tick/broadcast: Prevent hrtimer recursion
[cascardo/linux.git] / kernel / time / tick-broadcast.c
1 /*
2  * linux/kernel/time/tick-broadcast.c
3  *
4  * This file contains functions which emulate a local clock-event
5  * device via a broadcast event source.
6  *
7  * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
8  * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
9  * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
10  *
11  * This code is licenced under the GPL version 2. For details see
12  * kernel-base/COPYING.
13  */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/percpu.h>
19 #include <linux/profile.h>
20 #include <linux/sched.h>
21 #include <linux/smp.h>
22 #include <linux/module.h>
23
24 #include "tick-internal.h"
25
26 /*
27  * Broadcast support for broken x86 hardware, where the local apic
28  * timer stops in C3 state.
29  */
30
31 static struct tick_device tick_broadcast_device;
32 static cpumask_var_t tick_broadcast_mask;
33 static cpumask_var_t tick_broadcast_on;
34 static cpumask_var_t tmpmask;
35 static DEFINE_RAW_SPINLOCK(tick_broadcast_lock);
36 static int tick_broadcast_forced;
37
38 #ifdef CONFIG_TICK_ONESHOT
39 static void tick_broadcast_clear_oneshot(int cpu);
40 static void tick_resume_broadcast_oneshot(struct clock_event_device *bc);
41 #else
42 static inline void tick_broadcast_clear_oneshot(int cpu) { }
43 static inline void tick_resume_broadcast_oneshot(struct clock_event_device *bc) { }
44 #endif
45
46 /*
47  * Debugging: see timer_list.c
48  */
49 struct tick_device *tick_get_broadcast_device(void)
50 {
51         return &tick_broadcast_device;
52 }
53
54 struct cpumask *tick_get_broadcast_mask(void)
55 {
56         return tick_broadcast_mask;
57 }
58
59 /*
60  * Start the device in periodic mode
61  */
62 static void tick_broadcast_start_periodic(struct clock_event_device *bc)
63 {
64         if (bc)
65                 tick_setup_periodic(bc, 1);
66 }
67
68 /*
69  * Check, if the device can be utilized as broadcast device:
70  */
71 static bool tick_check_broadcast_device(struct clock_event_device *curdev,
72                                         struct clock_event_device *newdev)
73 {
74         if ((newdev->features & CLOCK_EVT_FEAT_DUMMY) ||
75             (newdev->features & CLOCK_EVT_FEAT_PERCPU) ||
76             (newdev->features & CLOCK_EVT_FEAT_C3STOP))
77                 return false;
78
79         if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT &&
80             !(newdev->features & CLOCK_EVT_FEAT_ONESHOT))
81                 return false;
82
83         return !curdev || newdev->rating > curdev->rating;
84 }
85
86 /*
87  * Conditionally install/replace broadcast device
88  */
89 void tick_install_broadcast_device(struct clock_event_device *dev)
90 {
91         struct clock_event_device *cur = tick_broadcast_device.evtdev;
92
93         if (!tick_check_broadcast_device(cur, dev))
94                 return;
95
96         if (!try_module_get(dev->owner))
97                 return;
98
99         clockevents_exchange_device(cur, dev);
100         if (cur)
101                 cur->event_handler = clockevents_handle_noop;
102         tick_broadcast_device.evtdev = dev;
103         if (!cpumask_empty(tick_broadcast_mask))
104                 tick_broadcast_start_periodic(dev);
105         /*
106          * Inform all cpus about this. We might be in a situation
107          * where we did not switch to oneshot mode because the per cpu
108          * devices are affected by CLOCK_EVT_FEAT_C3STOP and the lack
109          * of a oneshot capable broadcast device. Without that
110          * notification the systems stays stuck in periodic mode
111          * forever.
