asmlinkage: Add explicit __visible to drivers/*, lib/*, kernel/*
[cascardo/linux.git] / kernel / power / snapshot.c
1 /*
2  * linux/kernel/power/snapshot.c
3  *
4  * This file provides system snapshot/restore functionality for swsusp.
5  *
6  * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
7  * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
8  *
9  * This file is released under the GPLv2.
10  *
11  */
12
13 #include <linux/version.h>
14 #include <linux/module.h>
15 #include <linux/mm.h>
16 #include <linux/suspend.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/spinlock.h>
20 #include <linux/kernel.h>
21 #include <linux/pm.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/bootmem.h>
25 #include <linux/syscalls.h>
26 #include <linux/console.h>
27 #include <linux/highmem.h>
28 #include <linux/list.h>
29 #include <linux/slab.h>
30 #include <linux/compiler.h>
31
32 #include <asm/uaccess.h>
33 #include <asm/mmu_context.h>
34 #include <asm/pgtable.h>
35 #include <asm/tlbflush.h>
36 #include <asm/io.h>
37
38 #include "power.h"
39
40 static int swsusp_page_is_free(struct page *);
41 static void swsusp_set_page_forbidden(struct page *);
42 static void swsusp_unset_page_forbidden(struct page *);
43
44 /*
45  * Number of bytes to reserve for memory allocations made by device drivers
46  * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
47  * cause image creation to fail (tunable via /sys/power/reserved_size).
48  */
49 unsigned long reserved_size;
50
51 void __init hibernate_reserved_size_init(void)
52 {
53         reserved_size = SPARE_PAGES * PAGE_SIZE;
54 }
55
56 /*
57  * Preferred image size in bytes (tunable via /sys/power/image_size).
58  * When it is set to N, swsusp will do its best to ensure the image
59  * size will not exceed N bytes, but if that is impossible, it will
60  * try to create the smallest image possible.
61  */
62 unsigned long image_size;
63
64 void __init hibernate_image_size_init(void)
65 {
66         image_size = ((totalram_pages * 2) / 5) * PAGE_SIZE;
67 }
68
69 /* List of PBEs needed for restoring the pages that were allocated before
70  * the suspend and included in the suspend image, but have also been
71  * allocated by the "resume" kernel, so their contents cannot be written
72  * directly to their "original" page frames.
73  */
74 struct pbe *restore_pblist;
75
76 /* Pointer to an auxiliary buffer (1 page) */
77 static void *buffer;
78
79 /**
80  *      @safe_needed - on resume, for storing the PBE list and the image,
81  *      we can only use memory pages that do not conflict with the pages
82  *      used before suspend.  The unsafe pages have PageNosaveFree set
83  *      and we count them using unsafe_pages.
84  *
85  *      Each allocated image page is marked as PageNosave and PageNosaveFree
86  *      so that swsusp_free() can release it.
87  */
88
89 #define PG_ANY          0
90 #define PG_SAFE         1
91 #define PG_UNSAFE_CLEAR 1
92 #define PG_UNSAFE_KEEP  0
93
94 static unsigned int allocated_unsafe_pages;
95
96 static void *get_image_page(gfp_t gfp_mask, int safe_needed)
97 {
98         void *res;
99
100         res = (void *)get_zeroed_page(gfp_mask);
101         if (safe_needed)
102                 while (res && swsusp_page_is_free(virt_to_page(res))) {
103                         /* The page is unsafe, mark it for swsusp_free() */
104                         swsusp_set_page_forbidden(virt_to_page(res));
105                         allocated_unsafe_pages++;
106                         res = (void *)get_zeroed_page(gfp_mask);
107                 }
108         if (res) {
109                 swsusp_set_page_forbidden(virt_to_page(res));
110                 swsusp_set_page_free(virt_to_page(res));
111         }
112         return res;
113 }
114
115 unsigned long get_safe_page(gfp_t gfp_mask)
116 {
117         return (unsigned long)get_image_page(gfp_mask, PG_SAFE);
118 }
119
120 static struct page *alloc_image_page(gfp_t gfp_mask)
121 {
122         struct page *page;
123
124         page = alloc_page(gfp_mask);
125         if (page) {
126                 swsusp_set_page_forbidden(page);
127                 swsusp_set_page_free(page);
128         }
129         return page;
130 }
131
132 /**
133  *      free_image_page - free page represented by @addr, allocated with
134  *      get_image_page (page flags set by it must be cleared)
135  */
136
137 static inline void free_image_page(void *addr, int clear_nosave_free)
138 {
139         struct page *page;
140
141         BUG_ON(!virt_addr_valid(addr));
142
143         page = virt_to_page(addr);
144
145         swsusp_unset_page_forbidden(page);
146         if (clear_nosave_free)
147                 swsusp_unset_page_free(page);
148
149         __free_page(page);
150 }
151
152 /* struct linked_page is used to build chains of pages */
153
154 #define LINKED_PAGE_DATA_SIZE   (PAGE_SIZE - sizeof(void *))
155
156 struct linked_page {
157         struct linked_page *next;
158         char data[LINKED_PAGE_DATA_SIZE];
159 } __packed;
160
161 static inline void
162 free_list_of_pages(struct linked_page *list, int clear_page_nosave)
163 {
164         while (list) {
165                 struct linked_page *lp = list->next;
166
167                 free_image_page(list, clear_page_nosave);
168                 list = lp;
169         }
170 }
171
172 /**
173   *     struct chain_allocator is used for allocating small objects out of
174   *     a linked list of pages called 'the chain'.
175   *
176   *     The chain grows each time when there is no room for a new object in
177   *     the current page.  The allocated objects cannot be freed individually.
178   *     It is only possible to free them all at once, by freeing the entire
179   *     chain.
180   *
181   *     NOTE: The chain allocator may be inefficient if the allocated objects
182   *     are not much smaller than PAGE_SIZE.
183   */
184
185 struct chain_allocator {
186         struct linked_page *chain;      /* the chain */
187         unsigned int used_space;        /* total size of objects allocated out
188                                          * of the current page
189                                          */
190         gfp_t gfp_mask;         /* mask for allocating pages */
191         int safe_needed;        /* if set, only "safe" pages are allocated */
192 };
193
194 static void
195 chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed)
196 {
197         ca->chain = NULL;
198         ca->used_space = LINKED_PAGE_DATA_SIZE;
199         ca->gfp_mask = gfp_mask;
200         ca->safe_needed = safe_needed;
201 }
202
203 static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
204 {
205         void *ret;
206
207         if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
208                 struct linked_page *lp;
209
210                 lp = get_image_page(ca->gfp_mask, ca->safe_needed);
211                 if (!lp)
212                         return NULL;
213
214                 lp->next = ca->chain;
215                 ca->chain = lp;
216                 ca->used_space = 0;
217         }
218         ret = ca->chain->data + ca->used_space;
219         ca->used_space += size;
220         return ret;
221 }
222
223 /**
224  *      Data types related to memory bitmaps.
225  *
226  *      Memory bitmap is a structure consiting of many linked lists of
227  *      objects.  The main list's elements are of type struct zone_bitmap
228  *      and each of them corresonds to one zone.  For each zone bitmap
229  *      object there is a list of objects of type struct bm_block that
230  *      represent each blocks of bitmap in which information is stored.
231  *
232  *      struct memory_bitmap contains a pointer to the main list of zone
233  *      bitmap objects, a struct bm_position used for browsing the bitmap,
234  *      and a pointer to the list of pages used for allocating all of the
235  *      zone bitmap objects and bitmap block objects.
236  *
237  *      NOTE: It has to be possible to lay out the bitmap in memory
238  *      using only allocations of order 0.  Additionally, the bitmap is
239  *      designed to work with arbitrary number of zones (this is over the
240  *      top for now, but let's avoid making unnecessary assumptions ;-).
241  *
242  *      struct zone_bitmap contains a pointer to a list of bitmap block
243  *      objects and a pointer to the bitmap block object that has been
244  *      most recently used for setting bits.  Additionally, it contains the
245  *      pfns that correspond to the start and end of the represented zone.
246  *
247  *      struct bm_block contains a pointer to the memory page in which
248  *      information is stored (in the form of a block of bitmap)
249  *      It also contains the pfns that correspond to the start and end of
250  *      the represented memory area.
