vfork: introduce complete_vfork_done()
[cascardo/linux.git] / kernel / fork.c
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/swap.h>
38 #include <linux/syscalls.h>
39 #include <linux/jiffies.h>
40 #include <linux/futex.h>
41 #include <linux/compat.h>
42 #include <linux/kthread.h>
43 #include <linux/task_io_accounting_ops.h>
44 #include <linux/rcupdate.h>
45 #include <linux/ptrace.h>
46 #include <linux/mount.h>
47 #include <linux/audit.h>
48 #include <linux/memcontrol.h>
49 #include <linux/ftrace.h>
50 #include <linux/profile.h>
51 #include <linux/rmap.h>
52 #include <linux/ksm.h>
53 #include <linux/acct.h>
54 #include <linux/tsacct_kern.h>
55 #include <linux/cn_proc.h>
56 #include <linux/freezer.h>
57 #include <linux/delayacct.h>
58 #include <linux/taskstats_kern.h>
59 #include <linux/random.h>
60 #include <linux/tty.h>
61 #include <linux/blkdev.h>
62 #include <linux/fs_struct.h>
63 #include <linux/magic.h>
64 #include <linux/perf_event.h>
65 #include <linux/posix-timers.h>
66 #include <linux/user-return-notifier.h>
67 #include <linux/oom.h>
68 #include <linux/khugepaged.h>
69 #include <linux/signalfd.h>
70
71 #include <asm/pgtable.h>
72 #include <asm/pgalloc.h>
73 #include <asm/uaccess.h>
74 #include <asm/mmu_context.h>
75 #include <asm/cacheflush.h>
76 #include <asm/tlbflush.h>
77
78 #include <trace/events/sched.h>
79
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/task.h>
82
83 /*
84  * Protected counters by write_lock_irq(&tasklist_lock)
85  */
86 unsigned long total_forks;      /* Handle normal Linux uptimes. */
87 int nr_threads;                 /* The idle threads do not count.. */
88
89 int max_threads;                /* tunable limit on nr_threads */
90
91 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
92
93 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
94
95 #ifdef CONFIG_PROVE_RCU
96 int lockdep_tasklist_lock_is_held(void)
97 {
98         return lockdep_is_held(&tasklist_lock);
99 }
100 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
101 #endif /* #ifdef CONFIG_PROVE_RCU */
102
103 int nr_processes(void)
104 {
105         int cpu;
106         int total = 0;
107
108         for_each_possible_cpu(cpu)
109                 total += per_cpu(process_counts, cpu);
110
111         return total;
112 }
113
114 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
115 # define alloc_task_struct_node(node)           \
116                 kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node)
117 # define free_task_struct(tsk)                  \
118                 kmem_cache_free(task_struct_cachep, (tsk))
119 static struct kmem_cache *task_struct_cachep;
120 #endif
121
122 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
123 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
124                                                   int node)
125 {
126 #ifdef CONFIG_DEBUG_STACK_USAGE
127         gfp_t mask = GFP_KERNEL | __GFP_ZERO;
128 #else
129         gfp_t mask = GFP_KERNEL;
130 #endif
131         struct page *page = alloc_pages_node(node, mask, THREAD_SIZE_ORDER);
132
133         return page ? page_address(page) : NULL;
134 }
135
136 static inline void free_thread_info(struct thread_info *ti)
137 {
138         free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
139 }
140 #endif
141
142 /* SLAB cache for signal_struct structures (tsk->signal) */
143 static struct kmem_cache *signal_cachep;
144
145 /* SLAB cache for sighand_struct structures (tsk->sighand) */
146 struct kmem_cache *sighand_cachep;
147
148 /* SLAB cache for files_struct structures (tsk->files) */
149 struct kmem_cache *files_cachep;
150
151 /* SLAB cache for fs_struct structures (tsk->fs) */
152 struct kmem_cache *fs_cachep;
153
154 /* SLAB cache for vm_area_struct structures */
155 struct kmem_cache *vm_area_cachep;
156
157 /* SLAB cache for mm_struct structures (tsk->mm) */
158 static struct kmem_cache *mm_cachep;
159
160 static void account_kernel_stack(struct thread_info *ti, int account)
161 {
162         struct zone *zone = page_zone(virt_to_page(ti));
163
164         mod_zone_page_state(zone, NR_KERNEL_STACK, account);
165 }
166
167 void free_task(struct task_struct *tsk)
168 {
169         account_kernel_stack(tsk->stack, -1);
170         free_thread_info(tsk->stack);
171         rt_mutex_debug_task_free(tsk);
172         ftrace_graph_exit_task(tsk);
173         free_task_struct(tsk);
174 }
175 EXPORT_SYMBOL(free_task);
176
177 static inline void free_signal_struct(struct signal_struct *sig)
178 {
179         taskstats_tgid_free(sig);
180         sched_autogroup_exit(sig);
181         kmem_cache_free(signal_cachep, sig);
182 }
183
184 static inline void put_signal_struct(struct signal_struct *sig)
185 {
186         if (atomic_dec_and_test(&sig->sigcnt))
187                 free_signal_struct(sig);
188 }
189
190 void __put_task_struct(struct task_struct *tsk)
191 {
192         WARN_ON(!tsk->exit_state);
193         WARN_ON(atomic_read(&tsk->usage));
194         WARN_ON(tsk == current);
195
196         exit_creds(tsk);
197         delayacct_tsk_free(tsk);
198         put_signal_struct(tsk->signal);
199
200         if (!profile_handoff_task(tsk))
201                 free_task(tsk);
202 }
203 EXPORT_SYMBOL_GPL(__put_task_struct);
204
205 /*
206  * macro override instead of weak attribute alias, to workaround
207  * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
208  */
209 #ifndef arch_task_cache_init
210 #define arch_task_cache_init()
211 #endif
212
213 void __init fork_init(unsigned long mempages)
214 {
215 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
216 #ifndef ARCH_MIN_TASKALIGN
217 #define ARCH_MIN_TASKALIGN      L1_CACHE_BYTES
218 #endif
219         /* create a slab on which task_structs can be allocated */
220         task_struct_cachep =
221                 kmem_cache_create("task_struct", sizeof(struct task_struct),
222                         ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
223 #endif
224
225         /* do the arch specific task caches init */
226         arch_task_cache_init();
227
228         /*
229          * The default maximum number of threads is set to a safe
230          * value: the thread structures can take up at most half
231          * of memory.
