mm, compaction: always skip all compound pages by order in migrate scanner
[cascardo/linux.git] / mm / compaction.c
1 /*
2  * linux/mm/compaction.c
3  *
4  * Memory compaction for the reduction of external fragmentation. Note that
5  * this heavily depends upon page migration to do all the real heavy
6  * lifting
7  *
8  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9  */
10 #include <linux/swap.h>
11 #include <linux/migrate.h>
12 #include <linux/compaction.h>
13 #include <linux/mm_inline.h>
14 #include <linux/backing-dev.h>
15 #include <linux/sysctl.h>
16 #include <linux/sysfs.h>
17 #include <linux/balloon_compaction.h>
18 #include <linux/page-isolation.h>
19 #include <linux/kasan.h>
20 #include "internal.h"
21
22 #ifdef CONFIG_COMPACTION
23 static inline void count_compact_event(enum vm_event_item item)
24 {
25         count_vm_event(item);
26 }
27
28 static inline void count_compact_events(enum vm_event_item item, long delta)
29 {
30         count_vm_events(item, delta);
31 }
32 #else
33 #define count_compact_event(item) do { } while (0)
34 #define count_compact_events(item, delta) do { } while (0)
35 #endif
36
37 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
38 #ifdef CONFIG_TRACEPOINTS
39 static const char *const compaction_status_string[] = {
40         "deferred",
41         "skipped",
42         "continue",
43         "partial",
44         "complete",
45         "no_suitable_page",
46         "not_suitable_zone",
47 };
48 #endif
49
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/compaction.h>
52
53 static unsigned long release_freepages(struct list_head *freelist)
54 {
55         struct page *page, *next;
56         unsigned long high_pfn = 0;
57
58         list_for_each_entry_safe(page, next, freelist, lru) {
59                 unsigned long pfn = page_to_pfn(page);
60                 list_del(&page->lru);
61                 __free_page(page);
62                 if (pfn > high_pfn)
63                         high_pfn = pfn;
64         }
65
66         return high_pfn;
67 }
68
69 static void map_pages(struct list_head *list)
70 {
71         struct page *page;
72
73         list_for_each_entry(page, list, lru) {
74                 arch_alloc_page(page, 0);
75                 kernel_map_pages(page, 1, 1);
76                 kasan_alloc_pages(page, 0);
77         }
78 }
79
80 static inline bool migrate_async_suitable(int migratetype)
81 {
82         return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
83 }
84
85 /*
86  * Check that the whole (or subset of) a pageblock given by the interval of
87  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
88  * with the migration of free compaction scanner. The scanners then need to
89  * use only pfn_valid_within() check for arches that allow holes within
90  * pageblocks.
91  *
92  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
93  *
94  * It's possible on some configurations to have a setup like node0 node1 node0
95  * i.e. it's possible that all pages within a zones range of pages do not
96  * belong to a single zone. We assume that a border between node0 and node1
97  * can occur within a single pageblock, but not a node0 node1 node0
98  * interleaving within a single pageblock. It is therefore sufficient to check
99  * the first and last page of a pageblock and avoid checking each individual
100  * page in a pageblock.
101  */
102 static struct page *pageblock_pfn_to_page(unsigned long start_pfn,
103                                 unsigned long end_pfn, struct zone *zone)
104 {
105         struct page *start_page;
106         struct page *end_page;
107
108         /* end_pfn is one past the range we are checking */
109         end_pfn--;
110
111         if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
112                 return NULL;
113
114         start_page = pfn_to_page(start_pfn);
115
116         if (page_zone(start_page) != zone)
117                 return NULL;
118
119         end_page = pfn_to_page(end_pfn);
120
121         /* This gives a shorter code than deriving page_zone(end_page) */
122         if (page_zone_id(start_page) != page_zone_id(end_page))
123                 return NULL;
124
125         return start_page;
126 }
127
128 #ifdef CONFIG_COMPACTION
129
130 /* Do not skip compaction more than 64 times */
131 #define COMPACT_MAX_DEFER_SHIFT 6
132
133 /*
134  * Compaction is deferred when compaction fails to result in a page
135  * allocation success. 1 << compact_defer_limit compactions are skipped up
136  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
137  */
138 void defer_compaction(struct zone *zone, int order)
139 {
140         zone->compact_considered = 0;
141         zone->compact_defer_shift++;
142
143         if (order < zone->compact_order_failed)
144                 zone->compact_order_failed = order;
145
146         if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
147                 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
148
149         trace_mm_compaction_defer_compaction(zone, order);
150 }
151
152 /* Returns true if compaction should be skipped this time */
153 bool compaction_deferred(struct zone *zone, int order)
154 {
155         unsigned long defer_limit = 1UL << zone->compact_defer_shift;
156
157         if (order < zone->compact_order_failed)
158                 return false;
159
160         /* Avoid possible overflow */
161         if (++zone->compact_considered > defer_limit)
162                 zone->compact_considered = defer_limit;
163
164         if (zone->compact_considered >= defer_limit)
165                 return false;
166
167         trace_mm_compaction_deferred(zone, order);
168
169         return true;
170 }
171
172 /*
173  * Update defer tracking counters after successful compaction of given order,
174  * which means an allocation either succeeded (alloc_success == true) or is
175  * expected to succeed.
176  */
177 void compaction_defer_reset(struct zone *zone, int order,
178                 bool alloc_success)
179 {
180         if (alloc_success) {
181                 zone->compact_considered = 0;
182                 zone->compact_defer_shift = 0;
183         }
184         if (order >= zone->compact_order_failed)
185                 zone->compact_order_failed = order + 1;
186
187         trace_mm_compaction_defer_reset(zone, order);
188 }
189
190 /* Returns true if restarting compaction after many failures */
191 bool compaction_restarting(struct zone *zone, int order)
192 {
193         if (order < zone->compact_order_failed)
194                 return false;
195
196         return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
197                 zone->compact_considered >= 1UL << zone->compact_defer_shift;
198 }
199
200 /* Returns true if the pageblock should be scanned for pages to isolate. */
201 static inline bool isolation_suitable(struct compact_control *cc,
202                                         struct page *page)
203 {
204         if (cc->ignore_skip_hint)
205                 return true;
206
207         return !get_pageblock_skip(page);
208 }
209
210 static void reset_cached_positions(struct zone *zone)
211 {
212         zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
213         zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
214         zone->compact_cached_free_pfn = zone_end_pfn(zone);
215 }
216
217 /*
218  * This function is called to clear all cached information on pageblocks that
219  * should be skipped for page isolation when the migrate and free page scanner
220  * meet.
221  */
222 static void __reset_isolation_suitable(struct zone *zone)
223 {
224         unsigned long start_pfn = zone->zone_start_pfn;
225         unsigned long end_pfn = zone_end_pfn(zone);
226         unsigned long pfn;
227
228         zone->compact_blockskip_flush = false;
229
230         /* Walk the zone and mark every pageblock as suitable for isolation */
231         for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
232                 struct page *page;
233
234                 cond_resched();
235
236                 if (!pfn_valid(pfn))
237                         continue;
238
239                 page = pfn_to_page(pfn);
240                 if (zone != page_zone(page))
241                         continue;
242
243                 clear_pageblock_skip(page);
244         }
245
246         reset_cached_positions(zone);
247 }
248
249 void reset_isolation_suitable(pg_data_t *pgdat)
250 {
251         int zoneid;
252
253         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
254                 struct zone *zone = &pgdat->node_zones[zoneid];
255                 if (!populated_zone(zone))
256                         continue;
257
258                 /* Only flush if a full compaction finished recently */
259                 if (zone->compact_blockskip_flush)
260                         __reset_isolation_suitable(zone);
261         }
262 }
263
264 /*
265  * If no pages were isolated then mark this pageblock to be skipped in the
266  * future. The information is later cleared by __reset_isolation_suitable().