251  */
252
253 #define BM_END_OF_MAP   (~0UL)
254
255 #define BM_BITS_PER_BLOCK       (PAGE_SIZE * BITS_PER_BYTE)
256
257 struct bm_block {
258         struct list_head hook;  /* hook into a list of bitmap blocks */
259         unsigned long start_pfn;        /* pfn represented by the first bit */
260         unsigned long end_pfn;  /* pfn represented by the last bit plus 1 */
261         unsigned long *data;    /* bitmap representing pages */
262 };
263
264 static inline unsigned long bm_block_bits(struct bm_block *bb)
265 {
266         return bb->end_pfn - bb->start_pfn;
267 }
268
269 /* strcut bm_position is used for browsing memory bitmaps */
270
271 struct bm_position {
272         struct bm_block *block;
273         int bit;
274 };
275
276 struct memory_bitmap {
277         struct list_head blocks;        /* list of bitmap blocks */
278         struct linked_page *p_list;     /* list of pages used to store zone
279                                          * bitmap objects and bitmap block
280                                          * objects
281                                          */
282         struct bm_position cur; /* most recently used bit position */
283 };
284
285 /* Functions that operate on memory bitmaps */
286
287 static void memory_bm_position_reset(struct memory_bitmap *bm)
288 {
289         bm->cur.block = list_entry(bm->blocks.next, struct bm_block, hook);
290         bm->cur.bit = 0;
291 }
292
293 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
294
295 /**
296  *      create_bm_block_list - create a list of block bitmap objects
297  *      @pages - number of pages to track
298  *      @list - list to put the allocated blocks into
299  *      @ca - chain allocator to be used for allocating memory
300  */
301 static int create_bm_block_list(unsigned long pages,
302                                 struct list_head *list,
303                                 struct chain_allocator *ca)
304 {
305         unsigned int nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
306
307         while (nr_blocks-- > 0) {
308                 struct bm_block *bb;
309
310                 bb = chain_alloc(ca, sizeof(struct bm_block));
311                 if (!bb)
312                         return -ENOMEM;
313                 list_add(&bb->hook, list);
314         }
315
316         return 0;
317 }
318
319 struct mem_extent {
320         struct list_head hook;
321         unsigned long start;
322         unsigned long end;
323 };
324
325 /**
326  *      free_mem_extents - free a list of memory extents
327  *      @list - list of extents to empty
328  */
329 static void free_mem_extents(struct list_head *list)
330 {
331         struct mem_extent *ext, *aux;
332
333         list_for_each_entry_safe(ext, aux, list, hook) {
334                 list_del(&ext->hook);
335                 kfree(ext);
336         }
337 }
338
339 /**
340  *      create_mem_extents - create a list of memory extents representing
341  *                           contiguous ranges of PFNs
342  *      @list - list to put the extents into
343  *      @gfp_mask - mask to use for memory allocations
344  */
345 static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
346 {
347         struct zone *zone;
348
349         INIT_LIST_HEAD(list);
350
351         for_each_populated_zone(zone) {
352                 unsigned long zone_start, zone_end;
353                 struct mem_extent *ext, *cur, *aux;
354
355                 zone_start = zone->zone_start_pfn;
356                 zone_end = zone_end_pfn(zone);
357
358                 list_for_each_entry(ext, list, hook)
359                         if (zone_start <= ext->end)
360                                 break;
361
362                 if (&ext->hook == list || zone_end < ext->start) {
363                         /* New extent is necessary */
364                         struct mem_extent *new_ext;
365
366                         new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
367                         if (!new_ext) {
368                                 free_mem_extents(list);
369                                 return -ENOMEM;
370                         }
371                         new_ext->start = zone_start;
372                         new_ext->end = zone_end;
373                         list_add_tail(&new_ext->hook, &ext->hook);
374                         continue;
375                 }
376
377                 /* Merge this zone's range of PFNs with the existing one */
378                 if (zone_start < ext->start)
379                         ext->start = zone_start;
380                 if (zone_end > ext->end)
381                         ext->end = zone_end;
382
383                 /* More merging may be possible */
384                 cur = ext;
385                 list_for_each_entry_safe_continue(cur, aux, list, hook) {
386                         if (zone_end < cur->start)
387                                 break;
388                         if (zone_end < cur->end)
389                                 ext->end = cur->end;
390                         list_del(&cur->hook);
391                         kfree(cur);
392                 }
393         }
394
395         return 0;
396 }
397
398 /**
399   *     memory_bm_create - allocate memory for a memory bitmap
400   */
401 static int
402 memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed)
403 {
404         struct chain_allocator ca;
405         struct list_head mem_extents;
406         struct mem_extent *ext;
407         int error;
408
409         chain_init(&ca, gfp_mask, safe_needed);
410         INIT_LIST_HEAD(&bm->blocks);
411
412         error = create_mem_extents(&mem_extents, gfp_mask);
413         if (error)
414                 return error;
415
416         list_for_each_entry(ext, &mem_extents, hook) {
417                 struct bm_block *bb;
418                 unsigned long pfn = ext->start;
419                 unsigned long pages = ext->end - ext->start;
420
421                 bb = list_entry(bm->blocks.prev, struct bm_block, hook);
422
423                 error = create_bm_block_list(pages, bm->blocks.prev, &ca);
424                 if (error)
425                         goto Error;
426
427                 list_for_each_entry_continue(bb, &bm->blocks, hook) {
428                         bb->data = get_image_page(gfp_mask, safe_needed);
429                         if (!bb->data) {
430                                 error = -ENOMEM;
431                                 goto Error;
432                         }
433
434                         bb->start_pfn = pfn;
435                         if (pages >= BM_BITS_PER_BLOCK) {
436                                 pfn += BM_BITS_PER_BLOCK;
437                                 pages -= BM_BITS_PER_BLOCK;
438                         } else {
439                                 /* This is executed only once in the loop */
440                                 pfn += pages;
441                         }
442                         bb->end_pfn = pfn;
443                 }
444         }
445
446         bm->p_list = ca.chain;
447         memory_bm_position_reset(bm);
448  Exit:
449         free_mem_extents(&mem_extents);
450         return error;
451
452  Error:
453         bm->p_list = ca.chain;
454         memory_bm_free(bm, PG_UNSAFE_CLEAR);
455         goto Exit;
456 }
457
458 /**
459   *     memory_bm_free - free memory occupied by the memory bitmap @bm
460   */
461 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
462 {
463         struct bm_block *bb;
464
465         list_for_each_entry(bb, &bm->blocks, hook)
466                 if (bb->data)
467                         free_image_page(bb->data, clear_nosave_free);
468
469         free_list_of_pages(bm->p_list, clear_nosave_free);
470
471         INIT_LIST_HEAD(&bm->blocks);
472 }
473
474 /**
475  *      memory_bm_find_bit - find the bit in the bitmap @bm that corresponds
476  *      to given pfn.  The cur_zone_bm member of @bm and the cur_block member
477  *      of @bm->cur_zone_bm are updated.
478  */
479 static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
480                                 void **addr, unsigned int *bit_nr)
481 {
482         struct bm_block *bb;
483
484         /*
485          * Check if the pfn corresponds to the current bitmap block and find
486          * the block where it fits if this is not the case.
487          */
488         bb = bm->cur.block;
489         if (pfn < bb->start_pfn)
490                 list_for_each_entry_continue_reverse(bb, &bm->blocks, hook)
491                         if (pfn >= bb->start_pfn)
492                                 break;
493
494         if (pfn >= bb->end_pfn)
495                 list_for_each_entry_continue(bb, &bm->blocks, hook)
496                         if (pfn >= bb->start_pfn && pfn < bb->end_pfn)
497                                 break;
498
499         if (&bb->hook == &bm->blocks)
500                 return -EFAULT;
501
502         /* The block has been found */
503         bm->cur.block = bb;
504         pfn -= bb->start_pfn;
505         bm->cur.bit = pfn + 1;
506         *bit_nr = pfn;
507         *addr = bb->data;
508         return 0;
509 }
510
511 static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
512 {
513         void *addr;
514         unsigned int bit;
515         int error;
516
517         error = memory_bm_find_bit(bm, pfn, &addr, &bit);
518         BUG_ON(error);
519         set_bit(bit, addr);
520 }
521
522 static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
523 {
524         void *addr;
525         unsigned int bit;
526         int error;
527
528         error = memory_bm_find_bit(bm, pfn, &addr, &bit);
529         if (!error)
530                 set_bit(bit, addr);
531         return error;
532 }
533
534 static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
535 {
536         void *addr;
537         unsigned int bit;
538         int error;
539
540         error = memory_bm_find_bit(bm, pfn, &addr, &bit);
541         BUG_ON(error);
542         clear_bit(bit, addr);
543 }
544
545 static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
546 {
547         void *addr;
548         unsigned int bit;
549         int error;
550
551         error = memory_bm_find_bit(bm, pfn, &addr, &bit);
552         BUG_ON(error);
553         return test_bit(bit, addr);
554 }
555
556 static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
557 {
558         void *addr;
559         unsigned int bit;
560
561         return !memory_bm_find_bit(bm, pfn, &addr, &bit);
562 }
563
564 /**
565  *      memory_bm_next_pfn - find the pfn that corresponds to the next set bit
566  *      in the bitmap @bm.  If the pfn cannot be found, BM_END_OF_MAP is
567  *      returned.
568  *
569  *      It is required to run memory_bm_position_reset() before the first call to
570  *      this function.
571  */
572
573 static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
574 {
575         struct bm_block *bb;
576         int bit;
577
578         bb = bm->cur.block;
579         do {
580                 bit = bm->cur.bit;
581                 bit = find_next_bit(bb->data, bm_block_bits(bb), bit);
582                 if (bit < bm_block_bits(bb))
583                         goto Return_pfn;
584
585                 bb = list_entry(bb->hook.next, struct bm_block, hook);
586                 bm->cur.block = bb;
587                 bm->cur.bit = 0;
588         } while (&bb->hook != &bm->blocks);
589
590         memory_bm_position_reset(bm);
591         return BM_END_OF_MAP;
592
593  Return_pfn:
594         bm->cur.bit = bit + 1;
595         return bb->start_pfn + bit;
596 }
597
598 /**
599  *      This structure represents a range of page frames the contents of which
600  *      should not be saved during the suspend.
