block/fs/drivers: remove rw argument from submit_bio
[cascardo/linux.git] / kernel / power / swap.c
1 /*
2  * linux/kernel/power/swap.c
3  *
4  * This file provides functions for reading the suspend image from
5  * and writing it to a swap partition.
6  *
7  * Copyright (C) 1998,2001-2005 Pavel Machek <pavel@ucw.cz>
8  * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
9  * Copyright (C) 2010-2012 Bojan Smojver <bojan@rexursive.com>
10  *
11  * This file is released under the GPLv2.
12  *
13  */
14
15 #include <linux/module.h>
16 #include <linux/file.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/genhd.h>
20 #include <linux/device.h>
21 #include <linux/bio.h>
22 #include <linux/blkdev.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/pm.h>
26 #include <linux/slab.h>
27 #include <linux/lzo.h>
28 #include <linux/vmalloc.h>
29 #include <linux/cpumask.h>
30 #include <linux/atomic.h>
31 #include <linux/kthread.h>
32 #include <linux/crc32.h>
33 #include <linux/ktime.h>
34
35 #include "power.h"
36
37 #define HIBERNATE_SIG   "S1SUSPEND"
38
39 /*
40  * When reading an {un,}compressed image, we may restore pages in place,
41  * in which case some architectures need these pages cleaning before they
42  * can be executed. We don't know which pages these may be, so clean the lot.
43  */
44 static bool clean_pages_on_read;
45 static bool clean_pages_on_decompress;
46
47 /*
48  *      The swap map is a data structure used for keeping track of each page
49  *      written to a swap partition.  It consists of many swap_map_page
50  *      structures that contain each an array of MAP_PAGE_ENTRIES swap entries.
51  *      These structures are stored on the swap and linked together with the
52  *      help of the .next_swap member.
53  *
54  *      The swap map is created during suspend.  The swap map pages are
55  *      allocated and populated one at a time, so we only need one memory
56  *      page to set up the entire structure.
57  *
58  *      During resume we pick up all swap_map_page structures into a list.
59  */
60
61 #define MAP_PAGE_ENTRIES        (PAGE_SIZE / sizeof(sector_t) - 1)
62
63 /*
64  * Number of free pages that are not high.
65  */
66 static inline unsigned long low_free_pages(void)
67 {
68         return nr_free_pages() - nr_free_highpages();
69 }
70
71 /*
72  * Number of pages required to be kept free while writing the image. Always
73  * half of all available low pages before the writing starts.
74  */
75 static inline unsigned long reqd_free_pages(void)
76 {
77         return low_free_pages() / 2;
78 }
79
80 struct swap_map_page {
81         sector_t entries[MAP_PAGE_ENTRIES];
82         sector_t next_swap;
83 };
84
85 struct swap_map_page_list {
86         struct swap_map_page *map;
87         struct swap_map_page_list *next;
88 };
89
90 /**
91  *      The swap_map_handle structure is used for handling swap in
92  *      a file-alike way
93  */
94
95 struct swap_map_handle {
96         struct swap_map_page *cur;
97         struct swap_map_page_list *maps;
98         sector_t cur_swap;
99         sector_t first_sector;
100         unsigned int k;
101         unsigned long reqd_free_pages;
102         u32 crc32;
103 };
104
105 struct swsusp_header {
106         char reserved[PAGE_SIZE - 20 - sizeof(sector_t) - sizeof(int) -
107                       sizeof(u32)];
108         u32     crc32;
109         sector_t image;
110         unsigned int flags;     /* Flags to pass to the "boot" kernel */
111         char    orig_sig[10];
112         char    sig[10];
113 } __packed;
114
115 static struct swsusp_header *swsusp_header;
116
117 /**
118  *      The following functions are used for tracing the allocated
119  *      swap pages, so that they can be freed in case of an error.
120  */
121
122 struct swsusp_extent {
123         struct rb_node node;
124         unsigned long start;
125         unsigned long end;
126 };
127
128 static struct rb_root swsusp_extents = RB_ROOT;
129
130 static int swsusp_extents_insert(unsigned long swap_offset)
131 {
132         struct rb_node **new = &(swsusp_extents.rb_node);
133         struct rb_node *parent = NULL;
134         struct swsusp_extent *ext;
135
136         /* Figure out where to put the new node */
137         while (*new) {
138                 ext = rb_entry(*new, struct swsusp_extent, node);
139                 parent = *new;
140                 if (swap_offset < ext->start) {
141                         /* Try to merge */
142                         if (swap_offset == ext->start - 1) {
143                                 ext->start--;
144                                 return 0;
145                         }
146                         new = &((*new)->rb_left);
147                 } else if (swap_offset > ext->end) {
148                         /* Try to merge */
149                         if (swap_offset == ext->end + 1) {
150                                 ext->end++;
151                                 return 0;
152                         }
153                         new = &((*new)->rb_right);
154                 } else {
155                         /* It already is in the tree */
156                         return -EINVAL;
157                 }
158         }
159         /* Add the new node and rebalance the tree. */
160         ext = kzalloc(sizeof(struct swsusp_extent), GFP_KERNEL);
161         if (!ext)
162                 return -ENOMEM;
163
164         ext->start = swap_offset;
165         ext->end = swap_offset;
166         rb_link_node(&ext->node, parent, new);
167         rb_insert_color(&ext->node, &swsusp_extents);
168         return 0;
169 }
170
171 /**
172  *      alloc_swapdev_block - allocate a swap page and register that it has
173  *      been allocated, so that it can be freed in case of an error.
174  */
175
176 sector_t alloc_swapdev_block(int swap)
177 {
178         unsigned long offset;
179
180         offset = swp_offset(get_swap_page_of_type(swap));
181         if (offset) {
182                 if (swsusp_extents_insert(offset))
183                         swap_free(swp_entry(swap, offset));
184                 else
185                         return swapdev_block(swap, offset);
186         }
187         return 0;
188 }
189
190 /**
191  *      free_all_swap_pages - free swap pages allocated for saving image data.
192  *      It also frees the extents used to register which swap entries had been
193  *      allocated.
