filters)
7695 {
7696         struct perf_addr_filter *filter, *iter;
7697
7698         list_for_each_entry_safe(filter, iter, filters, entry) {
7699                 if (filter->inode)
7700                         iput(filter->inode);
7701                 list_del(&filter->entry);
7702                 kfree(filter);
7703         }
7704 }
7705
7706 /*
7707  * Free existing address filters and optionally install new ones
7708  */
7709 static void perf_addr_filters_splice(struct perf_event *event,
7710                                      struct list_head *head)
7711 {
7712         unsigned long flags;
7713         LIST_HEAD(list);
7714
7715         if (!has_addr_filter(event))
7716                 return;
7717
7718         /* don't bother with children, they don't have their own filters */
7719         if (event->parent)
7720                 return;
7721
7722         raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
7723
7724         list_splice_init(&event->addr_filters.list, &list);
7725         if (head)
7726                 list_splice(head, &event->addr_filters.list);
7727
7728         raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
7729
7730         free_filters_list(&list);
7731 }
7732
7733 /*
7734  * Scan through mm's vmas and see if one of them matches the
7735  * @filter; if so, adjust filter's address range.
7736  * Called with mm::mmap_sem down for reading.
7737  */
7738 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
7739                                             struct mm_struct *mm)
7740 {
7741         struct vm_area_struct *vma;
7742
7743         for (vma = mm->mmap; vma; vma = vma->vm_next) {
7744                 struct file *file = vma->vm_file;
7745                 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
7746                 unsigned long vma_size = vma->vm_end - vma->vm_start;
7747
7748                 if (!file)
7749                         continue;
7750
7751                 if (!perf_addr_filter_match(filter, file, off, vma_size))
7752                         continue;
7753
7754                 return vma->vm_start;
7755         }
7756
7757         return 0;
7758 }
7759
7760 /*
7761  * Update event's address range filters based on the
7762  * task's existing mappings, if any.
7763  */
7764 static void perf_event_addr_filters_apply(struct perf_event *event)
7765 {
7766         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7767         struct task_struct *task = READ_ONCE(event->ctx->task);
7768         struct perf_addr_filter *filter;
7769         struct mm_struct *mm = NULL;
7770         unsigned int count = 0;
7771         unsigned long flags;
7772
7773         /*
7774          * We may observe TASK_TOMBSTONE, which means that the event tear-down
7775          * will stop on the parent's child_mutex that our caller is also holding
7776          */
7777         if (task == TASK_TOMBSTONE)
7778                 return;
7779
7780         mm = get_task_mm(event->ctx->task);
7781         if (!mm)
7782                 goto restart;
7783
7784         down_read(&mm->mmap_sem);
7785
7786         raw_spin_lock_irqsave(&ifh->lock, flags);
7787         list_for_each_entry(filter, &ifh->list, entry) {
7788                 event->addr_filters_offs[count] = 0;
7789
7790                 if (perf_addr_filter_needs_mmap(filter))
7791                         event->addr_filters_offs[count] =
7792                                 perf_addr_filter_apply(filter, mm);
7793
7794                 count++;
7795         }
7796
7797         event->addr_filters_gen++;
7798         raw_spin_unlock_irqrestore(&ifh->lock, flags);
7799
7800         up_read(&mm->mmap_sem);
7801
7802         mmput(mm);
7803
7804 restart:
7805         perf_event_restart(event);
7806 }
7807
7808 /*
7809  * Address range filtering: limiting the data to certain
7810  * instruction address ranges. Filters are ioctl()ed to us from
7811  * userspace as ascii strings.
7812  *
7813  * Filter string format:
7814  *
7815  * ACTION RANGE_SPEC
7816  * where ACTION is one of the
7817  *  * "filter": limit the trace to this region
7818  *  * "start": start tracing from this address
7819  *  * "stop": stop tracing at this address/region;
7820  * RANGE_SPEC is
7821  *  * for kernel addresses: <start address>[/<size>]
7822  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
7823  *
7824  * if <size> is not specified, the range is treated as a single address.
7825  */
7826 enum {
7827         IF_ACT_FILTER,
7828         IF_ACT_START,
7829         IF_ACT_STOP,
7830         IF_SRC_FILE,
7831         IF_SRC_KERNEL,
7832         IF_SRC_FILEADDR,
7833         IF_SRC_KERNELADDR,
7834 };
7835
7836 enum {
7837         IF_STATE_ACTION = 0,
7838         IF_STATE_SOURCE,
7839         IF_STATE_END,
7840 };
7841
7842 static const match_table_t if_tokens = {
7843         { IF_ACT_FILTER,        "filter" },
7844         { IF_ACT_START,         "start" },
7845         { IF_ACT_STOP,          "stop" },
7846         { IF_SRC_FILE,          "%u/%u@%s" },
7847         { IF_SRC_KERNEL,        "%u/%u" },
7848         { IF_SRC_FILEADDR,      "%u@%s" },
7849         { IF_SRC_KERNELADDR,    "%u" },
7850 };
7851
7852 /*
7853  * Address filter string parser
7854  */
7855 static int
7856 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
7857                              struct list_head *filters)
7858 {
7859         struct perf_addr_filter *filter = NULL;
7860         char *start, *orig, *filename = NULL;
7861         struct path path;
7862         substring_t args[MAX_OPT_ARGS];
7863         int state = IF_STATE_ACTION, token;
7864         unsigned int kernel = 0;
7865         int ret = -EINVAL;
7866
7867         orig = fstr = kstrdup(fstr, GFP_KERNEL);
7868         if (!fstr)
7869                 return -ENOMEM;
7870
7871         while ((start = strsep(&fstr, " ,\n")) != NULL) {
7872                 ret = -EINVAL;
7873
7874                 if (!*start)
7875                         continue;
7876
7877                 /* filter definition begins */
7878                 if (state == IF_STATE_ACTION) {
7879                         filter = perf_addr_filter_new(event, filters);
7880                         if (!filter)
7881                                 goto fail;
7882                 }
7883
7884                 token = match_token(start, if_tokens, args);
7885                 switch (token) {
7886                 case IF_ACT_FILTER:
7887                 case IF_ACT_START:
7888                         filter->filter = 1;
7889
7890                 case IF_ACT_STOP:
7891                         if (state != IF_STATE_ACTION)
7892                                 goto fail;
7893
7894                         state = IF_STATE_SOURCE;
7895                         break;
7896
7897                 case IF_SRC_KERNELADDR:
7898                 case IF_SRC_KERNEL:
7899                         kernel = 1;
7900
7901                 case IF_SRC_FILEADDR:
7902                 case IF_SRC_FILE:
7903                         if (state != IF_STATE_SOURCE)
7904                                 goto fail;
7905
7906                         if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
7907                                 filter->range = 1;
7908
7909                         *args[0].to = 0;
7910                         ret = kstrtoul(args[0].from, 0, &filter->offset);
7911                         if (ret)
7912                                 goto fail;
7913
7914                         if (filter->range) {
7915                                 *args[1].to = 0;
7916                                 ret = kstrtoul(args[1].from, 0, &filter->size);
7917                                 if (ret)
7918                                         goto fail;
7919                         }
7920
7921                         if (token == IF_SRC_FILE) {
7922                                 filename = match_strdup(&args[2]);
7923                                 if (!filename) {
7924                                         ret = -ENOMEM;
7925                                         goto fail;
7926                                 }
7927                         }
7928
7929                         state = IF_STATE_END;
7930                         break;
7931
7932                 default:
7933                         goto fail;
7934                 }
7935
7936                 /*
7937                  * Filter definition is fully parsed, validate and install it.
7938                  * Make sure that it doesn't contradict itself or the event's
7939                  * attribute.
7940                  */
7941                 if (state == IF_STATE_END) {
7942                         if (kernel && event->attr.exclude_kernel)
7943                                 goto fail;
7944
7945                         if (!kernel) {
7946                                 if (!filename)
7947                                         goto fail;
7948
7949                                 /* look up the path and grab its inode */
7950                                 ret = kern_path(filename, LOOKUP_FOLLOW, &path);
7951                                 if (ret)
7952                                         goto fail_free_name;
7953
7954                                 filter->inode = igrab(d_inode(path.dentry));
7955                                 path_put(&path);
7956                                 kfree(filename);
7957                                 filename = NULL;
7958
7959                                 ret = -EINVAL;
7960                                 if (!filter->inode ||
7961                                     !S_ISREG(filter->inode->i_mode))
7962                                         /* free_filters_list() will iput() */
7963                                         goto fail;
7964                         }
7965
7966                         /* ready to consume more filters */
7967                         state = IF_STATE_ACTION;
7968                         filter = NULL;
7969                 }
7970         }
7971
7972         if (state != IF_STATE_ACTION)
7973                 goto fail;
7974
7975         kfree(orig);
7976
7977         return 0;
7978
7979 fail_free_name:
7980         kfree(filename);
7981 fail:
7982         free_filters_list(filters);
7983         kfree(orig);
7984
7985         return ret;
7986 }
7987
7988 static int
7989 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
7990 {
7991         LIST_HEAD(filters);
7992         int ret;
7993
7994         /*
7995          * Since this is called in perf_ioctl() path, we're already holding
7996          * ctx::mutex.
7997          */
7998         lockdep_assert_held(&event->ctx->mutex);
7999
8000         if (WARN_ON_ONCE(event->parent))
8001                 return -EINVAL;
8002
8003         /*
8004          * For now, we only support filtering in per-task events; doing so
8005          * for CPU-wide events requires additional context switching trickery,
8006          * since same object code will be mapped at different virtual
8007          * addresses in different processes.