601  */
602
603 struct nosave_region {
604         struct list_head list;
605         unsigned long start_pfn;
606         unsigned long end_pfn;
607 };
608
609 static LIST_HEAD(nosave_regions);
610
611 /**
612  *      register_nosave_region - register a range of page frames the contents
613  *      of which should not be saved during the suspend (to be used in the early
614  *      initialization code)
615  */
616
617 void __init
618 __register_nosave_region(unsigned long start_pfn, unsigned long end_pfn,
619                          int use_kmalloc)
620 {
621         struct nosave_region *region;
622
623         if (start_pfn >= end_pfn)
624                 return;
625
626         if (!list_empty(&nosave_regions)) {
627                 /* Try to extend the previous region (they should be sorted) */
628                 region = list_entry(nosave_regions.prev,
629                                         struct nosave_region, list);
630                 if (region->end_pfn == start_pfn) {
631                         region->end_pfn = end_pfn;
632                         goto Report;
633                 }
634         }
635         if (use_kmalloc) {
636                 /* during init, this shouldn't fail */
637                 region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
638                 BUG_ON(!region);
639         } else
640                 /* This allocation cannot fail */
641                 region = memblock_virt_alloc(sizeof(struct nosave_region), 0);
642         region->start_pfn = start_pfn;
643         region->end_pfn = end_pfn;
644         list_add_tail(&region->list, &nosave_regions);
645  Report:
646         printk(KERN_INFO "PM: Registered nosave memory: [mem %#010llx-%#010llx]\n",
647                 (unsigned long long) start_pfn << PAGE_SHIFT,
648                 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
649 }
650
651 /*
652  * Set bits in this map correspond to the page frames the contents of which
653  * should not be saved during the suspend.
654  */
655 static struct memory_bitmap *forbidden_pages_map;
656
657 /* Set bits in this map correspond to free page frames. */
658 static struct memory_bitmap *free_pages_map;
659
660 /*
661  * Each page frame allocated for creating the image is marked by setting the
662  * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
663  */
664
665 void swsusp_set_page_free(struct page *page)
666 {
667         if (free_pages_map)
668                 memory_bm_set_bit(free_pages_map, page_to_pfn(page));
669 }
670
671 static int swsusp_page_is_free(struct page *page)
672 {
673         return free_pages_map ?
674                 memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
675 }
676
677 void swsusp_unset_page_free(struct page *page)
678 {
679         if (free_pages_map)
680                 memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
681 }
682
683 static void swsusp_set_page_forbidden(struct page *page)
684 {
685         if (forbidden_pages_map)
686                 memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
687 }
688
689 int swsusp_page_is_forbidden(struct page *page)
690 {
691         return forbidden_pages_map ?
692                 memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
693 }
694
695 static void swsusp_unset_page_forbidden(struct page *page)
696 {
697         if (forbidden_pages_map)
698                 memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
699 }
700
701 /**
702  *      mark_nosave_pages - set bits corresponding to the page frames the
703  *      contents of which should not be saved in a given bitmap.
704  */
705
706 static void mark_nosave_pages(struct memory_bitmap *bm)
707 {
708         struct nosave_region *region;
709
710         if (list_empty(&nosave_regions))
711                 return;
712
713         list_for_each_entry(region, &nosave_regions, list) {
714                 unsigned long pfn;
715
716                 pr_debug("PM: Marking nosave pages: [mem %#010llx-%#010llx]\n",
717                          (unsigned long long) region->start_pfn << PAGE_SHIFT,
718                          ((unsigned long long) region->end_pfn << PAGE_SHIFT)
719                                 - 1);
720
721                 for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
722                         if (pfn_valid(pfn)) {
723                                 /*
724                                  * It is safe to ignore the result of
725                                  * mem_bm_set_bit_check() here, since we won't
726                                  * touch the PFNs for which the error is
727                                  * returned anyway.
728                                  */
729                                 mem_bm_set_bit_check(bm, pfn);
730                         }
731         }
732 }
733
734 /**
735  *      create_basic_memory_bitmaps - create bitmaps needed for marking page
736  *      frames that should not be saved and free page frames.  The pointers
737  *      forbidden_pages_map and free_pages_map are only modified if everything
738  *      goes well, because we don't want the bits to be used before both bitmaps
739  *      are set up.
740  */
741
742 int create_basic_memory_bitmaps(void)
743 {
744         struct memory_bitmap *bm1, *bm2;
745         int error = 0;
746
747         if (forbidden_pages_map && free_pages_map)
748                 return 0;
749         else
750                 BUG_ON(forbidden_pages_map || free_pages_map);
751
752         bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
753         if (!bm1)
754                 return -ENOMEM;
755
756         error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
757         if (error)
758                 goto Free_first_object;
759
760         bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
761         if (!bm2)
762                 goto Free_first_bitmap;
763
764         error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
765         if (error)
766                 goto Free_second_object;
767
768         forbidden_pages_map = bm1;
769         free_pages_map = bm2;
770         mark_nosave_pages(forbidden_pages_map);
771
772         pr_debug("PM: Basic memory bitmaps created\n");
773
774         return 0;
775
776  Free_second_object:
777         kfree(bm2);
778  Free_first_bitmap:
779         memory_bm_free(bm1, PG_UNSAFE_CLEAR);
780  Free_first_object:
781         kfree(bm1);
782         return -ENOMEM;
783 }
784
785 /**
786  *      free_basic_memory_bitmaps - free memory bitmaps allocated by
787  *      create_basic_memory_bitmaps().  The auxiliary pointers are necessary
788  *      so that the bitmaps themselves are not referred to while they are being
789  *      freed.
790  */
791
792 void free_basic_memory_bitmaps(void)
793 {
794         struct memory_bitmap *bm1, *bm2;
795
796         if (WARN_ON(!(forbidden_pages_map && free_pages_map)))
797                 return;
798
799         bm1 = forbidden_pages_map;
800         bm2 = free_pages_map;
801         forbidden_pages_map = NULL;
802         free_pages_map = NULL;
803         memory_bm_free(bm1, PG_UNSAFE_CLEAR);
804         kfree(bm1);
805         memory_bm_free(bm2, PG_UNSAFE_CLEAR);
806         kfree(bm2);
807
808         pr_debug("PM: Basic memory bitmaps freed\n");
809 }
810
811 /**
812  *      snapshot_additional_pages - estimate the number of additional pages
813  *      be needed for setting up the suspend image data structures for given
814  *      zone (usually the returned value is greater than the exact number)
815  */
816
817 unsigned int snapshot_additional_pages(struct zone *zone)
818 {
819         unsigned int res;
820
821         res = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
822         res += DIV_ROUND_UP(res * sizeof(struct bm_block),
823                             LINKED_PAGE_DATA_SIZE);
824         return 2 * res;
825 }
826
827 #ifdef CONFIG_HIGHMEM
828 /**
829  *      count_free_highmem_pages - compute the total number of free highmem
830  *      pages, system-wide.
831  */
832
833 static unsigned int count_free_highmem_pages(void)
834 {
835         struct zone *zone;
836         unsigned int cnt = 0;
837
838         for_each_populated_zone(zone)
839                 if (is_highmem(zone))
840                         cnt += zone_page_state(zone, NR_FREE_PAGES);
841
842         return cnt;
843 }
844
845 /**
846  *      saveable_highmem_page - Determine whether a highmem page should be
847  *      included in the suspend image.
848  *
849  *      We should save the page if it isn't Nosave or NosaveFree, or Reserved,
850  *      and it isn't a part of a free chunk of pages.
851  */
852 static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
853 {
854         struct page *page;
855
856         if (!pfn_valid(pfn))
857                 return NULL;
858
859         page = pfn_to_page(pfn);
860         if (page_zone(page) != zone)
861                 return NULL;
862
863         BUG_ON(!PageHighMem(page));
864
865         if (swsusp_page_is_forbidden(page) ||  swsusp_page_is_free(page) ||
866             PageReserved(page))
867                 return NULL;
868
869         if (page_is_guard(page))
870                 return NULL;
871
872         return page;
873 }
874
875 /**
876  *      count_highmem_pages - compute the total number of saveable highmem
877  *      pages.
878  */
879
880 static unsigned int count_highmem_pages(void)
881 {
882         struct zone *zone;
883         unsigned int n = 0;
884
885         for_each_populated_zone(zone) {
886                 unsigned long pfn, max_zone_pfn;
887
888                 if (!is_highmem(zone))
889                         continue;
890
891                 mark_free_pages(zone);
892                 max_zone_pfn = zone_end_pfn(zone);
893                 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
894                         if (saveable_highmem_page(zone, pfn))
895                                 n++;
896         }
897         return n;
898 }
899 #else
900 static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
901 {
902         return NULL;
903 }
904 #endif /* CONFIG_HIGHMEM */
905
906 /**
907  *      saveable_page - Determine whether a non-highmem page should be included
908  *      in the suspend image.
909  *
910  *      We should save the page if it isn't Nosave, and is not in the range
911  *      of pages statically defined as 'unsaveable', and it isn't a part of
912  *      a free chunk of pages.
913  */
914 static struct page *saveable_page(struct zone *zone, unsigned long pfn)
915 {
916         struct page *page;
917
918         if (!pfn_valid(pfn))
919                 return NULL;
920
921         page = pfn_to_page(pfn);
922         if (page_zone(page) != zone)
923                 return NULL;
924
925         BUG_ON(PageHighMem(page));
926
927         if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
928                 return NULL;
929
930         if (PageReserved(page)
931             && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
932                 return NULL;
933
934         if (page_is_guard(page))
935                 return NULL;
936
937         return page;
938 }
939
940 /**
941  *      count_data_pages - compute the total number of saveable non-highmem
942  *      pages.
943  */
944
945 static unsigned int count_data_pages(void)
946 {
947         struct zone *zone;
948         unsigned long pfn, max_zone_pfn;
949         unsigned int n = 0;
950
951         for_each_populated_zone(zone) {
952                 if (is_highmem(zone))
953                         continue;
954
955                 mark_free_pages(zone);
956                 max_zone_pfn = zone_end_pfn(zone);
957                 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
958                         if (saveable_page(zone, pfn))
959                                 n++;
960         }
961         return n;
962 }
963
964 /* This is needed, because copy_page and memcpy are not usable for copying
965  * task structs.