194  */
195
196 void free_all_swap_pages(int swap)
197 {
198         struct rb_node *node;
199
200         while ((node = swsusp_extents.rb_node)) {
201                 struct swsusp_extent *ext;
202                 unsigned long offset;
203
204                 ext = container_of(node, struct swsusp_extent, node);
205                 rb_erase(node, &swsusp_extents);
206                 for (offset = ext->start; offset <= ext->end; offset++)
207                         swap_free(swp_entry(swap, offset));
208
209                 kfree(ext);
210         }
211 }
212
213 int swsusp_swap_in_use(void)
214 {
215         return (swsusp_extents.rb_node != NULL);
216 }
217
218 /*
219  * General things
220  */
221
222 static unsigned short root_swap = 0xffff;
223 static struct block_device *hib_resume_bdev;
224
225 struct hib_bio_batch {
226         atomic_t                count;
227         wait_queue_head_t       wait;
228         int                     error;
229 };
230
231 static void hib_init_batch(struct hib_bio_batch *hb)
232 {
233         atomic_set(&hb->count, 0);
234         init_waitqueue_head(&hb->wait);
235         hb->error = 0;
236 }
237
238 static void hib_end_io(struct bio *bio)
239 {
240         struct hib_bio_batch *hb = bio->bi_private;
241         struct page *page = bio->bi_io_vec[0].bv_page;
242
243         if (bio->bi_error) {
244                 printk(KERN_ALERT "Read-error on swap-device (%u:%u:%Lu)\n",
245                                 imajor(bio->bi_bdev->bd_inode),
246                                 iminor(bio->bi_bdev->bd_inode),
247                                 (unsigned long long)bio->bi_iter.bi_sector);
248         }
249
250         if (bio_data_dir(bio) == WRITE)
251                 put_page(page);
252         else if (clean_pages_on_read)
253                 flush_icache_range((unsigned long)page_address(page),
254                                    (unsigned long)page_address(page) + PAGE_SIZE);
255
256         if (bio->bi_error && !hb->error)
257                 hb->error = bio->bi_error;
258         if (atomic_dec_and_test(&hb->count))
259                 wake_up(&hb->wait);
260
261         bio_put(bio);
262 }
263
264 static int hib_submit_io(int rw, pgoff_t page_off, void *addr,
265                 struct hib_bio_batch *hb)
266 {
267         struct page *page = virt_to_page(addr);
268         struct bio *bio;
269         int error = 0;
270
271         bio = bio_alloc(__GFP_RECLAIM | __GFP_HIGH, 1);
272         bio->bi_iter.bi_sector = page_off * (PAGE_SIZE >> 9);
273         bio->bi_bdev = hib_resume_bdev;
274         bio->bi_rw = rw;
275
276         if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
277                 printk(KERN_ERR "PM: Adding page to bio failed at %llu\n",
278                         (unsigned long long)bio->bi_iter.bi_sector);
279                 bio_put(bio);
280                 return -EFAULT;
281         }
282
283         if (hb) {
284                 bio->bi_end_io = hib_end_io;
285                 bio->bi_private = hb;
286                 atomic_inc(&hb->count);
287                 submit_bio(bio);
288         } else {
289                 error = submit_bio_wait(bio);
290                 bio_put(bio);
291         }
292
293         return error;
294 }
295
296 static int hib_wait_io(struct hib_bio_batch *hb)
297 {
298         wait_event(hb->wait, atomic_read(&hb->count) == 0);
299         return hb->error;
300 }
301
302 /*
303  * Saving part
304  */
305
306 static int mark_swapfiles(struct swap_map_handle *handle, unsigned int flags)
307 {
308         int error;
309
310         hib_submit_io(READ_SYNC, swsusp_resume_block, swsusp_header, NULL);
311         if (!memcmp("SWAP-SPACE",swsusp_header->sig, 10) ||
312             !memcmp("SWAPSPACE2",swsusp_header->sig, 10)) {
313                 memcpy(swsusp_header->orig_sig,swsusp_header->sig, 10);
314                 memcpy(swsusp_header->sig, HIBERNATE_SIG, 10);
315                 swsusp_header->image = handle->first_sector;
316                 swsusp_header->flags = flags;
317                 if (flags & SF_CRC32_MODE)
318                         swsusp_header->crc32 = handle->crc32;
319                 error = hib_submit_io(WRITE_SYNC, swsusp_resume_block,
320                                         swsusp_header, NULL);
321         } else {
322                 printk(KERN_ERR "PM: Swap header not found!\n");
323                 error = -ENODEV;
324         }
325         return error;
326 }
327
328 /**
329  *      swsusp_swap_check - check if the resume device is a swap device
330  *      and get its index (if so)
331  *
332  *      This is called before saving image
333  */
334 static int swsusp_swap_check(void)
335 {
336         int res;
337
338         res = swap_type_of(swsusp_resume_device, swsusp_resume_block,
339                         &hib_resume_bdev);
340         if (res < 0)
341                 return res;
342
343         root_swap = res;
344         res = blkdev_get(hib_resume_bdev, FMODE_WRITE, NULL);
345         if (res)
346                 return res;
347
348         res = set_blocksize(hib_resume_bdev, PAGE_SIZE);
349         if (res < 0)
350                 blkdev_put(hib_resume_bdev, FMODE_WRITE);
351
352         return res;
353 }
354
355 /**
356  *      write_page - Write one page to given swap location.
357  *      @buf:           Address we're writing.
358  *      @offset:        Offset of the swap page we're writing to.
359  *      @hb:            bio completion batch
360  */
361
362 static int write_page(void *buf, sector_t offset, struct hib_bio_batch *hb)
363 {
364         void *src;
365         int ret;
366
367         if (!offset)
368                 return -ENOSPC;
369
370         if (hb) {
371                 src = (void *)__get_free_page(__GFP_RECLAIM | __GFP_NOWARN |
372                                               __GFP_NORETRY);
373                 if (src) {
374                         copy_page(src, buf);
375                 } else {
376                         ret = hib_wait_io(hb); /* Free pages */
377                         if (ret)
378                                 return ret;
379                         src = (void *)__get_free_page(__GFP_RECLAIM |
380                                                       __GFP_NOWARN |
381                                                       __GFP_NORETRY);
382                         if (src) {
383                                 copy_page(src, buf);
384                         } else {
385                                 WARN_ON_ONCE(1);
386                                 hb = NULL;      /* Go synchronous */
387                                 src = buf;
388                         }
389                 }
390         } else {
391                 src = buf;
392         }
393         return hib_submit_io(WRITE_SYNC, offset, src, hb);
394 }
395
396 static void release_swap_writer(struct swap_map_handle *handle)
397 {
398         if (handle->cur)
399                 free_page((unsigned long)handle->cur);
400         handle->cur = NULL;
401 }
402
403 static int get_swap_writer(struct swap_map_handle *handle)
404 {
405         int ret;
406
407         ret = swsusp_swap_check();
408         if (ret) {
409                 if (ret != -ENOSPC)
410                         printk(KERN_ERR "PM: Cannot find swap device, try "
411                                         "swapon -a.\n");
412                 return ret;
413         }
414         handle->cur = (struct swap_map_page *)get_zeroed_page(GFP_KERNEL);
415         if (!handle->cur) {
416                 ret = -ENOMEM;
417                 goto err_close;
418         }
419         handle->cur_swap = alloc_swapdev_block(root_swap);
420         if (!handle->cur_swap) {
421                 ret = -ENOSPC;
422                 goto err_rel;
423         }
424         handle->k = 0;
425         handle->reqd_free_pages = reqd_free_pages();
426         handle->first_sector = handle->cur_swap;
427         return 0;
428 err_rel:
429         release_swap_writer(handle);
430 err_close:
431         swsusp_close(FMODE_WRITE);
432         return ret;
433 }
434
435 static int swap_write_page(struct swap_map_handle *handle, void *buf,
436                 struct hib_bio_batch *hb)
437 {
438         int error = 0;
439         sector_t offset;
440
441         if (!handle->cur)
442                 return -EINVAL;
443         offset = alloc_swapdev_block(root_swap);
444         error = write_page(buf, offset, hb);
445         if (error)
446                 return error;
447         handle->cur->entries[handle->k++] = offset;
448         if (handle->k >= MAP_PAGE_ENTRIES) {
449                 offset = alloc_swapdev_block(root_swap);
450                 if (!offset)
451                         return -ENOSPC;
452                 handle->cur->next_swap = offset;
453                 error = write_page(handle->cur, handle->cur_swap, hb);
454                 if (error)
455                         goto out;
456                 clear_page(handle->cur);
457                 handle->cur_swap = offset;
458                 handle->k = 0;
459
460                 if (hb && low_free_pages() <= handle->reqd_free_pages) {
461                         error = hib_wait_io(hb);
462                         if (error)
463                                 goto out;
464                         /*
465                          * Recalculate the number of required free pages, to
466                          * make sure we never take more than half.