267  */
268 static void update_pageblock_skip(struct compact_control *cc,
269                         struct page *page, unsigned long nr_isolated,
270                         bool migrate_scanner)
271 {
272         struct zone *zone = cc->zone;
273         unsigned long pfn;
274
275         if (cc->ignore_skip_hint)
276                 return;
277
278         if (!page)
279                 return;
280
281         if (nr_isolated)
282                 return;
283
284         set_pageblock_skip(page);
285
286         pfn = page_to_pfn(page);
287
288         /* Update where async and sync compaction should restart */
289         if (migrate_scanner) {
290                 if (pfn > zone->compact_cached_migrate_pfn[0])
291                         zone->compact_cached_migrate_pfn[0] = pfn;
292                 if (cc->mode != MIGRATE_ASYNC &&
293                     pfn > zone->compact_cached_migrate_pfn[1])
294                         zone->compact_cached_migrate_pfn[1] = pfn;
295         } else {
296                 if (pfn < zone->compact_cached_free_pfn)
297                         zone->compact_cached_free_pfn = pfn;
298         }
299 }
300 #else
301 static inline bool isolation_suitable(struct compact_control *cc,
302                                         struct page *page)
303 {
304         return true;
305 }
306
307 static void update_pageblock_skip(struct compact_control *cc,
308                         struct page *page, unsigned long nr_isolated,
309                         bool migrate_scanner)
310 {
311 }
312 #endif /* CONFIG_COMPACTION */
313
314 /*
315  * Compaction requires the taking of some coarse locks that are potentially
316  * very heavily contended. For async compaction, back out if the lock cannot
317  * be taken immediately. For sync compaction, spin on the lock if needed.
318  *
319  * Returns true if the lock is held
320  * Returns false if the lock is not held and compaction should abort
321  */
322 static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
323                                                 struct compact_control *cc)
324 {
325         if (cc->mode == MIGRATE_ASYNC) {
326                 if (!spin_trylock_irqsave(lock, *flags)) {
327                         cc->contended = COMPACT_CONTENDED_LOCK;
328                         return false;
329                 }
330         } else {
331                 spin_lock_irqsave(lock, *flags);
332         }
333
334         return true;
335 }
336
337 /*
338  * Compaction requires the taking of some coarse locks that are potentially
339  * very heavily contended. The lock should be periodically unlocked to avoid
340  * having disabled IRQs for a long time, even when there is nobody waiting on
341  * the lock. It might also be that allowing the IRQs will result in
342  * need_resched() becoming true. If scheduling is needed, async compaction
343  * aborts. Sync compaction schedules.
344  * Either compaction type will also abort if a fatal signal is pending.
345  * In either case if the lock was locked, it is dropped and not regained.
346  *
347  * Returns true if compaction should abort due to fatal signal pending, or
348  *              async compaction due to need_resched()
349  * Returns false when compaction can continue (sync compaction might have
350  *              scheduled)
351  */
352 static bool compact_unlock_should_abort(spinlock_t *lock,
353                 unsigned long flags, bool *locked, struct compact_control *cc)
354 {
355         if (*locked) {
356                 spin_unlock_irqrestore(lock, flags);
357                 *locked = false;
358         }
359
360         if (fatal_signal_pending(current)) {
361                 cc->contended = COMPACT_CONTENDED_SCHED;
362                 return true;
363         }
364
365         if (need_resched()) {
366                 if (cc->mode == MIGRATE_ASYNC) {
367                         cc->contended = COMPACT_CONTENDED_SCHED;
368                         return true;
369                 }
370                 cond_resched();
371         }
372
373         return false;
374 }
375
376 /*
377  * Aside from avoiding lock contention, compaction also periodically checks
378  * need_resched() and either schedules in sync compaction or aborts async
379  * compaction. This is similar to what compact_unlock_should_abort() does, but
380  * is used where no lock is concerned.
381  *
382  * Returns false when no scheduling was needed, or sync compaction scheduled.
383  * Returns true when async compaction should abort.
384  */
385 static inline bool compact_should_abort(struct compact_control *cc)
386 {
387         /* async compaction aborts if contended */
388         if (need_resched()) {
389                 if (cc->mode == MIGRATE_ASYNC) {
390                         cc->contended = COMPACT_CONTENDED_SCHED;
391                         return true;
392                 }
393
394                 cond_resched();
395         }
396
397         return false;
398 }
399
400 /*
401  * Isolate free pages onto a private freelist. If @strict is true, will abort
402  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
403  * (even though it may still end up isolating some pages).
404  */
405 static unsigned long isolate_freepages_block(struct compact_control *cc,
406                                 unsigned long *start_pfn,
407                                 unsigned long end_pfn,
408                                 struct list_head *freelist,
409                                 bool strict)
410 {
411         int nr_scanned = 0, total_isolated = 0;
412         struct page *cursor, *valid_page = NULL;
413         unsigned long flags = 0;
414         bool locked = false;
415         unsigned long blockpfn = *start_pfn;
416
417         cursor = pfn_to_page(blockpfn);
418
419         /* Isolate free pages. */
420         for (; blockpfn < end_pfn; blockpfn++, cursor++) {
421                 int isolated, i;
422                 struct page *page = cursor;
423
424                 /*
425                  * Periodically drop the lock (if held) regardless of its
426                  * contention, to give chance to IRQs. Abort if fatal signal
427                  * pending or async compaction detects need_resched()
428                  */
429                 if (!(blockpfn % SWAP_CLUSTER_MAX)
430                     && compact_unlock_should_abort(&cc->zone->lock, flags,
431                                                                 &locked, cc))
432                         break;
433
434                 nr_scanned++;
435                 if (!pfn_valid_within(blockpfn))
436                         goto isolate_fail;
437
438                 if (!valid_page)
439                         valid_page = page;
440                 if (!PageBuddy(page))
441                         goto isolate_fail;
442
443                 /*
444                  * If we already hold the lock, we can skip some rechecking.
445                  * Note that if we hold the lock now, checked_pageblock was
446                  * already set in some previous iteration (or strict is true),
447                  * so it is correct to skip the suitable migration target
448                  * recheck as well.
449                  */
450                 if (!locked) {
451                         /*
452                          * The zone lock must be held to isolate freepages.
453                          * Unfortunately this is a very coarse lock and can be
454                          * heavily contended if there are parallel allocations
455                          * or parallel compactions. For async compaction do not
456                          * spin on the lock and we acquire the lock as late as
457                          * possible.