966  */
967 static inline void do_copy_page(long *dst, long *src)
968 {
969         int n;
970
971         for (n = PAGE_SIZE / sizeof(long); n; n--)
972                 *dst++ = *src++;
973 }
974
975
976 /**
977  *      safe_copy_page - check if the page we are going to copy is marked as
978  *              present in the kernel page tables (this always is the case if
979  *              CONFIG_DEBUG_PAGEALLOC is not set and in that case
980  *              kernel_page_present() always returns 'true').
981  */
982 static void safe_copy_page(void *dst, struct page *s_page)
983 {
984         if (kernel_page_present(s_page)) {
985                 do_copy_page(dst, page_address(s_page));
986         } else {
987                 kernel_map_pages(s_page, 1, 1);
988                 do_copy_page(dst, page_address(s_page));
989                 kernel_map_pages(s_page, 1, 0);
990         }
991 }
992
993
994 #ifdef CONFIG_HIGHMEM
995 static inline struct page *
996 page_is_saveable(struct zone *zone, unsigned long pfn)
997 {
998         return is_highmem(zone) ?
999                 saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
1000 }
1001
1002 static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1003 {
1004         struct page *s_page, *d_page;
1005         void *src, *dst;
1006
1007         s_page = pfn_to_page(src_pfn);
1008         d_page = pfn_to_page(dst_pfn);
1009         if (PageHighMem(s_page)) {
1010                 src = kmap_atomic(s_page);
1011                 dst = kmap_atomic(d_page);
1012                 do_copy_page(dst, src);
1013                 kunmap_atomic(dst);
1014                 kunmap_atomic(src);
1015         } else {
1016                 if (PageHighMem(d_page)) {
1017                         /* Page pointed to by src may contain some kernel
1018                          * data modified by kmap_atomic()
1019                          */
1020                         safe_copy_page(buffer, s_page);
1021                         dst = kmap_atomic(d_page);
1022                         copy_page(dst, buffer);
1023                         kunmap_atomic(dst);
1024                 } else {
1025                         safe_copy_page(page_address(d_page), s_page);
1026                 }
1027         }
1028 }
1029 #else
1030 #define page_is_saveable(zone, pfn)     saveable_page(zone, pfn)
1031
1032 static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1033 {
1034         safe_copy_page(page_address(pfn_to_page(dst_pfn)),
1035                                 pfn_to_page(src_pfn));
1036 }
1037 #endif /* CONFIG_HIGHMEM */
1038
1039 static void
1040 copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm)
1041 {
1042         struct zone *zone;
1043         unsigned long pfn;
1044
1045         for_each_populated_zone(zone) {
1046                 unsigned long max_zone_pfn;
1047
1048                 mark_free_pages(zone);
1049                 max_zone_pfn = zone_end_pfn(zone);
1050                 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1051                         if (page_is_saveable(zone, pfn))
1052                                 memory_bm_set_bit(orig_bm, pfn);
1053         }
1054         memory_bm_position_reset(orig_bm);
1055         memory_bm_position_reset(copy_bm);
1056         for(;;) {
1057                 pfn = memory_bm_next_pfn(orig_bm);
1058                 if (unlikely(pfn == BM_END_OF_MAP))
1059                         break;
1060                 copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
1061         }
1062 }
1063
1064 /* Total number of image pages */
1065 static unsigned int nr_copy_pages;
1066 /* Number of pages needed for saving the original pfns of the image pages */
1067 static unsigned int nr_meta_pages;
1068 /*
1069  * Numbers of normal and highmem page frames allocated for hibernation image
1070  * before suspending devices.
1071  */
1072 unsigned int alloc_normal, alloc_highmem;
1073 /*
1074  * Memory bitmap used for marking saveable pages (during hibernation) or
1075  * hibernation image pages (during restore)
1076  */
1077 static struct memory_bitmap orig_bm;
1078 /*
1079  * Memory bitmap used during hibernation for marking allocated page frames that
1080  * will contain copies of saveable pages.  During restore it is initially used
1081  * for marking hibernation image pages, but then the set bits from it are
1082  * duplicated in @orig_bm and it is released.  On highmem systems it is next
1083  * used for marking "safe" highmem pages, but it has to be reinitialized for
1084  * this purpose.
1085  */
1086 static struct memory_bitmap copy_bm;
1087
1088 /**
1089  *      swsusp_free - free pages allocated for the suspend.
1090  *
1091  *      Suspend pages are alocated before the atomic copy is made, so we
1092  *      need to release them after the resume.
1093  */
1094
1095 void swsusp_free(void)
1096 {
1097         struct zone *zone;
1098         unsigned long pfn, max_zone_pfn;
1099
1100         for_each_populated_zone(zone) {
1101                 max_zone_pfn = zone_end_pfn(zone);
1102                 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1103                         if (pfn_valid(pfn)) {
1104                                 struct page *page = pfn_to_page(pfn);
1105
1106                                 if (swsusp_page_is_forbidden(page) &&
1107                                     swsusp_page_is_free(page)) {
1108                                         swsusp_unset_page_forbidden(page);
1109                                         swsusp_unset_page_free(page);
1110                                         __free_page(page);
1111                                 }
1112                         }
1113         }
1114         nr_copy_pages = 0;
1115         nr_meta_pages = 0;
1116         restore_pblist = NULL;
1117         buffer = NULL;
1118         alloc_normal = 0;
1119         alloc_highmem = 0;
1120 }
1121
1122 /* Helper functions used for the shrinking of memory. */
1123
1124 #define GFP_IMAGE       (GFP_KERNEL | __GFP_NOWARN)
1125
1126 /**
1127  * preallocate_image_pages - Allocate a number of pages for hibernation image
1128  * @nr_pages: Number of page frames to allocate.
1129  * @mask: GFP flags to use for the allocation.
1130  *
1131  * Return value: Number of page frames actually allocated
1132  */
1133 static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
1134 {
1135         unsigned long nr_alloc = 0;
1136
1137         while (nr_pages > 0) {
1138                 struct page *page;
1139
1140                 page = alloc_image_page(mask);
1141                 if (!page)
1142                         break;
1143                 memory_bm_set_bit(&copy_bm, page_to_pfn(page));
1144                 if (PageHighMem(page))
1145                         alloc_highmem++;
1146                 else
1147                         alloc_normal++;
1148                 nr_pages--;
1149                 nr_alloc++;
1150         }
1151
1152         return nr_alloc;
1153 }
1154
1155 static unsigned long preallocate_image_memory(unsigned long nr_pages,
1156                                               unsigned long avail_normal)
1157 {
1158         unsigned long alloc;
1159
1160         if (avail_normal <= alloc_normal)
1161                 return 0;
1162
1163         alloc = avail_normal - alloc_normal;
1164         if (nr_pages < alloc)
1165                 alloc = nr_pages;
1166
1167         return preallocate_image_pages(alloc, GFP_IMAGE);
1168 }
1169
1170 #ifdef CONFIG_HIGHMEM
1171 static unsigned long preallocate_image_highmem(unsigned long nr_pages)
1172 {
1173         return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
1174 }
1175
1176 /**
1177  *  __fraction - Compute (an approximation of) x * (multiplier / base)
1178  */
1179 static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
1180 {
1181         x *= multiplier;
1182         do_div(x, base);
1183         return (unsigned long)x;
1184 }
1185
1186 static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1187                                                 unsigned long highmem,
1188                                                 unsigned long total)
1189 {
1190         unsigned long alloc = __fraction(nr_pages, highmem, total);
1191
1192         return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
1193 }
1194 #else /* CONFIG_HIGHMEM */
1195 static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
1196 {
1197         return 0;
1198 }
1199
1200 static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1201                                                 unsigned long highmem,
1202                                                 unsigned long total)
1203 {
1204         return 0;
1205 }
1206 #endif /* CONFIG_HIGHMEM */
1207
1208 /**
1209  * free_unnecessary_pages - Release preallocated pages not needed for the image
1210  */
1211 static void free_unnecessary_pages(void)
1212 {
1213         unsigned long save, to_free_normal, to_free_highmem;
1214
1215         save = count_data_pages();
1216         if (alloc_normal >= save) {
1217                 to_free_normal = alloc_normal - save;
1218                 save = 0;
1219         } else {
1220                 to_free_normal = 0;
1221                 save -= alloc_normal;
1222         }
1223         save += count_highmem_pages();
1224         if (alloc_highmem >= save) {
1225                 to_free_highmem = alloc_highmem - save;
1226         } else {
1227                 to_free_highmem = 0;
1228                 save -= alloc_highmem;
1229                 if (to_free_normal > save)
1230                         to_free_normal -= save;
1231                 else
1232                         to_free_normal = 0;
1233         }
1234
1235         memory_bm_position_reset(&copy_bm);
1236
1237         while (to_free_normal > 0 || to_free_highmem > 0) {
1238                 unsigned long pfn = memory_bm_next_pfn(&copy_bm);
1239                 struct page *page = pfn_to_page(pfn);
1240
1241                 if (PageHighMem(page)) {
1242                         if (!to_free_highmem)
1243                                 continue;
1244                         to_free_highmem--;
1245                         alloc_highmem--;
1246                 } else {
1247                         if (!to_free_normal)
1248                                 continue;
1249                         to_free_normal--;
1250                         alloc_normal--;
1251                 }
1252                 memory_bm_clear_bit(&copy_bm, pfn);
1253                 swsusp_unset_page_forbidden(page);
1254                 swsusp_unset_page_free(page);
1255                 __free_page(page);
1256         }
1257 }
1258
1259 /**
1260  * minimum_image_size - Estimate the minimum acceptable size of an image
1261  * @saveable: Number of saveable pages in the system.