467                          */
468                         handle->reqd_free_pages = reqd_free_pages();
469                 }
470         }
471  out:
472         return error;
473 }
474
475 static int flush_swap_writer(struct swap_map_handle *handle)
476 {
477         if (handle->cur && handle->cur_swap)
478                 return write_page(handle->cur, handle->cur_swap, NULL);
479         else
480                 return -EINVAL;
481 }
482
483 static int swap_writer_finish(struct swap_map_handle *handle,
484                 unsigned int flags, int error)
485 {
486         if (!error) {
487                 flush_swap_writer(handle);
488                 printk(KERN_INFO "PM: S");
489                 error = mark_swapfiles(handle, flags);
490                 printk("|\n");
491         }
492
493         if (error)
494                 free_all_swap_pages(root_swap);
495         release_swap_writer(handle);
496         swsusp_close(FMODE_WRITE);
497
498         return error;
499 }
500
501 /* We need to remember how much compressed data we need to read. */
502 #define LZO_HEADER      sizeof(size_t)
503
504 /* Number of pages/bytes we'll compress at one time. */
505 #define LZO_UNC_PAGES   32
506 #define LZO_UNC_SIZE    (LZO_UNC_PAGES * PAGE_SIZE)
507
508 /* Number of pages/bytes we need for compressed data (worst case). */
509 #define LZO_CMP_PAGES   DIV_ROUND_UP(lzo1x_worst_compress(LZO_UNC_SIZE) + \
510                                      LZO_HEADER, PAGE_SIZE)
511 #define LZO_CMP_SIZE    (LZO_CMP_PAGES * PAGE_SIZE)
512
513 /* Maximum number of threads for compression/decompression. */
514 #define LZO_THREADS     3
515
516 /* Minimum/maximum number of pages for read buffering. */
517 #define LZO_MIN_RD_PAGES        1024
518 #define LZO_MAX_RD_PAGES        8192
519
520
521 /**
522  *      save_image - save the suspend image data
523  */
524
525 static int save_image(struct swap_map_handle *handle,
526                       struct snapshot_handle *snapshot,
527                       unsigned int nr_to_write)
528 {
529         unsigned int m;
530         int ret;
531         int nr_pages;
532         int err2;
533         struct hib_bio_batch hb;
534         ktime_t start;
535         ktime_t stop;
536
537         hib_init_batch(&hb);
538
539         printk(KERN_INFO "PM: Saving image data pages (%u pages)...\n",
540                 nr_to_write);
541         m = nr_to_write / 10;
542         if (!m)
543                 m = 1;
544         nr_pages = 0;
545         start = ktime_get();
546         while (1) {
547                 ret = snapshot_read_next(snapshot);
548                 if (ret <= 0)
549                         break;
550                 ret = swap_write_page(handle, data_of(*snapshot), &hb);
551                 if (ret)
552                         break;
553                 if (!(nr_pages % m))
554                         printk(KERN_INFO "PM: Image saving progress: %3d%%\n",
555                                nr_pages / m * 10);
556                 nr_pages++;
557         }
558         err2 = hib_wait_io(&hb);
559         stop = ktime_get();
560         if (!ret)
561                 ret = err2;
562         if (!ret)
563                 printk(KERN_INFO "PM: Image saving done.\n");
564         swsusp_show_speed(start, stop, nr_to_write, "Wrote");
565         return ret;
566 }
567
568 /**
569  * Structure used for CRC32.
570  */
571 struct crc_data {
572         struct task_struct *thr;                  /* thread */
573         atomic_t ready;                           /* ready to start flag */
574         atomic_t stop;                            /* ready to stop flag */
575         unsigned run_threads;                     /* nr current threads */
576         wait_queue_head_t go;                     /* start crc update */
577         wait_queue_head_t done;                   /* crc update done */
578         u32 *crc32;                               /* points to handle's crc32 */
579         size_t *unc_len[LZO_THREADS];             /* uncompressed lengths */
580         unsigned char *unc[LZO_THREADS];          /* uncompressed data */
581 };
582
583 /**
584  * CRC32 update function that runs in its own thread.
585  */
586 static int crc32_threadfn(void *data)
587 {
588         struct crc_data *d = data;
589         unsigned i;
590
591         while (1) {
592                 wait_event(d->go, atomic_read(&d->ready) ||
593                                   kthread_should_stop());
594                 if (kthread_should_stop()) {
595                         d->thr = NULL;
596                         atomic_set(&d->stop, 1);
597                         wake_up(&d->done);
598                         break;
599                 }
600                 atomic_set(&d->ready, 0);
601
602                 for (i = 0; i < d->run_threads; i++)
603                         *d->crc32 = crc32_le(*d->crc32,
604                                              d->unc[i], *d->unc_len[i]);
605                 atomic_set(&d->stop, 1);
606                 wake_up(&d->done);
607         }
608         return 0;
609 }
610 /**
611  * Structure used for LZO data compression.
612  */
613 struct cmp_data {
614         struct task_struct *thr;                  /* thread */
615         atomic_t ready;                           /* ready to start flag */
616         atomic_t stop;                            /* ready to stop flag */
617         int ret;                                  /* return code */
618         wait_queue_head_t go;                     /* start compression */
619         wait_queue_head_t done;                   /* compression done */
620         size_t unc_len;                           /* uncompressed length */
621         size_t cmp_len;                           /* compressed length */
622         unsigned char unc[LZO_UNC_SIZE];          /* uncompressed buffer */
623         unsigned char cmp[LZO_CMP_SIZE];          /* compressed buffer */
624         unsigned char wrk[LZO1X_1_MEM_COMPRESS];  /* compression workspace */
625 };
626
627 /**
628  * Compression function that runs in its own thread.