8008          */
8009         if (!event->ctx->task)
8010                 return -EOPNOTSUPP;
8011
8012         ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8013         if (ret)
8014                 return ret;
8015
8016         ret = event->pmu->addr_filters_validate(&filters);
8017         if (ret) {
8018                 free_filters_list(&filters);
8019                 return ret;
8020         }
8021
8022         /* remove existing filters, if any */
8023         perf_addr_filters_splice(event, &filters);
8024
8025         /* install new filters */
8026         perf_event_for_each_child(event, perf_event_addr_filters_apply);
8027
8028         return ret;
8029 }
8030
8031 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8032 {
8033         char *filter_str;
8034         int ret = -EINVAL;
8035
8036         if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8037             !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8038             !has_addr_filter(event))
8039                 return -EINVAL;
8040
8041         filter_str = strndup_user(arg, PAGE_SIZE);
8042         if (IS_ERR(filter_str))
8043                 return PTR_ERR(filter_str);
8044
8045         if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8046             event->attr.type == PERF_TYPE_TRACEPOINT)
8047                 ret = ftrace_profile_set_filter(event, event->attr.config,
8048                                                 filter_str);
8049         else if (has_addr_filter(event))
8050                 ret = perf_event_set_addr_filter(event, filter_str);
8051
8052         kfree(filter_str);
8053         return ret;
8054 }
8055
8056 /*
8057  * hrtimer based swevent callback
8058  */
8059
8060 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
8061 {
8062         enum hrtimer_restart ret = HRTIMER_RESTART;
8063         struct perf_sample_data data;
8064         struct pt_regs *regs;
8065         struct perf_event *event;
8066         u64 period;
8067
8068         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
8069
8070         if (event->state != PERF_EVENT_STATE_ACTIVE)
8071                 return HRTIMER_NORESTART;
8072
8073         event->pmu->read(event);
8074
8075         perf_sample_data_init(&data, 0, event->hw.last_period);
8076         regs = get_irq_regs();
8077
8078         if (regs && !perf_exclude_event(event, regs)) {
8079                 if (!(event->attr.exclude_idle && is_idle_task(current)))
8080                         if (__perf_event_overflow(event, 1, &data, regs))
8081                                 ret = HRTIMER_NORESTART;
8082         }
8083
8084         period = max_t(u64, 10000, event->hw.sample_period);
8085         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
8086
8087         return ret;
8088 }
8089
8090 static void perf_swevent_start_hrtimer(struct perf_event *event)
8091 {
8092         struct hw_perf_event *hwc = &event->hw;
8093         s64 period;
8094
8095         if (!is_sampling_event(event))
8096                 return;
8097
8098         period = local64_read(&hwc->period_left);
8099         if (period) {
8100                 if (period < 0)
8101                         period = 10000;
8102
8103                 local64_set(&hwc->period_left, 0);
8104         } else {
8105                 period = max_t(u64, 10000, hwc->sample_period);
8106         }
8107         hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8108                       HRTIMER_MODE_REL_PINNED);
8109 }
8110
8111 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8112 {
8113         struct hw_perf_event *hwc = &event->hw;
8114
8115         if (is_sampling_event(event)) {
8116                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
8117                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
8118
8119                 hrtimer_cancel(&hwc->hrtimer);
8120         }
8121 }
8122
8123 static void perf_swevent_init_hrtimer(struct perf_event *event)
8124 {
8125         struct hw_perf_event *hwc = &event->hw;
8126
8127         if (!is_sampling_event(event))
8128                 return;
8129
8130         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8131         hwc->hrtimer.function = perf_swevent_hrtimer;
8132
8133         /*
8134          * Since hrtimers have a fixed rate, we can do a static freq->period
8135          * mapping and avoid the whole period adjust feedback stuff.
8136          */
8137         if (event->attr.freq) {
8138                 long freq = event->attr.sample_freq;
8139
8140                 event->attr.sample_period = NSEC_PER_SEC / freq;
8141                 hwc->sample_period = event->attr.sample_period;
8142                 local64_set(&hwc->period_left, hwc->sample_period);
8143                 hwc->last_period = hwc->sample_period;
8144                 event->attr.freq = 0;
8145         }
8146 }
8147
8148 /*
8149  * Software event: cpu wall time clock
8150  */
8151
8152 static void cpu_clock_event_update(struct perf_event *event)
8153 {
8154         s64 prev;
8155         u64 now;
8156
8157         now = local_clock();
8158         prev = local64_xchg(&event->hw.prev_count, now);
8159         local64_add(now - prev, &event->count);
8160 }
8161
8162 static void cpu_clock_event_start(struct perf_event *event, int flags)
8163 {
8164         local64_set(&event->hw.prev_count, local_clock());
8165         perf_swevent_start_hrtimer(event);
8166 }
8167
8168 static void cpu_clock_event_stop(struct perf_event *event, int flags)
8169 {
8170         perf_swevent_cancel_hrtimer(event);
8171         cpu_clock_event_update(event);
8172 }
8173
8174 static int cpu_clock_event_add(struct perf_event *event, int flags)
8175 {
8176         if (flags & PERF_EF_START)
8177                 cpu_clock_event_start(event, flags);
8178         perf_event_update_userpage(event);
8179
8180         return 0;
8181 }
8182
8183 static void cpu_clock_event_del(struct perf_event *event, int flags)
8184 {
8185         cpu_clock_event_stop(event, flags);
8186 }
8187
8188 static void cpu_clock_event_read(struct perf_event *event)
8189 {
8190         cpu_clock_event_update(event);
8191 }
8192
8193 static int cpu_clock_event_init(struct perf_event *event)
8194 {
8195         if (event->attr.type != PERF_TYPE_SOFTWARE)
8196                 return -ENOENT;
8197
8198         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8199                 return -ENOENT;
8200
8201         /*
8202          * no branch sampling for software events
8203          */
8204         if (has_branch_stack(event))
8205                 return -EOPNOTSUPP;
8206
8207         perf_swevent_init_hrtimer(event);
8208
8209         return 0;
8210 }
8211
8212 static struct pmu perf_cpu_clock = {
8213         .task_ctx_nr    = perf_sw_context,
8214
8215         .capabilities   = PERF_PMU_CAP_NO_NMI,
8216
8217         .event_init     = cpu_clock_event_init,
8218         .add            = cpu_clock_event_add,
8219         .del            = cpu_clock_event_del,
8220         .start          = cpu_clock_event_start,
8221         .stop           = cpu_clock_event_stop,
8222         .read           = cpu_clock_event_read,
8223 };
8224
8225 /*
8226  * Software event: task time clock
8227  */
8228
8229 static void task_clock_event_update(struct perf_event *event, u64 now)
8230 {
8231         u64 prev;
8232         s64 delta;
8233
8234         prev = local64_xchg(&event->hw.prev_count, now);
8235         delta = now - prev;
8236         local64_add(delta, &event->count);
8237 }
8238
8239 static void task_clock_event_start(struct perf_event *event, int flags)
8240 {
8241         local64_set(&event->hw.prev_count, event->ctx->time);
8242         perf_swevent_start_hrtimer(event);
8243 }
8244
8245 static void task_clock_event_stop(struct perf_event *event, int flags)
8246 {
8247         perf_swevent_cancel_hrtimer(event);
8248         task_clock_event_update(event, event->ctx->time);
8249 }
8250
8251 static int task_clock_event_add(struct perf_event *event, int flags)
8252 {
8253         if (flags & PERF_EF_START)
8254                 task_clock_event_start(event, flags);
8255         perf_event_update_userpage(event);
8256
8257         return 0;
8258 }
8259
8260 static void task_clock_event_del(struct perf_event *event, int flags)
8261 {
8262         task_clock_event_stop(event, PERF_EF_UPDATE);
8263 }
8264
8265 static void task_clock_event_read(struct perf_event *event)
8266 {
8267         u64 now = perf_clock();
8268         u64 delta = now - event->ctx->timestamp;
8269         u64 time = event->ctx->time + delta;
8270
8271         task_clock_event_update(event, time);
8272 }
8273
8274 static int task_clock_event_init(struct perf_event *event)
8275 {
8276         if (event->attr.type != PERF_TYPE_SOFTWARE)
8277                 return -ENOENT;
8278
8279         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8280                 return -ENOENT;
8281
8282         /*
8283          * no branch sampling for software events
8284          */
8285         if (has_branch_stack(event))
8286                 return -EOPNOTSUPP;
8287
8288         perf_swevent_init_hrtimer(event);
8289
8290         return 0;
8291 }
8292
8293 static struct pmu perf_task_clock = {
8294         .task_ctx_nr    = perf_sw_context,
8295
8296         .capabilities   = PERF_PMU_CAP_NO_NMI,
8297
8298         .event_init     = task_clock_event_init,
8299         .add            = task_clock_event_add,
8300         .del            = task_clock_event_del,
8301         .start          = task_clock_event_start,
8302         .stop           = task_clock_event_stop,
8303         .read           = task_clock_event_read,
8304 };
8305
8306 static void perf_pmu_nop_void(struct pmu *pmu)
8307 {
8308 }
8309
8310 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8311 {
8312 }
8313
8314 static int perf_pmu_nop_int(struct pmu *pmu)
8315 {
8316         return 0;
8317 }
8318
8319 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8320
8321 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
8322 {
8323         __this_cpu_write(nop_txn_flags, flags);
8324
8325         if (flags & ~PERF_PMU_TXN_ADD)
8326                 return;
8327
8328         perf_pmu_disable(pmu);
8329 }
8330
8331 static int perf_pmu_commit_txn(struct pmu *pmu)
8332 {
8333         unsigned int flags = __this_cpu_read(nop_txn_flags);
8334
8335         __this_cpu_write(nop_txn_flags, 0);
8336
8337         if (flags & ~PERF_PMU_TXN_ADD)
8338                 return 0;
8339
8340         perf_pmu_enable(pmu);
8341         return 0;
8342 }
8343
8344 static void perf_pmu_cancel_txn(struct pmu *pmu)
8345 {
8346         unsigned int flags =  __this_cpu_read(nop_txn_flags);
8347
8348         __this_cpu_write(nop_txn_flags, 0);
8349
8350         if (flags & ~PERF_PMU_TXN_ADD)
8351                 return;
8352
8353         perf_pmu_enable(pmu);
8354 }
8355
8356 static int perf_event_idx_default(struct perf_event *event)
8357 {
8358         return 0;
8359 }
8360
8361 /*
8362  * Ensures all contexts with the same task_ctx_nr have the same
8363  * pmu_cpu_context too.
8364  */
8365 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8366 {
8367         struct pmu *pmu;
8368
8369         if (ctxn < 0)
8370                 return NULL;
8371
8372         list_for_each_entry(pmu, &pmus, entry) {
8373                 if (pmu->task_ctx_nr == ctxn)
8374                         return pmu->pmu_cpu_context;
8375         }
8376
8377         return NULL;
8378 }
8379
8380 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
8381 {
8382         int cpu;
8383
8384         for_each_possible_cpu(cpu) {
8385                 struct perf_cpu_context *cpuctx;
8386
8387                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8388
8389                 if (cpuctx->unique_pmu == old_pmu)
8390                         cpuctx->unique_pmu = pmu;
8391         }
8392 }
8393
8394 static void free_pmu_context(struct pmu *pmu)
8395 {
8396         struct pmu *i;
8397
8398         mutex_lock(&pmus_lock);
8399         /*
8400          * Like a real lame refcount.