1262  *
1263  * We want to avoid attempting to free too much memory too hard, so estimate the
1264  * minimum acceptable size of a hibernation image to use as the lower limit for
1265  * preallocating memory.
1266  *
1267  * We assume that the minimum image size should be proportional to
1268  *
1269  * [number of saveable pages] - [number of pages that can be freed in theory]
1270  *
1271  * where the second term is the sum of (1) reclaimable slab pages, (2) active
1272  * and (3) inactive anonymous pages, (4) active and (5) inactive file pages,
1273  * minus mapped file pages.
1274  */
1275 static unsigned long minimum_image_size(unsigned long saveable)
1276 {
1277         unsigned long size;
1278
1279         size = global_page_state(NR_SLAB_RECLAIMABLE)
1280                 + global_page_state(NR_ACTIVE_ANON)
1281                 + global_page_state(NR_INACTIVE_ANON)
1282                 + global_page_state(NR_ACTIVE_FILE)
1283                 + global_page_state(NR_INACTIVE_FILE)
1284                 - global_page_state(NR_FILE_MAPPED);
1285
1286         return saveable <= size ? 0 : saveable - size;
1287 }
1288
1289 /**
1290  * hibernate_preallocate_memory - Preallocate memory for hibernation image
1291  *
1292  * To create a hibernation image it is necessary to make a copy of every page
1293  * frame in use.  We also need a number of page frames to be free during
1294  * hibernation for allocations made while saving the image and for device
1295  * drivers, in case they need to allocate memory from their hibernation
1296  * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
1297  * estimate) and reserverd_size divided by PAGE_SIZE (which is tunable through
1298  * /sys/power/reserved_size, respectively).  To make this happen, we compute the
1299  * total number of available page frames and allocate at least
1300  *
1301  * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2
1302  *  + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
1303  *
1304  * of them, which corresponds to the maximum size of a hibernation image.
1305  *
1306  * If image_size is set below the number following from the above formula,
1307  * the preallocation of memory is continued until the total number of saveable
1308  * pages in the system is below the requested image size or the minimum
1309  * acceptable image size returned by minimum_image_size(), whichever is greater.
1310  */
1311 int hibernate_preallocate_memory(void)
1312 {
1313         struct zone *zone;
1314         unsigned long saveable, size, max_size, count, highmem, pages = 0;
1315         unsigned long alloc, save_highmem, pages_highmem, avail_normal;
1316         struct timeval start, stop;
1317         int error;
1318
1319         printk(KERN_INFO "PM: Preallocating image memory... ");
1320         do_gettimeofday(&start);
1321
1322         error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
1323         if (error)
1324                 goto err_out;
1325
1326         error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
1327         if (error)
1328                 goto err_out;
1329
1330         alloc_normal = 0;
1331         alloc_highmem = 0;
1332
1333         /* Count the number of saveable data pages. */
1334         save_highmem = count_highmem_pages();
1335         saveable = count_data_pages();
1336
1337         /*
1338          * Compute the total number of page frames we can use (count) and the
1339          * number of pages needed for image metadata (size).
1340          */
1341         count = saveable;
1342         saveable += save_highmem;
1343         highmem = save_highmem;
1344         size = 0;
1345         for_each_populated_zone(zone) {
1346                 size += snapshot_additional_pages(zone);
1347                 if (is_highmem(zone))
1348                         highmem += zone_page_state(zone, NR_FREE_PAGES);
1349                 else
1350                         count += zone_page_state(zone, NR_FREE_PAGES);
1351         }
1352         avail_normal = count;
1353         count += highmem;
1354         count -= totalreserve_pages;
1355
1356         /* Add number of pages required for page keys (s390 only). */
1357         size += page_key_additional_pages(saveable);
1358
1359         /* Compute the maximum number of saveable pages to leave in memory. */
1360         max_size = (count - (size + PAGES_FOR_IO)) / 2
1361                         - 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
1362         /* Compute the desired number of image pages specified by image_size. */
1363         size = DIV_ROUND_UP(image_size, PAGE_SIZE);
1364         if (size > max_size)
1365                 size = max_size;
1366         /*
1367          * If the desired number of image pages is at least as large as the
1368          * current number of saveable pages in memory, allocate page frames for
1369          * the image and we're done.
1370          */
1371         if (size >= saveable) {
1372                 pages = preallocate_image_highmem(save_highmem);
1373                 pages += preallocate_image_memory(saveable - pages, avail_normal);
1374                 goto out;
1375         }
1376
1377         /* Estimate the minimum size of the image. */
1378         pages = minimum_image_size(saveable);
1379         /*
1380          * To avoid excessive pressure on the normal zone, leave room in it to
1381          * accommodate an image of the minimum size (unless it's already too
1382          * small, in which case don't preallocate pages from it at all).
1383          */
1384         if (avail_normal > pages)
1385                 avail_normal -= pages;
1386         else
1387                 avail_normal = 0;
1388         if (size < pages)
1389                 size = min_t(unsigned long, pages, max_size);
1390
1391         /*
1392          * Let the memory management subsystem know that we're going to need a
1393          * large number of page frames to allocate and make it free some memory.
1394          * NOTE: If this is not done, performance will be hurt badly in some
1395          * test cases.
1396          */
1397         shrink_all_memory(saveable - size);
1398
1399         /*
1400          * The number of saveable pages in memory was too high, so apply some
1401          * pressure to decrease it.  First, make room for the largest possible
1402          * image and fail if that doesn't work.  Next, try to decrease the size
1403          * of the image as much as indicated by 'size' using allocations from
1404          * highmem and non-highmem zones separately.
1405          */
1406         pages_highmem = preallocate_image_highmem(highmem / 2);
1407         alloc = count - max_size;
1408         if (alloc > pages_highmem)
1409                 alloc -= pages_highmem;
1410         else
1411                 alloc = 0;
1412         pages = preallocate_image_memory(alloc, avail_normal);
1413         if (pages < alloc) {
1414                 /* We have exhausted non-highmem pages, try highmem. */
1415                 alloc -= pages;
1416                 pages += pages_highmem;
1417                 pages_highmem = preallocate_image_highmem(alloc);
1418                 if (pages_highmem < alloc)
1419                         goto err_out;
1420                 pages += pages_highmem;
1421                 /*
1422                  * size is the desired number of saveable pages to leave in
1423                  * memory, so try to preallocate (all memory - size) pages.
1424                  */
1425                 alloc = (count - pages) - size;
1426                 pages += preallocate_image_highmem(alloc);
1427         } else {
1428                 /*
1429                  * There are approximately max_size saveable pages at this point
1430                  * and we want to reduce this number down to size.
1431                  */
1432                 alloc = max_size - size;
1433                 size = preallocate_highmem_fraction(alloc, highmem, count);
1434                 pages_highmem += size;
1435                 alloc -= size;
1436                 size = preallocate_image_memory(alloc, avail_normal);
1437                 pages_highmem += preallocate_image_highmem(alloc - size);
1438                 pages += pages_highmem + size;
1439         }
1440
1441         /*
1442          * We only need as many page frames for the image as there are saveable
1443          * pages in memory, but we have allocated more.  Release the excessive
1444          * ones now.
1445          */
1446         free_unnecessary_pages();
1447
1448  out:
1449         do_gettimeofday(&stop);
1450         printk(KERN_CONT "done (allocated %lu pages)\n", pages);
1451         swsusp_show_speed(&start, &stop, pages, "Allocated");
1452
1453         return 0;
1454
1455  err_out:
1456         printk(KERN_CONT "\n");
1457         swsusp_free();
1458         return -ENOMEM;
1459 }
1460
1461 #ifdef CONFIG_HIGHMEM
1462 /**
1463   *     count_pages_for_highmem - compute the number of non-highmem pages
1464   *     that will be necessary for creating copies of highmem pages.
1465   */
1466
1467 static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1468 {
1469         unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
1470
1471         if (free_highmem >= nr_highmem)
1472                 nr_highmem = 0;
1473         else
1474                 nr_highmem -= free_highmem;
1475
1476         return nr_highmem;
1477 }
1478 #else
1479 static unsigned int
1480 count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1481 #endif /* CONFIG_HIGHMEM */
1482
1483 /**
1484  *      enough_free_mem - Make sure we have enough free memory for the
1485  *      snapshot image.
1486  */
1487
1488 static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1489 {
1490         struct zone *zone;
1491         unsigned int free = alloc_normal;
1492
1493         for_each_populated_zone(zone)
1494                 if (!is_highmem(zone))
1495                         free += zone_page_state(zone, NR_FREE_PAGES);
1496
1497         nr_pages += count_pages_for_highmem(nr_highmem);
1498         pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n",
1499                 nr_pages, PAGES_FOR_IO, free);
1500
1501         return free > nr_pages + PAGES_FOR_IO;
1502 }
1503
1504 #ifdef CONFIG_HIGHMEM
1505 /**
1506  *      get_highmem_buffer - if there are some highmem pages in the suspend
1507  *      image, we may need the buffer to copy them and/or load their data.
1508  */
1509
1510 static inline int get_highmem_buffer(int safe_needed)
1511 {
1512         buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
1513         return buffer ? 0 : -ENOMEM;
1514 }
1515
1516 /**
1517  *      alloc_highmem_image_pages - allocate some highmem pages for the image.