458                          */
459                         locked = compact_trylock_irqsave(&cc->zone->lock,
460                                                                 &flags, cc);
461                         if (!locked)
462                                 break;
463
464                         /* Recheck this is a buddy page under lock */
465                         if (!PageBuddy(page))
466                                 goto isolate_fail;
467                 }
468
469                 /* Found a free page, break it into order-0 pages */
470                 isolated = split_free_page(page);
471                 total_isolated += isolated;
472                 for (i = 0; i < isolated; i++) {
473                         list_add(&page->lru, freelist);
474                         page++;
475                 }
476
477                 /* If a page was split, advance to the end of it */
478                 if (isolated) {
479                         cc->nr_freepages += isolated;
480                         if (!strict &&
481                                 cc->nr_migratepages <= cc->nr_freepages) {
482                                 blockpfn += isolated;
483                                 break;
484                         }
485
486                         blockpfn += isolated - 1;
487                         cursor += isolated - 1;
488                         continue;
489                 }
490
491 isolate_fail:
492                 if (strict)
493                         break;
494                 else
495                         continue;
496
497         }
498
499         trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
500                                         nr_scanned, total_isolated);
501
502         /* Record how far we have got within the block */
503         *start_pfn = blockpfn;
504
505         /*
506          * If strict isolation is requested by CMA then check that all the
507          * pages requested were isolated. If there were any failures, 0 is
508          * returned and CMA will fail.
509          */
510         if (strict && blockpfn < end_pfn)
511                 total_isolated = 0;
512
513         if (locked)
514                 spin_unlock_irqrestore(&cc->zone->lock, flags);
515
516         /* Update the pageblock-skip if the whole pageblock was scanned */
517         if (blockpfn == end_pfn)
518                 update_pageblock_skip(cc, valid_page, total_isolated, false);
519
520         count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
521         if (total_isolated)
522                 count_compact_events(COMPACTISOLATED, total_isolated);
523         return total_isolated;
524 }
525
526 /**
527  * isolate_freepages_range() - isolate free pages.
528  * @start_pfn: The first PFN to start isolating.
529  * @end_pfn:   The one-past-last PFN.
530  *
531  * Non-free pages, invalid PFNs, or zone boundaries within the
532  * [start_pfn, end_pfn) range are considered errors, cause function to
533  * undo its actions and return zero.
534  *
535  * Otherwise, function returns one-past-the-last PFN of isolated page
536  * (which may be greater then end_pfn if end fell in a middle of
537  * a free page).
538  */
539 unsigned long
540 isolate_freepages_range(struct compact_control *cc,
541                         unsigned long start_pfn, unsigned long end_pfn)
542 {
543         unsigned long isolated, pfn, block_end_pfn;
544         LIST_HEAD(freelist);
545
546         pfn = start_pfn;
547         block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
548
549         for (; pfn < end_pfn; pfn += isolated,
550                                 block_end_pfn += pageblock_nr_pages) {
551                 /* Protect pfn from changing by isolate_freepages_block */
552                 unsigned long isolate_start_pfn = pfn;
553
554                 block_end_pfn = min(block_end_pfn, end_pfn);
555
556                 /*
557                  * pfn could pass the block_end_pfn if isolated freepage
558                  * is more than pageblock order. In this case, we adjust
559                  * scanning range to right one.
560                  */
561                 if (pfn >= block_end_pfn) {
562                         block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
563                         block_end_pfn = min(block_end_pfn, end_pfn);
564                 }
565
566                 if (!pageblock_pfn_to_page(pfn, block_end_pfn, cc->zone))
567                         break;
568
569                 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
570                                                 block_end_pfn, &freelist, true);
571
572                 /*
573                  * In strict mode, isolate_freepages_block() returns 0 if
574                  * there are any holes in the block (ie. invalid PFNs or
575                  * non-free pages).
576                  */
577                 if (!isolated)
578                         break;
579
580                 /*
581                  * If we managed to isolate pages, it is always (1 << n) *
582                  * pageblock_nr_pages for some non-negative n.  (Max order
583                  * page may span two pageblocks).
584                  */
585         }
586
587         /* split_free_page does not map the pages */
588         map_pages(&freelist);
589
590         if (pfn < end_pfn) {
591                 /* Loop terminated early, cleanup. */
592                 release_freepages(&freelist);
593                 return 0;
594         }
595
596         /* We don't use freelists for anything. */
597         return pfn;
598 }
599
600 /* Update the number of anon and file isolated pages in the zone */
601 static void acct_isolated(struct zone *zone, struct compact_control *cc)
602 {
603         struct page *page;
604         unsigned int count[2] = { 0, };
605
606         if (list_empty(&cc->migratepages))
607                 return;
608
609         list_for_each_entry(page, &cc->migratepages, lru)
610                 count[!!page_is_file_cache(page)]++;
611
612         mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
613         mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
614 }
615
616 /* Similar to reclaim, but different enough that they don't share logic */
617 static bool too_many_isolated(struct zone *zone)
618 {
619         unsigned long active, inactive, isolated;
620
621         inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
622                                         zone_page_state(zone, NR_INACTIVE_ANON);
623         active = zone_page_state(zone, NR_ACTIVE_FILE) +
624                                         zone_page_state(zone, NR_ACTIVE_ANON);
625         isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
626                                         zone_page_state(zone, NR_ISOLATED_ANON);
627
628         return isolated > (inactive + active) / 2;
629 }
630
631 /**
632  * isolate_migratepages_block() - isolate all migrate-able pages within
633  *                                a single pageblock
634  * @cc:         Compaction control structure.
635  * @low_pfn:    The first PFN to isolate
636  * @end_pfn:    The one-past-the-last PFN to isolate, within same pageblock
637  * @isolate_mode: Isolation mode to be used.
638  *
639  * Isolate all pages that can be migrated from the range specified by
640  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
641  * Returns zero if there is a fatal signal pending, otherwise PFN of the
642  * first page that was not scanned (which may be both less, equal to or more
643  * than end_pfn).
644  *
645  * The pages are isolated on cc->migratepages list (not required to be empty),
646  * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
647  * is neither read nor updated.
648  */
649 static unsigned long
650 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
651                         unsigned long end_pfn, isolate_mode_t isolate_mode)
652 {
653         struct zone *zone = cc->zone;
654         unsigned long nr_scanned = 0, nr_isolated = 0;
655         struct list_head *migratelist = &cc->migratepages;
656         struct lruvec *lruvec;
657         unsigned long flags = 0;
658         bool locked = false;
659         struct page *page = NULL, *valid_page = NULL;
660         unsigned long start_pfn = low_pfn;
661
662         /*
663          * Ensure that there are not too many pages isolated from the LRU
664          * list by either parallel reclaimers or compaction. If there are,
665          * delay for some time until fewer pages are isolated
666          */
667         while (unlikely(too_many_isolated(zone))) {
668                 /* async migration should just abort */
669                 if (cc->mode == MIGRATE_ASYNC)
670                         return 0;
671
672                 congestion_wait(BLK_RW_ASYNC, HZ/10);
673
674                 if (fatal_signal_pending(current))
675                         return 0;
676         }
677
678         if (compact_should_abort(cc))
679                 return 0;
680
681         /* Time to isolate some pages for migration */
682         for (; low_pfn < end_pfn; low_pfn++) {
683                 bool is_lru;
684
685                 /*
686                  * Periodically drop the lock (if held) regardless of its
687                  * contention, to give chance to IRQs. Abort async compaction
688                  * if contended.