8401          */
8402         list_for_each_entry(i, &pmus, entry) {
8403                 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
8404                         update_pmu_context(i, pmu);
8405                         goto out;
8406                 }
8407         }
8408
8409         free_percpu(pmu->pmu_cpu_context);
8410 out:
8411         mutex_unlock(&pmus_lock);
8412 }
8413
8414 /*
8415  * Let userspace know that this PMU supports address range filtering:
8416  */
8417 static ssize_t nr_addr_filters_show(struct device *dev,
8418                                     struct device_attribute *attr,
8419                                     char *page)
8420 {
8421         struct pmu *pmu = dev_get_drvdata(dev);
8422
8423         return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8424 }
8425 DEVICE_ATTR_RO(nr_addr_filters);
8426
8427 static struct idr pmu_idr;
8428
8429 static ssize_t
8430 type_show(struct device *dev, struct device_attribute *attr, char *page)
8431 {
8432         struct pmu *pmu = dev_get_drvdata(dev);
8433
8434         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8435 }
8436 static DEVICE_ATTR_RO(type);
8437
8438 static ssize_t
8439 perf_event_mux_interval_ms_show(struct device *dev,
8440                                 struct device_attribute *attr,
8441                                 char *page)
8442 {
8443         struct pmu *pmu = dev_get_drvdata(dev);
8444
8445         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
8446 }
8447
8448 static DEFINE_MUTEX(mux_interval_mutex);
8449
8450 static ssize_t
8451 perf_event_mux_interval_ms_store(struct device *dev,
8452                                  struct device_attribute *attr,
8453                                  const char *buf, size_t count)
8454 {
8455         struct pmu *pmu = dev_get_drvdata(dev);
8456         int timer, cpu, ret;
8457
8458         ret = kstrtoint(buf, 0, &timer);
8459         if (ret)
8460                 return ret;
8461
8462         if (timer < 1)
8463                 return -EINVAL;
8464
8465         /* same value, noting to do */
8466         if (timer == pmu->hrtimer_interval_ms)
8467                 return count;
8468
8469         mutex_lock(&mux_interval_mutex);
8470         pmu->hrtimer_interval_ms = timer;
8471
8472         /* update all cpuctx for this PMU */
8473         get_online_cpus();
8474         for_each_online_cpu(cpu) {
8475                 struct perf_cpu_context *cpuctx;
8476                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8477                 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
8478
8479                 cpu_function_call(cpu,
8480                         (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
8481         }
8482         put_online_cpus();
8483         mutex_unlock(&mux_interval_mutex);
8484
8485         return count;
8486 }
8487 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
8488
8489 static struct attribute *pmu_dev_attrs[] = {
8490         &dev_attr_type.attr,
8491         &dev_attr_perf_event_mux_interval_ms.attr,
8492         NULL,
8493 };
8494 ATTRIBUTE_GROUPS(pmu_dev);
8495
8496 static int pmu_bus_running;
8497 static struct bus_type pmu_bus = {
8498         .name           = "event_source",
8499         .dev_groups     = pmu_dev_groups,
8500 };
8501
8502 static void pmu_dev_release(struct device *dev)
8503 {
8504         kfree(dev);
8505 }
8506
8507 static int pmu_dev_alloc(struct pmu *pmu)
8508 {
8509         int ret = -ENOMEM;
8510
8511         pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
8512         if (!pmu->dev)
8513                 goto out;
8514
8515         pmu->dev->groups = pmu->attr_groups;
8516         device_initialize(pmu->dev);
8517         ret = dev_set_name(pmu->dev, "%s", pmu->name);
8518         if (ret)
8519                 goto free_dev;
8520
8521         dev_set_drvdata(pmu->dev, pmu);
8522         pmu->dev->bus = &pmu_bus;
8523         pmu->dev->release = pmu_dev_release;
8524         ret = device_add(pmu->dev);
8525         if (ret)
8526                 goto free_dev;
8527
8528         /* For PMUs with address filters, throw in an extra attribute: */
8529         if (pmu->nr_addr_filters)
8530                 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
8531
8532         if (ret)
8533                 goto del_dev;
8534
8535 out:
8536         return ret;
8537
8538 del_dev:
8539         device_del(pmu->dev);
8540
8541 free_dev:
8542         put_device(pmu->dev);
8543         goto out;
8544 }
8545
8546 static struct lock_class_key cpuctx_mutex;
8547 static struct lock_class_key cpuctx_lock;
8548
8549 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
8550 {
8551         int cpu, ret;
8552
8553         mutex_lock(&pmus_lock);
8554         ret = -ENOMEM;
8555         pmu->pmu_disable_count = alloc_percpu(int);
8556         if (!pmu->pmu_disable_count)
8557                 goto unlock;
8558
8559         pmu->type = -1;
8560         if (!name)
8561                 goto skip_type;
8562         pmu->name = name;
8563
8564         if (type < 0) {
8565                 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
8566                 if (type < 0) {
8567                         ret = type;
8568                         goto free_pdc;
8569                 }
8570         }
8571         pmu->type = type;
8572
8573         if (pmu_bus_running) {
8574                 ret = pmu_dev_alloc(pmu);
8575                 if (ret)
8576                         goto free_idr;
8577         }
8578
8579 skip_type:
8580         if (pmu->task_ctx_nr == perf_hw_context) {
8581                 static int hw_context_taken = 0;
8582
8583                 /*
8584                  * Other than systems with heterogeneous CPUs, it never makes
8585                  * sense for two PMUs to share perf_hw_context. PMUs which are
8586                  * uncore must use perf_invalid_context.
8587                  */
8588                 if (WARN_ON_ONCE(hw_context_taken &&
8589                     !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
8590                         pmu->task_ctx_nr = perf_invalid_context;
8591
8592                 hw_context_taken = 1;
8593         }
8594
8595         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
8596         if (pmu->pmu_cpu_context)
8597                 goto got_cpu_context;
8598
8599         ret = -ENOMEM;
8600         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
8601         if (!pmu->pmu_cpu_context)
8602                 goto free_dev;
8603
8604         for_each_possible_cpu(cpu) {
8605                 struct perf_cpu_context *cpuctx;
8606
8607                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8608                 __perf_event_init_context(&cpuctx->ctx);
8609                 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
8610                 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
8611                 cpuctx->ctx.pmu = pmu;
8612
8613                 __perf_mux_hrtimer_init(cpuctx, cpu);
8614
8615                 cpuctx->unique_pmu = pmu;
8616         }
8617
8618 got_cpu_context:
8619         if (!pmu->start_txn) {
8620                 if (pmu->pmu_enable) {
8621                         /*
8622                          * If we have pmu_enable/pmu_disable calls, install
8623                          * transaction stubs that use that to try and batch
8624                          * hardware accesses.
8625                          */
8626                         pmu->start_txn  = perf_pmu_start_txn;
8627                         pmu->commit_txn = perf_pmu_commit_txn;
8628                         pmu->cancel_txn = perf_pmu_cancel_txn;
8629                 } else {
8630                         pmu->start_txn  = perf_pmu_nop_txn;
8631                         pmu->commit_txn = perf_pmu_nop_int;
8632                         pmu->cancel_txn = perf_pmu_nop_void;
8633                 }
8634         }
8635
8636         if (!pmu->pmu_enable) {
8637                 pmu->pmu_enable  = perf_pmu_nop_void;
8638                 pmu->pmu_disable = perf_pmu_nop_void;
8639         }
8640
8641         if (!pmu->event_idx)
8642                 pmu->event_idx = perf_event_idx_default;
8643
8644         list_add_rcu(&pmu->entry, &pmus);
8645         atomic_set(&pmu->exclusive_cnt, 0);
8646         ret = 0;
8647 unlock:
8648         mutex_unlock(&pmus_lock);
8649
8650         return ret;
8651
8652 free_dev:
8653         device_del(pmu->dev);
8654         put_device(pmu->dev);
8655
8656 free_idr:
8657         if (pmu->type >= PERF_TYPE_MAX)
8658                 idr_remove(&pmu_idr, pmu->type);
8659
8660 free_pdc:
8661         free_percpu(pmu->pmu_disable_count);
8662         goto unlock;
8663 }
8664 EXPORT_SYMBOL_GPL(perf_pmu_register);
8665
8666 void perf_pmu_unregister(struct pmu *pmu)
8667 {
8668         mutex_lock(&pmus_lock);
8669         list_del_rcu(&pmu->entry);
8670         mutex_unlock(&pmus_lock);
8671
8672         /*
8673          * We dereference the pmu list under both SRCU and regular RCU, so
8674          * synchronize against both of those.
8675          */
8676         synchronize_srcu(&pmus_srcu);
8677         synchronize_rcu();
8678
8679         free_percpu(pmu->pmu_disable_count);
8680         if (pmu->type >= PERF_TYPE_MAX)
8681                 idr_remove(&pmu_idr, pmu->type);
8682         if (pmu->nr_addr_filters)
8683                 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
8684         device_del(pmu->dev);
8685         put_device(pmu->dev);
8686         free_pmu_context(pmu);
8687 }
8688 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
8689
8690 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
8691 {
8692         struct perf_event_context *ctx = NULL;
8693         int ret;
8694
8695         if (!try_module_get(pmu->module))
8696                 return -ENODEV;
8697
8698         if (event->group_leader != event) {
8699                 /*
8700                  * This ctx->mutex can nest when we're called through
8701                  * inheritance. See the perf_event_ctx_lock_nested() comment.
8702                  */
8703                 ctx = perf_event_ctx_lock_nested(event->group_leader,
8704                                                  SINGLE_DEPTH_NESTING);
8705                 BUG_ON(!ctx);
8706         }
8707
8708         event->pmu = pmu;
8709         ret = pmu->event_init(event);
8710
8711         if (ctx)
8712                 perf_event_ctx_unlock(event->group_leader, ctx);
8713
8714         if (ret)
8715                 module_put(pmu->module);
8716
8717         return ret;
8718 }
8719
8720 static struct pmu *perf_init_event(struct perf_event *event)
8721 {
8722         struct pmu *pmu = NULL;
8723         int idx;
8724         int ret;
8725
8726         idx = srcu_read_lock(&pmus_srcu);
8727
8728         rcu_read_lock();
8729         pmu = idr_find(&pmu_idr, event->attr.type);
8730         rcu_read_unlock();
8731         if (pmu) {
8732                 ret = perf_try_init_event(pmu, event);
8733                 if (ret)
8734                         pmu = ERR_PTR(ret);
8735                 goto unlock;
8736         }
8737
8738         list_for_each_entry_rcu(pmu, &pmus, entry) {
8739                 ret = perf_try_init_event(pmu, event);
8740                 if (!ret)
8741                         goto unlock;
8742
8743                 if (ret != -ENOENT) {
8744                         pmu = ERR_PTR(ret);
8745                         goto unlock;
8746                 }
8747         }
8748         pmu = ERR_PTR(-ENOENT);
8749 unlock:
8750         srcu_read_unlock(&pmus_srcu, idx);
8751
8752         return pmu;
8753 }
8754
8755 static void attach_sb_event(struct perf_event *event)
8756 {
8757         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
8758
8759         raw_spin_lock(&pel->lock);
8760         list_add_rcu(&event->sb_list, &pel->list);
8761         raw_spin_unlock(&pel->lock);
8762 }
8763
8764 /*
8765  * We keep a list of all !task (and therefore per-cpu) events
8766  * that need to receive side-band records.
8767  *
8768  * This avoids having to scan all the various PMU per-cpu contexts
8769  * looking for them.
