Merge tag 'mfd-for-linus-3.15' of git://git.kernel.org/pub/scm/linux/kernel/git/lee/mfd
[cascardo/linux.git] / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) Nadia Yvette Chambers, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24 #include <linux/page-isolation.h>
25 #include <linux/jhash.h>
26
27 #include <asm/page.h>
28 #include <asm/pgtable.h>
29 #include <asm/tlb.h>
30
31 #include <linux/io.h>
32 #include <linux/hugetlb.h>
33 #include <linux/hugetlb_cgroup.h>
34 #include <linux/node.h>
35 #include "internal.h"
36
37 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
38 unsigned long hugepages_treat_as_movable;
39
40 int hugetlb_max_hstate __read_mostly;
41 unsigned int default_hstate_idx;
42 struct hstate hstates[HUGE_MAX_HSTATE];
43
44 __initdata LIST_HEAD(huge_boot_pages);
45
46 /* for command line parsing */
47 static struct hstate * __initdata parsed_hstate;
48 static unsigned long __initdata default_hstate_max_huge_pages;
49 static unsigned long __initdata default_hstate_size;
50
51 /*
52  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
53  * free_huge_pages, and surplus_huge_pages.
54  */
55 DEFINE_SPINLOCK(hugetlb_lock);
56
57 /*
58  * Serializes faults on the same logical page.  This is used to
59  * prevent spurious OOMs when the hugepage pool is fully utilized.
60  */
61 static int num_fault_mutexes;
62 static struct mutex *htlb_fault_mutex_table ____cacheline_aligned_in_smp;
63
64 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
65 {
66         bool free = (spool->count == 0) && (spool->used_hpages == 0);
67
68         spin_unlock(&spool->lock);
69
70         /* If no pages are used, and no other handles to the subpool
71          * remain, free the subpool the subpool remain */
72         if (free)
73                 kfree(spool);
74 }
75
76 struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
77 {
78         struct hugepage_subpool *spool;
79
80         spool = kmalloc(sizeof(*spool), GFP_KERNEL);
81         if (!spool)
82                 return NULL;
83
84         spin_lock_init(&spool->lock);
85         spool->count = 1;
86         spool->max_hpages = nr_blocks;
87         spool->used_hpages = 0;
88
89         return spool;
90 }
91
92 void hugepage_put_subpool(struct hugepage_subpool *spool)
93 {
94         spin_lock(&spool->lock);
95         BUG_ON(!spool->count);
96         spool->count--;
97         unlock_or_release_subpool(spool);
98 }
99
100 static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
101                                       long delta)
102 {
103         int ret = 0;
104
105         if (!spool)
106                 return 0;
107
108         spin_lock(&spool->lock);
109         if ((spool->used_hpages + delta) <= spool->max_hpages) {
110                 spool->used_hpages += delta;
111         } else {
112                 ret = -ENOMEM;
113         }
114         spin_unlock(&spool->lock);
115
116         return ret;
117 }
118
119 static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
120                                        long delta)
121 {
122         if (!spool)
123                 return;
124
125         spin_lock(&spool->lock);
126         spool->used_hpages -= delta;
127         /* If hugetlbfs_put_super couldn't free spool due to
128         * an outstanding quota reference, free it now. */
129         unlock_or_release_subpool(spool);
130 }
131
132 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
133 {
134         return HUGETLBFS_SB(inode->i_sb)->spool;
135 }
136
137 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
138 {
139         return subpool_inode(file_inode(vma->vm_file));
140 }
141
142 /*
143  * Region tracking -- allows tracking of reservations and instantiated pages
144  *                    across the pages in a mapping.
145  *
146  * The region data structures are embedded into a resv_map and
147  * protected by a resv_map's lock
148  */
149 struct file_region {
150         struct list_head link;
151         long from;
152         long to;
153 };
154
155 static long region_add(struct resv_map *resv, long f, long t)
156 {
157         struct list_head *head = &resv->regions;
158         struct file_region *rg, *nrg, *trg;
159
160         spin_lock(&resv->lock);
161         /* Locate the region we are either in or before. */
162         list_for_each_entry(rg, head, link)
163                 if (f <= rg->to)
164                         break;
165
166         /* Round our left edge to the current segment if it encloses us. */
167         if (f > rg->from)
168                 f = rg->from;
169
170         /* Check for and consume any regions we now overlap with. */
171         nrg = rg;
172         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
173                 if (&rg->link == head)
174                         break;
175                 if (rg->from > t)
176                         break;
177
178                 /* If this area reaches higher then extend our area to
179                  * include it completely.  If this is not the first area
180                  * which we intend to reuse, free it. */
181                 if (rg->to > t)
182                         t = rg->to;
183                 if (rg != nrg) {
184                         list_del(&rg->link);
185                         kfree(rg);
186                 }
187         }
188         nrg->from = f;
189         nrg->to = t;
190         spin_unlock(&resv->lock);
191         return 0;
192 }
193
194 static long region_chg(struct resv_map *resv, long f, long t)
195 {
196         struct list_head *head = &resv->regions;
197         struct file_region *rg, *nrg = NULL;
198         long chg = 0;
199
200 retry:
201         spin_lock(&resv->lock);
202         /* Locate the region we are before or in. */
203         list_for_each_entry(rg, head, link)
204                 if (f <= rg->to)
205                         break;
206
207         /* If we are below the current region then a new region is required.
208          * Subtle, allocate a new region at the position but make it zero
209          * size such that we can guarantee to record the reservation. */
210         if (&rg->link == head || t < rg->from) {
211                 if (!nrg) {
212                         spin_unlock(&resv->lock);
213                         nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
214                         if (!nrg)
215                                 return -ENOMEM;
216
217                         nrg->from = f;
218                         nrg->to   = f;
219                         INIT_LIST_HEAD(&nrg->link);
220                         goto retry;
221                 }
222
223                 list_add(&nrg->link, rg->link.prev);
224                 chg = t - f;
225                 goto out_nrg;
226         }
227
228         /* Round our left edge to the current segment if it encloses us. */
229         if (f > rg->from)
230                 f = rg->from;
231         chg = t - f;
232
233         /* Check for and consume any regions we now overlap with. */
234         list_for_each_entry(rg, rg->link.prev, link) {
235                 if (&rg->link == head)
236                         break;
237                 if (rg->from > t)
238                         goto out;
239
240                 /* We overlap with this area, if it extends further than
241                  * us then we must extend ourselves.  Account for its
242                  * existing reservation. */
243                 if (rg->to > t) {
244                         chg += rg->to - t;
245                         t = rg->to;
246                 }
247                 chg -= rg->to - rg->from;
248         }
249
250 out:
251         spin_unlock(&resv->lock);
252         /*  We already know we raced and no longer need the new region */
253         kfree(nrg);
254         return chg;
255 out_nrg:
256         spin_unlock(&resv->lock);
257         return chg;
258 }
259
260 static long region_truncate(struct resv_map *resv, long end)
261 {
262         struct list_head *head = &resv->regions;
263         struct file_region *rg, *trg;
264         long chg = 0;
265
266         spin_lock(&resv->lock);
267         /* Locate the region we are either in or before. */
268         list_for_each_entry(rg, head, link)
269                 if (end <= rg->to)
270                         break;
271         if (&rg->link == head)
272                 goto out;
273
274         /* If we are in the middle of a region then adjust it. */
275         if (end > rg->from) {
276                 chg = rg->to - end;
277                 rg->to = end;
278                 rg = list_entry(rg->link.next, typeof(*rg), link);
279         }
280
281         /* Drop any remaining regions. */
282         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
283                 if (&rg->link == head)
284                         break;
285                 chg += rg->to - rg->from;
286                 list_del(&rg->link);
287                 kfree(rg);
288         }
289
290 out:
291         spin_unlock(&resv->lock);
292         return chg;
293 }
294
295 static long region_count(struct resv_map *resv, long f, long t)
296 {
297         struct list_head *head = &resv->regions;
298         struct file_region *rg;
299         long chg = 0;
300
301         spin_lock(&resv->lock);
302         /* Locate each segment we overlap with, and count that overlap. */
303         list_for_each_entry(rg, head, link) {
304                 long seg_from;
305                 long seg_to;
306
307                 if (rg->to <= f)
308                         continue;
309                 if (rg->from >= t)
310                         break;
311
312                 seg_from = max(rg->from, f);
313                 seg_to = min(rg->to, t);
314
315                 chg += seg_to - seg_from;
316         }
317         spin_unlock(&resv->lock);
318
319         return chg;
320 }
321
322 /*
323  * Convert the address within this vma to the page offset within
324  * the mapping, in pagecache page units; huge pages here.
325  */
326 static pgoff_t vma_hugecache_offset(struct hstate *h,
327                         struct vm_area_struct *vma, unsigned long address)
328 {
329         return ((address - vma->vm_start) >> huge_page_shift(h)) +
330                         (vma->vm_pgoff >> huge_page_order(h));
331 }
332
333 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
334                                      unsigned long address)
335 {
336         return vma_hugecache_offset(hstate_vma(vma), vma, address);
337 }
338
339 /*
340  * Return the size of the pages allocated when backing a VMA. In the majority
341  * cases this will be same size as used by the page table entries.
342  */
343 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
344 {
345         struct hstate *hstate;
346
347         if (!is_vm_hugetlb_page(vma))
348                 return PAGE_SIZE;
349
350         hstate = hstate_vma(vma);
351
352         return 1UL << huge_page_shift(hstate);
353 }
354 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
355
356 /*
357  * Return the page size being used by the MMU to back a VMA. In the majority
358  * of cases, the page size used by the kernel matches the MMU size. On
359  * architectures where it differs, an architecture-specific version of this
360  * function is required.
361  */
362 #ifndef vma_mmu_pagesize
363 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
364 {
365         return vma_kernel_pagesize(vma);
366 }
367 #endif
368
369 /*
370  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
371  * bits of the reservation map pointer, which are always clear due to
372  * alignment.
373  */
374 #define HPAGE_RESV_OWNER    (1UL << 0)
375 #define HPAGE_RESV_UNMAPPED (1UL << 1)
376 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
377
378 /*
379  * These helpers are used to track how many pages are reserved for
380  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
381  * is guaranteed to have their future faults succeed.
382  *
383  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
384  * the reserve counters are updated with the hugetlb_lock held. It is safe
385  * to reset the VMA at fork() time as it is not in use yet and there is no
386  * chance of the global counters getting corrupted as a result of the values.
387  *
388  * The private mapping reservation is represented in a subtly different
389  * manner to a shared mapping.  A shared mapping has a region map associated
390  * with the underlying file, this region map represents the backing file
391  * pages which have ever had a reservation assigned which this persists even
392  * after the page is instantiated.  A private mapping has a region map
393  * associated with the original mmap which is attached to all VMAs which
394  * reference it, this region map represents those offsets which have consumed
395  * reservation ie. where pages have been instantiated.
396  */
397 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
398 {
399         return (unsigned long)vma->vm_private_data;
400 }
401
402 static void set_vma_private_data(struct vm_area_struct *vma,
403                                                         unsigned long value)
404 {
405         vma->vm_private_data = (void *)value;
406 }
407
408 struct resv_map *resv_map_alloc(void)
409 {
410         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
411         if (!resv_map)
412                 return NULL;
413
414         kref_init(&resv_map->refs);
415         spin_lock_init(&resv_map->lock);
416         INIT_LIST_HEAD(&resv_map->regions);
417
418         return resv_map;
419 }
420
421 void resv_map_release(struct kref *ref)
422 {
423         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
424
425         /* Clear out any active regions before we release the map. */
426         region_truncate(resv_map, 0);
427         kfree(resv_map);
428 }
429
430 static inline struct resv_map *inode_resv_map(struct inode *inode)
431 {
432         return inode->i_mapping->private_data;
433 }
434
435 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
436 {
437         VM_BUG_ON(!is_vm_hugetlb_page(vma));
438         if (vma->vm_flags & VM_MAYSHARE) {
439                 struct address_space *mapping = vma->vm_file->f_mapping;
440                 struct inode *inode = mapping->host;
441
442                 return inode_resv_map(inode);
443
444         } else {
445                 return (struct resv_map *)(get_vma_private_data(vma) &
446                                                         ~HPAGE_RESV_MASK);
447         }
448 }
449
450 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
451 {
452         VM_BUG_ON(!is_vm_hugetlb_page(vma));
453         VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
454
455         set_vma_private_data(vma, (get_vma_private_data(vma) &
456                                 HPAGE_RESV_MASK) | (unsigned long)map);
457 }
458
459 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
460 {
461         VM_BUG_ON(!is_vm_hugetlb_page(vma));
462         VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
463
464         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
465 }
466
467 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
468 {
469         VM_BUG_ON(!is_vm_hugetlb_page(vma));
470
471         return (get_vma_private_data(vma) & flag) != 0;
472 }
473
474 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
475 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
476 {
477         VM_BUG_ON(!is_vm_hugetlb_page(vma));
478         if (!(vma->vm_flags & VM_MAYSHARE))
479                 vma->vm_private_data = (void *)0;
480 }
481
482 /* Returns true if the VMA has associated reserve pages */
483 static int vma_has_reserves(struct vm_area_struct *vma, long chg)
484 {
485         if (vma->vm_flags & VM_NORESERVE) {
486                 /*
487                  * This address is already reserved by other process(chg == 0),
488                  * so, we should decrement reserved count. Without decrementing,
489                  * reserve count remains after releasing inode, because this
490                  * allocated page will go into page cache and is regarded as
491                  * coming from reserved pool in releasing step.  Currently, we
492                  * don't have any other solution to deal with this situation
493                  * properly, so add work-around here.
494                  */
495                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
496                         return 1;
497                 else
498                         return 0;
499         }
500
501         /* Shared mappings always use reserves */
502         if (vma->vm_flags & VM_MAYSHARE)
503                 return 1;
504
505         /*
506          * Only the process that called mmap() has reserves for
507          * private mappings.
508          */
509         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
510                 return 1;
511
512         return 0;
513 }
514
515 static void enqueue_huge_page(struct hstate *h, struct page *page)
516 {
517         int nid = page_to_nid(page);
518         list_move(&page->lru, &h->hugepage_freelists[nid]);
519         h->free_huge_pages++;
520         h->free_huge_pages_node[nid]++;
521 }
522
523 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
524 {
525         struct page *page;
526
527         list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
528                 if (!is_migrate_isolate_page(page))
529                         break;
530         /*
531          * if 'non-isolated free hugepage' not found on the list,
532          * the allocation fails.
