Merge branch 'akpm' (patches from Andrew)
[cascardo/linux.git] / kernel / time / timekeeping.c
1 /*
2  *  linux/kernel/time/timekeeping.c
3  *
4  *  Kernel timekeeping code and accessor functions
5  *
6  *  This code was moved from linux/kernel/timer.c.
7  *  Please see that file for copyright and history logs.
8  *
9  */
10
11 #include <linux/timekeeper_internal.h>
12 #include <linux/module.h>
13 #include <linux/interrupt.h>
14 #include <linux/percpu.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/syscore_ops.h>
19 #include <linux/clocksource.h>
20 #include <linux/jiffies.h>
21 #include <linux/time.h>
22 #include <linux/tick.h>
23 #include <linux/stop_machine.h>
24 #include <linux/pvclock_gtod.h>
25 #include <linux/compiler.h>
26
27 #include "tick-internal.h"
28 #include "ntp_internal.h"
29 #include "timekeeping_internal.h"
30
31 #define TK_CLEAR_NTP            (1 << 0)
32 #define TK_MIRROR               (1 << 1)
33 #define TK_CLOCK_WAS_SET        (1 << 2)
34
35 /*
36  * The most important data for readout fits into a single 64 byte
37  * cache line.
38  */
39 static struct {
40         seqcount_t              seq;
41         struct timekeeper       timekeeper;
42 } tk_core ____cacheline_aligned;
43
44 static DEFINE_RAW_SPINLOCK(timekeeper_lock);
45 static struct timekeeper shadow_timekeeper;
46
47 /**
48  * struct tk_fast - NMI safe timekeeper
49  * @seq:        Sequence counter for protecting updates. The lowest bit
50  *              is the index for the tk_read_base array
51  * @base:       tk_read_base array. Access is indexed by the lowest bit of
52  *              @seq.
53  *
54  * See @update_fast_timekeeper() below.
55  */
56 struct tk_fast {
57         seqcount_t              seq;
58         struct tk_read_base     base[2];
59 };
60
61 static struct tk_fast tk_fast_mono ____cacheline_aligned;
62
63 /* flag for if timekeeping is suspended */
64 int __read_mostly timekeeping_suspended;
65
66 /* Flag for if there is a persistent clock on this platform */
67 bool __read_mostly persistent_clock_exist = false;
68
69 static inline void tk_normalize_xtime(struct timekeeper *tk)
70 {
71         while (tk->tkr.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr.shift)) {
72                 tk->tkr.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr.shift;
73                 tk->xtime_sec++;
74         }
75 }
76
77 static inline struct timespec64 tk_xtime(struct timekeeper *tk)
78 {
79         struct timespec64 ts;
80
81         ts.tv_sec = tk->xtime_sec;
82         ts.tv_nsec = (long)(tk->tkr.xtime_nsec >> tk->tkr.shift);
83         return ts;
84 }
85
86 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
87 {
88         tk->xtime_sec = ts->tv_sec;
89         tk->tkr.xtime_nsec = (u64)ts->tv_nsec << tk->tkr.shift;
90 }
91
92 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
93 {
94         tk->xtime_sec += ts->tv_sec;
95         tk->tkr.xtime_nsec += (u64)ts->tv_nsec << tk->tkr.shift;
96         tk_normalize_xtime(tk);
97 }
98
99 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
100 {
101         struct timespec64 tmp;
102
103         /*
104          * Verify consistency of: offset_real = -wall_to_monotonic
105          * before modifying anything
106          */
107         set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
108                                         -tk->wall_to_monotonic.tv_nsec);
109         WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
110         tk->wall_to_monotonic = wtm;
111         set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
112         tk->offs_real = timespec64_to_ktime(tmp);
113         tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
114 }
115
116 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
117 {
118         tk->offs_boot = ktime_add(tk->offs_boot, delta);
119 }
120
121 /**
122  * tk_setup_internals - Set up internals to use clocksource clock.
123  *
124  * @tk:         The target timekeeper to setup.
125  * @clock:              Pointer to clocksource.
126  *
127  * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
128  * pair and interval request.
129  *
130  * Unless you're the timekeeping code, you should not be using this!
131  */
132 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
133 {
134         cycle_t interval;
135         u64 tmp, ntpinterval;
136         struct clocksource *old_clock;
137
138         old_clock = tk->tkr.clock;
139         tk->tkr.clock = clock;
140         tk->tkr.read = clock->read;
141         tk->tkr.mask = clock->mask;
142         tk->tkr.cycle_last = tk->tkr.read(clock);
143
144         /* Do the ns -> cycle conversion first, using original mult */
145         tmp = NTP_INTERVAL_LENGTH;
146         tmp <<= clock->shift;
147         ntpinterval = tmp;
148         tmp += clock->mult/2;
149         do_div(tmp, clock->mult);
150         if (tmp == 0)
151                 tmp = 1;
152
153         interval = (cycle_t) tmp;
154         tk->cycle_interval = interval;
155
156         /* Go back from cycles -> shifted ns */
157         tk->xtime_interval = (u64) interval * clock->mult;
158         tk->xtime_remainder = ntpinterval - tk->xtime_interval;
159         tk->raw_interval =
160                 ((u64) interval * clock->mult) >> clock->shift;
161
162          /* if changing clocks, convert xtime_nsec shift units */
163         if (old_clock) {
164                 int shift_change = clock->shift - old_clock->shift;
165                 if (shift_change < 0)
166                         tk->tkr.xtime_nsec >>= -shift_change;
167                 else
168                         tk->tkr.xtime_nsec <<= shift_change;
169         }
170         tk->tkr.shift = clock->shift;
171
172         tk->ntp_error = 0;
173         tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
174         tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
175
176         /*
177          * The timekeeper keeps its own mult values for the currently
178          * active clocksource. These value will be adjusted via NTP
179          * to counteract clock drifting.
180          */
181         tk->tkr.mult = clock->mult;
182         tk->ntp_err_mult = 0;
183 }
184
185 /* Timekeeper helper functions. */
186
187 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
188 static u32 default_arch_gettimeoffset(void) { return 0; }
189 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
190 #else
191 static inline u32 arch_gettimeoffset(void) { return 0; }
192 #endif
193
194 static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
195 {
196         cycle_t cycle_now, delta;
197         s64 nsec;
198
199         /* read clocksource: */
200         cycle_now = tkr->read(tkr->clock);
201
202         /* calculate the delta since the last update_wall_time: */
203         delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
204
205         nsec = delta * tkr->mult + tkr->xtime_nsec;
206         nsec >>= tkr->shift;
207
208         /* If arch requires, add in get_arch_timeoffset() */
209         return nsec + arch_gettimeoffset();
210 }
211
212 static inline s64 timekeeping_get_ns_raw(struct timekeeper *tk)
213 {
214         struct clocksource *clock = tk->tkr.clock;
215         cycle_t cycle_now, delta;
216         s64 nsec;
217
218         /* read clocksource: */
219         cycle_now = tk->tkr.read(clock);
220
221         /* calculate the delta since the last update_wall_time: */
222         delta = clocksource_delta(cycle_now, tk->tkr.cycle_last, tk->tkr.mask);
223
224         /* convert delta to nanoseconds. */
225         nsec = clocksource_cyc2ns(delta, clock->mult, clock->shift);
226
227         /* If arch requires, add in get_arch_timeoffset() */
228         return nsec + arch_gettimeoffset();
229 }
230
231 /**
232  * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
233  * @tkr: Timekeeping readout base from which we take the update
234  *
235  * We want to use this from any context including NMI and tracing /
236  * instrumenting the timekeeping code itself.
