mm/compaction: print current range where compaction work
[cascardo/linux.git] / mm / compaction.c
1 /*
2  * linux/mm/compaction.c
3  *
4  * Memory compaction for the reduction of external fragmentation. Note that
5  * this heavily depends upon page migration to do all the real heavy
6  * lifting
7  *
8  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9  */
10 #include <linux/swap.h>
11 #include <linux/migrate.h>
12 #include <linux/compaction.h>
13 #include <linux/mm_inline.h>
14 #include <linux/backing-dev.h>
15 #include <linux/sysctl.h>
16 #include <linux/sysfs.h>
17 #include <linux/balloon_compaction.h>
18 #include <linux/page-isolation.h>
19 #include "internal.h"
20
21 #ifdef CONFIG_COMPACTION
22 static inline void count_compact_event(enum vm_event_item item)
23 {
24         count_vm_event(item);
25 }
26
27 static inline void count_compact_events(enum vm_event_item item, long delta)
28 {
29         count_vm_events(item, delta);
30 }
31 #else
32 #define count_compact_event(item) do { } while (0)
33 #define count_compact_events(item, delta) do { } while (0)
34 #endif
35
36 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
37 #ifdef CONFIG_TRACEPOINTS
38 static const char *const compaction_status_string[] = {
39         "deferred",
40         "skipped",
41         "continue",
42         "partial",
43         "complete",
44 };
45 #endif
46
47 #define CREATE_TRACE_POINTS
48 #include <trace/events/compaction.h>
49
50 static unsigned long release_freepages(struct list_head *freelist)
51 {
52         struct page *page, *next;
53         unsigned long high_pfn = 0;
54
55         list_for_each_entry_safe(page, next, freelist, lru) {
56                 unsigned long pfn = page_to_pfn(page);
57                 list_del(&page->lru);
58                 __free_page(page);
59                 if (pfn > high_pfn)
60                         high_pfn = pfn;
61         }
62
63         return high_pfn;
64 }
65
66 static void map_pages(struct list_head *list)
67 {
68         struct page *page;
69
70         list_for_each_entry(page, list, lru) {
71                 arch_alloc_page(page, 0);
72                 kernel_map_pages(page, 1, 1);
73         }
74 }
75
76 static inline bool migrate_async_suitable(int migratetype)
77 {
78         return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
79 }
80
81 /*
82  * Check that the whole (or subset of) a pageblock given by the interval of
83  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
84  * with the migration of free compaction scanner. The scanners then need to
85  * use only pfn_valid_within() check for arches that allow holes within
86  * pageblocks.
87  *
88  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
89  *
90  * It's possible on some configurations to have a setup like node0 node1 node0
91  * i.e. it's possible that all pages within a zones range of pages do not
92  * belong to a single zone. We assume that a border between node0 and node1
93  * can occur within a single pageblock, but not a node0 node1 node0
94  * interleaving within a single pageblock. It is therefore sufficient to check
95  * the first and last page of a pageblock and avoid checking each individual
96  * page in a pageblock.
97  */
98 static struct page *pageblock_pfn_to_page(unsigned long start_pfn,
99                                 unsigned long end_pfn, struct zone *zone)
100 {
101         struct page *start_page;
102         struct page *end_page;
103
104         /* end_pfn is one past the range we are checking */
105         end_pfn--;
106
107         if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
108                 return NULL;
109
110         start_page = pfn_to_page(start_pfn);
111
112         if (page_zone(start_page) != zone)
113                 return NULL;
114
115         end_page = pfn_to_page(end_pfn);
116
117         /* This gives a shorter code than deriving page_zone(end_page) */
118         if (page_zone_id(start_page) != page_zone_id(end_page))
119                 return NULL;
120
121         return start_page;
122 }
123
124 #ifdef CONFIG_COMPACTION
125 /* Returns true if the pageblock should be scanned for pages to isolate. */
126 static inline bool isolation_suitable(struct compact_control *cc,
127                                         struct page *page)
128 {
129         if (cc->ignore_skip_hint)
130                 return true;
131
132         return !get_pageblock_skip(page);
133 }
134
135 /*
136  * This function is called to clear all cached information on pageblocks that
137  * should be skipped for page isolation when the migrate and free page scanner
138  * meet.
139  */
140 static void __reset_isolation_suitable(struct zone *zone)
141 {
142         unsigned long start_pfn = zone->zone_start_pfn;
143         unsigned long end_pfn = zone_end_pfn(zone);
144         unsigned long pfn;
145
146         zone->compact_cached_migrate_pfn[0] = start_pfn;
147         zone->compact_cached_migrate_pfn[1] = start_pfn;
148         zone->compact_cached_free_pfn = end_pfn;
149         zone->compact_blockskip_flush = false;
150
151         /* Walk the zone and mark every pageblock as suitable for isolation */
152         for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
153                 struct page *page;
154
155                 cond_resched();
156
157                 if (!pfn_valid(pfn))
158                         continue;
159
160                 page = pfn_to_page(pfn);
161                 if (zone != page_zone(page))
162                         continue;
163
164                 clear_pageblock_skip(page);
165         }
166 }
167
168 void reset_isolation_suitable(pg_data_t *pgdat)
169 {
170         int zoneid;
171
172         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
173                 struct zone *zone = &pgdat->node_zones[zoneid];
174                 if (!populated_zone(zone))
175                         continue;
176
177                 /* Only flush if a full compaction finished recently */
178                 if (zone->compact_blockskip_flush)
179                         __reset_isolation_suitable(zone);
180         }
181 }
182
183 /*
184  * If no pages were isolated then mark this pageblock to be skipped in the
185  * future. The information is later cleared by __reset_isolation_suitable().
186  */
187 static void update_pageblock_skip(struct compact_control *cc,
188                         struct page *page, unsigned long nr_isolated,
189                         bool migrate_scanner)
190 {
191         struct zone *zone = cc->zone;
192         unsigned long pfn;
193
194         if (cc->ignore_skip_hint)
195                 return;
196
197         if (!page)
198                 return;
199
200         if (nr_isolated)
201                 return;
202
203         set_pageblock_skip(page);
204
205         pfn = page_to_pfn(page);
206
207         /* Update where async and sync compaction should restart */
208         if (migrate_scanner) {
209                 if (pfn > zone->compact_cached_migrate_pfn[0])
210                         zone->compact_cached_migrate_pfn[0] = pfn;
211                 if (cc->mode != MIGRATE_ASYNC &&
212                     pfn > zone->compact_cached_migrate_pfn[1])
213                         zone->compact_cached_migrate_pfn[1] = pfn;
214         } else {
215                 if (pfn < zone->compact_cached_free_pfn)
216                         zone->compact_cached_free_pfn = pfn;
217         }
218 }
219 #else
220 static inline bool isolation_suitable(struct compact_control *cc,
221                                         struct page *page)
222 {
223         return true;
224 }
225
226 static void update_pageblock_skip(struct compact_control *cc,
227                         struct page *page, unsigned long nr_isolated,
228                         bool migrate_scanner)
229 {
230 }
231 #endif /* CONFIG_COMPACTION */
232
233 /*
234  * Compaction requires the taking of some coarse locks that are potentially
235  * very heavily contended. For async compaction, back out if the lock cannot
236  * be taken immediately. For sync compaction, spin on the lock if needed.