533          */
534         if (&h->hugepage_freelists[nid] == &page->lru)
535                 return NULL;
536         list_move(&page->lru, &h->hugepage_activelist);
537         set_page_refcounted(page);
538         h->free_huge_pages--;
539         h->free_huge_pages_node[nid]--;
540         return page;
541 }
542
543 /* Movability of hugepages depends on migration support. */
544 static inline gfp_t htlb_alloc_mask(struct hstate *h)
545 {
546         if (hugepages_treat_as_movable || hugepage_migration_support(h))
547                 return GFP_HIGHUSER_MOVABLE;
548         else
549                 return GFP_HIGHUSER;
550 }
551
552 static struct page *dequeue_huge_page_vma(struct hstate *h,
553                                 struct vm_area_struct *vma,
554                                 unsigned long address, int avoid_reserve,
555                                 long chg)
556 {
557         struct page *page = NULL;
558         struct mempolicy *mpol;
559         nodemask_t *nodemask;
560         struct zonelist *zonelist;
561         struct zone *zone;
562         struct zoneref *z;
563         unsigned int cpuset_mems_cookie;
564
565         /*
566          * A child process with MAP_PRIVATE mappings created by their parent
567          * have no page reserves. This check ensures that reservations are
568          * not "stolen". The child may still get SIGKILLed
569          */
570         if (!vma_has_reserves(vma, chg) &&
571                         h->free_huge_pages - h->resv_huge_pages == 0)
572                 goto err;
573
574         /* If reserves cannot be used, ensure enough pages are in the pool */
575         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
576                 goto err;
577
578 retry_cpuset:
579         cpuset_mems_cookie = read_mems_allowed_begin();
580         zonelist = huge_zonelist(vma, address,
581                                         htlb_alloc_mask(h), &mpol, &nodemask);
582
583         for_each_zone_zonelist_nodemask(zone, z, zonelist,
584                                                 MAX_NR_ZONES - 1, nodemask) {
585                 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask(h))) {
586                         page = dequeue_huge_page_node(h, zone_to_nid(zone));
587                         if (page) {
588                                 if (avoid_reserve)
589                                         break;
590                                 if (!vma_has_reserves(vma, chg))
591                                         break;
592
593                                 SetPagePrivate(page);
594                                 h->resv_huge_pages--;
595                                 break;
596                         }
597                 }
598         }
599
600         mpol_cond_put(mpol);
601         if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
602                 goto retry_cpuset;
603         return page;
604
605 err:
606         return NULL;
607 }
608
609 static void update_and_free_page(struct hstate *h, struct page *page)
610 {
611         int i;
612
613         VM_BUG_ON(h->order >= MAX_ORDER);
614
615         h->nr_huge_pages--;
616         h->nr_huge_pages_node[page_to_nid(page)]--;
617         for (i = 0; i < pages_per_huge_page(h); i++) {
618                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
619                                 1 << PG_referenced | 1 << PG_dirty |
620                                 1 << PG_active | 1 << PG_reserved |
621                                 1 << PG_private | 1 << PG_writeback);
622         }
623         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
624         set_compound_page_dtor(page, NULL);
625         set_page_refcounted(page);
626         arch_release_hugepage(page);
627         __free_pages(page, huge_page_order(h));
628 }
629
630 struct hstate *size_to_hstate(unsigned long size)
631 {
632         struct hstate *h;
633
634         for_each_hstate(h) {
635                 if (huge_page_size(h) == size)
636                         return h;
637         }
638         return NULL;
639 }
640
641 static void free_huge_page(struct page *page)
642 {
643         /*
644          * Can't pass hstate in here because it is called from the
645          * compound page destructor.
646          */
647         struct hstate *h = page_hstate(page);
648         int nid = page_to_nid(page);
649         struct hugepage_subpool *spool =
650                 (struct hugepage_subpool *)page_private(page);
651         bool restore_reserve;
652
653         set_page_private(page, 0);
654         page->mapping = NULL;
655         BUG_ON(page_count(page));
656         BUG_ON(page_mapcount(page));
657         restore_reserve = PagePrivate(page);
658         ClearPagePrivate(page);
659
660         spin_lock(&hugetlb_lock);
661         hugetlb_cgroup_uncharge_page(hstate_index(h),
662                                      pages_per_huge_page(h), page);
663         if (restore_reserve)
664                 h->resv_huge_pages++;
665
666         if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
667                 /* remove the page from active list */
668                 list_del(&page->lru);
669                 update_and_free_page(h, page);
670                 h->surplus_huge_pages--;
671                 h->surplus_huge_pages_node[nid]--;
672         } else {
673                 arch_clear_hugepage_flags(page);
674                 enqueue_huge_page(h, page);
675         }
676         spin_unlock(&hugetlb_lock);
677         hugepage_subpool_put_pages(spool, 1);
678 }
679
680 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
681 {
682         INIT_LIST_HEAD(&page->lru);
683         set_compound_page_dtor(page, free_huge_page);
684         spin_lock(&hugetlb_lock);
685         set_hugetlb_cgroup(page, NULL);
686         h->nr_huge_pages++;
687         h->nr_huge_pages_node[nid]++;
688         spin_unlock(&hugetlb_lock);
689         put_page(page); /* free it into the hugepage allocator */
690 }
691
692 static void __init prep_compound_gigantic_page(struct page *page,
693                                                unsigned long order)
694 {
695         int i;
696         int nr_pages = 1 << order;
697         struct page *p = page + 1;
698
699         /* we rely on prep_new_huge_page to set the destructor */
700         set_compound_order(page, order);
701         __SetPageHead(page);
702         __ClearPageReserved(page);
703         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
704                 __SetPageTail(p);
705                 /*
706                  * For gigantic hugepages allocated through bootmem at
707                  * boot, it's safer to be consistent with the not-gigantic
708                  * hugepages and clear the PG_reserved bit from all tail pages
709                  * too.  Otherwse drivers using get_user_pages() to access tail
710                  * pages may get the reference counting wrong if they see
711                  * PG_reserved set on a tail page (despite the head page not
712                  * having PG_reserved set).  Enforcing this consistency between
713                  * head and tail pages allows drivers to optimize away a check
714                  * on the head page when they need know if put_page() is needed
715                  * after get_user_pages().
716                  */
717                 __ClearPageReserved(p);
718                 set_page_count(p, 0);
719                 p->first_page = page;
720         }
721 }
722
723 /*
724  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
725  * transparent huge pages.  See the PageTransHuge() documentation for more
726  * details.
727  */
728 int PageHuge(struct page *page)
729 {
730         if (!PageCompound(page))
731                 return 0;
732
733         page = compound_head(page);
734         return get_compound_page_dtor(page) == free_huge_page;
735 }
736 EXPORT_SYMBOL_GPL(PageHuge);
737
738 /*
739  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
740  * normal or transparent huge pages.
741  */
742 int PageHeadHuge(struct page *page_head)
743 {
744         if (!PageHead(page_head))
745                 return 0;
746
747         return get_compound_page_dtor(page_head) == free_huge_page;
748 }
749
750 pgoff_t __basepage_index(struct page *page)
751 {
752         struct page *page_head = compound_head(page);
753         pgoff_t index = page_index(page_head);
754         unsigned long compound_idx;
755
756         if (!PageHuge(page_head))
757                 return page_index(page);
758
759         if (compound_order(page_head) >= MAX_ORDER)
760                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
761         else
762                 compound_idx = page - page_head;
763
764         return (index << compound_order(page_head)) + compound_idx;
765 }
766
767 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
768 {
769         struct page *page;
770
771         if (h->order >= MAX_ORDER)
772                 return NULL;
773
774         page = alloc_pages_exact_node(nid,
775                 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
776                                                 __GFP_REPEAT|__GFP_NOWARN,
777                 huge_page_order(h));
778         if (page) {
779                 if (arch_prepare_hugepage(page)) {
780                         __free_pages(page, huge_page_order(h));
781                         return NULL;
782                 }
783                 prep_new_huge_page(h, page, nid);
784         }
785
786         return page;
787 }
788
789 /*
790  * common helper functions for hstate_next_node_to_{alloc|free}.
791  * We may have allocated or freed a huge page based on a different
792  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
793  * be outside of *nodes_allowed.  Ensure that we use an allowed
794  * node for alloc or free.
795  */
796 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
797 {
798         nid = next_node(nid, *nodes_allowed);
799         if (nid == MAX_NUMNODES)
800                 nid = first_node(*nodes_allowed);
801         VM_BUG_ON(nid >= MAX_NUMNODES);
802
803         return nid;
804 }
805
806 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
807 {
808         if (!node_isset(nid, *nodes_allowed))
809                 nid = next_node_allowed(nid, nodes_allowed);
810         return nid;
811 }
812
813 /*
814  * returns the previously saved node ["this node"] from which to
815  * allocate a persistent huge page for the pool and advance the
816  * next node from which to allocate, handling wrap at end of node
817  * mask.
818  */
819 static int hstate_next_node_to_alloc(struct hstate *h,
820                                         nodemask_t *nodes_allowed)
821 {
822         int nid;
823
824         VM_BUG_ON(!nodes_allowed);
825
826         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
827         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
828
829         return nid;
830 }
831
832 /*
833  * helper for free_pool_huge_page() - return the previously saved
834  * node ["this node"] from which to free a huge page.  Advance the
835  * next node id whether or not we find a free huge page to free so
836  * that the next attempt to free addresses the next node.
837  */
838 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
839 {
840         int nid;
841
842         VM_BUG_ON(!nodes_allowed);
843
844         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
845         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
846
847         return nid;
848 }
849
850 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
851         for (nr_nodes = nodes_weight(*mask);                            \
852                 nr_nodes > 0 &&                                         \
853                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
854                 nr_nodes--)
855
856 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
857         for (nr_nodes = nodes_weight(*mask);                            \
858                 nr_nodes > 0 &&                                         \
859                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
860                 nr_nodes--)
861
862 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
863 {
864         struct page *page;
865         int nr_nodes, node;
866         int ret = 0;
867
868         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
869                 page = alloc_fresh_huge_page_node(h, node);
870                 if (page) {
871                         ret = 1;
872                         break;
873                 }
874         }
875
876         if (ret)
877                 count_vm_event(HTLB_BUDDY_PGALLOC);
878         else
879                 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
880
881         return ret;
882 }
883
884 /*
885  * Free huge page from pool from next node to free.
886  * Attempt to keep persistent huge pages more or less
887  * balanced over allowed nodes.
888  * Called with hugetlb_lock locked.
889  */
890 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
891                                                          bool acct_surplus)
892 {
893         int nr_nodes, node;
894         int ret = 0;
895
896         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
897                 /*
898                  * If we're returning unused surplus pages, only examine
899                  * nodes with surplus pages.
900                  */
901                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
902                     !list_empty(&h->hugepage_freelists[node])) {
903                         struct page *page =
904                                 list_entry(h->hugepage_freelists[node].next,
905                                           struct page, lru);
906                         list_del(&page->lru);
907                         h->free_huge_pages--;
908                         h->free_huge_pages_node[node]--;
909                         if (acct_surplus) {
910                                 h->surplus_huge_pages--;
911                                 h->surplus_huge_pages_node[node]--;
912                         }
913                         update_and_free_page(h, page);
914                         ret = 1;
915                         break;
916                 }
917         }
918
919         return ret;
920 }
921
922 /*
923  * Dissolve a given free hugepage into free buddy pages. This function does
924  * nothing for in-use (including surplus) hugepages.
925  */
926 static void dissolve_free_huge_page(struct page *page)
927 {
928         spin_lock(&hugetlb_lock);
929         if (PageHuge(page) && !page_count(page)) {
930                 struct hstate *h = page_hstate(page);
931                 int nid = page_to_nid(page);
932                 list_del(&page->lru);
933                 h->free_huge_pages--;
934                 h->free_huge_pages_node[nid]--;
935                 update_and_free_page(h, page);
936         }
937         spin_unlock(&hugetlb_lock);
938 }
939
940 /*
941  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
942  * make specified memory blocks removable from the system.
943  * Note that start_pfn should aligned with (minimum) hugepage size.
944  */
945 void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
946 {
947         unsigned int order = 8 * sizeof(void *);
948         unsigned long pfn;
949         struct hstate *h;
950
951         /* Set scan step to minimum hugepage size */
952         for_each_hstate(h)
953                 if (order > huge_page_order(h))
954                         order = huge_page_order(h);
955         VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << order));
956         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order)
957                 dissolve_free_huge_page(pfn_to_page(pfn));
958 }
959
960 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
961 {
962         struct page *page;
963         unsigned int r_nid;
964
965         if (h->order >= MAX_ORDER)
966                 return NULL;
967
968         /*
969          * Assume we will successfully allocate the surplus page to
970          * prevent racing processes from causing the surplus to exceed
971          * overcommit
972          *
973          * This however introduces a different race, where a process B
974          * tries to grow the static hugepage pool while alloc_pages() is
975          * called by process A. B will only examine the per-node
976          * counters in determining if surplus huge pages can be
977          * converted to normal huge pages in adjust_pool_surplus(). A
978          * won't be able to increment the per-node counter, until the
979          * lock is dropped by B, but B doesn't drop hugetlb_lock until
980          * no more huge pages can be converted from surplus to normal
981          * state (and doesn't try to convert again). Thus, we have a
982          * case where a surplus huge page exists, the pool is grown, and
983          * the surplus huge page still exists after, even though it
984          * should just have been converted to a normal huge page. This
985          * does not leak memory, though, as the hugepage will be freed
986          * once it is out of use. It also does not allow the counters to
987          * go out of whack in adjust_pool_surplus() as we don't modify
988          * the node values until we've gotten the hugepage and only the
989          * per-node value is checked there.