232          */
233         max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
234
235         /*
236          * we need to allow at least 20 threads to boot a system
237          */
238         if (max_threads < 20)
239                 max_threads = 20;
240
241         init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
242         init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
243         init_task.signal->rlim[RLIMIT_SIGPENDING] =
244                 init_task.signal->rlim[RLIMIT_NPROC];
245 }
246
247 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
248                                                struct task_struct *src)
249 {
250         *dst = *src;
251         return 0;
252 }
253
254 static struct task_struct *dup_task_struct(struct task_struct *orig)
255 {
256         struct task_struct *tsk;
257         struct thread_info *ti;
258         unsigned long *stackend;
259         int node = tsk_fork_get_node(orig);
260         int err;
261
262         prepare_to_copy(orig);
263
264         tsk = alloc_task_struct_node(node);
265         if (!tsk)
266                 return NULL;
267
268         ti = alloc_thread_info_node(tsk, node);
269         if (!ti) {
270                 free_task_struct(tsk);
271                 return NULL;
272         }
273
274         err = arch_dup_task_struct(tsk, orig);
275         if (err)
276                 goto out;
277
278         tsk->stack = ti;
279
280         setup_thread_stack(tsk, orig);
281         clear_user_return_notifier(tsk);
282         clear_tsk_need_resched(tsk);
283         stackend = end_of_stack(tsk);
284         *stackend = STACK_END_MAGIC;    /* for overflow detection */
285
286 #ifdef CONFIG_CC_STACKPROTECTOR
287         tsk->stack_canary = get_random_int();
288 #endif
289
290         /*
291          * One for us, one for whoever does the "release_task()" (usually
292          * parent)
293          */
294         atomic_set(&tsk->usage, 2);
295 #ifdef CONFIG_BLK_DEV_IO_TRACE
296         tsk->btrace_seq = 0;
297 #endif
298         tsk->splice_pipe = NULL;
299
300         account_kernel_stack(ti, 1);
301
302         return tsk;
303
304 out:
305         free_thread_info(ti);
306         free_task_struct(tsk);
307         return NULL;
308 }
309
310 #ifdef CONFIG_MMU
311 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
312 {
313         struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
314         struct rb_node **rb_link, *rb_parent;
315         int retval;
316         unsigned long charge;
317         struct mempolicy *pol;
318
319         down_write(&oldmm->mmap_sem);
320         flush_cache_dup_mm(oldmm);
321         /*
322          * Not linked in yet - no deadlock potential:
323          */
324         down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
325
326         mm->locked_vm = 0;
327         mm->mmap = NULL;
328         mm->mmap_cache = NULL;
329         mm->free_area_cache = oldmm->mmap_base;
330         mm->cached_hole_size = ~0UL;
331         mm->map_count = 0;
332         cpumask_clear(mm_cpumask(mm));
333         mm->mm_rb = RB_ROOT;
334         rb_link = &mm->mm_rb.rb_node;
335         rb_parent = NULL;
336         pprev = &mm->mmap;
337         retval = ksm_fork(mm, oldmm);
338         if (retval)
339                 goto out;
340         retval = khugepaged_fork(mm, oldmm);
341         if (retval)
342                 goto out;
343
344         prev = NULL;
345         for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
346                 struct file *file;
347
348                 if (mpnt->vm_flags & VM_DONTCOPY) {
349                         long pages = vma_pages(mpnt);
350                         mm->total_vm -= pages;
351                         vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
352                                                                 -pages);
353                         continue;
354                 }
355                 charge = 0;
356                 if (mpnt->vm_flags & VM_ACCOUNT) {
357                         unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
358                         if (security_vm_enough_memory(len))
359                                 goto fail_nomem;
360                         charge = len;
361                 }
362                 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
363                 if (!tmp)
364                         goto fail_nomem;
365                 *tmp = *mpnt;
366                 INIT_LIST_HEAD(&tmp->anon_vma_chain);
367                 pol = mpol_dup(vma_policy(mpnt));
368                 retval = PTR_ERR(pol);
369                 if (IS_ERR(pol))
370                         goto fail_nomem_policy;
371                 vma_set_policy(tmp, pol);
372                 tmp->vm_mm = mm;
373                 if (anon_vma_fork(tmp, mpnt))
374                         goto fail_nomem_anon_vma_fork;
375                 tmp->vm_flags &= ~VM_LOCKED;
376                 tmp->vm_next = tmp->vm_prev = NULL;
377                 file = tmp->vm_file;
378                 if (file) {
379                         struct inode *inode = file->f_path.dentry->d_inode;
380                         struct address_space *mapping = file->f_mapping;
381
382                         get_file(file);
383                         if (tmp->vm_flags & VM_DENYWRITE)
384                                 atomic_dec(&inode->i_writecount);
385                         mutex_lock(&mapping->i_mmap_mutex);
386                         if (tmp->vm_flags & VM_SHARED)
387                                 mapping->i_mmap_writable++;
388                         flush_dcache_mmap_lock(mapping);
389                         /* insert tmp into the share list, just after mpnt */
390                         vma_prio_tree_add(tmp, mpnt);
391                         flush_dcache_mmap_unlock(mapping);
392                         mutex_unlock(&mapping->i_mmap_mutex);
393                 }
394
395                 /*
396                  * Clear hugetlb-related page reserves for children. This only
397                  * affects MAP_PRIVATE mappings. Faults generated by the child
398                  * are not guaranteed to succeed, even if read-only
399                  */
400                 if (is_vm_hugetlb_page(tmp))
401                         reset_vma_resv_huge_pages(tmp);
402
403                 /*
404                  * Link in the new vma and copy the page table entries.
405                  */
406                 *pprev = tmp;
407                 pprev = &tmp->vm_next;
408                 tmp->vm_prev = prev;
409                 prev = tmp;
410
411                 __vma_link_rb(mm, tmp, rb_link, rb_parent);
412                 rb_link = &tmp->vm_rb.rb_right;
413                 rb_parent = &tmp->vm_rb;
414
415                 mm->map_count++;
416                 retval = copy_page_range(mm, oldmm, mpnt);
417
418                 if (tmp->vm_ops && tmp->vm_ops->open)
419                         tmp->vm_ops->open(tmp);
420
421                 if (retval)
422                         goto out;
423         }
424         /* a new mm has just been created */
425         arch_dup_mmap(oldmm, mm);
426         retval = 0;
427 out:
428         up_write(&mm->mmap_sem);
429         flush_tlb_mm(oldmm);
430         up_write(&oldmm->mmap_sem);
431         return retval;
432 fail_nomem_anon_vma_fork:
433         mpol_put(pol);
434 fail_nomem_policy:
435         kmem_cache_free(vm_area_cachep, tmp);
436 fail_nomem:
437         retval = -ENOMEM;
438         vm_unacct_memory(charge);
439         goto out;
440 }
441
442 static inline int mm_alloc_pgd(struct mm_struct *mm)
443 {
444         mm->pgd = pgd_alloc(mm);
445         if (unlikely(!mm->pgd))
446                 return -ENOMEM;
447         return 0;
448 }
449
450 static inline void mm_free_pgd(struct mm_struct *mm)
451 {
452         pgd_free(mm, mm->pgd);
453 }
454 #else
455 #define dup_mmap(mm, oldmm)     (0)
456 #define mm_alloc_pgd(mm)        (0)
457 #define mm_free_pgd(mm)
458 #endif /* CONFIG_MMU */
459
460 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
461
462 #define allocate_mm()   (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
463 #define free_mm(mm)     (kmem_cache_free(mm_cachep, (mm)))
464
465 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
466
467 static int __init coredump_filter_setup(char *s)
468 {
469         default_dump_filter =
470                 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
471                 MMF_DUMP_FILTER_MASK;
472         return 1;
473 }
474
475 __setup("coredump_filter=", coredump_filter_setup);
476
477 #include <linux/init_task.h>
478
479 static void mm_init_aio(struct mm_struct *mm)
480 {
481 #ifdef CONFIG_AIO
482         spin_lock_init(&mm->ioctx_lock);
483         INIT_HLIST_HEAD(&mm->ioctx_list);
484 #endif
485 }
486
487 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
488 {
489         atomic_set(&mm->mm_users, 1);
490         atomic_set(&mm->mm_count, 1);
491         init_rwsem(&mm->mmap_sem);
492         INIT_LIST_HEAD(&mm->mmlist);
493         mm->flags = (current->mm) ?
