d61cba6fa1dc4380677dd03f6e092b12e208c881
[cascardo/linux.git] / mm / ksm.c
1 /*
2  * Memory merging support.
3  *
4  * This code enables dynamic sharing of identical pages found in different
5  * memory areas, even if they are not shared by fork()
6  *
7  * Copyright (C) 2008-2009 Red Hat, Inc.
8  * Authors:
9  *      Izik Eidus
10  *      Andrea Arcangeli
11  *      Chris Wright
12  *      Hugh Dickins
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.
15  */
16
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/rwsem.h>
23 #include <linux/pagemap.h>
24 #include <linux/rmap.h>
25 #include <linux/spinlock.h>
26 #include <linux/jhash.h>
27 #include <linux/delay.h>
28 #include <linux/kthread.h>
29 #include <linux/wait.h>
30 #include <linux/slab.h>
31 #include <linux/rbtree.h>
32 #include <linux/memory.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/swap.h>
35 #include <linux/ksm.h>
36 #include <linux/hashtable.h>
37 #include <linux/freezer.h>
38 #include <linux/oom.h>
39 #include <linux/numa.h>
40
41 #include <asm/tlbflush.h>
42 #include "internal.h"
43
44 #ifdef CONFIG_NUMA
45 #define NUMA(x)         (x)
46 #define DO_NUMA(x)      do { (x); } while (0)
47 #else
48 #define NUMA(x)         (0)
49 #define DO_NUMA(x)      do { } while (0)
50 #endif
51
52 /*
53  * A few notes about the KSM scanning process,
54  * to make it easier to understand the data structures below:
55  *
56  * In order to reduce excessive scanning, KSM sorts the memory pages by their
57  * contents into a data structure that holds pointers to the pages' locations.
58  *
59  * Since the contents of the pages may change at any moment, KSM cannot just
60  * insert the pages into a normal sorted tree and expect it to find anything.
61  * Therefore KSM uses two data structures - the stable and the unstable tree.
62  *
63  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
64  * by their contents.  Because each such page is write-protected, searching on
65  * this tree is fully assured to be working (except when pages are unmapped),
66  * and therefore this tree is called the stable tree.
67  *
68  * In addition to the stable tree, KSM uses a second data structure called the
69  * unstable tree: this tree holds pointers to pages which have been found to
70  * be "unchanged for a period of time".  The unstable tree sorts these pages
71  * by their contents, but since they are not write-protected, KSM cannot rely
72  * upon the unstable tree to work correctly - the unstable tree is liable to
73  * be corrupted as its contents are modified, and so it is called unstable.
74  *
75  * KSM solves this problem by several techniques:
76  *
77  * 1) The unstable tree is flushed every time KSM completes scanning all
78  *    memory areas, and then the tree is rebuilt again from the beginning.
79  * 2) KSM will only insert into the unstable tree, pages whose hash value
80  *    has not changed since the previous scan of all memory areas.
81  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
82  *    colors of the nodes and not on their contents, assuring that even when
83  *    the tree gets "corrupted" it won't get out of balance, so scanning time
84  *    remains the same (also, searching and inserting nodes in an rbtree uses
85  *    the same algorithm, so we have no overhead when we flush and rebuild).
86  * 4) KSM never flushes the stable tree, which means that even if it were to
87  *    take 10 attempts to find a page in the unstable tree, once it is found,
88  *    it is secured in the stable tree.  (When we scan a new page, we first
89  *    compare it against the stable tree, and then against the unstable tree.)
90  *
91  * If the merge_across_nodes tunable is unset, then KSM maintains multiple
92  * stable trees and multiple unstable trees: one of each for each NUMA node.
93  */
94
95 /**
96  * struct mm_slot - ksm information per mm that is being scanned
97  * @link: link to the mm_slots hash list
98  * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
99  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
100  * @mm: the mm that this information is valid for
101  */
102 struct mm_slot {
103         struct hlist_node link;
104         struct list_head mm_list;
105         struct rmap_item *rmap_list;
106         struct mm_struct *mm;
107 };
108
109 /**
110  * struct ksm_scan - cursor for scanning
111  * @mm_slot: the current mm_slot we are scanning
112  * @address: the next address inside that to be scanned
113  * @rmap_list: link to the next rmap to be scanned in the rmap_list
114  * @seqnr: count of completed full scans (needed when removing unstable node)
115  *
116  * There is only the one ksm_scan instance of this cursor structure.
117  */
118 struct ksm_scan {
119         struct mm_slot *mm_slot;
120         unsigned long address;
121         struct rmap_item **rmap_list;
122         unsigned long seqnr;
123 };
124
125 /**
126  * struct stable_node - node of the stable rbtree
127  * @node: rb node of this ksm page in the stable tree
128  * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
129  * @list: linked into migrate_nodes, pending placement in the proper node tree
130  * @hlist: hlist head of rmap_items using this ksm page
131  * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
132  * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
133  */
134 struct stable_node {
135         union {
136                 struct rb_node node;    /* when node of stable tree */
137                 struct {                /* when listed for migration */
138                         struct list_head *head;
139                         struct list_head list;
140                 };
141         };
142         struct hlist_head hlist;
143         unsigned long kpfn;
144 #ifdef CONFIG_NUMA
145         int nid;
146 #endif
147 };
148
149 /**
150  * struct rmap_item - reverse mapping item for virtual addresses
151  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
152  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
153  * @nid: NUMA node id of unstable tree in which linked (may not match page)
154  * @mm: the memory structure this rmap_item is pointing into
155  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
156  * @oldchecksum: previous checksum of the page at that virtual address
157  * @node: rb node of this rmap_item in the unstable tree
158  * @head: pointer to stable_node heading this list in the stable tree
159  * @hlist: link into hlist of rmap_items hanging off that stable_node
160  */
161 struct rmap_item {
162         struct rmap_item *rmap_list;
163         union {
164                 struct anon_vma *anon_vma;      /* when stable */
165 #ifdef CONFIG_NUMA
166                 int nid;                /* when node of unstable tree */
167 #endif
168         };
169         struct mm_struct *mm;
170         unsigned long address;          /* + low bits used for flags below */
171         unsigned int oldchecksum;       /* when unstable */
172         union {
173                 struct rb_node node;    /* when node of unstable tree */
174                 struct {                /* when listed from stable tree */
175                         struct stable_node *head;
176                         struct hlist_node hlist;
177                 };
178         };
179 };
180
181 #define SEQNR_MASK      0x0ff   /* low bits of unstable tree seqnr */
182 #define UNSTABLE_FLAG   0x100   /* is a node of the unstable tree */
183 #define STABLE_FLAG     0x200   /* is listed from the stable tree */
184
185 /* The stable and unstable tree heads */
186 static struct rb_root root_unstable_tree[MAX_NUMNODES];
187 static struct rb_root root_stable_tree[MAX_NUMNODES];
188
189 /* Recently migrated nodes of stable tree, pending proper placement */
190 static LIST_HEAD(migrate_nodes);
191
192 #define MM_SLOTS_HASH_BITS 10
193 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
194
195 static struct mm_slot ksm_mm_head = {
196         .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
197 };
198 static struct ksm_scan ksm_scan = {
199         .mm_slot = &ksm_mm_head,
200 };
201
202 static struct kmem_cache *rmap_item_cache;
203 static struct kmem_cache *stable_node_cache;
204 static struct kmem_cache *mm_slot_cache;
205
206 /* The number of nodes in the stable tree */
207 static unsigned long ksm_pages_shared;
208
209 /* The number of page slots additionally sharing those nodes */
210 static unsigned long ksm_pages_sharing;
211
212 /* The number of nodes in the unstable tree */
213 static unsigned long ksm_pages_unshared;
214
215 /* The number of rmap_items in use: to calculate pages_volatile */
216 static unsigned long ksm_rmap_items;
217
218 /* Number of pages ksmd should scan in one batch */
219 static unsigned int ksm_thread_pages_to_scan = 100;
220
221 /* Milliseconds ksmd should sleep between batches */
222 static unsigned int ksm_thread_sleep_millisecs = 20;
223
224 #ifdef CONFIG_NUMA
225 /* Zeroed when merging across nodes is not allowed */
226 static unsigned int ksm_merge_across_nodes = 1;
227 #else
228 #define ksm_merge_across_nodes  1U
229 #endif
230
231 #define KSM_RUN_STOP    0
232 #define KSM_RUN_MERGE   1
233 #define KSM_RUN_UNMERGE 2
