tick: Remove useless timekeeping duty attribution to broadcast source
[cascardo/linux.git] / kernel / time / tick-broadcast.c
1 /*
2  * linux/kernel/time/tick-broadcast.c
3  *
4  * This file contains functions which emulate a local clock-event
5  * device via a broadcast event source.
6  *
7  * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
8  * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
9  * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
10  *
11  * This code is licenced under the GPL version 2. For details see
12  * kernel-base/COPYING.
13  */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/percpu.h>
19 #include <linux/profile.h>
20 #include <linux/sched.h>
21 #include <linux/smp.h>
22
23 #include "tick-internal.h"
24
25 /*
26  * Broadcast support for broken x86 hardware, where the local apic
27  * timer stops in C3 state.
28  */
29
30 static struct tick_device tick_broadcast_device;
31 static cpumask_var_t tick_broadcast_mask;
32 static cpumask_var_t tmpmask;
33 static DEFINE_RAW_SPINLOCK(tick_broadcast_lock);
34 static int tick_broadcast_force;
35
36 #ifdef CONFIG_TICK_ONESHOT
37 static void tick_broadcast_clear_oneshot(int cpu);
38 #else
39 static inline void tick_broadcast_clear_oneshot(int cpu) { }
40 #endif
41
42 /*
43  * Debugging: see timer_list.c
44  */
45 struct tick_device *tick_get_broadcast_device(void)
46 {
47         return &tick_broadcast_device;
48 }
49
50 struct cpumask *tick_get_broadcast_mask(void)
51 {
52         return tick_broadcast_mask;
53 }
54
55 /*
56  * Start the device in periodic mode
57  */
58 static void tick_broadcast_start_periodic(struct clock_event_device *bc)
59 {
60         if (bc)
61                 tick_setup_periodic(bc, 1);
62 }
63
64 /*
65  * Check, if the device can be utilized as broadcast device:
66  */
67 int tick_check_broadcast_device(struct clock_event_device *dev)
68 {
69         struct clock_event_device *cur = tick_broadcast_device.evtdev;
70
71         if ((dev->features & CLOCK_EVT_FEAT_DUMMY) ||
72             (tick_broadcast_device.evtdev &&
73              tick_broadcast_device.evtdev->rating >= dev->rating) ||
74              (dev->features & CLOCK_EVT_FEAT_C3STOP))
75                 return 0;
76
77         clockevents_exchange_device(tick_broadcast_device.evtdev, dev);
78         if (cur)
79                 cur->event_handler = clockevents_handle_noop;
80         tick_broadcast_device.evtdev = dev;
81         if (!cpumask_empty(tick_broadcast_mask))
82                 tick_broadcast_start_periodic(dev);
83         /*
84          * Inform all cpus about this. We might be in a situation
85          * where we did not switch to oneshot mode because the per cpu
86          * devices are affected by CLOCK_EVT_FEAT_C3STOP and the lack
87          * of a oneshot capable broadcast device. Without that
88          * notification the systems stays stuck in periodic mode
89          * forever.
90          */
91         if (dev->features & CLOCK_EVT_FEAT_ONESHOT)
92                 tick_clock_notify();
93         return 1;
94 }
95
96 /*
97  * Check, if the device is the broadcast device
98  */
99 int tick_is_broadcast_device(struct clock_event_device *dev)
100 {
101         return (dev && tick_broadcast_device.evtdev == dev);
102 }
103
104 static void err_broadcast(const struct cpumask *mask)
105 {
106         pr_crit_once("Failed to broadcast timer tick. Some CPUs may be unresponsive.\n");
107 }
108
109 static void tick_device_setup_broadcast_func(struct clock_event_device *dev)
110 {
111         if (!dev->broadcast)
112                 dev->broadcast = tick_broadcast;
113         if (!dev->broadcast) {
114                 pr_warn_once("%s depends on broadcast, but no broadcast function available\n",
115                              dev->name);
116                 dev->broadcast = err_broadcast;
117         }
118 }
119
120 /*
121  * Check, if the device is disfunctional and a place holder, which
122  * needs to be handled by the broadcast device.
123  */
124 int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
125 {
126         unsigned long flags;
127         int ret = 0;
128
129         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
130
131         /*
132          * Devices might be registered with both periodic and oneshot
133          * mode disabled. This signals, that the device needs to be
134          * operated from the broadcast device and is a placeholder for
135          * the cpu local device.