990          */
991         spin_lock(&hugetlb_lock);
992         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
993                 spin_unlock(&hugetlb_lock);
994                 return NULL;
995         } else {
996                 h->nr_huge_pages++;
997                 h->surplus_huge_pages++;
998         }
999         spin_unlock(&hugetlb_lock);
1000
1001         if (nid == NUMA_NO_NODE)
1002                 page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP|
1003                                    __GFP_REPEAT|__GFP_NOWARN,
1004                                    huge_page_order(h));
1005         else
1006                 page = alloc_pages_exact_node(nid,
1007                         htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1008                         __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
1009
1010         if (page && arch_prepare_hugepage(page)) {
1011                 __free_pages(page, huge_page_order(h));
1012                 page = NULL;
1013         }
1014
1015         spin_lock(&hugetlb_lock);
1016         if (page) {
1017                 INIT_LIST_HEAD(&page->lru);
1018                 r_nid = page_to_nid(page);
1019                 set_compound_page_dtor(page, free_huge_page);
1020                 set_hugetlb_cgroup(page, NULL);
1021                 /*
1022                  * We incremented the global counters already
1023                  */
1024                 h->nr_huge_pages_node[r_nid]++;
1025                 h->surplus_huge_pages_node[r_nid]++;
1026                 __count_vm_event(HTLB_BUDDY_PGALLOC);
1027         } else {
1028                 h->nr_huge_pages--;
1029                 h->surplus_huge_pages--;
1030                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1031         }
1032         spin_unlock(&hugetlb_lock);
1033
1034         return page;
1035 }
1036
1037 /*
1038  * This allocation function is useful in the context where vma is irrelevant.
1039  * E.g. soft-offlining uses this function because it only cares physical
1040  * address of error page.
1041  */
1042 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1043 {
1044         struct page *page = NULL;
1045
1046         spin_lock(&hugetlb_lock);
1047         if (h->free_huge_pages - h->resv_huge_pages > 0)
1048                 page = dequeue_huge_page_node(h, nid);
1049         spin_unlock(&hugetlb_lock);
1050
1051         if (!page)
1052                 page = alloc_buddy_huge_page(h, nid);
1053
1054         return page;
1055 }
1056
1057 /*
1058  * Increase the hugetlb pool such that it can accommodate a reservation
1059  * of size 'delta'.
1060  */
1061 static int gather_surplus_pages(struct hstate *h, int delta)
1062 {
1063         struct list_head surplus_list;
1064         struct page *page, *tmp;
1065         int ret, i;
1066         int needed, allocated;
1067         bool alloc_ok = true;
1068
1069         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1070         if (needed <= 0) {
1071                 h->resv_huge_pages += delta;
1072                 return 0;
1073         }
1074
1075         allocated = 0;
1076         INIT_LIST_HEAD(&surplus_list);
1077
1078         ret = -ENOMEM;
1079 retry:
1080         spin_unlock(&hugetlb_lock);
1081         for (i = 0; i < needed; i++) {
1082                 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1083                 if (!page) {
1084                         alloc_ok = false;
1085                         break;
1086                 }
1087                 list_add(&page->lru, &surplus_list);
1088         }
1089         allocated += i;
1090
1091         /*
1092          * After retaking hugetlb_lock, we need to recalculate 'needed'
1093          * because either resv_huge_pages or free_huge_pages may have changed.
1094          */
1095         spin_lock(&hugetlb_lock);
1096         needed = (h->resv_huge_pages + delta) -
1097                         (h->free_huge_pages + allocated);
1098         if (needed > 0) {
1099                 if (alloc_ok)
1100                         goto retry;
1101                 /*
1102                  * We were not able to allocate enough pages to
1103                  * satisfy the entire reservation so we free what
1104                  * we've allocated so far.
1105                  */
1106                 goto free;
1107         }
1108         /*
1109          * The surplus_list now contains _at_least_ the number of extra pages
1110          * needed to accommodate the reservation.  Add the appropriate number
1111          * of pages to the hugetlb pool and free the extras back to the buddy
1112          * allocator.  Commit the entire reservation here to prevent another
1113          * process from stealing the pages as they are added to the pool but
1114          * before they are reserved.
1115          */
1116         needed += allocated;
1117         h->resv_huge_pages += delta;
1118         ret = 0;
1119
1120         /* Free the needed pages to the hugetlb pool */
1121         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1122                 if ((--needed) < 0)
1123                         break;
1124                 /*
1125                  * This page is now managed by the hugetlb allocator and has
1126                  * no users -- drop the buddy allocator's reference.
1127                  */
1128                 put_page_testzero(page);
1129                 VM_BUG_ON_PAGE(page_count(page), page);
1130                 enqueue_huge_page(h, page);
1131         }
1132 free:
1133         spin_unlock(&hugetlb_lock);
1134
1135         /* Free unnecessary surplus pages to the buddy allocator */
1136         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1137                 put_page(page);
1138         spin_lock(&hugetlb_lock);
1139
1140         return ret;
1141 }
1142
1143 /*
1144  * When releasing a hugetlb pool reservation, any surplus pages that were
1145  * allocated to satisfy the reservation must be explicitly freed if they were
1146  * never used.
1147  * Called with hugetlb_lock held.
1148  */
1149 static void return_unused_surplus_pages(struct hstate *h,
1150                                         unsigned long unused_resv_pages)
1151 {
1152         unsigned long nr_pages;
1153
1154         /* Uncommit the reservation */
1155         h->resv_huge_pages -= unused_resv_pages;
1156
1157         /* Cannot return gigantic pages currently */
1158         if (h->order >= MAX_ORDER)
1159                 return;
1160
1161         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1162
1163         /*
1164          * We want to release as many surplus pages as possible, spread
1165          * evenly across all nodes with memory. Iterate across these nodes
1166          * until we can no longer free unreserved surplus pages. This occurs
1167          * when the nodes with surplus pages have no free pages.
1168          * free_pool_huge_page() will balance the the freed pages across the
1169          * on-line nodes with memory and will handle the hstate accounting.
1170          */
1171         while (nr_pages--) {
1172                 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1173                         break;
1174         }
1175 }
1176
1177 /*
1178  * Determine if the huge page at addr within the vma has an associated
1179  * reservation.  Where it does not we will need to logically increase
1180  * reservation and actually increase subpool usage before an allocation
1181  * can occur.  Where any new reservation would be required the
1182  * reservation change is prepared, but not committed.  Once the page
1183  * has been allocated from the subpool and instantiated the change should
1184  * be committed via vma_commit_reservation.  No action is required on
1185  * failure.
1186  */
1187 static long vma_needs_reservation(struct hstate *h,
1188                         struct vm_area_struct *vma, unsigned long addr)
1189 {
1190         struct resv_map *resv;
1191         pgoff_t idx;
1192         long chg;
1193
1194         resv = vma_resv_map(vma);
1195         if (!resv)
1196                 return 1;
1197
1198         idx = vma_hugecache_offset(h, vma, addr);
1199         chg = region_chg(resv, idx, idx + 1);
1200
1201         if (vma->vm_flags & VM_MAYSHARE)
1202                 return chg;
1203         else
1204                 return chg < 0 ? chg : 0;
1205 }
1206 static void vma_commit_reservation(struct hstate *h,
1207                         struct vm_area_struct *vma, unsigned long addr)
1208 {
1209         struct resv_map *resv;
1210         pgoff_t idx;
1211
1212         resv = vma_resv_map(vma);
1213         if (!resv)
1214                 return;
1215
1216         idx = vma_hugecache_offset(h, vma, addr);
1217         region_add(resv, idx, idx + 1);
1218 }
1219
1220 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1221                                     unsigned long addr, int avoid_reserve)
1222 {
1223         struct hugepage_subpool *spool = subpool_vma(vma);
1224         struct hstate *h = hstate_vma(vma);
1225         struct page *page;
1226         long chg;
1227         int ret, idx;
1228         struct hugetlb_cgroup *h_cg;
1229
1230         idx = hstate_index(h);
1231         /*
1232          * Processes that did not create the mapping will have no
1233          * reserves and will not have accounted against subpool
1234          * limit. Check that the subpool limit can be made before
1235          * satisfying the allocation MAP_NORESERVE mappings may also
1236          * need pages and subpool limit allocated allocated if no reserve
1237          * mapping overlaps.
1238          */
1239         chg = vma_needs_reservation(h, vma, addr);
1240         if (chg < 0)
1241                 return ERR_PTR(-ENOMEM);
1242         if (chg || avoid_reserve)
1243                 if (hugepage_subpool_get_pages(spool, 1))
1244                         return ERR_PTR(-ENOSPC);
1245
1246         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1247         if (ret) {
1248                 if (chg || avoid_reserve)
1249                         hugepage_subpool_put_pages(spool, 1);
1250                 return ERR_PTR(-ENOSPC);
1251         }
1252         spin_lock(&hugetlb_lock);
1253         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
1254         if (!page) {
1255                 spin_unlock(&hugetlb_lock);
1256                 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1257                 if (!page) {
1258                         hugetlb_cgroup_uncharge_cgroup(idx,
1259                                                        pages_per_huge_page(h),
1260                                                        h_cg);
1261                         if (chg || avoid_reserve)
1262                                 hugepage_subpool_put_pages(spool, 1);
1263                         return ERR_PTR(-ENOSPC);
1264                 }
1265                 spin_lock(&hugetlb_lock);
1266                 list_move(&page->lru, &h->hugepage_activelist);
1267                 /* Fall through */
1268         }
1269         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1270         spin_unlock(&hugetlb_lock);
1271
1272         set_page_private(page, (unsigned long)spool);
1273
1274         vma_commit_reservation(h, vma, addr);
1275         return page;
1276 }
1277
1278 /*
1279  * alloc_huge_page()'s wrapper which simply returns the page if allocation
1280  * succeeds, otherwise NULL. This function is called from new_vma_page(),
1281  * where no ERR_VALUE is expected to be returned.
1282  */
1283 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1284                                 unsigned long addr, int avoid_reserve)
1285 {
1286         struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1287         if (IS_ERR(page))
1288                 page = NULL;
1289         return page;
1290 }
1291
1292 int __weak alloc_bootmem_huge_page(struct hstate *h)
1293 {
1294         struct huge_bootmem_page *m;
1295         int nr_nodes, node;
1296
1297         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1298                 void *addr;
1299
1300                 addr = memblock_virt_alloc_try_nid_nopanic(
1301                                 huge_page_size(h), huge_page_size(h),
1302                                 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
1303                 if (addr) {
1304                         /*
1305                          * Use the beginning of the huge page to store the
1306                          * huge_bootmem_page struct (until gather_bootmem
1307                          * puts them into the mem_map).
1308                          */
1309                         m = addr;
1310                         goto found;
1311                 }
1312         }
1313         return 0;
1314
1315 found:
1316         BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1317         /* Put them into a private list first because mem_map is not up yet */
1318         list_add(&m->list, &huge_boot_pages);
1319         m->hstate = h;
1320         return 1;
1321 }
1322
1323 static void __init prep_compound_huge_page(struct page *page, int order)
1324 {
1325         if (unlikely(order > (MAX_ORDER - 1)))
1326                 prep_compound_gigantic_page(page, order);
1327         else
1328                 prep_compound_page(page, order);
1329 }
1330
1331 /* Put bootmem huge pages into the standard lists after mem_map is up */
1332 static void __init gather_bootmem_prealloc(void)
1333 {
1334         struct huge_bootmem_page *m;
1335
1336         list_for_each_entry(m, &huge_boot_pages, list) {
1337                 struct hstate *h = m->hstate;
1338                 struct page *page;
1339
1340 #ifdef CONFIG_HIGHMEM
1341                 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1342                 memblock_free_late(__pa(m),
1343                                    sizeof(struct huge_bootmem_page));
1344 #else
1345                 page = virt_to_page(m);
1346 #endif
1347                 WARN_ON(page_count(page) != 1);
1348                 prep_compound_huge_page(page, h->order);
1349                 WARN_ON(PageReserved(page));
1350                 prep_new_huge_page(h, page, page_to_nid(page));
1351                 /*
1352                  * If we had gigantic hugepages allocated at boot time, we need
1353                  * to restore the 'stolen' pages to totalram_pages in order to
1354                  * fix confusing memory reports from free(1) and another
1355                  * side-effects, like CommitLimit going negative.
1356                  */
1357                 if (h->order > (MAX_ORDER - 1))
1358                         adjust_managed_page_count(page, 1 << h->order);
1359         }
1360 }
1361
1362 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1363 {
1364         unsigned long i;
1365
1366         for (i = 0; i < h->max_huge_pages; ++i) {
1367                 if (h->order >= MAX_ORDER) {
1368                         if (!alloc_bootmem_huge_page(h))
1369                                 break;
1370                 } else if (!alloc_fresh_huge_page(h,
1371                                          &node_states[N_MEMORY]))
1372                         break;
1373         }
1374         h->max_huge_pages = i;
1375 }
1376
1377 static void __init hugetlb_init_hstates(void)
1378 {
1379         struct hstate *h;
1380
1381         for_each_hstate(h) {
1382                 /* oversize hugepages were init'ed in early boot */
1383                 if (h->order < MAX_ORDER)
1384                         hugetlb_hstate_alloc_pages(h);
1385         }
1386 }
1387
1388 static char * __init memfmt(char *buf, unsigned long n)
1389 {
1390         if (n >= (1UL << 30))
1391                 sprintf(buf, "%lu GB", n >> 30);
1392         else if (n >= (1UL << 20))
1393                 sprintf(buf, "%lu MB", n >> 20);
1394         else
1395                 sprintf(buf, "%lu KB", n >> 10);
1396         return buf;
1397 }
1398
1399 static void __init report_hugepages(void)
1400 {
1401         struct hstate *h;
1402
1403         for_each_hstate(h) {
1404                 char buf[32];
1405                 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
1406                         memfmt(buf, huge_page_size(h)),
1407                         h->free_huge_pages);
1408         }
1409 }
1410
1411 #ifdef CONFIG_HIGHMEM
1412 static void try_to_free_low(struct hstate *h, unsigned long count,
1413                                                 nodemask_t *nodes_allowed)
1414 {
1415         int i;
1416
1417         if (h->order >= MAX_ORDER)
1418                 return;
1419
1420         for_each_node_mask(i, *nodes_allowed) {
1421                 struct page *page, *next;
1422                 struct list_head *freel = &h->hugepage_freelists[i];
1423                 list_for_each_entry_safe(page, next, freel, lru) {
1424                         if (count >= h->nr_huge_pages)
1425                                 return;
1426                         if (PageHighMem(page))
1427                                 continue;
1428                         list_del(&page->lru);
1429                         update_and_free_page(h, page);
1430                         h->free_huge_pages--;
1431                         h->free_huge_pages_node[page_to_nid(page)]--;
1432                 }
1433         }
1434 }
1435 #else
1436 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1437                                                 nodemask_t *nodes_allowed)
1438 {
1439 }
1440 #endif
1441
1442 /*
1443  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
1444  * balanced by operating on them in a round-robin fashion.