494                 (current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
495         mm->core_state = NULL;
496         mm->nr_ptes = 0;
497         memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
498         spin_lock_init(&mm->page_table_lock);
499         mm->free_area_cache = TASK_UNMAPPED_BASE;
500         mm->cached_hole_size = ~0UL;
501         mm_init_aio(mm);
502         mm_init_owner(mm, p);
503
504         if (likely(!mm_alloc_pgd(mm))) {
505                 mm->def_flags = 0;
506                 mmu_notifier_mm_init(mm);
507                 return mm;
508         }
509
510         free_mm(mm);
511         return NULL;
512 }
513
514 /*
515  * Allocate and initialize an mm_struct.
516  */
517 struct mm_struct *mm_alloc(void)
518 {
519         struct mm_struct *mm;
520
521         mm = allocate_mm();
522         if (!mm)
523                 return NULL;
524
525         memset(mm, 0, sizeof(*mm));
526         mm_init_cpumask(mm);
527         return mm_init(mm, current);
528 }
529
530 /*
531  * Called when the last reference to the mm
532  * is dropped: either by a lazy thread or by
533  * mmput. Free the page directory and the mm.
534  */
535 void __mmdrop(struct mm_struct *mm)
536 {
537         BUG_ON(mm == &init_mm);
538         mm_free_pgd(mm);
539         destroy_context(mm);
540         mmu_notifier_mm_destroy(mm);
541 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
542         VM_BUG_ON(mm->pmd_huge_pte);
543 #endif
544         free_mm(mm);
545 }
546 EXPORT_SYMBOL_GPL(__mmdrop);
547
548 /*
549  * Decrement the use count and release all resources for an mm.
550  */
551 void mmput(struct mm_struct *mm)
552 {
553         might_sleep();
554
555         if (atomic_dec_and_test(&mm->mm_users)) {
556                 exit_aio(mm);
557                 ksm_exit(mm);
558                 khugepaged_exit(mm); /* must run before exit_mmap */
559                 exit_mmap(mm);
560                 set_mm_exe_file(mm, NULL);
561                 if (!list_empty(&mm->mmlist)) {
562                         spin_lock(&mmlist_lock);
563                         list_del(&mm->mmlist);
564                         spin_unlock(&mmlist_lock);
565                 }
566                 put_swap_token(mm);
567                 if (mm->binfmt)
568                         module_put(mm->binfmt->module);
569                 mmdrop(mm);
570         }
571 }
572 EXPORT_SYMBOL_GPL(mmput);
573
574 /*
575  * We added or removed a vma mapping the executable. The vmas are only mapped
576  * during exec and are not mapped with the mmap system call.
577  * Callers must hold down_write() on the mm's mmap_sem for these
578  */
579 void added_exe_file_vma(struct mm_struct *mm)
580 {
581         mm->num_exe_file_vmas++;
582 }
583
584 void removed_exe_file_vma(struct mm_struct *mm)
585 {
586         mm->num_exe_file_vmas--;
587         if ((mm->num_exe_file_vmas == 0) && mm->exe_file) {
588                 fput(mm->exe_file);
589                 mm->exe_file = NULL;
590         }
591
592 }
593
594 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
595 {
596         if (new_exe_file)
597                 get_file(new_exe_file);
598         if (mm->exe_file)
599                 fput(mm->exe_file);
600         mm->exe_file = new_exe_file;
601         mm->num_exe_file_vmas = 0;
602 }
603
604 struct file *get_mm_exe_file(struct mm_struct *mm)
605 {
606         struct file *exe_file;
607
608         /* We need mmap_sem to protect against races with removal of
609          * VM_EXECUTABLE vmas */
610         down_read(&mm->mmap_sem);
611         exe_file = mm->exe_file;
612         if (exe_file)
613                 get_file(exe_file);
614         up_read(&mm->mmap_sem);
615         return exe_file;
616 }
617
618 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
619 {
620         /* It's safe to write the exe_file pointer without exe_file_lock because
621          * this is called during fork when the task is not yet in /proc */
622         newmm->exe_file = get_mm_exe_file(oldmm);
623 }
624
625 /**
626  * get_task_mm - acquire a reference to the task's mm
627  *
628  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
629  * this kernel workthread has transiently adopted a user mm with use_mm,
630  * to do its AIO) is not set and if so returns a reference to it, after
631  * bumping up the use count.  User must release the mm via mmput()
632  * after use.  Typically used by /proc and ptrace.
633  */
634 struct mm_struct *get_task_mm(struct task_struct *task)
635 {
636         struct mm_struct *mm;
637
638         task_lock(task);
639         mm = task->mm;
640         if (mm) {
641                 if (task->flags & PF_KTHREAD)
642                         mm = NULL;
643                 else
644                         atomic_inc(&mm->mm_users);
645         }
646         task_unlock(task);
647         return mm;
648 }
649 EXPORT_SYMBOL_GPL(get_task_mm);
650
651 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
652 {
653         struct mm_struct *mm;
654         int err;
655
656         err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
657         if (err)
658                 return ERR_PTR(err);
659
660         mm = get_task_mm(task);
661         if (mm && mm != current->mm &&
662                         !ptrace_may_access(task, mode)) {
663                 mmput(mm);
664                 mm = ERR_PTR(-EACCES);
665         }
666         mutex_unlock(&task->signal->cred_guard_mutex);
667
668         return mm;
669 }
670
671 void complete_vfork_done(struct task_struct *tsk)
672 {
673         struct completion *vfork_done = tsk->vfork_done;
674
675         tsk->vfork_done = NULL;
676         complete(vfork_done);
677 }
678
679 /* Please note the differences between mmput and mm_release.
680  * mmput is called whenever we stop holding onto a mm_struct,
681  * error success whatever.
682  *
683  * mm_release is called after a mm_struct has been removed
684  * from the current process.
685  *
686  * This difference is important for error handling, when we
687  * only half set up a mm_struct for a new process and need to restore
688  * the old one.  Because we mmput the new mm_struct before
689  * restoring the old one. . .