689                  */
690                 if (!(low_pfn % SWAP_CLUSTER_MAX)
691                     && compact_unlock_should_abort(&zone->lru_lock, flags,
692                                                                 &locked, cc))
693                         break;
694
695                 if (!pfn_valid_within(low_pfn))
696                         continue;
697                 nr_scanned++;
698
699                 page = pfn_to_page(low_pfn);
700
701                 if (!valid_page)
702                         valid_page = page;
703
704                 /*
705                  * Skip if free. We read page order here without zone lock
706                  * which is generally unsafe, but the race window is small and
707                  * the worst thing that can happen is that we skip some
708                  * potential isolation targets.
709                  */
710                 if (PageBuddy(page)) {
711                         unsigned long freepage_order = page_order_unsafe(page);
712
713                         /*
714                          * Without lock, we cannot be sure that what we got is
715                          * a valid page order. Consider only values in the
716                          * valid order range to prevent low_pfn overflow.
717                          */
718                         if (freepage_order > 0 && freepage_order < MAX_ORDER)
719                                 low_pfn += (1UL << freepage_order) - 1;
720                         continue;
721                 }
722
723                 /*
724                  * Check may be lockless but that's ok as we recheck later.
725                  * It's possible to migrate LRU pages and balloon pages
726                  * Skip any other type of page
727                  */
728                 is_lru = PageLRU(page);
729                 if (!is_lru) {
730                         if (unlikely(balloon_page_movable(page))) {
731                                 if (balloon_page_isolate(page)) {
732                                         /* Successfully isolated */
733                                         goto isolate_success;
734                                 }
735                         }
736                 }
737
738                 /*
739                  * Regardless of being on LRU, compound pages such as THP and
740                  * hugetlbfs are not to be compacted. We can potentially save
741                  * a lot of iterations if we skip them at once. The check is
742                  * racy, but we can consider only valid values and the only
743                  * danger is skipping too much.
744                  */
745                 if (PageCompound(page)) {
746                         unsigned int comp_order = compound_order(page);
747
748                         if (likely(comp_order < MAX_ORDER))
749                                 low_pfn += (1UL << comp_order) - 1;
750
751                         continue;
752                 }
753
754                 if (!is_lru)
755                         continue;
756
757                 /*
758                  * Migration will fail if an anonymous page is pinned in memory,
759                  * so avoid taking lru_lock and isolating it unnecessarily in an
760                  * admittedly racy check.
761                  */
762                 if (!page_mapping(page) &&
763                     page_count(page) > page_mapcount(page))
764                         continue;
765
766                 /* If we already hold the lock, we can skip some rechecking */
767                 if (!locked) {
768                         locked = compact_trylock_irqsave(&zone->lru_lock,
769                                                                 &flags, cc);
770                         if (!locked)
771                                 break;
772
773                         /* Recheck PageLRU and PageCompound under lock */
774                         if (!PageLRU(page))
775                                 continue;
776
777                         /*
778                          * Page become compound since the non-locked check,
779                          * and it's on LRU. It can only be a THP so the order
780                          * is safe to read and it's 0 for tail pages.
781                          */
782                         if (unlikely(PageCompound(page))) {
783                                 low_pfn += (1UL << compound_order(page)) - 1;
784                                 continue;
785                         }
786                 }
787
788                 lruvec = mem_cgroup_page_lruvec(page, zone);
789
790                 /* Try isolate the page */
791                 if (__isolate_lru_page(page, isolate_mode) != 0)
792                         continue;
793
794                 VM_BUG_ON_PAGE(PageCompound(page), page);
795
796                 /* Successfully isolated */
797                 del_page_from_lru_list(page, lruvec, page_lru(page));
798
799 isolate_success:
800                 list_add(&page->lru, migratelist);
801                 cc->nr_migratepages++;
802                 nr_isolated++;
803
804                 /* Avoid isolating too much */
805                 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
806                         ++low_pfn;
807                         break;
808                 }
809         }
810
811         /*
812          * The PageBuddy() check could have potentially brought us outside
813          * the range to be scanned.
814          */
815         if (unlikely(low_pfn > end_pfn))
816                 low_pfn = end_pfn;
817
818         if (locked)
819                 spin_unlock_irqrestore(&zone->lru_lock, flags);
820
821         /*
822          * Update the pageblock-skip information and cached scanner pfn,
823          * if the whole pageblock was scanned without isolating any page.
824          */
825         if (low_pfn == end_pfn)
826                 update_pageblock_skip(cc, valid_page, nr_isolated, true);
827
828         trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
829                                                 nr_scanned, nr_isolated);
830
831         count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
832         if (nr_isolated)
833                 count_compact_events(COMPACTISOLATED, nr_isolated);
834
835         return low_pfn;
836 }
837
838 /**
839  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
840  * @cc:        Compaction control structure.
841  * @start_pfn: The first PFN to start isolating.
842  * @end_pfn:   The one-past-last PFN.
843  *
844  * Returns zero if isolation fails fatally due to e.g. pending signal.
845  * Otherwise, function returns one-past-the-last PFN of isolated page
846  * (which may be greater than end_pfn if end fell in a middle of a THP page).
847  */
848 unsigned long
849 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
850                                                         unsigned long end_pfn)
851 {
852         unsigned long pfn, block_end_pfn;
853
854         /* Scan block by block. First and last block may be incomplete */
855         pfn = start_pfn;
856         block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
857
858         for (; pfn < end_pfn; pfn = block_end_pfn,
859                                 block_end_pfn += pageblock_nr_pages) {
860
861                 block_end_pfn = min(block_end_pfn, end_pfn);
862
863                 if (!pageblock_pfn_to_page(pfn, block_end_pfn, cc->zone))
864                         continue;
865
866                 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
867                                                         ISOLATE_UNEVICTABLE);
868
869                 /*
870                  * In case of fatal failure, release everything that might
871                  * have been isolated in the previous iteration, and signal
872                  * the failure back to caller.
873                  */
874                 if (!pfn) {
875                         putback_movable_pages(&cc->migratepages);
876                         cc->nr_migratepages = 0;
877                         break;
878                 }
879
880                 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
881                         break;
882         }
883         acct_isolated(cc->zone, cc);
884
885         return pfn;
886 }
887
888 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
889 #ifdef CONFIG_COMPACTION
890
891 /* Returns true if the page is within a block suitable for migration to */
892 static bool suitable_migration_target(struct page *page)
893 {
894         /* If the page is a large free page, then disallow migration */
895         if (PageBuddy(page)) {
896                 /*
897                  * We are checking page_order without zone->lock taken. But
898                  * the only small danger is that we skip a potentially suitable
899                  * pageblock, so it's not worth to check order for valid range.
900                  */
901                 if (page_order_unsafe(page) >= pageblock_order)
902                         return false;
903         }
904
905         /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
906         if (migrate_async_suitable(get_pageblock_migratetype(page)))
907                 return true;
908
909         /* Otherwise skip the block */
910         return false;
911 }
912
913 /*
914  * Test whether the free scanner has reached the same or lower pageblock than
915  * the migration scanner, and compaction should thus terminate.
916  */
917 static inline bool compact_scanners_met(struct compact_control *cc)
918 {
919         return (cc->free_pfn >> pageblock_order)
920                 <= (cc->migrate_pfn >> pageblock_order);
921 }
922
923 /*
924  * Based on information in the current compact_control, find blocks
925  * suitable for isolating free pages from and then isolate them.