237  *
238  * So we handle this differently than the other timekeeping accessor
239  * functions which retry when the sequence count has changed. The
240  * update side does:
241  *
242  * smp_wmb();   <- Ensure that the last base[1] update is visible
243  * tkf->seq++;
244  * smp_wmb();   <- Ensure that the seqcount update is visible
245  * update(tkf->base[0], tkr);
246  * smp_wmb();   <- Ensure that the base[0] update is visible
247  * tkf->seq++;
248  * smp_wmb();   <- Ensure that the seqcount update is visible
249  * update(tkf->base[1], tkr);
250  *
251  * The reader side does:
252  *
253  * do {
254  *      seq = tkf->seq;
255  *      smp_rmb();
256  *      idx = seq & 0x01;
257  *      now = now(tkf->base[idx]);
258  *      smp_rmb();
259  * } while (seq != tkf->seq)
260  *
261  * As long as we update base[0] readers are forced off to
262  * base[1]. Once base[0] is updated readers are redirected to base[0]
263  * and the base[1] update takes place.
264  *
265  * So if a NMI hits the update of base[0] then it will use base[1]
266  * which is still consistent. In the worst case this can result is a
267  * slightly wrong timestamp (a few nanoseconds). See
268  * @ktime_get_mono_fast_ns.
269  */
270 static void update_fast_timekeeper(struct tk_read_base *tkr)
271 {
272         struct tk_read_base *base = tk_fast_mono.base;
273
274         /* Force readers off to base[1] */
275         raw_write_seqcount_latch(&tk_fast_mono.seq);
276
277         /* Update base[0] */
278         memcpy(base, tkr, sizeof(*base));
279
280         /* Force readers back to base[0] */
281         raw_write_seqcount_latch(&tk_fast_mono.seq);
282
283         /* Update base[1] */
284         memcpy(base + 1, base, sizeof(*base));
285 }
286
287 /**
288  * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
289  *
290  * This timestamp is not guaranteed to be monotonic across an update.
291  * The timestamp is calculated by:
292  *
293  *      now = base_mono + clock_delta * slope
294  *
295  * So if the update lowers the slope, readers who are forced to the
296  * not yet updated second array are still using the old steeper slope.
297  *
298  * tmono
299  * ^
300  * |    o  n
301  * |   o n
302  * |  u
303  * | o
304  * |o
305  * |12345678---> reader order
306  *
307  * o = old slope
308  * u = update
309  * n = new slope
310  *
311  * So reader 6 will observe time going backwards versus reader 5.
312  *
313  * While other CPUs are likely to be able observe that, the only way
314  * for a CPU local observation is when an NMI hits in the middle of
315  * the update. Timestamps taken from that NMI context might be ahead
316  * of the following timestamps. Callers need to be aware of that and
317  * deal with it.
318  */
319 u64 notrace ktime_get_mono_fast_ns(void)
320 {
321         struct tk_read_base *tkr;
322         unsigned int seq;
323         u64 now;
324
325         do {
326                 seq = raw_read_seqcount(&tk_fast_mono.seq);
327                 tkr = tk_fast_mono.base + (seq & 0x01);
328                 now = ktime_to_ns(tkr->base_mono) + timekeeping_get_ns(tkr);
329
330         } while (read_seqcount_retry(&tk_fast_mono.seq, seq));
331         return now;
332 }
333 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
334
335 /* Suspend-time cycles value for halted fast timekeeper. */
336 static cycle_t cycles_at_suspend;
337
338 static cycle_t dummy_clock_read(struct clocksource *cs)
339 {
340         return cycles_at_suspend;
341 }
342
343 /**
344  * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
345  * @tk: Timekeeper to snapshot.
346  *
347  * It generally is unsafe to access the clocksource after timekeeping has been
348  * suspended, so take a snapshot of the readout base of @tk and use it as the
349  * fast timekeeper's readout base while suspended.  It will return the same
350  * number of cycles every time until timekeeping is resumed at which time the
351  * proper readout base for the fast timekeeper will be restored automatically.
352  */
353 static void halt_fast_timekeeper(struct timekeeper *tk)
354 {
355         static struct tk_read_base tkr_dummy;
356         struct tk_read_base *tkr = &tk->tkr;
357
358         memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
359         cycles_at_suspend = tkr->read(tkr->clock);
360         tkr_dummy.read = dummy_clock_read;
361         update_fast_timekeeper(&tkr_dummy);
362 }
363
364 #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
365
366 static inline void update_vsyscall(struct timekeeper *tk)
367 {
368         struct timespec xt, wm;
369
370         xt = timespec64_to_timespec(tk_xtime(tk));
371         wm = timespec64_to_timespec(tk->wall_to_monotonic);
372         update_vsyscall_old(&xt, &wm, tk->tkr.clock, tk->tkr.mult,
373                             tk->tkr.cycle_last);
374 }
375
376 static inline void old_vsyscall_fixup(struct timekeeper *tk)
377 {
378         s64 remainder;
379
380         /*
381         * Store only full nanoseconds into xtime_nsec after rounding
382         * it up and add the remainder to the error difference.
383         * XXX - This is necessary to avoid small 1ns inconsistnecies caused
384         * by truncating the remainder in vsyscalls. However, it causes
385         * additional work to be done in timekeeping_adjust(). Once
386         * the vsyscall implementations are converted to use xtime_nsec
387         * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
388         * users are removed, this can be killed.
389         */
390         remainder = tk->tkr.xtime_nsec & ((1ULL << tk->tkr.shift) - 1);
391         tk->tkr.xtime_nsec -= remainder;
392         tk->tkr.xtime_nsec += 1ULL << tk->tkr.shift;
393         tk->ntp_error += remainder << tk->ntp_error_shift;
394         tk->ntp_error -= (1ULL << tk->tkr.shift) << tk->ntp_error_shift;
395 }
396 #else
397 #define old_vsyscall_fixup(tk)
398 #endif
399
400 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
401
402 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
403 {
404         raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
405 }
406
407 /**
408  * pvclock_gtod_register_notifier - register a pvclock timedata update listener
409  */
410 int pvclock_gtod_register_notifier(struct notifier_block *nb)
411 {
412         struct timekeeper *tk = &tk_core.timekeeper;
413         unsigned long flags;
414         int ret;
415
416         raw_spin_lock_irqsave(&timekeeper_lock, flags);
417         ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
418         update_pvclock_gtod(tk, true);
419         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
420
421         return ret;
422 }
423 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
424
425 /**
426  * pvclock_gtod_unregister_notifier - unregister a pvclock
427  * timedata update listener
428  */
429 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
430 {
431         unsigned long flags;
432         int ret;
433
434         raw_spin_lock_irqsave(&timekeeper_lock, flags);
435         ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
436         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
437
438         return ret;
439 }
440 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
441
442 /*
443  * Update the ktime_t based scalar nsec members of the timekeeper
444  */
445 static inline void tk_update_ktime_data(struct timekeeper *tk)
446 {
447         u64 seconds;
448         u32 nsec;
449
450         /*
451          * The xtime based monotonic readout is:
452          *      nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
453          * The ktime based monotonic readout is:
454          *      nsec = base_mono + now();
455          * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
456          */
457         seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
458         nsec = (u32) tk->wall_to_monotonic.tv_nsec;
459         tk->tkr.base_mono = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
460
461         /* Update the monotonic raw base */
462         tk->base_raw = timespec64_to_ktime(tk->raw_time);
463
464         /*
465          * The sum of the nanoseconds portions of xtime and
466          * wall_to_monotonic can be greater/equal one second. Take
467          * this into account before updating tk->ktime_sec.
468          */
469         nsec += (u32)(tk->tkr.xtime_nsec >> tk->tkr.shift);
470         if (nsec >= NSEC_PER_SEC)
471                 seconds++;
472         tk->ktime_sec = seconds;
473 }
474
475 /* must hold timekeeper_lock */
476 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
477 {
478         if (action & TK_CLEAR_NTP) {
479                 tk->ntp_error = 0;
480                 ntp_clear();
481         }
482
483         tk_update_ktime_data(tk);
484
485         update_vsyscall(tk);
486         update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
487
488         if (action & TK_MIRROR)
489                 memcpy(&shadow_timekeeper, &tk_core.timekeeper,
490                        sizeof(tk_core.timekeeper));
491
492         update_fast_timekeeper(&tk->tkr);
493 }
494
495 /**
496  * timekeeping_forward_now - update clock to the current time
497  *
498  * Forward the current clock to update its state since the last call to
499  * update_wall_time(). This is useful before significant clock changes,
500  * as it avoids having to deal with this time offset explicitly.