136          */
137         if (!tick_device_is_functional(dev)) {
138                 dev->event_handler = tick_handle_periodic;
139                 tick_device_setup_broadcast_func(dev);
140                 cpumask_set_cpu(cpu, tick_broadcast_mask);
141                 tick_broadcast_start_periodic(tick_broadcast_device.evtdev);
142                 ret = 1;
143         } else {
144                 /*
145                  * When the new device is not affected by the stop
146                  * feature and the cpu is marked in the broadcast mask
147                  * then clear the broadcast bit.
148                  */
149                 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP)) {
150                         int cpu = smp_processor_id();
151                         cpumask_clear_cpu(cpu, tick_broadcast_mask);
152                         tick_broadcast_clear_oneshot(cpu);
153                 } else {
154                         tick_device_setup_broadcast_func(dev);
155                 }
156         }
157         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
158         return ret;
159 }
160
161 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
162 int tick_receive_broadcast(void)
163 {
164         struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
165         struct clock_event_device *evt = td->evtdev;
166
167         if (!evt)
168                 return -ENODEV;
169
170         if (!evt->event_handler)
171                 return -EINVAL;
172
173         evt->event_handler(evt);
174         return 0;
175 }
176 #endif
177
178 /*
179  * Broadcast the event to the cpus, which are set in the mask (mangled).
180  */
181 static void tick_do_broadcast(struct cpumask *mask)
182 {
183         int cpu = smp_processor_id();
184         struct tick_device *td;
185
186         /*
187          * Check, if the current cpu is in the mask
188          */
189         if (cpumask_test_cpu(cpu, mask)) {
190                 cpumask_clear_cpu(cpu, mask);
191                 td = &per_cpu(tick_cpu_device, cpu);
192                 td->evtdev->event_handler(td->evtdev);
193         }
194
195         if (!cpumask_empty(mask)) {
196                 /*
197                  * It might be necessary to actually check whether the devices
198                  * have different broadcast functions. For now, just use the
199                  * one of the first device. This works as long as we have this
200                  * misfeature only on x86 (lapic)
201                  */
202                 td = &per_cpu(tick_cpu_device, cpumask_first(mask));
203                 td->evtdev->broadcast(mask);
204         }
205 }
206
207 /*
208  * Periodic broadcast:
209  * - invoke the broadcast handlers
210  */
211 static void tick_do_periodic_broadcast(void)
212 {
213         raw_spin_lock(&tick_broadcast_lock);
214
215         cpumask_and(tmpmask, cpu_online_mask, tick_broadcast_mask);
216         tick_do_broadcast(tmpmask);
217
218         raw_spin_unlock(&tick_broadcast_lock);
219 }
220
221 /*
222  * Event handler for periodic broadcast ticks
223  */
224 static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
225 {
226         ktime_t next;
227
228         tick_do_periodic_broadcast();
229
230         /*
231          * The device is in periodic mode. No reprogramming necessary:
232          */
233         if (dev->mode == CLOCK_EVT_MODE_PERIODIC)
234                 return;
235
236         /*
237          * Setup the next period for devices, which do not have
238          * periodic mode. We read dev->next_event first and add to it
239          * when the event already expired. clockevents_program_event()
240          * sets dev->next_event only when the event is really
241          * programmed to the device.
242          */
243         for (next = dev->next_event; ;) {
244                 next = ktime_add(next, tick_period);
245
246                 if (!clockevents_program_event(dev, next, false))
247                         return;
248                 tick_do_periodic_broadcast();
249         }
250 }
251
252 /*
253  * Powerstate information: The system enters/leaves a state, where
254  * affected devices might stop
255  */
256 static void tick_do_broadcast_on_off(unsigned long *reason)
257 {
258         struct clock_event_device *bc, *dev;
259         struct tick_device *td;
260         unsigned long flags;
261         int cpu, bc_stopped;
262
263         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
264
265         cpu = smp_processor_id();
266         td = &per_cpu(tick_cpu_device, cpu);
267         dev = td->evtdev;
268         bc = tick_broadcast_device.evtdev;
269
270         /*
271          * Is the device not affected by the powerstate ?