1518  *      Try to allocate as many pages as needed, but if the number of free
1519  *      highmem pages is lesser than that, allocate them all.
1520  */
1521
1522 static inline unsigned int
1523 alloc_highmem_pages(struct memory_bitmap *bm, unsigned int nr_highmem)
1524 {
1525         unsigned int to_alloc = count_free_highmem_pages();
1526
1527         if (to_alloc > nr_highmem)
1528                 to_alloc = nr_highmem;
1529
1530         nr_highmem -= to_alloc;
1531         while (to_alloc-- > 0) {
1532                 struct page *page;
1533
1534                 page = alloc_image_page(__GFP_HIGHMEM);
1535                 memory_bm_set_bit(bm, page_to_pfn(page));
1536         }
1537         return nr_highmem;
1538 }
1539 #else
1540 static inline int get_highmem_buffer(int safe_needed) { return 0; }
1541
1542 static inline unsigned int
1543 alloc_highmem_pages(struct memory_bitmap *bm, unsigned int n) { return 0; }
1544 #endif /* CONFIG_HIGHMEM */
1545
1546 /**
1547  *      swsusp_alloc - allocate memory for the suspend image
1548  *
1549  *      We first try to allocate as many highmem pages as there are
1550  *      saveable highmem pages in the system.  If that fails, we allocate
1551  *      non-highmem pages for the copies of the remaining highmem ones.
1552  *
1553  *      In this approach it is likely that the copies of highmem pages will
1554  *      also be located in the high memory, because of the way in which
1555  *      copy_data_pages() works.
1556  */
1557
1558 static int
1559 swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm,
1560                 unsigned int nr_pages, unsigned int nr_highmem)
1561 {
1562         if (nr_highmem > 0) {
1563                 if (get_highmem_buffer(PG_ANY))
1564                         goto err_out;
1565                 if (nr_highmem > alloc_highmem) {
1566                         nr_highmem -= alloc_highmem;
1567                         nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
1568                 }
1569         }
1570         if (nr_pages > alloc_normal) {
1571                 nr_pages -= alloc_normal;
1572                 while (nr_pages-- > 0) {
1573                         struct page *page;
1574
1575                         page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
1576                         if (!page)
1577                                 goto err_out;
1578                         memory_bm_set_bit(copy_bm, page_to_pfn(page));
1579                 }
1580         }
1581
1582         return 0;
1583
1584  err_out:
1585         swsusp_free();
1586         return -ENOMEM;
1587 }
1588
1589 asmlinkage __visible int swsusp_save(void)
1590 {
1591         unsigned int nr_pages, nr_highmem;
1592
1593         printk(KERN_INFO "PM: Creating hibernation image:\n");
1594
1595         drain_local_pages(NULL);
1596         nr_pages = count_data_pages();
1597         nr_highmem = count_highmem_pages();
1598         printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem);
1599
1600         if (!enough_free_mem(nr_pages, nr_highmem)) {
1601                 printk(KERN_ERR "PM: Not enough free memory\n");
1602                 return -ENOMEM;
1603         }
1604
1605         if (swsusp_alloc(&orig_bm, &copy_bm, nr_pages, nr_highmem)) {
1606                 printk(KERN_ERR "PM: Memory allocation failed\n");
1607                 return -ENOMEM;
1608         }
1609
1610         /* During allocating of suspend pagedir, new cold pages may appear.
1611          * Kill them.
1612          */
1613         drain_local_pages(NULL);
1614         copy_data_pages(&copy_bm, &orig_bm);
1615
1616         /*
1617          * End of critical section. From now on, we can write to memory,
1618          * but we should not touch disk. This specially means we must _not_
1619          * touch swap space! Except we must write out our image of course.
1620          */
1621
1622         nr_pages += nr_highmem;
1623         nr_copy_pages = nr_pages;
1624         nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
1625
1626         printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n",
1627                 nr_pages);
1628
1629         return 0;
1630 }
1631
1632 #ifndef CONFIG_ARCH_HIBERNATION_HEADER
1633 static int init_header_complete(struct swsusp_info *info)
1634 {
1635         memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
1636         info->version_code = LINUX_VERSION_CODE;
1637         return 0;
1638 }
1639
1640 static char *check_image_kernel(struct swsusp_info *info)
1641 {
1642         if (info->version_code != LINUX_VERSION_CODE)
1643                 return "kernel version";
1644         if (strcmp(info->uts.sysname,init_utsname()->sysname))
1645                 return "system type";
1646         if (strcmp(info->uts.release,init_utsname()->release))
1647                 return "kernel release";
1648         if (strcmp(info->uts.version,init_utsname()->version))
1649                 return "version";
1650         if (strcmp(info->uts.machine,init_utsname()->machine))
1651                 return "machine";
1652         return NULL;
1653 }
1654 #endif /* CONFIG_ARCH_HIBERNATION_HEADER */
1655
1656 unsigned long snapshot_get_image_size(void)
1657 {
1658         return nr_copy_pages + nr_meta_pages + 1;
1659 }
1660
1661 static int init_header(struct swsusp_info *info)
1662 {
1663         memset(info, 0, sizeof(struct swsusp_info));
1664         info->num_physpages = get_num_physpages();
1665         info->image_pages = nr_copy_pages;
1666         info->pages = snapshot_get_image_size();
1667         info->size = info->pages;
1668         info->size <<= PAGE_SHIFT;
1669         return init_header_complete(info);
1670 }
1671
1672 /**
1673  *      pack_pfns - pfns corresponding to the set bits found in the bitmap @bm
1674  *      are stored in the array @buf[] (1 page at a time)
1675  */
1676
1677 static inline void
1678 pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
1679 {
1680         int j;
1681
1682         for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1683                 buf[j] = memory_bm_next_pfn(bm);
1684                 if (unlikely(buf[j] == BM_END_OF_MAP))
1685                         break;
1686                 /* Save page key for data page (s390 only). */
1687                 page_key_read(buf + j);
1688         }
1689 }
1690
1691 /**
1692  *      snapshot_read_next - used for reading the system memory snapshot.
1693  *
1694  *      On the first call to it @handle should point to a zeroed
1695  *      snapshot_handle structure.  The structure gets updated and a pointer
1696  *      to it should be passed to this function every next time.
1697  *
1698  *      On success the function returns a positive number.  Then, the caller
1699  *      is allowed to read up to the returned number of bytes from the memory
1700  *      location computed by the data_of() macro.
1701  *
1702  *      The function returns 0 to indicate the end of data stream condition,
1703  *      and a negative number is returned on error.  In such cases the
1704  *      structure pointed to by @handle is not updated and should not be used
1705  *      any more.
1706  */
1707
1708 int snapshot_read_next(struct snapshot_handle *handle)
1709 {
1710         if (handle->cur > nr_meta_pages + nr_copy_pages)
1711                 return 0;
1712
1713         if (!buffer) {
1714                 /* This makes the buffer be freed by swsusp_free() */
1715                 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
1716                 if (!buffer)
1717                         return -ENOMEM;
1718         }
1719         if (!handle->cur) {
1720                 int error;
1721
1722                 error = init_header((struct swsusp_info *)buffer);
1723                 if (error)
1724                         return error;
1725                 handle->buffer = buffer;
1726                 memory_bm_position_reset(&orig_bm);
1727                 memory_bm_position_reset(&copy_bm);
1728         } else if (handle->cur <= nr_meta_pages) {
1729                 clear_page(buffer);
1730                 pack_pfns(buffer, &orig_bm);
1731         } else {
1732                 struct page *page;
1733
1734                 page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
1735                 if (PageHighMem(page)) {
1736                         /* Highmem pages are copied to the buffer,
1737                          * because we can't return with a kmapped
1738                          * highmem page (we may not be called again).