501  */
502 static void timekeeping_forward_now(struct timekeeper *tk)
503 {
504         struct clocksource *clock = tk->tkr.clock;
505         cycle_t cycle_now, delta;
506         s64 nsec;
507
508         cycle_now = tk->tkr.read(clock);
509         delta = clocksource_delta(cycle_now, tk->tkr.cycle_last, tk->tkr.mask);
510         tk->tkr.cycle_last = cycle_now;
511
512         tk->tkr.xtime_nsec += delta * tk->tkr.mult;
513
514         /* If arch requires, add in get_arch_timeoffset() */
515         tk->tkr.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr.shift;
516
517         tk_normalize_xtime(tk);
518
519         nsec = clocksource_cyc2ns(delta, clock->mult, clock->shift);
520         timespec64_add_ns(&tk->raw_time, nsec);
521 }
522
523 /**
524  * __getnstimeofday64 - Returns the time of day in a timespec64.
525  * @ts:         pointer to the timespec to be set
526  *
527  * Updates the time of day in the timespec.
528  * Returns 0 on success, or -ve when suspended (timespec will be undefined).
529  */
530 int __getnstimeofday64(struct timespec64 *ts)
531 {
532         struct timekeeper *tk = &tk_core.timekeeper;
533         unsigned long seq;
534         s64 nsecs = 0;
535
536         do {
537                 seq = read_seqcount_begin(&tk_core.seq);
538
539                 ts->tv_sec = tk->xtime_sec;
540                 nsecs = timekeeping_get_ns(&tk->tkr);
541
542         } while (read_seqcount_retry(&tk_core.seq, seq));
543
544         ts->tv_nsec = 0;
545         timespec64_add_ns(ts, nsecs);
546
547         /*
548          * Do not bail out early, in case there were callers still using
549          * the value, even in the face of the WARN_ON.
550          */
551         if (unlikely(timekeeping_suspended))
552                 return -EAGAIN;
553         return 0;
554 }
555 EXPORT_SYMBOL(__getnstimeofday64);
556
557 /**
558  * getnstimeofday64 - Returns the time of day in a timespec64.
559  * @ts:         pointer to the timespec64 to be set
560  *
561  * Returns the time of day in a timespec64 (WARN if suspended).
562  */
563 void getnstimeofday64(struct timespec64 *ts)
564 {
565         WARN_ON(__getnstimeofday64(ts));
566 }
567 EXPORT_SYMBOL(getnstimeofday64);
568
569 ktime_t ktime_get(void)
570 {
571         struct timekeeper *tk = &tk_core.timekeeper;
572         unsigned int seq;
573         ktime_t base;
574         s64 nsecs;
575
576         WARN_ON(timekeeping_suspended);
577
578         do {
579                 seq = read_seqcount_begin(&tk_core.seq);
580                 base = tk->tkr.base_mono;
581                 nsecs = timekeeping_get_ns(&tk->tkr);
582
583         } while (read_seqcount_retry(&tk_core.seq, seq));
584
585         return ktime_add_ns(base, nsecs);
586 }
587 EXPORT_SYMBOL_GPL(ktime_get);
588
589 static ktime_t *offsets[TK_OFFS_MAX] = {
590         [TK_OFFS_REAL]  = &tk_core.timekeeper.offs_real,
591         [TK_OFFS_BOOT]  = &tk_core.timekeeper.offs_boot,
592         [TK_OFFS_TAI]   = &tk_core.timekeeper.offs_tai,
593 };
594
595 ktime_t ktime_get_with_offset(enum tk_offsets offs)
596 {
597         struct timekeeper *tk = &tk_core.timekeeper;
598         unsigned int seq;
599         ktime_t base, *offset = offsets[offs];
600         s64 nsecs;
601
602         WARN_ON(timekeeping_suspended);
603
604         do {
605                 seq = read_seqcount_begin(&tk_core.seq);
606                 base = ktime_add(tk->tkr.base_mono, *offset);
607                 nsecs = timekeeping_get_ns(&tk->tkr);
608
609         } while (read_seqcount_retry(&tk_core.seq, seq));
610
611         return ktime_add_ns(base, nsecs);
612
613 }
614 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
615
616 /**
617  * ktime_mono_to_any() - convert mononotic time to any other time
618  * @tmono:      time to convert.
619  * @offs:       which offset to use
620  */
621 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
622 {
623         ktime_t *offset = offsets[offs];
624         unsigned long seq;
625         ktime_t tconv;
626
627         do {
628                 seq = read_seqcount_begin(&tk_core.seq);
629                 tconv = ktime_add(tmono, *offset);
630         } while (read_seqcount_retry(&tk_core.seq, seq));
631
632         return tconv;
633 }
634 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
635
636 /**
637  * ktime_get_raw - Returns the raw monotonic time in ktime_t format
638  */
639 ktime_t ktime_get_raw(void)
640 {
641         struct timekeeper *tk = &tk_core.timekeeper;
642         unsigned int seq;
643         ktime_t base;
644         s64 nsecs;
645
646         do {
647                 seq = read_seqcount_begin(&tk_core.seq);
648                 base = tk->base_raw;
649                 nsecs = timekeeping_get_ns_raw(tk);
650
651         } while (read_seqcount_retry(&tk_core.seq, seq));
652
653         return ktime_add_ns(base, nsecs);
654 }
655 EXPORT_SYMBOL_GPL(ktime_get_raw);
656
657 /**
658  * ktime_get_ts64 - get the monotonic clock in timespec64 format
659  * @ts:         pointer to timespec variable
660  *
661  * The function calculates the monotonic clock from the realtime
662  * clock and the wall_to_monotonic offset and stores the result
663  * in normalized timespec64 format in the variable pointed to by @ts.
664  */
665 void ktime_get_ts64(struct timespec64 *ts)
666 {
667         struct timekeeper *tk = &tk_core.timekeeper;
668         struct timespec64 tomono;
669         s64 nsec;
670         unsigned int seq;
671
672         WARN_ON(timekeeping_suspended);
673
674         do {
675                 seq = read_seqcount_begin(&tk_core.seq);
676                 ts->tv_sec = tk->xtime_sec;
677                 nsec = timekeeping_get_ns(&tk->tkr);
678                 tomono = tk->wall_to_monotonic;
679
680         } while (read_seqcount_retry(&tk_core.seq, seq));
681
682         ts->tv_sec += tomono.tv_sec;
683         ts->tv_nsec = 0;
684         timespec64_add_ns(ts, nsec + tomono.tv_nsec);
685 }
686 EXPORT_SYMBOL_GPL(ktime_get_ts64);
687
688 /**
689  * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
690  *
691  * Returns the seconds portion of CLOCK_MONOTONIC with a single non
692  * serialized read. tk->ktime_sec is of type 'unsigned long' so this
693  * works on both 32 and 64 bit systems. On 32 bit systems the readout
694  * covers ~136 years of uptime which should be enough to prevent
695  * premature wrap arounds.
696  */
697 time64_t ktime_get_seconds(void)
698 {
699         struct timekeeper *tk = &tk_core.timekeeper;
700
701         WARN_ON(timekeeping_suspended);
702         return tk->ktime_sec;
703 }
704 EXPORT_SYMBOL_GPL(ktime_get_seconds);
705
706 /**
707  * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
708  *
709  * Returns the wall clock seconds since 1970. This replaces the
710  * get_seconds() interface which is not y2038 safe on 32bit systems.
711  *
712  * For 64bit systems the fast access to tk->xtime_sec is preserved. On
713  * 32bit systems the access must be protected with the sequence
714  * counter to provide "atomic" access to the 64bit tk->xtime_sec
715  * value.