234 #define KSM_RUN_OFFLINE 4
235 static unsigned long ksm_run = KSM_RUN_STOP;
236 static void wait_while_offlining(void);
237
238 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
239 static DEFINE_MUTEX(ksm_thread_mutex);
240 static DEFINE_SPINLOCK(ksm_mmlist_lock);
241
242 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
243                 sizeof(struct __struct), __alignof__(struct __struct),\
244                 (__flags), NULL)
245
246 static int __init ksm_slab_init(void)
247 {
248         rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
249         if (!rmap_item_cache)
250                 goto out;
251
252         stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
253         if (!stable_node_cache)
254                 goto out_free1;
255
256         mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
257         if (!mm_slot_cache)
258                 goto out_free2;
259
260         return 0;
261
262 out_free2:
263         kmem_cache_destroy(stable_node_cache);
264 out_free1:
265         kmem_cache_destroy(rmap_item_cache);
266 out:
267         return -ENOMEM;
268 }
269
270 static void __init ksm_slab_free(void)
271 {
272         kmem_cache_destroy(mm_slot_cache);
273         kmem_cache_destroy(stable_node_cache);
274         kmem_cache_destroy(rmap_item_cache);
275         mm_slot_cache = NULL;
276 }
277
278 static inline struct rmap_item *alloc_rmap_item(void)
279 {
280         struct rmap_item *rmap_item;
281
282         rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL);
283         if (rmap_item)
284                 ksm_rmap_items++;
285         return rmap_item;
286 }
287
288 static inline void free_rmap_item(struct rmap_item *rmap_item)
289 {
290         ksm_rmap_items--;
291         rmap_item->mm = NULL;   /* debug safety */
292         kmem_cache_free(rmap_item_cache, rmap_item);
293 }
294
295 static inline struct stable_node *alloc_stable_node(void)
296 {
297         return kmem_cache_alloc(stable_node_cache, GFP_KERNEL);
298 }
299
300 static inline void free_stable_node(struct stable_node *stable_node)
301 {
302         kmem_cache_free(stable_node_cache, stable_node);
303 }
304
305 static inline struct mm_slot *alloc_mm_slot(void)
306 {
307         if (!mm_slot_cache)     /* initialization failed */
308                 return NULL;
309         return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
310 }
311
312 static inline void free_mm_slot(struct mm_slot *mm_slot)
313 {
314         kmem_cache_free(mm_slot_cache, mm_slot);
315 }
316
317 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
318 {
319         struct hlist_node *node;
320         struct mm_slot *slot;
321
322         hash_for_each_possible(mm_slots_hash, slot, node, link, (unsigned long)mm)
323                 if (slot->mm == mm)
324                         return slot;
325
326         return NULL;
327 }
328
329 static void insert_to_mm_slots_hash(struct mm_struct *mm,
330                                     struct mm_slot *mm_slot)
331 {
332         mm_slot->mm = mm;
333         hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
334 }
335
336 /*
337  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
338  * page tables after it has passed through ksm_exit() - which, if necessary,
339  * takes mmap_sem briefly to serialize against them.  ksm_exit() does not set
340  * a special flag: they can just back out as soon as mm_users goes to zero.
341  * ksm_test_exit() is used throughout to make this test for exit: in some
342  * places for correctness, in some places just to avoid unnecessary work.
343  */
344 static inline bool ksm_test_exit(struct mm_struct *mm)
345 {
346         return atomic_read(&mm->mm_users) == 0;
347 }
348
349 /*
350  * We use break_ksm to break COW on a ksm page: it's a stripped down
351  *
352  *      if (get_user_pages(current, mm, addr, 1, 1, 1, &page, NULL) == 1)
353  *              put_page(page);
354  *
355  * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
356  * in case the application has unmapped and remapped mm,addr meanwhile.
357  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
358  * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
359  */
360 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
361 {
362         struct page *page;
363         int ret = 0;
364
365         do {
366                 cond_resched();
367                 page = follow_page(vma, addr, FOLL_GET | FOLL_MIGRATION);
368                 if (IS_ERR_OR_NULL(page))
369                         break;
370                 if (PageKsm(page))
371                         ret = handle_mm_fault(vma->vm_mm, vma, addr,
372                                                         FAULT_FLAG_WRITE);
373                 else
374                         ret = VM_FAULT_WRITE;
375                 put_page(page);
376         } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_OOM)));
377         /*
378          * We must loop because handle_mm_fault() may back out if there's
379          * any difficulty e.g. if pte accessed bit gets updated concurrently.
380          *
381          * VM_FAULT_WRITE is what we have been hoping for: it indicates that
382          * COW has been broken, even if the vma does not permit VM_WRITE;
383          * but note that a concurrent fault might break PageKsm for us.
384          *
385          * VM_FAULT_SIGBUS could occur if we race with truncation of the
386          * backing file, which also invalidates anonymous pages: that's
387          * okay, that truncation will have unmapped the PageKsm for us.
388          *
389          * VM_FAULT_OOM: at the time of writing (late July 2009), setting
390          * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
391          * current task has TIF_MEMDIE set, and will be OOM killed on return
392          * to user; and ksmd, having no mm, would never be chosen for that.
393          *
394          * But if the mm is in a limited mem_cgroup, then the fault may fail
395          * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
396          * even ksmd can fail in this way - though it's usually breaking ksm
397          * just to undo a merge it made a moment before, so unlikely to oom.
398          *
399          * That's a pity: we might therefore have more kernel pages allocated
400          * than we're counting as nodes in the stable tree; but ksm_do_scan
401          * will retry to break_cow on each pass, so should recover the page
402          * in due course.  The important thing is to not let VM_MERGEABLE
403          * be cleared while any such pages might remain in the area.
404          */
405         return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
406 }
407
408 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
409                 unsigned long addr)
410 {
411         struct vm_area_struct *vma;
412         if (ksm_test_exit(mm))
413                 return NULL;
414         vma = find_vma(mm, addr);
415         if (!vma || vma->vm_start > addr)
416                 return NULL;
417         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
418                 return NULL;
419         return vma;
420 }
421
422 static void break_cow(struct rmap_item *rmap_item)
423 {
424         struct mm_struct *mm = rmap_item->mm;
425         unsigned long addr = rmap_item->address;
426         struct vm_area_struct *vma;
427
428         /*
429          * It is not an accident that whenever we want to break COW
430          * to undo, we also need to drop a reference to the anon_vma.
431          */
432         put_anon_vma(rmap_item->anon_vma);
433
434         down_read(&mm->mmap_sem);
435         vma = find_mergeable_vma(mm, addr);
436         if (vma)
437                 break_ksm(vma, addr);
438         up_read(&mm->mmap_sem);
439 }
440
441 static struct page *page_trans_compound_anon(struct page *page)
442 {
443         if (PageTransCompound(page)) {
444                 struct page *head = compound_trans_head(page);
445                 /*
446                  * head may actually be splitted and freed from under
447                  * us but it's ok here.
448                  */
449                 if (PageAnon(head))
450                         return head;
451         }
452         return NULL;
453 }
454
455 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
456 {
457         struct mm_struct *mm = rmap_item->mm;
458         unsigned long addr = rmap_item->address;
459         struct vm_area_struct *vma;
460         struct page *page;
461
462         down_read(&mm->mmap_sem);
463         vma = find_mergeable_vma(mm, addr);
464         if (!vma)
465                 goto out;
466
467         page = follow_page(vma, addr, FOLL_GET);
468         if (IS_ERR_OR_NULL(page))
469                 goto out;
470         if (PageAnon(page) || page_trans_compound_anon(page)) {
471                 flush_anon_page(vma, page, addr);
472                 flush_dcache_page(page);
473         } else {
474                 put_page(page);
475 out:            page = NULL;
476         }
477         up_read(&mm->mmap_sem);
478         return page;
479 }
480
481 /*
482  * This helper is used for getting right index into array of tree roots.