926  */
927 static void isolate_freepages(struct compact_control *cc)
928 {
929         struct zone *zone = cc->zone;
930         struct page *page;
931         unsigned long block_start_pfn;  /* start of current pageblock */
932         unsigned long isolate_start_pfn; /* exact pfn we start at */
933         unsigned long block_end_pfn;    /* end of current pageblock */
934         unsigned long low_pfn;       /* lowest pfn scanner is able to scan */
935         struct list_head *freelist = &cc->freepages;
936
937         /*
938          * Initialise the free scanner. The starting point is where we last
939          * successfully isolated from, zone-cached value, or the end of the
940          * zone when isolating for the first time. For looping we also need
941          * this pfn aligned down to the pageblock boundary, because we do
942          * block_start_pfn -= pageblock_nr_pages in the for loop.
943          * For ending point, take care when isolating in last pageblock of a
944          * a zone which ends in the middle of a pageblock.
945          * The low boundary is the end of the pageblock the migration scanner
946          * is using.
947          */
948         isolate_start_pfn = cc->free_pfn;
949         block_start_pfn = cc->free_pfn & ~(pageblock_nr_pages-1);
950         block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
951                                                 zone_end_pfn(zone));
952         low_pfn = ALIGN(cc->migrate_pfn + 1, pageblock_nr_pages);
953
954         /*
955          * Isolate free pages until enough are available to migrate the
956          * pages on cc->migratepages. We stop searching if the migrate
957          * and free page scanners meet or enough free pages are isolated.
958          */
959         for (; block_start_pfn >= low_pfn;
960                                 block_end_pfn = block_start_pfn,
961                                 block_start_pfn -= pageblock_nr_pages,
962                                 isolate_start_pfn = block_start_pfn) {
963
964                 /*
965                  * This can iterate a massively long zone without finding any
966                  * suitable migration targets, so periodically check if we need
967                  * to schedule, or even abort async compaction.
968                  */
969                 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
970                                                 && compact_should_abort(cc))
971                         break;
972
973                 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
974                                                                         zone);
975                 if (!page)
976                         continue;
977
978                 /* Check the block is suitable for migration */
979                 if (!suitable_migration_target(page))
980                         continue;
981
982                 /* If isolation recently failed, do not retry */
983                 if (!isolation_suitable(cc, page))
984                         continue;
985
986                 /* Found a block suitable for isolating free pages from. */
987                 isolate_freepages_block(cc, &isolate_start_pfn,
988                                         block_end_pfn, freelist, false);
989
990                 /*
991                  * If we isolated enough freepages, or aborted due to async
992                  * compaction being contended, terminate the loop.
993                  * Remember where the free scanner should restart next time,
994                  * which is where isolate_freepages_block() left off.
995                  * But if it scanned the whole pageblock, isolate_start_pfn
996                  * now points at block_end_pfn, which is the start of the next
997                  * pageblock.
998                  * In that case we will however want to restart at the start
999                  * of the previous pageblock.
1000                  */
1001                 if ((cc->nr_freepages >= cc->nr_migratepages)
1002                                                         || cc->contended) {
1003                         if (isolate_start_pfn >= block_end_pfn)
1004                                 isolate_start_pfn =
1005                                         block_start_pfn - pageblock_nr_pages;
1006                         break;
1007                 } else {
1008                         /*
1009                          * isolate_freepages_block() should not terminate
1010                          * prematurely unless contended, or isolated enough
1011                          */
1012                         VM_BUG_ON(isolate_start_pfn < block_end_pfn);
1013                 }
1014         }
1015
1016         /* split_free_page does not map the pages */
1017         map_pages(freelist);
1018
1019         /*
1020          * Record where the free scanner will restart next time. Either we
1021          * broke from the loop and set isolate_start_pfn based on the last
1022          * call to isolate_freepages_block(), or we met the migration scanner
1023          * and the loop terminated due to isolate_start_pfn < low_pfn
1024          */
1025         cc->free_pfn = isolate_start_pfn;
1026 }
1027
1028 /*
1029  * This is a migrate-callback that "allocates" freepages by taking pages
1030  * from the isolated freelists in the block we are migrating to.
1031  */
1032 static struct page *compaction_alloc(struct page *migratepage,
1033                                         unsigned long data,
1034                                         int **result)
1035 {
1036         struct compact_control *cc = (struct compact_control *)data;
1037         struct page *freepage;
1038
1039         /*
1040          * Isolate free pages if necessary, and if we are not aborting due to
1041          * contention.
1042          */
1043         if (list_empty(&cc->freepages)) {
1044                 if (!cc->contended)
1045                         isolate_freepages(cc);
1046
1047                 if (list_empty(&cc->freepages))
1048                         return NULL;
1049         }
1050
1051         freepage = list_entry(cc->freepages.next, struct page, lru);
1052         list_del(&freepage->lru);
1053         cc->nr_freepages--;
1054
1055         return freepage;
1056 }
1057
1058 /*
1059  * This is a migrate-callback that "frees" freepages back to the isolated
1060  * freelist.  All pages on the freelist are from the same zone, so there is no
1061  * special handling needed for NUMA.
1062  */
1063 static void compaction_free(struct page *page, unsigned long data)
1064 {
1065         struct compact_control *cc = (struct compact_control *)data;
1066
1067         list_add(&page->lru, &cc->freepages);
1068         cc->nr_freepages++;
1069 }
1070
1071 /* possible outcome of isolate_migratepages */
1072 typedef enum {
1073         ISOLATE_ABORT,          /* Abort compaction now */
1074         ISOLATE_NONE,           /* No pages isolated, continue scanning */
1075         ISOLATE_SUCCESS,        /* Pages isolated, migrate */
1076 } isolate_migrate_t;
1077
1078 /*
1079  * Allow userspace to control policy on scanning the unevictable LRU for
1080  * compactable pages.
1081  */
1082 int sysctl_compact_unevictable_allowed __read_mostly = 1;
1083
1084 /*
1085  * Isolate all pages that can be migrated from the first suitable block,
1086  * starting at the block pointed to by the migrate scanner pfn within
1087  * compact_control.
1088  */
1089 static isolate_migrate_t isolate_migratepages(struct zone *zone,
1090                                         struct compact_control *cc)
1091 {
1092         unsigned long low_pfn, end_pfn;
1093         struct page *page;
1094         const isolate_mode_t isolate_mode =
1095                 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1096                 (cc->mode == MIGRATE_ASYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1097
1098         /*
1099          * Start at where we last stopped, or beginning of the zone as
1100          * initialized by compact_zone()
1101          */
1102         low_pfn = cc->migrate_pfn;
1103
1104         /* Only scan within a pageblock boundary */
1105         end_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages);
1106
1107         /*
1108          * Iterate over whole pageblocks until we find the first suitable.
1109          * Do not cross the free scanner.
1110          */
1111         for (; end_pfn <= cc->free_pfn;
1112                         low_pfn = end_pfn, end_pfn += pageblock_nr_pages) {
1113
1114                 /*
1115                  * This can potentially iterate a massively long zone with
1116                  * many pageblocks unsuitable, so periodically check if we
1117                  * need to schedule, or even abort async compaction.
1118                  */
1119                 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1120                                                 && compact_should_abort(cc))
1121                         break;
1122
1123                 page = pageblock_pfn_to_page(low_pfn, end_pfn, zone);
1124                 if (!page)
1125                         continue;
1126
1127                 /* If isolation recently failed, do not retry */
1128                 if (!isolation_suitable(cc, page))
1129                         continue;
1130
1131                 /*
1132                  * For async compaction, also only scan in MOVABLE blocks.