237  *
238  * Returns true if the lock is held
239  * Returns false if the lock is not held and compaction should abort
240  */
241 static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
242                                                 struct compact_control *cc)
243 {
244         if (cc->mode == MIGRATE_ASYNC) {
245                 if (!spin_trylock_irqsave(lock, *flags)) {
246                         cc->contended = COMPACT_CONTENDED_LOCK;
247                         return false;
248                 }
249         } else {
250                 spin_lock_irqsave(lock, *flags);
251         }
252
253         return true;
254 }
255
256 /*
257  * Compaction requires the taking of some coarse locks that are potentially
258  * very heavily contended. The lock should be periodically unlocked to avoid
259  * having disabled IRQs for a long time, even when there is nobody waiting on
260  * the lock. It might also be that allowing the IRQs will result in
261  * need_resched() becoming true. If scheduling is needed, async compaction
262  * aborts. Sync compaction schedules.
263  * Either compaction type will also abort if a fatal signal is pending.
264  * In either case if the lock was locked, it is dropped and not regained.
265  *
266  * Returns true if compaction should abort due to fatal signal pending, or
267  *              async compaction due to need_resched()
268  * Returns false when compaction can continue (sync compaction might have
269  *              scheduled)
270  */
271 static bool compact_unlock_should_abort(spinlock_t *lock,
272                 unsigned long flags, bool *locked, struct compact_control *cc)
273 {
274         if (*locked) {
275                 spin_unlock_irqrestore(lock, flags);
276                 *locked = false;
277         }
278
279         if (fatal_signal_pending(current)) {
280                 cc->contended = COMPACT_CONTENDED_SCHED;
281                 return true;
282         }
283
284         if (need_resched()) {
285                 if (cc->mode == MIGRATE_ASYNC) {
286                         cc->contended = COMPACT_CONTENDED_SCHED;
287                         return true;
288                 }
289                 cond_resched();
290         }
291
292         return false;
293 }
294
295 /*
296  * Aside from avoiding lock contention, compaction also periodically checks
297  * need_resched() and either schedules in sync compaction or aborts async
298  * compaction. This is similar to what compact_unlock_should_abort() does, but
299  * is used where no lock is concerned.
300  *
301  * Returns false when no scheduling was needed, or sync compaction scheduled.
302  * Returns true when async compaction should abort.
303  */
304 static inline bool compact_should_abort(struct compact_control *cc)
305 {
306         /* async compaction aborts if contended */
307         if (need_resched()) {
308                 if (cc->mode == MIGRATE_ASYNC) {
309                         cc->contended = COMPACT_CONTENDED_SCHED;
310                         return true;
311                 }
312
313                 cond_resched();
314         }
315
316         return false;
317 }
318
319 /* Returns true if the page is within a block suitable for migration to */
320 static bool suitable_migration_target(struct page *page)
321 {
322         /* If the page is a large free page, then disallow migration */
323         if (PageBuddy(page)) {
324                 /*
325                  * We are checking page_order without zone->lock taken. But
326                  * the only small danger is that we skip a potentially suitable
327                  * pageblock, so it's not worth to check order for valid range.
328                  */
329                 if (page_order_unsafe(page) >= pageblock_order)
330                         return false;
331         }
332
333         /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
334         if (migrate_async_suitable(get_pageblock_migratetype(page)))
335                 return true;
336
337         /* Otherwise skip the block */
338         return false;
339 }
340
341 /*
342  * Isolate free pages onto a private freelist. If @strict is true, will abort
343  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
344  * (even though it may still end up isolating some pages).
345  */
346 static unsigned long isolate_freepages_block(struct compact_control *cc,
347                                 unsigned long *start_pfn,
348                                 unsigned long end_pfn,
349                                 struct list_head *freelist,
350                                 bool strict)
351 {
352         int nr_scanned = 0, total_isolated = 0;
353         struct page *cursor, *valid_page = NULL;
354         unsigned long flags = 0;
355         bool locked = false;
356         unsigned long blockpfn = *start_pfn;
357
358         cursor = pfn_to_page(blockpfn);
359
360         /* Isolate free pages. */
361         for (; blockpfn < end_pfn; blockpfn++, cursor++) {
362                 int isolated, i;
363                 struct page *page = cursor;
364
365                 /*
366                  * Periodically drop the lock (if held) regardless of its
367                  * contention, to give chance to IRQs. Abort if fatal signal
368                  * pending or async compaction detects need_resched()
369                  */
370                 if (!(blockpfn % SWAP_CLUSTER_MAX)
371                     && compact_unlock_should_abort(&cc->zone->lock, flags,
372                                                                 &locked, cc))
373                         break;
374
375                 nr_scanned++;
376                 if (!pfn_valid_within(blockpfn))
377                         goto isolate_fail;
378
379                 if (!valid_page)
380                         valid_page = page;
381                 if (!PageBuddy(page))
382                         goto isolate_fail;
383
384                 /*
385                  * If we already hold the lock, we can skip some rechecking.
386                  * Note that if we hold the lock now, checked_pageblock was
387                  * already set in some previous iteration (or strict is true),
388                  * so it is correct to skip the suitable migration target
389                  * recheck as well.
390                  */
391                 if (!locked) {
392                         /*
393                          * The zone lock must be held to isolate freepages.
394                          * Unfortunately this is a very coarse lock and can be
395                          * heavily contended if there are parallel allocations
396                          * or parallel compactions. For async compaction do not
397                          * spin on the lock and we acquire the lock as late as
398                          * possible.
399                          */
400                         locked = compact_trylock_irqsave(&cc->zone->lock,
401                                                                 &flags, cc);
402                         if (!locked)
403                                 break;
404
405                         /* Recheck this is a buddy page under lock */
406                         if (!PageBuddy(page))
407                                 goto isolate_fail;
408                 }
409
410                 /* Found a free page, break it into order-0 pages */
411                 isolated = split_free_page(page);
412                 total_isolated += isolated;
413                 for (i = 0; i < isolated; i++) {
414                         list_add(&page->lru, freelist);
415                         page++;
416                 }
417
418                 /* If a page was split, advance to the end of it */
419                 if (isolated) {
420                         blockpfn += isolated - 1;
421                         cursor += isolated - 1;
422                         continue;
423                 }
424
425 isolate_fail:
426                 if (strict)
427                         break;
428                 else
429                         continue;
430
431         }
432
433         trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
434                                         nr_scanned, total_isolated);
435
436         /* Record how far we have got within the block */
437         *start_pfn = blockpfn;
438
439         /*
440          * If strict isolation is requested by CMA then check that all the
441          * pages requested were isolated. If there were any failures, 0 is
442          * returned and CMA will fail.