483  * When merge_across_nodes knob is set to 1, there are only two rb-trees for
484  * stable and unstable pages from all nodes with roots in index 0. Otherwise,
485  * every node has its own stable and unstable tree.
486  */
487 static inline int get_kpfn_nid(unsigned long kpfn)
488 {
489         return ksm_merge_across_nodes ? 0 : pfn_to_nid(kpfn);
490 }
491
492 static void remove_node_from_stable_tree(struct stable_node *stable_node)
493 {
494         struct rmap_item *rmap_item;
495         struct hlist_node *hlist;
496
497         hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
498                 if (rmap_item->hlist.next)
499                         ksm_pages_sharing--;
500                 else
501                         ksm_pages_shared--;
502                 put_anon_vma(rmap_item->anon_vma);
503                 rmap_item->address &= PAGE_MASK;
504                 cond_resched();
505         }
506
507         if (stable_node->head == &migrate_nodes)
508                 list_del(&stable_node->list);
509         else
510                 rb_erase(&stable_node->node,
511                          &root_stable_tree[NUMA(stable_node->nid)]);
512         free_stable_node(stable_node);
513 }
514
515 /*
516  * get_ksm_page: checks if the page indicated by the stable node
517  * is still its ksm page, despite having held no reference to it.
518  * In which case we can trust the content of the page, and it
519  * returns the gotten page; but if the page has now been zapped,
520  * remove the stale node from the stable tree and return NULL.
521  * But beware, the stable node's page might be being migrated.
522  *
523  * You would expect the stable_node to hold a reference to the ksm page.
524  * But if it increments the page's count, swapping out has to wait for
525  * ksmd to come around again before it can free the page, which may take
526  * seconds or even minutes: much too unresponsive.  So instead we use a
527  * "keyhole reference": access to the ksm page from the stable node peeps
528  * out through its keyhole to see if that page still holds the right key,
529  * pointing back to this stable node.  This relies on freeing a PageAnon
530  * page to reset its page->mapping to NULL, and relies on no other use of
531  * a page to put something that might look like our key in page->mapping.
532  * is on its way to being freed; but it is an anomaly to bear in mind.
533  */
534 static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it)
535 {
536         struct page *page;
537         void *expected_mapping;
538         unsigned long kpfn;
539
540         expected_mapping = (void *)stable_node +
541                                 (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM);
542 again:
543         kpfn = ACCESS_ONCE(stable_node->kpfn);
544         page = pfn_to_page(kpfn);
545
546         /*
547          * page is computed from kpfn, so on most architectures reading
548          * page->mapping is naturally ordered after reading node->kpfn,
549          * but on Alpha we need to be more careful.
550          */
551         smp_read_barrier_depends();
552         if (ACCESS_ONCE(page->mapping) != expected_mapping)
553                 goto stale;
554
555         /*
556          * We cannot do anything with the page while its refcount is 0.
557          * Usually 0 means free, or tail of a higher-order page: in which
558          * case this node is no longer referenced, and should be freed;
559          * however, it might mean that the page is under page_freeze_refs().
560          * The __remove_mapping() case is easy, again the node is now stale;
561          * but if page is swapcache in migrate_page_move_mapping(), it might
562          * still be our page, in which case it's essential to keep the node.
563          */
564         while (!get_page_unless_zero(page)) {
565                 /*
566                  * Another check for page->mapping != expected_mapping would
567                  * work here too.  We have chosen the !PageSwapCache test to
568                  * optimize the common case, when the page is or is about to
569                  * be freed: PageSwapCache is cleared (under spin_lock_irq)
570                  * in the freeze_refs section of __remove_mapping(); but Anon
571                  * page->mapping reset to NULL later, in free_pages_prepare().
572                  */
573                 if (!PageSwapCache(page))
574                         goto stale;
575                 cpu_relax();
576         }
577
578         if (ACCESS_ONCE(page->mapping) != expected_mapping) {
579                 put_page(page);
580                 goto stale;
581         }
582
583         if (lock_it) {
584                 lock_page(page);
585                 if (ACCESS_ONCE(page->mapping) != expected_mapping) {
586                         unlock_page(page);
587                         put_page(page);
588                         goto stale;
589                 }
590         }
591         return page;
592
593 stale:
594         /*
595          * We come here from above when page->mapping or !PageSwapCache
596          * suggests that the node is stale; but it might be under migration.
597          * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
598          * before checking whether node->kpfn has been changed.
599          */
600         smp_rmb();
601         if (ACCESS_ONCE(stable_node->kpfn) != kpfn)
602                 goto again;
603         remove_node_from_stable_tree(stable_node);
604         return NULL;
605 }
606
607 /*
608  * Removing rmap_item from stable or unstable tree.
609  * This function will clean the information from the stable/unstable tree.
610  */
611 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
612 {
613         if (rmap_item->address & STABLE_FLAG) {
614                 struct stable_node *stable_node;
615                 struct page *page;
616
617                 stable_node = rmap_item->head;
618                 page = get_ksm_page(stable_node, true);
619                 if (!page)
620                         goto out;
621
622                 hlist_del(&rmap_item->hlist);
623                 unlock_page(page);
624                 put_page(page);
625
626                 if (stable_node->hlist.first)
627                         ksm_pages_sharing--;
628                 else
629                         ksm_pages_shared--;
630
631                 put_anon_vma(rmap_item->anon_vma);
632                 rmap_item->address &= PAGE_MASK;
633
634         } else if (rmap_item->address & UNSTABLE_FLAG) {
635                 unsigned char age;
636                 /*
637                  * Usually ksmd can and must skip the rb_erase, because
638                  * root_unstable_tree was already reset to RB_ROOT.
639                  * But be careful when an mm is exiting: do the rb_erase
640                  * if this rmap_item was inserted by this scan, rather
641                  * than left over from before.
642                  */
643                 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
644                 BUG_ON(age > 1);
645                 if (!age)
646                         rb_erase(&rmap_item->node,
647                                  &root_unstable_tree[NUMA(rmap_item->nid)]);
648                 ksm_pages_unshared--;
649                 rmap_item->address &= PAGE_MASK;
650         }
651 out:
652         cond_resched();         /* we're called from many long loops */
653 }
654
655 static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
656                                        struct rmap_item **rmap_list)
657 {
658         while (*rmap_list) {
659                 struct rmap_item *rmap_item = *rmap_list;
660                 *rmap_list = rmap_item->rmap_list;
661                 remove_rmap_item_from_tree(rmap_item);
662                 free_rmap_item(rmap_item);
663         }
664 }
665
666 /*
667  * Though it's very tempting to unmerge rmap_items from stable tree rather
668  * than check every pte of a given vma, the locking doesn't quite work for
669  * that - an rmap_item is assigned to the stable tree after inserting ksm
670  * page and upping mmap_sem.  Nor does it fit with the way we skip dup'ing
671  * rmap_items from parent to child at fork time (so as not to waste time
672  * if exit comes before the next scan reaches it).
673  *
674  * Similarly, although we'd like to remove rmap_items (so updating counts
675  * and freeing memory) when unmerging an area, it's easier to leave that
676  * to the next pass of ksmd - consider, for example, how ksmd might be
677  * in cmp_and_merge_page on one of the rmap_items we would be removing.