1133                  * Async compaction is optimistic to see if the minimum amount
1134                  * of work satisfies the allocation.
1135                  */
1136                 if (cc->mode == MIGRATE_ASYNC &&
1137                     !migrate_async_suitable(get_pageblock_migratetype(page)))
1138                         continue;
1139
1140                 /* Perform the isolation */
1141                 low_pfn = isolate_migratepages_block(cc, low_pfn, end_pfn,
1142                                                                 isolate_mode);
1143
1144                 if (!low_pfn || cc->contended) {
1145                         acct_isolated(zone, cc);
1146                         return ISOLATE_ABORT;
1147                 }
1148
1149                 /*
1150                  * Either we isolated something and proceed with migration. Or
1151                  * we failed and compact_zone should decide if we should
1152                  * continue or not.
1153                  */
1154                 break;
1155         }
1156
1157         acct_isolated(zone, cc);
1158         /* Record where migration scanner will be restarted. */
1159         cc->migrate_pfn = low_pfn;
1160
1161         return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1162 }
1163
1164 static int __compact_finished(struct zone *zone, struct compact_control *cc,
1165                             const int migratetype)
1166 {
1167         unsigned int order;
1168         unsigned long watermark;
1169
1170         if (cc->contended || fatal_signal_pending(current))
1171                 return COMPACT_PARTIAL;
1172
1173         /* Compaction run completes if the migrate and free scanner meet */
1174         if (compact_scanners_met(cc)) {
1175                 /* Let the next compaction start anew. */
1176                 reset_cached_positions(zone);
1177
1178                 /*
1179                  * Mark that the PG_migrate_skip information should be cleared
1180                  * by kswapd when it goes to sleep. kswapd does not set the
1181                  * flag itself as the decision to be clear should be directly
1182                  * based on an allocation request.
1183                  */
1184                 if (!current_is_kswapd())
1185                         zone->compact_blockskip_flush = true;
1186
1187                 return COMPACT_COMPLETE;
1188         }
1189
1190         /*
1191          * order == -1 is expected when compacting via
1192          * /proc/sys/vm/compact_memory
1193          */
1194         if (cc->order == -1)
1195                 return COMPACT_CONTINUE;
1196
1197         /* Compaction run is not finished if the watermark is not met */
1198         watermark = low_wmark_pages(zone);
1199
1200         if (!zone_watermark_ok(zone, cc->order, watermark, cc->classzone_idx,
1201                                                         cc->alloc_flags))
1202                 return COMPACT_CONTINUE;
1203
1204         /* Direct compactor: Is a suitable page free? */
1205         for (order = cc->order; order < MAX_ORDER; order++) {
1206                 struct free_area *area = &zone->free_area[order];
1207                 bool can_steal;
1208
1209                 /* Job done if page is free of the right migratetype */
1210                 if (!list_empty(&area->free_list[migratetype]))
1211                         return COMPACT_PARTIAL;
1212
1213 #ifdef CONFIG_CMA
1214                 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
1215                 if (migratetype == MIGRATE_MOVABLE &&
1216                         !list_empty(&area->free_list[MIGRATE_CMA]))
1217                         return COMPACT_PARTIAL;
1218 #endif
1219                 /*
1220                  * Job done if allocation would steal freepages from
1221                  * other migratetype buddy lists.
1222                  */
1223                 if (find_suitable_fallback(area, order, migratetype,
1224                                                 true, &can_steal) != -1)
1225                         return COMPACT_PARTIAL;
1226         }
1227
1228         return COMPACT_NO_SUITABLE_PAGE;
1229 }
1230
1231 static int compact_finished(struct zone *zone, struct compact_control *cc,
1232                             const int migratetype)
1233 {
1234         int ret;
1235
1236         ret = __compact_finished(zone, cc, migratetype);
1237         trace_mm_compaction_finished(zone, cc->order, ret);
1238         if (ret == COMPACT_NO_SUITABLE_PAGE)
1239                 ret = COMPACT_CONTINUE;
1240
1241         return ret;
1242 }
1243
1244 /*
1245  * compaction_suitable: Is this suitable to run compaction on this zone now?
1246  * Returns
1247  *   COMPACT_SKIPPED  - If there are too few free pages for compaction
1248  *   COMPACT_PARTIAL  - If the allocation would succeed without compaction
1249  *   COMPACT_CONTINUE - If compaction should run now
1250  */
1251 static unsigned long __compaction_suitable(struct zone *zone, int order,
1252                                         int alloc_flags, int classzone_idx)
1253 {
1254         int fragindex;
1255         unsigned long watermark;
1256
1257         /*
1258          * order == -1 is expected when compacting via
1259          * /proc/sys/vm/compact_memory
1260          */
1261         if (order == -1)
1262                 return COMPACT_CONTINUE;
1263
1264         watermark = low_wmark_pages(zone);
1265         /*
1266          * If watermarks for high-order allocation are already met, there
1267          * should be no need for compaction at all.
1268          */
1269         if (zone_watermark_ok(zone, order, watermark, classzone_idx,
1270                                                                 alloc_flags))
1271                 return COMPACT_PARTIAL;
1272
1273         /*
1274          * Watermarks for order-0 must be met for compaction. Note the 2UL.
1275          * This is because during migration, copies of pages need to be
1276          * allocated and for a short time, the footprint is higher
1277          */
1278         watermark += (2UL << order);
1279         if (!zone_watermark_ok(zone, 0, watermark, classzone_idx, alloc_flags))
1280                 return COMPACT_SKIPPED;
1281
1282         /*
1283          * fragmentation index determines if allocation failures are due to
1284          * low memory or external fragmentation
1285          *
1286          * index of -1000 would imply allocations might succeed depending on
1287          * watermarks, but we already failed the high-order watermark check
1288          * index towards 0 implies failure is due to lack of memory
1289          * index towards 1000 implies failure is due to fragmentation
1290          *
1291          * Only compact if a failure would be due to fragmentation.
1292          */
1293         fragindex = fragmentation_index(zone, order);
1294         if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
1295                 return COMPACT_NOT_SUITABLE_ZONE;
1296
1297         return COMPACT_CONTINUE;
1298 }
1299
1300 unsigned long compaction_suitable(struct zone *zone, int order,
1301                                         int alloc_flags, int classzone_idx)
1302 {
1303         unsigned long ret;
1304
1305         ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx);
1306         trace_mm_compaction_suitable(zone, order, ret);
1307         if (ret == COMPACT_NOT_SUITABLE_ZONE)
1308                 ret = COMPACT_SKIPPED;
1309
1310         return ret;
1311 }
1312
1313 static int compact_zone(struct zone *zone, struct compact_control *cc)
1314 {
1315         int ret;
1316         unsigned long start_pfn = zone->zone_start_pfn;
1317         unsigned long end_pfn = zone_end_pfn(zone);
1318         const int migratetype = gfpflags_to_migratetype(cc->gfp_mask);
1319         const bool sync = cc->mode != MIGRATE_ASYNC;
1320         unsigned long last_migrated_pfn = 0;
1321
1322         ret = compaction_suitable(zone, cc->order, cc->alloc_flags,
1323                                                         cc->classzone_idx);
1324         switch (ret) {
1325         case COMPACT_PARTIAL:
1326         case COMPACT_SKIPPED:
1327                 /* Compaction is likely to fail */
1328                 return ret;
1329         case COMPACT_CONTINUE:
1330                 /* Fall through to compaction */
1331                 ;
1332         }
1333
1334         /*
1335          * Clear pageblock skip if there were failures recently and compaction
1336          * is about to be retried after being deferred. kswapd does not do
1337          * this reset as it'll reset the cached information when going to sleep.