272          */
273         if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP))
274                 goto out;
275
276         if (!tick_device_is_functional(dev))
277                 goto out;
278
279         bc_stopped = cpumask_empty(tick_broadcast_mask);
280
281         switch (*reason) {
282         case CLOCK_EVT_NOTIFY_BROADCAST_ON:
283         case CLOCK_EVT_NOTIFY_BROADCAST_FORCE:
284                 if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_mask)) {
285                         if (tick_broadcast_device.mode ==
286                             TICKDEV_MODE_PERIODIC)
287                                 clockevents_shutdown(dev);
288                 }
289                 if (*reason == CLOCK_EVT_NOTIFY_BROADCAST_FORCE)
290                         tick_broadcast_force = 1;
291                 break;
292         case CLOCK_EVT_NOTIFY_BROADCAST_OFF:
293                 if (!tick_broadcast_force &&
294                     cpumask_test_and_clear_cpu(cpu, tick_broadcast_mask)) {
295                         if (tick_broadcast_device.mode ==
296                             TICKDEV_MODE_PERIODIC)
297                                 tick_setup_periodic(dev, 0);
298                 }
299                 break;
300         }
301
302         if (cpumask_empty(tick_broadcast_mask)) {
303                 if (!bc_stopped)
304                         clockevents_shutdown(bc);
305         } else if (bc_stopped) {
306                 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
307                         tick_broadcast_start_periodic(bc);
308                 else
309                         tick_broadcast_setup_oneshot(bc);
310         }
311 out:
312         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
313 }
314
315 /*
316  * Powerstate information: The system enters/leaves a state, where
317  * affected devices might stop.
318  */
319 void tick_broadcast_on_off(unsigned long reason, int *oncpu)
320 {
321         if (!cpumask_test_cpu(*oncpu, cpu_online_mask))
322                 printk(KERN_ERR "tick-broadcast: ignoring broadcast for "
323                        "offline CPU #%d\n", *oncpu);
324         else
325                 tick_do_broadcast_on_off(&reason);
326 }
327
328 /*
329  * Set the periodic handler depending on broadcast on/off
330  */
331 void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
332 {
333         if (!broadcast)
334                 dev->event_handler = tick_handle_periodic;
335         else
336                 dev->event_handler = tick_handle_periodic_broadcast;
337 }
338
339 /*
340  * Remove a CPU from broadcasting
341  */
342 void tick_shutdown_broadcast(unsigned int *cpup)
343 {
344         struct clock_event_device *bc;
345         unsigned long flags;
346         unsigned int cpu = *cpup;
347
348         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
349
350         bc = tick_broadcast_device.evtdev;
351         cpumask_clear_cpu(cpu, tick_broadcast_mask);
352
353         if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
354                 if (bc && cpumask_empty(tick_broadcast_mask))
355                         clockevents_shutdown(bc);
356         }
357
358         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
359 }
360
361 void tick_suspend_broadcast(void)
362 {
363         struct clock_event_device *bc;
364         unsigned long flags;
365
366         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
367
368         bc = tick_broadcast_device.evtdev;
369         if (bc)
370                 clockevents_shutdown(bc);
371
372         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
373 }
374
375 int tick_resume_broadcast(void)
376 {
377         struct clock_event_device *bc;
378         unsigned long flags;
379         int broadcast = 0;
380
381         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
382
383         bc = tick_broadcast_device.evtdev;
384
385         if (bc) {
386                 clockevents_set_mode(bc, CLOCK_EVT_MODE_RESUME);
387
388                 switch (tick_broadcast_device.mode) {
389                 case TICKDEV_MODE_PERIODIC:
390                         if (!cpumask_empty(tick_broadcast_mask))
391                                 tick_broadcast_start_periodic(bc);
392                         broadcast = cpumask_test_cpu(smp_processor_id(),
393                                                      tick_broadcast_mask);
394                         break;
395                 case TICKDEV_MODE_ONESHOT:
396                         if (!cpumask_empty(tick_broadcast_mask))
397                                 broadcast = tick_resume_broadcast_oneshot(bc);
398                         break;
399                 }
400         }
401         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
402
403         return broadcast;
404 }
405
406
407 #ifdef CONFIG_TICK_ONESHOT
408
409 static cpumask_var_t tick_broadcast_oneshot_mask;
410 static cpumask_var_t tick_broadcast_pending_mask;
411 static cpumask_var_t tick_broadcast_force_mask;
412
413 /*
414  * Exposed for debugging: see timer_list.c
415  */
416 struct cpumask *tick_get_broadcast_oneshot_mask(void)
417 {
418         return tick_broadcast_oneshot_mask;
419 }
420
421 /*
422  * Called before going idle with interrupts disabled. Checks whether a
423  * broadcast event from the other core is about to happen. We detected
424  * that in tick_broadcast_oneshot_control(). The callsite can use this
425  * to avoid a deep idle transition as we are about to get the
426  * broadcast IPI right away.