112          */
113         if (dev->features & CLOCK_EVT_FEAT_ONESHOT)
114                 tick_clock_notify();
115 }
116
117 /*
118  * Check, if the device is the broadcast device
119  */
120 int tick_is_broadcast_device(struct clock_event_device *dev)
121 {
122         return (dev && tick_broadcast_device.evtdev == dev);
123 }
124
125 int tick_broadcast_update_freq(struct clock_event_device *dev, u32 freq)
126 {
127         int ret = -ENODEV;
128
129         if (tick_is_broadcast_device(dev)) {
130                 raw_spin_lock(&tick_broadcast_lock);
131                 ret = __clockevents_update_freq(dev, freq);
132                 raw_spin_unlock(&tick_broadcast_lock);
133         }
134         return ret;
135 }
136
137
138 static void err_broadcast(const struct cpumask *mask)
139 {
140         pr_crit_once("Failed to broadcast timer tick. Some CPUs may be unresponsive.\n");
141 }
142
143 static void tick_device_setup_broadcast_func(struct clock_event_device *dev)
144 {
145         if (!dev->broadcast)
146                 dev->broadcast = tick_broadcast;
147         if (!dev->broadcast) {
148                 pr_warn_once("%s depends on broadcast, but no broadcast function available\n",
149                              dev->name);
150                 dev->broadcast = err_broadcast;
151         }
152 }
153
154 /*
155  * Check, if the device is disfunctional and a place holder, which
156  * needs to be handled by the broadcast device.
157  */
158 int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
159 {
160         struct clock_event_device *bc = tick_broadcast_device.evtdev;
161         unsigned long flags;
162         int ret;
163
164         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
165
166         /*
167          * Devices might be registered with both periodic and oneshot
168          * mode disabled. This signals, that the device needs to be
169          * operated from the broadcast device and is a placeholder for
170          * the cpu local device.
171          */
172         if (!tick_device_is_functional(dev)) {
173                 dev->event_handler = tick_handle_periodic;
174                 tick_device_setup_broadcast_func(dev);
175                 cpumask_set_cpu(cpu, tick_broadcast_mask);
176                 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
177                         tick_broadcast_start_periodic(bc);
178                 else
179                         tick_broadcast_setup_oneshot(bc);
180                 ret = 1;
181         } else {
182                 /*
183                  * Clear the broadcast bit for this cpu if the
184                  * device is not power state affected.
185                  */
186                 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
187                         cpumask_clear_cpu(cpu, tick_broadcast_mask);
188                 else
189                         tick_device_setup_broadcast_func(dev);
190
191                 /*
192                  * Clear the broadcast bit if the CPU is not in
193                  * periodic broadcast on state.
194                  */
195                 if (!cpumask_test_cpu(cpu, tick_broadcast_on))
196                         cpumask_clear_cpu(cpu, tick_broadcast_mask);
197
198                 switch (tick_broadcast_device.mode) {
199                 case TICKDEV_MODE_ONESHOT:
200                         /*
201                          * If the system is in oneshot mode we can
202                          * unconditionally clear the oneshot mask bit,
203                          * because the CPU is running and therefore
204                          * not in an idle state which causes the power
205                          * state affected device to stop. Let the
206                          * caller initialize the device.
207                          */
208                         tick_broadcast_clear_oneshot(cpu);
209                         ret = 0;
210                         break;
211
212                 case TICKDEV_MODE_PERIODIC:
213                         /*
214                          * If the system is in periodic mode, check
215                          * whether the broadcast device can be
216                          * switched off now.
217                          */
218                         if (cpumask_empty(tick_broadcast_mask) && bc)
219                                 clockevents_shutdown(bc);
220                         /*
221                          * If we kept the cpu in the broadcast mask,
222                          * tell the caller to leave the per cpu device
223                          * in shutdown state. The periodic interrupt
224                          * is delivered by the broadcast device.
225                          */
226                         ret = cpumask_test_cpu(cpu, tick_broadcast_mask);
227                         break;
228                 default:
229                         /* Nothing to do */
230                         ret = 0;
231                         break;
232                 }
233         }
234         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
235         return ret;
236 }
237
238 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
239 int tick_receive_broadcast(void)
240 {
241         struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
242         struct clock_event_device *evt = td->evtdev;
243
244         if (!evt)
245                 return -ENODEV;
246
247         if (!evt->event_handler)
248                 return -EINVAL;
249
250         evt->event_handler(evt);
251         return 0;
252 }
253 #endif
254
255 /*
256  * Broadcast the event to the cpus, which are set in the mask (mangled).