1445  * Returns 1 if an adjustment was made.
1446  */
1447 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1448                                 int delta)
1449 {
1450         int nr_nodes, node;
1451
1452         VM_BUG_ON(delta != -1 && delta != 1);
1453
1454         if (delta < 0) {
1455                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1456                         if (h->surplus_huge_pages_node[node])
1457                                 goto found;
1458                 }
1459         } else {
1460                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1461                         if (h->surplus_huge_pages_node[node] <
1462                                         h->nr_huge_pages_node[node])
1463                                 goto found;
1464                 }
1465         }
1466         return 0;
1467
1468 found:
1469         h->surplus_huge_pages += delta;
1470         h->surplus_huge_pages_node[node] += delta;
1471         return 1;
1472 }
1473
1474 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1475 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1476                                                 nodemask_t *nodes_allowed)
1477 {
1478         unsigned long min_count, ret;
1479
1480         if (h->order >= MAX_ORDER)
1481                 return h->max_huge_pages;
1482
1483         /*
1484          * Increase the pool size
1485          * First take pages out of surplus state.  Then make up the
1486          * remaining difference by allocating fresh huge pages.
1487          *
1488          * We might race with alloc_buddy_huge_page() here and be unable
1489          * to convert a surplus huge page to a normal huge page. That is
1490          * not critical, though, it just means the overall size of the
1491          * pool might be one hugepage larger than it needs to be, but
1492          * within all the constraints specified by the sysctls.
1493          */
1494         spin_lock(&hugetlb_lock);
1495         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1496                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
1497                         break;
1498         }
1499
1500         while (count > persistent_huge_pages(h)) {
1501                 /*
1502                  * If this allocation races such that we no longer need the
1503                  * page, free_huge_page will handle it by freeing the page
1504                  * and reducing the surplus.
1505                  */
1506                 spin_unlock(&hugetlb_lock);
1507                 ret = alloc_fresh_huge_page(h, nodes_allowed);
1508                 spin_lock(&hugetlb_lock);
1509                 if (!ret)
1510                         goto out;
1511
1512                 /* Bail for signals. Probably ctrl-c from user */
1513                 if (signal_pending(current))
1514                         goto out;
1515         }
1516
1517         /*
1518          * Decrease the pool size
1519          * First return free pages to the buddy allocator (being careful
1520          * to keep enough around to satisfy reservations).  Then place
1521          * pages into surplus state as needed so the pool will shrink
1522          * to the desired size as pages become free.
1523          *
1524          * By placing pages into the surplus state independent of the
1525          * overcommit value, we are allowing the surplus pool size to
1526          * exceed overcommit. There are few sane options here. Since
1527          * alloc_buddy_huge_page() is checking the global counter,
1528          * though, we'll note that we're not allowed to exceed surplus
1529          * and won't grow the pool anywhere else. Not until one of the
1530          * sysctls are changed, or the surplus pages go out of use.
1531          */
1532         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1533         min_count = max(count, min_count);
1534         try_to_free_low(h, min_count, nodes_allowed);
1535         while (min_count < persistent_huge_pages(h)) {
1536                 if (!free_pool_huge_page(h, nodes_allowed, 0))
1537                         break;
1538         }
1539         while (count < persistent_huge_pages(h)) {
1540                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
1541                         break;
1542         }
1543 out:
1544         ret = persistent_huge_pages(h);
1545         spin_unlock(&hugetlb_lock);
1546         return ret;
1547 }
1548
1549 #define HSTATE_ATTR_RO(_name) \
1550         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1551
1552 #define HSTATE_ATTR(_name) \
1553         static struct kobj_attribute _name##_attr = \
1554                 __ATTR(_name, 0644, _name##_show, _name##_store)
1555
1556 static struct kobject *hugepages_kobj;
1557 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1558
1559 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1560
1561 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1562 {
1563         int i;
1564
1565         for (i = 0; i < HUGE_MAX_HSTATE; i++)
1566                 if (hstate_kobjs[i] == kobj) {
1567                         if (nidp)
1568                                 *nidp = NUMA_NO_NODE;
1569                         return &hstates[i];
1570                 }
1571
1572         return kobj_to_node_hstate(kobj, nidp);
1573 }
1574
1575 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1576                                         struct kobj_attribute *attr, char *buf)
1577 {
1578         struct hstate *h;
1579         unsigned long nr_huge_pages;
1580         int nid;
1581
1582         h = kobj_to_hstate(kobj, &nid);
1583         if (nid == NUMA_NO_NODE)
1584                 nr_huge_pages = h->nr_huge_pages;
1585         else
1586                 nr_huge_pages = h->nr_huge_pages_node[nid];
1587
1588         return sprintf(buf, "%lu\n", nr_huge_pages);
1589 }
1590
1591 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1592                         struct kobject *kobj, struct kobj_attribute *attr,
1593                         const char *buf, size_t len)
1594 {
1595         int err;
1596         int nid;
1597         unsigned long count;
1598         struct hstate *h;
1599         NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1600
1601         err = kstrtoul(buf, 10, &count);
1602         if (err)
1603                 goto out;
1604
1605         h = kobj_to_hstate(kobj, &nid);
1606         if (h->order >= MAX_ORDER) {
1607                 err = -EINVAL;
1608                 goto out;
1609         }
1610
1611         if (nid == NUMA_NO_NODE) {
1612                 /*
1613                  * global hstate attribute
1614                  */
1615                 if (!(obey_mempolicy &&
1616                                 init_nodemask_of_mempolicy(nodes_allowed))) {
1617                         NODEMASK_FREE(nodes_allowed);
1618                         nodes_allowed = &node_states[N_MEMORY];
1619                 }
1620         } else if (nodes_allowed) {
1621                 /*
1622                  * per node hstate attribute: adjust count to global,
1623                  * but restrict alloc/free to the specified node.
1624                  */
1625                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1626                 init_nodemask_of_node(nodes_allowed, nid);
1627         } else
1628                 nodes_allowed = &node_states[N_MEMORY];
1629
1630         h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1631
1632         if (nodes_allowed != &node_states[N_MEMORY])
1633                 NODEMASK_FREE(nodes_allowed);
1634
1635         return len;
1636 out:
1637         NODEMASK_FREE(nodes_allowed);
1638         return err;
1639 }
1640
1641 static ssize_t nr_hugepages_show(struct kobject *kobj,
1642                                        struct kobj_attribute *attr, char *buf)
1643 {
1644         return nr_hugepages_show_common(kobj, attr, buf);
1645 }
1646
1647 static ssize_t nr_hugepages_store(struct kobject *kobj,
1648                struct kobj_attribute *attr, const char *buf, size_t len)
1649 {
1650         return nr_hugepages_store_common(false, kobj, attr, buf, len);
1651 }
1652 HSTATE_ATTR(nr_hugepages);
1653
1654 #ifdef CONFIG_NUMA
1655
1656 /*
1657  * hstate attribute for optionally mempolicy-based constraint on persistent
1658  * huge page alloc/free.
1659  */
1660 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1661                                        struct kobj_attribute *attr, char *buf)
1662 {
1663         return nr_hugepages_show_common(kobj, attr, buf);
1664 }
1665
1666 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1667                struct kobj_attribute *attr, const char *buf, size_t len)
1668 {
1669         return nr_hugepages_store_common(true, kobj, attr, buf, len);
1670 }
1671 HSTATE_ATTR(nr_hugepages_mempolicy);
1672 #endif
1673
1674
1675 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1676                                         struct kobj_attribute *attr, char *buf)
1677 {
1678         struct hstate *h = kobj_to_hstate(kobj, NULL);
1679         return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1680 }
1681
1682 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1683                 struct kobj_attribute *attr, const char *buf, size_t count)
1684 {
1685         int err;
1686         unsigned long input;
1687         struct hstate *h = kobj_to_hstate(kobj, NULL);
1688
1689         if (h->order >= MAX_ORDER)
1690                 return -EINVAL;
1691
1692         err = kstrtoul(buf, 10, &input);
1693         if (err)
1694                 return err;
1695
1696         spin_lock(&hugetlb_lock);
1697         h->nr_overcommit_huge_pages = input;
1698         spin_unlock(&hugetlb_lock);
1699
1700         return count;
1701 }
1702 HSTATE_ATTR(nr_overcommit_hugepages);
1703
1704 static ssize_t free_hugepages_show(struct kobject *kobj,
1705                                         struct kobj_attribute *attr, char *buf)
1706 {
1707         struct hstate *h;
1708         unsigned long free_huge_pages;
1709         int nid;
1710
1711         h = kobj_to_hstate(kobj, &nid);
1712         if (nid == NUMA_NO_NODE)
1713                 free_huge_pages = h->free_huge_pages;
1714         else
1715                 free_huge_pages = h->free_huge_pages_node[nid];
1716
1717         return sprintf(buf, "%lu\n", free_huge_pages);
1718 }
1719 HSTATE_ATTR_RO(free_hugepages);
1720
1721 static ssize_t resv_hugepages_show(struct kobject *kobj,
1722                                         struct kobj_attribute *attr, char *buf)
1723 {
1724         struct hstate *h = kobj_to_hstate(kobj, NULL);
1725         return sprintf(buf, "%lu\n", h->resv_huge_pages);
1726 }
1727 HSTATE_ATTR_RO(resv_hugepages);
1728
1729 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1730                                         struct kobj_attribute *attr, char *buf)
1731 {
1732         struct hstate *h;
1733         unsigned long surplus_huge_pages;
1734         int nid;
1735
1736         h = kobj_to_hstate(kobj, &nid);
1737         if (nid == NUMA_NO_NODE)
1738                 surplus_huge_pages = h->surplus_huge_pages;
1739         else
1740                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1741
1742         return sprintf(buf, "%lu\n", surplus_huge_pages);
1743 }
1744 HSTATE_ATTR_RO(surplus_hugepages);
1745
1746 static struct attribute *hstate_attrs[] = {
1747         &nr_hugepages_attr.attr,
1748         &nr_overcommit_hugepages_attr.attr,
1749         &free_hugepages_attr.attr,
1750         &resv_hugepages_attr.attr,
1751         &surplus_hugepages_attr.attr,
1752 #ifdef CONFIG_NUMA
1753         &nr_hugepages_mempolicy_attr.attr,
1754 #endif
1755         NULL,
1756 };
1757
1758 static struct attribute_group hstate_attr_group = {
1759         .attrs = hstate_attrs,
1760 };
1761
1762 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1763                                     struct kobject **hstate_kobjs,
1764                                     struct attribute_group *hstate_attr_group)
1765 {
1766         int retval;
1767         int hi = hstate_index(h);
1768
1769         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1770         if (!hstate_kobjs[hi])
1771                 return -ENOMEM;
1772
1773         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1774         if (retval)
1775                 kobject_put(hstate_kobjs[hi]);
1776
1777         return retval;
1778 }
1779
1780 static void __init hugetlb_sysfs_init(void)
1781 {
1782         struct hstate *h;
1783         int err;
1784
1785         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1786         if (!hugepages_kobj)
1787                 return;
1788
1789         for_each_hstate(h) {
1790                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1791                                          hstate_kobjs, &hstate_attr_group);
1792                 if (err)
1793                         pr_err("Hugetlb: Unable to add hstate %s", h->name);
1794         }
1795 }
1796
1797 #ifdef CONFIG_NUMA
1798
1799 /*
1800  * node_hstate/s - associate per node hstate attributes, via their kobjects,
1801  * with node devices in node_devices[] using a parallel array.  The array
1802  * index of a node device or _hstate == node id.
1803  * This is here to avoid any static dependency of the node device driver, in
1804  * the base kernel, on the hugetlb module.
1805  */
1806 struct node_hstate {
1807         struct kobject          *hugepages_kobj;
1808         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
1809 };
1810 struct node_hstate node_hstates[MAX_NUMNODES];
1811
1812 /*
1813  * A subset of global hstate attributes for node devices
1814  */
1815 static struct attribute *per_node_hstate_attrs[] = {
1816         &nr_hugepages_attr.attr,
1817         &free_hugepages_attr.attr,
1818         &surplus_hugepages_attr.attr,
1819         NULL,
1820 };
1821
1822 static struct attribute_group per_node_hstate_attr_group = {
1823         .attrs = per_node_hstate_attrs,
1824 };
1825
1826 /*
1827  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1828  * Returns node id via non-NULL nidp.
1829  */
1830 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1831 {
1832         int nid;
1833
1834         for (nid = 0; nid < nr_node_ids; nid++) {
1835                 struct node_hstate *nhs = &node_hstates[nid];
1836                 int i;
1837                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1838                         if (nhs->hstate_kobjs[i] == kobj) {
1839                                 if (nidp)
1840                                         *nidp = nid;
1841                                 return &hstates[i];
1842                         }
1843         }
1844
1845         BUG();
1846         return NULL;
1847 }
1848
1849 /*
1850  * Unregister hstate attributes from a single node device.
1851  * No-op if no hstate attributes attached.
1852  */
1853 static void hugetlb_unregister_node(struct node *node)
1854 {
1855         struct hstate *h;
1856         struct node_hstate *nhs = &node_hstates[node->dev.id];
1857
1858         if (!nhs->hugepages_kobj)
1859                 return;         /* no hstate attributes */
1860
1861         for_each_hstate(h) {
1862                 int idx = hstate_index(h);
1863                 if (nhs->hstate_kobjs[idx]) {
1864                         kobject_put(nhs->hstate_kobjs[idx]);
1865                         nhs->hstate_kobjs[idx] = NULL;
1866                 }
1867         }
1868
1869         kobject_put(nhs->hugepages_kobj);
1870         nhs->hugepages_kobj = NULL;
1871 }
1872
1873 /*
1874  * hugetlb module exit:  unregister hstate attributes from node devices
1875  * that have them.