678  */
679 static int unmerge_ksm_pages(struct vm_area_struct *vma,
680                              unsigned long start, unsigned long end)
681 {
682         unsigned long addr;
683         int err = 0;
684
685         for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
686                 if (ksm_test_exit(vma->vm_mm))
687                         break;
688                 if (signal_pending(current))
689                         err = -ERESTARTSYS;
690                 else
691                         err = break_ksm(vma, addr);
692         }
693         return err;
694 }
695
696 #ifdef CONFIG_SYSFS
697 /*
698  * Only called through the sysfs control interface:
699  */
700 static int remove_stable_node(struct stable_node *stable_node)
701 {
702         struct page *page;
703         int err;
704
705         page = get_ksm_page(stable_node, true);
706         if (!page) {
707                 /*
708                  * get_ksm_page did remove_node_from_stable_tree itself.
709                  */
710                 return 0;
711         }
712
713         if (WARN_ON_ONCE(page_mapped(page))) {
714                 /*
715                  * This should not happen: but if it does, just refuse to let
716                  * merge_across_nodes be switched - there is no need to panic.
717                  */
718                 err = -EBUSY;
719         } else {
720                 /*
721                  * The stable node did not yet appear stale to get_ksm_page(),
722                  * since that allows for an unmapped ksm page to be recognized
723                  * right up until it is freed; but the node is safe to remove.
724                  * This page might be in a pagevec waiting to be freed,
725                  * or it might be PageSwapCache (perhaps under writeback),
726                  * or it might have been removed from swapcache a moment ago.
727                  */
728                 set_page_stable_node(page, NULL);
729                 remove_node_from_stable_tree(stable_node);
730                 err = 0;
731         }
732
733         unlock_page(page);
734         put_page(page);
735         return err;
736 }
737
738 static int remove_all_stable_nodes(void)
739 {
740         struct stable_node *stable_node;
741         struct list_head *this, *next;
742         int nid;
743         int err = 0;
744
745         for (nid = 0; nid < nr_node_ids; nid++) {
746                 while (root_stable_tree[nid].rb_node) {
747                         stable_node = rb_entry(root_stable_tree[nid].rb_node,
748                                                 struct stable_node, node);
749                         if (remove_stable_node(stable_node)) {
750                                 err = -EBUSY;
751                                 break;  /* proceed to next nid */
752                         }
753                         cond_resched();
754                 }
755         }
756         list_for_each_safe(this, next, &migrate_nodes) {
757                 stable_node = list_entry(this, struct stable_node, list);
758                 if (remove_stable_node(stable_node))
759                         err = -EBUSY;
760                 cond_resched();
761         }
762         return err;
763 }
764
765 static int unmerge_and_remove_all_rmap_items(void)
766 {
767         struct mm_slot *mm_slot;
768         struct mm_struct *mm;
769         struct vm_area_struct *vma;
770         int err = 0;
771
772         spin_lock(&ksm_mmlist_lock);
773         ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
774                                                 struct mm_slot, mm_list);
775         spin_unlock(&ksm_mmlist_lock);
776
777         for (mm_slot = ksm_scan.mm_slot;
778                         mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
779                 mm = mm_slot->mm;
780                 down_read(&mm->mmap_sem);
781                 for (vma = mm->mmap; vma; vma = vma->vm_next) {
782                         if (ksm_test_exit(mm))
783                                 break;
784                         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
785                                 continue;
786                         err = unmerge_ksm_pages(vma,
787                                                 vma->vm_start, vma->vm_end);
788                         if (err)
789                                 goto error;
790                 }
791
792                 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
793
794                 spin_lock(&ksm_mmlist_lock);
795                 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
796                                                 struct mm_slot, mm_list);
797                 if (ksm_test_exit(mm)) {
798                         hash_del(&mm_slot->link);
799                         list_del(&mm_slot->mm_list);
800                         spin_unlock(&ksm_mmlist_lock);
801
802                         free_mm_slot(mm_slot);
803                         clear_bit(MMF_VM_MERGEABLE, &mm->flags);
804                         up_read(&mm->mmap_sem);
805                         mmdrop(mm);
806                 } else {
807                         spin_unlock(&ksm_mmlist_lock);
808                         up_read(&mm->mmap_sem);
809                 }
810         }
811
812         /* Clean up stable nodes, but don't worry if some are still busy */
813         remove_all_stable_nodes();
814         ksm_scan.seqnr = 0;
815         return 0;
816
817 error:
818         up_read(&mm->mmap_sem);
819         spin_lock(&ksm_mmlist_lock);
820         ksm_scan.mm_slot = &ksm_mm_head;
821         spin_unlock(&ksm_mmlist_lock);
822         return err;
823 }
824 #endif /* CONFIG_SYSFS */
825
826 static u32 calc_checksum(struct page *page)
827 {
828         u32 checksum;
829         void *addr = kmap_atomic(page);
830         checksum = jhash2(addr, PAGE_SIZE / 4, 17);
831         kunmap_atomic(addr);
832         return checksum;
833 }
834
835 static int memcmp_pages(struct page *page1, struct page *page2)
836 {
837         char *addr1, *addr2;
838         int ret;
839
840         addr1 = kmap_atomic(page1);
841         addr2 = kmap_atomic(page2);
842         ret = memcmp(addr1, addr2, PAGE_SIZE);
843         kunmap_atomic(addr2);
844         kunmap_atomic(addr1);
845         return ret;
846 }
847
848 static inline int pages_identical(struct page *page1, struct page *page2)
849 {
850         return !memcmp_pages(page1, page2);
851 }
852
853 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
854                               pte_t *orig_pte)
855 {
856         struct mm_struct *mm = vma->vm_mm;
857         unsigned long addr;
858         pte_t *ptep;
859         spinlock_t *ptl;
860         int swapped;
861         int err = -EFAULT;
862         unsigned long mmun_start;       /* For mmu_notifiers */
863         unsigned long mmun_end;         /* For mmu_notifiers */
864
865         addr = page_address_in_vma(page, vma);
866         if (addr == -EFAULT)
867                 goto out;
868
869         BUG_ON(PageTransCompound(page));
870
871         mmun_start = addr;
872         mmun_end   = addr + PAGE_SIZE;
873         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
874
875         ptep = page_check_address(page, mm, addr, &ptl, 0);
876         if (!ptep)
877                 goto out_mn;
878
879         if (pte_write(*ptep) || pte_dirty(*ptep)) {
880                 pte_t entry;
881
882                 swapped = PageSwapCache(page);
883                 flush_cache_page(vma, addr, page_to_pfn(page));
884                 /*
885                  * Ok this is tricky, when get_user_pages_fast() run it doesn't
886                  * take any lock, therefore the check that we are going to make
887                  * with the pagecount against the mapcount is racey and
888                  * O_DIRECT can happen right after the check.
889                  * So we clear the pte and flush the tlb before the check
890                  * this assure us that no O_DIRECT can happen after the check
891                  * or in the middle of the check.
892                  */
893                 entry = ptep_clear_flush(vma, addr, ptep);
894                 /*
895                  * Check that no O_DIRECT or similar I/O is in progress on the
896                  * page
897                  */
898                 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
899                         set_pte_at(mm, addr, ptep, entry);
900                         goto out_unlock;
901                 }
902                 if (pte_dirty(entry))
903                         set_page_dirty(page);
904                 entry = pte_mkclean(pte_wrprotect(entry));
905                 set_pte_at_notify(mm, addr, ptep, entry);
906         }
907         *orig_pte = *ptep;
908         err = 0;
909
910 out_unlock:
911         pte_unmap_unlock(ptep, ptl);
912 out_mn:
913         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
914 out:
915         return err;
916 }
917
918 /**
919  * replace_page - replace page in vma by new ksm page
920  * @vma:      vma that holds the pte pointing to page
921  * @page:     the page we are replacing by kpage
922  * @kpage:    the ksm page we replace page by
923  * @orig_pte: the original value of the pte
924  *
925  * Returns 0 on success, -EFAULT on failure.
