cfg80211: handle failed skb allocation
[cascardo/linux.git] / mm / filemap.c
1 /*
2  *      linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/dax.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34 #include <linux/hugetlb.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cleancache.h>
37 #include <linux/rmap.h>
38 #include "internal.h"
39
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/filemap.h>
42
43 /*
44  * FIXME: remove all knowledge of the buffer layer from the core VM
45  */
46 #include <linux/buffer_head.h> /* for try_to_free_buffers */
47
48 #include <asm/mman.h>
49
50 /*
51  * Shared mappings implemented 30.11.1994. It's not fully working yet,
52  * though.
53  *
54  * Shared mappings now work. 15.8.1995  Bruno.
55  *
56  * finished 'unifying' the page and buffer cache and SMP-threaded the
57  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
58  *
59  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
60  */
61
62 /*
63  * Lock ordering:
64  *
65  *  ->i_mmap_rwsem              (truncate_pagecache)
66  *    ->private_lock            (__free_pte->__set_page_dirty_buffers)
67  *      ->swap_lock             (exclusive_swap_page, others)
68  *        ->mapping->tree_lock
69  *
70  *  ->i_mutex
71  *    ->i_mmap_rwsem            (truncate->unmap_mapping_range)
72  *
73  *  ->mmap_sem
74  *    ->i_mmap_rwsem
75  *      ->page_table_lock or pte_lock   (various, mainly in memory.c)
76  *        ->mapping->tree_lock  (arch-dependent flush_dcache_mmap_lock)
77  *
78  *  ->mmap_sem
79  *    ->lock_page               (access_process_vm)
80  *
81  *  ->i_mutex                   (generic_perform_write)
82  *    ->mmap_sem                (fault_in_pages_readable->do_page_fault)
83  *
84  *  bdi->wb.list_lock
85  *    sb_lock                   (fs/fs-writeback.c)
86  *    ->mapping->tree_lock      (__sync_single_inode)
87  *
88  *  ->i_mmap_rwsem
89  *    ->anon_vma.lock           (vma_adjust)
90  *
91  *  ->anon_vma.lock
92  *    ->page_table_lock or pte_lock     (anon_vma_prepare and various)
93  *
94  *  ->page_table_lock or pte_lock
95  *    ->swap_lock               (try_to_unmap_one)
96  *    ->private_lock            (try_to_unmap_one)
97  *    ->tree_lock               (try_to_unmap_one)
98  *    ->zone.lru_lock           (follow_page->mark_page_accessed)
99  *    ->zone.lru_lock           (check_pte_range->isolate_lru_page)
100  *    ->private_lock            (page_remove_rmap->set_page_dirty)
101  *    ->tree_lock               (page_remove_rmap->set_page_dirty)
102  *    bdi.wb->list_lock         (page_remove_rmap->set_page_dirty)
103  *    ->inode->i_lock           (page_remove_rmap->set_page_dirty)
104  *    ->memcg->move_lock        (page_remove_rmap->lock_page_memcg)
105  *    bdi.wb->list_lock         (zap_pte_range->set_page_dirty)
106  *    ->inode->i_lock           (zap_pte_range->set_page_dirty)
107  *    ->private_lock            (zap_pte_range->__set_page_dirty_buffers)
108  *
109  * ->i_mmap_rwsem
110  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
111  */
112
113 static void page_cache_tree_delete(struct address_space *mapping,
114                                    struct page *page, void *shadow)
115 {
116         struct radix_tree_node *node;
117
118         VM_BUG_ON(!PageLocked(page));
119
120         node = radix_tree_replace_clear_tags(&mapping->page_tree, page->index,
121                                                                 shadow);
122
123         if (shadow) {
124                 mapping->nrexceptional++;
125                 /*
126                  * Make sure the nrexceptional update is committed before
127                  * the nrpages update so that final truncate racing
128                  * with reclaim does not see both counters 0 at the
129                  * same time and miss a shadow entry.
130                  */
131                 smp_wmb();
132         }
133         mapping->nrpages--;
134
135         if (!node)
136                 return;
137
138         workingset_node_pages_dec(node);
139         if (shadow)
140                 workingset_node_shadows_inc(node);
141         else
142                 if (__radix_tree_delete_node(&mapping->page_tree, node))
143                         return;
144
145         /*
146          * Track node that only contains shadow entries.
147          *
148          * Avoid acquiring the list_lru lock if already tracked.  The
149          * list_empty() test is safe as node->private_list is
150          * protected by mapping->tree_lock.
151          */
152         if (!workingset_node_pages(node) &&
153             list_empty(&node->private_list)) {
154                 node->private_data = mapping;
155                 list_lru_add(&workingset_shadow_nodes, &node->private_list);
156         }
157 }
158
159 /*
160  * Delete a page from the page cache and free it. Caller has to make
161  * sure the page is locked and that nobody else uses it - or that usage
162  * is safe.  The caller must hold the mapping's tree_lock.
163  */
164 void __delete_from_page_cache(struct page *page, void *shadow)
165 {
166         struct address_space *mapping = page->mapping;
167
168         trace_mm_filemap_delete_from_page_cache(page);
169         /*
170          * if we're uptodate, flush out into the cleancache, otherwise
171          * invalidate any existing cleancache entries.  We can't leave
172          * stale data around in the cleancache once our page is gone
173          */
174         if (PageUptodate(page) && PageMappedToDisk(page))
175                 cleancache_put_page(page);
176         else
177                 cleancache_invalidate_page(mapping, page);
178
179         VM_BUG_ON_PAGE(page_mapped(page), page);
180         if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
181                 int mapcount;
182
183                 pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
184                          current->comm, page_to_pfn(page));
185                 dump_page(page, "still mapped when deleted");
186                 dump_stack();
187                 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
188
189                 mapcount = page_mapcount(page);
190                 if (mapping_exiting(mapping) &&
191                     page_count(page) >= mapcount + 2) {
192                         /*
193                          * All vmas have already been torn down, so it's
194                          * a good bet that actually the page is unmapped,
195                          * and we'd prefer not to leak it: if we're wrong,
196                          * some other bad page check should catch it later.
197                          */
198                         page_mapcount_reset(page);
199                         page_ref_sub(page, mapcount);
200                 }
201         }
202
203         page_cache_tree_delete(mapping, page, shadow);
204
205         page->mapping = NULL;
206         /* Leave page->index set: truncation lookup relies upon it */
207
208         /* hugetlb pages do not participate in page cache accounting. */
209         if (!PageHuge(page))
210                 __dec_zone_page_state(page, NR_FILE_PAGES);
211         if (PageSwapBacked(page))
212                 __dec_zone_page_state(page, NR_SHMEM);
213
214         /*
215          * At this point page must be either written or cleaned by truncate.
216          * Dirty page here signals a bug and loss of unwritten data.
217          *
218          * This fixes dirty accounting after removing the page entirely but
219          * leaves PageDirty set: it has no effect for truncated page and
220          * anyway will be cleared before returning page into buddy allocator.
221          */
222         if (WARN_ON_ONCE(PageDirty(page)))
223                 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
224 }
225
226 /**
227  * delete_from_page_cache - delete page from page cache
228  * @page: the page which the kernel is trying to remove from page cache
229  *
230  * This must be called only on pages that have been verified to be in the page
231  * cache and locked.  It will never put the page into the free list, the caller
232  * has a reference on the page.
233  */
234 void delete_from_page_cache(struct page *page)
235 {
236         struct address_space *mapping = page->mapping;
237         unsigned long flags;
238
239         void (*freepage)(struct page *);
240
241         BUG_ON(!PageLocked(page));
242
243         freepage = mapping->a_ops->freepage;
244
245         spin_lock_irqsave(&mapping->tree_lock, flags);
246         __delete_from_page_cache(page, NULL);
247         spin_unlock_irqrestore(&mapping->tree_lock, flags);
248
249         if (freepage)
250                 freepage(page);
251         put_page(page);
252 }
253 EXPORT_SYMBOL(delete_from_page_cache);
254
255 static int filemap_check_errors(struct address_space *mapping)
256 {
257         int ret = 0;
258         /* Check for outstanding write errors */
259         if (test_bit(AS_ENOSPC, &mapping->flags) &&
260             test_and_clear_bit(AS_ENOSPC, &mapping->flags))
261                 ret = -ENOSPC;
262         if (test_bit(AS_EIO, &mapping->flags) &&
263             test_and_clear_bit(AS_EIO, &mapping->flags))
264                 ret = -EIO;
265         return ret;
266 }
267
268 /**
269  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
270  * @mapping:    address space structure to write
271  * @start:      offset in bytes where the range starts
272  * @end:        offset in bytes where the range ends (inclusive)
273  * @sync_mode:  enable synchronous operation
274  *
275  * Start writeback against all of a mapping's dirty pages that lie
276  * within the byte offsets <start, end> inclusive.
277  *
278  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
279  * opposed to a regular memory cleansing writeback.  The difference between
280  * these two operations is that if a dirty page/buffer is encountered, it must
281  * be waited upon, and not just skipped over.
282  */
283 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
284                                 loff_t end, int sync_mode)
285 {
286         int ret;
287         struct writeback_control wbc = {
288                 .sync_mode = sync_mode,
289                 .nr_to_write = LONG_MAX,
290                 .range_start = start,
291                 .range_end = end,
292         };
293
294         if (!mapping_cap_writeback_dirty(mapping))
295                 return 0;
296
297         wbc_attach_fdatawrite_inode(&wbc, mapping->host);
298         ret = do_writepages(mapping, &wbc);
299         wbc_detach_inode(&wbc);
300         return ret;
301 }
302
303 static inline int __filemap_fdatawrite(struct address_space *mapping,
304         int sync_mode)
305 {
306         return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
307 }
308
309 int filemap_fdatawrite(struct address_space *mapping)
310 {
311         return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
312 }
313 EXPORT_SYMBOL(filemap_fdatawrite);
314
315 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
316                                 loff_t end)
317 {
318         return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
319 }
320 EXPORT_SYMBOL(filemap_fdatawrite_range);
321
322 /**
323  * filemap_flush - mostly a non-blocking flush
324  * @mapping:    target address_space
325  *
326  * This is a mostly non-blocking flush.  Not suitable for data-integrity
327  * purposes - I/O may not be started against all dirty pages.
328  */
329 int filemap_flush(struct address_space *mapping)
330 {
331         return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
332 }
333 EXPORT_SYMBOL(filemap_flush);
334
335 static int __filemap_fdatawait_range(struct address_space *mapping,
336                                      loff_t start_byte, loff_t end_byte)
337 {
338         pgoff_t index = start_byte >> PAGE_SHIFT;
339         pgoff_t end = end_byte >> PAGE_SHIFT;
340         struct pagevec pvec;
341         int nr_pages;
342         int ret = 0;
343
344         if (end_byte < start_byte)
345                 goto out;
346
347         pagevec_init(&pvec, 0);
348         while ((index <= end) &&
349                         (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
350                         PAGECACHE_TAG_WRITEBACK,
351                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
352                 unsigned i;
353
354                 for (i = 0; i < nr_pages; i++) {
355                         struct page *page = pvec.pages[i];
356
357                         /* until radix tree lookup accepts end_index */
358                         if (page->index > end)
359                                 continue;
360
361                         wait_on_page_writeback(page);
362                         if (TestClearPageError(page))
363                                 ret = -EIO;
364                 }
365                 pagevec_release(&pvec);
366                 cond_resched();
367         }
368 out:
369         return ret;
370 }
371
372 /**
373  * filemap_fdatawait_range - wait for writeback to complete
374  * @mapping:            address space structure to wait for
375  * @start_byte:         offset in bytes where the range starts
376  * @end_byte:           offset in bytes where the range ends (inclusive)
377  *
378  * Walk the list of under-writeback pages of the given address space
379  * in the given range and wait for all of them.  Check error status of
380  * the address space and return it.