1876  */
1877 static void hugetlb_unregister_all_nodes(void)
1878 {
1879         int nid;
1880
1881         /*
1882          * disable node device registrations.
1883          */
1884         register_hugetlbfs_with_node(NULL, NULL);
1885
1886         /*
1887          * remove hstate attributes from any nodes that have them.
1888          */
1889         for (nid = 0; nid < nr_node_ids; nid++)
1890                 hugetlb_unregister_node(node_devices[nid]);
1891 }
1892
1893 /*
1894  * Register hstate attributes for a single node device.
1895  * No-op if attributes already registered.
1896  */
1897 static void hugetlb_register_node(struct node *node)
1898 {
1899         struct hstate *h;
1900         struct node_hstate *nhs = &node_hstates[node->dev.id];
1901         int err;
1902
1903         if (nhs->hugepages_kobj)
1904                 return;         /* already allocated */
1905
1906         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1907                                                         &node->dev.kobj);
1908         if (!nhs->hugepages_kobj)
1909                 return;
1910
1911         for_each_hstate(h) {
1912                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1913                                                 nhs->hstate_kobjs,
1914                                                 &per_node_hstate_attr_group);
1915                 if (err) {
1916                         pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
1917                                 h->name, node->dev.id);
1918                         hugetlb_unregister_node(node);
1919                         break;
1920                 }
1921         }
1922 }
1923
1924 /*
1925  * hugetlb init time:  register hstate attributes for all registered node
1926  * devices of nodes that have memory.  All on-line nodes should have
1927  * registered their associated device by this time.
1928  */
1929 static void hugetlb_register_all_nodes(void)
1930 {
1931         int nid;
1932
1933         for_each_node_state(nid, N_MEMORY) {
1934                 struct node *node = node_devices[nid];
1935                 if (node->dev.id == nid)
1936                         hugetlb_register_node(node);
1937         }
1938
1939         /*
1940          * Let the node device driver know we're here so it can
1941          * [un]register hstate attributes on node hotplug.
1942          */
1943         register_hugetlbfs_with_node(hugetlb_register_node,
1944                                      hugetlb_unregister_node);
1945 }
1946 #else   /* !CONFIG_NUMA */
1947
1948 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1949 {
1950         BUG();
1951         if (nidp)
1952                 *nidp = -1;
1953         return NULL;
1954 }
1955
1956 static void hugetlb_unregister_all_nodes(void) { }
1957
1958 static void hugetlb_register_all_nodes(void) { }
1959
1960 #endif
1961
1962 static void __exit hugetlb_exit(void)
1963 {
1964         struct hstate *h;
1965
1966         hugetlb_unregister_all_nodes();
1967
1968         for_each_hstate(h) {
1969                 kobject_put(hstate_kobjs[hstate_index(h)]);
1970         }
1971
1972         kobject_put(hugepages_kobj);
1973         kfree(htlb_fault_mutex_table);
1974 }
1975 module_exit(hugetlb_exit);
1976
1977 static int __init hugetlb_init(void)
1978 {
1979         int i;
1980
1981         /* Some platform decide whether they support huge pages at boot
1982          * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1983          * there is no such support
1984          */
1985         if (HPAGE_SHIFT == 0)
1986                 return 0;
1987
1988         if (!size_to_hstate(default_hstate_size)) {
1989                 default_hstate_size = HPAGE_SIZE;
1990                 if (!size_to_hstate(default_hstate_size))
1991                         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1992         }
1993         default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
1994         if (default_hstate_max_huge_pages)
1995                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1996
1997         hugetlb_init_hstates();
1998         gather_bootmem_prealloc();
1999         report_hugepages();
2000
2001         hugetlb_sysfs_init();
2002         hugetlb_register_all_nodes();
2003         hugetlb_cgroup_file_init();
2004
2005 #ifdef CONFIG_SMP
2006         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2007 #else
2008         num_fault_mutexes = 1;
2009 #endif
2010         htlb_fault_mutex_table =
2011                 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2012         BUG_ON(!htlb_fault_mutex_table);
2013
2014         for (i = 0; i < num_fault_mutexes; i++)
2015                 mutex_init(&htlb_fault_mutex_table[i]);
2016         return 0;
2017 }
2018 module_init(hugetlb_init);
2019
2020 /* Should be called on processing a hugepagesz=... option */
2021 void __init hugetlb_add_hstate(unsigned order)
2022 {
2023         struct hstate *h;
2024         unsigned long i;
2025
2026         if (size_to_hstate(PAGE_SIZE << order)) {
2027                 pr_warning("hugepagesz= specified twice, ignoring\n");
2028                 return;
2029         }
2030         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2031         BUG_ON(order == 0);
2032         h = &hstates[hugetlb_max_hstate++];
2033         h->order = order;
2034         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2035         h->nr_huge_pages = 0;
2036         h->free_huge_pages = 0;
2037         for (i = 0; i < MAX_NUMNODES; ++i)
2038                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2039         INIT_LIST_HEAD(&h->hugepage_activelist);
2040         h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
2041         h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2042         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2043                                         huge_page_size(h)/1024);
2044
2045         parsed_hstate = h;
2046 }
2047
2048 static int __init hugetlb_nrpages_setup(char *s)
2049 {
2050         unsigned long *mhp;
2051         static unsigned long *last_mhp;
2052
2053         /*
2054          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2055          * so this hugepages= parameter goes to the "default hstate".
2056          */
2057         if (!hugetlb_max_hstate)
2058                 mhp = &default_hstate_max_huge_pages;
2059         else
2060                 mhp = &parsed_hstate->max_huge_pages;
2061
2062         if (mhp == last_mhp) {
2063                 pr_warning("hugepages= specified twice without "
2064                            "interleaving hugepagesz=, ignoring\n");
2065                 return 1;
2066         }
2067
2068         if (sscanf(s, "%lu", mhp) <= 0)
2069                 *mhp = 0;
2070
2071         /*
2072          * Global state is always initialized later in hugetlb_init.
2073          * But we need to allocate >= MAX_ORDER hstates here early to still
2074          * use the bootmem allocator.
2075          */
2076         if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2077                 hugetlb_hstate_alloc_pages(parsed_hstate);
2078
2079         last_mhp = mhp;
2080
2081         return 1;
2082 }
2083 __setup("hugepages=", hugetlb_nrpages_setup);
2084
2085 static int __init hugetlb_default_setup(char *s)
2086 {
2087         default_hstate_size = memparse(s, &s);
2088         return 1;
2089 }
2090 __setup("default_hugepagesz=", hugetlb_default_setup);
2091
2092 static unsigned int cpuset_mems_nr(unsigned int *array)
2093 {
2094         int node;
2095         unsigned int nr = 0;
2096
2097         for_each_node_mask(node, cpuset_current_mems_allowed)
2098                 nr += array[node];
2099
2100         return nr;
2101 }
2102
2103 #ifdef CONFIG_SYSCTL
2104 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2105                          struct ctl_table *table, int write,
2106                          void __user *buffer, size_t *length, loff_t *ppos)
2107 {
2108         struct hstate *h = &default_hstate;
2109         unsigned long tmp;
2110         int ret;
2111
2112         tmp = h->max_huge_pages;
2113
2114         if (write && h->order >= MAX_ORDER)
2115                 return -EINVAL;
2116
2117         table->data = &tmp;
2118         table->maxlen = sizeof(unsigned long);
2119         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2120         if (ret)
2121                 goto out;
2122
2123         if (write) {
2124                 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2125                                                 GFP_KERNEL | __GFP_NORETRY);
2126                 if (!(obey_mempolicy &&
2127                                init_nodemask_of_mempolicy(nodes_allowed))) {
2128                         NODEMASK_FREE(nodes_allowed);
2129                         nodes_allowed = &node_states[N_MEMORY];
2130                 }
2131                 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2132
2133                 if (nodes_allowed != &node_states[N_MEMORY])
2134                         NODEMASK_FREE(nodes_allowed);
2135         }
2136 out:
2137         return ret;
2138 }
2139
2140 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2141                           void __user *buffer, size_t *length, loff_t *ppos)
2142 {
2143
2144         return hugetlb_sysctl_handler_common(false, table, write,
2145                                                         buffer, length, ppos);
2146 }
2147
2148 #ifdef CONFIG_NUMA
2149 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2150                           void __user *buffer, size_t *length, loff_t *ppos)
2151 {
2152         return hugetlb_sysctl_handler_common(true, table, write,
2153                                                         buffer, length, ppos);
2154 }
2155 #endif /* CONFIG_NUMA */
2156
2157 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2158                         void __user *buffer,
2159                         size_t *length, loff_t *ppos)
2160 {
2161         struct hstate *h = &default_hstate;
2162         unsigned long tmp;
2163         int ret;
2164
2165         tmp = h->nr_overcommit_huge_pages;
2166
2167         if (write && h->order >= MAX_ORDER)
2168                 return -EINVAL;
2169
2170         table->data = &tmp;
2171         table->maxlen = sizeof(unsigned long);
2172         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2173         if (ret)
2174                 goto out;
2175
2176         if (write) {
2177                 spin_lock(&hugetlb_lock);
2178                 h->nr_overcommit_huge_pages = tmp;
2179                 spin_unlock(&hugetlb_lock);
2180         }
2181 out:
2182         return ret;
2183 }
2184
2185 #endif /* CONFIG_SYSCTL */
2186
2187 void hugetlb_report_meminfo(struct seq_file *m)
2188 {
2189         struct hstate *h = &default_hstate;
2190         seq_printf(m,
2191                         "HugePages_Total:   %5lu\n"
2192                         "HugePages_Free:    %5lu\n"
2193                         "HugePages_Rsvd:    %5lu\n"
2194                         "HugePages_Surp:    %5lu\n"
2195                         "Hugepagesize:   %8lu kB\n",
2196                         h->nr_huge_pages,
2197                         h->free_huge_pages,
2198                         h->resv_huge_pages,
2199                         h->surplus_huge_pages,
2200                         1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2201 }
2202
2203 int hugetlb_report_node_meminfo(int nid, char *buf)
2204 {
2205         struct hstate *h = &default_hstate;
2206         return sprintf(buf,
2207                 "Node %d HugePages_Total: %5u\n"
2208                 "Node %d HugePages_Free:  %5u\n"
2209                 "Node %d HugePages_Surp:  %5u\n",
2210                 nid, h->nr_huge_pages_node[nid],
2211                 nid, h->free_huge_pages_node[nid],
2212                 nid, h->surplus_huge_pages_node[nid]);
2213 }
2214
2215 void hugetlb_show_meminfo(void)
2216 {
2217         struct hstate *h;
2218         int nid;
2219
2220         for_each_node_state(nid, N_MEMORY)
2221                 for_each_hstate(h)
2222                         pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2223                                 nid,
2224                                 h->nr_huge_pages_node[nid],
2225                                 h->free_huge_pages_node[nid],
2226                                 h->surplus_huge_pages_node[nid],
2227                                 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2228 }
2229
2230 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2231 unsigned long hugetlb_total_pages(void)
2232 {
2233         struct hstate *h;
2234         unsigned long nr_total_pages = 0;
2235
2236         for_each_hstate(h)
2237                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2238         return nr_total_pages;
2239 }
2240
2241 static int hugetlb_acct_memory(struct hstate *h, long delta)
2242 {
2243         int ret = -ENOMEM;
2244
2245         spin_lock(&hugetlb_lock);
2246         /*
2247          * When cpuset is configured, it breaks the strict hugetlb page
2248          * reservation as the accounting is done on a global variable. Such
2249          * reservation is completely rubbish in the presence of cpuset because
2250          * the reservation is not checked against page availability for the
2251          * current cpuset. Application can still potentially OOM'ed by kernel
2252          * with lack of free htlb page in cpuset that the task is in.
2253          * Attempt to enforce strict accounting with cpuset is almost
2254          * impossible (or too ugly) because cpuset is too fluid that
2255          * task or memory node can be dynamically moved between cpusets.
2256          *
2257          * The change of semantics for shared hugetlb mapping with cpuset is
2258          * undesirable. However, in order to preserve some of the semantics,
2259          * we fall back to check against current free page availability as
2260          * a best attempt and hopefully to minimize the impact of changing
2261          * semantics that cpuset has.
2262          */
2263         if (delta > 0) {
2264                 if (gather_surplus_pages(h, delta) < 0)
2265                         goto out;
2266
2267                 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2268                         return_unused_surplus_pages(h, delta);
2269                         goto out;
2270                 }
2271         }
2272
2273         ret = 0;
2274         if (delta < 0)
2275                 return_unused_surplus_pages(h, (unsigned long) -delta);
2276
2277 out:
2278         spin_unlock(&hugetlb_lock);
2279         return ret;
2280 }
2281
2282 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2283 {
2284         struct resv_map *resv = vma_resv_map(vma);
2285
2286         /*
2287          * This new VMA should share its siblings reservation map if present.
2288          * The VMA will only ever have a valid reservation map pointer where
2289          * it is being copied for another still existing VMA.  As that VMA
2290          * has a reference to the reservation map it cannot disappear until
2291          * after this open call completes.  It is therefore safe to take a
2292          * new reference here without additional locking.
2293          */
2294         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2295                 kref_get(&resv->refs);
2296 }
2297
2298 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2299 {
2300         struct hstate *h = hstate_vma(vma);
2301         struct resv_map *resv = vma_resv_map(vma);
2302         struct hugepage_subpool *spool = subpool_vma(vma);
2303         unsigned long reserve, start, end;
2304
2305         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2306                 return;
2307
2308         start = vma_hugecache_offset(h, vma, vma->vm_start);
2309         end = vma_hugecache_offset(h, vma, vma->vm_end);
2310
2311         reserve = (end - start) - region_count(resv, start, end);
2312
2313         kref_put(&resv->refs, resv_map_release);
2314
2315         if (reserve) {
2316                 hugetlb_acct_memory(h, -reserve);
2317                 hugepage_subpool_put_pages(spool, reserve);
2318         }
2319 }
2320
2321 /*
2322  * We cannot handle pagefaults against hugetlb pages at all.  They cause
2323  * handle_mm_fault() to try to instantiate regular-sized pages in the
2324  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2325  * this far.