926  */
927 static int replace_page(struct vm_area_struct *vma, struct page *page,
928                         struct page *kpage, pte_t orig_pte)
929 {
930         struct mm_struct *mm = vma->vm_mm;
931         pmd_t *pmd;
932         pte_t *ptep;
933         spinlock_t *ptl;
934         unsigned long addr;
935         int err = -EFAULT;
936         unsigned long mmun_start;       /* For mmu_notifiers */
937         unsigned long mmun_end;         /* For mmu_notifiers */
938
939         addr = page_address_in_vma(page, vma);
940         if (addr == -EFAULT)
941                 goto out;
942
943         pmd = mm_find_pmd(mm, addr);
944         if (!pmd)
945                 goto out;
946         BUG_ON(pmd_trans_huge(*pmd));
947
948         mmun_start = addr;
949         mmun_end   = addr + PAGE_SIZE;
950         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
951
952         ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
953         if (!pte_same(*ptep, orig_pte)) {
954                 pte_unmap_unlock(ptep, ptl);
955                 goto out_mn;
956         }
957
958         get_page(kpage);
959         page_add_anon_rmap(kpage, vma, addr);
960
961         flush_cache_page(vma, addr, pte_pfn(*ptep));
962         ptep_clear_flush(vma, addr, ptep);
963         set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
964
965         page_remove_rmap(page);
966         if (!page_mapped(page))
967                 try_to_free_swap(page);
968         put_page(page);
969
970         pte_unmap_unlock(ptep, ptl);
971         err = 0;
972 out_mn:
973         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
974 out:
975         return err;
976 }
977
978 static int page_trans_compound_anon_split(struct page *page)
979 {
980         int ret = 0;
981         struct page *transhuge_head = page_trans_compound_anon(page);
982         if (transhuge_head) {
983                 /* Get the reference on the head to split it. */
984                 if (get_page_unless_zero(transhuge_head)) {
985                         /*
986                          * Recheck we got the reference while the head
987                          * was still anonymous.
988                          */
989                         if (PageAnon(transhuge_head))
990                                 ret = split_huge_page(transhuge_head);
991                         else
992                                 /*
993                                  * Retry later if split_huge_page run
994                                  * from under us.
995                                  */
996                                 ret = 1;
997                         put_page(transhuge_head);
998                 } else
999                         /* Retry later if split_huge_page run from under us. */
1000                         ret = 1;
1001         }
1002         return ret;
1003 }
1004
1005 /*
1006  * try_to_merge_one_page - take two pages and merge them into one
1007  * @vma: the vma that holds the pte pointing to page
1008  * @page: the PageAnon page that we want to replace with kpage
1009  * @kpage: the PageKsm page that we want to map instead of page,
1010  *         or NULL the first time when we want to use page as kpage.
1011  *
1012  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1013  */
1014 static int try_to_merge_one_page(struct vm_area_struct *vma,
1015                                  struct page *page, struct page *kpage)
1016 {
1017         pte_t orig_pte = __pte(0);
1018         int err = -EFAULT;
1019
1020         if (page == kpage)                      /* ksm page forked */
1021                 return 0;
1022
1023         if (!(vma->vm_flags & VM_MERGEABLE))
1024                 goto out;
1025         if (PageTransCompound(page) && page_trans_compound_anon_split(page))
1026                 goto out;
1027         BUG_ON(PageTransCompound(page));
1028         if (!PageAnon(page))
1029                 goto out;
1030
1031         /*
1032          * We need the page lock to read a stable PageSwapCache in
1033          * write_protect_page().  We use trylock_page() instead of
1034          * lock_page() because we don't want to wait here - we
1035          * prefer to continue scanning and merging different pages,
1036          * then come back to this page when it is unlocked.
1037          */
1038         if (!trylock_page(page))
1039                 goto out;
1040         /*
1041          * If this anonymous page is mapped only here, its pte may need
1042          * to be write-protected.  If it's mapped elsewhere, all of its
1043          * ptes are necessarily already write-protected.  But in either
1044          * case, we need to lock and check page_count is not raised.
1045          */
1046         if (write_protect_page(vma, page, &orig_pte) == 0) {
1047                 if (!kpage) {
1048                         /*
1049                          * While we hold page lock, upgrade page from
1050                          * PageAnon+anon_vma to PageKsm+NULL stable_node:
1051                          * stable_tree_insert() will update stable_node.
1052                          */
1053                         set_page_stable_node(page, NULL);
1054                         mark_page_accessed(page);
1055                         err = 0;
1056                 } else if (pages_identical(page, kpage))
1057                         err = replace_page(vma, page, kpage, orig_pte);
1058         }
1059
1060         if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1061                 munlock_vma_page(page);
1062                 if (!PageMlocked(kpage)) {
1063                         unlock_page(page);
1064                         lock_page(kpage);
1065                         mlock_vma_page(kpage);
1066                         page = kpage;           /* for final unlock */
1067                 }
1068         }
1069
1070         unlock_page(page);
1071 out:
1072         return err;
1073 }
1074
1075 /*
1076  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1077  * but no new kernel page is allocated: kpage must already be a ksm page.
1078  *
1079  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1080  */
1081 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1082                                       struct page *page, struct page *kpage)
1083 {
1084         struct mm_struct *mm = rmap_item->mm;
1085         struct vm_area_struct *vma;
1086         int err = -EFAULT;
1087
1088         down_read(&mm->mmap_sem);
1089         if (ksm_test_exit(mm))
1090                 goto out;
1091         vma = find_vma(mm, rmap_item->address);
1092         if (!vma || vma->vm_start > rmap_item->address)
1093                 goto out;
1094
1095         err = try_to_merge_one_page(vma, page, kpage);
1096         if (err)
1097                 goto out;
1098
1099         /* Unstable nid is in union with stable anon_vma: remove first */
1100         remove_rmap_item_from_tree(rmap_item);
1101
1102         /* Must get reference to anon_vma while still holding mmap_sem */
1103         rmap_item->anon_vma = vma->anon_vma;
1104         get_anon_vma(vma->anon_vma);
1105 out:
1106         up_read(&mm->mmap_sem);
1107         return err;
1108 }
1109
1110 /*
1111  * try_to_merge_two_pages - take two identical pages and prepare them
1112  * to be merged into one page.
1113  *
1114  * This function returns the kpage if we successfully merged two identical
1115  * pages into one ksm page, NULL otherwise.
1116  *
1117  * Note that this function upgrades page to ksm page: if one of the pages
1118  * is already a ksm page, try_to_merge_with_ksm_page should be used.
1119  */
1120 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1121                                            struct page *page,
1122                                            struct rmap_item *tree_rmap_item,
1123                                            struct page *tree_page)
1124 {
1125         int err;
1126
1127         err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1128         if (!err) {
1129                 err = try_to_merge_with_ksm_page(tree_rmap_item,
1130                                                         tree_page, page);
1131                 /*
1132                  * If that fails, we have a ksm page with only one pte
1133                  * pointing to it: so break it.
1134                  */
1135                 if (err)
1136                         break_cow(rmap_item);
1137         }
1138         return err ? NULL : page;
1139 }
1140
1141 /*
1142  * stable_tree_search - search for page inside the stable tree
1143  *
1144  * This function checks if there is a page inside the stable tree
1145  * with identical content to the page that we are scanning right now.
1146  *
1147  * This function returns the stable tree node of identical content if found,
1148  * NULL otherwise.
1149  */
1150 static struct page *stable_tree_search(struct page *page)
1151 {
1152         int nid;
1153         struct rb_node **new;
1154         struct rb_node *parent;
1155         struct stable_node *stable_node;
1156         struct stable_node *page_node;
1157
1158         page_node = page_stable_node(page);
1159         if (page_node && page_node->head != &migrate_nodes) {
1160                 /* ksm page forked */
1161                 get_page(page);
1162                 return page;
1163         }
1164
1165         nid = get_kpfn_nid(page_to_pfn(page));
1166 again:
1167         new = &root_stable_tree[nid].rb_node;
1168         parent = NULL;
1169
1170         while (*new) {
1171                 struct page *tree_page;
1172                 int ret;
1173
1174                 cond_resched();
1175                 stable_node = rb_entry(*new, struct stable_node, node);
1176                 tree_page = get_ksm_page(stable_node, false);
1177                 if (!tree_page)
1178                         return NULL;
1179
1180                 ret = memcmp_pages(page, tree_page);
1181                 put_page(tree_page);
1182
1183                 parent = *new;
1184                 if (ret < 0)
1185                         new = &parent->rb_left;
1186                 else if (ret > 0)
1187                         new = &parent->rb_right;
1188                 else {
1189                         /*
1190                          * Lock and unlock the stable_node's page (which
1191                          * might already have been migrated) so that page
1192                          * migration is sure to notice its raised count.