381  *
382  * Since the error status of the address space is cleared by this function,
383  * callers are responsible for checking the return value and handling and/or
384  * reporting the error.
385  */
386 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
387                             loff_t end_byte)
388 {
389         int ret, ret2;
390
391         ret = __filemap_fdatawait_range(mapping, start_byte, end_byte);
392         ret2 = filemap_check_errors(mapping);
393         if (!ret)
394                 ret = ret2;
395
396         return ret;
397 }
398 EXPORT_SYMBOL(filemap_fdatawait_range);
399
400 /**
401  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
402  * @mapping: address space structure to wait for
403  *
404  * Walk the list of under-writeback pages of the given address space
405  * and wait for all of them.  Unlike filemap_fdatawait(), this function
406  * does not clear error status of the address space.
407  *
408  * Use this function if callers don't handle errors themselves.  Expected
409  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
410  * fsfreeze(8)
411  */
412 void filemap_fdatawait_keep_errors(struct address_space *mapping)
413 {
414         loff_t i_size = i_size_read(mapping->host);
415
416         if (i_size == 0)
417                 return;
418
419         __filemap_fdatawait_range(mapping, 0, i_size - 1);
420 }
421
422 /**
423  * filemap_fdatawait - wait for all under-writeback pages to complete
424  * @mapping: address space structure to wait for
425  *
426  * Walk the list of under-writeback pages of the given address space
427  * and wait for all of them.  Check error status of the address space
428  * and return it.
429  *
430  * Since the error status of the address space is cleared by this function,
431  * callers are responsible for checking the return value and handling and/or
432  * reporting the error.
433  */
434 int filemap_fdatawait(struct address_space *mapping)
435 {
436         loff_t i_size = i_size_read(mapping->host);
437
438         if (i_size == 0)
439                 return 0;
440
441         return filemap_fdatawait_range(mapping, 0, i_size - 1);
442 }
443 EXPORT_SYMBOL(filemap_fdatawait);
444
445 int filemap_write_and_wait(struct address_space *mapping)
446 {
447         int err = 0;
448
449         if ((!dax_mapping(mapping) && mapping->nrpages) ||
450             (dax_mapping(mapping) && mapping->nrexceptional)) {
451                 err = filemap_fdatawrite(mapping);
452                 /*
453                  * Even if the above returned error, the pages may be
454                  * written partially (e.g. -ENOSPC), so we wait for it.
455                  * But the -EIO is special case, it may indicate the worst
456                  * thing (e.g. bug) happened, so we avoid waiting for it.
457                  */
458                 if (err != -EIO) {
459                         int err2 = filemap_fdatawait(mapping);
460                         if (!err)
461                                 err = err2;
462                 }
463         } else {
464                 err = filemap_check_errors(mapping);
465         }
466         return err;
467 }
468 EXPORT_SYMBOL(filemap_write_and_wait);
469
470 /**
471  * filemap_write_and_wait_range - write out & wait on a file range
472  * @mapping:    the address_space for the pages
473  * @lstart:     offset in bytes where the range starts
474  * @lend:       offset in bytes where the range ends (inclusive)
475  *
476  * Write out and wait upon file offsets lstart->lend, inclusive.
477  *
478  * Note that `lend' is inclusive (describes the last byte to be written) so
479  * that this function can be used to write to the very end-of-file (end = -1).
480  */
481 int filemap_write_and_wait_range(struct address_space *mapping,
482                                  loff_t lstart, loff_t lend)
483 {
484         int err = 0;
485
486         if ((!dax_mapping(mapping) && mapping->nrpages) ||
487             (dax_mapping(mapping) && mapping->nrexceptional)) {
488                 err = __filemap_fdatawrite_range(mapping, lstart, lend,
489                                                  WB_SYNC_ALL);
490                 /* See comment of filemap_write_and_wait() */
491                 if (err != -EIO) {
492                         int err2 = filemap_fdatawait_range(mapping,
493                                                 lstart, lend);
494                         if (!err)
495                                 err = err2;
496                 }
497         } else {
498                 err = filemap_check_errors(mapping);
499         }
500         return err;
501 }
502 EXPORT_SYMBOL(filemap_write_and_wait_range);
503
504 /**
505  * replace_page_cache_page - replace a pagecache page with a new one
506  * @old:        page to be replaced
507  * @new:        page to replace with
508  * @gfp_mask:   allocation mode
509  *
510  * This function replaces a page in the pagecache with a new one.  On
511  * success it acquires the pagecache reference for the new page and
512  * drops it for the old page.  Both the old and new pages must be
513  * locked.  This function does not add the new page to the LRU, the
514  * caller must do that.
515  *
516  * The remove + add is atomic.  The only way this function can fail is
517  * memory allocation failure.
518  */
519 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
520 {
521         int error;
522
523         VM_BUG_ON_PAGE(!PageLocked(old), old);
524         VM_BUG_ON_PAGE(!PageLocked(new), new);
525         VM_BUG_ON_PAGE(new->mapping, new);
526
527         error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
528         if (!error) {
529                 struct address_space *mapping = old->mapping;
530                 void (*freepage)(struct page *);
531                 unsigned long flags;
532
533                 pgoff_t offset = old->index;
534                 freepage = mapping->a_ops->freepage;
535
536                 get_page(new);
537                 new->mapping = mapping;
538                 new->index = offset;
539
540                 spin_lock_irqsave(&mapping->tree_lock, flags);
541                 __delete_from_page_cache(old, NULL);
542                 error = radix_tree_insert(&mapping->page_tree, offset, new);
543                 BUG_ON(error);
544                 mapping->nrpages++;
545
546                 /*
547                  * hugetlb pages do not participate in page cache accounting.
548                  */
549                 if (!PageHuge(new))
550                         __inc_zone_page_state(new, NR_FILE_PAGES);
551                 if (PageSwapBacked(new))
552                         __inc_zone_page_state(new, NR_SHMEM);
553                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
554                 mem_cgroup_migrate(old, new);
555                 radix_tree_preload_end();
556                 if (freepage)
557                         freepage(old);
558                 put_page(old);
559         }
560
561         return error;
562 }
563 EXPORT_SYMBOL_GPL(replace_page_cache_page);
564
565 static int page_cache_tree_insert(struct address_space *mapping,
566                                   struct page *page, void **shadowp)
567 {
568         struct radix_tree_node *node;
569         void **slot;
570         int error;
571
572         error = __radix_tree_create(&mapping->page_tree, page->index, 0,
573                                     &node, &slot);
574         if (error)
575                 return error;
576         if (*slot) {
577                 void *p;
578
579                 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
580                 if (!radix_tree_exceptional_entry(p))
581                         return -EEXIST;
582
583                 if (WARN_ON(dax_mapping(mapping)))
584                         return -EINVAL;
585
586                 if (shadowp)
587                         *shadowp = p;
588                 mapping->nrexceptional--;
589                 if (node)
590                         workingset_node_shadows_dec(node);
591         }
592         radix_tree_replace_slot(slot, page);
593         mapping->nrpages++;
594         if (node) {
595                 workingset_node_pages_inc(node);
596                 /*
597                  * Don't track node that contains actual pages.
598                  *
599                  * Avoid acquiring the list_lru lock if already
600                  * untracked.  The list_empty() test is safe as
601                  * node->private_list is protected by
602                  * mapping->tree_lock.
603                  */
604                 if (!list_empty(&node->private_list))
605                         list_lru_del(&workingset_shadow_nodes,
606                                      &node->private_list);
607         }
608         return 0;
609 }
610
611 static int __add_to_page_cache_locked(struct page *page,
612                                       struct address_space *mapping,
613                                       pgoff_t offset, gfp_t gfp_mask,
614                                       void **shadowp)
615 {
616         int huge = PageHuge(page);
617         struct mem_cgroup *memcg;
618         int error;
619
620         VM_BUG_ON_PAGE(!PageLocked(page), page);
621         VM_BUG_ON_PAGE(PageSwapBacked(page), page);
622
623         if (!huge) {
624                 error = mem_cgroup_try_charge(page, current->mm,
625                                               gfp_mask, &memcg, false);
626                 if (error)
627                         return error;
628         }
629
630         error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
631         if (error) {
632                 if (!huge)
633                         mem_cgroup_cancel_charge(page, memcg, false);
634                 return error;
635         }
636
637         get_page(page);
638         page->mapping = mapping;
639         page->index = offset;
640
641         spin_lock_irq(&mapping->tree_lock);
642         error = page_cache_tree_insert(mapping, page, shadowp);
643         radix_tree_preload_end();
644         if (unlikely(error))
645                 goto err_insert;
646
647         /* hugetlb pages do not participate in page cache accounting. */
648         if (!huge)
649                 __inc_zone_page_state(page, NR_FILE_PAGES);
650         spin_unlock_irq(&mapping->tree_lock);
651         if (!huge)
652                 mem_cgroup_commit_charge(page, memcg, false, false);
653         trace_mm_filemap_add_to_page_cache(page);
654         return 0;
655 err_insert:
656         page->mapping = NULL;
657         /* Leave page->index set: truncation relies upon it */
658         spin_unlock_irq(&mapping->tree_lock);
659         if (!huge)
660                 mem_cgroup_cancel_charge(page, memcg, false);
661         put_page(page);
662         return error;
663 }
664
665 /**
666  * add_to_page_cache_locked - add a locked page to the pagecache
667  * @page:       page to add
668  * @mapping:    the page's address_space
669  * @offset:     page index
670  * @gfp_mask:   page allocation mode
671  *
672  * This function is used to add a page to the pagecache. It must be locked.
673  * This function does not add the page to the LRU.  The caller must do that.
674  */
675 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
676                 pgoff_t offset, gfp_t gfp_mask)
677 {
678         return __add_to_page_cache_locked(page, mapping, offset,
679                                           gfp_mask, NULL);
680 }
681 EXPORT_SYMBOL(add_to_page_cache_locked);
682
683 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
684                                 pgoff_t offset, gfp_t gfp_mask)
685 {
686         void *shadow = NULL;
687         int ret;
688
689         __SetPageLocked(page);
690         ret = __add_to_page_cache_locked(page, mapping, offset,
691                                          gfp_mask, &shadow);
692         if (unlikely(ret))
693                 __ClearPageLocked(page);
694         else {
695                 /*
696                  * The page might have been evicted from cache only
697                  * recently, in which case it should be activated like
698                  * any other repeatedly accessed page.
699                  * The exception is pages getting rewritten; evicting other
700                  * data from the working set, only to cache data that will
701                  * get overwritten with something else, is a waste of memory.
702                  */
703                 if (!(gfp_mask & __GFP_WRITE) &&
704                     shadow && workingset_refault(shadow)) {
705                         SetPageActive(page);
706                         workingset_activation(page);
707                 } else
708                         ClearPageActive(page);
709                 lru_cache_add(page);
710         }
711         return ret;
712 }
713 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
714
715 #ifdef CONFIG_NUMA
716 struct page *__page_cache_alloc(gfp_t gfp)
717 {
718         int n;
719         struct page *page;
720
721         if (cpuset_do_page_mem_spread()) {
722                 unsigned int cpuset_mems_cookie;
723                 do {
724                         cpuset_mems_cookie = read_mems_allowed_begin();
725                         n = cpuset_mem_spread_node();
726                         page = __alloc_pages_node(n, gfp, 0);
727                 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
728
729                 return page;
730         }
731         return alloc_pages(gfp, 0);
732 }
733 EXPORT_SYMBOL(__page_cache_alloc);
734 #endif
735
736 /*
737  * In order to wait for pages to become available there must be
738  * waitqueues associated with pages. By using a hash table of
739  * waitqueues where the bucket discipline is to maintain all
740  * waiters on the same queue and wake all when any of the pages
741  * become available, and for the woken contexts to check to be
742  * sure the appropriate page became available, this saves space
743  * at a cost of "thundering herd" phenomena during rare hash
744  * collisions.