2326  */
2327 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2328 {
2329         BUG();
2330         return 0;
2331 }
2332
2333 const struct vm_operations_struct hugetlb_vm_ops = {
2334         .fault = hugetlb_vm_op_fault,
2335         .open = hugetlb_vm_op_open,
2336         .close = hugetlb_vm_op_close,
2337 };
2338
2339 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2340                                 int writable)
2341 {
2342         pte_t entry;
2343
2344         if (writable) {
2345                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2346                                          vma->vm_page_prot)));
2347         } else {
2348                 entry = huge_pte_wrprotect(mk_huge_pte(page,
2349                                            vma->vm_page_prot));
2350         }
2351         entry = pte_mkyoung(entry);
2352         entry = pte_mkhuge(entry);
2353         entry = arch_make_huge_pte(entry, vma, page, writable);
2354
2355         return entry;
2356 }
2357
2358 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2359                                    unsigned long address, pte_t *ptep)
2360 {
2361         pte_t entry;
2362
2363         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2364         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2365                 update_mmu_cache(vma, address, ptep);
2366 }
2367
2368
2369 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2370                             struct vm_area_struct *vma)
2371 {
2372         pte_t *src_pte, *dst_pte, entry;
2373         struct page *ptepage;
2374         unsigned long addr;
2375         int cow;
2376         struct hstate *h = hstate_vma(vma);
2377         unsigned long sz = huge_page_size(h);
2378         unsigned long mmun_start;       /* For mmu_notifiers */
2379         unsigned long mmun_end;         /* For mmu_notifiers */
2380         int ret = 0;
2381
2382         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2383
2384         mmun_start = vma->vm_start;
2385         mmun_end = vma->vm_end;
2386         if (cow)
2387                 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
2388
2389         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2390                 spinlock_t *src_ptl, *dst_ptl;
2391                 src_pte = huge_pte_offset(src, addr);
2392                 if (!src_pte)
2393                         continue;
2394                 dst_pte = huge_pte_alloc(dst, addr, sz);
2395                 if (!dst_pte) {
2396                         ret = -ENOMEM;
2397                         break;
2398                 }
2399
2400                 /* If the pagetables are shared don't copy or take references */
2401                 if (dst_pte == src_pte)
2402                         continue;
2403
2404                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
2405                 src_ptl = huge_pte_lockptr(h, src, src_pte);
2406                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
2407                 if (!huge_pte_none(huge_ptep_get(src_pte))) {
2408                         if (cow)
2409                                 huge_ptep_set_wrprotect(src, addr, src_pte);
2410                         entry = huge_ptep_get(src_pte);
2411                         ptepage = pte_page(entry);
2412                         get_page(ptepage);
2413                         page_dup_rmap(ptepage);
2414                         set_huge_pte_at(dst, addr, dst_pte, entry);
2415                 }
2416                 spin_unlock(src_ptl);
2417                 spin_unlock(dst_ptl);
2418         }
2419
2420         if (cow)
2421                 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
2422
2423         return ret;
2424 }
2425
2426 static int is_hugetlb_entry_migration(pte_t pte)
2427 {
2428         swp_entry_t swp;
2429
2430         if (huge_pte_none(pte) || pte_present(pte))
2431                 return 0;
2432         swp = pte_to_swp_entry(pte);
2433         if (non_swap_entry(swp) && is_migration_entry(swp))
2434                 return 1;
2435         else
2436                 return 0;
2437 }
2438
2439 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2440 {
2441         swp_entry_t swp;
2442
2443         if (huge_pte_none(pte) || pte_present(pte))
2444                 return 0;
2445         swp = pte_to_swp_entry(pte);
2446         if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2447                 return 1;
2448         else
2449                 return 0;
2450 }
2451
2452 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2453                             unsigned long start, unsigned long end,
2454                             struct page *ref_page)
2455 {
2456         int force_flush = 0;
2457         struct mm_struct *mm = vma->vm_mm;
2458         unsigned long address;
2459         pte_t *ptep;
2460         pte_t pte;
2461         spinlock_t *ptl;
2462         struct page *page;
2463         struct hstate *h = hstate_vma(vma);
2464         unsigned long sz = huge_page_size(h);
2465         const unsigned long mmun_start = start; /* For mmu_notifiers */
2466         const unsigned long mmun_end   = end;   /* For mmu_notifiers */
2467
2468         WARN_ON(!is_vm_hugetlb_page(vma));
2469         BUG_ON(start & ~huge_page_mask(h));
2470         BUG_ON(end & ~huge_page_mask(h));
2471
2472         tlb_start_vma(tlb, vma);
2473         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2474 again:
2475         for (address = start; address < end; address += sz) {
2476                 ptep = huge_pte_offset(mm, address);
2477                 if (!ptep)
2478                         continue;
2479
2480                 ptl = huge_pte_lock(h, mm, ptep);
2481                 if (huge_pmd_unshare(mm, &address, ptep))
2482                         goto unlock;
2483
2484                 pte = huge_ptep_get(ptep);
2485                 if (huge_pte_none(pte))
2486                         goto unlock;
2487
2488                 /*
2489                  * HWPoisoned hugepage is already unmapped and dropped reference
2490                  */
2491                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
2492                         huge_pte_clear(mm, address, ptep);
2493                         goto unlock;
2494                 }
2495
2496                 page = pte_page(pte);
2497                 /*
2498                  * If a reference page is supplied, it is because a specific
2499                  * page is being unmapped, not a range. Ensure the page we
2500                  * are about to unmap is the actual page of interest.
2501                  */
2502                 if (ref_page) {
2503                         if (page != ref_page)
2504                                 goto unlock;
2505
2506                         /*
2507                          * Mark the VMA as having unmapped its page so that
2508                          * future faults in this VMA will fail rather than
2509                          * looking like data was lost
2510                          */
2511                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2512                 }
2513
2514                 pte = huge_ptep_get_and_clear(mm, address, ptep);
2515                 tlb_remove_tlb_entry(tlb, ptep, address);
2516                 if (huge_pte_dirty(pte))
2517                         set_page_dirty(page);
2518
2519                 page_remove_rmap(page);
2520                 force_flush = !__tlb_remove_page(tlb, page);
2521                 if (force_flush) {
2522                         spin_unlock(ptl);
2523                         break;
2524                 }
2525                 /* Bail out after unmapping reference page if supplied */
2526                 if (ref_page) {
2527                         spin_unlock(ptl);
2528                         break;
2529                 }
2530 unlock:
2531                 spin_unlock(ptl);
2532         }
2533         /*
2534          * mmu_gather ran out of room to batch pages, we break out of
2535          * the PTE lock to avoid doing the potential expensive TLB invalidate
2536          * and page-free while holding it.
2537          */
2538         if (force_flush) {
2539                 force_flush = 0;
2540                 tlb_flush_mmu(tlb);
2541                 if (address < end && !ref_page)
2542                         goto again;
2543         }
2544         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2545         tlb_end_vma(tlb, vma);
2546 }
2547
2548 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2549                           struct vm_area_struct *vma, unsigned long start,
2550                           unsigned long end, struct page *ref_page)
2551 {
2552         __unmap_hugepage_range(tlb, vma, start, end, ref_page);
2553
2554         /*
2555          * Clear this flag so that x86's huge_pmd_share page_table_shareable
2556          * test will fail on a vma being torn down, and not grab a page table
2557          * on its way out.  We're lucky that the flag has such an appropriate
2558          * name, and can in fact be safely cleared here. We could clear it
2559          * before the __unmap_hugepage_range above, but all that's necessary
2560          * is to clear it before releasing the i_mmap_mutex. This works
2561          * because in the context this is called, the VMA is about to be
2562          * destroyed and the i_mmap_mutex is held.
2563          */
2564         vma->vm_flags &= ~VM_MAYSHARE;
2565 }
2566
2567 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2568                           unsigned long end, struct page *ref_page)
2569 {
2570         struct mm_struct *mm;
2571         struct mmu_gather tlb;
2572
2573         mm = vma->vm_mm;
2574
2575         tlb_gather_mmu(&tlb, mm, start, end);
2576         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2577         tlb_finish_mmu(&tlb, start, end);
2578 }
2579
2580 /*
2581  * This is called when the original mapper is failing to COW a MAP_PRIVATE
2582  * mappping it owns the reserve page for. The intention is to unmap the page
2583  * from other VMAs and let the children be SIGKILLed if they are faulting the
2584  * same region.
2585  */
2586 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2587                                 struct page *page, unsigned long address)
2588 {
2589         struct hstate *h = hstate_vma(vma);
2590         struct vm_area_struct *iter_vma;
2591         struct address_space *mapping;
2592         pgoff_t pgoff;
2593
2594         /*
2595          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2596          * from page cache lookup which is in HPAGE_SIZE units.
2597          */
2598         address = address & huge_page_mask(h);
2599         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2600                         vma->vm_pgoff;
2601         mapping = file_inode(vma->vm_file)->i_mapping;
2602
2603         /*
2604          * Take the mapping lock for the duration of the table walk. As
2605          * this mapping should be shared between all the VMAs,
2606          * __unmap_hugepage_range() is called as the lock is already held
2607          */
2608         mutex_lock(&mapping->i_mmap_mutex);
2609         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2610                 /* Do not unmap the current VMA */
2611                 if (iter_vma == vma)
2612                         continue;
2613
2614                 /*
2615                  * Unmap the page from other VMAs without their own reserves.
2616                  * They get marked to be SIGKILLed if they fault in these
2617                  * areas. This is because a future no-page fault on this VMA
2618                  * could insert a zeroed page instead of the data existing
2619                  * from the time of fork. This would look like data corruption
2620                  */
2621                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2622                         unmap_hugepage_range(iter_vma, address,
2623                                              address + huge_page_size(h), page);
2624         }
2625         mutex_unlock(&mapping->i_mmap_mutex);
2626
2627         return 1;
2628 }
2629
2630 /*
2631  * Hugetlb_cow() should be called with page lock of the original hugepage held.
2632  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2633  * cannot race with other handlers or page migration.
2634  * Keep the pte_same checks anyway to make transition from the mutex easier.
2635  */
2636 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2637                         unsigned long address, pte_t *ptep, pte_t pte,
2638                         struct page *pagecache_page, spinlock_t *ptl)
2639 {
2640         struct hstate *h = hstate_vma(vma);
2641         struct page *old_page, *new_page;
2642         int outside_reserve = 0;
2643         unsigned long mmun_start;       /* For mmu_notifiers */
2644         unsigned long mmun_end;         /* For mmu_notifiers */
2645
2646         old_page = pte_page(pte);
2647
2648 retry_avoidcopy:
2649         /* If no-one else is actually using this page, avoid the copy
2650          * and just make the page writable */
2651         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
2652                 page_move_anon_rmap(old_page, vma, address);
2653                 set_huge_ptep_writable(vma, address, ptep);
2654                 return 0;
2655         }
2656
2657         /*
2658          * If the process that created a MAP_PRIVATE mapping is about to
2659          * perform a COW due to a shared page count, attempt to satisfy
2660          * the allocation without using the existing reserves. The pagecache
2661          * page is used to determine if the reserve at this address was
2662          * consumed or not. If reserves were used, a partial faulted mapping
2663          * at the time of fork() could consume its reserves on COW instead
2664          * of the full address range.
2665          */
2666         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2667                         old_page != pagecache_page)
2668                 outside_reserve = 1;
2669
2670         page_cache_get(old_page);
2671
2672         /* Drop page table lock as buddy allocator may be called */
2673         spin_unlock(ptl);
2674         new_page = alloc_huge_page(vma, address, outside_reserve);
2675
2676         if (IS_ERR(new_page)) {
2677                 long err = PTR_ERR(new_page);
2678                 page_cache_release(old_page);
2679
2680                 /*
2681                  * If a process owning a MAP_PRIVATE mapping fails to COW,
2682                  * it is due to references held by a child and an insufficient
2683                  * huge page pool. To guarantee the original mappers
2684                  * reliability, unmap the page from child processes. The child
2685                  * may get SIGKILLed if it later faults.
2686                  */
2687                 if (outside_reserve) {
2688                         BUG_ON(huge_pte_none(pte));
2689                         if (unmap_ref_private(mm, vma, old_page, address)) {
2690                                 BUG_ON(huge_pte_none(pte));
2691                                 spin_lock(ptl);
2692                                 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2693                                 if (likely(pte_same(huge_ptep_get(ptep), pte)))
2694                                         goto retry_avoidcopy;
2695                                 /*
2696                                  * race occurs while re-acquiring page table
2697                                  * lock, and our job is done.
2698                                  */
2699                                 return 0;
2700                         }
2701                         WARN_ON_ONCE(1);
2702                 }
2703
2704                 /* Caller expects lock to be held */
2705                 spin_lock(ptl);
2706                 if (err == -ENOMEM)
2707                         return VM_FAULT_OOM;
2708                 else
2709                         return VM_FAULT_SIGBUS;
2710         }
2711
2712         /*
2713          * When the original hugepage is shared one, it does not have
2714          * anon_vma prepared.
2715          */
2716         if (unlikely(anon_vma_prepare(vma))) {
2717                 page_cache_release(new_page);
2718                 page_cache_release(old_page);
2719                 /* Caller expects lock to be held */
2720                 spin_lock(ptl);
2721                 return VM_FAULT_OOM;
2722         }
2723
2724         copy_user_huge_page(new_page, old_page, address, vma,
2725                             pages_per_huge_page(h));
2726         __SetPageUptodate(new_page);
2727
2728         mmun_start = address & huge_page_mask(h);
2729         mmun_end = mmun_start + huge_page_size(h);
2730         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2731         /*
2732          * Retake the page table lock to check for racing updates
2733          * before the page tables are altered
2734          */
2735         spin_lock(ptl);
2736         ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2737         if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2738                 ClearPagePrivate(new_page);
2739
2740                 /* Break COW */
2741                 huge_ptep_clear_flush(vma, address, ptep);
2742                 set_huge_pte_at(mm, address, ptep,
2743                                 make_huge_pte(vma, new_page, 1));
2744                 page_remove_rmap(old_page);
2745                 hugepage_add_new_anon_rmap(new_page, vma, address);
2746                 /* Make the old page be freed below */
2747                 new_page = old_page;
2748         }
2749         spin_unlock(ptl);
2750         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2751         page_cache_release(new_page);
2752         page_cache_release(old_page);
2753
2754         /* Caller expects lock to be held */
2755         spin_lock(ptl);
2756         return 0;
2757 }
2758
2759 /* Return the pagecache page at a given address within a VMA */
2760 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2761                         struct vm_area_struct *vma, unsigned long address)
2762 {
2763         struct address_space *mapping;
2764         pgoff_t idx;
2765
2766         mapping = vma->vm_file->f_mapping;
2767         idx = vma_hugecache_offset(h, vma, address);
2768
2769         return find_lock_page(mapping, idx);
2770 }
2771
2772 /*
2773  * Return whether there is a pagecache page to back given address within VMA.