1739                          */
1740                         void *kaddr;
1741
1742                         kaddr = kmap_atomic(page);
1743                         copy_page(buffer, kaddr);
1744                         kunmap_atomic(kaddr);
1745                         handle->buffer = buffer;
1746                 } else {
1747                         handle->buffer = page_address(page);
1748                 }
1749         }
1750         handle->cur++;
1751         return PAGE_SIZE;
1752 }
1753
1754 /**
1755  *      mark_unsafe_pages - mark the pages that cannot be used for storing
1756  *      the image during resume, because they conflict with the pages that
1757  *      had been used before suspend
1758  */
1759
1760 static int mark_unsafe_pages(struct memory_bitmap *bm)
1761 {
1762         struct zone *zone;
1763         unsigned long pfn, max_zone_pfn;
1764
1765         /* Clear page flags */
1766         for_each_populated_zone(zone) {
1767                 max_zone_pfn = zone_end_pfn(zone);
1768                 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1769                         if (pfn_valid(pfn))
1770                                 swsusp_unset_page_free(pfn_to_page(pfn));
1771         }
1772
1773         /* Mark pages that correspond to the "original" pfns as "unsafe" */
1774         memory_bm_position_reset(bm);
1775         do {
1776                 pfn = memory_bm_next_pfn(bm);
1777                 if (likely(pfn != BM_END_OF_MAP)) {
1778                         if (likely(pfn_valid(pfn)))
1779                                 swsusp_set_page_free(pfn_to_page(pfn));
1780                         else
1781                                 return -EFAULT;
1782                 }
1783         } while (pfn != BM_END_OF_MAP);
1784
1785         allocated_unsafe_pages = 0;
1786
1787         return 0;
1788 }
1789
1790 static void
1791 duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src)
1792 {
1793         unsigned long pfn;
1794
1795         memory_bm_position_reset(src);
1796         pfn = memory_bm_next_pfn(src);
1797         while (pfn != BM_END_OF_MAP) {
1798                 memory_bm_set_bit(dst, pfn);
1799                 pfn = memory_bm_next_pfn(src);
1800         }
1801 }
1802
1803 static int check_header(struct swsusp_info *info)
1804 {
1805         char *reason;
1806
1807         reason = check_image_kernel(info);
1808         if (!reason && info->num_physpages != get_num_physpages())
1809                 reason = "memory size";
1810         if (reason) {
1811                 printk(KERN_ERR "PM: Image mismatch: %s\n", reason);
1812                 return -EPERM;
1813         }
1814         return 0;
1815 }
1816
1817 /**
1818  *      load header - check the image header and copy data from it
1819  */
1820
1821 static int
1822 load_header(struct swsusp_info *info)
1823 {
1824         int error;
1825
1826         restore_pblist = NULL;
1827         error = check_header(info);
1828         if (!error) {
1829                 nr_copy_pages = info->image_pages;
1830                 nr_meta_pages = info->pages - info->image_pages - 1;
1831         }
1832         return error;
1833 }
1834
1835 /**
1836  *      unpack_orig_pfns - for each element of @buf[] (1 page at a time) set
1837  *      the corresponding bit in the memory bitmap @bm
1838  */
1839 static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
1840 {
1841         int j;
1842
1843         for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1844                 if (unlikely(buf[j] == BM_END_OF_MAP))
1845                         break;
1846
1847                 /* Extract and buffer page key for data page (s390 only). */
1848                 page_key_memorize(buf + j);
1849
1850                 if (memory_bm_pfn_present(bm, buf[j]))
1851                         memory_bm_set_bit(bm, buf[j]);
1852                 else
1853                         return -EFAULT;
1854         }
1855
1856         return 0;
1857 }
1858
1859 /* List of "safe" pages that may be used to store data loaded from the suspend
1860  * image
1861  */
1862 static struct linked_page *safe_pages_list;
1863
1864 #ifdef CONFIG_HIGHMEM
1865 /* struct highmem_pbe is used for creating the list of highmem pages that
1866  * should be restored atomically during the resume from disk, because the page
1867  * frames they have occupied before the suspend are in use.
1868  */
1869 struct highmem_pbe {
1870         struct page *copy_page; /* data is here now */
1871         struct page *orig_page; /* data was here before the suspend */
1872         struct highmem_pbe *next;
1873 };
1874
1875 /* List of highmem PBEs needed for restoring the highmem pages that were
1876  * allocated before the suspend and included in the suspend image, but have
1877  * also been allocated by the "resume" kernel, so their contents cannot be
1878  * written directly to their "original" page frames.
1879  */
1880 static struct highmem_pbe *highmem_pblist;
1881
1882 /**
1883  *      count_highmem_image_pages - compute the number of highmem pages in the
1884  *      suspend image.  The bits in the memory bitmap @bm that correspond to the
1885  *      image pages are assumed to be set.
1886  */
1887
1888 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
1889 {
1890         unsigned long pfn;
1891         unsigned int cnt = 0;
1892
1893         memory_bm_position_reset(bm);
1894         pfn = memory_bm_next_pfn(bm);
1895         while (pfn != BM_END_OF_MAP) {
1896                 if (PageHighMem(pfn_to_page(pfn)))
1897                         cnt++;
1898
1899                 pfn = memory_bm_next_pfn(bm);
1900         }
1901         return cnt;
1902 }
1903
1904 /**
1905  *      prepare_highmem_image - try to allocate as many highmem pages as
1906  *      there are highmem image pages (@nr_highmem_p points to the variable
1907  *      containing the number of highmem image pages).  The pages that are
1908  *      "safe" (ie. will not be overwritten when the suspend image is
1909  *      restored) have the corresponding bits set in @bm (it must be
1910  *      unitialized).
1911  *
1912  *      NOTE: This function should not be called if there are no highmem
1913  *      image pages.
1914  */
1915
1916 static unsigned int safe_highmem_pages;
1917
1918 static struct memory_bitmap *safe_highmem_bm;
1919
1920 static int
1921 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
1922 {
1923         unsigned int to_alloc;
1924
1925         if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
1926                 return -ENOMEM;
1927
1928         if (get_highmem_buffer(PG_SAFE))
1929                 return -ENOMEM;
1930
1931         to_alloc = count_free_highmem_pages();
1932         if (to_alloc > *nr_highmem_p)
1933                 to_alloc = *nr_highmem_p;
1934         else
1935                 *nr_highmem_p = to_alloc;
1936
1937         safe_highmem_pages = 0;
1938         while (to_alloc-- > 0) {
1939                 struct page *page;
1940
1941                 page = alloc_page(__GFP_HIGHMEM);
1942                 if (!swsusp_page_is_free(page)) {
1943                         /* The page is "safe", set its bit the bitmap */
1944                         memory_bm_set_bit(bm, page_to_pfn(page));
1945                         safe_highmem_pages++;
1946                 }
1947                 /* Mark the page as allocated */
1948                 swsusp_set_page_forbidden(page);
1949                 swsusp_set_page_free(page);
1950         }
1951         memory_bm_position_reset(bm);
1952         safe_highmem_bm = bm;
1953         return 0;
1954 }
1955
1956 /**
1957  *      get_highmem_page_buffer - for given highmem image page find the buffer
1958  *      that suspend_write_next() should set for its caller to write to.
1959  *
1960  *      If the page is to be saved to its "original" page frame or a copy of
1961  *      the page is to be made in the highmem, @buffer is returned.  Otherwise,
1962  *      the copy of the page is to be made in normal memory, so the address of
1963  *      the copy is returned.
1964  *
1965  *      If @buffer is returned, the caller of suspend_write_next() will write
1966  *      the page's contents to @buffer, so they will have to be copied to the
1967  *      right location on the next call to suspend_write_next() and it is done
1968  *      with the help of copy_last_highmem_page().  For this purpose, if
1969  *      @buffer is returned, @last_highmem page is set to the page to which
1970  *      the data will have to be copied from @buffer.
1971  */
1972
1973 static struct page *last_highmem_page;
1974
1975 static void *
1976 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
1977 {
1978         struct highmem_pbe *pbe;
1979         void *kaddr;
1980
1981         if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
1982                 /* We have allocated the "original" page frame and we can
1983                  * use it directly to store the loaded page.
1984                  */
1985                 last_highmem_page = page;
1986                 return buffer;
1987         }
1988         /* The "original" page frame has not been allocated and we have to
1989          * use a "safe" page frame to store the loaded page.
1990          */
1991         pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
1992         if (!pbe) {
1993                 swsusp_free();
1994                 return ERR_PTR(-ENOMEM);
1995         }
1996         pbe->orig_page = page;
1997         if (safe_highmem_pages > 0) {
1998                 struct page *tmp;
1999
2000                 /* Copy of the page will be stored in high memory */
2001                 kaddr = buffer;
2002                 tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
2003                 safe_highmem_pages--;
2004                 last_highmem_page = tmp;
2005                 pbe->copy_page = tmp;
2006         } else {
2007                 /* Copy of the page will be stored in normal memory */
2008                 kaddr = safe_pages_list;
2009                 safe_pages_list = safe_pages_list->next;
2010                 pbe->copy_page = virt_to_page(kaddr);
2011         }
2012         pbe->next = highmem_pblist;
2013         highmem_pblist = pbe;
2014         return kaddr;
2015 }
2016
2017 /**
2018  *      copy_last_highmem_page - copy the contents of a highmem image from
2019  *      @buffer, where the caller of snapshot_write_next() has place them,
2020  *      to the right location represented by @last_highmem_page .
2021  */
2022
2023 static void copy_last_highmem_page(void)
2024 {
2025         if (last_highmem_page) {
2026                 void *dst;
2027
2028                 dst = kmap_atomic(last_highmem_page);
2029                 copy_page(dst, buffer);
2030                 kunmap_atomic(dst);
2031                 last_highmem_page = NULL;
2032         }
2033 }
2034
2035 static inline int last_highmem_page_copied(void)
2036 {
2037         return !last_highmem_page;
2038 }
2039
2040 static inline void free_highmem_data(void)
2041 {
2042         if (safe_highmem_bm)
2043                 memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
2044
2045         if (buffer)
2046                 free_image_page(buffer, PG_UNSAFE_CLEAR);
2047 }
2048 #else
2049 static inline int get_safe_write_buffer(void) { return 0; }
2050
2051 static unsigned int
2052 count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
2053
2054 static inline int
2055 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
2056 {
2057         return 0;
2058 }
2059
2060 static inline void *
2061 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
2062 {
2063         return ERR_PTR(-EINVAL);
2064 }
2065
2066 static inline void copy_last_highmem_page(void) {}
2067 static inline int last_highmem_page_copied(void) { return 1; }
2068 static inline void free_highmem_data(void) {}
2069 #endif /* CONFIG_HIGHMEM */
2070
2071 /**
2072  *      prepare_image - use the memory bitmap @bm to mark the pages that will
2073  *      be overwritten in the process of restoring the system memory state
2074  *      from the suspend image ("unsafe" pages) and allocate memory for the
2075  *      image.
2076  *
2077  *      The idea is to allocate a new memory bitmap first and then allocate
2078  *      as many pages as needed for the image data, but not to assign these
2079  *      pages to specific tasks initially.  Instead, we just mark them as
2080  *      allocated and create a lists of "safe" pages that will be used
2081  *      later.  On systems with high memory a list of "safe" highmem pages is
2082  *      also created.