8770  */
8771 static void account_pmu_sb_event(struct perf_event *event)
8772 {
8773         if (is_sb_event(event))
8774                 attach_sb_event(event);
8775 }
8776
8777 static void account_event_cpu(struct perf_event *event, int cpu)
8778 {
8779         if (event->parent)
8780                 return;
8781
8782         if (is_cgroup_event(event))
8783                 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
8784 }
8785
8786 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
8787 static void account_freq_event_nohz(void)
8788 {
8789 #ifdef CONFIG_NO_HZ_FULL
8790         /* Lock so we don't race with concurrent unaccount */
8791         spin_lock(&nr_freq_lock);
8792         if (atomic_inc_return(&nr_freq_events) == 1)
8793                 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
8794         spin_unlock(&nr_freq_lock);
8795 #endif
8796 }
8797
8798 static void account_freq_event(void)
8799 {
8800         if (tick_nohz_full_enabled())
8801                 account_freq_event_nohz();
8802         else
8803                 atomic_inc(&nr_freq_events);
8804 }
8805
8806
8807 static void account_event(struct perf_event *event)
8808 {
8809         bool inc = false;
8810
8811         if (event->parent)
8812                 return;
8813
8814         if (event->attach_state & PERF_ATTACH_TASK)
8815                 inc = true;
8816         if (event->attr.mmap || event->attr.mmap_data)
8817                 atomic_inc(&nr_mmap_events);
8818         if (event->attr.comm)
8819                 atomic_inc(&nr_comm_events);
8820         if (event->attr.task)
8821                 atomic_inc(&nr_task_events);
8822         if (event->attr.freq)
8823                 account_freq_event();
8824         if (event->attr.context_switch) {
8825                 atomic_inc(&nr_switch_events);
8826                 inc = true;
8827         }
8828         if (has_branch_stack(event))
8829                 inc = true;
8830         if (is_cgroup_event(event))
8831                 inc = true;
8832
8833         if (inc) {
8834                 if (atomic_inc_not_zero(&perf_sched_count))
8835                         goto enabled;
8836
8837                 mutex_lock(&perf_sched_mutex);
8838                 if (!atomic_read(&perf_sched_count)) {
8839                         static_branch_enable(&perf_sched_events);
8840                         /*
8841                          * Guarantee that all CPUs observe they key change and
8842                          * call the perf scheduling hooks before proceeding to
8843                          * install events that need them.
8844                          */
8845                         synchronize_sched();
8846                 }
8847                 /*
8848                  * Now that we have waited for the sync_sched(), allow further
8849                  * increments to by-pass the mutex.
8850                  */
8851                 atomic_inc(&perf_sched_count);
8852                 mutex_unlock(&perf_sched_mutex);
8853         }
8854 enabled:
8855
8856         account_event_cpu(event, event->cpu);
8857
8858         account_pmu_sb_event(event);
8859 }
8860
8861 /*
8862  * Allocate and initialize a event structure
8863  */
8864 static struct perf_event *
8865 perf_event_alloc(struct perf_event_attr *attr, int cpu,
8866                  struct task_struct *task,
8867                  struct perf_event *group_leader,
8868                  struct perf_event *parent_event,
8869                  perf_overflow_handler_t overflow_handler,
8870                  void *context, int cgroup_fd)
8871 {
8872         struct pmu *pmu;
8873         struct perf_event *event;
8874         struct hw_perf_event *hwc;
8875         long err = -EINVAL;
8876
8877         if ((unsigned)cpu >= nr_cpu_ids) {
8878                 if (!task || cpu != -1)
8879                         return ERR_PTR(-EINVAL);
8880         }
8881
8882         event = kzalloc(sizeof(*event), GFP_KERNEL);
8883         if (!event)
8884                 return ERR_PTR(-ENOMEM);
8885
8886         /*
8887          * Single events are their own group leaders, with an
8888          * empty sibling list:
8889          */
8890         if (!group_leader)
8891                 group_leader = event;
8892
8893         mutex_init(&event->child_mutex);
8894         INIT_LIST_HEAD(&event->child_list);
8895
8896         INIT_LIST_HEAD(&event->group_entry);
8897         INIT_LIST_HEAD(&event->event_entry);
8898         INIT_LIST_HEAD(&event->sibling_list);
8899         INIT_LIST_HEAD(&event->rb_entry);
8900         INIT_LIST_HEAD(&event->active_entry);
8901         INIT_LIST_HEAD(&event->addr_filters.list);
8902         INIT_HLIST_NODE(&event->hlist_entry);
8903
8904
8905         init_waitqueue_head(&event->waitq);
8906         init_irq_work(&event->pending, perf_pending_event);
8907
8908         mutex_init(&event->mmap_mutex);
8909         raw_spin_lock_init(&event->addr_filters.lock);
8910
8911         atomic_long_set(&event->refcount, 1);
8912         event->cpu              = cpu;
8913         event->attr             = *attr;
8914         event->group_leader     = group_leader;
8915         event->pmu              = NULL;
8916         event->oncpu            = -1;
8917
8918         event->parent           = parent_event;
8919
8920         event->ns               = get_pid_ns(task_active_pid_ns(current));
8921         event->id               = atomic64_inc_return(&perf_event_id);
8922
8923         event->state            = PERF_EVENT_STATE_INACTIVE;
8924
8925         if (task) {
8926                 event->attach_state = PERF_ATTACH_TASK;
8927                 /*
8928                  * XXX pmu::event_init needs to know what task to account to
8929                  * and we cannot use the ctx information because we need the
8930                  * pmu before we get a ctx.
8931                  */
8932                 event->hw.target = task;
8933         }
8934
8935         event->clock = &local_clock;
8936         if (parent_event)
8937                 event->clock = parent_event->clock;
8938
8939         if (!overflow_handler && parent_event) {
8940                 overflow_handler = parent_event->overflow_handler;
8941                 context = parent_event->overflow_handler_context;
8942         }
8943
8944         if (overflow_handler) {
8945                 event->overflow_handler = overflow_handler;
8946                 event->overflow_handler_context = context;
8947         } else if (is_write_backward(event)){
8948                 event->overflow_handler = perf_event_output_backward;
8949                 event->overflow_handler_context = NULL;
8950         } else {
8951                 event->overflow_handler = perf_event_output_forward;
8952                 event->overflow_handler_context = NULL;
8953         }
8954
8955         perf_event__state_init(event);
8956
8957         pmu = NULL;
8958
8959         hwc = &event->hw;
8960         hwc->sample_period = attr->sample_period;
8961         if (attr->freq && attr->sample_freq)
8962                 hwc->sample_period = 1;
8963         hwc->last_period = hwc->sample_period;
8964
8965         local64_set(&hwc->period_left, hwc->sample_period);
8966
8967         /*
8968          * we currently do not support PERF_FORMAT_GROUP on inherited events
8969          */
8970         if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
8971                 goto err_ns;
8972
8973         if (!has_branch_stack(event))
8974                 event->attr.branch_sample_type = 0;
8975
8976         if (cgroup_fd != -1) {
8977                 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
8978                 if (err)
8979                         goto err_ns;
8980         }
8981
8982         pmu = perf_init_event(event);
8983         if (!pmu)
8984                 goto err_ns;
8985         else if (IS_ERR(pmu)) {
8986                 err = PTR_ERR(pmu);
8987                 goto err_ns;
8988         }
8989
8990         err = exclusive_event_init(event);
8991         if (err)
8992                 goto err_pmu;
8993
8994         if (has_addr_filter(event)) {
8995                 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
8996                                                    sizeof(unsigned long),
8997                                                    GFP_KERNEL);
8998                 if (!event->addr_filters_offs)
8999                         goto err_per_task;
9000
9001                 /* force hw sync on the address filters */
9002                 event->addr_filters_gen = 1;
9003         }
9004
9005         if (!event->parent) {
9006                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
9007                         err = get_callchain_buffers(attr->sample_max_stack);
9008                         if (err)
9009                                 goto err_addr_filters;
9010                 }
9011         }
9012
9013         /* symmetric to unaccount_event() in _free_event() */
9014         account_event(event);
9015
9016         return event;
9017
9018 err_addr_filters:
9019         kfree(event->addr_filters_offs);
9020
9021 err_per_task:
9022         exclusive_event_destroy(event);
9023
9024 err_pmu:
9025         if (event->destroy)
9026                 event->destroy(event);
9027         module_put(pmu->module);
9028 err_ns:
9029         if (is_cgroup_event(event))
9030                 perf_detach_cgroup(event);
9031         if (event->ns)
9032                 put_pid_ns(event->ns);
9033         kfree(event);
9034
9035         return ERR_PTR(err);
9036 }
9037
9038 static int perf_copy_attr(struct perf_event_attr __user *uattr,
9039                           struct perf_event_attr *attr)
9040 {
9041         u32 size;
9042         int ret;
9043
9044         if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9045                 return -EFAULT;
9046
9047         /*
9048          * zero the full structure, so that a short copy will be nice.
9049          */
9050         memset(attr, 0, sizeof(*attr));
9051
9052         ret = get_user(size, &uattr->size);
9053         if (ret)
9054                 return ret;
9055
9056         if (size > PAGE_SIZE)   /* silly large */
9057                 goto err_size;
9058
9059         if (!size)              /* abi compat */
9060                 size = PERF_ATTR_SIZE_VER0;
9061
9062         if (size < PERF_ATTR_SIZE_VER0)
9063                 goto err_size;
9064
9065         /*
9066          * If we're handed a bigger struct than we know of,
9067          * ensure all the unknown bits are 0 - i.e. new
9068          * user-space does not rely on any kernel feature
9069          * extensions we dont know about yet.
9070          */
9071         if (size > sizeof(*attr)) {
9072                 unsigned char __user *addr;
9073                 unsigned char __user *end;
9074                 unsigned char val;
9075
9076                 addr = (void __user *)uattr + sizeof(*attr);
9077                 end  = (void __user *)uattr + size;
9078
9079                 for (; addr < end; addr++) {
9080                         ret = get_user(val, addr);
9081                         if (ret)
9082                                 return ret;
9083                         if (val)
9084                                 goto err_size;
9085                 }
9086                 size = sizeof(*attr);
9087         }
9088
9089         ret = copy_from_user(attr, uattr, size);
9090         if (ret)
9091                 return -EFAULT;
9092
9093         if (attr->__reserved_1)
9094                 return -EINVAL;
9095
9096         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9097                 return -EINVAL;
9098
9099         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9100                 return -EINVAL;
9101
9102         if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9103                 u64 mask = attr->branch_sample_type;
9104
9105                 /* only using defined bits */
9106                 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9107                         return -EINVAL;
9108
9109                 /* at least one branch bit must be set */
9110                 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9111                         return -EINVAL;
9112
9113                 /* propagate priv level, when not set for branch */
9114                 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9115
9116                         /* exclude_kernel checked on syscall entry */
9117                         if (!attr->exclude_kernel)
9118                                 mask |= PERF_SAMPLE_BRANCH_KERNEL;
9119
9120                         if (!attr->exclude_user)
9121                                 mask |= PERF_SAMPLE_BRANCH_USER;
9122
9123                         if (!attr->exclude_hv)
9124                                 mask |= PERF_SAMPLE_BRANCH_HV;
9125                         /*
9126                          * adjust user setting (for HW filter setup)
9127                          */
9128                         attr->branch_sample_type = mask;
9129                 }
9130                 /* privileged levels capture (kernel, hv): check permissions */
9131                 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9132                     && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9133                         return -EACCES;
9134         }
9135
9136         if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9137                 ret = perf_reg_validate(attr->sample_regs_user);
9138                 if (ret)
9139                         return ret;
9140         }
9141
9142         if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9143                 if (!arch_perf_have_user_stack_dump())
9144                         return -ENOSYS;
9145
9146                 /*
9147                  * We have __u32 type for the size, but so far
9148                  * we can only use __u16 as maximum due to the
9149                  * __u16 sample size limit.