745  */
746 wait_queue_head_t *page_waitqueue(struct page *page)
747 {
748         const struct zone *zone = page_zone(page);
749
750         return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
751 }
752 EXPORT_SYMBOL(page_waitqueue);
753
754 void wait_on_page_bit(struct page *page, int bit_nr)
755 {
756         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
757
758         if (test_bit(bit_nr, &page->flags))
759                 __wait_on_bit(page_waitqueue(page), &wait, bit_wait_io,
760                                                         TASK_UNINTERRUPTIBLE);
761 }
762 EXPORT_SYMBOL(wait_on_page_bit);
763
764 int wait_on_page_bit_killable(struct page *page, int bit_nr)
765 {
766         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
767
768         if (!test_bit(bit_nr, &page->flags))
769                 return 0;
770
771         return __wait_on_bit(page_waitqueue(page), &wait,
772                              bit_wait_io, TASK_KILLABLE);
773 }
774
775 int wait_on_page_bit_killable_timeout(struct page *page,
776                                        int bit_nr, unsigned long timeout)
777 {
778         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
779
780         wait.key.timeout = jiffies + timeout;
781         if (!test_bit(bit_nr, &page->flags))
782                 return 0;
783         return __wait_on_bit(page_waitqueue(page), &wait,
784                              bit_wait_io_timeout, TASK_KILLABLE);
785 }
786 EXPORT_SYMBOL_GPL(wait_on_page_bit_killable_timeout);
787
788 /**
789  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
790  * @page: Page defining the wait queue of interest
791  * @waiter: Waiter to add to the queue
792  *
793  * Add an arbitrary @waiter to the wait queue for the nominated @page.
794  */
795 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
796 {
797         wait_queue_head_t *q = page_waitqueue(page);
798         unsigned long flags;
799
800         spin_lock_irqsave(&q->lock, flags);
801         __add_wait_queue(q, waiter);
802         spin_unlock_irqrestore(&q->lock, flags);
803 }
804 EXPORT_SYMBOL_GPL(add_page_wait_queue);
805
806 /**
807  * unlock_page - unlock a locked page
808  * @page: the page
809  *
810  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
811  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
812  * mechanism between PageLocked pages and PageWriteback pages is shared.
813  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
814  *
815  * The mb is necessary to enforce ordering between the clear_bit and the read
816  * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
817  */
818 void unlock_page(struct page *page)
819 {
820         page = compound_head(page);
821         VM_BUG_ON_PAGE(!PageLocked(page), page);
822         clear_bit_unlock(PG_locked, &page->flags);
823         smp_mb__after_atomic();
824         wake_up_page(page, PG_locked);
825 }
826 EXPORT_SYMBOL(unlock_page);
827
828 /**
829  * end_page_writeback - end writeback against a page
830  * @page: the page
831  */
832 void end_page_writeback(struct page *page)
833 {
834         /*
835          * TestClearPageReclaim could be used here but it is an atomic
836          * operation and overkill in this particular case. Failing to
837          * shuffle a page marked for immediate reclaim is too mild to
838          * justify taking an atomic operation penalty at the end of
839          * ever page writeback.
840          */
841         if (PageReclaim(page)) {
842                 ClearPageReclaim(page);
843                 rotate_reclaimable_page(page);
844         }
845
846         if (!test_clear_page_writeback(page))
847                 BUG();
848
849         smp_mb__after_atomic();
850         wake_up_page(page, PG_writeback);
851 }
852 EXPORT_SYMBOL(end_page_writeback);
853
854 /*
855  * After completing I/O on a page, call this routine to update the page
856  * flags appropriately
857  */
858 void page_endio(struct page *page, int rw, int err)
859 {
860         if (rw == READ) {
861                 if (!err) {
862                         SetPageUptodate(page);
863                 } else {
864                         ClearPageUptodate(page);
865                         SetPageError(page);
866                 }
867                 unlock_page(page);
868         } else { /* rw == WRITE */
869                 if (err) {
870                         SetPageError(page);
871                         if (page->mapping)
872                                 mapping_set_error(page->mapping, err);
873                 }
874                 end_page_writeback(page);
875         }
876 }
877 EXPORT_SYMBOL_GPL(page_endio);
878
879 /**
880  * __lock_page - get a lock on the page, assuming we need to sleep to get it
881  * @page: the page to lock
882  */
883 void __lock_page(struct page *page)
884 {
885         struct page *page_head = compound_head(page);
886         DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
887
888         __wait_on_bit_lock(page_waitqueue(page_head), &wait, bit_wait_io,
889                                                         TASK_UNINTERRUPTIBLE);
890 }
891 EXPORT_SYMBOL(__lock_page);
892
893 int __lock_page_killable(struct page *page)
894 {
895         struct page *page_head = compound_head(page);
896         DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
897
898         return __wait_on_bit_lock(page_waitqueue(page_head), &wait,
899                                         bit_wait_io, TASK_KILLABLE);
900 }
901 EXPORT_SYMBOL_GPL(__lock_page_killable);
902
903 /*
904  * Return values:
905  * 1 - page is locked; mmap_sem is still held.
906  * 0 - page is not locked.
907  *     mmap_sem has been released (up_read()), unless flags had both
908  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
909  *     which case mmap_sem is still held.
910  *
911  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
912  * with the page locked and the mmap_sem unperturbed.
913  */
914 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
915                          unsigned int flags)
916 {
917         if (flags & FAULT_FLAG_ALLOW_RETRY) {
918                 /*
919                  * CAUTION! In this case, mmap_sem is not released
920                  * even though return 0.
921                  */
922                 if (flags & FAULT_FLAG_RETRY_NOWAIT)
923                         return 0;
924
925                 up_read(&mm->mmap_sem);
926                 if (flags & FAULT_FLAG_KILLABLE)
927                         wait_on_page_locked_killable(page);
928                 else
929                         wait_on_page_locked(page);
930                 return 0;
931         } else {
932                 if (flags & FAULT_FLAG_KILLABLE) {
933                         int ret;
934
935                         ret = __lock_page_killable(page);
936                         if (ret) {
937                                 up_read(&mm->mmap_sem);
938                                 return 0;
939                         }
940                 } else
941                         __lock_page(page);
942                 return 1;
943         }
944 }
945
946 /**
947  * page_cache_next_hole - find the next hole (not-present entry)
948  * @mapping: mapping
949  * @index: index
950  * @max_scan: maximum range to search
951  *
952  * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
953  * lowest indexed hole.
954  *
955  * Returns: the index of the hole if found, otherwise returns an index
956  * outside of the set specified (in which case 'return - index >=
957  * max_scan' will be true). In rare cases of index wrap-around, 0 will
958  * be returned.
959  *
960  * page_cache_next_hole may be called under rcu_read_lock. However,
961  * like radix_tree_gang_lookup, this will not atomically search a
962  * snapshot of the tree at a single point in time. For example, if a
963  * hole is created at index 5, then subsequently a hole is created at
964  * index 10, page_cache_next_hole covering both indexes may return 10
965  * if called under rcu_read_lock.
966  */
967 pgoff_t page_cache_next_hole(struct address_space *mapping,
968                              pgoff_t index, unsigned long max_scan)
969 {
970         unsigned long i;
971
972         for (i = 0; i < max_scan; i++) {
973                 struct page *page;
974
975                 page = radix_tree_lookup(&mapping->page_tree, index);
976                 if (!page || radix_tree_exceptional_entry(page))
977                         break;
978                 index++;
979                 if (index == 0)
980                         break;
981         }
982
983         return index;
984 }
985 EXPORT_SYMBOL(page_cache_next_hole);
986
987 /**
988  * page_cache_prev_hole - find the prev hole (not-present entry)
989  * @mapping: mapping
990  * @index: index
991  * @max_scan: maximum range to search
992  *
993  * Search backwards in the range [max(index-max_scan+1, 0), index] for
994  * the first hole.
995  *
996  * Returns: the index of the hole if found, otherwise returns an index
997  * outside of the set specified (in which case 'index - return >=
998  * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
999  * will be returned.
1000  *
1001  * page_cache_prev_hole may be called under rcu_read_lock. However,
1002  * like radix_tree_gang_lookup, this will not atomically search a
1003  * snapshot of the tree at a single point in time. For example, if a
1004  * hole is created at index 10, then subsequently a hole is created at
1005  * index 5, page_cache_prev_hole covering both indexes may return 5 if
1006  * called under rcu_read_lock.
1007  */
1008 pgoff_t page_cache_prev_hole(struct address_space *mapping,
1009                              pgoff_t index, unsigned long max_scan)
1010 {
1011         unsigned long i;
1012
1013         for (i = 0; i < max_scan; i++) {
1014                 struct page *page;
1015
1016                 page = radix_tree_lookup(&mapping->page_tree, index);
1017                 if (!page || radix_tree_exceptional_entry(page))
1018                         break;
1019                 index--;
1020                 if (index == ULONG_MAX)
1021                         break;
1022         }
1023
1024         return index;
1025 }
1026 EXPORT_SYMBOL(page_cache_prev_hole);
1027
1028 /**
1029  * find_get_entry - find and get a page cache entry
1030  * @mapping: the address_space to search
1031  * @offset: the page cache index
1032  *
1033  * Looks up the page cache slot at @mapping & @offset.  If there is a
1034  * page cache page, it is returned with an increased refcount.
1035  *
1036  * If the slot holds a shadow entry of a previously evicted page, or a
1037  * swap entry from shmem/tmpfs, it is returned.
1038  *
1039  * Otherwise, %NULL is returned.
1040  */
1041 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1042 {
1043         void **pagep;
1044         struct page *page;
1045
1046         rcu_read_lock();
1047 repeat:
1048         page = NULL;
1049         pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1050         if (pagep) {
1051                 page = radix_tree_deref_slot(pagep);
1052                 if (unlikely(!page))
1053                         goto out;
1054                 if (radix_tree_exception(page)) {
1055                         if (radix_tree_deref_retry(page))
1056                                 goto repeat;
1057                         /*
1058                          * A shadow entry of a recently evicted page,
1059                          * or a swap entry from shmem/tmpfs.  Return
1060                          * it without attempting to raise page count.
1061                          */
1062                         goto out;
1063                 }
1064                 if (!page_cache_get_speculative(page))
1065                         goto repeat;
1066
1067                 /*
1068                  * Has the page moved?
1069                  * This is part of the lockless pagecache protocol. See
1070                  * include/linux/pagemap.h for details.
1071                  */
1072                 if (unlikely(page != *pagep)) {
1073                         put_page(page);
1074                         goto repeat;
1075                 }
1076         }
1077 out:
1078         rcu_read_unlock();
1079
1080         return page;
1081 }
1082 EXPORT_SYMBOL(find_get_entry);
1083
1084 /**
1085  * find_lock_entry - locate, pin and lock a page cache entry
1086  * @mapping: the address_space to search
1087  * @offset: the page cache index
1088  *
1089  * Looks up the page cache slot at @mapping & @offset.  If there is a
1090  * page cache page, it is returned locked and with an increased
1091  * refcount.