716  */
717 time64_t ktime_get_real_seconds(void)
718 {
719         struct timekeeper *tk = &tk_core.timekeeper;
720         time64_t seconds;
721         unsigned int seq;
722
723         if (IS_ENABLED(CONFIG_64BIT))
724                 return tk->xtime_sec;
725
726         do {
727                 seq = read_seqcount_begin(&tk_core.seq);
728                 seconds = tk->xtime_sec;
729
730         } while (read_seqcount_retry(&tk_core.seq, seq));
731
732         return seconds;
733 }
734 EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
735
736 #ifdef CONFIG_NTP_PPS
737
738 /**
739  * getnstime_raw_and_real - get day and raw monotonic time in timespec format
740  * @ts_raw:     pointer to the timespec to be set to raw monotonic time
741  * @ts_real:    pointer to the timespec to be set to the time of day
742  *
743  * This function reads both the time of day and raw monotonic time at the
744  * same time atomically and stores the resulting timestamps in timespec
745  * format.
746  */
747 void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
748 {
749         struct timekeeper *tk = &tk_core.timekeeper;
750         unsigned long seq;
751         s64 nsecs_raw, nsecs_real;
752
753         WARN_ON_ONCE(timekeeping_suspended);
754
755         do {
756                 seq = read_seqcount_begin(&tk_core.seq);
757
758                 *ts_raw = timespec64_to_timespec(tk->raw_time);
759                 ts_real->tv_sec = tk->xtime_sec;
760                 ts_real->tv_nsec = 0;
761
762                 nsecs_raw = timekeeping_get_ns_raw(tk);
763                 nsecs_real = timekeeping_get_ns(&tk->tkr);
764
765         } while (read_seqcount_retry(&tk_core.seq, seq));
766
767         timespec_add_ns(ts_raw, nsecs_raw);
768         timespec_add_ns(ts_real, nsecs_real);
769 }
770 EXPORT_SYMBOL(getnstime_raw_and_real);
771
772 #endif /* CONFIG_NTP_PPS */
773
774 /**
775  * do_gettimeofday - Returns the time of day in a timeval
776  * @tv:         pointer to the timeval to be set
777  *
778  * NOTE: Users should be converted to using getnstimeofday()
779  */
780 void do_gettimeofday(struct timeval *tv)
781 {
782         struct timespec64 now;
783
784         getnstimeofday64(&now);
785         tv->tv_sec = now.tv_sec;
786         tv->tv_usec = now.tv_nsec/1000;
787 }
788 EXPORT_SYMBOL(do_gettimeofday);
789
790 /**
791  * do_settimeofday64 - Sets the time of day.
792  * @ts:     pointer to the timespec64 variable containing the new time
793  *
794  * Sets the time of day to the new time and update NTP and notify hrtimers
795  */
796 int do_settimeofday64(const struct timespec64 *ts)
797 {
798         struct timekeeper *tk = &tk_core.timekeeper;
799         struct timespec64 ts_delta, xt;
800         unsigned long flags;
801
802         if (!timespec64_valid_strict(ts))
803                 return -EINVAL;
804
805         raw_spin_lock_irqsave(&timekeeper_lock, flags);
806         write_seqcount_begin(&tk_core.seq);
807
808         timekeeping_forward_now(tk);
809
810         xt = tk_xtime(tk);
811         ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
812         ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
813
814         tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
815
816         tk_set_xtime(tk, ts);
817
818         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
819
820         write_seqcount_end(&tk_core.seq);
821         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
822
823         /* signal hrtimers about time change */
824         clock_was_set();
825
826         return 0;
827 }
828 EXPORT_SYMBOL(do_settimeofday64);
829
830 /**
831  * timekeeping_inject_offset - Adds or subtracts from the current time.
832  * @tv:         pointer to the timespec variable containing the offset
833  *
834  * Adds or subtracts an offset value from the current time.
835  */
836 int timekeeping_inject_offset(struct timespec *ts)
837 {
838         struct timekeeper *tk = &tk_core.timekeeper;
839         unsigned long flags;
840         struct timespec64 ts64, tmp;
841         int ret = 0;
842
843         if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
844                 return -EINVAL;
845
846         ts64 = timespec_to_timespec64(*ts);
847
848         raw_spin_lock_irqsave(&timekeeper_lock, flags);
849         write_seqcount_begin(&tk_core.seq);
850
851         timekeeping_forward_now(tk);
852
853         /* Make sure the proposed value is valid */
854         tmp = timespec64_add(tk_xtime(tk),  ts64);
855         if (!timespec64_valid_strict(&tmp)) {
856                 ret = -EINVAL;
857                 goto error;
858         }
859
860         tk_xtime_add(tk, &ts64);
861         tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
862
863 error: /* even if we error out, we forwarded the time, so call update */
864         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
865
866         write_seqcount_end(&tk_core.seq);
867         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
868
869         /* signal hrtimers about time change */
870         clock_was_set();
871
872         return ret;
873 }
874 EXPORT_SYMBOL(timekeeping_inject_offset);
875
876
877 /**
878  * timekeeping_get_tai_offset - Returns current TAI offset from UTC
879  *
880  */
881 s32 timekeeping_get_tai_offset(void)
882 {
883         struct timekeeper *tk = &tk_core.timekeeper;
884         unsigned int seq;
885         s32 ret;
886
887         do {
888                 seq = read_seqcount_begin(&tk_core.seq);
889                 ret = tk->tai_offset;
890         } while (read_seqcount_retry(&tk_core.seq, seq));
891
892         return ret;
893 }
894
895 /**
896  * __timekeeping_set_tai_offset - Lock free worker function
897  *
898  */
899 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
900 {
901         tk->tai_offset = tai_offset;
902         tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
903 }
904
905 /**
906  * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
907  *
908  */
909 void timekeeping_set_tai_offset(s32 tai_offset)
910 {
911         struct timekeeper *tk = &tk_core.timekeeper;
912         unsigned long flags;
913
914         raw_spin_lock_irqsave(&timekeeper_lock, flags);
915         write_seqcount_begin(&tk_core.seq);
916         __timekeeping_set_tai_offset(tk, tai_offset);
917         timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
918         write_seqcount_end(&tk_core.seq);
919         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
920         clock_was_set();
921 }
922
923 /**
924  * change_clocksource - Swaps clocksources if a new one is available
925  *
926  * Accumulates current time interval and initializes new clocksource
927  */
928 static int change_clocksource(void *data)
929 {
930         struct timekeeper *tk = &tk_core.timekeeper;
931         struct clocksource *new, *old;
932         unsigned long flags;
933
934         new = (struct clocksource *) data;
935
936         raw_spin_lock_irqsave(&timekeeper_lock, flags);
937         write_seqcount_begin(&tk_core.seq);
938
939         timekeeping_forward_now(tk);
940         /*
941          * If the cs is in module, get a module reference. Succeeds
942          * for built-in code (owner == NULL) as well.
943          */
944         if (try_module_get(new->owner)) {
945                 if (!new->enable || new->enable(new) == 0) {
946                         old = tk->tkr.clock;
947                         tk_setup_internals(tk, new);
948                         if (old->disable)
949                                 old->disable(old);
950                         module_put(old->owner);
951                 } else {
952                         module_put(new->owner);
953                 }
954         }
955         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
956
957         write_seqcount_end(&tk_core.seq);
958         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
959
960         return 0;
961 }
962
963 /**
964  * timekeeping_notify - Install a new clock source
965  * @clock:              pointer to the clock source
966  *
967  * This function is called from clocksource.c after a new, better clock
968  * source has been registered. The caller holds the clocksource_mutex.