443          */
444         if (strict && blockpfn < end_pfn)
445                 total_isolated = 0;
446
447         if (locked)
448                 spin_unlock_irqrestore(&cc->zone->lock, flags);
449
450         /* Update the pageblock-skip if the whole pageblock was scanned */
451         if (blockpfn == end_pfn)
452                 update_pageblock_skip(cc, valid_page, total_isolated, false);
453
454         count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
455         if (total_isolated)
456                 count_compact_events(COMPACTISOLATED, total_isolated);
457         return total_isolated;
458 }
459
460 /**
461  * isolate_freepages_range() - isolate free pages.
462  * @start_pfn: The first PFN to start isolating.
463  * @end_pfn:   The one-past-last PFN.
464  *
465  * Non-free pages, invalid PFNs, or zone boundaries within the
466  * [start_pfn, end_pfn) range are considered errors, cause function to
467  * undo its actions and return zero.
468  *
469  * Otherwise, function returns one-past-the-last PFN of isolated page
470  * (which may be greater then end_pfn if end fell in a middle of
471  * a free page).
472  */
473 unsigned long
474 isolate_freepages_range(struct compact_control *cc,
475                         unsigned long start_pfn, unsigned long end_pfn)
476 {
477         unsigned long isolated, pfn, block_end_pfn;
478         LIST_HEAD(freelist);
479
480         pfn = start_pfn;
481         block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
482
483         for (; pfn < end_pfn; pfn += isolated,
484                                 block_end_pfn += pageblock_nr_pages) {
485                 /* Protect pfn from changing by isolate_freepages_block */
486                 unsigned long isolate_start_pfn = pfn;
487
488                 block_end_pfn = min(block_end_pfn, end_pfn);
489
490                 /*
491                  * pfn could pass the block_end_pfn if isolated freepage
492                  * is more than pageblock order. In this case, we adjust
493                  * scanning range to right one.
494                  */
495                 if (pfn >= block_end_pfn) {
496                         block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
497                         block_end_pfn = min(block_end_pfn, end_pfn);
498                 }
499
500                 if (!pageblock_pfn_to_page(pfn, block_end_pfn, cc->zone))
501                         break;
502
503                 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
504                                                 block_end_pfn, &freelist, true);
505
506                 /*
507                  * In strict mode, isolate_freepages_block() returns 0 if
508                  * there are any holes in the block (ie. invalid PFNs or
509                  * non-free pages).
510                  */
511                 if (!isolated)
512                         break;
513
514                 /*
515                  * If we managed to isolate pages, it is always (1 << n) *
516                  * pageblock_nr_pages for some non-negative n.  (Max order
517                  * page may span two pageblocks).
518                  */
519         }
520
521         /* split_free_page does not map the pages */
522         map_pages(&freelist);
523
524         if (pfn < end_pfn) {
525                 /* Loop terminated early, cleanup. */
526                 release_freepages(&freelist);
527                 return 0;
528         }
529
530         /* We don't use freelists for anything. */
531         return pfn;
532 }
533
534 /* Update the number of anon and file isolated pages in the zone */
535 static void acct_isolated(struct zone *zone, struct compact_control *cc)
536 {
537         struct page *page;
538         unsigned int count[2] = { 0, };
539
540         if (list_empty(&cc->migratepages))
541                 return;
542
543         list_for_each_entry(page, &cc->migratepages, lru)
544                 count[!!page_is_file_cache(page)]++;
545
546         mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
547         mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
548 }
549
550 /* Similar to reclaim, but different enough that they don't share logic */
551 static bool too_many_isolated(struct zone *zone)
552 {
553         unsigned long active, inactive, isolated;
554
555         inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
556                                         zone_page_state(zone, NR_INACTIVE_ANON);
557         active = zone_page_state(zone, NR_ACTIVE_FILE) +
558                                         zone_page_state(zone, NR_ACTIVE_ANON);
559         isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
560                                         zone_page_state(zone, NR_ISOLATED_ANON);
561
562         return isolated > (inactive + active) / 2;
563 }
564
565 /**
566  * isolate_migratepages_block() - isolate all migrate-able pages within
567  *                                a single pageblock
568  * @cc:         Compaction control structure.
569  * @low_pfn:    The first PFN to isolate
570  * @end_pfn:    The one-past-the-last PFN to isolate, within same pageblock
571  * @isolate_mode: Isolation mode to be used.
572  *
573  * Isolate all pages that can be migrated from the range specified by
574  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
575  * Returns zero if there is a fatal signal pending, otherwise PFN of the
576  * first page that was not scanned (which may be both less, equal to or more
577  * than end_pfn).
578  *
579  * The pages are isolated on cc->migratepages list (not required to be empty),
580  * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
581  * is neither read nor updated.
582  */
583 static unsigned long
584 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
585                         unsigned long end_pfn, isolate_mode_t isolate_mode)
586 {
587         struct zone *zone = cc->zone;
588         unsigned long nr_scanned = 0, nr_isolated = 0;
589         struct list_head *migratelist = &cc->migratepages;
590         struct lruvec *lruvec;
591         unsigned long flags = 0;
592         bool locked = false;
593         struct page *page = NULL, *valid_page = NULL;
594         unsigned long start_pfn = low_pfn;
595
596         /*
597          * Ensure that there are not too many pages isolated from the LRU
598          * list by either parallel reclaimers or compaction. If there are,
599          * delay for some time until fewer pages are isolated
600          */
601         while (unlikely(too_many_isolated(zone))) {
602                 /* async migration should just abort */
603                 if (cc->mode == MIGRATE_ASYNC)
604                         return 0;
605
606                 congestion_wait(BLK_RW_ASYNC, HZ/10);
607
608                 if (fatal_signal_pending(current))
609                         return 0;
610         }
611
612         if (compact_should_abort(cc))
613                 return 0;
614
615         /* Time to isolate some pages for migration */
616         for (; low_pfn < end_pfn; low_pfn++) {
617                 /*
618                  * Periodically drop the lock (if held) regardless of its
619                  * contention, to give chance to IRQs. Abort async compaction
620                  * if contended.