1092  *
1093  * If the slot holds a shadow entry of a previously evicted page, or a
1094  * swap entry from shmem/tmpfs, it is returned.
1095  *
1096  * Otherwise, %NULL is returned.
1097  *
1098  * find_lock_entry() may sleep.
1099  */
1100 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1101 {
1102         struct page *page;
1103
1104 repeat:
1105         page = find_get_entry(mapping, offset);
1106         if (page && !radix_tree_exception(page)) {
1107                 lock_page(page);
1108                 /* Has the page been truncated? */
1109                 if (unlikely(page->mapping != mapping)) {
1110                         unlock_page(page);
1111                         put_page(page);
1112                         goto repeat;
1113                 }
1114                 VM_BUG_ON_PAGE(page->index != offset, page);
1115         }
1116         return page;
1117 }
1118 EXPORT_SYMBOL(find_lock_entry);
1119
1120 /**
1121  * pagecache_get_page - find and get a page reference
1122  * @mapping: the address_space to search
1123  * @offset: the page index
1124  * @fgp_flags: PCG flags
1125  * @gfp_mask: gfp mask to use for the page cache data page allocation
1126  *
1127  * Looks up the page cache slot at @mapping & @offset.
1128  *
1129  * PCG flags modify how the page is returned.
1130  *
1131  * FGP_ACCESSED: the page will be marked accessed
1132  * FGP_LOCK: Page is return locked
1133  * FGP_CREAT: If page is not present then a new page is allocated using
1134  *              @gfp_mask and added to the page cache and the VM's LRU
1135  *              list. The page is returned locked and with an increased
1136  *              refcount. Otherwise, %NULL is returned.
1137  *
1138  * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1139  * if the GFP flags specified for FGP_CREAT are atomic.
1140  *
1141  * If there is a page cache page, it is returned with an increased refcount.
1142  */
1143 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1144         int fgp_flags, gfp_t gfp_mask)
1145 {
1146         struct page *page;
1147
1148 repeat:
1149         page = find_get_entry(mapping, offset);
1150         if (radix_tree_exceptional_entry(page))
1151                 page = NULL;
1152         if (!page)
1153                 goto no_page;
1154
1155         if (fgp_flags & FGP_LOCK) {
1156                 if (fgp_flags & FGP_NOWAIT) {
1157                         if (!trylock_page(page)) {
1158                                 put_page(page);
1159                                 return NULL;
1160                         }
1161                 } else {
1162                         lock_page(page);
1163                 }
1164
1165                 /* Has the page been truncated? */
1166                 if (unlikely(page->mapping != mapping)) {
1167                         unlock_page(page);
1168                         put_page(page);
1169                         goto repeat;
1170                 }
1171                 VM_BUG_ON_PAGE(page->index != offset, page);
1172         }
1173
1174         if (page && (fgp_flags & FGP_ACCESSED))
1175                 mark_page_accessed(page);
1176
1177 no_page:
1178         if (!page && (fgp_flags & FGP_CREAT)) {
1179                 int err;
1180                 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1181                         gfp_mask |= __GFP_WRITE;
1182                 if (fgp_flags & FGP_NOFS)
1183                         gfp_mask &= ~__GFP_FS;
1184
1185                 page = __page_cache_alloc(gfp_mask);
1186                 if (!page)
1187                         return NULL;
1188
1189                 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1190                         fgp_flags |= FGP_LOCK;
1191
1192                 /* Init accessed so avoid atomic mark_page_accessed later */
1193                 if (fgp_flags & FGP_ACCESSED)
1194                         __SetPageReferenced(page);
1195
1196                 err = add_to_page_cache_lru(page, mapping, offset,
1197                                 gfp_mask & GFP_RECLAIM_MASK);
1198                 if (unlikely(err)) {
1199                         put_page(page);
1200                         page = NULL;
1201                         if (err == -EEXIST)
1202                                 goto repeat;
1203                 }
1204         }
1205
1206         return page;
1207 }
1208 EXPORT_SYMBOL(pagecache_get_page);
1209
1210 /**
1211  * find_get_entries - gang pagecache lookup
1212  * @mapping:    The address_space to search
1213  * @start:      The starting page cache index
1214  * @nr_entries: The maximum number of entries
1215  * @entries:    Where the resulting entries are placed
1216  * @indices:    The cache indices corresponding to the entries in @entries
1217  *
1218  * find_get_entries() will search for and return a group of up to
1219  * @nr_entries entries in the mapping.  The entries are placed at
1220  * @entries.  find_get_entries() takes a reference against any actual
1221  * pages it returns.
1222  *
1223  * The search returns a group of mapping-contiguous page cache entries
1224  * with ascending indexes.  There may be holes in the indices due to
1225  * not-present pages.
1226  *
1227  * Any shadow entries of evicted pages, or swap entries from
1228  * shmem/tmpfs, are included in the returned array.
1229  *
1230  * find_get_entries() returns the number of pages and shadow entries
1231  * which were found.
1232  */
1233 unsigned find_get_entries(struct address_space *mapping,
1234                           pgoff_t start, unsigned int nr_entries,
1235                           struct page **entries, pgoff_t *indices)
1236 {
1237         void **slot;
1238         unsigned int ret = 0;
1239         struct radix_tree_iter iter;
1240
1241         if (!nr_entries)
1242                 return 0;
1243
1244         rcu_read_lock();
1245         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1246                 struct page *page;
1247 repeat:
1248                 page = radix_tree_deref_slot(slot);
1249                 if (unlikely(!page))
1250                         continue;
1251                 if (radix_tree_exception(page)) {
1252                         if (radix_tree_deref_retry(page)) {
1253                                 slot = radix_tree_iter_retry(&iter);
1254                                 continue;
1255                         }
1256                         /*
1257                          * A shadow entry of a recently evicted page, a swap
1258                          * entry from shmem/tmpfs or a DAX entry.  Return it
1259                          * without attempting to raise page count.
1260                          */
1261                         goto export;
1262                 }
1263                 if (!page_cache_get_speculative(page))
1264                         goto repeat;
1265
1266                 /* Has the page moved? */
1267                 if (unlikely(page != *slot)) {
1268                         put_page(page);
1269                         goto repeat;
1270                 }
1271 export:
1272                 indices[ret] = iter.index;
1273                 entries[ret] = page;
1274                 if (++ret == nr_entries)
1275                         break;
1276         }
1277         rcu_read_unlock();
1278         return ret;
1279 }
1280
1281 /**
1282  * find_get_pages - gang pagecache lookup
1283  * @mapping:    The address_space to search
1284  * @start:      The starting page index
1285  * @nr_pages:   The maximum number of pages
1286  * @pages:      Where the resulting pages are placed
1287  *
1288  * find_get_pages() will search for and return a group of up to
1289  * @nr_pages pages in the mapping.  The pages are placed at @pages.
1290  * find_get_pages() takes a reference against the returned pages.
1291  *
1292  * The search returns a group of mapping-contiguous pages with ascending
1293  * indexes.  There may be holes in the indices due to not-present pages.
1294  *
1295  * find_get_pages() returns the number of pages which were found.
1296  */
1297 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1298                             unsigned int nr_pages, struct page **pages)
1299 {
1300         struct radix_tree_iter iter;
1301         void **slot;
1302         unsigned ret = 0;
1303
1304         if (unlikely(!nr_pages))
1305                 return 0;
1306
1307         rcu_read_lock();
1308         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1309                 struct page *page;
1310 repeat:
1311                 page = radix_tree_deref_slot(slot);
1312                 if (unlikely(!page))
1313                         continue;
1314
1315                 if (radix_tree_exception(page)) {
1316                         if (radix_tree_deref_retry(page)) {
1317                                 slot = radix_tree_iter_retry(&iter);
1318                                 continue;
1319                         }
1320                         /*
1321                          * A shadow entry of a recently evicted page,
1322                          * or a swap entry from shmem/tmpfs.  Skip
1323                          * over it.
1324                          */
1325                         continue;
1326                 }
1327
1328                 if (!page_cache_get_speculative(page))
1329                         goto repeat;
1330
1331                 /* Has the page moved? */
1332                 if (unlikely(page != *slot)) {
1333                         put_page(page);
1334                         goto repeat;
1335                 }
1336
1337                 pages[ret] = page;
1338                 if (++ret == nr_pages)
1339                         break;
1340         }
1341
1342         rcu_read_unlock();
1343         return ret;
1344 }
1345
1346 /**
1347  * find_get_pages_contig - gang contiguous pagecache lookup
1348  * @mapping:    The address_space to search
1349  * @index:      The starting page index
1350  * @nr_pages:   The maximum number of pages
1351  * @pages:      Where the resulting pages are placed
1352  *
1353  * find_get_pages_contig() works exactly like find_get_pages(), except
1354  * that the returned number of pages are guaranteed to be contiguous.
1355  *
1356  * find_get_pages_contig() returns the number of pages which were found.
1357  */
1358 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1359                                unsigned int nr_pages, struct page **pages)
1360 {
1361         struct radix_tree_iter iter;
1362         void **slot;
1363         unsigned int ret = 0;
1364
1365         if (unlikely(!nr_pages))
1366                 return 0;
1367
1368         rcu_read_lock();
1369         radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1370                 struct page *page;
1371 repeat:
1372                 page = radix_tree_deref_slot(slot);
1373                 /* The hole, there no reason to continue */
1374                 if (unlikely(!page))
1375                         break;
1376
1377                 if (radix_tree_exception(page)) {
1378                         if (radix_tree_deref_retry(page)) {
1379                                 slot = radix_tree_iter_retry(&iter);
1380                                 continue;
1381                         }
1382                         /*
1383                          * A shadow entry of a recently evicted page,
1384                          * or a swap entry from shmem/tmpfs.  Stop
1385                          * looking for contiguous pages.
1386                          */
1387                         break;
1388                 }
1389
1390                 if (!page_cache_get_speculative(page))
1391                         goto repeat;
1392
1393                 /* Has the page moved? */
1394                 if (unlikely(page != *slot)) {
1395                         put_page(page);
1396                         goto repeat;
1397                 }
1398
1399                 /*
1400                  * must check mapping and index after taking the ref.
1401                  * otherwise we can get both false positives and false
1402                  * negatives, which is just confusing to the caller.
1403                  */
1404                 if (page->mapping == NULL || page->index != iter.index) {
1405                         put_page(page);
1406                         break;
1407                 }
1408
1409                 pages[ret] = page;
1410                 if (++ret == nr_pages)
1411                         break;
1412         }
1413         rcu_read_unlock();
1414         return ret;
1415 }
1416 EXPORT_SYMBOL(find_get_pages_contig);
1417
1418 /**
1419  * find_get_pages_tag - find and return pages that match @tag
1420  * @mapping:    the address_space to search
1421  * @index:      the starting page index
1422  * @tag:        the tag index
1423  * @nr_pages:   the maximum number of pages
1424  * @pages:      where the resulting pages are placed
1425  *
1426  * Like find_get_pages, except we only return pages which are tagged with
1427  * @tag.   We update @index to index the next page for the traversal.