9150                  */
9151                 if (attr->sample_stack_user >= USHRT_MAX)
9152                         ret = -EINVAL;
9153                 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9154                         ret = -EINVAL;
9155         }
9156
9157         if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9158                 ret = perf_reg_validate(attr->sample_regs_intr);
9159 out:
9160         return ret;
9161
9162 err_size:
9163         put_user(sizeof(*attr), &uattr->size);
9164         ret = -E2BIG;
9165         goto out;
9166 }
9167
9168 static int
9169 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9170 {
9171         struct ring_buffer *rb = NULL;
9172         int ret = -EINVAL;
9173
9174         if (!output_event)
9175                 goto set;
9176
9177         /* don't allow circular references */
9178         if (event == output_event)
9179                 goto out;
9180
9181         /*
9182          * Don't allow cross-cpu buffers
9183          */
9184         if (output_event->cpu != event->cpu)
9185                 goto out;
9186
9187         /*
9188          * If its not a per-cpu rb, it must be the same task.
9189          */
9190         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9191                 goto out;
9192
9193         /*
9194          * Mixing clocks in the same buffer is trouble you don't need.
9195          */
9196         if (output_event->clock != event->clock)
9197                 goto out;
9198
9199         /*
9200          * Either writing ring buffer from beginning or from end.
9201          * Mixing is not allowed.
9202          */
9203         if (is_write_backward(output_event) != is_write_backward(event))
9204                 goto out;
9205
9206         /*
9207          * If both events generate aux data, they must be on the same PMU
9208          */
9209         if (has_aux(event) && has_aux(output_event) &&
9210             event->pmu != output_event->pmu)
9211                 goto out;
9212
9213 set:
9214         mutex_lock(&event->mmap_mutex);
9215         /* Can't redirect output if we've got an active mmap() */
9216         if (atomic_read(&event->mmap_count))
9217                 goto unlock;
9218
9219         if (output_event) {
9220                 /* get the rb we want to redirect to */
9221                 rb = ring_buffer_get(output_event);
9222                 if (!rb)
9223                         goto unlock;
9224         }
9225
9226         ring_buffer_attach(event, rb);
9227
9228         ret = 0;
9229 unlock:
9230         mutex_unlock(&event->mmap_mutex);
9231
9232 out:
9233         return ret;
9234 }
9235
9236 static void mutex_lock_double(struct mutex *a, struct mutex *b)
9237 {
9238         if (b < a)
9239                 swap(a, b);
9240
9241         mutex_lock(a);
9242         mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9243 }
9244
9245 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9246 {
9247         bool nmi_safe = false;
9248
9249         switch (clk_id) {
9250         case CLOCK_MONOTONIC:
9251                 event->clock = &ktime_get_mono_fast_ns;
9252                 nmi_safe = true;
9253                 break;
9254
9255         case CLOCK_MONOTONIC_RAW:
9256                 event->clock = &ktime_get_raw_fast_ns;
9257                 nmi_safe = true;
9258                 break;
9259
9260         case CLOCK_REALTIME:
9261                 event->clock = &ktime_get_real_ns;
9262                 break;
9263
9264         case CLOCK_BOOTTIME:
9265                 event->clock = &ktime_get_boot_ns;
9266                 break;
9267
9268         case CLOCK_TAI:
9269                 event->clock = &ktime_get_tai_ns;
9270                 break;
9271
9272         default:
9273                 return -EINVAL;
9274         }
9275
9276         if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9277                 return -EINVAL;
9278
9279         return 0;
9280 }
9281
9282 /**
9283  * sys_perf_event_open - open a performance event, associate it to a task/cpu
9284  *
9285  * @attr_uptr:  event_id type attributes for monitoring/sampling
9286  * @pid:                target pid
9287  * @cpu:                target cpu
9288  * @group_fd:           group leader event fd
9289  */
9290 SYSCALL_DEFINE5(perf_event_open,
9291                 struct perf_event_attr __user *, attr_uptr,
9292                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
9293 {
9294         struct perf_event *group_leader = NULL, *output_event = NULL;
9295         struct perf_event *event, *sibling;
9296         struct perf_event_attr attr;
9297         struct perf_event_context *ctx, *uninitialized_var(gctx);
9298         struct file *event_file = NULL;
9299         struct fd group = {NULL, 0};
9300         struct task_struct *task = NULL;
9301         struct pmu *pmu;
9302         int event_fd;
9303         int move_group = 0;
9304         int err;
9305         int f_flags = O_RDWR;
9306         int cgroup_fd = -1;
9307
9308         /* for future expandability... */
9309         if (flags & ~PERF_FLAG_ALL)
9310                 return -EINVAL;
9311
9312         err = perf_copy_attr(attr_uptr, &attr);
9313         if (err)
9314                 return err;
9315
9316         if (!attr.exclude_kernel) {
9317                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9318                         return -EACCES;
9319         }
9320
9321         if (attr.freq) {
9322                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
9323                         return -EINVAL;
9324         } else {
9325                 if (attr.sample_period & (1ULL << 63))
9326                         return -EINVAL;
9327         }
9328
9329         if (!attr.sample_max_stack)
9330                 attr.sample_max_stack = sysctl_perf_event_max_stack;
9331
9332         /*
9333          * In cgroup mode, the pid argument is used to pass the fd
9334          * opened to the cgroup directory in cgroupfs. The cpu argument
9335          * designates the cpu on which to monitor threads from that
9336          * cgroup.
9337          */
9338         if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9339                 return -EINVAL;
9340
9341         if (flags & PERF_FLAG_FD_CLOEXEC)
9342                 f_flags |= O_CLOEXEC;
9343
9344         event_fd = get_unused_fd_flags(f_flags);
9345         if (event_fd < 0)
9346                 return event_fd;
9347
9348         if (group_fd != -1) {
9349                 err = perf_fget_light(group_fd, &group);
9350                 if (err)
9351                         goto err_fd;
9352                 group_leader = group.file->private_data;
9353                 if (flags & PERF_FLAG_FD_OUTPUT)
9354                         output_event = group_leader;
9355                 if (flags & PERF_FLAG_FD_NO_GROUP)
9356                         group_leader = NULL;
9357         }
9358
9359         if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
9360                 task = find_lively_task_by_vpid(pid);
9361                 if (IS_ERR(task)) {
9362                         err = PTR_ERR(task);
9363                         goto err_group_fd;
9364                 }
9365         }
9366
9367         if (task && group_leader &&
9368             group_leader->attr.inherit != attr.inherit) {
9369                 err = -EINVAL;
9370                 goto err_task;
9371         }
9372
9373         get_online_cpus();
9374
9375         if (task) {
9376                 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
9377                 if (err)
9378                         goto err_cpus;
9379
9380                 /*
9381                  * Reuse ptrace permission checks for now.
9382                  *
9383                  * We must hold cred_guard_mutex across this and any potential
9384                  * perf_install_in_context() call for this new event to
9385                  * serialize against exec() altering our credentials (and the
9386                  * perf_event_exit_task() that could imply).
9387                  */
9388                 err = -EACCES;
9389                 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
9390                         goto err_cred;
9391         }
9392
9393         if (flags & PERF_FLAG_PID_CGROUP)
9394                 cgroup_fd = pid;
9395
9396         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
9397                                  NULL, NULL, cgroup_fd);
9398         if (IS_ERR(event)) {
9399                 err = PTR_ERR(event);
9400                 goto err_cred;
9401         }
9402
9403         if (is_sampling_event(event)) {
9404                 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
9405                         err = -EOPNOTSUPP;
9406                         goto err_alloc;
9407                 }
9408         }
9409
9410         /*
9411          * Special case software events and allow them to be part of
9412          * any hardware group.
9413          */
9414         pmu = event->pmu;
9415
9416         if (attr.use_clockid) {
9417                 err = perf_event_set_clock(event, attr.clockid);
9418                 if (err)
9419                         goto err_alloc;
9420         }
9421
9422         if (group_leader &&
9423             (is_software_event(event) != is_software_event(group_leader))) {
9424                 if (is_software_event(event)) {
9425                         /*
9426                          * If event and group_leader are not both a software
9427                          * event, and event is, then group leader is not.
9428                          *
9429                          * Allow the addition of software events to !software
9430                          * groups, this is safe because software events never
9431                          * fail to schedule.
9432                          */
9433                         pmu = group_leader->pmu;
9434                 } else if (is_software_event(group_leader) &&
9435                            (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
9436                         /*
9437                          * In case the group is a pure software group, and we
9438                          * try to add a hardware event, move the whole group to
9439                          * the hardware context.
9440                          */
9441                         move_group = 1;
9442                 }
9443         }
9444
9445         /*
9446          * Get the target context (task or percpu):
9447          */
9448         ctx = find_get_context(pmu, task, event);
9449         if (IS_ERR(ctx)) {
9450                 err = PTR_ERR(ctx);
9451                 goto err_alloc;
9452         }
9453
9454         if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
9455                 err = -EBUSY;
9456                 goto err_context;
9457         }
9458
9459         /*
9460          * Look up the group leader (we will attach this event to it):
9461          */
9462         if (group_leader) {
9463                 err = -EINVAL;
9464
9465                 /*
9466                  * Do not allow a recursive hierarchy (this new sibling
9467                  * becoming part of another group-sibling):
9468                  */
9469                 if (group_leader->group_leader != group_leader)
9470                         goto err_context;
9471
9472                 /* All events in a group should have the same clock */
9473                 if (group_leader->clock != event->clock)
9474                         goto err_context;
9475
9476                 /*
9477                  * Do not allow to attach to a group in a different
9478                  * task or CPU context:
9479                  */
9480                 if (move_group) {
9481                         /*
9482                          * Make sure we're both on the same task, or both
9483                          * per-cpu events.
9484                          */
9485                         if (group_leader->ctx->task != ctx->task)
9486                                 goto err_context;
9487
9488                         /*
9489                          * Make sure we're both events for the same CPU;
9490                          * grouping events for different CPUs is broken; since
9491                          * you can never concurrently schedule them anyhow.