257  */
258 static bool tick_do_broadcast(struct cpumask *mask)
259 {
260         int cpu = smp_processor_id();
261         struct tick_device *td;
262         bool local = false;
263
264         /*
265          * Check, if the current cpu is in the mask
266          */
267         if (cpumask_test_cpu(cpu, mask)) {
268                 struct clock_event_device *bc = tick_broadcast_device.evtdev;
269
270                 cpumask_clear_cpu(cpu, mask);
271                 /*
272                  * We only run the local handler, if the broadcast
273                  * device is not hrtimer based. Otherwise we run into
274                  * a hrtimer recursion.
275                  *
276                  * local timer_interrupt()
277                  *   local_handler()
278                  *     expire_hrtimers()
279                  *       bc_handler()
280                  *         local_handler()
281                  *           expire_hrtimers()
282                  */
283                 local = !(bc->features & CLOCK_EVT_FEAT_HRTIMER);
284         }
285
286         if (!cpumask_empty(mask)) {
287                 /*
288                  * It might be necessary to actually check whether the devices
289                  * have different broadcast functions. For now, just use the
290                  * one of the first device. This works as long as we have this
291                  * misfeature only on x86 (lapic)
292                  */
293                 td = &per_cpu(tick_cpu_device, cpumask_first(mask));
294                 td->evtdev->broadcast(mask);
295         }
296         return local;
297 }
298
299 /*
300  * Periodic broadcast:
301  * - invoke the broadcast handlers
302  */
303 static bool tick_do_periodic_broadcast(void)
304 {
305         cpumask_and(tmpmask, cpu_online_mask, tick_broadcast_mask);
306         return tick_do_broadcast(tmpmask);
307 }
308
309 /*
310  * Event handler for periodic broadcast ticks
311  */
312 static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
313 {
314         struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
315         bool bc_local;
316
317         raw_spin_lock(&tick_broadcast_lock);
318         bc_local = tick_do_periodic_broadcast();
319
320         if (clockevent_state_oneshot(dev)) {
321                 ktime_t next = ktime_add(dev->next_event, tick_period);
322
323                 clockevents_program_event(dev, next, true);
324         }
325         raw_spin_unlock(&tick_broadcast_lock);
326
327         /*
328          * We run the handler of the local cpu after dropping
329          * tick_broadcast_lock because the handler might deadlock when
330          * trying to switch to oneshot mode.
331          */
332         if (bc_local)
333                 td->evtdev->event_handler(td->evtdev);
334 }
335
336 /**
337  * tick_broadcast_control - Enable/disable or force broadcast mode
338  * @mode:       The selected broadcast mode
339  *
340  * Called when the system enters a state where affected tick devices
341  * might stop. Note: TICK_BROADCAST_FORCE cannot be undone.
342  *
343  * Called with interrupts disabled, so clockevents_lock is not
344  * required here because the local clock event device cannot go away
345  * under us.
346  */
347 void tick_broadcast_control(enum tick_broadcast_mode mode)
348 {
349         struct clock_event_device *bc, *dev;
350         struct tick_device *td;
351         int cpu, bc_stopped;
352
353         td = this_cpu_ptr(&tick_cpu_device);
354         dev = td->evtdev;
355
356         /*
357          * Is the device not affected by the powerstate ?