969  */
970 int timekeeping_notify(struct clocksource *clock)
971 {
972         struct timekeeper *tk = &tk_core.timekeeper;
973
974         if (tk->tkr.clock == clock)
975                 return 0;
976         stop_machine(change_clocksource, clock, NULL);
977         tick_clock_notify();
978         return tk->tkr.clock == clock ? 0 : -1;
979 }
980
981 /**
982  * getrawmonotonic64 - Returns the raw monotonic time in a timespec
983  * @ts:         pointer to the timespec64 to be set
984  *
985  * Returns the raw monotonic time (completely un-modified by ntp)
986  */
987 void getrawmonotonic64(struct timespec64 *ts)
988 {
989         struct timekeeper *tk = &tk_core.timekeeper;
990         struct timespec64 ts64;
991         unsigned long seq;
992         s64 nsecs;
993
994         do {
995                 seq = read_seqcount_begin(&tk_core.seq);
996                 nsecs = timekeeping_get_ns_raw(tk);
997                 ts64 = tk->raw_time;
998
999         } while (read_seqcount_retry(&tk_core.seq, seq));
1000
1001         timespec64_add_ns(&ts64, nsecs);
1002         *ts = ts64;
1003 }
1004 EXPORT_SYMBOL(getrawmonotonic64);
1005
1006
1007 /**
1008  * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1009  */
1010 int timekeeping_valid_for_hres(void)
1011 {
1012         struct timekeeper *tk = &tk_core.timekeeper;
1013         unsigned long seq;
1014         int ret;
1015
1016         do {
1017                 seq = read_seqcount_begin(&tk_core.seq);
1018
1019                 ret = tk->tkr.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1020
1021         } while (read_seqcount_retry(&tk_core.seq, seq));
1022
1023         return ret;
1024 }
1025
1026 /**
1027  * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1028  */
1029 u64 timekeeping_max_deferment(void)
1030 {
1031         struct timekeeper *tk = &tk_core.timekeeper;
1032         unsigned long seq;
1033         u64 ret;
1034
1035         do {
1036                 seq = read_seqcount_begin(&tk_core.seq);
1037
1038                 ret = tk->tkr.clock->max_idle_ns;
1039
1040         } while (read_seqcount_retry(&tk_core.seq, seq));
1041
1042         return ret;
1043 }
1044
1045 /**
1046  * read_persistent_clock -  Return time from the persistent clock.
1047  *
1048  * Weak dummy function for arches that do not yet support it.
1049  * Reads the time from the battery backed persistent clock.
1050  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1051  *
1052  *  XXX - Do be sure to remove it once all arches implement it.
1053  */
1054 void __weak read_persistent_clock(struct timespec *ts)
1055 {
1056         ts->tv_sec = 0;
1057         ts->tv_nsec = 0;
1058 }
1059
1060 /**
1061  * read_boot_clock -  Return time of the system start.
1062  *
1063  * Weak dummy function for arches that do not yet support it.
1064  * Function to read the exact time the system has been started.
1065  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1066  *
1067  *  XXX - Do be sure to remove it once all arches implement it.
1068  */
1069 void __weak read_boot_clock(struct timespec *ts)
1070 {
1071         ts->tv_sec = 0;
1072         ts->tv_nsec = 0;
1073 }
1074
1075 /*
1076  * timekeeping_init - Initializes the clocksource and common timekeeping values
1077  */
1078 void __init timekeeping_init(void)
1079 {
1080         struct timekeeper *tk = &tk_core.timekeeper;
1081         struct clocksource *clock;
1082         unsigned long flags;
1083         struct timespec64 now, boot, tmp;
1084         struct timespec ts;
1085
1086         read_persistent_clock(&ts);
1087         now = timespec_to_timespec64(ts);
1088         if (!timespec64_valid_strict(&now)) {
1089                 pr_warn("WARNING: Persistent clock returned invalid value!\n"
1090                         "         Check your CMOS/BIOS settings.\n");
1091                 now.tv_sec = 0;
1092                 now.tv_nsec = 0;
1093         } else if (now.tv_sec || now.tv_nsec)
1094                 persistent_clock_exist = true;
1095
1096         read_boot_clock(&ts);
1097         boot = timespec_to_timespec64(ts);
1098         if (!timespec64_valid_strict(&boot)) {
1099                 pr_warn("WARNING: Boot clock returned invalid value!\n"
1100                         "         Check your CMOS/BIOS settings.\n");
1101                 boot.tv_sec = 0;
1102                 boot.tv_nsec = 0;
1103         }
1104
1105         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1106         write_seqcount_begin(&tk_core.seq);
1107         ntp_init();
1108
1109         clock = clocksource_default_clock();
1110         if (clock->enable)
1111                 clock->enable(clock);
1112         tk_setup_internals(tk, clock);
1113
1114         tk_set_xtime(tk, &now);
1115         tk->raw_time.tv_sec = 0;
1116         tk->raw_time.tv_nsec = 0;
1117         tk->base_raw.tv64 = 0;
1118         if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1119                 boot = tk_xtime(tk);
1120
1121         set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1122         tk_set_wall_to_mono(tk, tmp);
1123
1124         timekeeping_update(tk, TK_MIRROR);
1125
1126         write_seqcount_end(&tk_core.seq);
1127         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1128 }
1129
1130 /* time in seconds when suspend began */
1131 static struct timespec64 timekeeping_suspend_time;
1132
1133 /**
1134  * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1135  * @delta: pointer to a timespec delta value
1136  *
1137  * Takes a timespec offset measuring a suspend interval and properly
1138  * adds the sleep offset to the timekeeping variables.
1139  */
1140 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1141                                            struct timespec64 *delta)
1142 {
1143         if (!timespec64_valid_strict(delta)) {
1144                 printk_deferred(KERN_WARNING
1145                                 "__timekeeping_inject_sleeptime: Invalid "
1146                                 "sleep delta value!\n");
1147                 return;
1148         }
1149         tk_xtime_add(tk, delta);
1150         tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1151         tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1152         tk_debug_account_sleep_time(delta);
1153 }
1154
1155 /**
1156  * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1157  * @delta: pointer to a timespec64 delta value
1158  *
1159  * This hook is for architectures that cannot support read_persistent_clock
1160  * because their RTC/persistent clock is only accessible when irqs are enabled.
1161  *
1162  * This function should only be called by rtc_resume(), and allows
1163  * a suspend offset to be injected into the timekeeping values.
1164  */
1165 void timekeeping_inject_sleeptime64(struct timespec64 *delta)
1166 {
1167         struct timekeeper *tk = &tk_core.timekeeper;
1168         unsigned long flags;
1169
1170         /*
1171          * Make sure we don't set the clock twice, as timekeeping_resume()
1172          * already did it
1173          */
1174         if (has_persistent_clock())
1175                 return;
1176
1177         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1178         write_seqcount_begin(&tk_core.seq);
1179
1180         timekeeping_forward_now(tk);
1181
1182         __timekeeping_inject_sleeptime(tk, delta);
1183
1184         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1185
1186         write_seqcount_end(&tk_core.seq);
1187         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1188
1189         /* signal hrtimers about time change */
1190         clock_was_set();
1191 }
1192
1193 /**
1194  * timekeeping_resume - Resumes the generic timekeeping subsystem.
1195  *
1196  * This is for the generic clocksource timekeeping.
1197  * xtime/wall_to_monotonic/jiffies/etc are
1198  * still managed by arch specific suspend/resume code.
1199  */
1200 void timekeeping_resume(void)
1201 {
1202         struct timekeeper *tk = &tk_core.timekeeper;
1203         struct clocksource *clock = tk->tkr.clock;
1204         unsigned long flags;
1205         struct timespec64 ts_new, ts_delta;
1206         struct timespec tmp;
1207         cycle_t cycle_now, cycle_delta;
1208         bool suspendtime_found = false;
1209
1210         read_persistent_clock(&tmp);
1211         ts_new = timespec_to_timespec64(tmp);
1212
1213         clockevents_resume();
1214         clocksource_resume();
1215
1216         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1217         write_seqcount_begin(&tk_core.seq);
1218
1219         /*
1220          * After system resumes, we need to calculate the suspended time and
1221          * compensate it for the OS time. There are 3 sources that could be
1222          * used: Nonstop clocksource during suspend, persistent clock and rtc
1223          * device.
1224          *
1225          * One specific platform may have 1 or 2 or all of them, and the
1226          * preference will be:
1227          *      suspend-nonstop clocksource -> persistent clock -> rtc
1228          * The less preferred source will only be tried if there is no better
1229          * usable source. The rtc part is handled separately in rtc core code.