1428  */
1429 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1430                         int tag, unsigned int nr_pages, struct page **pages)
1431 {
1432         struct radix_tree_iter iter;
1433         void **slot;
1434         unsigned ret = 0;
1435
1436         if (unlikely(!nr_pages))
1437                 return 0;
1438
1439         rcu_read_lock();
1440         radix_tree_for_each_tagged(slot, &mapping->page_tree,
1441                                    &iter, *index, tag) {
1442                 struct page *page;
1443 repeat:
1444                 page = radix_tree_deref_slot(slot);
1445                 if (unlikely(!page))
1446                         continue;
1447
1448                 if (radix_tree_exception(page)) {
1449                         if (radix_tree_deref_retry(page)) {
1450                                 slot = radix_tree_iter_retry(&iter);
1451                                 continue;
1452                         }
1453                         /*
1454                          * A shadow entry of a recently evicted page.
1455                          *
1456                          * Those entries should never be tagged, but
1457                          * this tree walk is lockless and the tags are
1458                          * looked up in bulk, one radix tree node at a
1459                          * time, so there is a sizable window for page
1460                          * reclaim to evict a page we saw tagged.
1461                          *
1462                          * Skip over it.
1463                          */
1464                         continue;
1465                 }
1466
1467                 if (!page_cache_get_speculative(page))
1468                         goto repeat;
1469
1470                 /* Has the page moved? */
1471                 if (unlikely(page != *slot)) {
1472                         put_page(page);
1473                         goto repeat;
1474                 }
1475
1476                 pages[ret] = page;
1477                 if (++ret == nr_pages)
1478                         break;
1479         }
1480
1481         rcu_read_unlock();
1482
1483         if (ret)
1484                 *index = pages[ret - 1]->index + 1;
1485
1486         return ret;
1487 }
1488 EXPORT_SYMBOL(find_get_pages_tag);
1489
1490 /**
1491  * find_get_entries_tag - find and return entries that match @tag
1492  * @mapping:    the address_space to search
1493  * @start:      the starting page cache index
1494  * @tag:        the tag index
1495  * @nr_entries: the maximum number of entries
1496  * @entries:    where the resulting entries are placed
1497  * @indices:    the cache indices corresponding to the entries in @entries
1498  *
1499  * Like find_get_entries, except we only return entries which are tagged with
1500  * @tag.
1501  */
1502 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1503                         int tag, unsigned int nr_entries,
1504                         struct page **entries, pgoff_t *indices)
1505 {
1506         void **slot;
1507         unsigned int ret = 0;
1508         struct radix_tree_iter iter;
1509
1510         if (!nr_entries)
1511                 return 0;
1512
1513         rcu_read_lock();
1514         radix_tree_for_each_tagged(slot, &mapping->page_tree,
1515                                    &iter, start, tag) {
1516                 struct page *page;
1517 repeat:
1518                 page = radix_tree_deref_slot(slot);
1519                 if (unlikely(!page))
1520                         continue;
1521                 if (radix_tree_exception(page)) {
1522                         if (radix_tree_deref_retry(page)) {
1523                                 slot = radix_tree_iter_retry(&iter);
1524                                 continue;
1525                         }
1526
1527                         /*
1528                          * A shadow entry of a recently evicted page, a swap
1529                          * entry from shmem/tmpfs or a DAX entry.  Return it
1530                          * without attempting to raise page count.
1531                          */
1532                         goto export;
1533                 }
1534                 if (!page_cache_get_speculative(page))
1535                         goto repeat;
1536
1537                 /* Has the page moved? */
1538                 if (unlikely(page != *slot)) {
1539                         put_page(page);
1540                         goto repeat;
1541                 }
1542 export:
1543                 indices[ret] = iter.index;
1544                 entries[ret] = page;
1545                 if (++ret == nr_entries)
1546                         break;
1547         }
1548         rcu_read_unlock();
1549         return ret;
1550 }
1551 EXPORT_SYMBOL(find_get_entries_tag);
1552
1553 /*
1554  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1555  * a _large_ part of the i/o request. Imagine the worst scenario:
1556  *
1557  *      ---R__________________________________________B__________
1558  *         ^ reading here                             ^ bad block(assume 4k)
1559  *
1560  * read(R) => miss => readahead(R...B) => media error => frustrating retries
1561  * => failing the whole request => read(R) => read(R+1) =>
1562  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1563  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1564  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1565  *
1566  * It is going insane. Fix it by quickly scaling down the readahead size.
1567  */
1568 static void shrink_readahead_size_eio(struct file *filp,
1569                                         struct file_ra_state *ra)
1570 {
1571         ra->ra_pages /= 4;
1572 }
1573
1574 /**
1575  * do_generic_file_read - generic file read routine
1576  * @filp:       the file to read
1577  * @ppos:       current file position
1578  * @iter:       data destination
1579  * @written:    already copied
1580  *
1581  * This is a generic file read routine, and uses the
1582  * mapping->a_ops->readpage() function for the actual low-level stuff.
1583  *
1584  * This is really ugly. But the goto's actually try to clarify some
1585  * of the logic when it comes to error handling etc.
1586  */
1587 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1588                 struct iov_iter *iter, ssize_t written)
1589 {
1590         struct address_space *mapping = filp->f_mapping;
1591         struct inode *inode = mapping->host;
1592         struct file_ra_state *ra = &filp->f_ra;
1593         pgoff_t index;
1594         pgoff_t last_index;
1595         pgoff_t prev_index;
1596         unsigned long offset;      /* offset into pagecache page */
1597         unsigned int prev_offset;
1598         int error = 0;
1599
1600         index = *ppos >> PAGE_SHIFT;
1601         prev_index = ra->prev_pos >> PAGE_SHIFT;
1602         prev_offset = ra->prev_pos & (PAGE_SIZE-1);
1603         last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
1604         offset = *ppos & ~PAGE_MASK;
1605
1606         for (;;) {
1607                 struct page *page;
1608                 pgoff_t end_index;
1609                 loff_t isize;
1610                 unsigned long nr, ret;
1611
1612                 cond_resched();
1613 find_page:
1614                 page = find_get_page(mapping, index);
1615                 if (!page) {
1616                         page_cache_sync_readahead(mapping,
1617                                         ra, filp,
1618                                         index, last_index - index);
1619                         page = find_get_page(mapping, index);
1620                         if (unlikely(page == NULL))
1621                                 goto no_cached_page;
1622                 }
1623                 if (PageReadahead(page)) {
1624                         page_cache_async_readahead(mapping,
1625                                         ra, filp, page,
1626                                         index, last_index - index);
1627                 }
1628                 if (!PageUptodate(page)) {
1629                         /*
1630                          * See comment in do_read_cache_page on why
1631                          * wait_on_page_locked is used to avoid unnecessarily
1632                          * serialisations and why it's safe.
1633                          */
1634                         wait_on_page_locked_killable(page);
1635                         if (PageUptodate(page))
1636                                 goto page_ok;
1637
1638                         if (inode->i_blkbits == PAGE_SHIFT ||
1639                                         !mapping->a_ops->is_partially_uptodate)
1640                                 goto page_not_up_to_date;
1641                         if (!trylock_page(page))
1642                                 goto page_not_up_to_date;
1643                         /* Did it get truncated before we got the lock? */
1644                         if (!page->mapping)
1645                                 goto page_not_up_to_date_locked;
1646                         if (!mapping->a_ops->is_partially_uptodate(page,
1647                                                         offset, iter->count))
1648                                 goto page_not_up_to_date_locked;
1649                         unlock_page(page);
1650                 }
1651 page_ok:
1652                 /*
1653                  * i_size must be checked after we know the page is Uptodate.
1654                  *
1655                  * Checking i_size after the check allows us to calculate
1656                  * the correct value for "nr", which means the zero-filled
1657                  * part of the page is not copied back to userspace (unless
1658                  * another truncate extends the file - this is desired though).
1659                  */
1660
1661                 isize = i_size_read(inode);
1662                 end_index = (isize - 1) >> PAGE_SHIFT;
1663                 if (unlikely(!isize || index > end_index)) {
1664                         put_page(page);
1665                         goto out;
1666                 }
1667
1668                 /* nr is the maximum number of bytes to copy from this page */
1669                 nr = PAGE_SIZE;
1670                 if (index == end_index) {
1671                         nr = ((isize - 1) & ~PAGE_MASK) + 1;
1672                         if (nr <= offset) {
1673                                 put_page(page);
1674                                 goto out;
1675                         }
1676                 }
1677                 nr = nr - offset;
1678
1679                 /* If users can be writing to this page using arbitrary
1680                  * virtual addresses, take care about potential aliasing
1681                  * before reading the page on the kernel side.
1682                  */
1683                 if (mapping_writably_mapped(mapping))
1684                         flush_dcache_page(page);
1685
1686                 /*
1687                  * When a sequential read accesses a page several times,
1688                  * only mark it as accessed the first time.
1689                  */
1690                 if (prev_index != index || offset != prev_offset)
1691                         mark_page_accessed(page);
1692                 prev_index = index;
1693
1694                 /*
1695                  * Ok, we have the page, and it's up-to-date, so
1696                  * now we can copy it to user space...
1697                  */
1698
1699                 ret = copy_page_to_iter(page, offset, nr, iter);
1700                 offset += ret;
1701                 index += offset >> PAGE_SHIFT;
1702                 offset &= ~PAGE_MASK;
1703                 prev_offset = offset;
1704
1705                 put_page(page);
1706                 written += ret;
1707                 if (!iov_iter_count(iter))
1708                         goto out;
1709                 if (ret < nr) {
1710                         error = -EFAULT;
1711                         goto out;
1712                 }
1713                 continue;
1714
1715 page_not_up_to_date:
1716                 /* Get exclusive access to the page ... */
1717                 error = lock_page_killable(page);
1718                 if (unlikely(error))
1719                         goto readpage_error;
1720
1721 page_not_up_to_date_locked:
1722                 /* Did it get truncated before we got the lock? */
1723                 if (!page->mapping) {
1724                         unlock_page(page);
1725                         put_page(page);
1726                         continue;
1727                 }
1728
1729                 /* Did somebody else fill it already? */
1730                 if (PageUptodate(page)) {
1731                         unlock_page(page);
1732                         goto page_ok;
1733                 }
1734
1735 readpage:
1736                 /*
1737                  * A previous I/O error may have been due to temporary
1738                  * failures, eg. multipath errors.
1739                  * PG_error will be set again if readpage fails.
1740                  */
1741                 ClearPageError(page);
1742                 /* Start the actual read. The read will unlock the page. */
1743                 error = mapping->a_ops->readpage(filp, page);
1744
1745                 if (unlikely(error)) {
1746                         if (error == AOP_TRUNCATED_PAGE) {
1747                                 put_page(page);
1748                                 error = 0;
1749                                 goto find_page;
1750                         }
1751                         goto readpage_error;
1752                 }
1753
1754                 if (!PageUptodate(page)) {
1755                         error = lock_page_killable(page);
1756                         if (unlikely(error))
1757                                 goto readpage_error;
1758                         if (!PageUptodate(page)) {
1759                                 if (page->mapping == NULL) {
1760                                         /*
1761                                          * invalidate_mapping_pages got it
1762                                          */
1763                                         unlock_page(page);
1764                                         put_page(page);
1765                                         goto find_page;
1766                                 }
1767                                 unlock_page(page);
1768                                 shrink_readahead_size_eio(filp, ra);
1769                                 error = -EIO;
1770                                 goto readpage_error;
1771                         }
1772                         unlock_page(page);
1773                 }
1774
1775                 goto page_ok;
1776
1777 readpage_error:
1778                 /* UHHUH! A synchronous read error occurred. Report it */
1779                 put_page(page);
1780                 goto out;
1781
1782 no_cached_page:
1783                 /*
1784                  * Ok, it wasn't cached, so we need to create a new
1785                  * page..