358          */
359         if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP))
360                 return;
361
362         if (!tick_device_is_functional(dev))
363                 return;
364
365         raw_spin_lock(&tick_broadcast_lock);
366         cpu = smp_processor_id();
367         bc = tick_broadcast_device.evtdev;
368         bc_stopped = cpumask_empty(tick_broadcast_mask);
369
370         switch (mode) {
371         case TICK_BROADCAST_FORCE:
372                 tick_broadcast_forced = 1;
373         case TICK_BROADCAST_ON:
374                 cpumask_set_cpu(cpu, tick_broadcast_on);
375                 if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_mask)) {
376                         if (tick_broadcast_device.mode ==
377                             TICKDEV_MODE_PERIODIC)
378                                 clockevents_shutdown(dev);
379                 }
380                 break;
381
382         case TICK_BROADCAST_OFF:
383                 if (tick_broadcast_forced)
384                         break;
385                 cpumask_clear_cpu(cpu, tick_broadcast_on);
386                 if (!tick_device_is_functional(dev))
387                         break;
388                 if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_mask)) {
389                         if (tick_broadcast_device.mode ==
390                             TICKDEV_MODE_PERIODIC)
391                                 tick_setup_periodic(dev, 0);
392                 }
393                 break;
394         }
395
396         if (cpumask_empty(tick_broadcast_mask)) {
397                 if (!bc_stopped)
398                         clockevents_shutdown(bc);
399         } else if (bc_stopped) {
400                 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
401                         tick_broadcast_start_periodic(bc);
402                 else
403                         tick_broadcast_setup_oneshot(bc);
404         }
405         raw_spin_unlock(&tick_broadcast_lock);
406 }
407 EXPORT_SYMBOL_GPL(tick_broadcast_control);
408
409 /*
410  * Set the periodic handler depending on broadcast on/off
411  */
412 void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
413 {
414         if (!broadcast)
415                 dev->event_handler = tick_handle_periodic;
416         else
417                 dev->event_handler = tick_handle_periodic_broadcast;
418 }
419
420 #ifdef CONFIG_HOTPLUG_CPU
421 /*
422  * Remove a CPU from broadcasting
423  */
424 void tick_shutdown_broadcast(unsigned int cpu)
425 {
426         struct clock_event_device *bc;
427         unsigned long flags;
428
429         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
430
431         bc = tick_broadcast_device.evtdev;
432         cpumask_clear_cpu(cpu, tick_broadcast_mask);
433         cpumask_clear_cpu(cpu, tick_broadcast_on);
434
435         if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
436                 if (bc && cpumask_empty(tick_broadcast_mask))
437                         clockevents_shutdown(bc);
438         }
439
440         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
441 }
442 #endif
443
444 void tick_suspend_broadcast(void)
445 {
446         struct clock_event_device *bc;
447         unsigned long flags;
448
449         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
450
451         bc = tick_broadcast_device.evtdev;
452         if (bc)
453                 clockevents_shutdown(bc);
454
455         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
456 }
457
458 /*
459  * This is called from tick_resume_local() on a resuming CPU. That's
460  * called from the core resume function, tick_unfreeze() and the magic XEN
461  * resume hackery.
462  *
463  * In none of these cases the broadcast device mode can change and the
464  * bit of the resuming CPU in the broadcast mask is safe as well.
465  */
466 bool tick_resume_check_broadcast(void)
467 {
468         if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT)
469                 return false;
470         else
471                 return cpumask_test_cpu(smp_processor_id(), tick_broadcast_mask);
472 }
473
474 void tick_resume_broadcast(void)
475 {
476         struct clock_event_device *bc;
477         unsigned long flags;
478
479         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
480
481         bc = tick_broadcast_device.evtdev;
482
483         if (bc) {
484                 clockevents_tick_resume(bc);
485
486                 switch (tick_broadcast_device.mode) {
487                 case TICKDEV_MODE_PERIODIC:
488                         if (!cpumask_empty(tick_broadcast_mask))
489                                 tick_broadcast_start_periodic(bc);
490                         break;
491                 case TICKDEV_MODE_ONESHOT:
492                         if (!cpumask_empty(tick_broadcast_mask))
493                                 tick_resume_broadcast_oneshot(bc);
494                         break;
495                 }
496         }
497         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
498 }
499
500 #ifdef CONFIG_TICK_ONESHOT
501
502 static cpumask_var_t tick_broadcast_oneshot_mask;
503 static cpumask_var_t tick_broadcast_pending_mask;
504 static cpumask_var_t tick_broadcast_force_mask;
505
506 /*
507  * Exposed for debugging: see timer_list.c
508  */
509 struct cpumask *tick_get_broadcast_oneshot_mask(void)
510 {
511         return tick_broadcast_oneshot_mask;
512 }
513
514 /*
515  * Called before going idle with interrupts disabled. Checks whether a
516  * broadcast event from the other core is about to happen. We detected
517  * that in tick_broadcast_oneshot_control(). The callsite can use this
518  * to avoid a deep idle transition as we are about to get the
519  * broadcast IPI right away.