2774  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2775  */
2776 static bool hugetlbfs_pagecache_present(struct hstate *h,
2777                         struct vm_area_struct *vma, unsigned long address)
2778 {
2779         struct address_space *mapping;
2780         pgoff_t idx;
2781         struct page *page;
2782
2783         mapping = vma->vm_file->f_mapping;
2784         idx = vma_hugecache_offset(h, vma, address);
2785
2786         page = find_get_page(mapping, idx);
2787         if (page)
2788                 put_page(page);
2789         return page != NULL;
2790 }
2791
2792 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2793                            struct address_space *mapping, pgoff_t idx,
2794                            unsigned long address, pte_t *ptep, unsigned int flags)
2795 {
2796         struct hstate *h = hstate_vma(vma);
2797         int ret = VM_FAULT_SIGBUS;
2798         int anon_rmap = 0;
2799         unsigned long size;
2800         struct page *page;
2801         pte_t new_pte;
2802         spinlock_t *ptl;
2803
2804         /*
2805          * Currently, we are forced to kill the process in the event the
2806          * original mapper has unmapped pages from the child due to a failed
2807          * COW. Warn that such a situation has occurred as it may not be obvious
2808          */
2809         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2810                 pr_warning("PID %d killed due to inadequate hugepage pool\n",
2811                            current->pid);
2812                 return ret;
2813         }
2814
2815         /*
2816          * Use page lock to guard against racing truncation
2817          * before we get page_table_lock.
2818          */
2819 retry:
2820         page = find_lock_page(mapping, idx);
2821         if (!page) {
2822                 size = i_size_read(mapping->host) >> huge_page_shift(h);
2823                 if (idx >= size)
2824                         goto out;
2825                 page = alloc_huge_page(vma, address, 0);
2826                 if (IS_ERR(page)) {
2827                         ret = PTR_ERR(page);
2828                         if (ret == -ENOMEM)
2829                                 ret = VM_FAULT_OOM;
2830                         else
2831                                 ret = VM_FAULT_SIGBUS;
2832                         goto out;
2833                 }
2834                 clear_huge_page(page, address, pages_per_huge_page(h));
2835                 __SetPageUptodate(page);
2836
2837                 if (vma->vm_flags & VM_MAYSHARE) {
2838                         int err;
2839                         struct inode *inode = mapping->host;
2840
2841                         err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2842                         if (err) {
2843                                 put_page(page);
2844                                 if (err == -EEXIST)
2845                                         goto retry;
2846                                 goto out;
2847                         }
2848                         ClearPagePrivate(page);
2849
2850                         spin_lock(&inode->i_lock);
2851                         inode->i_blocks += blocks_per_huge_page(h);
2852                         spin_unlock(&inode->i_lock);
2853                 } else {
2854                         lock_page(page);
2855                         if (unlikely(anon_vma_prepare(vma))) {
2856                                 ret = VM_FAULT_OOM;
2857                                 goto backout_unlocked;
2858                         }
2859                         anon_rmap = 1;
2860                 }
2861         } else {
2862                 /*
2863                  * If memory error occurs between mmap() and fault, some process
2864                  * don't have hwpoisoned swap entry for errored virtual address.
2865                  * So we need to block hugepage fault by PG_hwpoison bit check.
2866                  */
2867                 if (unlikely(PageHWPoison(page))) {
2868                         ret = VM_FAULT_HWPOISON |
2869                                 VM_FAULT_SET_HINDEX(hstate_index(h));
2870                         goto backout_unlocked;
2871                 }
2872         }
2873
2874         /*
2875          * If we are going to COW a private mapping later, we examine the
2876          * pending reservations for this page now. This will ensure that
2877          * any allocations necessary to record that reservation occur outside
2878          * the spinlock.
2879          */
2880         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2881                 if (vma_needs_reservation(h, vma, address) < 0) {
2882                         ret = VM_FAULT_OOM;
2883                         goto backout_unlocked;
2884                 }
2885
2886         ptl = huge_pte_lockptr(h, mm, ptep);
2887         spin_lock(ptl);
2888         size = i_size_read(mapping->host) >> huge_page_shift(h);
2889         if (idx >= size)
2890                 goto backout;
2891
2892         ret = 0;
2893         if (!huge_pte_none(huge_ptep_get(ptep)))
2894                 goto backout;
2895
2896         if (anon_rmap) {
2897                 ClearPagePrivate(page);
2898                 hugepage_add_new_anon_rmap(page, vma, address);
2899         }
2900         else
2901                 page_dup_rmap(page);
2902         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2903                                 && (vma->vm_flags & VM_SHARED)));
2904         set_huge_pte_at(mm, address, ptep, new_pte);
2905
2906         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2907                 /* Optimization, do the COW without a second fault */
2908                 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
2909         }
2910
2911         spin_unlock(ptl);
2912         unlock_page(page);
2913 out:
2914         return ret;
2915
2916 backout:
2917         spin_unlock(ptl);
2918 backout_unlocked:
2919         unlock_page(page);
2920         put_page(page);
2921         goto out;
2922 }
2923
2924 #ifdef CONFIG_SMP
2925 static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
2926                             struct vm_area_struct *vma,
2927                             struct address_space *mapping,
2928                             pgoff_t idx, unsigned long address)
2929 {
2930         unsigned long key[2];
2931         u32 hash;
2932
2933         if (vma->vm_flags & VM_SHARED) {
2934                 key[0] = (unsigned long) mapping;
2935                 key[1] = idx;
2936         } else {
2937                 key[0] = (unsigned long) mm;
2938                 key[1] = address >> huge_page_shift(h);
2939         }
2940
2941         hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
2942
2943         return hash & (num_fault_mutexes - 1);
2944 }
2945 #else
2946 /*
2947  * For uniprocesor systems we always use a single mutex, so just
2948  * return 0 and avoid the hashing overhead.
2949  */
2950 static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
2951                             struct vm_area_struct *vma,
2952                             struct address_space *mapping,
2953                             pgoff_t idx, unsigned long address)
2954 {
2955         return 0;
2956 }
2957 #endif
2958
2959 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2960                         unsigned long address, unsigned int flags)
2961 {
2962         pte_t *ptep, entry;
2963         spinlock_t *ptl;
2964         int ret;
2965         u32 hash;
2966         pgoff_t idx;
2967         struct page *page = NULL;
2968         struct page *pagecache_page = NULL;
2969         struct hstate *h = hstate_vma(vma);
2970         struct address_space *mapping;
2971
2972         address &= huge_page_mask(h);
2973
2974         ptep = huge_pte_offset(mm, address);
2975         if (ptep) {
2976                 entry = huge_ptep_get(ptep);
2977                 if (unlikely(is_hugetlb_entry_migration(entry))) {
2978                         migration_entry_wait_huge(vma, mm, ptep);
2979                         return 0;
2980                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2981                         return VM_FAULT_HWPOISON_LARGE |
2982                                 VM_FAULT_SET_HINDEX(hstate_index(h));
2983         }
2984
2985         ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2986         if (!ptep)
2987                 return VM_FAULT_OOM;
2988
2989         mapping = vma->vm_file->f_mapping;
2990         idx = vma_hugecache_offset(h, vma, address);
2991
2992         /*
2993          * Serialize hugepage allocation and instantiation, so that we don't
2994          * get spurious allocation failures if two CPUs race to instantiate
2995          * the same page in the page cache.
2996          */
2997         hash = fault_mutex_hash(h, mm, vma, mapping, idx, address);
2998         mutex_lock(&htlb_fault_mutex_table[hash]);
2999
3000         entry = huge_ptep_get(ptep);
3001         if (huge_pte_none(entry)) {
3002                 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3003                 goto out_mutex;
3004         }
3005
3006         ret = 0;
3007
3008         /*
3009          * If we are going to COW the mapping later, we examine the pending
3010          * reservations for this page now. This will ensure that any
3011          * allocations necessary to record that reservation occur outside the
3012          * spinlock. For private mappings, we also lookup the pagecache
3013          * page now as it is used to determine if a reservation has been
3014          * consumed.
3015          */
3016         if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3017                 if (vma_needs_reservation(h, vma, address) < 0) {
3018                         ret = VM_FAULT_OOM;
3019                         goto out_mutex;
3020                 }
3021
3022                 if (!(vma->vm_flags & VM_MAYSHARE))
3023                         pagecache_page = hugetlbfs_pagecache_page(h,
3024                                                                 vma, address);
3025         }
3026
3027         /*
3028          * hugetlb_cow() requires page locks of pte_page(entry) and
3029          * pagecache_page, so here we need take the former one
3030          * when page != pagecache_page or !pagecache_page.
3031          * Note that locking order is always pagecache_page -> page,
3032          * so no worry about deadlock.
3033          */
3034         page = pte_page(entry);
3035         get_page(page);
3036         if (page != pagecache_page)
3037                 lock_page(page);
3038
3039         ptl = huge_pte_lockptr(h, mm, ptep);
3040         spin_lock(ptl);
3041         /* Check for a racing update before calling hugetlb_cow */
3042         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3043                 goto out_ptl;
3044
3045
3046         if (flags & FAULT_FLAG_WRITE) {
3047                 if (!huge_pte_write(entry)) {
3048                         ret = hugetlb_cow(mm, vma, address, ptep, entry,
3049                                         pagecache_page, ptl);
3050                         goto out_ptl;
3051                 }
3052                 entry = huge_pte_mkdirty(entry);
3053         }
3054         entry = pte_mkyoung(entry);
3055         if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3056                                                 flags & FAULT_FLAG_WRITE))
3057                 update_mmu_cache(vma, address, ptep);
3058
3059 out_ptl:
3060         spin_unlock(ptl);
3061
3062         if (pagecache_page) {
3063                 unlock_page(pagecache_page);
3064                 put_page(pagecache_page);
3065         }
3066         if (page != pagecache_page)
3067                 unlock_page(page);
3068         put_page(page);
3069
3070 out_mutex:
3071         mutex_unlock(&htlb_fault_mutex_table[hash]);
3072         return ret;
3073 }
3074
3075 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3076                          struct page **pages, struct vm_area_struct **vmas,
3077                          unsigned long *position, unsigned long *nr_pages,
3078                          long i, unsigned int flags)
3079 {
3080         unsigned long pfn_offset;
3081         unsigned long vaddr = *position;
3082         unsigned long remainder = *nr_pages;
3083         struct hstate *h = hstate_vma(vma);
3084
3085         while (vaddr < vma->vm_end && remainder) {
3086                 pte_t *pte;
3087                 spinlock_t *ptl = NULL;
3088                 int absent;
3089                 struct page *page;
3090
3091                 /*
3092                  * Some archs (sparc64, sh*) have multiple pte_ts to
3093                  * each hugepage.  We have to make sure we get the
3094                  * first, for the page indexing below to work.
3095                  *
3096                  * Note that page table lock is not held when pte is null.
3097                  */
3098                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3099                 if (pte)
3100                         ptl = huge_pte_lock(h, mm, pte);
3101                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
3102
3103                 /*
3104                  * When coredumping, it suits get_dump_page if we just return
3105                  * an error where there's an empty slot with no huge pagecache
3106                  * to back it.  This way, we avoid allocating a hugepage, and
3107                  * the sparse dumpfile avoids allocating disk blocks, but its
3108                  * huge holes still show up with zeroes where they need to be.
3109                  */
3110                 if (absent && (flags & FOLL_DUMP) &&
3111                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3112                         if (pte)
3113                                 spin_unlock(ptl);
3114                         remainder = 0;
3115                         break;
3116                 }
3117
3118                 /*
3119                  * We need call hugetlb_fault for both hugepages under migration
3120                  * (in which case hugetlb_fault waits for the migration,) and
3121                  * hwpoisoned hugepages (in which case we need to prevent the
3122                  * caller from accessing to them.) In order to do this, we use
3123                  * here is_swap_pte instead of is_hugetlb_entry_migration and
3124                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3125                  * both cases, and because we can't follow correct pages
3126                  * directly from any kind of swap entries.
3127                  */
3128                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3129                     ((flags & FOLL_WRITE) &&
3130                       !huge_pte_write(huge_ptep_get(pte)))) {
3131                         int ret;
3132
3133                         if (pte)
3134                                 spin_unlock(ptl);
3135                         ret = hugetlb_fault(mm, vma, vaddr,
3136                                 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3137                         if (!(ret & VM_FAULT_ERROR))
3138                                 continue;
3139
3140                         remainder = 0;
3141                         break;
3142                 }
3143
3144                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3145                 page = pte_page(huge_ptep_get(pte));
3146 same_page:
3147                 if (pages) {
3148                         pages[i] = mem_map_offset(page, pfn_offset);
3149                         get_page_foll(pages[i]);
3150                 }
3151
3152                 if (vmas)
3153                         vmas[i] = vma;
3154
3155                 vaddr += PAGE_SIZE;
3156                 ++pfn_offset;
3157                 --remainder;
3158                 ++i;
3159                 if (vaddr < vma->vm_end && remainder &&
3160                                 pfn_offset < pages_per_huge_page(h)) {
3161                         /*
3162                          * We use pfn_offset to avoid touching the pageframes
3163                          * of this compound page.