621                  */
622                 if (!(low_pfn % SWAP_CLUSTER_MAX)
623                     && compact_unlock_should_abort(&zone->lru_lock, flags,
624                                                                 &locked, cc))
625                         break;
626
627                 if (!pfn_valid_within(low_pfn))
628                         continue;
629                 nr_scanned++;
630
631                 page = pfn_to_page(low_pfn);
632
633                 if (!valid_page)
634                         valid_page = page;
635
636                 /*
637                  * Skip if free. We read page order here without zone lock
638                  * which is generally unsafe, but the race window is small and
639                  * the worst thing that can happen is that we skip some
640                  * potential isolation targets.
641                  */
642                 if (PageBuddy(page)) {
643                         unsigned long freepage_order = page_order_unsafe(page);
644
645                         /*
646                          * Without lock, we cannot be sure that what we got is
647                          * a valid page order. Consider only values in the
648                          * valid order range to prevent low_pfn overflow.
649                          */
650                         if (freepage_order > 0 && freepage_order < MAX_ORDER)
651                                 low_pfn += (1UL << freepage_order) - 1;
652                         continue;
653                 }
654
655                 /*
656                  * Check may be lockless but that's ok as we recheck later.
657                  * It's possible to migrate LRU pages and balloon pages
658                  * Skip any other type of page
659                  */
660                 if (!PageLRU(page)) {
661                         if (unlikely(balloon_page_movable(page))) {
662                                 if (balloon_page_isolate(page)) {
663                                         /* Successfully isolated */
664                                         goto isolate_success;
665                                 }
666                         }
667                         continue;
668                 }
669
670                 /*
671                  * PageLRU is set. lru_lock normally excludes isolation
672                  * splitting and collapsing (collapsing has already happened
673                  * if PageLRU is set) but the lock is not necessarily taken
674                  * here and it is wasteful to take it just to check transhuge.
675                  * Check TransHuge without lock and skip the whole pageblock if
676                  * it's either a transhuge or hugetlbfs page, as calling
677                  * compound_order() without preventing THP from splitting the
678                  * page underneath us may return surprising results.
679                  */
680                 if (PageTransHuge(page)) {
681                         if (!locked)
682                                 low_pfn = ALIGN(low_pfn + 1,
683                                                 pageblock_nr_pages) - 1;
684                         else
685                                 low_pfn += (1 << compound_order(page)) - 1;
686
687                         continue;
688                 }
689
690                 /*
691                  * Migration will fail if an anonymous page is pinned in memory,
692                  * so avoid taking lru_lock and isolating it unnecessarily in an
693                  * admittedly racy check.
694                  */
695                 if (!page_mapping(page) &&
696                     page_count(page) > page_mapcount(page))
697                         continue;
698
699                 /* If we already hold the lock, we can skip some rechecking */
700                 if (!locked) {
701                         locked = compact_trylock_irqsave(&zone->lru_lock,
702                                                                 &flags, cc);
703                         if (!locked)
704                                 break;
705
706                         /* Recheck PageLRU and PageTransHuge under lock */
707                         if (!PageLRU(page))
708                                 continue;
709                         if (PageTransHuge(page)) {
710                                 low_pfn += (1 << compound_order(page)) - 1;
711                                 continue;
712                         }
713                 }
714
715                 lruvec = mem_cgroup_page_lruvec(page, zone);
716
717                 /* Try isolate the page */
718                 if (__isolate_lru_page(page, isolate_mode) != 0)
719                         continue;
720
721                 VM_BUG_ON_PAGE(PageTransCompound(page), page);
722
723                 /* Successfully isolated */
724                 del_page_from_lru_list(page, lruvec, page_lru(page));
725
726 isolate_success:
727                 list_add(&page->lru, migratelist);
728                 cc->nr_migratepages++;
729                 nr_isolated++;
730
731                 /* Avoid isolating too much */
732                 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
733                         ++low_pfn;
734                         break;
735                 }
736         }
737
738         /*
739          * The PageBuddy() check could have potentially brought us outside
740          * the range to be scanned.
741          */
742         if (unlikely(low_pfn > end_pfn))
743                 low_pfn = end_pfn;
744
745         if (locked)
746                 spin_unlock_irqrestore(&zone->lru_lock, flags);
747
748         /*
749          * Update the pageblock-skip information and cached scanner pfn,
750          * if the whole pageblock was scanned without isolating any page.
751          */
752         if (low_pfn == end_pfn)
753                 update_pageblock_skip(cc, valid_page, nr_isolated, true);
754
755         trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
756                                                 nr_scanned, nr_isolated);
757
758         count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
759         if (nr_isolated)
760                 count_compact_events(COMPACTISOLATED, nr_isolated);
761
762         return low_pfn;
763 }
764
765 /**
766  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
767  * @cc:        Compaction control structure.
768  * @start_pfn: The first PFN to start isolating.
769  * @end_pfn:   The one-past-last PFN.
770  *
771  * Returns zero if isolation fails fatally due to e.g. pending signal.
772  * Otherwise, function returns one-past-the-last PFN of isolated page
773  * (which may be greater than end_pfn if end fell in a middle of a THP page).
774  */
775 unsigned long
776 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
777                                                         unsigned long end_pfn)
778 {
779         unsigned long pfn, block_end_pfn;
780
781         /* Scan block by block. First and last block may be incomplete */
782         pfn = start_pfn;
783         block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
784
785         for (; pfn < end_pfn; pfn = block_end_pfn,
786                                 block_end_pfn += pageblock_nr_pages) {
787
788                 block_end_pfn = min(block_end_pfn, end_pfn);
789
790                 if (!pageblock_pfn_to_page(pfn, block_end_pfn, cc->zone))
791                         continue;
792
793                 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
794                                                         ISOLATE_UNEVICTABLE);
795
796                 /*
797                  * In case of fatal failure, release everything that might
798                  * have been isolated in the previous iteration, and signal
799                  * the failure back to caller.
800                  */
801                 if (!pfn) {
802                         putback_movable_pages(&cc->migratepages);
803                         cc->nr_migratepages = 0;
804                         break;
805                 }
806
807                 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
808                         break;
809         }
810         acct_isolated(cc->zone, cc);
811
812         return pfn;
813 }
814
815 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
816 #ifdef CONFIG_COMPACTION
817 /*
818  * Based on information in the current compact_control, find blocks
819  * suitable for isolating free pages from and then isolate them.
820  */
821 static void isolate_freepages(struct compact_control *cc)
822 {
823         struct zone *zone = cc->zone;
824         struct page *page;
825         unsigned long block_start_pfn;  /* start of current pageblock */
826         unsigned long isolate_start_pfn; /* exact pfn we start at */
827         unsigned long block_end_pfn;    /* end of current pageblock */
828         unsigned long low_pfn;       /* lowest pfn scanner is able to scan */
829         int nr_freepages = cc->nr_freepages;
830         struct list_head *freelist = &cc->freepages;
831
832         /*
833          * Initialise the free scanner. The starting point is where we last
834          * successfully isolated from, zone-cached value, or the end of the
835          * zone when isolating for the first time. For looping we also need
836          * this pfn aligned down to the pageblock boundary, because we do
837          * block_start_pfn -= pageblock_nr_pages in the for loop.