520  */
521 int tick_check_broadcast_expired(void)
522 {
523         return cpumask_test_cpu(smp_processor_id(), tick_broadcast_force_mask);
524 }
525
526 /*
527  * Set broadcast interrupt affinity
528  */
529 static void tick_broadcast_set_affinity(struct clock_event_device *bc,
530                                         const struct cpumask *cpumask)
531 {
532         if (!(bc->features & CLOCK_EVT_FEAT_DYNIRQ))
533                 return;
534
535         if (cpumask_equal(bc->cpumask, cpumask))
536                 return;
537
538         bc->cpumask = cpumask;
539         irq_set_affinity(bc->irq, bc->cpumask);
540 }
541
542 static void tick_broadcast_set_event(struct clock_event_device *bc, int cpu,
543                                      ktime_t expires)
544 {
545         if (!clockevent_state_oneshot(bc))
546                 clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
547
548         clockevents_program_event(bc, expires, 1);
549         tick_broadcast_set_affinity(bc, cpumask_of(cpu));
550 }
551
552 static void tick_resume_broadcast_oneshot(struct clock_event_device *bc)
553 {
554         clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
555 }
556
557 /*
558  * Called from irq_enter() when idle was interrupted to reenable the
559  * per cpu device.
560  */
561 void tick_check_oneshot_broadcast_this_cpu(void)
562 {
563         if (cpumask_test_cpu(smp_processor_id(), tick_broadcast_oneshot_mask)) {
564                 struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
565
566                 /*
567                  * We might be in the middle of switching over from
568                  * periodic to oneshot. If the CPU has not yet
569                  * switched over, leave the device alone.
570                  */
571                 if (td->mode == TICKDEV_MODE_ONESHOT) {
572                         clockevents_switch_state(td->evtdev,
573                                               CLOCK_EVT_STATE_ONESHOT);
574                 }
575         }
576 }
577
578 /*
579  * Handle oneshot mode broadcasting
580  */
581 static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
582 {
583         struct tick_device *td;
584         ktime_t now, next_event;
585         int cpu, next_cpu = 0;
586         bool bc_local;
587
588         raw_spin_lock(&tick_broadcast_lock);
589         dev->next_event.tv64 = KTIME_MAX;
590         next_event.tv64 = KTIME_MAX;
591         cpumask_clear(tmpmask);
592         now = ktime_get();
593         /* Find all expired events */
594         for_each_cpu(cpu, tick_broadcast_oneshot_mask) {
595                 td = &per_cpu(tick_cpu_device, cpu);
596                 if (td->evtdev->next_event.tv64 <= now.tv64) {
597                         cpumask_set_cpu(cpu, tmpmask);
598                         /*
599                          * Mark the remote cpu in the pending mask, so
600                          * it can avoid reprogramming the cpu local
601                          * timer in tick_broadcast_oneshot_control().
602                          */
603                         cpumask_set_cpu(cpu, tick_broadcast_pending_mask);
604                 } else if (td->evtdev->next_event.tv64 < next_event.tv64) {
605                         next_event.tv64 = td->evtdev->next_event.tv64;
606                         next_cpu = cpu;
607                 }
608         }
609
610         /*
611          * Remove the current cpu from the pending mask. The event is
612          * delivered immediately in tick_do_broadcast() !
613          */
614         cpumask_clear_cpu(smp_processor_id(), tick_broadcast_pending_mask);
615
616         /* Take care of enforced broadcast requests */
617         cpumask_or(tmpmask, tmpmask, tick_broadcast_force_mask);
618         cpumask_clear(tick_broadcast_force_mask);
619
620         /*
621          * Sanity check. Catch the case where we try to broadcast to
622          * offline cpus.