629  */
630 static int lzo_compress_threadfn(void *data)
631 {
632         struct cmp_data *d = data;
633
634         while (1) {
635                 wait_event(d->go, atomic_read(&d->ready) ||
636                                   kthread_should_stop());
637                 if (kthread_should_stop()) {
638                         d->thr = NULL;
639                         d->ret = -1;
640                         atomic_set(&d->stop, 1);
641                         wake_up(&d->done);
642                         break;
643                 }
644                 atomic_set(&d->ready, 0);
645
646                 d->ret = lzo1x_1_compress(d->unc, d->unc_len,
647                                           d->cmp + LZO_HEADER, &d->cmp_len,
648                                           d->wrk);
649                 atomic_set(&d->stop, 1);
650                 wake_up(&d->done);
651         }
652         return 0;
653 }
654
655 /**
656  * save_image_lzo - Save the suspend image data compressed with LZO.
657  * @handle: Swap map handle to use for saving the image.
658  * @snapshot: Image to read data from.
659  * @nr_to_write: Number of pages to save.
660  */
661 static int save_image_lzo(struct swap_map_handle *handle,
662                           struct snapshot_handle *snapshot,
663                           unsigned int nr_to_write)
664 {
665         unsigned int m;
666         int ret = 0;
667         int nr_pages;
668         int err2;
669         struct hib_bio_batch hb;
670         ktime_t start;
671         ktime_t stop;
672         size_t off;
673         unsigned thr, run_threads, nr_threads;
674         unsigned char *page = NULL;
675         struct cmp_data *data = NULL;
676         struct crc_data *crc = NULL;
677
678         hib_init_batch(&hb);
679
680         /*
681          * We'll limit the number of threads for compression to limit memory
682          * footprint.
683          */
684         nr_threads = num_online_cpus() - 1;
685         nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
686
687         page = (void *)__get_free_page(__GFP_RECLAIM | __GFP_HIGH);
688         if (!page) {
689                 printk(KERN_ERR "PM: Failed to allocate LZO page\n");
690                 ret = -ENOMEM;
691                 goto out_clean;
692         }
693
694         data = vmalloc(sizeof(*data) * nr_threads);
695         if (!data) {
696                 printk(KERN_ERR "PM: Failed to allocate LZO data\n");
697                 ret = -ENOMEM;
698                 goto out_clean;
699         }
700         for (thr = 0; thr < nr_threads; thr++)
701                 memset(&data[thr], 0, offsetof(struct cmp_data, go));
702
703         crc = kmalloc(sizeof(*crc), GFP_KERNEL);
704         if (!crc) {
705                 printk(KERN_ERR "PM: Failed to allocate crc\n");
706                 ret = -ENOMEM;
707                 goto out_clean;
708         }
709         memset(crc, 0, offsetof(struct crc_data, go));
710
711         /*
712          * Start the compression threads.
713          */
714         for (thr = 0; thr < nr_threads; thr++) {
715                 init_waitqueue_head(&data[thr].go);
716                 init_waitqueue_head(&data[thr].done);
717
718                 data[thr].thr = kthread_run(lzo_compress_threadfn,
719                                             &data[thr],
720                                             "image_compress/%u", thr);
721                 if (IS_ERR(data[thr].thr)) {
722                         data[thr].thr = NULL;
723                         printk(KERN_ERR
724                                "PM: Cannot start compression threads\n");
725                         ret = -ENOMEM;
726                         goto out_clean;
727                 }
728         }
729
730         /*
731          * Start the CRC32 thread.
732          */
733         init_waitqueue_head(&crc->go);
734         init_waitqueue_head(&crc->done);
735
736         handle->crc32 = 0;
737         crc->crc32 = &handle->crc32;
738         for (thr = 0; thr < nr_threads; thr++) {
739                 crc->unc[thr] = data[thr].unc;
740                 crc->unc_len[thr] = &data[thr].unc_len;
741         }
742
743         crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
744         if (IS_ERR(crc->thr)) {
745                 crc->thr = NULL;
746                 printk(KERN_ERR "PM: Cannot start CRC32 thread\n");
747                 ret = -ENOMEM;
748                 goto out_clean;
749         }
750
751         /*
752          * Adjust the number of required free pages after all allocations have
753          * been done. We don't want to run out of pages when writing.
754          */
755         handle->reqd_free_pages = reqd_free_pages();
756
757         printk(KERN_INFO
758                 "PM: Using %u thread(s) for compression.\n"
759                 "PM: Compressing and saving image data (%u pages)...\n",
760                 nr_threads, nr_to_write);
761         m = nr_to_write / 10;
762         if (!m)
763                 m = 1;
764         nr_pages = 0;
765         start = ktime_get();
766         for (;;) {
767                 for (thr = 0; thr < nr_threads; thr++) {
768                         for (off = 0; off < LZO_UNC_SIZE; off += PAGE_SIZE) {
769                                 ret = snapshot_read_next(snapshot);
770                                 if (ret < 0)
771                                         goto out_finish;
772
773                                 if (!ret)
774                                         break;
775
776                                 memcpy(data[thr].unc + off,
777                                        data_of(*snapshot), PAGE_SIZE);
778
779                                 if (!(nr_pages % m))
780                                         printk(KERN_INFO
781                                                "PM: Image saving progress: "
782                                                "%3d%%\n",
783                                                nr_pages / m * 10);
784                                 nr_pages++;
785                         }
786                         if (!off)
787                                 break;
788
789                         data[thr].unc_len = off;
790
791                         atomic_set(&data[thr].ready, 1);
792                         wake_up(&data[thr].go);
793                 }
794
795                 if (!thr)
796                         break;
797
798                 crc->run_threads = thr;
799                 atomic_set(&crc->ready, 1);
800                 wake_up(&crc->go);
801
802                 for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
803                         wait_event(data[thr].done,
804                                    atomic_read(&data[thr].stop));
805                         atomic_set(&data[thr].stop, 0);
806
807                         ret = data[thr].ret;
808
809                         if (ret < 0) {
810                                 printk(KERN_ERR "PM: LZO compression failed\n");
811                                 goto out_finish;
812                         }
813
814                         if (unlikely(!data[thr].cmp_len ||
815                                      data[thr].cmp_len >
816                                      lzo1x_worst_compress(data[thr].unc_len))) {
817                                 printk(KERN_ERR
818                                        "PM: Invalid LZO compressed length\n");
819                                 ret = -1;
820                                 goto out_finish;
821                         }
822
823                         *(size_t *)data[thr].cmp = data[thr].cmp_len;
824
825                         /*
826                          * Given we are writing one page at a time to disk, we
827                          * copy that much from the buffer, although the last
828                          * bit will likely be smaller than full page. This is
829                          * OK - we saved the length of the compressed data, so
830                          * any garbage at the end will be discarded when we
831                          * read it.