9492                          */
9493                         if (group_leader->cpu != event->cpu)
9494                                 goto err_context;
9495                 } else {
9496                         if (group_leader->ctx != ctx)
9497                                 goto err_context;
9498                 }
9499
9500                 /*
9501                  * Only a group leader can be exclusive or pinned
9502                  */
9503                 if (attr.exclusive || attr.pinned)
9504                         goto err_context;
9505         }
9506
9507         if (output_event) {
9508                 err = perf_event_set_output(event, output_event);
9509                 if (err)
9510                         goto err_context;
9511         }
9512
9513         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
9514                                         f_flags);
9515         if (IS_ERR(event_file)) {
9516                 err = PTR_ERR(event_file);
9517                 event_file = NULL;
9518                 goto err_context;
9519         }
9520
9521         if (move_group) {
9522                 gctx = group_leader->ctx;
9523                 mutex_lock_double(&gctx->mutex, &ctx->mutex);
9524                 if (gctx->task == TASK_TOMBSTONE) {
9525                         err = -ESRCH;
9526                         goto err_locked;
9527                 }
9528         } else {
9529                 mutex_lock(&ctx->mutex);
9530         }
9531
9532         if (ctx->task == TASK_TOMBSTONE) {
9533                 err = -ESRCH;
9534                 goto err_locked;
9535         }
9536
9537         if (!perf_event_validate_size(event)) {
9538                 err = -E2BIG;
9539                 goto err_locked;
9540         }
9541
9542         /*
9543          * Must be under the same ctx::mutex as perf_install_in_context(),
9544          * because we need to serialize with concurrent event creation.
9545          */
9546         if (!exclusive_event_installable(event, ctx)) {
9547                 /* exclusive and group stuff are assumed mutually exclusive */
9548                 WARN_ON_ONCE(move_group);
9549
9550                 err = -EBUSY;
9551                 goto err_locked;
9552         }
9553
9554         WARN_ON_ONCE(ctx->parent_ctx);
9555
9556         /*
9557          * This is the point on no return; we cannot fail hereafter. This is
9558          * where we start modifying current state.
9559          */
9560
9561         if (move_group) {
9562                 /*
9563                  * See perf_event_ctx_lock() for comments on the details
9564                  * of swizzling perf_event::ctx.
9565                  */
9566                 perf_remove_from_context(group_leader, 0);
9567
9568                 list_for_each_entry(sibling, &group_leader->sibling_list,
9569                                     group_entry) {
9570                         perf_remove_from_context(sibling, 0);
9571                         put_ctx(gctx);
9572                 }
9573
9574                 /*
9575                  * Wait for everybody to stop referencing the events through
9576                  * the old lists, before installing it on new lists.
9577                  */
9578                 synchronize_rcu();
9579
9580                 /*
9581                  * Install the group siblings before the group leader.
9582                  *
9583                  * Because a group leader will try and install the entire group
9584                  * (through the sibling list, which is still in-tact), we can
9585                  * end up with siblings installed in the wrong context.
9586                  *
9587                  * By installing siblings first we NO-OP because they're not
9588                  * reachable through the group lists.
9589                  */
9590                 list_for_each_entry(sibling, &group_leader->sibling_list,
9591                                     group_entry) {
9592                         perf_event__state_init(sibling);
9593                         perf_install_in_context(ctx, sibling, sibling->cpu);
9594                         get_ctx(ctx);
9595                 }
9596
9597                 /*
9598                  * Removing from the context ends up with disabled
9599                  * event. What we want here is event in the initial
9600                  * startup state, ready to be add into new context.
9601                  */
9602                 perf_event__state_init(group_leader);
9603                 perf_install_in_context(ctx, group_leader, group_leader->cpu);
9604                 get_ctx(ctx);
9605
9606                 /*
9607                  * Now that all events are installed in @ctx, nothing
9608                  * references @gctx anymore, so drop the last reference we have
9609                  * on it.
9610                  */
9611                 put_ctx(gctx);
9612         }
9613
9614         /*
9615          * Precalculate sample_data sizes; do while holding ctx::mutex such
9616          * that we're serialized against further additions and before
9617          * perf_install_in_context() which is the point the event is active and
9618          * can use these values.
9619          */
9620         perf_event__header_size(event);
9621         perf_event__id_header_size(event);
9622
9623         event->owner = current;
9624
9625         perf_install_in_context(ctx, event, event->cpu);
9626         perf_unpin_context(ctx);
9627
9628         if (move_group)
9629                 mutex_unlock(&gctx->mutex);
9630         mutex_unlock(&ctx->mutex);
9631
9632         if (task) {
9633                 mutex_unlock(&task->signal->cred_guard_mutex);
9634                 put_task_struct(task);
9635         }
9636
9637         put_online_cpus();
9638
9639         mutex_lock(&current->perf_event_mutex);
9640         list_add_tail(&event->owner_entry, &current->perf_event_list);
9641         mutex_unlock(&current->perf_event_mutex);
9642
9643         /*
9644          * Drop the reference on the group_event after placing the
9645          * new event on the sibling_list. This ensures destruction
9646          * of the group leader will find the pointer to itself in
9647          * perf_group_detach().
9648          */
9649         fdput(group);
9650         fd_install(event_fd, event_file);
9651         return event_fd;
9652
9653 err_locked:
9654         if (move_group)
9655                 mutex_unlock(&gctx->mutex);
9656         mutex_unlock(&ctx->mutex);
9657 /* err_file: */
9658         fput(event_file);
9659 err_context:
9660         perf_unpin_context(ctx);
9661         put_ctx(ctx);
9662 err_alloc:
9663         /*
9664          * If event_file is set, the fput() above will have called ->release()
9665          * and that will take care of freeing the event.
9666          */
9667         if (!event_file)
9668                 free_event(event);
9669 err_cred:
9670         if (task)
9671                 mutex_unlock(&task->signal->cred_guard_mutex);
9672 err_cpus:
9673         put_online_cpus();
9674 err_task:
9675         if (task)
9676                 put_task_struct(task);
9677 err_group_fd:
9678         fdput(group);
9679 err_fd:
9680         put_unused_fd(event_fd);
9681         return err;
9682 }
9683
9684 /**
9685  * perf_event_create_kernel_counter
9686  *
9687  * @attr: attributes of the counter to create
9688  * @cpu: cpu in which the counter is bound
9689  * @task: task to profile (NULL for percpu)
9690  */
9691 struct perf_event *
9692 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
9693                                  struct task_struct *task,
9694                                  perf_overflow_handler_t overflow_handler,
9695                                  void *context)
9696 {
9697         struct perf_event_context *ctx;
9698         struct perf_event *event;
9699         int err;
9700
9701         /*
9702          * Get the target context (task or percpu):
9703          */
9704
9705         event = perf_event_alloc(attr, cpu, task, NULL, NULL,
9706                                  overflow_handler, context, -1);
9707         if (IS_ERR(event)) {
9708                 err = PTR_ERR(event);
9709                 goto err;
9710         }
9711
9712         /* Mark owner so we could distinguish it from user events. */
9713         event->owner = TASK_TOMBSTONE;
9714
9715         ctx = find_get_context(event->pmu, task, event);
9716         if (IS_ERR(ctx)) {
9717                 err = PTR_ERR(ctx);
9718                 goto err_free;
9719         }
9720
9721         WARN_ON_ONCE(ctx->parent_ctx);
9722         mutex_lock(&ctx->mutex);
9723         if (ctx->task == TASK_TOMBSTONE) {
9724                 err = -ESRCH;
9725                 goto err_unlock;
9726         }
9727
9728         if (!exclusive_event_installable(event, ctx)) {
9729                 err = -EBUSY;
9730                 goto err_unlock;
9731         }
9732
9733         perf_install_in_context(ctx, event, cpu);
9734         perf_unpin_context(ctx);
9735         mutex_unlock(&ctx->mutex);
9736
9737         return event;
9738
9739 err_unlock:
9740         mutex_unlock(&ctx->mutex);
9741         perf_unpin_context(ctx);
9742         put_ctx(ctx);
9743 err_free:
9744         free_event(event);
9745 err:
9746         return ERR_PTR(err);
9747 }
9748 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9749
9750 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
9751 {
9752         struct perf_event_context *src_ctx;
9753         struct perf_event_context *dst_ctx;
9754         struct perf_event *event, *tmp;
9755         LIST_HEAD(events);
9756
9757         src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
9758         dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
9759
9760         /*
9761          * See perf_event_ctx_lock() for comments on the details
9762          * of swizzling perf_event::ctx.
9763          */
9764         mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
9765         list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
9766                                  event_entry) {
9767                 perf_remove_from_context(event, 0);
9768                 unaccount_event_cpu(event, src_cpu);
9769                 put_ctx(src_ctx);
9770                 list_add(&event->migrate_entry, &events);
9771         }
9772
9773         /*
9774          * Wait for the events to quiesce before re-instating them.
9775          */
9776         synchronize_rcu();
9777
9778         /*
9779          * Re-instate events in 2 passes.
9780          *
9781          * Skip over group leaders and only install siblings on this first
9782          * pass, siblings will not get enabled without a leader, however a
9783          * leader will enable its siblings, even if those are still on the old
9784          * context.
9785          */
9786         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
9787                 if (event->group_leader == event)
9788                         continue;
9789
9790                 list_del(&event->migrate_entry);
9791                 if (event->state >= PERF_EVENT_STATE_OFF)
9792                         event->state = PERF_EVENT_STATE_INACTIVE;
9793                 account_event_cpu(event, dst_cpu);
9794                 perf_install_in_context(dst_ctx, event, dst_cpu);
9795                 get_ctx(dst_ctx);
9796         }
9797
9798         /*
9799          * Once all the siblings are setup properly, install the group leaders
9800          * to make it go.
9801          */
9802         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
9803                 list_del(&event->migrate_entry);
9804                 if (event->state >= PERF_EVENT_STATE_OFF)
9805                         event->state = PERF_EVENT_STATE_INACTIVE;
9806                 account_event_cpu(event, dst_cpu);
9807                 perf_install_in_context(dst_ctx, event, dst_cpu);
9808                 get_ctx(dst_ctx);
9809         }
9810         mutex_unlock(&dst_ctx->mutex);
9811         mutex_unlock(&src_ctx->mutex);
9812 }
9813 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
9814
9815 static void sync_child_event(struct perf_event *child_event,
9816                                struct task_struct *child)
9817 {
9818         struct perf_event *parent_event = child_event->parent;
9819         u64 child_val;
9820
9821         if (child_event->attr.inherit_stat)
9822                 perf_event_read_event(child_event, child);
9823
9824         child_val = perf_event_count(child_event);
9825
9826         /*
9827          * Add back the child's count to the parent's count:
9828          */
9829         atomic64_add(child_val, &parent_event->child_count);
9830         atomic64_add(child_event->total_time_enabled,
9831                      &parent_event->child_total_time_enabled);
9832         atomic64_add(child_event->total_time_running,
9833                      &parent_event->child_total_time_running);
9834 }
9835
9836 static void
9837 perf_event_exit_event(struct perf_event *child_event,
9838                       struct perf_event_context *child_ctx,
9839                       struct task_struct *child)
9840 {
9841         struct perf_event *parent_event = child_event->parent;
9842
9843         /*
9844          * Do not destroy the 'original' grouping; because of the context
9845          * switch optimization the original events could've ended up in a
9846          * random child task.
9847          *
9848          * If we were to destroy the original group, all group related
9849          * operations would cease to function properly after this random
9850          * child dies.
9851          *
9852          * Do destroy all inherited groups, we don't care about those
9853          * and being thorough is better.