1193                          * It would be more elegant to return stable_node
1194                          * than kpage, but that involves more changes.
1195                          */
1196                         tree_page = get_ksm_page(stable_node, true);
1197                         if (tree_page) {
1198                                 unlock_page(tree_page);
1199                                 if (get_kpfn_nid(stable_node->kpfn) !=
1200                                                 NUMA(stable_node->nid)) {
1201                                         put_page(tree_page);
1202                                         goto replace;
1203                                 }
1204                                 return tree_page;
1205                         }
1206                         /*
1207                          * There is now a place for page_node, but the tree may
1208                          * have been rebalanced, so re-evaluate parent and new.
1209                          */
1210                         if (page_node)
1211                                 goto again;
1212                         return NULL;
1213                 }
1214         }
1215
1216         if (!page_node)
1217                 return NULL;
1218
1219         list_del(&page_node->list);
1220         DO_NUMA(page_node->nid = nid);
1221         rb_link_node(&page_node->node, parent, new);
1222         rb_insert_color(&page_node->node, &root_stable_tree[nid]);
1223         get_page(page);
1224         return page;
1225
1226 replace:
1227         if (page_node) {
1228                 list_del(&page_node->list);
1229                 DO_NUMA(page_node->nid = nid);
1230                 rb_replace_node(&stable_node->node,
1231                                 &page_node->node, &root_stable_tree[nid]);
1232                 get_page(page);
1233         } else {
1234                 rb_erase(&stable_node->node, &root_stable_tree[nid]);
1235                 page = NULL;
1236         }
1237         stable_node->head = &migrate_nodes;
1238         list_add(&stable_node->list, stable_node->head);
1239         return page;
1240 }
1241
1242 /*
1243  * stable_tree_insert - insert stable tree node pointing to new ksm page
1244  * into the stable tree.
1245  *
1246  * This function returns the stable tree node just allocated on success,
1247  * NULL otherwise.
1248  */
1249 static struct stable_node *stable_tree_insert(struct page *kpage)
1250 {
1251         int nid;
1252         unsigned long kpfn;
1253         struct rb_node **new;
1254         struct rb_node *parent = NULL;
1255         struct stable_node *stable_node;
1256
1257         kpfn = page_to_pfn(kpage);
1258         nid = get_kpfn_nid(kpfn);
1259         new = &root_stable_tree[nid].rb_node;
1260
1261         while (*new) {
1262                 struct page *tree_page;
1263                 int ret;
1264
1265                 cond_resched();
1266                 stable_node = rb_entry(*new, struct stable_node, node);
1267                 tree_page = get_ksm_page(stable_node, false);
1268                 if (!tree_page)
1269                         return NULL;
1270
1271                 ret = memcmp_pages(kpage, tree_page);
1272                 put_page(tree_page);
1273
1274                 parent = *new;
1275                 if (ret < 0)
1276                         new = &parent->rb_left;
1277                 else if (ret > 0)
1278                         new = &parent->rb_right;
1279                 else {
1280                         /*
1281                          * It is not a bug that stable_tree_search() didn't
1282                          * find this node: because at that time our page was
1283                          * not yet write-protected, so may have changed since.
1284                          */
1285                         return NULL;
1286                 }
1287         }
1288
1289         stable_node = alloc_stable_node();
1290         if (!stable_node)
1291                 return NULL;
1292
1293         INIT_HLIST_HEAD(&stable_node->hlist);
1294         stable_node->kpfn = kpfn;
1295         set_page_stable_node(kpage, stable_node);
1296         DO_NUMA(stable_node->nid = nid);
1297         rb_link_node(&stable_node->node, parent, new);
1298         rb_insert_color(&stable_node->node, &root_stable_tree[nid]);
1299
1300         return stable_node;
1301 }
1302
1303 /*
1304  * unstable_tree_search_insert - search for identical page,
1305  * else insert rmap_item into the unstable tree.
1306  *
1307  * This function searches for a page in the unstable tree identical to the
1308  * page currently being scanned; and if no identical page is found in the
1309  * tree, we insert rmap_item as a new object into the unstable tree.
1310  *
1311  * This function returns pointer to rmap_item found to be identical
1312  * to the currently scanned page, NULL otherwise.
1313  *
1314  * This function does both searching and inserting, because they share
1315  * the same walking algorithm in an rbtree.
1316  */
1317 static
1318 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1319                                               struct page *page,
1320                                               struct page **tree_pagep)
1321 {
1322         struct rb_node **new;
1323         struct rb_root *root;
1324         struct rb_node *parent = NULL;
1325         int nid;
1326
1327         nid = get_kpfn_nid(page_to_pfn(page));
1328         root = &root_unstable_tree[nid];
1329         new = &root->rb_node;
1330
1331         while (*new) {
1332                 struct rmap_item *tree_rmap_item;
1333                 struct page *tree_page;
1334                 int ret;
1335
1336                 cond_resched();
1337                 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1338                 tree_page = get_mergeable_page(tree_rmap_item);
1339                 if (IS_ERR_OR_NULL(tree_page))
1340                         return NULL;
1341
1342                 /*
1343                  * Don't substitute a ksm page for a forked page.
1344                  */
1345                 if (page == tree_page) {
1346                         put_page(tree_page);
1347                         return NULL;
1348                 }
1349
1350                 ret = memcmp_pages(page, tree_page);
1351
1352                 parent = *new;
1353                 if (ret < 0) {
1354                         put_page(tree_page);
1355                         new = &parent->rb_left;
1356                 } else if (ret > 0) {
1357                         put_page(tree_page);
1358                         new = &parent->rb_right;
1359                 } else if (!ksm_merge_across_nodes &&
1360                            page_to_nid(tree_page) != nid) {
1361                         /*
1362                          * If tree_page has been migrated to another NUMA node,
1363                          * it will be flushed out and put in the right unstable
1364                          * tree next time: only merge with it when across_nodes.
1365                          */
1366                         put_page(tree_page);
1367                         return NULL;
1368                 } else {
1369                         *tree_pagep = tree_page;
1370                         return tree_rmap_item;
1371                 }
1372         }
1373
1374         rmap_item->address |= UNSTABLE_FLAG;
1375         rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1376         DO_NUMA(rmap_item->nid = nid);
1377         rb_link_node(&rmap_item->node, parent, new);
1378         rb_insert_color(&rmap_item->node, root);
1379
1380         ksm_pages_unshared++;
1381         return NULL;
1382 }
1383
1384 /*
1385  * stable_tree_append - add another rmap_item to the linked list of
1386  * rmap_items hanging off a given node of the stable tree, all sharing
1387  * the same ksm page.
1388  */
1389 static void stable_tree_append(struct rmap_item *rmap_item,
1390                                struct stable_node *stable_node)
1391 {
1392         rmap_item->head = stable_node;
1393         rmap_item->address |= STABLE_FLAG;
1394         hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
1395
1396         if (rmap_item->hlist.next)
1397                 ksm_pages_sharing++;
1398         else
1399                 ksm_pages_shared++;
1400 }
1401
1402 /*
1403  * cmp_and_merge_page - first see if page can be merged into the stable tree;
1404  * if not, compare checksum to previous and if it's the same, see if page can
1405  * be inserted into the unstable tree, or merged with a page already there and
1406  * both transferred to the stable tree.
1407  *
1408  * @page: the page that we are searching identical page to.