1786                  */
1787                 page = page_cache_alloc_cold(mapping);
1788                 if (!page) {
1789                         error = -ENOMEM;
1790                         goto out;
1791                 }
1792                 error = add_to_page_cache_lru(page, mapping, index,
1793                                 mapping_gfp_constraint(mapping, GFP_KERNEL));
1794                 if (error) {
1795                         put_page(page);
1796                         if (error == -EEXIST) {
1797                                 error = 0;
1798                                 goto find_page;
1799                         }
1800                         goto out;
1801                 }
1802                 goto readpage;
1803         }
1804
1805 out:
1806         ra->prev_pos = prev_index;
1807         ra->prev_pos <<= PAGE_SHIFT;
1808         ra->prev_pos |= prev_offset;
1809
1810         *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
1811         file_accessed(filp);
1812         return written ? written : error;
1813 }
1814
1815 /**
1816  * generic_file_read_iter - generic filesystem read routine
1817  * @iocb:       kernel I/O control block
1818  * @iter:       destination for the data read
1819  *
1820  * This is the "read_iter()" routine for all filesystems
1821  * that can use the page cache directly.
1822  */
1823 ssize_t
1824 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1825 {
1826         struct file *file = iocb->ki_filp;
1827         ssize_t retval = 0;
1828         size_t count = iov_iter_count(iter);
1829
1830         if (!count)
1831                 goto out; /* skip atime */
1832
1833         if (iocb->ki_flags & IOCB_DIRECT) {
1834                 struct address_space *mapping = file->f_mapping;
1835                 struct inode *inode = mapping->host;
1836                 loff_t size;
1837
1838                 size = i_size_read(inode);
1839                 retval = filemap_write_and_wait_range(mapping, iocb->ki_pos,
1840                                         iocb->ki_pos + count - 1);
1841                 if (!retval) {
1842                         struct iov_iter data = *iter;
1843                         retval = mapping->a_ops->direct_IO(iocb, &data);
1844                 }
1845
1846                 if (retval > 0) {
1847                         iocb->ki_pos += retval;
1848                         iov_iter_advance(iter, retval);
1849                 }
1850
1851                 /*
1852                  * Btrfs can have a short DIO read if we encounter
1853                  * compressed extents, so if there was an error, or if
1854                  * we've already read everything we wanted to, or if
1855                  * there was a short read because we hit EOF, go ahead
1856                  * and return.  Otherwise fallthrough to buffered io for
1857                  * the rest of the read.  Buffered reads will not work for
1858                  * DAX files, so don't bother trying.
1859                  */
1860                 if (retval < 0 || !iov_iter_count(iter) || iocb->ki_pos >= size ||
1861                     IS_DAX(inode)) {
1862                         file_accessed(file);
1863                         goto out;
1864                 }
1865         }
1866
1867         retval = do_generic_file_read(file, &iocb->ki_pos, iter, retval);
1868 out:
1869         return retval;
1870 }
1871 EXPORT_SYMBOL(generic_file_read_iter);
1872
1873 #ifdef CONFIG_MMU
1874 /**
1875  * page_cache_read - adds requested page to the page cache if not already there
1876  * @file:       file to read
1877  * @offset:     page index
1878  * @gfp_mask:   memory allocation flags
1879  *
1880  * This adds the requested page to the page cache if it isn't already there,
1881  * and schedules an I/O to read in its contents from disk.
1882  */
1883 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
1884 {
1885         struct address_space *mapping = file->f_mapping;
1886         struct page *page;
1887         int ret;
1888
1889         do {
1890                 page = __page_cache_alloc(gfp_mask|__GFP_COLD);
1891                 if (!page)
1892                         return -ENOMEM;
1893
1894                 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
1895                 if (ret == 0)
1896                         ret = mapping->a_ops->readpage(file, page);
1897                 else if (ret == -EEXIST)
1898                         ret = 0; /* losing race to add is OK */
1899
1900                 put_page(page);
1901
1902         } while (ret == AOP_TRUNCATED_PAGE);
1903
1904         return ret;
1905 }
1906
1907 #define MMAP_LOTSAMISS  (100)
1908
1909 /*
1910  * Synchronous readahead happens when we don't even find
1911  * a page in the page cache at all.
1912  */
1913 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1914                                    struct file_ra_state *ra,
1915                                    struct file *file,
1916                                    pgoff_t offset)
1917 {
1918         struct address_space *mapping = file->f_mapping;
1919
1920         /* If we don't want any read-ahead, don't bother */
1921         if (vma->vm_flags & VM_RAND_READ)
1922                 return;
1923         if (!ra->ra_pages)
1924                 return;
1925
1926         if (vma->vm_flags & VM_SEQ_READ) {
1927                 page_cache_sync_readahead(mapping, ra, file, offset,
1928                                           ra->ra_pages);
1929                 return;
1930         }
1931
1932         /* Avoid banging the cache line if not needed */
1933         if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1934                 ra->mmap_miss++;
1935
1936         /*
1937          * Do we miss much more than hit in this file? If so,
1938          * stop bothering with read-ahead. It will only hurt.
1939          */
1940         if (ra->mmap_miss > MMAP_LOTSAMISS)
1941                 return;
1942
1943         /*
1944          * mmap read-around
1945          */
1946         ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
1947         ra->size = ra->ra_pages;
1948         ra->async_size = ra->ra_pages / 4;
1949         ra_submit(ra, mapping, file);
1950 }
1951
1952 /*
1953  * Asynchronous readahead happens when we find the page and PG_readahead,
1954  * so we want to possibly extend the readahead further..
1955  */
1956 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1957                                     struct file_ra_state *ra,
1958                                     struct file *file,
1959                                     struct page *page,
1960                                     pgoff_t offset)
1961 {
1962         struct address_space *mapping = file->f_mapping;
1963
1964         /* If we don't want any read-ahead, don't bother */
1965         if (vma->vm_flags & VM_RAND_READ)
1966                 return;
1967         if (ra->mmap_miss > 0)
1968                 ra->mmap_miss--;
1969         if (PageReadahead(page))
1970                 page_cache_async_readahead(mapping, ra, file,
1971                                            page, offset, ra->ra_pages);
1972 }
1973
1974 /**
1975  * filemap_fault - read in file data for page fault handling
1976  * @vma:        vma in which the fault was taken
1977  * @vmf:        struct vm_fault containing details of the fault
1978  *
1979  * filemap_fault() is invoked via the vma operations vector for a
1980  * mapped memory region to read in file data during a page fault.
1981  *
1982  * The goto's are kind of ugly, but this streamlines the normal case of having
1983  * it in the page cache, and handles the special cases reasonably without
1984  * having a lot of duplicated code.
1985  *
1986  * vma->vm_mm->mmap_sem must be held on entry.
1987  *
1988  * If our return value has VM_FAULT_RETRY set, it's because
1989  * lock_page_or_retry() returned 0.
1990  * The mmap_sem has usually been released in this case.
1991  * See __lock_page_or_retry() for the exception.
1992  *
1993  * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
1994  * has not been released.
1995  *
1996  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
1997  */
1998 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1999 {
2000         int error;
2001         struct file *file = vma->vm_file;
2002         struct address_space *mapping = file->f_mapping;
2003         struct file_ra_state *ra = &file->f_ra;
2004         struct inode *inode = mapping->host;
2005         pgoff_t offset = vmf->pgoff;
2006         struct page *page;
2007         loff_t size;
2008         int ret = 0;
2009
2010         size = round_up(i_size_read(inode), PAGE_SIZE);
2011         if (offset >= size >> PAGE_SHIFT)
2012                 return VM_FAULT_SIGBUS;
2013
2014         /*
2015          * Do we have something in the page cache already?
2016          */
2017         page = find_get_page(mapping, offset);
2018         if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2019                 /*
2020                  * We found the page, so try async readahead before
2021                  * waiting for the lock.
2022                  */
2023                 do_async_mmap_readahead(vma, ra, file, page, offset);
2024         } else if (!page) {
2025                 /* No page in the page cache at all */
2026                 do_sync_mmap_readahead(vma, ra, file, offset);
2027                 count_vm_event(PGMAJFAULT);
2028                 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
2029                 ret = VM_FAULT_MAJOR;
2030 retry_find:
2031                 page = find_get_page(mapping, offset);
2032                 if (!page)
2033                         goto no_cached_page;
2034         }
2035
2036         if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
2037                 put_page(page);
2038                 return ret | VM_FAULT_RETRY;
2039         }
2040
2041         /* Did it get truncated? */
2042         if (unlikely(page->mapping != mapping)) {
2043                 unlock_page(page);
2044                 put_page(page);
2045                 goto retry_find;
2046         }
2047         VM_BUG_ON_PAGE(page->index != offset, page);
2048
2049         /*
2050          * We have a locked page in the page cache, now we need to check
2051          * that it's up-to-date. If not, it is going to be due to an error.
2052          */
2053         if (unlikely(!PageUptodate(page)))
2054                 goto page_not_uptodate;
2055
2056         /*
2057          * Found the page and have a reference on it.
2058          * We must recheck i_size under page lock.
2059          */
2060         size = round_up(i_size_read(inode), PAGE_SIZE);
2061         if (unlikely(offset >= size >> PAGE_SHIFT)) {
2062                 unlock_page(page);
2063                 put_page(page);
2064                 return VM_FAULT_SIGBUS;
2065         }
2066
2067         vmf->page = page;
2068         return ret | VM_FAULT_LOCKED;
2069
2070 no_cached_page:
2071         /*
2072          * We're only likely to ever get here if MADV_RANDOM is in
2073          * effect.
2074          */
2075         error = page_cache_read(file, offset, vmf->gfp_mask);
2076
2077         /*
2078          * The page we want has now been added to the page cache.
2079          * In the unlikely event that someone removed it in the
2080          * meantime, we'll just come back here and read it again.
2081          */
2082         if (error >= 0)
2083                 goto retry_find;
2084
2085         /*
2086          * An error return from page_cache_read can result if the
2087          * system is low on memory, or a problem occurs while trying
2088          * to schedule I/O.
2089          */
2090         if (error == -ENOMEM)
2091                 return VM_FAULT_OOM;
2092         return VM_FAULT_SIGBUS;
2093
2094 page_not_uptodate:
2095         /*
2096          * Umm, take care of errors if the page isn't up-to-date.
2097          * Try to re-read it _once_. We do this synchronously,
2098          * because there really aren't any performance issues here
2099          * and we need to check for errors.