1338          */
1339         if (compaction_restarting(zone, cc->order) && !current_is_kswapd())
1340                 __reset_isolation_suitable(zone);
1341
1342         /*
1343          * Setup to move all movable pages to the end of the zone. Used cached
1344          * information on where the scanners should start but check that it
1345          * is initialised by ensuring the values are within zone boundaries.
1346          */
1347         cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
1348         cc->free_pfn = zone->compact_cached_free_pfn;
1349         if (cc->free_pfn < start_pfn || cc->free_pfn > end_pfn) {
1350                 cc->free_pfn = end_pfn & ~(pageblock_nr_pages-1);
1351                 zone->compact_cached_free_pfn = cc->free_pfn;
1352         }
1353         if (cc->migrate_pfn < start_pfn || cc->migrate_pfn > end_pfn) {
1354                 cc->migrate_pfn = start_pfn;
1355                 zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
1356                 zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
1357         }
1358
1359         trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
1360                                 cc->free_pfn, end_pfn, sync);
1361
1362         migrate_prep_local();
1363
1364         while ((ret = compact_finished(zone, cc, migratetype)) ==
1365                                                 COMPACT_CONTINUE) {
1366                 int err;
1367                 unsigned long isolate_start_pfn = cc->migrate_pfn;
1368
1369                 switch (isolate_migratepages(zone, cc)) {
1370                 case ISOLATE_ABORT:
1371                         ret = COMPACT_PARTIAL;
1372                         putback_movable_pages(&cc->migratepages);
1373                         cc->nr_migratepages = 0;
1374                         goto out;
1375                 case ISOLATE_NONE:
1376                         /*
1377                          * We haven't isolated and migrated anything, but
1378                          * there might still be unflushed migrations from
1379                          * previous cc->order aligned block.
1380                          */
1381                         goto check_drain;
1382                 case ISOLATE_SUCCESS:
1383                         ;
1384                 }
1385
1386                 err = migrate_pages(&cc->migratepages, compaction_alloc,
1387                                 compaction_free, (unsigned long)cc, cc->mode,
1388                                 MR_COMPACTION);
1389
1390                 trace_mm_compaction_migratepages(cc->nr_migratepages, err,
1391                                                         &cc->migratepages);
1392
1393                 /* All pages were either migrated or will be released */
1394                 cc->nr_migratepages = 0;
1395                 if (err) {
1396                         putback_movable_pages(&cc->migratepages);
1397                         /*
1398                          * migrate_pages() may return -ENOMEM when scanners meet
1399                          * and we want compact_finished() to detect it
1400                          */
1401                         if (err == -ENOMEM && !compact_scanners_met(cc)) {
1402                                 ret = COMPACT_PARTIAL;
1403                                 goto out;
1404                         }
1405                 }
1406
1407                 /*
1408                  * Record where we could have freed pages by migration and not
1409                  * yet flushed them to buddy allocator. We use the pfn that
1410                  * isolate_migratepages() started from in this loop iteration
1411                  * - this is the lowest page that could have been isolated and
1412                  * then freed by migration.
1413                  */
1414                 if (!last_migrated_pfn)
1415                         last_migrated_pfn = isolate_start_pfn;
1416
1417 check_drain:
1418                 /*
1419                  * Has the migration scanner moved away from the previous
1420                  * cc->order aligned block where we migrated from? If yes,
1421                  * flush the pages that were freed, so that they can merge and
1422                  * compact_finished() can detect immediately if allocation
1423                  * would succeed.
1424                  */
1425                 if (cc->order > 0 && last_migrated_pfn) {
1426                         int cpu;
1427                         unsigned long current_block_start =
1428                                 cc->migrate_pfn & ~((1UL << cc->order) - 1);
1429
1430                         if (last_migrated_pfn < current_block_start) {
1431                                 cpu = get_cpu();
1432                                 lru_add_drain_cpu(cpu);
1433                                 drain_local_pages(zone);
1434                                 put_cpu();
1435                                 /* No more flushing until we migrate again */
1436                                 last_migrated_pfn = 0;
1437                         }
1438                 }
1439
1440         }
1441
1442 out:
1443         /*
1444          * Release free pages and update where the free scanner should restart,
1445          * so we don't leave any returned pages behind in the next attempt.
1446          */
1447         if (cc->nr_freepages > 0) {
1448                 unsigned long free_pfn = release_freepages(&cc->freepages);
1449
1450                 cc->nr_freepages = 0;
1451                 VM_BUG_ON(free_pfn == 0);
1452                 /* The cached pfn is always the first in a pageblock */
1453                 free_pfn &= ~(pageblock_nr_pages-1);
1454                 /*
1455                  * Only go back, not forward. The cached pfn might have been
1456                  * already reset to zone end in compact_finished()
1457                  */
1458                 if (free_pfn > zone->compact_cached_free_pfn)
1459                         zone->compact_cached_free_pfn = free_pfn;
1460         }
1461
1462         trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
1463                                 cc->free_pfn, end_pfn, sync, ret);
1464
1465         return ret;
1466 }
1467
1468 static unsigned long compact_zone_order(struct zone *zone, int order,
1469                 gfp_t gfp_mask, enum migrate_mode mode, int *contended,
1470                 int alloc_flags, int classzone_idx)
1471 {
1472         unsigned long ret;
1473         struct compact_control cc = {
1474                 .nr_freepages = 0,
1475                 .nr_migratepages = 0,
1476                 .order = order,
1477                 .gfp_mask = gfp_mask,
1478                 .zone = zone,
1479                 .mode = mode,
1480                 .alloc_flags = alloc_flags,
1481                 .classzone_idx = classzone_idx,
1482         };
1483         INIT_LIST_HEAD(&cc.freepages);
1484         INIT_LIST_HEAD(&cc.migratepages);
1485
1486         ret = compact_zone(zone, &cc);
1487
1488         VM_BUG_ON(!list_empty(&cc.freepages));
1489         VM_BUG_ON(!list_empty(&cc.migratepages));
1490
1491         *contended = cc.contended;
1492         return ret;
1493 }
1494
1495 int sysctl_extfrag_threshold = 500;
1496
1497 /**
1498  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1499  * @gfp_mask: The GFP mask of the current allocation
1500  * @order: The order of the current allocation
1501  * @alloc_flags: The allocation flags of the current allocation
1502  * @ac: The context of current allocation
1503  * @mode: The migration mode for async, sync light, or sync migration
1504  * @contended: Return value that determines if compaction was aborted due to
1505  *             need_resched() or lock contention
1506  *
1507  * This is the main entry point for direct page compaction.