1230          */
1231         cycle_now = tk->tkr.read(clock);
1232         if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1233                 cycle_now > tk->tkr.cycle_last) {
1234                 u64 num, max = ULLONG_MAX;
1235                 u32 mult = clock->mult;
1236                 u32 shift = clock->shift;
1237                 s64 nsec = 0;
1238
1239                 cycle_delta = clocksource_delta(cycle_now, tk->tkr.cycle_last,
1240                                                 tk->tkr.mask);
1241
1242                 /*
1243                  * "cycle_delta * mutl" may cause 64 bits overflow, if the
1244                  * suspended time is too long. In that case we need do the
1245                  * 64 bits math carefully
1246                  */
1247                 do_div(max, mult);
1248                 if (cycle_delta > max) {
1249                         num = div64_u64(cycle_delta, max);
1250                         nsec = (((u64) max * mult) >> shift) * num;
1251                         cycle_delta -= num * max;
1252                 }
1253                 nsec += ((u64) cycle_delta * mult) >> shift;
1254
1255                 ts_delta = ns_to_timespec64(nsec);
1256                 suspendtime_found = true;
1257         } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1258                 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1259                 suspendtime_found = true;
1260         }
1261
1262         if (suspendtime_found)
1263                 __timekeeping_inject_sleeptime(tk, &ts_delta);
1264
1265         /* Re-base the last cycle value */
1266         tk->tkr.cycle_last = cycle_now;
1267         tk->ntp_error = 0;
1268         timekeeping_suspended = 0;
1269         timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1270         write_seqcount_end(&tk_core.seq);
1271         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1272
1273         touch_softlockup_watchdog();
1274
1275         clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);
1276
1277         /* Resume hrtimers */
1278         hrtimers_resume();
1279 }
1280
1281 int timekeeping_suspend(void)
1282 {
1283         struct timekeeper *tk = &tk_core.timekeeper;
1284         unsigned long flags;
1285         struct timespec64               delta, delta_delta;
1286         static struct timespec64        old_delta;
1287         struct timespec tmp;
1288
1289         read_persistent_clock(&tmp);
1290         timekeeping_suspend_time = timespec_to_timespec64(tmp);
1291
1292         /*
1293          * On some systems the persistent_clock can not be detected at
1294          * timekeeping_init by its return value, so if we see a valid
1295          * value returned, update the persistent_clock_exists flag.
1296          */
1297         if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1298                 persistent_clock_exist = true;
1299
1300         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1301         write_seqcount_begin(&tk_core.seq);
1302         timekeeping_forward_now(tk);
1303         timekeeping_suspended = 1;
1304
1305         /*
1306          * To avoid drift caused by repeated suspend/resumes,
1307          * which each can add ~1 second drift error,
1308          * try to compensate so the difference in system time
1309          * and persistent_clock time stays close to constant.
1310          */
1311         delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1312         delta_delta = timespec64_sub(delta, old_delta);
1313         if (abs(delta_delta.tv_sec)  >= 2) {
1314                 /*
1315                  * if delta_delta is too large, assume time correction
1316                  * has occured and set old_delta to the current delta.
1317                  */
1318                 old_delta = delta;
1319         } else {
1320                 /* Otherwise try to adjust old_system to compensate */
1321                 timekeeping_suspend_time =
1322                         timespec64_add(timekeeping_suspend_time, delta_delta);
1323         }
1324
1325         timekeeping_update(tk, TK_MIRROR);
1326         halt_fast_timekeeper(tk);
1327         write_seqcount_end(&tk_core.seq);
1328         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1329
1330         clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
1331         clocksource_suspend();
1332         clockevents_suspend();
1333
1334         return 0;
1335 }
1336
1337 /* sysfs resume/suspend bits for timekeeping */
1338 static struct syscore_ops timekeeping_syscore_ops = {
1339         .resume         = timekeeping_resume,
1340         .suspend        = timekeeping_suspend,
1341 };
1342
1343 static int __init timekeeping_init_ops(void)
1344 {
1345         register_syscore_ops(&timekeeping_syscore_ops);
1346         return 0;
1347 }
1348 device_initcall(timekeeping_init_ops);
1349
1350 /*
1351  * Apply a multiplier adjustment to the timekeeper
1352  */
1353 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1354                                                          s64 offset,
1355                                                          bool negative,
1356                                                          int adj_scale)
1357 {
1358         s64 interval = tk->cycle_interval;
1359         s32 mult_adj = 1;
1360
1361         if (negative) {
1362                 mult_adj = -mult_adj;
1363                 interval = -interval;
1364                 offset  = -offset;
1365         }
1366         mult_adj <<= adj_scale;
1367         interval <<= adj_scale;
1368         offset <<= adj_scale;
1369
1370         /*
1371          * So the following can be confusing.
1372          *
1373          * To keep things simple, lets assume mult_adj == 1 for now.
1374          *
1375          * When mult_adj != 1, remember that the interval and offset values
1376          * have been appropriately scaled so the math is the same.
1377          *
1378          * The basic idea here is that we're increasing the multiplier
1379          * by one, this causes the xtime_interval to be incremented by
1380          * one cycle_interval. This is because:
1381          *      xtime_interval = cycle_interval * mult
1382          * So if mult is being incremented by one:
1383          *      xtime_interval = cycle_interval * (mult + 1)
1384          * Its the same as:
1385          *      xtime_interval = (cycle_interval * mult) + cycle_interval
1386          * Which can be shortened to:
1387          *      xtime_interval += cycle_interval
1388          *
1389          * So offset stores the non-accumulated cycles. Thus the current
1390          * time (in shifted nanoseconds) is:
1391          *      now = (offset * adj) + xtime_nsec
1392          * Now, even though we're adjusting the clock frequency, we have
1393          * to keep time consistent. In other words, we can't jump back
1394          * in time, and we also want to avoid jumping forward in time.
1395          *
1396          * So given the same offset value, we need the time to be the same
1397          * both before and after the freq adjustment.
1398          *      now = (offset * adj_1) + xtime_nsec_1
1399          *      now = (offset * adj_2) + xtime_nsec_2
1400          * So:
1401          *      (offset * adj_1) + xtime_nsec_1 =
1402          *              (offset * adj_2) + xtime_nsec_2
1403          * And we know:
1404          *      adj_2 = adj_1 + 1
1405          * So:
1406          *      (offset * adj_1) + xtime_nsec_1 =
1407          *              (offset * (adj_1+1)) + xtime_nsec_2
1408          *      (offset * adj_1) + xtime_nsec_1 =
1409          *              (offset * adj_1) + offset + xtime_nsec_2
1410          * Canceling the sides:
1411          *      xtime_nsec_1 = offset + xtime_nsec_2
1412          * Which gives us:
1413          *      xtime_nsec_2 = xtime_nsec_1 - offset
1414          * Which simplfies to:
1415          *      xtime_nsec -= offset
1416          *
1417          * XXX - TODO: Doc ntp_error calculation.
1418          */
1419         if ((mult_adj > 0) && (tk->tkr.mult + mult_adj < mult_adj)) {
1420                 /* NTP adjustment caused clocksource mult overflow */
1421                 WARN_ON_ONCE(1);
1422                 return;
1423         }
1424
1425         tk->tkr.mult += mult_adj;
1426         tk->xtime_interval += interval;
1427         tk->tkr.xtime_nsec -= offset;
1428         tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1429 }
1430
1431 /*
1432  * Calculate the multiplier adjustment needed to match the frequency
1433  * specified by NTP
1434  */
1435 static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
1436                                                         s64 offset)
1437 {
1438         s64 interval = tk->cycle_interval;
1439         s64 xinterval = tk->xtime_interval;
1440         s64 tick_error;
1441         bool negative;
1442         u32 adj;
1443
1444         /* Remove any current error adj from freq calculation */
1445         if (tk->ntp_err_mult)
1446                 xinterval -= tk->cycle_interval;
1447
1448         tk->ntp_tick = ntp_tick_length();
1449
1450         /* Calculate current error per tick */
1451         tick_error = ntp_tick_length() >> tk->ntp_error_shift;
1452         tick_error -= (xinterval + tk->xtime_remainder);
1453
1454         /* Don't worry about correcting it if its small */
1455         if (likely((tick_error >= 0) && (tick_error <= interval)))
1456                 return;
1457
1458         /* preserve the direction of correction */
1459         negative = (tick_error < 0);
1460
1461         /* Sort out the magnitude of the correction */
1462         tick_error = abs(tick_error);
1463         for (adj = 0; tick_error > interval; adj++)
1464                 tick_error >>= 1;
1465
1466         /* scale the corrections */
1467         timekeeping_apply_adjustment(tk, offset, negative, adj);
1468 }
1469
1470 /*
1471  * Adjust the timekeeper's multiplier to the correct frequency
1472  * and also to reduce the accumulated error value.