832                          */
833                         for (off = 0;
834                              off < LZO_HEADER + data[thr].cmp_len;
835                              off += PAGE_SIZE) {
836                                 memcpy(page, data[thr].cmp + off, PAGE_SIZE);
837
838                                 ret = swap_write_page(handle, page, &hb);
839                                 if (ret)
840                                         goto out_finish;
841                         }
842                 }
843
844                 wait_event(crc->done, atomic_read(&crc->stop));
845                 atomic_set(&crc->stop, 0);
846         }
847
848 out_finish:
849         err2 = hib_wait_io(&hb);
850         stop = ktime_get();
851         if (!ret)
852                 ret = err2;
853         if (!ret)
854                 printk(KERN_INFO "PM: Image saving done.\n");
855         swsusp_show_speed(start, stop, nr_to_write, "Wrote");
856 out_clean:
857         if (crc) {
858                 if (crc->thr)
859                         kthread_stop(crc->thr);
860                 kfree(crc);
861         }
862         if (data) {
863                 for (thr = 0; thr < nr_threads; thr++)
864                         if (data[thr].thr)
865                                 kthread_stop(data[thr].thr);
866                 vfree(data);
867         }
868         if (page) free_page((unsigned long)page);
869
870         return ret;
871 }
872
873 /**
874  *      enough_swap - Make sure we have enough swap to save the image.
875  *
876  *      Returns TRUE or FALSE after checking the total amount of swap
877  *      space avaiable from the resume partition.
878  */
879
880 static int enough_swap(unsigned int nr_pages, unsigned int flags)
881 {
882         unsigned int free_swap = count_swap_pages(root_swap, 1);
883         unsigned int required;
884
885         pr_debug("PM: Free swap pages: %u\n", free_swap);
886
887         required = PAGES_FOR_IO + nr_pages;
888         return free_swap > required;
889 }
890
891 /**
892  *      swsusp_write - Write entire image and metadata.
893  *      @flags: flags to pass to the "boot" kernel in the image header
894  *
895  *      It is important _NOT_ to umount filesystems at this point. We want
896  *      them synced (in case something goes wrong) but we DO not want to mark
897  *      filesystem clean: it is not. (And it does not matter, if we resume
898  *      correctly, we'll mark system clean, anyway.)
899  */
900
901 int swsusp_write(unsigned int flags)
902 {
903         struct swap_map_handle handle;
904         struct snapshot_handle snapshot;
905         struct swsusp_info *header;
906         unsigned long pages;
907         int error;
908
909         pages = snapshot_get_image_size();
910         error = get_swap_writer(&handle);
911         if (error) {
912                 printk(KERN_ERR "PM: Cannot get swap writer\n");
913                 return error;
914         }
915         if (flags & SF_NOCOMPRESS_MODE) {
916                 if (!enough_swap(pages, flags)) {
917                         printk(KERN_ERR "PM: Not enough free swap\n");
918                         error = -ENOSPC;
919                         goto out_finish;
920                 }
921         }
922         memset(&snapshot, 0, sizeof(struct snapshot_handle));
923         error = snapshot_read_next(&snapshot);
924         if (error < PAGE_SIZE) {
925                 if (error >= 0)
926                         error = -EFAULT;
927
928                 goto out_finish;
929         }
930         header = (struct swsusp_info *)data_of(snapshot);
931         error = swap_write_page(&handle, header, NULL);
932         if (!error) {
933                 error = (flags & SF_NOCOMPRESS_MODE) ?
934                         save_image(&handle, &snapshot, pages - 1) :
935                         save_image_lzo(&handle, &snapshot, pages - 1);
936         }
937 out_finish:
938         error = swap_writer_finish(&handle, flags, error);
939         return error;
940 }
941
942 /**
943  *      The following functions allow us to read data using a swap map
944  *      in a file-alike way
945  */
946
947 static void release_swap_reader(struct swap_map_handle *handle)
948 {
949         struct swap_map_page_list *tmp;
950
951         while (handle->maps) {
952                 if (handle->maps->map)
953                         free_page((unsigned long)handle->maps->map);
954                 tmp = handle->maps;
955                 handle->maps = handle->maps->next;
956                 kfree(tmp);
957         }
958         handle->cur = NULL;
959 }
960
961 static int get_swap_reader(struct swap_map_handle *handle,
962                 unsigned int *flags_p)
963 {
964         int error;
965         struct swap_map_page_list *tmp, *last;
966         sector_t offset;
967
968         *flags_p = swsusp_header->flags;
969
970         if (!swsusp_header->image) /* how can this happen? */
971                 return -EINVAL;
972
973         handle->cur = NULL;
974         last = handle->maps = NULL;
975         offset = swsusp_header->image;
976         while (offset) {
977                 tmp = kmalloc(sizeof(*handle->maps), GFP_KERNEL);
978                 if (!tmp) {
979                         release_swap_reader(handle);
980                         return -ENOMEM;
981                 }
982                 memset(tmp, 0, sizeof(*tmp));
983                 if (!handle->maps)
984                         handle->maps = tmp;
985                 if (last)
986                         last->next = tmp;
987                 last = tmp;
988
989                 tmp->map = (struct swap_map_page *)
990                            __get_free_page(__GFP_RECLAIM | __GFP_HIGH);
991                 if (!tmp->map) {
992                         release_swap_reader(handle);
993                         return -ENOMEM;
994                 }
995
996                 error = hib_submit_io(READ_SYNC, offset, tmp->map, NULL);
997                 if (error) {
998                         release_swap_reader(handle);
999                         return error;
1000                 }
1001                 offset = tmp->map->next_swap;
1002         }
1003         handle->k = 0;
1004         handle->cur = handle->maps->map;
1005         return 0;
1006 }
1007
1008 static int swap_read_page(struct swap_map_handle *handle, void *buf,
1009                 struct hib_bio_batch *hb)
1010 {
1011         sector_t offset;
1012         int error;
1013         struct swap_map_page_list *tmp;
1014
1015         if (!handle->cur)
1016                 return -EINVAL;
1017         offset = handle->cur->entries[handle->k];
1018         if (!offset)
1019                 return -EFAULT;
1020         error = hib_submit_io(READ_SYNC, offset, buf, hb);
1021         if (error)
1022                 return error;
1023         if (++handle->k >= MAP_PAGE_ENTRIES) {
1024                 handle->k = 0;
1025                 free_page((unsigned long)handle->maps->map);
1026                 tmp = handle->maps;
1027                 handle->maps = handle->maps->next;
1028                 kfree(tmp);
1029                 if (!handle->maps)
1030                         release_swap_reader(handle);
1031                 else
1032                         handle->cur = handle->maps->map;
1033         }
1034         return error;
1035 }
1036
1037 static int swap_reader_finish(struct swap_map_handle *handle)
1038 {
1039         release_swap_reader(handle);