623          */
624         if (WARN_ON_ONCE(!cpumask_subset(tmpmask, cpu_online_mask)))
625                 cpumask_and(tmpmask, tmpmask, cpu_online_mask);
626
627         /*
628          * Wakeup the cpus which have an expired event.
629          */
630         bc_local = tick_do_broadcast(tmpmask);
631
632         /*
633          * Two reasons for reprogram:
634          *
635          * - The global event did not expire any CPU local
636          * events. This happens in dyntick mode, as the maximum PIT
637          * delta is quite small.
638          *
639          * - There are pending events on sleeping CPUs which were not
640          * in the event mask
641          */
642         if (next_event.tv64 != KTIME_MAX)
643                 tick_broadcast_set_event(dev, next_cpu, next_event);
644
645         raw_spin_unlock(&tick_broadcast_lock);
646
647         if (bc_local) {
648                 td = this_cpu_ptr(&tick_cpu_device);
649                 td->evtdev->event_handler(td->evtdev);
650         }
651 }
652
653 static int broadcast_needs_cpu(struct clock_event_device *bc, int cpu)
654 {
655         if (!(bc->features & CLOCK_EVT_FEAT_HRTIMER))
656                 return 0;
657         if (bc->next_event.tv64 == KTIME_MAX)
658                 return 0;
659         return bc->bound_on == cpu ? -EBUSY : 0;
660 }
661
662 static void broadcast_shutdown_local(struct clock_event_device *bc,
663                                      struct clock_event_device *dev)
664 {
665         /*
666          * For hrtimer based broadcasting we cannot shutdown the cpu
667          * local device if our own event is the first one to expire or
668          * if we own the broadcast timer.
669          */
670         if (bc->features & CLOCK_EVT_FEAT_HRTIMER) {
671                 if (broadcast_needs_cpu(bc, smp_processor_id()))
672                         return;
673                 if (dev->next_event.tv64 < bc->next_event.tv64)
674                         return;
675         }
676         clockevents_switch_state(dev, CLOCK_EVT_STATE_SHUTDOWN);
677 }
678
679 /**
680  * tick_broadcast_oneshot_control - Enter/exit broadcast oneshot mode
681  * @state:      The target state (enter/exit)
682  *
683  * The system enters/leaves a state, where affected devices might stop
684  * Returns 0 on success, -EBUSY if the cpu is used to broadcast wakeups.
685  *
686  * Called with interrupts disabled, so clockevents_lock is not
687  * required here because the local clock event device cannot go away
688  * under us.
689  */
690 int tick_broadcast_oneshot_control(enum tick_broadcast_state state)
691 {
692         struct clock_event_device *bc, *dev;
693         struct tick_device *td;
694         int cpu, ret = 0;
695         ktime_t now;
696
697         /*
698          * Periodic mode does not care about the enter/exit of power
699          * states
700          */
701         if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
702                 return 0;
703
704         /*
705          * We are called with preemtion disabled from the depth of the
706          * idle code, so we can't be moved away.
707          */
708         td = this_cpu_ptr(&tick_cpu_device);
709         dev = td->evtdev;
710
711         if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
712                 return 0;
713
714         raw_spin_lock(&tick_broadcast_lock);
715         bc = tick_broadcast_device.evtdev;
716         cpu = smp_processor_id();
717
718         if (state == TICK_BROADCAST_ENTER) {
719                 if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_oneshot_mask)) {
720                         WARN_ON_ONCE(cpumask_test_cpu(cpu, tick_broadcast_pending_mask));
721                         broadcast_shutdown_local(bc, dev);
722                         /*
723                          * We only reprogram the broadcast timer if we
724                          * did not mark ourself in the force mask and
725                          * if the cpu local event is earlier than the
726                          * broadcast event. If the current CPU is in
727                          * the force mask, then we are going to be
728                          * woken by the IPI right away.