9854          */
9855         raw_spin_lock_irq(&child_ctx->lock);
9856         WARN_ON_ONCE(child_ctx->is_active);
9857
9858         if (parent_event)
9859                 perf_group_detach(child_event);
9860         list_del_event(child_event, child_ctx);
9861         child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
9862         raw_spin_unlock_irq(&child_ctx->lock);
9863
9864         /*
9865          * Parent events are governed by their filedesc, retain them.
9866          */
9867         if (!parent_event) {
9868                 perf_event_wakeup(child_event);
9869                 return;
9870         }
9871         /*
9872          * Child events can be cleaned up.
9873          */
9874
9875         sync_child_event(child_event, child);
9876
9877         /*
9878          * Remove this event from the parent's list
9879          */
9880         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
9881         mutex_lock(&parent_event->child_mutex);
9882         list_del_init(&child_event->child_list);
9883         mutex_unlock(&parent_event->child_mutex);
9884
9885         /*
9886          * Kick perf_poll() for is_event_hup().
9887          */
9888         perf_event_wakeup(parent_event);
9889         free_event(child_event);
9890         put_event(parent_event);
9891 }
9892
9893 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9894 {
9895         struct perf_event_context *child_ctx, *clone_ctx = NULL;
9896         struct perf_event *child_event, *next;
9897
9898         WARN_ON_ONCE(child != current);
9899
9900         child_ctx = perf_pin_task_context(child, ctxn);
9901         if (!child_ctx)
9902                 return;
9903
9904         /*
9905          * In order to reduce the amount of tricky in ctx tear-down, we hold
9906          * ctx::mutex over the entire thing. This serializes against almost
9907          * everything that wants to access the ctx.
9908          *
9909          * The exception is sys_perf_event_open() /
9910          * perf_event_create_kernel_count() which does find_get_context()
9911          * without ctx::mutex (it cannot because of the move_group double mutex
9912          * lock thing). See the comments in perf_install_in_context().
9913          */
9914         mutex_lock(&child_ctx->mutex);
9915
9916         /*
9917          * In a single ctx::lock section, de-schedule the events and detach the
9918          * context from the task such that we cannot ever get it scheduled back
9919          * in.
9920          */
9921         raw_spin_lock_irq(&child_ctx->lock);
9922         task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
9923
9924         /*
9925          * Now that the context is inactive, destroy the task <-> ctx relation
9926          * and mark the context dead.
9927          */
9928         RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
9929         put_ctx(child_ctx); /* cannot be last */
9930         WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
9931         put_task_struct(current); /* cannot be last */
9932
9933         clone_ctx = unclone_ctx(child_ctx);
9934         raw_spin_unlock_irq(&child_ctx->lock);
9935
9936         if (clone_ctx)
9937                 put_ctx(clone_ctx);
9938
9939         /*
9940          * Report the task dead after unscheduling the events so that we
9941          * won't get any samples after PERF_RECORD_EXIT. We can however still
9942          * get a few PERF_RECORD_READ events.
9943          */
9944         perf_event_task(child, child_ctx, 0);
9945
9946         list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
9947                 perf_event_exit_event(child_event, child_ctx, child);
9948
9949         mutex_unlock(&child_ctx->mutex);
9950
9951         put_ctx(child_ctx);
9952 }
9953
9954 /*
9955  * When a child task exits, feed back event values to parent events.
9956  *
9957  * Can be called with cred_guard_mutex held when called from
9958  * install_exec_creds().
9959  */
9960 void perf_event_exit_task(struct task_struct *child)
9961 {
9962         struct perf_event *event, *tmp;
9963         int ctxn;
9964
9965         mutex_lock(&child->perf_event_mutex);
9966         list_for_each_entry_safe(event, tmp, &child->perf_event_list,
9967                                  owner_entry) {
9968                 list_del_init(&event->owner_entry);
9969
9970                 /*
9971                  * Ensure the list deletion is visible before we clear
9972                  * the owner, closes a race against perf_release() where
9973                  * we need to serialize on the owner->perf_event_mutex.
9974                  */
9975                 smp_store_release(&event->owner, NULL);
9976         }
9977         mutex_unlock(&child->perf_event_mutex);
9978
9979         for_each_task_context_nr(ctxn)
9980                 perf_event_exit_task_context(child, ctxn);
9981
9982         /*
9983          * The perf_event_exit_task_context calls perf_event_task
9984          * with child's task_ctx, which generates EXIT events for
9985          * child contexts and sets child->perf_event_ctxp[] to NULL.
9986          * At this point we need to send EXIT events to cpu contexts.
9987          */
9988         perf_event_task(child, NULL, 0);
9989 }
9990
9991 static void perf_free_event(struct perf_event *event,
9992                             struct perf_event_context *ctx)
9993 {
9994         struct perf_event *parent = event->parent;
9995
9996         if (WARN_ON_ONCE(!parent))
9997                 return;
9998
9999         mutex_lock(&parent->child_mutex);
10000         list_del_init(&event->child_list);
10001         mutex_unlock(&parent->child_mutex);
10002
10003         put_event(parent);
10004
10005         raw_spin_lock_irq(&ctx->lock);
10006         perf_group_detach(event);
10007         list_del_event(event, ctx);
10008         raw_spin_unlock_irq(&ctx->lock);
10009         free_event(event);
10010 }
10011
10012 /*
10013  * Free an unexposed, unused context as created by inheritance by
10014  * perf_event_init_task below, used by fork() in case of fail.
10015  *
10016  * Not all locks are strictly required, but take them anyway to be nice and
10017  * help out with the lockdep assertions.
10018  */
10019 void perf_event_free_task(struct task_struct *task)
10020 {
10021         struct perf_event_context *ctx;
10022         struct perf_event *event, *tmp;
10023         int ctxn;
10024
10025         for_each_task_context_nr(ctxn) {
10026                 ctx = task->perf_event_ctxp[ctxn];
10027                 if (!ctx)
10028                         continue;
10029
10030                 mutex_lock(&ctx->mutex);
10031 again:
10032                 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
10033                                 group_entry)
10034                         perf_free_event(event, ctx);
10035
10036                 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
10037                                 group_entry)
10038                         perf_free_event(event, ctx);
10039
10040                 if (!list_empty(&ctx->pinned_groups) ||
10041                                 !list_empty(&ctx->flexible_groups))
10042                         goto again;
10043
10044                 mutex_unlock(&ctx->mutex);
10045
10046                 put_ctx(ctx);
10047         }
10048 }
10049
10050 void perf_event_delayed_put(struct task_struct *task)
10051 {
10052         int ctxn;
10053
10054         for_each_task_context_nr(ctxn)
10055                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10056 }
10057
10058 struct file *perf_event_get(unsigned int fd)
10059 {
10060         struct file *file;
10061
10062         file = fget_raw(fd);
10063         if (!file)
10064                 return ERR_PTR(-EBADF);
10065
10066         if (file->f_op != &perf_fops) {
10067                 fput(file);
10068                 return ERR_PTR(-EBADF);
10069         }
10070
10071         return file;
10072 }
10073
10074 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10075 {
10076         if (!event)
10077                 return ERR_PTR(-EINVAL);
10078
10079         return &event->attr;
10080 }
10081
10082 /*
10083  * inherit a event from parent task to child task:
10084  */
10085 static struct perf_event *
10086 inherit_event(struct perf_event *parent_event,
10087               struct task_struct *parent,
10088               struct perf_event_context *parent_ctx,
10089               struct task_struct *child,
10090               struct perf_event *group_leader,
10091               struct perf_event_context *child_ctx)
10092 {
10093         enum perf_event_active_state parent_state = parent_event->state;
10094         struct perf_event *child_event;
10095         unsigned long flags;
10096
10097         /*
10098          * Instead of creating recursive hierarchies of events,
10099          * we link inherited events back to the original parent,
10100          * which has a filp for sure, which we use as the reference
10101          * count:
10102          */
10103         if (parent_event->parent)
10104                 parent_event = parent_event->parent;
10105
10106         child_event = perf_event_alloc(&parent_event->attr,
10107                                            parent_event->cpu,
10108                                            child,
10109                                            group_leader, parent_event,
10110                                            NULL, NULL, -1);
10111         if (IS_ERR(child_event))
10112                 return child_event;
10113
10114         /*
10115          * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10116          * must be under the same lock in order to serialize against
10117          * perf_event_release_kernel(), such that either we must observe
10118          * is_orphaned_event() or they will observe us on the child_list.
10119          */
10120         mutex_lock(&parent_event->child_mutex);
10121         if (is_orphaned_event(parent_event) ||
10122             !atomic_long_inc_not_zero(&parent_event->refcount)) {
10123                 mutex_unlock(&parent_event->child_mutex);
10124                 free_event(child_event);
10125                 return NULL;
10126         }
10127
10128         get_ctx(child_ctx);
10129
10130         /*
10131          * Make the child state follow the state of the parent event,
10132          * not its attr.disabled bit.  We hold the parent's mutex,
10133          * so we won't race with perf_event_{en, dis}able_family.
10134          */
10135         if (parent_state >= PERF_EVENT_STATE_INACTIVE)
10136                 child_event->state = PERF_EVENT_STATE_INACTIVE;
10137         else
10138                 child_event->state = PERF_EVENT_STATE_OFF;
10139
10140         if (parent_event->attr.freq) {
10141                 u64 sample_period = parent_event->hw.sample_period;
10142                 struct hw_perf_event *hwc = &child_event->hw;
10143
10144                 hwc->sample_period = sample_period;
10145                 hwc->last_period   = sample_period;
10146
10147                 local64_set(&hwc->period_left, sample_period);
10148         }
10149
10150         child_event->ctx = child_ctx;
10151         child_event->overflow_handler = parent_event->overflow_handler;
10152         child_event->overflow_handler_context
10153                 = parent_event->overflow_handler_context;
10154
10155         /*
10156          * Precalculate sample_data sizes
10157          */
10158         perf_event__header_size(child_event);
10159         perf_event__id_header_size(child_event);
10160
10161         /*
10162          * Link it up in the child's context:
10163          */
10164         raw_spin_lock_irqsave(&child_ctx->lock, flags);
10165         add_event_to_ctx(child_event, child_ctx);
10166         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
10167
10168         /*
10169          * Link this into the parent event's child list
10170          */
10171         list_add_tail(&child_event->child_list, &parent_event->child_list);
10172         mutex_unlock(&parent_event->child_mutex);
10173
10174         return child_event;
10175 }
10176
10177 static int inherit_group(struct perf_event *parent_event,
10178               struct task_struct *parent,
10179               struct perf_event_context *parent_ctx,
10180               struct task_struct *child,
10181               struct perf_event_context *child_ctx)
10182 {
10183         struct perf_event *leader;
10184         struct perf_event *sub;
10185         struct perf_event *child_ctr;
10186
10187         leader = inherit_event(parent_event, parent, parent_ctx,
10188                                  child, NULL, child_ctx);
10189         if (IS_ERR(leader))
10190                 return PTR_ERR(leader);
10191         list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10192                 child_ctr = inherit_event(sub, parent, parent_ctx,
10193                                             child, leader, child_ctx);
10194                 if (IS_ERR(child_ctr))
10195                         return PTR_ERR(child_ctr);
10196         }
10197         return 0;
10198 }
10199
10200 static int
10201 inherit_task_group(struct perf_event *event, struct task_struct *parent,
10202                    struct perf_event_context *parent_ctx,
10203                    struct task_struct *child, int ctxn,
10204                    int *inherited_all)
10205 {
10206         int ret;
10207         struct perf_event_context *child_ctx;
10208
10209         if (!event->attr.inherit) {
10210                 *inherited_all = 0;
10211                 return 0;
10212         }
10213
10214         child_ctx = child->perf_event_ctxp[ctxn];
10215         if (!child_ctx) {
10216                 /*
10217                  * This is executed from the parent task context, so
10218                  * inherit events that have been marked for cloning.