1040
1041         return 0;
1042 }
1043
1044 /**
1045  *      load_image - load the image using the swap map handle
1046  *      @handle and the snapshot handle @snapshot
1047  *      (assume there are @nr_pages pages to load)
1048  */
1049
1050 static int load_image(struct swap_map_handle *handle,
1051                       struct snapshot_handle *snapshot,
1052                       unsigned int nr_to_read)
1053 {
1054         unsigned int m;
1055         int ret = 0;
1056         ktime_t start;
1057         ktime_t stop;
1058         struct hib_bio_batch hb;
1059         int err2;
1060         unsigned nr_pages;
1061
1062         hib_init_batch(&hb);
1063
1064         clean_pages_on_read = true;
1065         printk(KERN_INFO "PM: Loading image data pages (%u pages)...\n",
1066                 nr_to_read);
1067         m = nr_to_read / 10;
1068         if (!m)
1069                 m = 1;
1070         nr_pages = 0;
1071         start = ktime_get();
1072         for ( ; ; ) {
1073                 ret = snapshot_write_next(snapshot);
1074                 if (ret <= 0)
1075                         break;
1076                 ret = swap_read_page(handle, data_of(*snapshot), &hb);
1077                 if (ret)
1078                         break;
1079                 if (snapshot->sync_read)
1080                         ret = hib_wait_io(&hb);
1081                 if (ret)
1082                         break;
1083                 if (!(nr_pages % m))
1084                         printk(KERN_INFO "PM: Image loading progress: %3d%%\n",
1085                                nr_pages / m * 10);
1086                 nr_pages++;
1087         }
1088         err2 = hib_wait_io(&hb);
1089         stop = ktime_get();
1090         if (!ret)
1091                 ret = err2;
1092         if (!ret) {
1093                 printk(KERN_INFO "PM: Image loading done.\n");
1094                 snapshot_write_finalize(snapshot);
1095                 if (!snapshot_image_loaded(snapshot))
1096                         ret = -ENODATA;
1097         }
1098         swsusp_show_speed(start, stop, nr_to_read, "Read");
1099         return ret;
1100 }
1101
1102 /**
1103  * Structure used for LZO data decompression.
1104  */
1105 struct dec_data {
1106         struct task_struct *thr;                  /* thread */
1107         atomic_t ready;                           /* ready to start flag */
1108         atomic_t stop;                            /* ready to stop flag */
1109         int ret;                                  /* return code */
1110         wait_queue_head_t go;                     /* start decompression */
1111         wait_queue_head_t done;                   /* decompression done */
1112         size_t unc_len;                           /* uncompressed length */
1113         size_t cmp_len;                           /* compressed length */
1114         unsigned char unc[LZO_UNC_SIZE];          /* uncompressed buffer */
1115         unsigned char cmp[LZO_CMP_SIZE];          /* compressed buffer */
1116 };
1117
1118 /**
1119  * Deompression function that runs in its own thread.
1120  */
1121 static int lzo_decompress_threadfn(void *data)
1122 {
1123         struct dec_data *d = data;
1124
1125         while (1) {
1126                 wait_event(d->go, atomic_read(&d->ready) ||
1127                                   kthread_should_stop());
1128                 if (kthread_should_stop()) {
1129                         d->thr = NULL;
1130                         d->ret = -1;
1131                         atomic_set(&d->stop, 1);
1132                         wake_up(&d->done);
1133                         break;
1134                 }
1135                 atomic_set(&d->ready, 0);
1136
1137                 d->unc_len = LZO_UNC_SIZE;
1138                 d->ret = lzo1x_decompress_safe(d->cmp + LZO_HEADER, d->cmp_len,
1139                                                d->unc, &d->unc_len);
1140                 if (clean_pages_on_decompress)
1141                         flush_icache_range((unsigned long)d->unc,
1142                                            (unsigned long)d->unc + d->unc_len);
1143
1144                 atomic_set(&d->stop, 1);
1145                 wake_up(&d->done);
1146         }
1147         return 0;
1148 }
1149
1150 /**
1151  * load_image_lzo - Load compressed image data and decompress them with LZO.
1152  * @handle: Swap map handle to use for loading data.
1153  * @snapshot: Image to copy uncompressed data into.
1154  * @nr_to_read: Number of pages to load.
1155  */
1156 static int load_image_lzo(struct swap_map_handle *handle,
1157                           struct snapshot_handle *snapshot,
1158                           unsigned int nr_to_read)
1159 {
1160         unsigned int m;
1161         int ret = 0;
1162         int eof = 0;
1163         struct hib_bio_batch hb;
1164         ktime_t start;
1165         ktime_t stop;
1166         unsigned nr_pages;
1167         size_t off;
1168         unsigned i, thr, run_threads, nr_threads;
1169         unsigned ring = 0, pg = 0, ring_size = 0,
1170                  have = 0, want, need, asked = 0;
1171         unsigned long read_pages = 0;
1172         unsigned char **page = NULL;
1173         struct dec_data *data = NULL;
1174         struct crc_data *crc = NULL;
1175
1176         hib_init_batch(&hb);
1177
1178         /*
1179          * We'll limit the number of threads for decompression to limit memory
1180          * footprint.
1181          */
1182         nr_threads = num_online_cpus() - 1;
1183         nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
1184
1185         page = vmalloc(sizeof(*page) * LZO_MAX_RD_PAGES);
1186         if (!page) {
1187                 printk(KERN_ERR "PM: Failed to allocate LZO page\n");
1188                 ret = -ENOMEM;
1189                 goto out_clean;
1190         }
1191
1192         data = vmalloc(sizeof(*data) * nr_threads);
1193         if (!data) {
1194                 printk(KERN_ERR "PM: Failed to allocate LZO data\n");
1195                 ret = -ENOMEM;
1196                 goto out_clean;
1197         }
1198         for (thr = 0; thr < nr_threads; thr++)
1199                 memset(&data[thr], 0, offsetof(struct dec_data, go));
1200
1201         crc = kmalloc(sizeof(*crc), GFP_KERNEL);
1202         if (!crc) {
1203                 printk(KERN_ERR "PM: Failed to allocate crc\n");
1204                 ret = -ENOMEM;
1205                 goto out_clean;
1206         }
1207         memset(crc, 0, offsetof(struct crc_data, go));
1208
1209         clean_pages_on_decompress = true;
1210
1211         /*
1212          * Start the decompression threads.
1213          */
1214         for (thr = 0; thr < nr_threads; thr++) {
1215                 init_waitqueue_head(&data[thr].go);
1216                 init_waitqueue_head(&data[thr].done);
1217
1218                 data[thr].thr = kthread_run(lzo_decompress_threadfn,
1219                                             &data[thr],
1220                                             "image_decompress/%u", thr);
1221                 if (IS_ERR(data[thr].thr)) {
1222                         data[thr].thr = NULL;
1223                         printk(KERN_ERR
1224                                "PM: Cannot start decompression threads\n");
1225                         ret = -ENOMEM;
1226                         goto out_clean;
1227                 }
1228         }
1229
1230         /*
1231          * Start the CRC32 thread.