729                          */
730                         if (!cpumask_test_cpu(cpu, tick_broadcast_force_mask) &&
731                             dev->next_event.tv64 < bc->next_event.tv64)
732                                 tick_broadcast_set_event(bc, cpu, dev->next_event);
733                 }
734                 /*
735                  * If the current CPU owns the hrtimer broadcast
736                  * mechanism, it cannot go deep idle and we remove the
737                  * CPU from the broadcast mask. We don't have to go
738                  * through the EXIT path as the local timer is not
739                  * shutdown.
740                  */
741                 ret = broadcast_needs_cpu(bc, cpu);
742                 if (ret)
743                         cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
744         } else {
745                 if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_oneshot_mask)) {
746                         clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT);
747                         /*
748                          * The cpu which was handling the broadcast
749                          * timer marked this cpu in the broadcast
750                          * pending mask and fired the broadcast
751                          * IPI. So we are going to handle the expired
752                          * event anyway via the broadcast IPI
753                          * handler. No need to reprogram the timer
754                          * with an already expired event.
755                          */
756                         if (cpumask_test_and_clear_cpu(cpu,
757                                        tick_broadcast_pending_mask))
758                                 goto out;
759
760                         /*
761                          * Bail out if there is no next event.
762                          */
763                         if (dev->next_event.tv64 == KTIME_MAX)
764                                 goto out;
765                         /*
766                          * If the pending bit is not set, then we are
767                          * either the CPU handling the broadcast
768                          * interrupt or we got woken by something else.
769                          *
770                          * We are not longer in the broadcast mask, so
771                          * if the cpu local expiry time is already
772                          * reached, we would reprogram the cpu local
773                          * timer with an already expired event.
774                          *
775                          * This can lead to a ping-pong when we return
776                          * to idle and therefor rearm the broadcast
777                          * timer before the cpu local timer was able
778                          * to fire. This happens because the forced
779                          * reprogramming makes sure that the event
780                          * will happen in the future and depending on
781                          * the min_delta setting this might be far
782                          * enough out that the ping-pong starts.
783                          *
784                          * If the cpu local next_event has expired
785                          * then we know that the broadcast timer
786                          * next_event has expired as well and
787                          * broadcast is about to be handled. So we
788                          * avoid reprogramming and enforce that the
789                          * broadcast handler, which did not run yet,
790                          * will invoke the cpu local handler.
791                          *
792                          * We cannot call the handler directly from
793                          * here, because we might be in a NOHZ phase
794                          * and we did not go through the irq_enter()
795                          * nohz fixups.
796                          */
797                         now = ktime_get();
798                         if (dev->next_event.tv64 <= now.tv64) {
799                                 cpumask_set_cpu(cpu, tick_broadcast_force_mask);
800                                 goto out;
801                         }
802                         /*
803                          * We got woken by something else. Reprogram
804                          * the cpu local timer device.
805                          */
806                         tick_program_event(dev->next_event, 1);
807                 }
808         }
809 out:
810         raw_spin_unlock(&tick_broadcast_lock);
811         return ret;
812 }
813 EXPORT_SYMBOL_GPL(tick_broadcast_oneshot_control);
814
815 /*
816  * Reset the one shot broadcast for a cpu
817  *
818  * Called with tick_broadcast_lock held
819  */
820 static void tick_broadcast_clear_oneshot(int cpu)
821 {
822         cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
823         cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
824 }
825
826 static void tick_broadcast_init_next_event(struct cpumask *mask,
827                                            ktime_t expires)
828 {
829         struct tick_device *td;
830         int cpu;
831
832         for_each_cpu(cpu, mask) {
833                 td = &per_cpu(tick_cpu_device, cpu);
834                 if (td->evtdev)
835                         td->evtdev->next_event = expires;
836         }
837 }
838
839 /**
840  * tick_broadcast_setup_oneshot - setup the broadcast device
841  */
842 void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
843 {
844         int cpu = smp_processor_id();
845
846         /* Set it up only once ! */
847         if (bc->event_handler != tick_handle_oneshot_broadcast) {
848                 int was_periodic = clockevent_state_periodic(bc);
849
850                 bc->event_handler = tick_handle_oneshot_broadcast;
851
852                 /*
853                  * We must be careful here. There might be other CPUs
854                  * waiting for periodic broadcast. We need to set the
855                  * oneshot_mask bits for those and program the
856                  * broadcast device to fire.