838          * For ending point, take care when isolating in last pageblock of a
839          * a zone which ends in the middle of a pageblock.
840          * The low boundary is the end of the pageblock the migration scanner
841          * is using.
842          */
843         isolate_start_pfn = cc->free_pfn;
844         block_start_pfn = cc->free_pfn & ~(pageblock_nr_pages-1);
845         block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
846                                                 zone_end_pfn(zone));
847         low_pfn = ALIGN(cc->migrate_pfn + 1, pageblock_nr_pages);
848
849         /*
850          * Isolate free pages until enough are available to migrate the
851          * pages on cc->migratepages. We stop searching if the migrate
852          * and free page scanners meet or enough free pages are isolated.
853          */
854         for (; block_start_pfn >= low_pfn && cc->nr_migratepages > nr_freepages;
855                                 block_end_pfn = block_start_pfn,
856                                 block_start_pfn -= pageblock_nr_pages,
857                                 isolate_start_pfn = block_start_pfn) {
858                 unsigned long isolated;
859
860                 /*
861                  * This can iterate a massively long zone without finding any
862                  * suitable migration targets, so periodically check if we need
863                  * to schedule, or even abort async compaction.
864                  */
865                 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
866                                                 && compact_should_abort(cc))
867                         break;
868
869                 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
870                                                                         zone);
871                 if (!page)
872                         continue;
873
874                 /* Check the block is suitable for migration */
875                 if (!suitable_migration_target(page))
876                         continue;
877
878                 /* If isolation recently failed, do not retry */
879                 if (!isolation_suitable(cc, page))
880                         continue;
881
882                 /* Found a block suitable for isolating free pages from. */
883                 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
884                                         block_end_pfn, freelist, false);
885                 nr_freepages += isolated;
886
887                 /*
888                  * Remember where the free scanner should restart next time,
889                  * which is where isolate_freepages_block() left off.
890                  * But if it scanned the whole pageblock, isolate_start_pfn
891                  * now points at block_end_pfn, which is the start of the next
892                  * pageblock.
893                  * In that case we will however want to restart at the start
894                  * of the previous pageblock.
895                  */
896                 cc->free_pfn = (isolate_start_pfn < block_end_pfn) ?
897                                 isolate_start_pfn :
898                                 block_start_pfn - pageblock_nr_pages;
899
900                 /*
901                  * isolate_freepages_block() might have aborted due to async
902                  * compaction being contended
903                  */
904                 if (cc->contended)
905                         break;
906         }
907
908         /* split_free_page does not map the pages */
909         map_pages(freelist);
910
911         /*
912          * If we crossed the migrate scanner, we want to keep it that way
913          * so that compact_finished() may detect this
914          */
915         if (block_start_pfn < low_pfn)
916                 cc->free_pfn = cc->migrate_pfn;
917
918         cc->nr_freepages = nr_freepages;
919 }
920
921 /*
922  * This is a migrate-callback that "allocates" freepages by taking pages
923  * from the isolated freelists in the block we are migrating to.
924  */
925 static struct page *compaction_alloc(struct page *migratepage,
926                                         unsigned long data,
927                                         int **result)
928 {
929         struct compact_control *cc = (struct compact_control *)data;
930         struct page *freepage;
931
932         /*
933          * Isolate free pages if necessary, and if we are not aborting due to
934          * contention.
935          */
936         if (list_empty(&cc->freepages)) {
937                 if (!cc->contended)
938                         isolate_freepages(cc);
939
940                 if (list_empty(&cc->freepages))
941                         return NULL;
942         }
943
944         freepage = list_entry(cc->freepages.next, struct page, lru);
945         list_del(&freepage->lru);
946         cc->nr_freepages--;
947
948         return freepage;
949 }
950
951 /*
952  * This is a migrate-callback that "frees" freepages back to the isolated
953  * freelist.  All pages on the freelist are from the same zone, so there is no
954  * special handling needed for NUMA.
955  */
956 static void compaction_free(struct page *page, unsigned long data)
957 {
958         struct compact_control *cc = (struct compact_control *)data;
959
960         list_add(&page->lru, &cc->freepages);
961         cc->nr_freepages++;
962 }
963
964 /* possible outcome of isolate_migratepages */
965 typedef enum {
966         ISOLATE_ABORT,          /* Abort compaction now */
967         ISOLATE_NONE,           /* No pages isolated, continue scanning */
968         ISOLATE_SUCCESS,        /* Pages isolated, migrate */
969 } isolate_migrate_t;
970
971 /*
972  * Isolate all pages that can be migrated from the first suitable block,
973  * starting at the block pointed to by the migrate scanner pfn within
974  * compact_control.
975  */
976 static isolate_migrate_t isolate_migratepages(struct zone *zone,
977                                         struct compact_control *cc)
978 {
979         unsigned long low_pfn, end_pfn;
980         struct page *page;
981         const isolate_mode_t isolate_mode =
982                 (cc->mode == MIGRATE_ASYNC ? ISOLATE_ASYNC_MIGRATE : 0);
983
984         /*
985          * Start at where we last stopped, or beginning of the zone as
986          * initialized by compact_zone()
987          */
988         low_pfn = cc->migrate_pfn;
989
990         /* Only scan within a pageblock boundary */
991         end_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages);
992
993         /*
994          * Iterate over whole pageblocks until we find the first suitable.
995          * Do not cross the free scanner.
996          */
997         for (; end_pfn <= cc->free_pfn;
998                         low_pfn = end_pfn, end_pfn += pageblock_nr_pages) {
999
1000                 /*
1001                  * This can potentially iterate a massively long zone with
1002                  * many pageblocks unsuitable, so periodically check if we
1003                  * need to schedule, or even abort async compaction.
1004                  */
1005                 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1006                                                 && compact_should_abort(cc))
1007                         break;
1008
1009                 page = pageblock_pfn_to_page(low_pfn, end_pfn, zone);
1010                 if (!page)
1011                         continue;
1012
1013                 /* If isolation recently failed, do not retry */
1014                 if (!isolation_suitable(cc, page))
1015                         continue;
1016
1017                 /*
1018                  * For async compaction, also only scan in MOVABLE blocks.
1019                  * Async compaction is optimistic to see if the minimum amount
1020                  * of work satisfies the allocation.