1232          */
1233         init_waitqueue_head(&crc->go);
1234         init_waitqueue_head(&crc->done);
1235
1236         handle->crc32 = 0;
1237         crc->crc32 = &handle->crc32;
1238         for (thr = 0; thr < nr_threads; thr++) {
1239                 crc->unc[thr] = data[thr].unc;
1240                 crc->unc_len[thr] = &data[thr].unc_len;
1241         }
1242
1243         crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
1244         if (IS_ERR(crc->thr)) {
1245                 crc->thr = NULL;
1246                 printk(KERN_ERR "PM: Cannot start CRC32 thread\n");
1247                 ret = -ENOMEM;
1248                 goto out_clean;
1249         }
1250
1251         /*
1252          * Set the number of pages for read buffering.
1253          * This is complete guesswork, because we'll only know the real
1254          * picture once prepare_image() is called, which is much later on
1255          * during the image load phase. We'll assume the worst case and
1256          * say that none of the image pages are from high memory.
1257          */
1258         if (low_free_pages() > snapshot_get_image_size())
1259                 read_pages = (low_free_pages() - snapshot_get_image_size()) / 2;
1260         read_pages = clamp_val(read_pages, LZO_MIN_RD_PAGES, LZO_MAX_RD_PAGES);
1261
1262         for (i = 0; i < read_pages; i++) {
1263                 page[i] = (void *)__get_free_page(i < LZO_CMP_PAGES ?
1264                                                   __GFP_RECLAIM | __GFP_HIGH :
1265                                                   __GFP_RECLAIM | __GFP_NOWARN |
1266                                                   __GFP_NORETRY);
1267
1268                 if (!page[i]) {
1269                         if (i < LZO_CMP_PAGES) {
1270                                 ring_size = i;
1271                                 printk(KERN_ERR
1272                                        "PM: Failed to allocate LZO pages\n");
1273                                 ret = -ENOMEM;
1274                                 goto out_clean;
1275                         } else {
1276                                 break;
1277                         }
1278                 }
1279         }
1280         want = ring_size = i;
1281
1282         printk(KERN_INFO
1283                 "PM: Using %u thread(s) for decompression.\n"
1284                 "PM: Loading and decompressing image data (%u pages)...\n",
1285                 nr_threads, nr_to_read);
1286         m = nr_to_read / 10;
1287         if (!m)
1288                 m = 1;
1289         nr_pages = 0;
1290         start = ktime_get();
1291
1292         ret = snapshot_write_next(snapshot);
1293         if (ret <= 0)
1294                 goto out_finish;
1295
1296         for(;;) {
1297                 for (i = 0; !eof && i < want; i++) {
1298                         ret = swap_read_page(handle, page[ring], &hb);
1299                         if (ret) {
1300                                 /*
1301                                  * On real read error, finish. On end of data,
1302                                  * set EOF flag and just exit the read loop.
1303                                  */
1304                                 if (handle->cur &&
1305                                     handle->cur->entries[handle->k]) {
1306                                         goto out_finish;
1307                                 } else {
1308                                         eof = 1;
1309                                         break;
1310                                 }
1311                         }
1312                         if (++ring >= ring_size)
1313                                 ring = 0;
1314                 }
1315                 asked += i;
1316                 want -= i;
1317
1318                 /*
1319                  * We are out of data, wait for some more.
1320                  */
1321                 if (!have) {
1322                         if (!asked)
1323                                 break;
1324
1325                         ret = hib_wait_io(&hb);
1326                         if (ret)
1327                                 goto out_finish;
1328                         have += asked;
1329                         asked = 0;
1330                         if (eof)
1331                                 eof = 2;
1332                 }
1333
1334                 if (crc->run_threads) {
1335                         wait_event(crc->done, atomic_read(&crc->stop));
1336                         atomic_set(&crc->stop, 0);
1337                         crc->run_threads = 0;
1338                 }
1339
1340                 for (thr = 0; have && thr < nr_threads; thr++) {
1341                         data[thr].cmp_len = *(size_t *)page[pg];
1342                         if (unlikely(!data[thr].cmp_len ||
1343                                      data[thr].cmp_len >
1344                                      lzo1x_worst_compress(LZO_UNC_SIZE))) {
1345                                 printk(KERN_ERR
1346                                        "PM: Invalid LZO compressed length\n");
1347                                 ret = -1;
1348                                 goto out_finish;
1349                         }
1350
1351                         need = DIV_ROUND_UP(data[thr].cmp_len + LZO_HEADER,
1352                                             PAGE_SIZE);
1353                         if (need > have) {
1354                                 if (eof > 1) {
1355                                         ret = -1;
1356                                         goto out_finish;
1357                                 }
1358                                 break;
1359                         }
1360
1361                         for (off = 0;
1362                              off < LZO_HEADER + data[thr].cmp_len;
1363                              off += PAGE_SIZE) {
1364                                 memcpy(data[thr].cmp + off,
1365                                        page[pg], PAGE_SIZE);
1366                                 have--;
1367                                 want++;
1368                                 if (++pg >= ring_size)
1369                                         pg = 0;
1370                         }
1371
1372                         atomic_set(&data[thr].ready, 1);
1373                         wake_up(&data[thr].go);
1374                 }
1375
1376                 /*
1377                  * Wait for more data while we are decompressing.