690  * Eric Biederman 10 January 1998
691  */
692 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
693 {
694         /* Get rid of any futexes when releasing the mm */
695 #ifdef CONFIG_FUTEX
696         if (unlikely(tsk->robust_list)) {
697                 exit_robust_list(tsk);
698                 tsk->robust_list = NULL;
699         }
700 #ifdef CONFIG_COMPAT
701         if (unlikely(tsk->compat_robust_list)) {
702                 compat_exit_robust_list(tsk);
703                 tsk->compat_robust_list = NULL;
704         }
705 #endif
706         if (unlikely(!list_empty(&tsk->pi_state_list)))
707                 exit_pi_state_list(tsk);
708 #endif
709
710         /* Get rid of any cached register state */
711         deactivate_mm(tsk, mm);
712
713         if (tsk->vfork_done)
714                 complete_vfork_done(tsk);
715
716         /*
717          * If we're exiting normally, clear a user-space tid field if
718          * requested.  We leave this alone when dying by signal, to leave
719          * the value intact in a core dump, and to save the unnecessary
720          * trouble otherwise.  Userland only wants this done for a sys_exit.
721          */
722         if (tsk->clear_child_tid) {
723                 if (!(tsk->flags & PF_SIGNALED) &&
724                     atomic_read(&mm->mm_users) > 1) {
725                         /*
726                          * We don't check the error code - if userspace has
727                          * not set up a proper pointer then tough luck.
728                          */
729                         put_user(0, tsk->clear_child_tid);
730                         sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
731                                         1, NULL, NULL, 0);
732                 }
733                 tsk->clear_child_tid = NULL;
734         }
735 }
736
737 /*
738  * Allocate a new mm structure and copy contents from the
739  * mm structure of the passed in task structure.
740  */
741 struct mm_struct *dup_mm(struct task_struct *tsk)
742 {
743         struct mm_struct *mm, *oldmm = current->mm;
744         int err;
745
746         if (!oldmm)
747                 return NULL;
748
749         mm = allocate_mm();
750         if (!mm)
751                 goto fail_nomem;
752
753         memcpy(mm, oldmm, sizeof(*mm));
754         mm_init_cpumask(mm);
755
756         /* Initializing for Swap token stuff */
757         mm->token_priority = 0;
758         mm->last_interval = 0;
759
760 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
761         mm->pmd_huge_pte = NULL;
762 #endif
763
764         if (!mm_init(mm, tsk))
765                 goto fail_nomem;
766
767         if (init_new_context(tsk, mm))
768                 goto fail_nocontext;
769
770         dup_mm_exe_file(oldmm, mm);
771
772         err = dup_mmap(mm, oldmm);
773         if (err)
774                 goto free_pt;
775
776         mm->hiwater_rss = get_mm_rss(mm);
777         mm->hiwater_vm = mm->total_vm;
778
779         if (mm->binfmt && !try_module_get(mm->binfmt->module))
780                 goto free_pt;
781
782         return mm;
783
784 free_pt:
785         /* don't put binfmt in mmput, we haven't got module yet */
786         mm->binfmt = NULL;
787         mmput(mm);
788
789 fail_nomem:
790         return NULL;
791
792 fail_nocontext:
793         /*
794          * If init_new_context() failed, we cannot use mmput() to free the mm
795          * because it calls destroy_context()
796          */
797         mm_free_pgd(mm);
798         free_mm(mm);
799         return NULL;
800 }
801
802 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
803 {
804         struct mm_struct *mm, *oldmm;
805         int retval;
806
807         tsk->min_flt = tsk->maj_flt = 0;
808         tsk->nvcsw = tsk->nivcsw = 0;
809 #ifdef CONFIG_DETECT_HUNG_TASK
810         tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
811 #endif
812
813         tsk->mm = NULL;
814         tsk->active_mm = NULL;
815
816         /*
817          * Are we cloning a kernel thread?
818          *
819          * We need to steal a active VM for that..
820          */
821         oldmm = current->mm;
822         if (!oldmm)
823                 return 0;
824
825         if (clone_flags & CLONE_VM) {
826                 atomic_inc(&oldmm->mm_users);
827                 mm = oldmm;
828                 goto good_mm;
829         }
830
831         retval = -ENOMEM;
832         mm = dup_mm(tsk);
833         if (!mm)
834                 goto fail_nomem;
835
836 good_mm:
837         /* Initializing for Swap token stuff */
838         mm->token_priority = 0;
839         mm->last_interval = 0;
840
841         tsk->mm = mm;
842         tsk->active_mm = mm;
843         return 0;
844
845 fail_nomem:
846         return retval;
847 }
848
849 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
850 {
851         struct fs_struct *fs = current->fs;
852         if (clone_flags & CLONE_FS) {
853                 /* tsk->fs is already what we want */
854                 spin_lock(&fs->lock);
855                 if (fs->in_exec) {
856                         spin_unlock(&fs->lock);
857                         return -EAGAIN;
858                 }
859                 fs->users++;
860                 spin_unlock(&fs->lock);
861                 return 0;
862         }
863         tsk->fs = copy_fs_struct(fs);
864         if (!tsk->fs)
865                 return -ENOMEM;
866         return 0;
867 }
868
869 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
870 {
871         struct files_struct *oldf, *newf;
872         int error = 0;
873
874         /*
875          * A background process may not have any files ...
876          */
877         oldf = current->files;
878         if (!oldf)
879                 goto out;
880
881         if (clone_flags & CLONE_FILES) {
882                 atomic_inc(&oldf->count);
883                 goto out;
884         }
885
886         newf = dup_fd(oldf, &error);
887         if (!newf)
888                 goto out;
889
890         tsk->files = newf;
891         error = 0;
892 out:
893         return error;
894 }
895
896 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
897 {
898 #ifdef CONFIG_BLOCK
899         struct io_context *ioc = current->io_context;
900         struct io_context *new_ioc;
901
902         if (!ioc)
903                 return 0;
904         /*
905          * Share io context with parent, if CLONE_IO is set
906          */
907         if (clone_flags & CLONE_IO) {
908                 tsk->io_context = ioc_task_link(ioc);
909                 if (unlikely(!tsk->io_context))
910                         return -ENOMEM;
911         } else if (ioprio_valid(ioc->ioprio)) {
912                 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
913                 if (unlikely(!new_ioc))
914                         return -ENOMEM;
915
916                 new_ioc->ioprio = ioc->ioprio;
917                 put_io_context(new_ioc);
918         }
919 #endif
920         return 0;
921 }
922
923 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
924 {
925         struct sighand_struct *sig;
926
927         if (clone_flags & CLONE_SIGHAND) {
928                 atomic_inc(&current->sighand->count);
929                 return 0;
930         }
931         sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
932         rcu_assign_pointer(tsk->sighand, sig);
933         if (!sig)
934                 return -ENOMEM;
935         atomic_set(&sig->count, 1);
936         memcpy(sig->action, current->sighand->action, sizeof(sig->action));
937         return 0;
938 }
939
940 void __cleanup_sighand(struct sighand_struct *sighand)
941 {
942         if (atomic_dec_and_test(&sighand->count)) {
943                 signalfd_cleanup(sighand);
944                 kmem_cache_free(sighand_cachep, sighand);
945         }
946 }
947
948
949 /*
950  * Initialize POSIX timer handling for a thread group.