427  */
428 int tick_check_broadcast_expired(void)
429 {
430         return cpumask_test_cpu(smp_processor_id(), tick_broadcast_force_mask);
431 }
432
433 /*
434  * Set broadcast interrupt affinity
435  */
436 static void tick_broadcast_set_affinity(struct clock_event_device *bc,
437                                         const struct cpumask *cpumask)
438 {
439         if (!(bc->features & CLOCK_EVT_FEAT_DYNIRQ))
440                 return;
441
442         if (cpumask_equal(bc->cpumask, cpumask))
443                 return;
444
445         bc->cpumask = cpumask;
446         irq_set_affinity(bc->irq, bc->cpumask);
447 }
448
449 static int tick_broadcast_set_event(struct clock_event_device *bc, int cpu,
450                                     ktime_t expires, int force)
451 {
452         int ret;
453
454         if (bc->mode != CLOCK_EVT_MODE_ONESHOT)
455                 clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
456
457         ret = clockevents_program_event(bc, expires, force);
458         if (!ret)
459                 tick_broadcast_set_affinity(bc, cpumask_of(cpu));
460         return ret;
461 }
462
463 int tick_resume_broadcast_oneshot(struct clock_event_device *bc)
464 {
465         clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
466         return 0;
467 }
468
469 /*
470  * Called from irq_enter() when idle was interrupted to reenable the
471  * per cpu device.
472  */
473 void tick_check_oneshot_broadcast(int cpu)
474 {
475         if (cpumask_test_cpu(cpu, tick_broadcast_oneshot_mask)) {
476                 struct tick_device *td = &per_cpu(tick_cpu_device, cpu);
477
478                 clockevents_set_mode(td->evtdev, CLOCK_EVT_MODE_ONESHOT);
479         }
480 }
481
482 /*
483  * Handle oneshot mode broadcasting
484  */
485 static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
486 {
487         struct tick_device *td;
488         ktime_t now, next_event;
489         int cpu, next_cpu = 0;
490
491         raw_spin_lock(&tick_broadcast_lock);
492 again:
493         dev->next_event.tv64 = KTIME_MAX;
494         next_event.tv64 = KTIME_MAX;
495         cpumask_clear(tmpmask);
496         now = ktime_get();
497         /* Find all expired events */
498         for_each_cpu(cpu, tick_broadcast_oneshot_mask) {
499                 td = &per_cpu(tick_cpu_device, cpu);
500                 if (td->evtdev->next_event.tv64 <= now.tv64) {
501                         cpumask_set_cpu(cpu, tmpmask);
502                         /*
503                          * Mark the remote cpu in the pending mask, so
504                          * it can avoid reprogramming the cpu local
505                          * timer in tick_broadcast_oneshot_control().
506                          */
507                         cpumask_set_cpu(cpu, tick_broadcast_pending_mask);
508                 } else if (td->evtdev->next_event.tv64 < next_event.tv64) {
509                         next_event.tv64 = td->evtdev->next_event.tv64;
510                         next_cpu = cpu;
511                 }
512         }
513
514         /*
515          * Remove the current cpu from the pending mask. The event is
516          * delivered immediately in tick_do_broadcast() !
517          */
518         cpumask_clear_cpu(smp_processor_id(), tick_broadcast_pending_mask);
519
520         /* Take care of enforced broadcast requests */
521         cpumask_or(tmpmask, tmpmask, tick_broadcast_force_mask);
522         cpumask_clear(tick_broadcast_force_mask);
523
524         /*
525          * Wakeup the cpus which have an expired event.
526          */
527         tick_do_broadcast(tmpmask);
528
529         /*
530          * Two reasons for reprogram:
531          *
532          * - The global event did not expire any CPU local
533          * events. This happens in dyntick mode, as the maximum PIT
534          * delta is quite small.