2083  */
2084
2085 #define PBES_PER_LINKED_PAGE    (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
2086
2087 static int
2088 prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
2089 {
2090         unsigned int nr_pages, nr_highmem;
2091         struct linked_page *sp_list, *lp;
2092         int error;
2093
2094         /* If there is no highmem, the buffer will not be necessary */
2095         free_image_page(buffer, PG_UNSAFE_CLEAR);
2096         buffer = NULL;
2097
2098         nr_highmem = count_highmem_image_pages(bm);
2099         error = mark_unsafe_pages(bm);
2100         if (error)
2101                 goto Free;
2102
2103         error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
2104         if (error)
2105                 goto Free;
2106
2107         duplicate_memory_bitmap(new_bm, bm);
2108         memory_bm_free(bm, PG_UNSAFE_KEEP);
2109         if (nr_highmem > 0) {
2110                 error = prepare_highmem_image(bm, &nr_highmem);
2111                 if (error)
2112                         goto Free;
2113         }
2114         /* Reserve some safe pages for potential later use.
2115          *
2116          * NOTE: This way we make sure there will be enough safe pages for the
2117          * chain_alloc() in get_buffer().  It is a bit wasteful, but
2118          * nr_copy_pages cannot be greater than 50% of the memory anyway.
2119          */
2120         sp_list = NULL;
2121         /* nr_copy_pages cannot be lesser than allocated_unsafe_pages */
2122         nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2123         nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
2124         while (nr_pages > 0) {
2125                 lp = get_image_page(GFP_ATOMIC, PG_SAFE);
2126                 if (!lp) {
2127                         error = -ENOMEM;
2128                         goto Free;
2129                 }
2130                 lp->next = sp_list;
2131                 sp_list = lp;
2132                 nr_pages--;
2133         }
2134         /* Preallocate memory for the image */
2135         safe_pages_list = NULL;
2136         nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2137         while (nr_pages > 0) {
2138                 lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
2139                 if (!lp) {
2140                         error = -ENOMEM;
2141                         goto Free;
2142                 }
2143                 if (!swsusp_page_is_free(virt_to_page(lp))) {
2144                         /* The page is "safe", add it to the list */
2145                         lp->next = safe_pages_list;
2146                         safe_pages_list = lp;
2147                 }
2148                 /* Mark the page as allocated */
2149                 swsusp_set_page_forbidden(virt_to_page(lp));
2150                 swsusp_set_page_free(virt_to_page(lp));
2151                 nr_pages--;
2152         }
2153         /* Free the reserved safe pages so that chain_alloc() can use them */
2154         while (sp_list) {
2155                 lp = sp_list->next;
2156                 free_image_page(sp_list, PG_UNSAFE_CLEAR);
2157                 sp_list = lp;
2158         }
2159         return 0;
2160
2161  Free:
2162         swsusp_free();
2163         return error;
2164 }
2165
2166 /**
2167  *      get_buffer - compute the address that snapshot_write_next() should
2168  *      set for its caller to write to.
2169  */
2170
2171 static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
2172 {
2173         struct pbe *pbe;
2174         struct page *page;
2175         unsigned long pfn = memory_bm_next_pfn(bm);
2176
2177         if (pfn == BM_END_OF_MAP)
2178                 return ERR_PTR(-EFAULT);
2179
2180         page = pfn_to_page(pfn);
2181         if (PageHighMem(page))
2182                 return get_highmem_page_buffer(page, ca);
2183
2184         if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
2185                 /* We have allocated the "original" page frame and we can
2186                  * use it directly to store the loaded page.
2187                  */
2188                 return page_address(page);
2189
2190         /* The "original" page frame has not been allocated and we have to
2191          * use a "safe" page frame to store the loaded page.
2192          */
2193         pbe = chain_alloc(ca, sizeof(struct pbe));
2194         if (!pbe) {
2195                 swsusp_free();
2196                 return ERR_PTR(-ENOMEM);
2197         }
2198         pbe->orig_address = page_address(page);
2199         pbe->address = safe_pages_list;
2200         safe_pages_list = safe_pages_list->next;
2201         pbe->next = restore_pblist;
2202         restore_pblist = pbe;
2203         return pbe->address;
2204 }
2205
2206 /**
2207  *      snapshot_write_next - used for writing the system memory snapshot.
2208  *
2209  *      On the first call to it @handle should point to a zeroed
2210  *      snapshot_handle structure.  The structure gets updated and a pointer
2211  *      to it should be passed to this function every next time.
2212  *
2213  *      On success the function returns a positive number.  Then, the caller
2214  *      is allowed to write up to the returned number of bytes to the memory
2215  *      location computed by the data_of() macro.
2216  *
2217  *      The function returns 0 to indicate the "end of file" condition,
2218  *      and a negative number is returned on error.  In such cases the
2219  *      structure pointed to by @handle is not updated and should not be used
2220  *      any more.
2221  */
2222
2223 int snapshot_write_next(struct snapshot_handle *handle)
2224 {
2225         static struct chain_allocator ca;
2226         int error = 0;
2227
2228         /* Check if we have already loaded the entire image */
2229         if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
2230                 return 0;
2231
2232         handle->sync_read = 1;
2233
2234         if (!handle->cur) {
2235                 if (!buffer)
2236                         /* This makes the buffer be freed by swsusp_free() */
2237                         buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2238
2239                 if (!buffer)
2240                         return -ENOMEM;
2241
2242                 handle->buffer = buffer;
2243         } else if (handle->cur == 1) {
2244                 error = load_header(buffer);
2245                 if (error)
2246                         return error;
2247
2248                 error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
2249                 if (error)
2250                         return error;
2251
2252                 /* Allocate buffer for page keys. */
2253                 error = page_key_alloc(nr_copy_pages);
2254                 if (error)
2255                         return error;
2256
2257         } else if (handle->cur <= nr_meta_pages + 1) {
2258                 error = unpack_orig_pfns(buffer, &copy_bm);
2259                 if (error)
2260                         return error;
2261
2262                 if (handle->cur == nr_meta_pages + 1) {
2263                         error = prepare_image(&orig_bm, &copy_bm);
2264                         if (error)
2265                                 return error;
2266
2267                         chain_init(&ca, GFP_ATOMIC, PG_SAFE);
2268                         memory_bm_position_reset(&orig_bm);
2269                         restore_pblist = NULL;
2270                         handle->buffer = get_buffer(&orig_bm, &ca);
2271                         handle->sync_read = 0;
2272                         if (IS_ERR(handle->buffer))
2273                                 return PTR_ERR(handle->buffer);
2274                 }
2275         } else {
2276                 copy_last_highmem_page();
2277                 /* Restore page key for data page (s390 only). */
2278                 page_key_write(handle->buffer);
2279                 handle->buffer = get_buffer(&orig_bm, &ca);
2280                 if (IS_ERR(handle->buffer))
2281                         return PTR_ERR(handle->buffer);
2282                 if (handle->buffer != buffer)
2283                         handle->sync_read = 0;
2284         }
2285         handle->cur++;
2286         return PAGE_SIZE;
2287 }
2288
2289 /**
2290  *      snapshot_write_finalize - must be called after the last call to
2291  *      snapshot_write_next() in case the last page in the image happens
2292  *      to be a highmem page and its contents should be stored in the
2293  *      highmem.  Additionally, it releases the memory that will not be
2294  *      used any more.
2295  */
2296
2297 void snapshot_write_finalize(struct snapshot_handle *handle)
2298 {
2299         copy_last_highmem_page();
2300         /* Restore page key for data page (s390 only). */
2301         page_key_write(handle->buffer);
2302         page_key_free();
2303         /* Free only if we have loaded the image entirely */
2304         if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
2305                 memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR);
2306                 free_highmem_data();
2307         }
2308 }
2309
2310 int snapshot_image_loaded(struct snapshot_handle *handle)
2311 {
2312         return !(!nr_copy_pages || !last_highmem_page_copied() ||
2313                         handle->cur <= nr_meta_pages + nr_copy_pages);
2314 }
2315
2316 #ifdef CONFIG_HIGHMEM
2317 /* Assumes that @buf is ready and points to a "safe" page */
2318 static inline void
2319 swap_two_pages_data(struct page *p1, struct page *p2, void *buf)
2320 {
2321         void *kaddr1, *kaddr2;
2322
2323         kaddr1 = kmap_atomic(p1);
2324         kaddr2 = kmap_atomic(p2);
2325         copy_page(buf, kaddr1);
2326         copy_page(kaddr1, kaddr2);
2327         copy_page(kaddr2, buf);
2328         kunmap_atomic(kaddr2);
2329         kunmap_atomic(kaddr1);
2330 }
2331
2332 /**
2333  *      restore_highmem - for each highmem page that was allocated before
2334  *      the suspend and included in the suspend image, and also has been
2335  *      allocated by the "resume" kernel swap its current (ie. "before
2336  *      resume") contents with the previous (ie. "before suspend") one.
2337  *
2338  *      If the resume eventually fails, we can call this function once
2339  *      again and restore the "before resume" highmem state.
2340  */
2341
2342 int restore_highmem(void)
2343 {
2344         struct highmem_pbe *pbe = highmem_pblist;
2345         void *buf;
2346
2347         if (!pbe)
2348                 return 0;
2349
2350         buf = get_image_page(GFP_ATOMIC, PG_SAFE);
2351         if (!buf)
2352                 return -ENOMEM;
2353
2354         while (pbe) {
2355                 swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
2356                 pbe = pbe->next;
2357         }
2358         free_image_page(buf, PG_UNSAFE_CLEAR);
2359         return 0;
2360 }
2361 #endif /* CONFIG_HIGHMEM */