1021                  */
1022                 if (cc->mode == MIGRATE_ASYNC &&
1023                     !migrate_async_suitable(get_pageblock_migratetype(page)))
1024                         continue;
1025
1026                 /* Perform the isolation */
1027                 low_pfn = isolate_migratepages_block(cc, low_pfn, end_pfn,
1028                                                                 isolate_mode);
1029
1030                 if (!low_pfn || cc->contended)
1031                         return ISOLATE_ABORT;
1032
1033                 /*
1034                  * Either we isolated something and proceed with migration. Or
1035                  * we failed and compact_zone should decide if we should
1036                  * continue or not.
1037                  */
1038                 break;
1039         }
1040
1041         acct_isolated(zone, cc);
1042         /*
1043          * Record where migration scanner will be restarted. If we end up in
1044          * the same pageblock as the free scanner, make the scanners fully
1045          * meet so that compact_finished() terminates compaction.
1046          */
1047         cc->migrate_pfn = (end_pfn <= cc->free_pfn) ? low_pfn : cc->free_pfn;
1048
1049         return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1050 }
1051
1052 static int compact_finished(struct zone *zone, struct compact_control *cc,
1053                             const int migratetype)
1054 {
1055         unsigned int order;
1056         unsigned long watermark;
1057
1058         if (cc->contended || fatal_signal_pending(current))
1059                 return COMPACT_PARTIAL;
1060
1061         /* Compaction run completes if the migrate and free scanner meet */
1062         if (cc->free_pfn <= cc->migrate_pfn) {
1063                 /* Let the next compaction start anew. */
1064                 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
1065                 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
1066                 zone->compact_cached_free_pfn = zone_end_pfn(zone);
1067
1068                 /*
1069                  * Mark that the PG_migrate_skip information should be cleared
1070                  * by kswapd when it goes to sleep. kswapd does not set the
1071                  * flag itself as the decision to be clear should be directly
1072                  * based on an allocation request.
1073                  */
1074                 if (!current_is_kswapd())
1075                         zone->compact_blockskip_flush = true;
1076
1077                 return COMPACT_COMPLETE;
1078         }
1079
1080         /*
1081          * order == -1 is expected when compacting via
1082          * /proc/sys/vm/compact_memory
1083          */
1084         if (cc->order == -1)
1085                 return COMPACT_CONTINUE;
1086
1087         /* Compaction run is not finished if the watermark is not met */
1088         watermark = low_wmark_pages(zone);
1089
1090         if (!zone_watermark_ok(zone, cc->order, watermark, cc->classzone_idx,
1091                                                         cc->alloc_flags))
1092                 return COMPACT_CONTINUE;
1093
1094         /* Direct compactor: Is a suitable page free? */
1095         for (order = cc->order; order < MAX_ORDER; order++) {
1096                 struct free_area *area = &zone->free_area[order];
1097
1098                 /* Job done if page is free of the right migratetype */
1099                 if (!list_empty(&area->free_list[migratetype]))
1100                         return COMPACT_PARTIAL;
1101
1102                 /* Job done if allocation would set block type */
1103                 if (cc->order >= pageblock_order && area->nr_free)
1104                         return COMPACT_PARTIAL;
1105         }
1106
1107         return COMPACT_CONTINUE;
1108 }
1109
1110 /*
1111  * compaction_suitable: Is this suitable to run compaction on this zone now?
1112  * Returns
1113  *   COMPACT_SKIPPED  - If there are too few free pages for compaction
1114  *   COMPACT_PARTIAL  - If the allocation would succeed without compaction
1115  *   COMPACT_CONTINUE - If compaction should run now
1116  */
1117 unsigned long compaction_suitable(struct zone *zone, int order,
1118                                         int alloc_flags, int classzone_idx)
1119 {
1120         int fragindex;
1121         unsigned long watermark;
1122
1123         /*
1124          * order == -1 is expected when compacting via
1125          * /proc/sys/vm/compact_memory
1126          */
1127         if (order == -1)
1128                 return COMPACT_CONTINUE;
1129
1130         watermark = low_wmark_pages(zone);
1131         /*
1132          * If watermarks for high-order allocation are already met, there
1133          * should be no need for compaction at all.
1134          */
1135         if (zone_watermark_ok(zone, order, watermark, classzone_idx,
1136                                                                 alloc_flags))
1137                 return COMPACT_PARTIAL;
1138
1139         /*
1140          * Watermarks for order-0 must be met for compaction. Note the 2UL.
1141          * This is because during migration, copies of pages need to be
1142          * allocated and for a short time, the footprint is higher
1143          */
1144         watermark += (2UL << order);
1145         if (!zone_watermark_ok(zone, 0, watermark, classzone_idx, alloc_flags))
1146                 return COMPACT_SKIPPED;
1147
1148         /*
1149          * fragmentation index determines if allocation failures are due to
1150          * low memory or external fragmentation
1151          *
1152          * index of -1000 would imply allocations might succeed depending on
1153          * watermarks, but we already failed the high-order watermark check
1154          * index towards 0 implies failure is due to lack of memory
1155          * index towards 1000 implies failure is due to fragmentation
1156          *
1157          * Only compact if a failure would be due to fragmentation.
1158          */
1159         fragindex = fragmentation_index(zone, order);
1160         if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
1161                 return COMPACT_SKIPPED;
1162
1163         return COMPACT_CONTINUE;
1164 }
1165
1166 static int compact_zone(struct zone *zone, struct compact_control *cc)
1167 {
1168         int ret;
1169         unsigned long start_pfn = zone->zone_start_pfn;
1170         unsigned long end_pfn = zone_end_pfn(zone);
1171         const int migratetype = gfpflags_to_migratetype(cc->gfp_mask);
1172         const bool sync = cc->mode != MIGRATE_ASYNC;
1173         unsigned long last_migrated_pfn = 0;
1174
1175         ret = compaction_suitable(zone, cc->order, cc->alloc_flags,
1176                                                         cc->classzone_idx);
1177         switch (ret) {
1178         case COMPACT_PARTIAL:
1179         case COMPACT_SKIPPED:
1180                 /* Compaction is likely to fail */
1181                 return ret;
1182         case COMPACT_CONTINUE:
1183                 /* Fall through to compaction */
1184                 ;
1185         }
1186
1187         /*
1188          * Clear pageblock skip if there were failures recently and compaction
1189          * is about to be retried after being deferred. kswapd does not do
1190          * this reset as it'll reset the cached information when going to sleep.
1191          */
1192         if (compaction_restarting(zone, cc->order) && !current_is_kswapd())
1193                 __reset_isolation_suitable(zone);
1194
1195         /*
1196          * Setup to move all movable pages to the end of the zone. Used cached
1197          * information on where the scanners should start but check that it
1198          * is initialised by ensuring the values are within zone boundaries.