10219                  * First allocate and initialize a context for the
10220                  * child.
10221                  */
10222
10223                 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10224                 if (!child_ctx)
10225                         return -ENOMEM;
10226
10227                 child->perf_event_ctxp[ctxn] = child_ctx;
10228         }
10229
10230         ret = inherit_group(event, parent, parent_ctx,
10231                             child, child_ctx);
10232
10233         if (ret)
10234                 *inherited_all = 0;
10235
10236         return ret;
10237 }
10238
10239 /*
10240  * Initialize the perf_event context in task_struct
10241  */
10242 static int perf_event_init_context(struct task_struct *child, int ctxn)
10243 {
10244         struct perf_event_context *child_ctx, *parent_ctx;
10245         struct perf_event_context *cloned_ctx;
10246         struct perf_event *event;
10247         struct task_struct *parent = current;
10248         int inherited_all = 1;
10249         unsigned long flags;
10250         int ret = 0;
10251
10252         if (likely(!parent->perf_event_ctxp[ctxn]))
10253                 return 0;
10254
10255         /*
10256          * If the parent's context is a clone, pin it so it won't get
10257          * swapped under us.
10258          */
10259         parent_ctx = perf_pin_task_context(parent, ctxn);
10260         if (!parent_ctx)
10261                 return 0;
10262
10263         /*
10264          * No need to check if parent_ctx != NULL here; since we saw
10265          * it non-NULL earlier, the only reason for it to become NULL
10266          * is if we exit, and since we're currently in the middle of
10267          * a fork we can't be exiting at the same time.
10268          */
10269
10270         /*
10271          * Lock the parent list. No need to lock the child - not PID
10272          * hashed yet and not running, so nobody can access it.
10273          */
10274         mutex_lock(&parent_ctx->mutex);
10275
10276         /*
10277          * We dont have to disable NMIs - we are only looking at
10278          * the list, not manipulating it:
10279          */
10280         list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
10281                 ret = inherit_task_group(event, parent, parent_ctx,
10282                                          child, ctxn, &inherited_all);
10283                 if (ret)
10284                         break;
10285         }
10286
10287         /*
10288          * We can't hold ctx->lock when iterating the ->flexible_group list due
10289          * to allocations, but we need to prevent rotation because
10290          * rotate_ctx() will change the list from interrupt context.
10291          */
10292         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10293         parent_ctx->rotate_disable = 1;
10294         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10295
10296         list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
10297                 ret = inherit_task_group(event, parent, parent_ctx,
10298                                          child, ctxn, &inherited_all);
10299                 if (ret)
10300                         break;
10301         }
10302
10303         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10304         parent_ctx->rotate_disable = 0;
10305
10306         child_ctx = child->perf_event_ctxp[ctxn];
10307
10308         if (child_ctx && inherited_all) {
10309                 /*
10310                  * Mark the child context as a clone of the parent
10311                  * context, or of whatever the parent is a clone of.
10312                  *
10313                  * Note that if the parent is a clone, the holding of
10314                  * parent_ctx->lock avoids it from being uncloned.
10315                  */
10316                 cloned_ctx = parent_ctx->parent_ctx;
10317                 if (cloned_ctx) {
10318                         child_ctx->parent_ctx = cloned_ctx;
10319                         child_ctx->parent_gen = parent_ctx->parent_gen;
10320                 } else {
10321                         child_ctx->parent_ctx = parent_ctx;
10322                         child_ctx->parent_gen = parent_ctx->generation;
10323                 }
10324                 get_ctx(child_ctx->parent_ctx);
10325         }
10326
10327         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10328         mutex_unlock(&parent_ctx->mutex);
10329
10330         perf_unpin_context(parent_ctx);
10331         put_ctx(parent_ctx);
10332
10333         return ret;
10334 }
10335
10336 /*
10337  * Initialize the perf_event context in task_struct
10338  */
10339 int perf_event_init_task(struct task_struct *child)
10340 {
10341         int ctxn, ret;
10342
10343         memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
10344         mutex_init(&child->perf_event_mutex);
10345         INIT_LIST_HEAD(&child->perf_event_list);
10346
10347         for_each_task_context_nr(ctxn) {
10348                 ret = perf_event_init_context(child, ctxn);
10349                 if (ret) {
10350                         perf_event_free_task(child);
10351                         return ret;
10352                 }
10353         }
10354
10355         return 0;
10356 }
10357
10358 static void __init perf_event_init_all_cpus(void)
10359 {
10360         struct swevent_htable *swhash;
10361         int cpu;
10362
10363         for_each_possible_cpu(cpu) {
10364                 swhash = &per_cpu(swevent_htable, cpu);
10365                 mutex_init(&swhash->hlist_mutex);
10366                 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
10367
10368                 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
10369                 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
10370         }
10371 }
10372
10373 int perf_event_init_cpu(unsigned int cpu)
10374 {
10375         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10376
10377         mutex_lock(&swhash->hlist_mutex);
10378         if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
10379                 struct swevent_hlist *hlist;
10380
10381                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
10382                 WARN_ON(!hlist);
10383                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
10384         }
10385         mutex_unlock(&swhash->hlist_mutex);
10386         return 0;
10387 }
10388
10389 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
10390 static void __perf_event_exit_context(void *__info)
10391 {
10392         struct perf_event_context *ctx = __info;
10393         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
10394         struct perf_event *event;
10395
10396         raw_spin_lock(&ctx->lock);
10397         list_for_each_entry(event, &ctx->event_list, event_entry)
10398                 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
10399         raw_spin_unlock(&ctx->lock);
10400 }
10401
10402 static void perf_event_exit_cpu_context(int cpu)
10403 {
10404         struct perf_event_context *ctx;
10405         struct pmu *pmu;
10406         int idx;
10407
10408         idx = srcu_read_lock(&pmus_srcu);
10409         list_for_each_entry_rcu(pmu, &pmus, entry) {
10410                 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
10411
10412                 mutex_lock(&ctx->mutex);
10413                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
10414                 mutex_unlock(&ctx->mutex);
10415         }
10416         srcu_read_unlock(&pmus_srcu, idx);
10417 }
10418 #else
10419
10420 static void perf_event_exit_cpu_context(int cpu) { }
10421
10422 #endif
10423
10424 int perf_event_exit_cpu(unsigned int cpu)
10425 {
10426         perf_event_exit_cpu_context(cpu);
10427         return 0;
10428 }
10429
10430 static int
10431 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
10432 {
10433         int cpu;
10434
10435         for_each_online_cpu(cpu)
10436                 perf_event_exit_cpu(cpu);
10437
10438         return NOTIFY_OK;
10439 }
10440
10441 /*
10442  * Run the perf reboot notifier at the very last possible moment so that
10443  * the generic watchdog code runs as long as possible.
10444  */
10445 static struct notifier_block perf_reboot_notifier = {
10446         .notifier_call = perf_reboot,
10447         .priority = INT_MIN,
10448 };
10449
10450 void __init perf_event_init(void)
10451 {
10452         int ret;
10453
10454         idr_init(&pmu_idr);
10455
10456         perf_event_init_all_cpus();
10457         init_srcu_struct(&pmus_srcu);
10458         perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
10459         perf_pmu_register(&perf_cpu_clock, NULL, -1);
10460         perf_pmu_register(&perf_task_clock, NULL, -1);
10461         perf_tp_register();
10462         perf_event_init_cpu(smp_processor_id());
10463         register_reboot_notifier(&perf_reboot_notifier);
10464
10465         ret = init_hw_breakpoint();
10466         WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
10467
10468         /*
10469          * Build time assertion that we keep the data_head at the intended
10470          * location.  IOW, validation we got the __reserved[] size right.
10471          */
10472         BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
10473                      != 1024);
10474 }
10475
10476 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
10477                               char *page)
10478 {
10479         struct perf_pmu_events_attr *pmu_attr =
10480                 container_of(attr, struct perf_pmu_events_attr, attr);
10481
10482         if (pmu_attr->event_str)
10483                 return sprintf(page, "%s\n", pmu_attr->event_str);
10484
10485         return 0;
10486 }
10487 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
10488
10489 static int __init perf_event_sysfs_init(void)
10490 {
10491         struct pmu *pmu;
10492         int ret;
10493
10494         mutex_lock(&pmus_lock);
10495
10496         ret = bus_register(&pmu_bus);
10497         if (ret)
10498                 goto unlock;
10499
10500         list_for_each_entry(pmu, &pmus, entry) {
10501                 if (!pmu->name || pmu->type < 0)
10502                         continue;
10503
10504                 ret = pmu_dev_alloc(pmu);
10505                 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
10506         }
10507         pmu_bus_running = 1;
10508         ret = 0;
10509
10510 unlock:
10511         mutex_unlock(&pmus_lock);
10512
10513         return ret;
10514 }
10515 device_initcall(perf_event_sysfs_init);
10516
10517 #ifdef CONFIG_CGROUP_PERF
10518 static struct cgroup_subsys_state *
10519 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
10520 {
10521         struct perf_cgroup *jc;
10522
10523         jc = kzalloc(sizeof(*jc), GFP_KERNEL);
10524         if (!jc)
10525                 return ERR_PTR(-ENOMEM);
10526
10527         jc->info = alloc_percpu(struct perf_cgroup_info);
10528         if (!jc->info) {
10529                 kfree(jc);
10530                 return ERR_PTR(-ENOMEM);
10531         }
10532
10533         return &jc->css;
10534 }
10535
10536 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
10537 {
10538         struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
10539
10540         free_percpu(jc->info);
10541         kfree(jc);
10542 }
10543
10544 static int __perf_cgroup_move(void *info)
10545 {
10546         struct task_struct *task = info;
10547         rcu_read_lock();
10548         perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
10549         rcu_read_unlock();
10550         return 0;
10551 }
10552
10553 static void perf_cgroup_attach(struct cgroup_taskset *tset)
10554 {
10555         struct task_struct *task;
10556         struct cgroup_subsys_state *css;
10557
10558         cgroup_taskset_for_each(task, css, tset)
10559                 task_function_call(task, __perf_cgroup_move, task);
10560 }
10561
10562 struct cgroup_subsys perf_event_cgrp_subsys = {
10563         .css_alloc      = perf_cgroup_css_alloc,
10564         .css_free       = perf_cgroup_css_free,
10565         .attach         = perf_cgroup_attach,
10566 };
10567 #endif /* CONFIG_CGROUP_PERF */