1409  * @rmap_item: the reverse mapping into the virtual address of this page
1410  */
1411 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1412 {
1413         struct rmap_item *tree_rmap_item;
1414         struct page *tree_page = NULL;
1415         struct stable_node *stable_node;
1416         struct page *kpage;
1417         unsigned int checksum;
1418         int err;
1419
1420         stable_node = page_stable_node(page);
1421         if (stable_node) {
1422                 if (stable_node->head != &migrate_nodes &&
1423                     get_kpfn_nid(stable_node->kpfn) != NUMA(stable_node->nid)) {
1424                         rb_erase(&stable_node->node,
1425                                  &root_stable_tree[NUMA(stable_node->nid)]);
1426                         stable_node->head = &migrate_nodes;
1427                         list_add(&stable_node->list, stable_node->head);
1428                 }
1429                 if (stable_node->head != &migrate_nodes &&
1430                     rmap_item->head == stable_node)
1431                         return;
1432         }
1433
1434         /* We first start with searching the page inside the stable tree */
1435         kpage = stable_tree_search(page);
1436         if (kpage == page && rmap_item->head == stable_node) {
1437                 put_page(kpage);
1438                 return;
1439         }
1440
1441         remove_rmap_item_from_tree(rmap_item);
1442
1443         if (kpage) {
1444                 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
1445                 if (!err) {
1446                         /*
1447                          * The page was successfully merged:
1448                          * add its rmap_item to the stable tree.
1449                          */
1450                         lock_page(kpage);
1451                         stable_tree_append(rmap_item, page_stable_node(kpage));
1452                         unlock_page(kpage);
1453                 }
1454                 put_page(kpage);
1455                 return;
1456         }
1457
1458         /*
1459          * If the hash value of the page has changed from the last time
1460          * we calculated it, this page is changing frequently: therefore we
1461          * don't want to insert it in the unstable tree, and we don't want
1462          * to waste our time searching for something identical to it there.
1463          */
1464         checksum = calc_checksum(page);
1465         if (rmap_item->oldchecksum != checksum) {
1466                 rmap_item->oldchecksum = checksum;
1467                 return;
1468         }
1469
1470         tree_rmap_item =
1471                 unstable_tree_search_insert(rmap_item, page, &tree_page);
1472         if (tree_rmap_item) {
1473                 kpage = try_to_merge_two_pages(rmap_item, page,
1474                                                 tree_rmap_item, tree_page);
1475                 put_page(tree_page);
1476                 if (kpage) {
1477                         /*
1478                          * The pages were successfully merged: insert new
1479                          * node in the stable tree and add both rmap_items.
1480                          */
1481                         lock_page(kpage);
1482                         stable_node = stable_tree_insert(kpage);
1483                         if (stable_node) {
1484                                 stable_tree_append(tree_rmap_item, stable_node);
1485                                 stable_tree_append(rmap_item, stable_node);
1486                         }
1487                         unlock_page(kpage);
1488
1489                         /*
1490                          * If we fail to insert the page into the stable tree,
1491                          * we will have 2 virtual addresses that are pointing
1492                          * to a ksm page left outside the stable tree,
1493                          * in which case we need to break_cow on both.
1494                          */
1495                         if (!stable_node) {
1496                                 break_cow(tree_rmap_item);
1497                                 break_cow(rmap_item);
1498                         }
1499                 }
1500         }
1501 }
1502
1503 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
1504                                             struct rmap_item **rmap_list,
1505                                             unsigned long addr)
1506 {
1507         struct rmap_item *rmap_item;
1508
1509         while (*rmap_list) {
1510                 rmap_item = *rmap_list;
1511                 if ((rmap_item->address & PAGE_MASK) == addr)
1512                         return rmap_item;
1513                 if (rmap_item->address > addr)
1514                         break;
1515                 *rmap_list = rmap_item->rmap_list;
1516                 remove_rmap_item_from_tree(rmap_item);
1517                 free_rmap_item(rmap_item);
1518         }
1519
1520         rmap_item = alloc_rmap_item();
1521         if (rmap_item) {
1522                 /* It has already been zeroed */
1523                 rmap_item->mm = mm_slot->mm;
1524                 rmap_item->address = addr;
1525                 rmap_item->rmap_list = *rmap_list;
1526                 *rmap_list = rmap_item;
1527         }
1528         return rmap_item;
1529 }
1530
1531 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
1532 {
1533         struct mm_struct *mm;
1534         struct mm_slot *slot;
1535         struct vm_area_struct *vma;
1536         struct rmap_item *rmap_item;
1537         int nid;
1538
1539         if (list_empty(&ksm_mm_head.mm_list))
1540                 return NULL;
1541
1542         slot = ksm_scan.mm_slot;
1543         if (slot == &ksm_mm_head) {
1544                 /*
1545                  * A number of pages can hang around indefinitely on per-cpu
1546                  * pagevecs, raised page count preventing write_protect_page
1547                  * from merging them.  Though it doesn't really matter much,
1548                  * it is puzzling to see some stuck in pages_volatile until
1549                  * other activity jostles them out, and they also prevented
1550                  * LTP's KSM test from succeeding deterministically; so drain
1551                  * them here (here rather than on entry to ksm_do_scan(),
1552                  * so we don't IPI too often when pages_to_scan is set low).
1553                  */
1554                 lru_add_drain_all();
1555
1556                 /*
1557                  * Whereas stale stable_nodes on the stable_tree itself
1558                  * get pruned in the regular course of stable_tree_search(),
1559                  * those moved out to the migrate_nodes list can accumulate:
1560                  * so prune them once before each full scan.
1561                  */
1562                 if (!ksm_merge_across_nodes) {
1563                         struct stable_node *stable_node;
1564                         struct list_head *this, *next;
1565                         struct page *page;
1566
1567                         list_for_each_safe(this, next, &migrate_nodes) {
1568                                 stable_node = list_entry(this,
1569                                                 struct stable_node, list);
1570                                 page = get_ksm_page(stable_node, false);
1571                                 if (page)
1572                                         put_page(page);
1573                                 cond_resched();
1574                         }
1575                 }
1576
1577                 for (nid = 0; nid < nr_node_ids; nid++)
1578                         root_unstable_tree[nid] = RB_ROOT;
1579
1580                 spin_lock(&ksm_mmlist_lock);
1581                 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
1582                 ksm_scan.mm_slot = slot;
1583                 spin_unlock(&ksm_mmlist_lock);
1584                 /*
1585                  * Although we tested list_empty() above, a racing __ksm_exit
1586                  * of the last mm on the list may have removed it since then.
1587                  */
1588                 if (slot == &ksm_mm_head)
1589                         return NULL;
1590 next_mm:
1591                 ksm_scan.address = 0;
1592                 ksm_scan.rmap_list = &slot->rmap_list;
1593         }
1594
1595         mm = slot->mm;
1596         down_read(&mm->mmap_sem);
1597         if (ksm_test_exit(mm))
1598                 vma = NULL;
1599         else
1600                 vma = find_vma(mm, ksm_scan.address);
1601
1602         for (; vma; vma = vma->vm_next) {
1603                 if (!(vma->vm_flags & VM_MERGEABLE))
1604                         continue;
1605                 if (ksm_scan.address < vma->vm_start)
1606                         ksm_scan.address = vma->vm_start;
1607                 if (!vma->anon_vma)
1608                         ksm_scan.address = vma->vm_end;
1609
1610                 while (ksm_scan.address < vma->vm_end) {
1611                         if (ksm_test_exit(mm))
1612                                 break;
1613                         *page = follow_page(vma, ksm_scan.address, FOLL_GET);
1614                         if (IS_ERR_OR_NULL(*page)) {
1615                                 ksm_scan.address += PAGE_SIZE;
1616                                 cond_resched();
1617                                 continue;
1618                         }
1619                         if (PageAnon(*page) ||
1620                             page_trans_compound_anon(*page)) {
1621                                 flush_anon_page(vma, *page, ksm_scan.address);
1622                                 flush_dcache_page(*page);
1623                                 rmap_item = get_next_rmap_item(slot,
1624                                         ksm_scan.rmap_list, ksm_scan.address);
1625                                 if (rmap_item) {
1626                                         ksm_scan.rmap_list =
1627                                                         &rmap_item->rmap_list;
1628                                         ksm_scan.address += PAGE_SIZE;
1629                                 } else
1630                                         put_page(*page);
1631                                 up_read(&mm->mmap_sem);
1632                                 return rmap_item;
1633                         }
1634                         put_page(*page);
1635                         ksm_scan.address += PAGE_SIZE;
1636                         cond_resched();
1637                 }
1638         }
1639
1640         if (ksm_test_exit(mm)) {
1641                 ksm_scan.address = 0;
1642                 ksm_scan.rmap_list = &slot->rmap_list;
1643         }
1644         /*
1645          * Nuke all the rmap_items that are above this current rmap:
1646          * because there were no VM_MERGEABLE vmas with such addresses.