1199          */
1200         cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
1201         cc->free_pfn = zone->compact_cached_free_pfn;
1202         if (cc->free_pfn < start_pfn || cc->free_pfn > end_pfn) {
1203                 cc->free_pfn = end_pfn & ~(pageblock_nr_pages-1);
1204                 zone->compact_cached_free_pfn = cc->free_pfn;
1205         }
1206         if (cc->migrate_pfn < start_pfn || cc->migrate_pfn > end_pfn) {
1207                 cc->migrate_pfn = start_pfn;
1208                 zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
1209                 zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
1210         }
1211
1212         trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
1213                                 cc->free_pfn, end_pfn, sync);
1214
1215         migrate_prep_local();
1216
1217         while ((ret = compact_finished(zone, cc, migratetype)) ==
1218                                                 COMPACT_CONTINUE) {
1219                 int err;
1220                 unsigned long isolate_start_pfn = cc->migrate_pfn;
1221
1222                 switch (isolate_migratepages(zone, cc)) {
1223                 case ISOLATE_ABORT:
1224                         ret = COMPACT_PARTIAL;
1225                         putback_movable_pages(&cc->migratepages);
1226                         cc->nr_migratepages = 0;
1227                         goto out;
1228                 case ISOLATE_NONE:
1229                         /*
1230                          * We haven't isolated and migrated anything, but
1231                          * there might still be unflushed migrations from
1232                          * previous cc->order aligned block.
1233                          */
1234                         goto check_drain;
1235                 case ISOLATE_SUCCESS:
1236                         ;
1237                 }
1238
1239                 err = migrate_pages(&cc->migratepages, compaction_alloc,
1240                                 compaction_free, (unsigned long)cc, cc->mode,
1241                                 MR_COMPACTION);
1242
1243                 trace_mm_compaction_migratepages(cc->nr_migratepages, err,
1244                                                         &cc->migratepages);
1245
1246                 /* All pages were either migrated or will be released */
1247                 cc->nr_migratepages = 0;
1248                 if (err) {
1249                         putback_movable_pages(&cc->migratepages);
1250                         /*
1251                          * migrate_pages() may return -ENOMEM when scanners meet
1252                          * and we want compact_finished() to detect it
1253                          */
1254                         if (err == -ENOMEM && cc->free_pfn > cc->migrate_pfn) {
1255                                 ret = COMPACT_PARTIAL;
1256                                 goto out;
1257                         }
1258                 }
1259
1260                 /*
1261                  * Record where we could have freed pages by migration and not
1262                  * yet flushed them to buddy allocator. We use the pfn that
1263                  * isolate_migratepages() started from in this loop iteration
1264                  * - this is the lowest page that could have been isolated and
1265                  * then freed by migration.
1266                  */
1267                 if (!last_migrated_pfn)
1268                         last_migrated_pfn = isolate_start_pfn;
1269
1270 check_drain:
1271                 /*
1272                  * Has the migration scanner moved away from the previous
1273                  * cc->order aligned block where we migrated from? If yes,
1274                  * flush the pages that were freed, so that they can merge and
1275                  * compact_finished() can detect immediately if allocation
1276                  * would succeed.
1277                  */
1278                 if (cc->order > 0 && last_migrated_pfn) {
1279                         int cpu;
1280                         unsigned long current_block_start =
1281                                 cc->migrate_pfn & ~((1UL << cc->order) - 1);
1282
1283                         if (last_migrated_pfn < current_block_start) {
1284                                 cpu = get_cpu();
1285                                 lru_add_drain_cpu(cpu);
1286                                 drain_local_pages(zone);
1287                                 put_cpu();
1288                                 /* No more flushing until we migrate again */
1289                                 last_migrated_pfn = 0;
1290                         }
1291                 }
1292
1293         }
1294
1295 out:
1296         /*
1297          * Release free pages and update where the free scanner should restart,
1298          * so we don't leave any returned pages behind in the next attempt.
1299          */
1300         if (cc->nr_freepages > 0) {
1301                 unsigned long free_pfn = release_freepages(&cc->freepages);
1302
1303                 cc->nr_freepages = 0;
1304                 VM_BUG_ON(free_pfn == 0);
1305                 /* The cached pfn is always the first in a pageblock */
1306                 free_pfn &= ~(pageblock_nr_pages-1);
1307                 /*
1308                  * Only go back, not forward. The cached pfn might have been
1309                  * already reset to zone end in compact_finished()
1310                  */
1311                 if (free_pfn > zone->compact_cached_free_pfn)
1312                         zone->compact_cached_free_pfn = free_pfn;
1313         }
1314
1315         trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
1316                                 cc->free_pfn, end_pfn, sync, ret);
1317
1318         return ret;
1319 }
1320
1321 static unsigned long compact_zone_order(struct zone *zone, int order,
1322                 gfp_t gfp_mask, enum migrate_mode mode, int *contended,
1323                 int alloc_flags, int classzone_idx)
1324 {
1325         unsigned long ret;
1326         struct compact_control cc = {
1327                 .nr_freepages = 0,
1328                 .nr_migratepages = 0,
1329                 .order = order,
1330                 .gfp_mask = gfp_mask,
1331                 .zone = zone,
1332                 .mode = mode,
1333                 .alloc_flags = alloc_flags,
1334                 .classzone_idx = classzone_idx,
1335         };
1336         INIT_LIST_HEAD(&cc.freepages);
1337         INIT_LIST_HEAD(&cc.migratepages);
1338
1339         ret = compact_zone(zone, &cc);
1340
1341         VM_BUG_ON(!list_empty(&cc.freepages));
1342         VM_BUG_ON(!list_empty(&cc.migratepages));
1343
1344         *contended = cc.contended;
1345         return ret;
1346 }
1347
1348 int sysctl_extfrag_threshold = 500;
1349
1350 /**
1351  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1352  * @gfp_mask: The GFP mask of the current allocation
1353  * @order: The order of the current allocation
1354  * @alloc_flags: The allocation flags of the current allocation
1355  * @ac: The context of current allocation
1356  * @mode: The migration mode for async, sync light, or sync migration
1357  * @contended: Return value that determines if compaction was aborted due to
1358  *             need_resched() or lock contention
1359  *
1360  * This is the main entry point for direct page compaction.