535          *
536          * - There are pending events on sleeping CPUs which were not
537          * in the event mask
538          */
539         if (next_event.tv64 != KTIME_MAX) {
540                 /*
541                  * Rearm the broadcast device. If event expired,
542                  * repeat the above
543                  */
544                 if (tick_broadcast_set_event(dev, next_cpu, next_event, 0))
545                         goto again;
546         }
547         raw_spin_unlock(&tick_broadcast_lock);
548 }
549
550 /*
551  * Powerstate information: The system enters/leaves a state, where
552  * affected devices might stop
553  */
554 void tick_broadcast_oneshot_control(unsigned long reason)
555 {
556         struct clock_event_device *bc, *dev;
557         struct tick_device *td;
558         unsigned long flags;
559         ktime_t now;
560         int cpu;
561
562         /*
563          * Periodic mode does not care about the enter/exit of power
564          * states
565          */
566         if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
567                 return;
568
569         /*
570          * We are called with preemtion disabled from the depth of the
571          * idle code, so we can't be moved away.
572          */
573         cpu = smp_processor_id();
574         td = &per_cpu(tick_cpu_device, cpu);
575         dev = td->evtdev;
576
577         if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
578                 return;
579
580         bc = tick_broadcast_device.evtdev;
581
582         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
583         if (reason == CLOCK_EVT_NOTIFY_BROADCAST_ENTER) {
584                 if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_oneshot_mask)) {
585                         WARN_ON_ONCE(cpumask_test_cpu(cpu, tick_broadcast_pending_mask));
586                         clockevents_set_mode(dev, CLOCK_EVT_MODE_SHUTDOWN);
587                         /*
588                          * We only reprogram the broadcast timer if we
589                          * did not mark ourself in the force mask and
590                          * if the cpu local event is earlier than the
591                          * broadcast event. If the current CPU is in
592                          * the force mask, then we are going to be
593                          * woken by the IPI right away.
594                          */
595                         if (!cpumask_test_cpu(cpu, tick_broadcast_force_mask) &&
596                             dev->next_event.tv64 < bc->next_event.tv64)
597                                 tick_broadcast_set_event(bc, cpu, dev->next_event, 1);
598                 }
599         } else {
600                 if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_oneshot_mask)) {
601                         clockevents_set_mode(dev, CLOCK_EVT_MODE_ONESHOT);
602                         if (dev->next_event.tv64 == KTIME_MAX)
603                                 goto out;
604                         /*
605                          * The cpu which was handling the broadcast
606                          * timer marked this cpu in the broadcast
607                          * pending mask and fired the broadcast
608                          * IPI. So we are going to handle the expired
609                          * event anyway via the broadcast IPI
610                          * handler. No need to reprogram the timer
611                          * with an already expired event.
612                          */
613                         if (cpumask_test_and_clear_cpu(cpu,
614                                        tick_broadcast_pending_mask))
615                                 goto out;
616
617                         /*
618                          * If the pending bit is not set, then we are
619                          * either the CPU handling the broadcast
620                          * interrupt or we got woken by something else.
621                          *
622                          * We are not longer in the broadcast mask, so
623                          * if the cpu local expiry time is already
624                          * reached, we would reprogram the cpu local
625                          * timer with an already expired event.
626                          *
627                          * This can lead to a ping-pong when we return
628                          * to idle and therefor rearm the broadcast
629                          * timer before the cpu local timer was able
630                          * to fire. This happens because the forced
631                          * reprogramming makes sure that the event
632                          * will happen in the future and depending on
633                          * the min_delta setting this might be far
634                          * enough out that the ping-pong starts.
635                          *
636                          * If the cpu local next_event has expired
637                          * then we know that the broadcast timer
638                          * next_event has expired as well and
639                          * broadcast is about to be handled. So we
640                          * avoid reprogramming and enforce that the
641                          * broadcast handler, which did not run yet,
642                          * will invoke the cpu local handler.
643                          *
644                          * We cannot call the handler directly from
645                          * here, because we might be in a NOHZ phase
646                          * and we did not go through the irq_enter()
647                          * nohz fixups.
648                          */
649                         now = ktime_get();
650                         if (dev->next_event.tv64 <= now.tv64) {
651                                 cpumask_set_cpu(cpu, tick_broadcast_force_mask);
652                                 goto out;
653                         }
654                         /*
655                          * We got woken by something else. Reprogram
656                          * the cpu local timer device.