3164                          */
3165                         goto same_page;
3166                 }
3167                 spin_unlock(ptl);
3168         }
3169         *nr_pages = remainder;
3170         *position = vaddr;
3171
3172         return i ? i : -EFAULT;
3173 }
3174
3175 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3176                 unsigned long address, unsigned long end, pgprot_t newprot)
3177 {
3178         struct mm_struct *mm = vma->vm_mm;
3179         unsigned long start = address;
3180         pte_t *ptep;
3181         pte_t pte;
3182         struct hstate *h = hstate_vma(vma);
3183         unsigned long pages = 0;
3184
3185         BUG_ON(address >= end);
3186         flush_cache_range(vma, address, end);
3187
3188         mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
3189         for (; address < end; address += huge_page_size(h)) {
3190                 spinlock_t *ptl;
3191                 ptep = huge_pte_offset(mm, address);
3192                 if (!ptep)
3193                         continue;
3194                 ptl = huge_pte_lock(h, mm, ptep);
3195                 if (huge_pmd_unshare(mm, &address, ptep)) {
3196                         pages++;
3197                         spin_unlock(ptl);
3198                         continue;
3199                 }
3200                 if (!huge_pte_none(huge_ptep_get(ptep))) {
3201                         pte = huge_ptep_get_and_clear(mm, address, ptep);
3202                         pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3203                         pte = arch_make_huge_pte(pte, vma, NULL, 0);
3204                         set_huge_pte_at(mm, address, ptep, pte);
3205                         pages++;
3206                 }
3207                 spin_unlock(ptl);
3208         }
3209         /*
3210          * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3211          * may have cleared our pud entry and done put_page on the page table:
3212          * once we release i_mmap_mutex, another task can do the final put_page
3213          * and that page table be reused and filled with junk.
3214          */
3215         flush_tlb_range(vma, start, end);
3216         mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3217
3218         return pages << h->order;
3219 }
3220
3221 int hugetlb_reserve_pages(struct inode *inode,
3222                                         long from, long to,
3223                                         struct vm_area_struct *vma,
3224                                         vm_flags_t vm_flags)
3225 {
3226         long ret, chg;
3227         struct hstate *h = hstate_inode(inode);
3228         struct hugepage_subpool *spool = subpool_inode(inode);
3229         struct resv_map *resv_map;
3230
3231         /*
3232          * Only apply hugepage reservation if asked. At fault time, an
3233          * attempt will be made for VM_NORESERVE to allocate a page
3234          * without using reserves
3235          */
3236         if (vm_flags & VM_NORESERVE)
3237                 return 0;
3238
3239         /*
3240          * Shared mappings base their reservation on the number of pages that
3241          * are already allocated on behalf of the file. Private mappings need
3242          * to reserve the full area even if read-only as mprotect() may be
3243          * called to make the mapping read-write. Assume !vma is a shm mapping
3244          */
3245         if (!vma || vma->vm_flags & VM_MAYSHARE) {
3246                 resv_map = inode_resv_map(inode);
3247
3248                 chg = region_chg(resv_map, from, to);
3249
3250         } else {
3251                 resv_map = resv_map_alloc();
3252                 if (!resv_map)
3253                         return -ENOMEM;
3254
3255                 chg = to - from;
3256
3257                 set_vma_resv_map(vma, resv_map);
3258                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3259         }
3260
3261         if (chg < 0) {
3262                 ret = chg;
3263                 goto out_err;
3264         }
3265
3266         /* There must be enough pages in the subpool for the mapping */
3267         if (hugepage_subpool_get_pages(spool, chg)) {
3268                 ret = -ENOSPC;
3269                 goto out_err;
3270         }
3271
3272         /*
3273          * Check enough hugepages are available for the reservation.
3274          * Hand the pages back to the subpool if there are not
3275          */
3276         ret = hugetlb_acct_memory(h, chg);
3277         if (ret < 0) {
3278                 hugepage_subpool_put_pages(spool, chg);
3279                 goto out_err;
3280         }
3281
3282         /*
3283          * Account for the reservations made. Shared mappings record regions
3284          * that have reservations as they are shared by multiple VMAs.
3285          * When the last VMA disappears, the region map says how much
3286          * the reservation was and the page cache tells how much of
3287          * the reservation was consumed. Private mappings are per-VMA and
3288          * only the consumed reservations are tracked. When the VMA
3289          * disappears, the original reservation is the VMA size and the
3290          * consumed reservations are stored in the map. Hence, nothing
3291          * else has to be done for private mappings here
3292          */
3293         if (!vma || vma->vm_flags & VM_MAYSHARE)
3294                 region_add(resv_map, from, to);
3295         return 0;
3296 out_err:
3297         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3298                 kref_put(&resv_map->refs, resv_map_release);
3299         return ret;
3300 }
3301
3302 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3303 {
3304         struct hstate *h = hstate_inode(inode);
3305         struct resv_map *resv_map = inode_resv_map(inode);
3306         long chg = 0;
3307         struct hugepage_subpool *spool = subpool_inode(inode);
3308
3309         if (resv_map)
3310                 chg = region_truncate(resv_map, offset);
3311         spin_lock(&inode->i_lock);
3312         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3313         spin_unlock(&inode->i_lock);
3314
3315         hugepage_subpool_put_pages(spool, (chg - freed));
3316         hugetlb_acct_memory(h, -(chg - freed));
3317 }
3318
3319 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
3320 static unsigned long page_table_shareable(struct vm_area_struct *svma,
3321                                 struct vm_area_struct *vma,
3322                                 unsigned long addr, pgoff_t idx)
3323 {
3324         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
3325                                 svma->vm_start;
3326         unsigned long sbase = saddr & PUD_MASK;
3327         unsigned long s_end = sbase + PUD_SIZE;
3328
3329         /* Allow segments to share if only one is marked locked */
3330         unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
3331         unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
3332
3333         /*
3334          * match the virtual addresses, permission and the alignment of the
3335          * page table page.
3336          */
3337         if (pmd_index(addr) != pmd_index(saddr) ||
3338             vm_flags != svm_flags ||
3339             sbase < svma->vm_start || svma->vm_end < s_end)
3340                 return 0;
3341
3342         return saddr;
3343 }
3344
3345 static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3346 {
3347         unsigned long base = addr & PUD_MASK;
3348         unsigned long end = base + PUD_SIZE;
3349
3350         /*
3351          * check on proper vm_flags and page table alignment
3352          */
3353         if (vma->vm_flags & VM_MAYSHARE &&
3354             vma->vm_start <= base && end <= vma->vm_end)
3355                 return 1;
3356         return 0;
3357 }
3358
3359 /*
3360  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3361  * and returns the corresponding pte. While this is not necessary for the
3362  * !shared pmd case because we can allocate the pmd later as well, it makes the
3363  * code much cleaner. pmd allocation is essential for the shared case because
3364  * pud has to be populated inside the same i_mmap_mutex section - otherwise
3365  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3366  * bad pmd for sharing.
3367  */
3368 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3369 {
3370         struct vm_area_struct *vma = find_vma(mm, addr);
3371         struct address_space *mapping = vma->vm_file->f_mapping;
3372         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
3373                         vma->vm_pgoff;
3374         struct vm_area_struct *svma;
3375         unsigned long saddr;
3376         pte_t *spte = NULL;
3377         pte_t *pte;
3378         spinlock_t *ptl;
3379
3380         if (!vma_shareable(vma, addr))
3381                 return (pte_t *)pmd_alloc(mm, pud, addr);
3382
3383         mutex_lock(&mapping->i_mmap_mutex);
3384         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
3385                 if (svma == vma)
3386                         continue;
3387
3388                 saddr = page_table_shareable(svma, vma, addr, idx);
3389                 if (saddr) {
3390                         spte = huge_pte_offset(svma->vm_mm, saddr);
3391                         if (spte) {
3392                                 get_page(virt_to_page(spte));
3393                                 break;
3394                         }
3395                 }
3396         }
3397
3398         if (!spte)
3399                 goto out;
3400
3401         ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
3402         spin_lock(ptl);
3403         if (pud_none(*pud))
3404                 pud_populate(mm, pud,
3405                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
3406         else
3407                 put_page(virt_to_page(spte));
3408         spin_unlock(ptl);
3409 out:
3410         pte = (pte_t *)pmd_alloc(mm, pud, addr);
3411         mutex_unlock(&mapping->i_mmap_mutex);
3412         return pte;
3413 }
3414
3415 /*
3416  * unmap huge page backed by shared pte.
3417  *
3418  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
3419  * indicated by page_count > 1, unmap is achieved by clearing pud and
3420  * decrementing the ref count. If count == 1, the pte page is not shared.
3421  *
3422  * called with page table lock held.
3423  *
3424  * returns: 1 successfully unmapped a shared pte page
3425  *          0 the underlying pte page is not shared, or it is the last user
3426  */
3427 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
3428 {
3429         pgd_t *pgd = pgd_offset(mm, *addr);
3430         pud_t *pud = pud_offset(pgd, *addr);
3431
3432         BUG_ON(page_count(virt_to_page(ptep)) == 0);
3433         if (page_count(virt_to_page(ptep)) == 1)
3434                 return 0;
3435
3436         pud_clear(pud);
3437         put_page(virt_to_page(ptep));
3438         *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
3439         return 1;
3440 }
3441 #define want_pmd_share()        (1)
3442 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3443 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3444 {
3445         return NULL;
3446 }
3447 #define want_pmd_share()        (0)
3448 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3449
3450 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
3451 pte_t *huge_pte_alloc(struct mm_struct *mm,
3452                         unsigned long addr, unsigned long sz)
3453 {
3454         pgd_t *pgd;
3455         pud_t *pud;
3456         pte_t *pte = NULL;
3457
3458         pgd = pgd_offset(mm, addr);
3459         pud = pud_alloc(mm, pgd, addr);
3460         if (pud) {
3461                 if (sz == PUD_SIZE) {
3462                         pte = (pte_t *)pud;
3463                 } else {
3464                         BUG_ON(sz != PMD_SIZE);
3465                         if (want_pmd_share() && pud_none(*pud))
3466                                 pte = huge_pmd_share(mm, addr, pud);
3467                         else
3468                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3469                 }
3470         }
3471         BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
3472
3473         return pte;
3474 }
3475
3476 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
3477 {
3478         pgd_t *pgd;
3479         pud_t *pud;
3480         pmd_t *pmd = NULL;
3481
3482         pgd = pgd_offset(mm, addr);
3483         if (pgd_present(*pgd)) {
3484                 pud = pud_offset(pgd, addr);
3485                 if (pud_present(*pud)) {
3486                         if (pud_huge(*pud))
3487                                 return (pte_t *)pud;
3488                         pmd = pmd_offset(pud, addr);
3489                 }
3490         }
3491         return (pte_t *) pmd;
3492 }
3493
3494 struct page *
3495 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
3496                 pmd_t *pmd, int write)
3497 {
3498         struct page *page;
3499
3500         page = pte_page(*(pte_t *)pmd);
3501         if (page)
3502                 page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
3503         return page;
3504 }
3505
3506 struct page *
3507 follow_huge_pud(struct mm_struct *mm, unsigned long address,
3508                 pud_t *pud, int write)
3509 {
3510         struct page *page;
3511
3512         page = pte_page(*(pte_t *)pud);
3513         if (page)
3514                 page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
3515         return page;
3516 }
3517
3518 #else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3519
3520 /* Can be overriden by architectures */
3521 __attribute__((weak)) struct page *
3522 follow_huge_pud(struct mm_struct *mm, unsigned long address,
3523                pud_t *pud, int write)
3524 {
3525         BUG();
3526         return NULL;
3527 }
3528
3529 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3530
3531 #ifdef CONFIG_MEMORY_FAILURE
3532
3533 /* Should be called in hugetlb_lock */
3534 static int is_hugepage_on_freelist(struct page *hpage)
3535 {
3536         struct page *page;
3537         struct page *tmp;
3538         struct hstate *h = page_hstate(hpage);
3539         int nid = page_to_nid(hpage);
3540
3541         list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3542                 if (page == hpage)
3543                         return 1;
3544         return 0;
3545 }
3546
3547 /*
3548  * This function is called from memory failure code.
3549  * Assume the caller holds page lock of the head page.
3550  */
3551 int dequeue_hwpoisoned_huge_page(struct page *hpage)
3552 {
3553         struct hstate *h = page_hstate(hpage);
3554         int nid = page_to_nid(hpage);
3555         int ret = -EBUSY;
3556
3557         spin_lock(&hugetlb_lock);
3558         if (is_hugepage_on_freelist(hpage)) {
3559                 /*
3560                  * Hwpoisoned hugepage isn't linked to activelist or freelist,
3561                  * but dangling hpage->lru can trigger list-debug warnings
3562                  * (this happens when we call unpoison_memory() on it),
3563                  * so let it point to itself with list_del_init().
3564                  */
3565                 list_del_init(&hpage->lru);
3566                 set_page_refcounted(hpage);
3567                 h->free_huge_pages--;
3568                 h->free_huge_pages_node[nid]--;
3569                 ret = 0;
3570         }
3571         spin_unlock(&hugetlb_lock);
3572         return ret;
3573 }
3574 #endif
3575
3576 bool isolate_huge_page(struct page *page, struct list_head *list)
3577 {
3578         VM_BUG_ON_PAGE(!PageHead(page), page);
3579         if (!get_page_unless_zero(page))
3580                 return false;
3581         spin_lock(&hugetlb_lock);
3582         list_move_tail(&page->lru, list);
3583         spin_unlock(&hugetlb_lock);
3584         return true;
3585 }
3586
3587 void putback_active_hugepage(struct page *page)
3588 {
3589         VM_BUG_ON_PAGE(!PageHead(page), page);
3590         spin_lock(&hugetlb_lock);
3591         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
3592         spin_unlock(&hugetlb_lock);
3593         put_page(page);
3594 }
3595
3596 bool is_hugepage_active(struct page *page)
3597 {
3598         VM_BUG_ON_PAGE(!PageHuge(page), page);
3599         /*
3600          * This function can be called for a tail page because the caller,
3601          * scan_movable_pages, scans through a given pfn-range which typically
3602          * covers one memory block. In systems using gigantic hugepage (1GB
3603          * for x86_64,) a hugepage is larger than a memory block, and we don't
3604          * support migrating such large hugepages for now, so return false
3605          * when called for tail pages.
3606          */
3607         if (PageTail(page))
3608                 return false;
3609         /*
3610          * Refcount of a hwpoisoned hugepages is 1, but they are not active,
3611          * so we should return false for them.
3612          */
3613         if (unlikely(PageHWPoison(page)))
3614                 return false;
3615         return page_count(page) > 0;
3616 }