2100          */
2101         ClearPageError(page);
2102         error = mapping->a_ops->readpage(file, page);
2103         if (!error) {
2104                 wait_on_page_locked(page);
2105                 if (!PageUptodate(page))
2106                         error = -EIO;
2107         }
2108         put_page(page);
2109
2110         if (!error || error == AOP_TRUNCATED_PAGE)
2111                 goto retry_find;
2112
2113         /* Things didn't work out. Return zero to tell the mm layer so. */
2114         shrink_readahead_size_eio(file, ra);
2115         return VM_FAULT_SIGBUS;
2116 }
2117 EXPORT_SYMBOL(filemap_fault);
2118
2119 void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
2120 {
2121         struct radix_tree_iter iter;
2122         void **slot;
2123         struct file *file = vma->vm_file;
2124         struct address_space *mapping = file->f_mapping;
2125         loff_t size;
2126         struct page *page;
2127         unsigned long address = (unsigned long) vmf->virtual_address;
2128         unsigned long addr;
2129         pte_t *pte;
2130
2131         rcu_read_lock();
2132         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, vmf->pgoff) {
2133                 if (iter.index > vmf->max_pgoff)
2134                         break;
2135 repeat:
2136                 page = radix_tree_deref_slot(slot);
2137                 if (unlikely(!page))
2138                         goto next;
2139                 if (radix_tree_exception(page)) {
2140                         if (radix_tree_deref_retry(page)) {
2141                                 slot = radix_tree_iter_retry(&iter);
2142                                 continue;
2143                         }
2144                         goto next;
2145                 }
2146
2147                 if (!page_cache_get_speculative(page))
2148                         goto repeat;
2149
2150                 /* Has the page moved? */
2151                 if (unlikely(page != *slot)) {
2152                         put_page(page);
2153                         goto repeat;
2154                 }
2155
2156                 if (!PageUptodate(page) ||
2157                                 PageReadahead(page) ||
2158                                 PageHWPoison(page))
2159                         goto skip;
2160                 if (!trylock_page(page))
2161                         goto skip;
2162
2163                 if (page->mapping != mapping || !PageUptodate(page))
2164                         goto unlock;
2165
2166                 size = round_up(i_size_read(mapping->host), PAGE_SIZE);
2167                 if (page->index >= size >> PAGE_SHIFT)
2168                         goto unlock;
2169
2170                 pte = vmf->pte + page->index - vmf->pgoff;
2171                 if (!pte_none(*pte))
2172                         goto unlock;
2173
2174                 if (file->f_ra.mmap_miss > 0)
2175                         file->f_ra.mmap_miss--;
2176                 addr = address + (page->index - vmf->pgoff) * PAGE_SIZE;
2177                 do_set_pte(vma, addr, page, pte, false, false, true);
2178                 unlock_page(page);
2179                 goto next;
2180 unlock:
2181                 unlock_page(page);
2182 skip:
2183                 put_page(page);
2184 next:
2185                 if (iter.index == vmf->max_pgoff)
2186                         break;
2187         }
2188         rcu_read_unlock();
2189 }
2190 EXPORT_SYMBOL(filemap_map_pages);
2191
2192 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2193 {
2194         struct page *page = vmf->page;
2195         struct inode *inode = file_inode(vma->vm_file);
2196         int ret = VM_FAULT_LOCKED;
2197
2198         sb_start_pagefault(inode->i_sb);
2199         file_update_time(vma->vm_file);
2200         lock_page(page);
2201         if (page->mapping != inode->i_mapping) {
2202                 unlock_page(page);
2203                 ret = VM_FAULT_NOPAGE;
2204                 goto out;
2205         }
2206         /*
2207          * We mark the page dirty already here so that when freeze is in
2208          * progress, we are guaranteed that writeback during freezing will
2209          * see the dirty page and writeprotect it again.
2210          */
2211         set_page_dirty(page);
2212         wait_for_stable_page(page);
2213 out:
2214         sb_end_pagefault(inode->i_sb);
2215         return ret;
2216 }
2217 EXPORT_SYMBOL(filemap_page_mkwrite);
2218
2219 const struct vm_operations_struct generic_file_vm_ops = {
2220         .fault          = filemap_fault,
2221         .map_pages      = filemap_map_pages,
2222         .page_mkwrite   = filemap_page_mkwrite,
2223 };
2224
2225 /* This is used for a general mmap of a disk file */
2226
2227 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2228 {
2229         struct address_space *mapping = file->f_mapping;
2230
2231         if (!mapping->a_ops->readpage)
2232                 return -ENOEXEC;
2233         file_accessed(file);
2234         vma->vm_ops = &generic_file_vm_ops;
2235         return 0;
2236 }
2237
2238 /*
2239  * This is for filesystems which do not implement ->writepage.
2240  */
2241 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2242 {
2243         if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2244                 return -EINVAL;
2245         return generic_file_mmap(file, vma);
2246 }
2247 #else
2248 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2249 {
2250         return -ENOSYS;
2251 }
2252 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2253 {
2254         return -ENOSYS;
2255 }
2256 #endif /* CONFIG_MMU */
2257
2258 EXPORT_SYMBOL(generic_file_mmap);
2259 EXPORT_SYMBOL(generic_file_readonly_mmap);
2260
2261 static struct page *wait_on_page_read(struct page *page)
2262 {
2263         if (!IS_ERR(page)) {
2264                 wait_on_page_locked(page);
2265                 if (!PageUptodate(page)) {
2266                         put_page(page);
2267                         page = ERR_PTR(-EIO);
2268                 }
2269         }
2270         return page;
2271 }
2272
2273 static struct page *do_read_cache_page(struct address_space *mapping,
2274                                 pgoff_t index,
2275                                 int (*filler)(void *, struct page *),
2276                                 void *data,
2277                                 gfp_t gfp)
2278 {
2279         struct page *page;
2280         int err;
2281 repeat:
2282         page = find_get_page(mapping, index);
2283         if (!page) {
2284                 page = __page_cache_alloc(gfp | __GFP_COLD);
2285                 if (!page)
2286                         return ERR_PTR(-ENOMEM);
2287                 err = add_to_page_cache_lru(page, mapping, index, gfp);
2288                 if (unlikely(err)) {
2289                         put_page(page);
2290                         if (err == -EEXIST)
2291                                 goto repeat;
2292                         /* Presumably ENOMEM for radix tree node */
2293                         return ERR_PTR(err);
2294                 }
2295
2296 filler:
2297                 err = filler(data, page);
2298                 if (err < 0) {
2299                         put_page(page);
2300                         return ERR_PTR(err);
2301                 }
2302
2303                 page = wait_on_page_read(page);
2304                 if (IS_ERR(page))
2305                         return page;
2306                 goto out;
2307         }
2308         if (PageUptodate(page))
2309                 goto out;
2310
2311         /*
2312          * Page is not up to date and may be locked due one of the following
2313          * case a: Page is being filled and the page lock is held
2314          * case b: Read/write error clearing the page uptodate status
2315          * case c: Truncation in progress (page locked)
2316          * case d: Reclaim in progress
2317          *
2318          * Case a, the page will be up to date when the page is unlocked.
2319          *    There is no need to serialise on the page lock here as the page
2320          *    is pinned so the lock gives no additional protection. Even if the
2321          *    the page is truncated, the data is still valid if PageUptodate as
2322          *    it's a race vs truncate race.
2323          * Case b, the page will not be up to date
2324          * Case c, the page may be truncated but in itself, the data may still
2325          *    be valid after IO completes as it's a read vs truncate race. The
2326          *    operation must restart if the page is not uptodate on unlock but
2327          *    otherwise serialising on page lock to stabilise the mapping gives
2328          *    no additional guarantees to the caller as the page lock is
2329          *    released before return.
2330          * Case d, similar to truncation. If reclaim holds the page lock, it
2331          *    will be a race with remove_mapping that determines if the mapping
2332          *    is valid on unlock but otherwise the data is valid and there is
2333          *    no need to serialise with page lock.
2334          *
2335          * As the page lock gives no additional guarantee, we optimistically
2336          * wait on the page to be unlocked and check if it's up to date and
2337          * use the page if it is. Otherwise, the page lock is required to
2338          * distinguish between the different cases. The motivation is that we
2339          * avoid spurious serialisations and wakeups when multiple processes
2340          * wait on the same page for IO to complete.
2341          */
2342         wait_on_page_locked(page);
2343         if (PageUptodate(page))
2344                 goto out;
2345
2346         /* Distinguish between all the cases under the safety of the lock */
2347         lock_page(page);
2348
2349         /* Case c or d, restart the operation */
2350         if (!page->mapping) {
2351                 unlock_page(page);
2352                 put_page(page);
2353                 goto repeat;
2354         }
2355
2356         /* Someone else locked and filled the page in a very small window */
2357         if (PageUptodate(page)) {
2358                 unlock_page(page);
2359                 goto out;
2360         }
2361         goto filler;
2362
2363 out:
2364         mark_page_accessed(page);
2365         return page;
2366 }
2367
2368 /**
2369  * read_cache_page - read into page cache, fill it if needed
2370  * @mapping:    the page's address_space
2371  * @index:      the page index
2372  * @filler:     function to perform the read
2373  * @data:       first arg to filler(data, page) function, often left as NULL
2374  *
2375  * Read into the page cache. If a page already exists, and PageUptodate() is
2376  * not set, try to fill the page and wait for it to become unlocked.
2377  *
2378  * If the page does not get brought uptodate, return -EIO.
2379  */
2380 struct page *read_cache_page(struct address_space *mapping,
2381                                 pgoff_t index,
2382                                 int (*filler)(void *, struct page *),
2383                                 void *data)
2384 {
2385         return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2386 }
2387 EXPORT_SYMBOL(read_cache_page);
2388
2389 /**
2390  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2391  * @mapping:    the page's address_space
2392  * @index:      the page index
2393  * @gfp:        the page allocator flags to use if allocating
2394  *
2395  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2396  * any new page allocations done using the specified allocation flags.
2397  *
2398  * If the page does not get brought uptodate, return -EIO.
2399  */
2400 struct page *read_cache_page_gfp(struct address_space *mapping,
2401                                 pgoff_t index,
2402                                 gfp_t gfp)
2403 {
2404         filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2405
2406         return do_read_cache_page(mapping, index, filler, NULL, gfp);
2407 }
2408 EXPORT_SYMBOL(read_cache_page_gfp);
2409
2410 /*
2411  * Performs necessary checks before doing a write
2412  *
2413  * Can adjust writing position or amount of bytes to write.
2414  * Returns appropriate error code that caller should return or
2415  * zero in case that write should be allowed.
2416  */
2417 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2418 {
2419         struct file *file = iocb->ki_filp;
2420         struct inode *inode = file->f_mapping->host;
2421         unsigned long limit = rlimit(RLIMIT_FSIZE);
2422         loff_t pos;
2423
2424         if (!iov_iter_count(from))
2425                 return 0;
2426
2427         /* FIXME: this is for backwards compatibility with 2.4 */
2428         if (iocb->ki_flags & IOCB_APPEND)
2429                 iocb->ki_pos = i_size_read(inode);
2430
2431         pos = iocb->ki_pos;
2432
2433         if (limit != RLIM_INFINITY) {
2434                 if (iocb->ki_pos >= limit) {
2435                         send_sig(SIGXFSZ, current, 0);
2436                         return -EFBIG;
2437                 }
2438                 iov_iter_truncate(from, limit - (unsigned long)pos);
2439         }
2440
2441         /*
2442          * LFS rule
2443          */
2444         if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2445                                 !(file->f_flags & O_LARGEFILE))) {
2446                 if (pos >= MAX_NON_LFS)
2447                         return -EFBIG;
2448                 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2449         }
2450
2451         /*
2452          * Are we about to exceed the fs block limit ?
2453          *
2454          * If we have written data it becomes a short write.  If we have
2455          * exceeded without writing data we send a signal and return EFBIG.
2456          * Linus frestrict idea will clean these up nicely..