1361  */
1362 unsigned long try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
1363                         int alloc_flags, const struct alloc_context *ac,
1364                         enum migrate_mode mode, int *contended)
1365 {
1366         int may_enter_fs = gfp_mask & __GFP_FS;
1367         int may_perform_io = gfp_mask & __GFP_IO;
1368         struct zoneref *z;
1369         struct zone *zone;
1370         int rc = COMPACT_DEFERRED;
1371         int all_zones_contended = COMPACT_CONTENDED_LOCK; /* init for &= op */
1372
1373         *contended = COMPACT_CONTENDED_NONE;
1374
1375         /* Check if the GFP flags allow compaction */
1376         if (!order || !may_enter_fs || !may_perform_io)
1377                 return COMPACT_SKIPPED;
1378
1379         /* Compact each zone in the list */
1380         for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1381                                                                 ac->nodemask) {
1382                 int status;
1383                 int zone_contended;
1384
1385                 if (compaction_deferred(zone, order))
1386                         continue;
1387
1388                 status = compact_zone_order(zone, order, gfp_mask, mode,
1389                                 &zone_contended, alloc_flags,
1390                                 ac->classzone_idx);
1391                 rc = max(status, rc);
1392                 /*
1393                  * It takes at least one zone that wasn't lock contended
1394                  * to clear all_zones_contended.
1395                  */
1396                 all_zones_contended &= zone_contended;
1397
1398                 /* If a normal allocation would succeed, stop compacting */
1399                 if (zone_watermark_ok(zone, order, low_wmark_pages(zone),
1400                                         ac->classzone_idx, alloc_flags)) {
1401                         /*
1402                          * We think the allocation will succeed in this zone,
1403                          * but it is not certain, hence the false. The caller
1404                          * will repeat this with true if allocation indeed
1405                          * succeeds in this zone.
1406                          */
1407                         compaction_defer_reset(zone, order, false);
1408                         /*
1409                          * It is possible that async compaction aborted due to
1410                          * need_resched() and the watermarks were ok thanks to
1411                          * somebody else freeing memory. The allocation can
1412                          * however still fail so we better signal the
1413                          * need_resched() contention anyway (this will not
1414                          * prevent the allocation attempt).
1415                          */
1416                         if (zone_contended == COMPACT_CONTENDED_SCHED)
1417                                 *contended = COMPACT_CONTENDED_SCHED;
1418
1419                         goto break_loop;
1420                 }
1421
1422                 if (mode != MIGRATE_ASYNC && status == COMPACT_COMPLETE) {
1423                         /*
1424                          * We think that allocation won't succeed in this zone
1425                          * so we defer compaction there. If it ends up
1426                          * succeeding after all, it will be reset.
1427                          */
1428                         defer_compaction(zone, order);
1429                 }
1430
1431                 /*
1432                  * We might have stopped compacting due to need_resched() in
1433                  * async compaction, or due to a fatal signal detected. In that
1434                  * case do not try further zones and signal need_resched()
1435                  * contention.
1436                  */
1437                 if ((zone_contended == COMPACT_CONTENDED_SCHED)
1438                                         || fatal_signal_pending(current)) {
1439                         *contended = COMPACT_CONTENDED_SCHED;
1440                         goto break_loop;
1441                 }
1442
1443                 continue;
1444 break_loop:
1445                 /*
1446                  * We might not have tried all the zones, so  be conservative
1447                  * and assume they are not all lock contended.
1448                  */
1449                 all_zones_contended = 0;
1450                 break;
1451         }
1452
1453         /*
1454          * If at least one zone wasn't deferred or skipped, we report if all
1455          * zones that were tried were lock contended.
1456          */
1457         if (rc > COMPACT_SKIPPED && all_zones_contended)
1458                 *contended = COMPACT_CONTENDED_LOCK;
1459
1460         return rc;
1461 }
1462
1463
1464 /* Compact all zones within a node */
1465 static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
1466 {
1467         int zoneid;
1468         struct zone *zone;
1469
1470         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1471
1472                 zone = &pgdat->node_zones[zoneid];
1473                 if (!populated_zone(zone))
1474                         continue;
1475
1476                 cc->nr_freepages = 0;
1477                 cc->nr_migratepages = 0;
1478                 cc->zone = zone;
1479                 INIT_LIST_HEAD(&cc->freepages);
1480                 INIT_LIST_HEAD(&cc->migratepages);
1481
1482                 if (cc->order == -1 || !compaction_deferred(zone, cc->order))
1483                         compact_zone(zone, cc);
1484
1485                 if (cc->order > 0) {
1486                         if (zone_watermark_ok(zone, cc->order,
1487                                                 low_wmark_pages(zone), 0, 0))
1488                                 compaction_defer_reset(zone, cc->order, false);
1489                 }
1490
1491                 VM_BUG_ON(!list_empty(&cc->freepages));
1492                 VM_BUG_ON(!list_empty(&cc->migratepages));
1493         }
1494 }
1495
1496 void compact_pgdat(pg_data_t *pgdat, int order)
1497 {
1498         struct compact_control cc = {
1499                 .order = order,
1500                 .mode = MIGRATE_ASYNC,
1501         };
1502
1503         if (!order)
1504                 return;
1505
1506         __compact_pgdat(pgdat, &cc);
1507 }
1508
1509 static void compact_node(int nid)
1510 {
1511         struct compact_control cc = {
1512                 .order = -1,
1513                 .mode = MIGRATE_SYNC,
1514                 .ignore_skip_hint = true,
1515         };
1516
1517         __compact_pgdat(NODE_DATA(nid), &cc);
1518 }
1519
1520 /* Compact all nodes in the system */
1521 static void compact_nodes(void)
1522 {
1523         int nid;
1524
1525         /* Flush pending updates to the LRU lists */
1526         lru_add_drain_all();
1527
1528         for_each_online_node(nid)
1529                 compact_node(nid);
1530 }
1531
1532 /* The written value is actually unused, all memory is compacted */
1533 int sysctl_compact_memory;
1534
1535 /* This is the entry point for compacting all nodes via /proc/sys/vm */
1536 int sysctl_compaction_handler(struct ctl_table *table, int write,
1537                         void __user *buffer, size_t *length, loff_t *ppos)
1538 {
1539         if (write)
1540                 compact_nodes();
1541
1542         return 0;
1543 }
1544
1545 int sysctl_extfrag_handler(struct ctl_table *table, int write,
1546                         void __user *buffer, size_t *length, loff_t *ppos)
1547 {
1548         proc_dointvec_minmax(table, write, buffer, length, ppos);
1549
1550         return 0;
1551 }
1552
1553 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1554 static ssize_t sysfs_compact_node(struct device *dev,
1555                         struct device_attribute *attr,
1556                         const char *buf, size_t count)
1557 {
1558         int nid = dev->id;
1559
1560         if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1561                 /* Flush pending updates to the LRU lists */
1562                 lru_add_drain_all();
1563
1564                 compact_node(nid);
1565         }
1566
1567         return count;
1568 }
1569 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1570
1571 int compaction_register_node(struct node *node)
1572 {
1573         return device_create_file(&node->dev, &dev_attr_compact);
1574 }
1575
1576 void compaction_unregister_node(struct node *node)
1577 {
1578         return device_remove_file(&node->dev, &dev_attr_compact);
1579 }
1580 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
1581
1582 #endif /* CONFIG_COMPACTION */