1473  */
1474 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1475 {
1476         /* Correct for the current frequency error */
1477         timekeeping_freqadjust(tk, offset);
1478
1479         /* Next make a small adjustment to fix any cumulative error */
1480         if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
1481                 tk->ntp_err_mult = 1;
1482                 timekeeping_apply_adjustment(tk, offset, 0, 0);
1483         } else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
1484                 /* Undo any existing error adjustment */
1485                 timekeeping_apply_adjustment(tk, offset, 1, 0);
1486                 tk->ntp_err_mult = 0;
1487         }
1488
1489         if (unlikely(tk->tkr.clock->maxadj &&
1490                 (abs(tk->tkr.mult - tk->tkr.clock->mult)
1491                         > tk->tkr.clock->maxadj))) {
1492                 printk_once(KERN_WARNING
1493                         "Adjusting %s more than 11%% (%ld vs %ld)\n",
1494                         tk->tkr.clock->name, (long)tk->tkr.mult,
1495                         (long)tk->tkr.clock->mult + tk->tkr.clock->maxadj);
1496         }
1497
1498         /*
1499          * It may be possible that when we entered this function, xtime_nsec
1500          * was very small.  Further, if we're slightly speeding the clocksource
1501          * in the code above, its possible the required corrective factor to
1502          * xtime_nsec could cause it to underflow.
1503          *
1504          * Now, since we already accumulated the second, cannot simply roll
1505          * the accumulated second back, since the NTP subsystem has been
1506          * notified via second_overflow. So instead we push xtime_nsec forward
1507          * by the amount we underflowed, and add that amount into the error.
1508          *
1509          * We'll correct this error next time through this function, when
1510          * xtime_nsec is not as small.
1511          */
1512         if (unlikely((s64)tk->tkr.xtime_nsec < 0)) {
1513                 s64 neg = -(s64)tk->tkr.xtime_nsec;
1514                 tk->tkr.xtime_nsec = 0;
1515                 tk->ntp_error += neg << tk->ntp_error_shift;
1516         }
1517 }
1518
1519 /**
1520  * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1521  *
1522  * Helper function that accumulates a the nsecs greater then a second
1523  * from the xtime_nsec field to the xtime_secs field.
1524  * It also calls into the NTP code to handle leapsecond processing.
1525  *
1526  */
1527 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1528 {
1529         u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr.shift;
1530         unsigned int clock_set = 0;
1531
1532         while (tk->tkr.xtime_nsec >= nsecps) {
1533                 int leap;
1534
1535                 tk->tkr.xtime_nsec -= nsecps;
1536                 tk->xtime_sec++;
1537
1538                 /* Figure out if its a leap sec and apply if needed */
1539                 leap = second_overflow(tk->xtime_sec);
1540                 if (unlikely(leap)) {
1541                         struct timespec64 ts;
1542
1543                         tk->xtime_sec += leap;
1544
1545                         ts.tv_sec = leap;
1546                         ts.tv_nsec = 0;
1547                         tk_set_wall_to_mono(tk,
1548                                 timespec64_sub(tk->wall_to_monotonic, ts));
1549
1550                         __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1551
1552                         clock_set = TK_CLOCK_WAS_SET;
1553                 }
1554         }
1555         return clock_set;
1556 }
1557
1558 /**
1559  * logarithmic_accumulation - shifted accumulation of cycles
1560  *
1561  * This functions accumulates a shifted interval of cycles into
1562  * into a shifted interval nanoseconds. Allows for O(log) accumulation
1563  * loop.
1564  *
1565  * Returns the unconsumed cycles.
1566  */
1567 static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
1568                                                 u32 shift,
1569                                                 unsigned int *clock_set)
1570 {
1571         cycle_t interval = tk->cycle_interval << shift;
1572         u64 raw_nsecs;
1573
1574         /* If the offset is smaller then a shifted interval, do nothing */
1575         if (offset < interval)
1576                 return offset;
1577
1578         /* Accumulate one shifted interval */
1579         offset -= interval;
1580         tk->tkr.cycle_last += interval;
1581
1582         tk->tkr.xtime_nsec += tk->xtime_interval << shift;
1583         *clock_set |= accumulate_nsecs_to_secs(tk);
1584
1585         /* Accumulate raw time */
1586         raw_nsecs = (u64)tk->raw_interval << shift;
1587         raw_nsecs += tk->raw_time.tv_nsec;
1588         if (raw_nsecs >= NSEC_PER_SEC) {
1589                 u64 raw_secs = raw_nsecs;
1590                 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
1591                 tk->raw_time.tv_sec += raw_secs;
1592         }
1593         tk->raw_time.tv_nsec = raw_nsecs;
1594
1595         /* Accumulate error between NTP and clock interval */
1596         tk->ntp_error += tk->ntp_tick << shift;
1597         tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
1598                                                 (tk->ntp_error_shift + shift);
1599
1600         return offset;
1601 }
1602
1603 /**
1604  * update_wall_time - Uses the current clocksource to increment the wall time
1605  *
1606  */
1607 void update_wall_time(void)
1608 {
1609         struct timekeeper *real_tk = &tk_core.timekeeper;
1610         struct timekeeper *tk = &shadow_timekeeper;
1611         cycle_t offset;
1612         int shift = 0, maxshift;
1613         unsigned int clock_set = 0;
1614         unsigned long flags;
1615
1616         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1617
1618         /* Make sure we're fully resumed: */
1619         if (unlikely(timekeeping_suspended))
1620                 goto out;
1621
1622 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1623         offset = real_tk->cycle_interval;
1624 #else
1625         offset = clocksource_delta(tk->tkr.read(tk->tkr.clock),
1626                                    tk->tkr.cycle_last, tk->tkr.mask);
1627 #endif
1628
1629         /* Check if there's really nothing to do */
1630         if (offset < real_tk->cycle_interval)
1631                 goto out;
1632
1633         /*
1634          * With NO_HZ we may have to accumulate many cycle_intervals
1635          * (think "ticks") worth of time at once. To do this efficiently,
1636          * we calculate the largest doubling multiple of cycle_intervals
1637          * that is smaller than the offset.  We then accumulate that
1638          * chunk in one go, and then try to consume the next smaller
1639          * doubled multiple.
1640          */
1641         shift = ilog2(offset) - ilog2(tk->cycle_interval);
1642         shift = max(0, shift);
1643         /* Bound shift to one less than what overflows tick_length */
1644         maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1645         shift = min(shift, maxshift);
1646         while (offset >= tk->cycle_interval) {
1647                 offset = logarithmic_accumulation(tk, offset, shift,
1648                                                         &clock_set);
1649                 if (offset < tk->cycle_interval<<shift)
1650                         shift--;
1651         }
1652
1653         /* correct the clock when NTP error is too big */
1654         timekeeping_adjust(tk, offset);
1655
1656         /*
1657          * XXX This can be killed once everyone converts
1658          * to the new update_vsyscall.
1659          */
1660         old_vsyscall_fixup(tk);
1661
1662         /*
1663          * Finally, make sure that after the rounding
1664          * xtime_nsec isn't larger than NSEC_PER_SEC
1665          */
1666         clock_set |= accumulate_nsecs_to_secs(tk);
1667
1668         write_seqcount_begin(&tk_core.seq);
1669         /*
1670          * Update the real timekeeper.
1671          *
1672          * We could avoid this memcpy by switching pointers, but that
1673          * requires changes to all other timekeeper usage sites as
1674          * well, i.e. move the timekeeper pointer getter into the
1675          * spinlocked/seqcount protected sections. And we trade this
1676          * memcpy under the tk_core.seq against one before we start
1677          * updating.