2457          */
2458         if (unlikely(pos >= inode->i_sb->s_maxbytes))
2459                 return -EFBIG;
2460
2461         iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2462         return iov_iter_count(from);
2463 }
2464 EXPORT_SYMBOL(generic_write_checks);
2465
2466 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2467                                 loff_t pos, unsigned len, unsigned flags,
2468                                 struct page **pagep, void **fsdata)
2469 {
2470         const struct address_space_operations *aops = mapping->a_ops;
2471
2472         return aops->write_begin(file, mapping, pos, len, flags,
2473                                                         pagep, fsdata);
2474 }
2475 EXPORT_SYMBOL(pagecache_write_begin);
2476
2477 int pagecache_write_end(struct file *file, struct address_space *mapping,
2478                                 loff_t pos, unsigned len, unsigned copied,
2479                                 struct page *page, void *fsdata)
2480 {
2481         const struct address_space_operations *aops = mapping->a_ops;
2482
2483         return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2484 }
2485 EXPORT_SYMBOL(pagecache_write_end);
2486
2487 ssize_t
2488 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
2489 {
2490         struct file     *file = iocb->ki_filp;
2491         struct address_space *mapping = file->f_mapping;
2492         struct inode    *inode = mapping->host;
2493         loff_t          pos = iocb->ki_pos;
2494         ssize_t         written;
2495         size_t          write_len;
2496         pgoff_t         end;
2497         struct iov_iter data;
2498
2499         write_len = iov_iter_count(from);
2500         end = (pos + write_len - 1) >> PAGE_SHIFT;
2501
2502         written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2503         if (written)
2504                 goto out;
2505
2506         /*
2507          * After a write we want buffered reads to be sure to go to disk to get
2508          * the new data.  We invalidate clean cached page from the region we're
2509          * about to write.  We do this *before* the write so that we can return
2510          * without clobbering -EIOCBQUEUED from ->direct_IO().
2511          */
2512         if (mapping->nrpages) {
2513                 written = invalidate_inode_pages2_range(mapping,
2514                                         pos >> PAGE_SHIFT, end);
2515                 /*
2516                  * If a page can not be invalidated, return 0 to fall back
2517                  * to buffered write.
2518                  */
2519                 if (written) {
2520                         if (written == -EBUSY)
2521                                 return 0;
2522                         goto out;
2523                 }
2524         }
2525
2526         data = *from;
2527         written = mapping->a_ops->direct_IO(iocb, &data);
2528
2529         /*
2530          * Finally, try again to invalidate clean pages which might have been
2531          * cached by non-direct readahead, or faulted in by get_user_pages()
2532          * if the source of the write was an mmap'ed region of the file
2533          * we're writing.  Either one is a pretty crazy thing to do,
2534          * so we don't support it 100%.  If this invalidation
2535          * fails, tough, the write still worked...
2536          */
2537         if (mapping->nrpages) {
2538                 invalidate_inode_pages2_range(mapping,
2539                                               pos >> PAGE_SHIFT, end);
2540         }
2541
2542         if (written > 0) {
2543                 pos += written;
2544                 iov_iter_advance(from, written);
2545                 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2546                         i_size_write(inode, pos);
2547                         mark_inode_dirty(inode);
2548                 }
2549                 iocb->ki_pos = pos;
2550         }
2551 out:
2552         return written;
2553 }
2554 EXPORT_SYMBOL(generic_file_direct_write);
2555
2556 /*
2557  * Find or create a page at the given pagecache position. Return the locked
2558  * page. This function is specifically for buffered writes.
2559  */
2560 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2561                                         pgoff_t index, unsigned flags)
2562 {
2563         struct page *page;
2564         int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
2565
2566         if (flags & AOP_FLAG_NOFS)
2567                 fgp_flags |= FGP_NOFS;
2568
2569         page = pagecache_get_page(mapping, index, fgp_flags,
2570                         mapping_gfp_mask(mapping));
2571         if (page)
2572                 wait_for_stable_page(page);
2573
2574         return page;
2575 }
2576 EXPORT_SYMBOL(grab_cache_page_write_begin);
2577
2578 ssize_t generic_perform_write(struct file *file,
2579                                 struct iov_iter *i, loff_t pos)
2580 {
2581         struct address_space *mapping = file->f_mapping;
2582         const struct address_space_operations *a_ops = mapping->a_ops;
2583         long status = 0;
2584         ssize_t written = 0;
2585         unsigned int flags = 0;
2586
2587         /*
2588          * Copies from kernel address space cannot fail (NFSD is a big user).
2589          */
2590         if (!iter_is_iovec(i))
2591                 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2592
2593         do {
2594                 struct page *page;
2595                 unsigned long offset;   /* Offset into pagecache page */
2596                 unsigned long bytes;    /* Bytes to write to page */
2597                 size_t copied;          /* Bytes copied from user */
2598                 void *fsdata;
2599
2600                 offset = (pos & (PAGE_SIZE - 1));
2601                 bytes = min_t(unsigned long, PAGE_SIZE - offset,
2602                                                 iov_iter_count(i));
2603
2604 again:
2605                 /*
2606                  * Bring in the user page that we will copy from _first_.
2607                  * Otherwise there's a nasty deadlock on copying from the
2608                  * same page as we're writing to, without it being marked
2609                  * up-to-date.
2610                  *
2611                  * Not only is this an optimisation, but it is also required
2612                  * to check that the address is actually valid, when atomic
2613                  * usercopies are used, below.
2614                  */
2615                 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2616                         status = -EFAULT;
2617                         break;
2618                 }
2619
2620                 if (fatal_signal_pending(current)) {
2621                         status = -EINTR;
2622                         break;
2623                 }
2624
2625                 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2626                                                 &page, &fsdata);
2627                 if (unlikely(status < 0))
2628                         break;
2629
2630                 if (mapping_writably_mapped(mapping))
2631                         flush_dcache_page(page);
2632
2633                 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2634                 flush_dcache_page(page);
2635
2636                 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2637                                                 page, fsdata);
2638                 if (unlikely(status < 0))
2639                         break;
2640                 copied = status;
2641
2642                 cond_resched();
2643
2644                 iov_iter_advance(i, copied);
2645                 if (unlikely(copied == 0)) {
2646                         /*
2647                          * If we were unable to copy any data at all, we must
2648                          * fall back to a single segment length write.
2649                          *
2650                          * If we didn't fallback here, we could livelock
2651                          * because not all segments in the iov can be copied at
2652                          * once without a pagefault.
2653                          */
2654                         bytes = min_t(unsigned long, PAGE_SIZE - offset,
2655                                                 iov_iter_single_seg_count(i));
2656                         goto again;
2657                 }
2658                 pos += copied;
2659                 written += copied;
2660
2661                 balance_dirty_pages_ratelimited(mapping);
2662         } while (iov_iter_count(i));
2663
2664         return written ? written : status;
2665 }
2666 EXPORT_SYMBOL(generic_perform_write);
2667
2668 /**
2669  * __generic_file_write_iter - write data to a file
2670  * @iocb:       IO state structure (file, offset, etc.)
2671  * @from:       iov_iter with data to write
2672  *
2673  * This function does all the work needed for actually writing data to a
2674  * file. It does all basic checks, removes SUID from the file, updates
2675  * modification times and calls proper subroutines depending on whether we
2676  * do direct IO or a standard buffered write.
2677  *
2678  * It expects i_mutex to be grabbed unless we work on a block device or similar
2679  * object which does not need locking at all.
2680  *
2681  * This function does *not* take care of syncing data in case of O_SYNC write.
2682  * A caller has to handle it. This is mainly due to the fact that we want to
2683  * avoid syncing under i_mutex.
2684  */
2685 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2686 {
2687         struct file *file = iocb->ki_filp;
2688         struct address_space * mapping = file->f_mapping;
2689         struct inode    *inode = mapping->host;
2690         ssize_t         written = 0;
2691         ssize_t         err;
2692         ssize_t         status;
2693
2694         /* We can write back this queue in page reclaim */
2695         current->backing_dev_info = inode_to_bdi(inode);
2696         err = file_remove_privs(file);
2697         if (err)
2698                 goto out;
2699
2700         err = file_update_time(file);
2701         if (err)
2702                 goto out;
2703
2704         if (iocb->ki_flags & IOCB_DIRECT) {
2705                 loff_t pos, endbyte;
2706
2707                 written = generic_file_direct_write(iocb, from);
2708                 /*
2709                  * If the write stopped short of completing, fall back to
2710                  * buffered writes.  Some filesystems do this for writes to
2711                  * holes, for example.  For DAX files, a buffered write will
2712                  * not succeed (even if it did, DAX does not handle dirty
2713                  * page-cache pages correctly).
2714                  */
2715                 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
2716                         goto out;
2717
2718                 status = generic_perform_write(file, from, pos = iocb->ki_pos);
2719                 /*
2720                  * If generic_perform_write() returned a synchronous error
2721                  * then we want to return the number of bytes which were
2722                  * direct-written, or the error code if that was zero.  Note
2723                  * that this differs from normal direct-io semantics, which
2724                  * will return -EFOO even if some bytes were written.
2725                  */
2726                 if (unlikely(status < 0)) {
2727                         err = status;
2728                         goto out;
2729                 }
2730                 /*
2731                  * We need to ensure that the page cache pages are written to
2732                  * disk and invalidated to preserve the expected O_DIRECT
2733                  * semantics.
2734                  */
2735                 endbyte = pos + status - 1;
2736                 err = filemap_write_and_wait_range(mapping, pos, endbyte);
2737                 if (err == 0) {
2738                         iocb->ki_pos = endbyte + 1;
2739                         written += status;
2740                         invalidate_mapping_pages(mapping,
2741                                                  pos >> PAGE_SHIFT,
2742                                                  endbyte >> PAGE_SHIFT);
2743                 } else {
2744                         /*
2745                          * We don't know how much we wrote, so just return
2746                          * the number of bytes which were direct-written
2747                          */
2748                 }
2749         } else {
2750                 written = generic_perform_write(file, from, iocb->ki_pos);
2751                 if (likely(written > 0))
2752                         iocb->ki_pos += written;
2753         }
2754 out:
2755         current->backing_dev_info = NULL;
2756         return written ? written : err;
2757 }
2758 EXPORT_SYMBOL(__generic_file_write_iter);
2759
2760 /**
2761  * generic_file_write_iter - write data to a file
2762  * @iocb:       IO state structure
2763  * @from:       iov_iter with data to write
2764  *
2765  * This is a wrapper around __generic_file_write_iter() to be used by most
2766  * filesystems. It takes care of syncing the file in case of O_SYNC file
2767  * and acquires i_mutex as needed.
2768  */
2769 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2770 {
2771         struct file *file = iocb->ki_filp;
2772         struct inode *inode = file->f_mapping->host;
2773         ssize_t ret;
2774
2775         inode_lock(inode);
2776         ret = generic_write_checks(iocb, from);
2777         if (ret > 0)
2778                 ret = __generic_file_write_iter(iocb, from);
2779         inode_unlock(inode);
2780
2781         if (ret > 0)
2782                 ret = generic_write_sync(iocb, ret);
2783         return ret;
2784 }
2785 EXPORT_SYMBOL(generic_file_write_iter);
2786
2787 /**
2788  * try_to_release_page() - release old fs-specific metadata on a page
2789  *
2790  * @page: the page which the kernel is trying to free
2791  * @gfp_mask: memory allocation flags (and I/O mode)
2792  *
2793  * The address_space is to try to release any data against the page
2794  * (presumably at page->private).  If the release was successful, return `1'.
2795  * Otherwise return zero.
2796  *
2797  * This may also be called if PG_fscache is set on a page, indicating that the
2798  * page is known to the local caching routines.
2799  *
2800  * The @gfp_mask argument specifies whether I/O may be performed to release
2801  * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
2802  *
2803  */
2804 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2805 {
2806         struct address_space * const mapping = page->mapping;
2807
2808         BUG_ON(!PageLocked(page));
2809         if (PageWriteback(page))
2810                 return 0;
2811
2812         if (mapping && mapping->a_ops->releasepage)
2813                 return mapping->a_ops->releasepage(page, gfp_mask);
2814         return try_to_free_buffers(page);
2815 }
2816
2817 EXPORT_SYMBOL(try_to_release_page);