657                          */
658                         tick_program_event(dev->next_event, 1);
659                 }
660         }
661 out:
662         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
663 }
664
665 /*
666  * Reset the one shot broadcast for a cpu
667  *
668  * Called with tick_broadcast_lock held
669  */
670 static void tick_broadcast_clear_oneshot(int cpu)
671 {
672         cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
673 }
674
675 static void tick_broadcast_init_next_event(struct cpumask *mask,
676                                            ktime_t expires)
677 {
678         struct tick_device *td;
679         int cpu;
680
681         for_each_cpu(cpu, mask) {
682                 td = &per_cpu(tick_cpu_device, cpu);
683                 if (td->evtdev)
684                         td->evtdev->next_event = expires;
685         }
686 }
687
688 /**
689  * tick_broadcast_setup_oneshot - setup the broadcast device
690  */
691 void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
692 {
693         int cpu = smp_processor_id();
694
695         /* Set it up only once ! */
696         if (bc->event_handler != tick_handle_oneshot_broadcast) {
697                 int was_periodic = bc->mode == CLOCK_EVT_MODE_PERIODIC;
698
699                 bc->event_handler = tick_handle_oneshot_broadcast;
700
701                 /*
702                  * We must be careful here. There might be other CPUs
703                  * waiting for periodic broadcast. We need to set the
704                  * oneshot_mask bits for those and program the
705                  * broadcast device to fire.
706                  */
707                 cpumask_copy(tmpmask, tick_broadcast_mask);
708                 cpumask_clear_cpu(cpu, tmpmask);
709                 cpumask_or(tick_broadcast_oneshot_mask,
710                            tick_broadcast_oneshot_mask, tmpmask);
711
712                 if (was_periodic && !cpumask_empty(tmpmask)) {
713                         clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
714                         tick_broadcast_init_next_event(tmpmask,
715                                                        tick_next_period);
716                         tick_broadcast_set_event(bc, cpu, tick_next_period, 1);
717                 } else
718                         bc->next_event.tv64 = KTIME_MAX;
719         } else {
720                 /*
721                  * The first cpu which switches to oneshot mode sets
722                  * the bit for all other cpus which are in the general
723                  * (periodic) broadcast mask. So the bit is set and
724                  * would prevent the first broadcast enter after this
725                  * to program the bc device.
726                  */
727                 tick_broadcast_clear_oneshot(cpu);
728         }
729 }
730
731 /*
732  * Select oneshot operating mode for the broadcast device
733  */
734 void tick_broadcast_switch_to_oneshot(void)
735 {
736         struct clock_event_device *bc;
737         unsigned long flags;
738
739         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
740
741         tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
742         bc = tick_broadcast_device.evtdev;
743         if (bc)
744                 tick_broadcast_setup_oneshot(bc);
745
746         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
747 }
748
749
750 /*
751  * Remove a dead CPU from broadcasting
752  */
753 void tick_shutdown_broadcast_oneshot(unsigned int *cpup)
754 {
755         unsigned long flags;
756         unsigned int cpu = *cpup;
757
758         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
759
760         /*
761          * Clear the broadcast mask flag for the dead cpu, but do not
762          * stop the broadcast device!
763          */
764         cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
765
766         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
767 }
768
769 /*
770  * Check, whether the broadcast device is in one shot mode
771  */
772 int tick_broadcast_oneshot_active(void)
773 {
774         return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT;
775 }
776
777 /*
778  * Check whether the broadcast device supports oneshot.
779  */
780 bool tick_broadcast_oneshot_available(void)
781 {
782         struct clock_event_device *bc = tick_broadcast_device.evtdev;
783
784         return bc ? bc->features & CLOCK_EVT_FEAT_ONESHOT : false;
785 }
786
787 #endif
788
789 void __init tick_broadcast_init(void)
790 {
791         zalloc_cpumask_var(&tick_broadcast_mask, GFP_NOWAIT);
792         zalloc_cpumask_var(&tmpmask, GFP_NOWAIT);
793 #ifdef CONFIG_TICK_ONESHOT
794         zalloc_cpumask_var(&tick_broadcast_oneshot_mask, GFP_NOWAIT);
795         zalloc_cpumask_var(&tick_broadcast_pending_mask, GFP_NOWAIT);
796         zalloc_cpumask_var(&tick_broadcast_force_mask, GFP_NOWAIT);
797 #endif
798 }