951  */
952 static void posix_cpu_timers_init_group(struct signal_struct *sig)
953 {
954         unsigned long cpu_limit;
955
956         /* Thread group counters. */
957         thread_group_cputime_init(sig);
958
959         cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
960         if (cpu_limit != RLIM_INFINITY) {
961                 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
962                 sig->cputimer.running = 1;
963         }
964
965         /* The timer lists. */
966         INIT_LIST_HEAD(&sig->cpu_timers[0]);
967         INIT_LIST_HEAD(&sig->cpu_timers[1]);
968         INIT_LIST_HEAD(&sig->cpu_timers[2]);
969 }
970
971 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
972 {
973         struct signal_struct *sig;
974
975         if (clone_flags & CLONE_THREAD)
976                 return 0;
977
978         sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
979         tsk->signal = sig;
980         if (!sig)
981                 return -ENOMEM;
982
983         sig->nr_threads = 1;
984         atomic_set(&sig->live, 1);
985         atomic_set(&sig->sigcnt, 1);
986         init_waitqueue_head(&sig->wait_chldexit);
987         if (clone_flags & CLONE_NEWPID)
988                 sig->flags |= SIGNAL_UNKILLABLE;
989         sig->curr_target = tsk;
990         init_sigpending(&sig->shared_pending);
991         INIT_LIST_HEAD(&sig->posix_timers);
992
993         hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
994         sig->real_timer.function = it_real_fn;
995
996         task_lock(current->group_leader);
997         memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
998         task_unlock(current->group_leader);
999
1000         posix_cpu_timers_init_group(sig);
1001
1002         tty_audit_fork(sig);
1003         sched_autogroup_fork(sig);
1004
1005 #ifdef CONFIG_CGROUPS
1006         init_rwsem(&sig->group_rwsem);
1007 #endif
1008
1009         sig->oom_adj = current->signal->oom_adj;
1010         sig->oom_score_adj = current->signal->oom_score_adj;
1011         sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1012
1013         mutex_init(&sig->cred_guard_mutex);
1014
1015         return 0;
1016 }
1017
1018 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
1019 {
1020         unsigned long new_flags = p->flags;
1021
1022         new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1023         new_flags |= PF_FORKNOEXEC;
1024         new_flags |= PF_STARTING;
1025         p->flags = new_flags;
1026 }
1027
1028 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1029 {
1030         current->clear_child_tid = tidptr;
1031
1032         return task_pid_vnr(current);
1033 }
1034
1035 static void rt_mutex_init_task(struct task_struct *p)
1036 {
1037         raw_spin_lock_init(&p->pi_lock);
1038 #ifdef CONFIG_RT_MUTEXES
1039         plist_head_init(&p->pi_waiters);
1040         p->pi_blocked_on = NULL;
1041 #endif
1042 }
1043
1044 #ifdef CONFIG_MM_OWNER
1045 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1046 {
1047         mm->owner = p;
1048 }
1049 #endif /* CONFIG_MM_OWNER */
1050
1051 /*
1052  * Initialize POSIX timer handling for a single task.
1053  */
1054 static void posix_cpu_timers_init(struct task_struct *tsk)
1055 {
1056         tsk->cputime_expires.prof_exp = 0;
1057         tsk->cputime_expires.virt_exp = 0;
1058         tsk->cputime_expires.sched_exp = 0;
1059         INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1060         INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1061         INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1062 }
1063
1064 /*
1065  * This creates a new process as a copy of the old one,
1066  * but does not actually start it yet.
1067  *
1068  * It copies the registers, and all the appropriate
1069  * parts of the process environment (as per the clone
1070  * flags). The actual kick-off is left to the caller.
1071  */
1072 static struct task_struct *copy_process(unsigned long clone_flags,
1073                                         unsigned long stack_start,
1074                                         struct pt_regs *regs,
1075                                         unsigned long stack_size,
1076                                         int __user *child_tidptr,
1077                                         struct pid *pid,
1078                                         int trace)
1079 {
1080         int retval;
1081         struct task_struct *p;
1082         int cgroup_callbacks_done = 0;
1083
1084         if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1085                 return ERR_PTR(-EINVAL);
1086
1087         /*
1088          * Thread groups must share signals as well, and detached threads
1089          * can only be started up within the thread group.
1090          */
1091         if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1092                 return ERR_PTR(-EINVAL);
1093
1094         /*
1095          * Shared signal handlers imply shared VM. By way of the above,
1096          * thread groups also imply shared VM. Blocking this case allows
1097          * for various simplifications in other code.
1098          */
1099         if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1100                 return ERR_PTR(-EINVAL);
1101
1102         /*
1103          * Siblings of global init remain as zombies on exit since they are
1104          * not reaped by their parent (swapper). To solve this and to avoid
1105          * multi-rooted process trees, prevent global and container-inits
1106          * from creating siblings.
1107          */
1108         if ((clone_flags & CLONE_PARENT) &&
1109                                 current->signal->flags & SIGNAL_UNKILLABLE)
1110                 return ERR_PTR(-EINVAL);
1111
1112         retval = security_task_create(clone_flags);
1113         if (retval)
1114                 goto fork_out;
1115
1116         retval = -ENOMEM;
1117         p = dup_task_struct(current);
1118         if (!p)
1119                 goto fork_out;
1120
1121         ftrace_graph_init_task(p);
1122
1123         rt_mutex_init_task(p);
1124
1125 #ifdef CONFIG_PROVE_LOCKING
1126         DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1127         DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1128 #endif
1129         retval = -EAGAIN;
1130         if (atomic_read(&p->real_cred->user->processes) >=
1131                         task_rlimit(p, RLIMIT_NPROC)) {
1132                 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1133                     p->real_cred->user != INIT_USER)
1134                         goto bad_fork_free;
1135         }
1136         current->flags &= ~PF_NPROC_EXCEEDED;
1137
1138         retval = copy_creds(p, clone_flags);
1139         if (retval < 0)
1140                 goto bad_fork_free;
1141
1142         /*
1143          * If multiple threads are within copy_process(), then this check
1144          * triggers too late. This doesn't hurt, the check is only there
1145          * to stop root fork bombs.