1678          */
1679         memcpy(real_tk, tk, sizeof(*tk));
1680         timekeeping_update(real_tk, clock_set);
1681         write_seqcount_end(&tk_core.seq);
1682 out:
1683         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1684         if (clock_set)
1685                 /* Have to call _delayed version, since in irq context*/
1686                 clock_was_set_delayed();
1687 }
1688
1689 /**
1690  * getboottime64 - Return the real time of system boot.
1691  * @ts:         pointer to the timespec64 to be set
1692  *
1693  * Returns the wall-time of boot in a timespec64.
1694  *
1695  * This is based on the wall_to_monotonic offset and the total suspend
1696  * time. Calls to settimeofday will affect the value returned (which
1697  * basically means that however wrong your real time clock is at boot time,
1698  * you get the right time here).
1699  */
1700 void getboottime64(struct timespec64 *ts)
1701 {
1702         struct timekeeper *tk = &tk_core.timekeeper;
1703         ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
1704
1705         *ts = ktime_to_timespec64(t);
1706 }
1707 EXPORT_SYMBOL_GPL(getboottime64);
1708
1709 unsigned long get_seconds(void)
1710 {
1711         struct timekeeper *tk = &tk_core.timekeeper;
1712
1713         return tk->xtime_sec;
1714 }
1715 EXPORT_SYMBOL(get_seconds);
1716
1717 struct timespec __current_kernel_time(void)
1718 {
1719         struct timekeeper *tk = &tk_core.timekeeper;
1720
1721         return timespec64_to_timespec(tk_xtime(tk));
1722 }
1723
1724 struct timespec current_kernel_time(void)
1725 {
1726         struct timekeeper *tk = &tk_core.timekeeper;
1727         struct timespec64 now;
1728         unsigned long seq;
1729
1730         do {
1731                 seq = read_seqcount_begin(&tk_core.seq);
1732
1733                 now = tk_xtime(tk);
1734         } while (read_seqcount_retry(&tk_core.seq, seq));
1735
1736         return timespec64_to_timespec(now);
1737 }
1738 EXPORT_SYMBOL(current_kernel_time);
1739
1740 struct timespec64 get_monotonic_coarse64(void)
1741 {
1742         struct timekeeper *tk = &tk_core.timekeeper;
1743         struct timespec64 now, mono;
1744         unsigned long seq;
1745
1746         do {
1747                 seq = read_seqcount_begin(&tk_core.seq);
1748
1749                 now = tk_xtime(tk);
1750                 mono = tk->wall_to_monotonic;
1751         } while (read_seqcount_retry(&tk_core.seq, seq));
1752
1753         set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
1754                                 now.tv_nsec + mono.tv_nsec);
1755
1756         return now;
1757 }
1758
1759 /*
1760  * Must hold jiffies_lock
1761  */
1762 void do_timer(unsigned long ticks)
1763 {
1764         jiffies_64 += ticks;
1765         calc_global_load(ticks);
1766 }
1767
1768 /**
1769  * ktime_get_update_offsets_tick - hrtimer helper
1770  * @offs_real:  pointer to storage for monotonic -> realtime offset
1771  * @offs_boot:  pointer to storage for monotonic -> boottime offset
1772  * @offs_tai:   pointer to storage for monotonic -> clock tai offset
1773  *
1774  * Returns monotonic time at last tick and various offsets
1775  */
1776 ktime_t ktime_get_update_offsets_tick(ktime_t *offs_real, ktime_t *offs_boot,
1777                                                         ktime_t *offs_tai)
1778 {
1779         struct timekeeper *tk = &tk_core.timekeeper;
1780         unsigned int seq;
1781         ktime_t base;
1782         u64 nsecs;
1783
1784         do {
1785                 seq = read_seqcount_begin(&tk_core.seq);
1786
1787                 base = tk->tkr.base_mono;
1788                 nsecs = tk->tkr.xtime_nsec >> tk->tkr.shift;
1789
1790                 *offs_real = tk->offs_real;
1791                 *offs_boot = tk->offs_boot;
1792                 *offs_tai = tk->offs_tai;
1793         } while (read_seqcount_retry(&tk_core.seq, seq));
1794
1795         return ktime_add_ns(base, nsecs);
1796 }
1797
1798 #ifdef CONFIG_HIGH_RES_TIMERS
1799 /**
1800  * ktime_get_update_offsets_now - hrtimer helper
1801  * @offs_real:  pointer to storage for monotonic -> realtime offset
1802  * @offs_boot:  pointer to storage for monotonic -> boottime offset
1803  * @offs_tai:   pointer to storage for monotonic -> clock tai offset
1804  *
1805  * Returns current monotonic time and updates the offsets
1806  * Called from hrtimer_interrupt() or retrigger_next_event()
1807  */
1808 ktime_t ktime_get_update_offsets_now(ktime_t *offs_real, ktime_t *offs_boot,
1809                                                         ktime_t *offs_tai)
1810 {
1811         struct timekeeper *tk = &tk_core.timekeeper;
1812         unsigned int seq;
1813         ktime_t base;
1814         u64 nsecs;
1815
1816         do {
1817                 seq = read_seqcount_begin(&tk_core.seq);
1818
1819                 base = tk->tkr.base_mono;
1820                 nsecs = timekeeping_get_ns(&tk->tkr);
1821
1822                 *offs_real = tk->offs_real;
1823                 *offs_boot = tk->offs_boot;
1824                 *offs_tai = tk->offs_tai;
1825         } while (read_seqcount_retry(&tk_core.seq, seq));
1826
1827         return ktime_add_ns(base, nsecs);
1828 }
1829 #endif
1830
1831 /**
1832  * do_adjtimex() - Accessor function to NTP __do_adjtimex function
1833  */
1834 int do_adjtimex(struct timex *txc)
1835 {
1836         struct timekeeper *tk = &tk_core.timekeeper;
1837         unsigned long flags;
1838         struct timespec64 ts;
1839         s32 orig_tai, tai;
1840         int ret;
1841
1842         /* Validate the data before disabling interrupts */
1843         ret = ntp_validate_timex(txc);
1844         if (ret)
1845                 return ret;
1846
1847         if (txc->modes & ADJ_SETOFFSET) {
1848                 struct timespec delta;
1849                 delta.tv_sec  = txc->time.tv_sec;
1850                 delta.tv_nsec = txc->time.tv_usec;
1851                 if (!(txc->modes & ADJ_NANO))
1852                         delta.tv_nsec *= 1000;
1853                 ret = timekeeping_inject_offset(&delta);
1854                 if (ret)
1855                         return ret;
1856         }
1857
1858         getnstimeofday64(&ts);
1859
1860         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1861         write_seqcount_begin(&tk_core.seq);
1862
1863         orig_tai = tai = tk->tai_offset;
1864         ret = __do_adjtimex(txc, &ts, &tai);
1865
1866         if (tai != orig_tai) {
1867                 __timekeeping_set_tai_offset(tk, tai);
1868                 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1869         }
1870         write_seqcount_end(&tk_core.seq);
1871         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1872
1873         if (tai != orig_tai)
1874                 clock_was_set();
1875
1876         ntp_notify_cmos_timer();
1877
1878         return ret;
1879 }
1880
1881 #ifdef CONFIG_NTP_PPS
1882 /**
1883  * hardpps() - Accessor function to NTP __hardpps function
1884  */
1885 void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
1886 {
1887         unsigned long flags;
1888
1889         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1890         write_seqcount_begin(&tk_core.seq);
1891
1892         __hardpps(phase_ts, raw_ts);
1893
1894         write_seqcount_end(&tk_core.seq);
1895         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1896 }
1897 EXPORT_SYMBOL(hardpps);
1898 #endif
1899
1900 /**
1901  * xtime_update() - advances the timekeeping infrastructure
1902  * @ticks:      number of ticks, that have elapsed since the last call.
1903  *
1904  * Must be called with interrupts disabled.
1905  */
1906 void xtime_update(unsigned long ticks)
1907 {
1908         write_seqlock(&jiffies_lock);
1909         do_timer(ticks);
1910         write_sequnlock(&jiffies_lock);
1911         update_wall_time();
1912 }