1378                  */
1379                 if (have < LZO_CMP_PAGES && asked) {
1380                         ret = hib_wait_io(&hb);
1381                         if (ret)
1382                                 goto out_finish;
1383                         have += asked;
1384                         asked = 0;
1385                         if (eof)
1386                                 eof = 2;
1387                 }
1388
1389                 for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
1390                         wait_event(data[thr].done,
1391                                    atomic_read(&data[thr].stop));
1392                         atomic_set(&data[thr].stop, 0);
1393
1394                         ret = data[thr].ret;
1395
1396                         if (ret < 0) {
1397                                 printk(KERN_ERR
1398                                        "PM: LZO decompression failed\n");
1399                                 goto out_finish;
1400                         }
1401
1402                         if (unlikely(!data[thr].unc_len ||
1403                                      data[thr].unc_len > LZO_UNC_SIZE ||
1404                                      data[thr].unc_len & (PAGE_SIZE - 1))) {
1405                                 printk(KERN_ERR
1406                                        "PM: Invalid LZO uncompressed length\n");
1407                                 ret = -1;
1408                                 goto out_finish;
1409                         }
1410
1411                         for (off = 0;
1412                              off < data[thr].unc_len; off += PAGE_SIZE) {
1413                                 memcpy(data_of(*snapshot),
1414                                        data[thr].unc + off, PAGE_SIZE);
1415
1416                                 if (!(nr_pages % m))
1417                                         printk(KERN_INFO
1418                                                "PM: Image loading progress: "
1419                                                "%3d%%\n",
1420                                                nr_pages / m * 10);
1421                                 nr_pages++;
1422
1423                                 ret = snapshot_write_next(snapshot);
1424                                 if (ret <= 0) {
1425                                         crc->run_threads = thr + 1;
1426                                         atomic_set(&crc->ready, 1);
1427                                         wake_up(&crc->go);
1428                                         goto out_finish;
1429                                 }
1430                         }
1431                 }
1432
1433                 crc->run_threads = thr;
1434                 atomic_set(&crc->ready, 1);
1435                 wake_up(&crc->go);
1436         }
1437
1438 out_finish:
1439         if (crc->run_threads) {
1440                 wait_event(crc->done, atomic_read(&crc->stop));
1441                 atomic_set(&crc->stop, 0);
1442         }
1443         stop = ktime_get();
1444         if (!ret) {
1445                 printk(KERN_INFO "PM: Image loading done.\n");
1446                 snapshot_write_finalize(snapshot);
1447                 if (!snapshot_image_loaded(snapshot))
1448                         ret = -ENODATA;
1449                 if (!ret) {
1450                         if (swsusp_header->flags & SF_CRC32_MODE) {
1451                                 if(handle->crc32 != swsusp_header->crc32) {
1452                                         printk(KERN_ERR
1453                                                "PM: Invalid image CRC32!\n");
1454                                         ret = -ENODATA;
1455                                 }
1456                         }
1457                 }
1458         }
1459         swsusp_show_speed(start, stop, nr_to_read, "Read");
1460 out_clean:
1461         for (i = 0; i < ring_size; i++)
1462                 free_page((unsigned long)page[i]);
1463         if (crc) {
1464                 if (crc->thr)
1465                         kthread_stop(crc->thr);
1466                 kfree(crc);
1467         }
1468         if (data) {
1469                 for (thr = 0; thr < nr_threads; thr++)
1470                         if (data[thr].thr)
1471                                 kthread_stop(data[thr].thr);
1472                 vfree(data);
1473         }
1474         vfree(page);
1475
1476         return ret;
1477 }
1478
1479 /**
1480  *      swsusp_read - read the hibernation image.
1481  *      @flags_p: flags passed by the "frozen" kernel in the image header should
1482  *                be written into this memory location
1483  */
1484
1485 int swsusp_read(unsigned int *flags_p)
1486 {
1487         int error;
1488         struct swap_map_handle handle;
1489         struct snapshot_handle snapshot;
1490         struct swsusp_info *header;
1491
1492         memset(&snapshot, 0, sizeof(struct snapshot_handle));
1493         error = snapshot_write_next(&snapshot);
1494         if (error < PAGE_SIZE)
1495                 return error < 0 ? error : -EFAULT;
1496         header = (struct swsusp_info *)data_of(snapshot);
1497         error = get_swap_reader(&handle, flags_p);
1498         if (error)
1499                 goto end;
1500         if (!error)
1501                 error = swap_read_page(&handle, header, NULL);
1502         if (!error) {
1503                 error = (*flags_p & SF_NOCOMPRESS_MODE) ?
1504                         load_image(&handle, &snapshot, header->pages - 1) :
1505                         load_image_lzo(&handle, &snapshot, header->pages - 1);
1506         }
1507         swap_reader_finish(&handle);
1508 end:
1509         if (!error)
1510                 pr_debug("PM: Image successfully loaded\n");
1511         else
1512                 pr_debug("PM: Error %d resuming\n", error);
1513         return error;
1514 }
1515
1516 /**
1517  *      swsusp_check - Check for swsusp signature in the resume device
1518  */
1519
1520 int swsusp_check(void)
1521 {
1522         int error;
1523
1524         hib_resume_bdev = blkdev_get_by_dev(swsusp_resume_device,
1525                                             FMODE_READ, NULL);
1526         if (!IS_ERR(hib_resume_bdev)) {
1527                 set_blocksize(hib_resume_bdev, PAGE_SIZE);
1528                 clear_page(swsusp_header);
1529                 error = hib_submit_io(READ_SYNC, swsusp_resume_block,
1530                                         swsusp_header, NULL);
1531                 if (error)
1532                         goto put;
1533
1534                 if (!memcmp(HIBERNATE_SIG, swsusp_header->sig, 10)) {
1535                         memcpy(swsusp_header->sig, swsusp_header->orig_sig, 10);
1536                         /* Reset swap signature now */
1537                         error = hib_submit_io(WRITE_SYNC, swsusp_resume_block,
1538                                                 swsusp_header, NULL);
1539                 } else {
1540                         error = -EINVAL;
1541                 }
1542
1543 put:
1544                 if (error)
1545                         blkdev_put(hib_resume_bdev, FMODE_READ);
1546                 else
1547                         pr_debug("PM: Image signature found, resuming\n");
1548         } else {
1549                 error = PTR_ERR(hib_resume_bdev);
1550         }
1551
1552         if (error)
1553                 pr_debug("PM: Image not found (code %d)\n", error);
1554
1555         return error;
1556 }
1557
1558 /**
1559  *      swsusp_close - close swap device.
1560  */
1561
1562 void swsusp_close(fmode_t mode)
1563 {
1564         if (IS_ERR(hib_resume_bdev)) {
1565                 pr_debug("PM: Image device not initialised\n");
1566                 return;
1567         }
1568
1569         blkdev_put(hib_resume_bdev, mode);
1570 }
1571
1572 /**
1573  *      swsusp_unmark - Unmark swsusp signature in the resume device
1574  */
1575
1576 #ifdef CONFIG_SUSPEND
1577 int swsusp_unmark(void)
1578 {
1579         int error;
1580
1581         hib_submit_io(READ_SYNC, swsusp_resume_block, swsusp_header, NULL);
1582         if (!memcmp(HIBERNATE_SIG,swsusp_header->sig, 10)) {
1583                 memcpy(swsusp_header->sig,swsusp_header->orig_sig, 10);
1584                 error = hib_submit_io(WRITE_SYNC, swsusp_resume_block,
1585                                         swsusp_header, NULL);
1586         } else {
1587                 printk(KERN_ERR "PM: Cannot find swsusp signature!\n");
1588                 error = -ENODEV;
1589         }
1590
1591         /*
1592          * We just returned from suspend, we don't need the image any more.
1593          */
1594         free_all_swap_pages(root_swap);
1595
1596         return error;
1597 }
1598 #endif
1599
1600 static int swsusp_header_init(void)
1601 {
1602         swsusp_header = (struct swsusp_header*) __get_free_page(GFP_KERNEL);
1603         if (!swsusp_header)
1604                 panic("Could not allocate memory for swsusp_header\n");
1605         return 0;
1606 }
1607
1608 core_initcall(swsusp_header_init);