1146          */
1147         retval = -EAGAIN;
1148         if (nr_threads >= max_threads)
1149                 goto bad_fork_cleanup_count;
1150
1151         if (!try_module_get(task_thread_info(p)->exec_domain->module))
1152                 goto bad_fork_cleanup_count;
1153
1154         p->did_exec = 0;
1155         delayacct_tsk_init(p);  /* Must remain after dup_task_struct() */
1156         copy_flags(clone_flags, p);
1157         INIT_LIST_HEAD(&p->children);
1158         INIT_LIST_HEAD(&p->sibling);
1159         rcu_copy_process(p);
1160         p->vfork_done = NULL;
1161         spin_lock_init(&p->alloc_lock);
1162
1163         init_sigpending(&p->pending);
1164
1165         p->utime = p->stime = p->gtime = 0;
1166         p->utimescaled = p->stimescaled = 0;
1167 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1168         p->prev_utime = p->prev_stime = 0;
1169 #endif
1170 #if defined(SPLIT_RSS_COUNTING)
1171         memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1172 #endif
1173
1174         p->default_timer_slack_ns = current->timer_slack_ns;
1175
1176         task_io_accounting_init(&p->ioac);
1177         acct_clear_integrals(p);
1178
1179         posix_cpu_timers_init(p);
1180
1181         do_posix_clock_monotonic_gettime(&p->start_time);
1182         p->real_start_time = p->start_time;
1183         monotonic_to_bootbased(&p->real_start_time);
1184         p->io_context = NULL;
1185         p->audit_context = NULL;
1186         if (clone_flags & CLONE_THREAD)
1187                 threadgroup_change_begin(current);
1188         cgroup_fork(p);
1189 #ifdef CONFIG_NUMA
1190         p->mempolicy = mpol_dup(p->mempolicy);
1191         if (IS_ERR(p->mempolicy)) {
1192                 retval = PTR_ERR(p->mempolicy);
1193                 p->mempolicy = NULL;
1194                 goto bad_fork_cleanup_cgroup;
1195         }
1196         mpol_fix_fork_child_flag(p);
1197 #endif
1198 #ifdef CONFIG_CPUSETS
1199         p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1200         p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1201 #endif
1202 #ifdef CONFIG_TRACE_IRQFLAGS
1203         p->irq_events = 0;
1204 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1205         p->hardirqs_enabled = 1;
1206 #else
1207         p->hardirqs_enabled = 0;
1208 #endif
1209         p->hardirq_enable_ip = 0;
1210         p->hardirq_enable_event = 0;
1211         p->hardirq_disable_ip = _THIS_IP_;
1212         p->hardirq_disable_event = 0;
1213         p->softirqs_enabled = 1;
1214         p->softirq_enable_ip = _THIS_IP_;
1215         p->softirq_enable_event = 0;
1216         p->softirq_disable_ip = 0;
1217         p->softirq_disable_event = 0;
1218         p->hardirq_context = 0;
1219         p->softirq_context = 0;
1220 #endif
1221 #ifdef CONFIG_LOCKDEP
1222         p->lockdep_depth = 0; /* no locks held yet */
1223         p->curr_chain_key = 0;
1224         p->lockdep_recursion = 0;
1225 #endif
1226
1227 #ifdef CONFIG_DEBUG_MUTEXES
1228         p->blocked_on = NULL; /* not blocked yet */
1229 #endif
1230 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1231         p->memcg_batch.do_batch = 0;
1232         p->memcg_batch.memcg = NULL;
1233 #endif
1234
1235         /* Perform scheduler related setup. Assign this task to a CPU. */
1236         sched_fork(p);
1237
1238         retval = perf_event_init_task(p);
1239         if (retval)
1240                 goto bad_fork_cleanup_policy;
1241         retval = audit_alloc(p);
1242         if (retval)
1243                 goto bad_fork_cleanup_policy;
1244         /* copy all the process information */
1245         retval = copy_semundo(clone_flags, p);
1246         if (retval)
1247                 goto bad_fork_cleanup_audit;
1248         retval = copy_files(clone_flags, p);
1249         if (retval)
1250                 goto bad_fork_cleanup_semundo;
1251         retval = copy_fs(clone_flags, p);
1252         if (retval)
1253                 goto bad_fork_cleanup_files;
1254         retval = copy_sighand(clone_flags, p);
1255         if (retval)
1256                 goto bad_fork_cleanup_fs;
1257         retval = copy_signal(clone_flags, p);
1258         if (retval)
1259                 goto bad_fork_cleanup_sighand;
1260         retval = copy_mm(clone_flags, p);
1261         if (retval)
1262                 goto bad_fork_cleanup_signal;
1263         retval = copy_namespaces(clone_flags, p);
1264         if (retval)
1265                 goto bad_fork_cleanup_mm;
1266         retval = copy_io(clone_flags, p);
1267         if (retval)
1268                 goto bad_fork_cleanup_namespaces;
1269         retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
1270         if (retval)
1271                 goto bad_fork_cleanup_io;
1272
1273         if (pid != &init_struct_pid) {
1274                 retval = -ENOMEM;
1275                 pid = alloc_pid(p->nsproxy->pid_ns);
1276                 if (!pid)
1277                         goto bad_fork_cleanup_io;
1278         }
1279
1280         p->pid = pid_nr(pid);
1281         p->tgid = p->pid;
1282         if (clone_flags & CLONE_THREAD)
1283                 p->tgid = current->tgid;
1284
1285         p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1286         /*
1287          * Clear TID on mm_release()?
1288          */
1289         p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1290 #ifdef CONFIG_BLOCK
1291         p->plug = NULL;
1292 #endif
1293 #ifdef CONFIG_FUTEX
1294         p->robust_list = NULL;
1295 #ifdef CONFIG_COMPAT
1296         p->compat_robust_list = NULL;
1297 #endif
1298         INIT_LIST_HEAD(&p->pi_state_list);
1299         p->pi_state_cache = NULL;
1300 #endif
1301         /*
1302          * sigaltstack should be cleared when sharing the same VM
1303          */
1304         if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1305                 p->sas_ss_sp = p->sas_ss_size = 0;
1306
1307         /*
1308          * Syscall tracing and stepping should be turned off in the
1309          * child regardless of CLONE_PTRACE.
1310          */
1311         user_disable_single_step(p);
1312         clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1313 #ifdef TIF_SYSCALL_EMU
1314         clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1315 #endif
1316         clear_all_latency_tracing(p);
1317
1318         /* ok, now we should be set up.. */
1319         p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1320         p->pdeath_signal = 0;
1321         p->exit_state = 0;
1322
1323         p->nr_dirtied = 0;
1324         p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1325         p->dirty_paused_when = 0;
1326
1327         /*
1328          * Ok, make it visible to the rest of the system.
1329          * We dont wake it up yet.
1330          */
1331         p->group_leader = p;
1332         INIT_LIST_HEAD(&p->thread_group);
1333
1334         /* Now that the task is set up, run cgroup callbacks if
1335          * necessary. We need to run them before the task is visible
1336          * on the tasklist. */
1337         cgroup_fork_callbacks(p);
1338         cgroup_callbacks_done = 1;
1339
1340         /* Need tasklist lock for parent etc handling! */
1341         write_lock_irq(&tasklist_lock);
1342
1343         /* CLONE_PARENT re-uses the old parent */
1344         if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1345                 p->real_parent = current->real_parent;
1346                 p->parent_exec_id = current->parent_exec_id;
1347         } else {
1348                 p->real_parent = current;
1349                 p->parent_exec_id = current->self_exec_id;
1350         }
1351
1352         spin_lock(&current->sighand->siglock);
1353
1354         /*
1355          * Process group and session signals need to be delivered to just the
1356          * parent before the fork or both the parent and the child after the
1357          * fork. Restart if a signal comes in before we add the new process to
1358          * it's process group.
1359          * A fatal signal pending means that current will exit, so the new
1360          * thread can't slip out of an OOM kill (or normal SIGKILL).