1508  */
1509 unsigned long try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
1510                         int alloc_flags, const struct alloc_context *ac,
1511                         enum migrate_mode mode, int *contended)
1512 {
1513         int may_enter_fs = gfp_mask & __GFP_FS;
1514         int may_perform_io = gfp_mask & __GFP_IO;
1515         struct zoneref *z;
1516         struct zone *zone;
1517         int rc = COMPACT_DEFERRED;
1518         int all_zones_contended = COMPACT_CONTENDED_LOCK; /* init for &= op */
1519
1520         *contended = COMPACT_CONTENDED_NONE;
1521
1522         /* Check if the GFP flags allow compaction */
1523         if (!order || !may_enter_fs || !may_perform_io)
1524                 return COMPACT_SKIPPED;
1525
1526         trace_mm_compaction_try_to_compact_pages(order, gfp_mask, mode);
1527
1528         /* Compact each zone in the list */
1529         for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1530                                                                 ac->nodemask) {
1531                 int status;
1532                 int zone_contended;
1533
1534                 if (compaction_deferred(zone, order))
1535                         continue;
1536
1537                 status = compact_zone_order(zone, order, gfp_mask, mode,
1538                                 &zone_contended, alloc_flags,
1539                                 ac->classzone_idx);
1540                 rc = max(status, rc);
1541                 /*
1542                  * It takes at least one zone that wasn't lock contended
1543                  * to clear all_zones_contended.
1544                  */
1545                 all_zones_contended &= zone_contended;
1546
1547                 /* If a normal allocation would succeed, stop compacting */
1548                 if (zone_watermark_ok(zone, order, low_wmark_pages(zone),
1549                                         ac->classzone_idx, alloc_flags)) {
1550                         /*
1551                          * We think the allocation will succeed in this zone,
1552                          * but it is not certain, hence the false. The caller
1553                          * will repeat this with true if allocation indeed
1554                          * succeeds in this zone.
1555                          */
1556                         compaction_defer_reset(zone, order, false);
1557                         /*
1558                          * It is possible that async compaction aborted due to
1559                          * need_resched() and the watermarks were ok thanks to
1560                          * somebody else freeing memory. The allocation can
1561                          * however still fail so we better signal the
1562                          * need_resched() contention anyway (this will not
1563                          * prevent the allocation attempt).
1564                          */
1565                         if (zone_contended == COMPACT_CONTENDED_SCHED)
1566                                 *contended = COMPACT_CONTENDED_SCHED;
1567
1568                         goto break_loop;
1569                 }
1570
1571                 if (mode != MIGRATE_ASYNC && status == COMPACT_COMPLETE) {
1572                         /*
1573                          * We think that allocation won't succeed in this zone
1574                          * so we defer compaction there. If it ends up
1575                          * succeeding after all, it will be reset.
1576                          */
1577                         defer_compaction(zone, order);
1578                 }
1579
1580                 /*
1581                  * We might have stopped compacting due to need_resched() in
1582                  * async compaction, or due to a fatal signal detected. In that
1583                  * case do not try further zones and signal need_resched()
1584                  * contention.
1585                  */
1586                 if ((zone_contended == COMPACT_CONTENDED_SCHED)
1587                                         || fatal_signal_pending(current)) {
1588                         *contended = COMPACT_CONTENDED_SCHED;
1589                         goto break_loop;
1590                 }
1591
1592                 continue;
1593 break_loop:
1594                 /*
1595                  * We might not have tried all the zones, so  be conservative
1596                  * and assume they are not all lock contended.
1597                  */
1598                 all_zones_contended = 0;
1599                 break;
1600         }
1601
1602         /*
1603          * If at least one zone wasn't deferred or skipped, we report if all
1604          * zones that were tried were lock contended.
1605          */
1606         if (rc > COMPACT_SKIPPED && all_zones_contended)
1607                 *contended = COMPACT_CONTENDED_LOCK;
1608
1609         return rc;
1610 }
1611
1612
1613 /* Compact all zones within a node */
1614 static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
1615 {
1616         int zoneid;
1617         struct zone *zone;
1618
1619         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1620
1621                 zone = &pgdat->node_zones[zoneid];
1622                 if (!populated_zone(zone))
1623                         continue;
1624
1625                 cc->nr_freepages = 0;
1626                 cc->nr_migratepages = 0;
1627                 cc->zone = zone;
1628                 INIT_LIST_HEAD(&cc->freepages);
1629                 INIT_LIST_HEAD(&cc->migratepages);
1630
1631                 /*
1632                  * When called via /proc/sys/vm/compact_memory
1633                  * this makes sure we compact the whole zone regardless of
1634                  * cached scanner positions.
1635                  */
1636                 if (cc->order == -1)
1637                         __reset_isolation_suitable(zone);
1638
1639                 if (cc->order == -1 || !compaction_deferred(zone, cc->order))
1640                         compact_zone(zone, cc);
1641
1642                 if (cc->order > 0) {
1643                         if (zone_watermark_ok(zone, cc->order,
1644                                                 low_wmark_pages(zone), 0, 0))
1645                                 compaction_defer_reset(zone, cc->order, false);
1646                 }
1647
1648                 VM_BUG_ON(!list_empty(&cc->freepages));
1649                 VM_BUG_ON(!list_empty(&cc->migratepages));
1650         }
1651 }
1652
1653 void compact_pgdat(pg_data_t *pgdat, int order)
1654 {
1655         struct compact_control cc = {
1656                 .order = order,
1657                 .mode = MIGRATE_ASYNC,
1658         };
1659
1660         if (!order)
1661                 return;
1662
1663         __compact_pgdat(pgdat, &cc);
1664 }
1665
1666 static void compact_node(int nid)
1667 {
1668         struct compact_control cc = {
1669                 .order = -1,
1670                 .mode = MIGRATE_SYNC,
1671                 .ignore_skip_hint = true,
1672         };
1673
1674         __compact_pgdat(NODE_DATA(nid), &cc);
1675 }
1676
1677 /* Compact all nodes in the system */
1678 static void compact_nodes(void)
1679 {
1680         int nid;
1681
1682         /* Flush pending updates to the LRU lists */
1683         lru_add_drain_all();
1684
1685         for_each_online_node(nid)
1686                 compact_node(nid);
1687 }
1688
1689 /* The written value is actually unused, all memory is compacted */
1690 int sysctl_compact_memory;
1691
1692 /* This is the entry point for compacting all nodes via /proc/sys/vm */
1693 int sysctl_compaction_handler(struct ctl_table *table, int write,
1694                         void __user *buffer, size_t *length, loff_t *ppos)
1695 {
1696         if (write)
1697                 compact_nodes();
1698
1699         return 0;
1700 }
1701
1702 int sysctl_extfrag_handler(struct ctl_table *table, int write,
1703                         void __user *buffer, size_t *length, loff_t *ppos)
1704 {
1705         proc_dointvec_minmax(table, write, buffer, length, ppos);
1706
1707         return 0;
1708 }
1709
1710 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1711 static ssize_t sysfs_compact_node(struct device *dev,
1712                         struct device_attribute *attr,
1713                         const char *buf, size_t count)
1714 {
1715         int nid = dev->id;
1716
1717         if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1718                 /* Flush pending updates to the LRU lists */
1719                 lru_add_drain_all();
1720
1721                 compact_node(nid);
1722         }
1723
1724         return count;
1725 }
1726 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1727
1728 int compaction_register_node(struct node *node)
1729 {
1730         return device_create_file(&node->dev, &dev_attr_compact);
1731 }
1732
1733 void compaction_unregister_node(struct node *node)
1734 {
1735         return device_remove_file(&node->dev, &dev_attr_compact);
1736 }
1737 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
1738
1739 #endif /* CONFIG_COMPACTION */