857                  */
858                 cpumask_copy(tmpmask, tick_broadcast_mask);
859                 cpumask_clear_cpu(cpu, tmpmask);
860                 cpumask_or(tick_broadcast_oneshot_mask,
861                            tick_broadcast_oneshot_mask, tmpmask);
862
863                 if (was_periodic && !cpumask_empty(tmpmask)) {
864                         clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
865                         tick_broadcast_init_next_event(tmpmask,
866                                                        tick_next_period);
867                         tick_broadcast_set_event(bc, cpu, tick_next_period);
868                 } else
869                         bc->next_event.tv64 = KTIME_MAX;
870         } else {
871                 /*
872                  * The first cpu which switches to oneshot mode sets
873                  * the bit for all other cpus which are in the general
874                  * (periodic) broadcast mask. So the bit is set and
875                  * would prevent the first broadcast enter after this
876                  * to program the bc device.
877                  */
878                 tick_broadcast_clear_oneshot(cpu);
879         }
880 }
881
882 /*
883  * Select oneshot operating mode for the broadcast device
884  */
885 void tick_broadcast_switch_to_oneshot(void)
886 {
887         struct clock_event_device *bc;
888         unsigned long flags;
889
890         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
891
892         tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
893         bc = tick_broadcast_device.evtdev;
894         if (bc)
895                 tick_broadcast_setup_oneshot(bc);
896
897         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
898 }
899
900 #ifdef CONFIG_HOTPLUG_CPU
901 void hotplug_cpu__broadcast_tick_pull(int deadcpu)
902 {
903         struct clock_event_device *bc;
904         unsigned long flags;
905
906         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
907         bc = tick_broadcast_device.evtdev;
908
909         if (bc && broadcast_needs_cpu(bc, deadcpu)) {
910                 /* This moves the broadcast assignment to this CPU: */
911                 clockevents_program_event(bc, bc->next_event, 1);
912         }
913         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
914 }
915
916 /*
917  * Remove a dead CPU from broadcasting
918  */
919 void tick_shutdown_broadcast_oneshot(unsigned int cpu)
920 {
921         unsigned long flags;
922
923         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
924
925         /*
926          * Clear the broadcast masks for the dead cpu, but do not stop
927          * the broadcast device!
928          */
929         cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
930         cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
931         cpumask_clear_cpu(cpu, tick_broadcast_force_mask);
932
933         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
934 }
935 #endif
936
937 /*
938  * Check, whether the broadcast device is in one shot mode
939  */
940 int tick_broadcast_oneshot_active(void)
941 {
942         return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT;
943 }
944
945 /*
946  * Check whether the broadcast device supports oneshot.
947  */
948 bool tick_broadcast_oneshot_available(void)
949 {
950         struct clock_event_device *bc = tick_broadcast_device.evtdev;
951
952         return bc ? bc->features & CLOCK_EVT_FEAT_ONESHOT : false;
953 }
954
955 #endif
956
957 void __init tick_broadcast_init(void)
958 {
959         zalloc_cpumask_var(&tick_broadcast_mask, GFP_NOWAIT);
960         zalloc_cpumask_var(&tick_broadcast_on, GFP_NOWAIT);
961         zalloc_cpumask_var(&tmpmask, GFP_NOWAIT);
962 #ifdef CONFIG_TICK_ONESHOT
963         zalloc_cpumask_var(&tick_broadcast_oneshot_mask, GFP_NOWAIT);
964         zalloc_cpumask_var(&tick_broadcast_pending_mask, GFP_NOWAIT);
965         zalloc_cpumask_var(&tick_broadcast_force_mask, GFP_NOWAIT);
966 #endif
967 }