1361         */
1362         recalc_sigpending();
1363         if (signal_pending(current)) {
1364                 spin_unlock(&current->sighand->siglock);
1365                 write_unlock_irq(&tasklist_lock);
1366                 retval = -ERESTARTNOINTR;
1367                 goto bad_fork_free_pid;
1368         }
1369
1370         if (clone_flags & CLONE_THREAD) {
1371                 current->signal->nr_threads++;
1372                 atomic_inc(&current->signal->live);
1373                 atomic_inc(&current->signal->sigcnt);
1374                 p->group_leader = current->group_leader;
1375                 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1376         }
1377
1378         if (likely(p->pid)) {
1379                 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1380
1381                 if (thread_group_leader(p)) {
1382                         if (is_child_reaper(pid))
1383                                 p->nsproxy->pid_ns->child_reaper = p;
1384
1385                         p->signal->leader_pid = pid;
1386                         p->signal->tty = tty_kref_get(current->signal->tty);
1387                         attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1388                         attach_pid(p, PIDTYPE_SID, task_session(current));
1389                         list_add_tail(&p->sibling, &p->real_parent->children);
1390                         list_add_tail_rcu(&p->tasks, &init_task.tasks);
1391                         __this_cpu_inc(process_counts);
1392                 }
1393                 attach_pid(p, PIDTYPE_PID, pid);
1394                 nr_threads++;
1395         }
1396
1397         total_forks++;
1398         spin_unlock(&current->sighand->siglock);
1399         write_unlock_irq(&tasklist_lock);
1400         proc_fork_connector(p);
1401         cgroup_post_fork(p);
1402         if (clone_flags & CLONE_THREAD)
1403                 threadgroup_change_end(current);
1404         perf_event_fork(p);
1405
1406         trace_task_newtask(p, clone_flags);
1407
1408         return p;
1409
1410 bad_fork_free_pid:
1411         if (pid != &init_struct_pid)
1412                 free_pid(pid);
1413 bad_fork_cleanup_io:
1414         if (p->io_context)
1415                 exit_io_context(p);
1416 bad_fork_cleanup_namespaces:
1417         exit_task_namespaces(p);
1418 bad_fork_cleanup_mm:
1419         if (p->mm)
1420                 mmput(p->mm);
1421 bad_fork_cleanup_signal:
1422         if (!(clone_flags & CLONE_THREAD))
1423                 free_signal_struct(p->signal);
1424 bad_fork_cleanup_sighand:
1425         __cleanup_sighand(p->sighand);
1426 bad_fork_cleanup_fs:
1427         exit_fs(p); /* blocking */
1428 bad_fork_cleanup_files:
1429         exit_files(p); /* blocking */
1430 bad_fork_cleanup_semundo:
1431         exit_sem(p);
1432 bad_fork_cleanup_audit:
1433         audit_free(p);
1434 bad_fork_cleanup_policy:
1435         perf_event_free_task(p);
1436 #ifdef CONFIG_NUMA
1437         mpol_put(p->mempolicy);
1438 bad_fork_cleanup_cgroup:
1439 #endif
1440         if (clone_flags & CLONE_THREAD)
1441                 threadgroup_change_end(current);
1442         cgroup_exit(p, cgroup_callbacks_done);
1443         delayacct_tsk_free(p);
1444         module_put(task_thread_info(p)->exec_domain->module);
1445 bad_fork_cleanup_count:
1446         atomic_dec(&p->cred->user->processes);
1447         exit_creds(p);
1448 bad_fork_free:
1449         free_task(p);
1450 fork_out:
1451         return ERR_PTR(retval);
1452 }
1453
1454 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1455 {
1456         memset(regs, 0, sizeof(struct pt_regs));
1457         return regs;
1458 }
1459
1460 static inline void init_idle_pids(struct pid_link *links)
1461 {
1462         enum pid_type type;
1463
1464         for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1465                 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1466                 links[type].pid = &init_struct_pid;
1467         }
1468 }
1469
1470 struct task_struct * __cpuinit fork_idle(int cpu)
1471 {
1472         struct task_struct *task;
1473         struct pt_regs regs;
1474
1475         task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1476                             &init_struct_pid, 0);
1477         if (!IS_ERR(task)) {
1478                 init_idle_pids(task->pids);
1479                 init_idle(task, cpu);
1480         }
1481
1482         return task;
1483 }
1484
1485 /*
1486  *  Ok, this is the main fork-routine.
1487  *
1488  * It copies the process, and if successful kick-starts
1489  * it and waits for it to finish using the VM if required.
1490  */
1491 long do_fork(unsigned long clone_flags,
1492               unsigned long stack_start,
1493               struct pt_regs *regs,
1494               unsigned long stack_size,
1495               int __user *parent_tidptr,
1496               int __user *child_tidptr)
1497 {
1498         struct task_struct *p;
1499         int trace = 0;
1500         long nr;
1501
1502         /*
1503          * Do some preliminary argument and permissions checking before we
1504          * actually start allocating stuff
1505          */
1506         if (clone_flags & CLONE_NEWUSER) {
1507                 if (clone_flags & CLONE_THREAD)
1508                         return -EINVAL;
1509                 /* hopefully this check will go away when userns support is
1510                  * complete
1511                  */
1512                 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1513                                 !capable(CAP_SETGID))
1514                         return -EPERM;
1515         }
1516
1517         /*
1518          * Determine whether and which event to report to ptracer.  When
1519          * called from kernel_thread or CLONE_UNTRACED is explicitly
1520          * requested, no event is reported; otherwise, report if the event
1521          * for the type of forking is enabled.
1522          */
1523         if (likely(user_mode(regs)) && !(clone_flags & CLONE_UNTRACED)) {
1524                 if (clone_flags & CLONE_VFORK)
1525                         trace = PTRACE_EVENT_VFORK;
1526                 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1527                         trace = PTRACE_EVENT_CLONE;
1528                 else
1529                         trace = PTRACE_EVENT_FORK;
1530
1531                 if (likely(!ptrace_event_enabled(current, trace)))
1532                         trace = 0;
1533         }
1534
1535         p = copy_process(clone_flags, stack_start, regs, stack_size,
1536                          child_tidptr, NULL, trace);
1537         /*
1538          * Do this prior waking up the new thread - the thread pointer
1539          * might get invalid after that point, if the thread exits quickly.
1540          */
1541         if (!IS_ERR(p)) {
1542                 struct completion vfork;
1543
1544                 trace_sched_process_fork(current, p);
1545
1546                 nr = task_pid_vnr(p);
1547
1548                 if (clone_flags & CLONE_PARENT_SETTID)
1549                         put_user(nr, parent_tidptr);
1550
1551                 if (clone_flags & CLONE_VFORK) {
1552                         p->vfork_done = &vfork;
1553                         init_completion(&vfork);
1554                 }
1555
1556                 /*
1557                  * We set PF_STARTING at creation in case tracing wants to
1558                  * use this to distinguish a fully live task from one that
1559                  * hasn't finished SIGSTOP raising yet.  Now we clear it
1560                  * and set the child going.
1561                  */
1562                 p->flags &= ~PF_STARTING;
1563
1564                 wake_up_new_task(p);
1565
1566                 /* forking complete and child started to run, tell ptracer */
1567                 if (unlikely(trace))
1568                         ptrace_event(trace, nr);
1569
1570                 if (clone_flags & CLONE_VFORK) {
1571                         freezer_do_not_count();
1572                         wait_for_completion(&vfork);
1573                         freezer_count();
1574                         ptrace_event(PTRACE_EVENT_VFORK_DONE, nr);
1575                 }
1576         } else {
1577                 nr = PTR_ERR(p);
1578         }
1579         return nr;
1580 }
1581
1582 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1583 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1584 #endif
1585
1586 static void sighand_ctor(void *data)
1587 {
1588         struct sighand_struct *sighand = data;
1589
1590         spin_lock_init(&sighand->siglock);
1591         init_waitqueue_head(&sighand->signalfd_wqh);
1592 }
1593
1594 void __init proc_caches_init(void)
1595 {
1596         sighand_cachep = kmem_cache_create("sighand_cache",
1597                         sizeof(struct sighand_struct), 0,
1598                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1599                         SLAB_NOTRACK, sighand_ctor);
1600         signal_cachep = kmem_cache_create("signal_cache",
1601                         sizeof(struct signal_struct), 0,
1602                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1603         files_cachep = kmem_cache_create("files_cache",
1604                         sizeof(struct files_struct), 0,
1605                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1606         fs_cachep = kmem_cache_create("fs_cache",
1607                         sizeof(struct fs_struct), 0,
1608                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1609         /*
1610          * FIXME! The "sizeof(struct mm_struct)" currently includes the
1611          * whole struct cpumask for the OFFSTACK case. We could change
1612          * this to *only* allocate as much of it as required by the
1613          * maximum number of CPU's we can ever have.  The cpumask_allocation
1614          * is at the end of the structure, exactly for that reason.
1615          */
1616         mm_cachep = kmem_cache_create("mm_struct",
1617                         sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1618                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1619         vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1620         mmap_init();
1621         nsproxy_cache_init();
1622 }
1623
1624 /*
1625  * Check constraints on flags passed to the unshare system call.
1626  */
1627 static int check_unshare_flags(unsigned long unshare_flags)
1628 {
1629         if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1630                                 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1631                                 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
1632                 return -EINVAL;
1633         /*
1634          * Not implemented, but pretend it works if there is nothing to
1635          * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1636          * needs to unshare vm.
1637          */
1638         if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1639                 /* FIXME: get_task_mm() increments ->mm_users */
1640                 if (atomic_read(&current->mm->mm_users) > 1)
1641                         return -EINVAL;
1642         }
1643
1644         return 0;
1645 }
1646
1647 /*
1648  * Unshare the filesystem structure if it is being shared
1649  */
1650 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1651 {
1652         struct fs_struct *fs = current->fs;
1653
1654         if (!(unshare_flags & CLONE_FS) || !fs)
1655                 return 0;
1656
1657         /* don't need lock here; in the worst case we'll do useless copy */
1658         if (fs->users == 1)
1659                 return 0;
1660
1661         *new_fsp = copy_fs_struct(fs);
1662         if (!*new_fsp)
1663                 return -ENOMEM;
1664
1665         return 0;
1666 }
1667
1668 /*
1669  * Unshare file descriptor table if it is being shared
1670  */
1671 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1672 {
1673         struct files_struct *fd = current->files;
1674         int error = 0;
1675
1676         if ((unshare_flags & CLONE_FILES) &&
1677             (fd && atomic_read(&fd->count) > 1)) {
1678                 *new_fdp = dup_fd(fd, &error);
1679                 if (!*new_fdp)
1680                         return error;
1681         }
1682
1683         return 0;
1684 }
1685
1686 /*
1687  * unshare allows a process to 'unshare' part of the process
1688  * context which was originally shared using clone.  copy_*
1689  * functions used by do_fork() cannot be used here directly
1690  * because they modify an inactive task_struct that is being
1691  * constructed. Here we are modifying the current, active,
1692  * task_struct.
1693  */
1694 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1695 {
1696         struct fs_struct *fs, *new_fs = NULL;
1697         struct files_struct *fd, *new_fd = NULL;
1698         struct nsproxy *new_nsproxy = NULL;
1699         int do_sysvsem = 0;
1700         int err;
1701
1702         err = check_unshare_flags(unshare_flags);
1703         if (err)
1704                 goto bad_unshare_out;
1705
1706         /*
1707          * If unsharing namespace, must also unshare filesystem information.
1708          */
1709         if (unshare_flags & CLONE_NEWNS)
1710                 unshare_flags |= CLONE_FS;
1711         /*
1712          * CLONE_NEWIPC must also detach from the undolist: after switching
1713          * to a new ipc namespace, the semaphore arrays from the old
1714          * namespace are unreachable.
1715          */
1716         if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1717                 do_sysvsem = 1;
1718         err = unshare_fs(unshare_flags, &new_fs);
1719         if (err)
1720                 goto bad_unshare_out;
1721         err = unshare_fd(unshare_flags, &new_fd);
1722         if (err)
1723                 goto bad_unshare_cleanup_fs;
1724         err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, new_fs);
1725         if (err)
1726                 goto bad_unshare_cleanup_fd;
1727
1728         if (new_fs || new_fd || do_sysvsem || new_nsproxy) {
1729                 if (do_sysvsem) {
1730                         /*
1731                          * CLONE_SYSVSEM is equivalent to sys_exit().
1732                          */
1733                         exit_sem(current);
1734                 }
1735
1736                 if (new_nsproxy) {
1737                         switch_task_namespaces(current, new_nsproxy);
1738                         new_nsproxy = NULL;
1739                 }
1740
1741                 task_lock(current);
1742
1743                 if (new_fs) {
1744                         fs = current->fs;
1745                         spin_lock(&fs->lock);
1746                         current->fs = new_fs;
1747                         if (--fs->users)
1748                                 new_fs = NULL;
1749                         else
1750                                 new_fs = fs;
1751                         spin_unlock(&fs->lock);
1752                 }
1753
1754                 if (new_fd) {
1755                         fd = current->files;
1756                         current->files = new_fd;
1757                         new_fd = fd;
1758                 }
1759
1760                 task_unlock(current);
1761         }
1762
1763         if (new_nsproxy)
1764                 put_nsproxy(new_nsproxy);
1765
1766 bad_unshare_cleanup_fd:
1767         if (new_fd)
1768                 put_files_struct(new_fd);
1769
1770 bad_unshare_cleanup_fs:
1771         if (new_fs)
1772                 free_fs_struct(new_fs);
1773
1774 bad_unshare_out:
1775         return err;
1776 }
1777
1778 /*
1779  *      Helper to unshare the files of the current task.
1780  *      We don't want to expose copy_files internals to
1781  *      the exec layer of the kernel.
1782  */
1783
1784 int unshare_files(struct files_struct **displaced)
1785 {
1786         struct task_struct *task = current;
1787         struct files_struct *copy = NULL;
1788         int error;
1789
1790         error = unshare_fd(CLONE_FILES, &copy);
1791         if (error || !copy) {
1792                 *displaced = NULL;
1793                 return error;
1794         }
1795         *displaced = task->files;
1796         task_lock(task);
1797         task->files = copy;
1798         task_unlock(task);
1799         return 0;
1800 }