1647          */
1648         remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
1649
1650         spin_lock(&ksm_mmlist_lock);
1651         ksm_scan.mm_slot = list_entry(slot->mm_list.next,
1652                                                 struct mm_slot, mm_list);
1653         if (ksm_scan.address == 0) {
1654                 /*
1655                  * We've completed a full scan of all vmas, holding mmap_sem
1656                  * throughout, and found no VM_MERGEABLE: so do the same as
1657                  * __ksm_exit does to remove this mm from all our lists now.
1658                  * This applies either when cleaning up after __ksm_exit
1659                  * (but beware: we can reach here even before __ksm_exit),
1660                  * or when all VM_MERGEABLE areas have been unmapped (and
1661                  * mmap_sem then protects against race with MADV_MERGEABLE).
1662                  */
1663                 hash_del(&slot->link);
1664                 list_del(&slot->mm_list);
1665                 spin_unlock(&ksm_mmlist_lock);
1666
1667                 free_mm_slot(slot);
1668                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1669                 up_read(&mm->mmap_sem);
1670                 mmdrop(mm);
1671         } else {
1672                 spin_unlock(&ksm_mmlist_lock);
1673                 up_read(&mm->mmap_sem);
1674         }
1675
1676         /* Repeat until we've completed scanning the whole list */
1677         slot = ksm_scan.mm_slot;
1678         if (slot != &ksm_mm_head)
1679                 goto next_mm;
1680
1681         ksm_scan.seqnr++;
1682         return NULL;
1683 }
1684
1685 /**
1686  * ksm_do_scan  - the ksm scanner main worker function.
1687  * @scan_npages - number of pages we want to scan before we return.
1688  */
1689 static void ksm_do_scan(unsigned int scan_npages)
1690 {
1691         struct rmap_item *rmap_item;
1692         struct page *uninitialized_var(page);
1693
1694         while (scan_npages-- && likely(!freezing(current))) {
1695                 cond_resched();
1696                 rmap_item = scan_get_next_rmap_item(&page);
1697                 if (!rmap_item)
1698                         return;
1699                 cmp_and_merge_page(page, rmap_item);
1700                 put_page(page);
1701         }
1702 }
1703
1704 static int ksmd_should_run(void)
1705 {
1706         return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
1707 }
1708
1709 static int ksm_scan_thread(void *nothing)
1710 {
1711         set_freezable();
1712         set_user_nice(current, 5);
1713
1714         while (!kthread_should_stop()) {
1715                 mutex_lock(&ksm_thread_mutex);
1716                 wait_while_offlining();
1717                 if (ksmd_should_run())
1718                         ksm_do_scan(ksm_thread_pages_to_scan);
1719                 mutex_unlock(&ksm_thread_mutex);
1720
1721                 try_to_freeze();
1722
1723                 if (ksmd_should_run()) {
1724                         schedule_timeout_interruptible(
1725                                 msecs_to_jiffies(ksm_thread_sleep_millisecs));
1726                 } else {
1727                         wait_event_freezable(ksm_thread_wait,
1728                                 ksmd_should_run() || kthread_should_stop());
1729                 }
1730         }
1731         return 0;
1732 }
1733
1734 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
1735                 unsigned long end, int advice, unsigned long *vm_flags)
1736 {
1737         struct mm_struct *mm = vma->vm_mm;
1738         int err;
1739
1740         switch (advice) {
1741         case MADV_MERGEABLE:
1742                 /*
1743                  * Be somewhat over-protective for now!
1744                  */
1745                 if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
1746                                  VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
1747                                  VM_HUGETLB | VM_NONLINEAR | VM_MIXEDMAP))
1748                         return 0;               /* just ignore the advice */
1749
1750 #ifdef VM_SAO
1751                 if (*vm_flags & VM_SAO)
1752                         return 0;
1753 #endif
1754
1755                 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
1756                         err = __ksm_enter(mm);
1757                         if (err)
1758                                 return err;
1759                 }
1760
1761                 *vm_flags |= VM_MERGEABLE;
1762                 break;
1763
1764         case MADV_UNMERGEABLE:
1765                 if (!(*vm_flags & VM_MERGEABLE))
1766                         return 0;               /* just ignore the advice */
1767
1768                 if (vma->anon_vma) {
1769                         err = unmerge_ksm_pages(vma, start, end);
1770                         if (err)
1771                                 return err;
1772                 }
1773
1774                 *vm_flags &= ~VM_MERGEABLE;
1775                 break;
1776         }
1777
1778         return 0;
1779 }
1780
1781 int __ksm_enter(struct mm_struct *mm)
1782 {
1783         struct mm_slot *mm_slot;
1784         int needs_wakeup;
1785
1786         mm_slot = alloc_mm_slot();
1787         if (!mm_slot)
1788                 return -ENOMEM;
1789
1790         /* Check ksm_run too?  Would need tighter locking */
1791         needs_wakeup = list_empty(&ksm_mm_head.mm_list);
1792
1793         spin_lock(&ksm_mmlist_lock);
1794         insert_to_mm_slots_hash(mm, mm_slot);
1795         /*
1796          * When KSM_RUN_MERGE (or KSM_RUN_STOP),
1797          * insert just behind the scanning cursor, to let the area settle
1798          * down a little; when fork is followed by immediate exec, we don't
1799          * want ksmd to waste time setting up and tearing down an rmap_list.
1800          *
1801          * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
1802          * scanning cursor, otherwise KSM pages in newly forked mms will be
1803          * missed: then we might as well insert at the end of the list.
1804          */
1805         if (ksm_run & KSM_RUN_UNMERGE)
1806                 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
1807         else
1808                 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
1809         spin_unlock(&ksm_mmlist_lock);
1810
1811         set_bit(MMF_VM_MERGEABLE, &mm->flags);
1812         atomic_inc(&mm->mm_count);
1813
1814         if (needs_wakeup)
1815                 wake_up_interruptible(&ksm_thread_wait);
1816
1817         return 0;
1818 }
1819
1820 void __ksm_exit(struct mm_struct *mm)
1821 {
1822         struct mm_slot *mm_slot;
1823         int easy_to_free = 0;
1824
1825         /*
1826          * This process is exiting: if it's straightforward (as is the
1827          * case when ksmd was never running), free mm_slot immediately.
1828          * But if it's at the cursor or has rmap_items linked to it, use
1829          * mmap_sem to synchronize with any break_cows before pagetables
1830          * are freed, and leave the mm_slot on the list for ksmd to free.
1831          * Beware: ksm may already have noticed it exiting and freed the slot.
1832          */
1833
1834         spin_lock(&ksm_mmlist_lock);
1835         mm_slot = get_mm_slot(mm);
1836         if (mm_slot && ksm_scan.mm_slot != mm_slot) {
1837                 if (!mm_slot->rmap_list) {
1838                         hash_del(&mm_slot->link);
1839                         list_del(&mm_slot->mm_list);
1840                         easy_to_free = 1;
1841                 } else {
1842                         list_move(&mm_slot->mm_list,
1843                                   &ksm_scan.mm_slot->mm_list);
1844                 }
1845         }
1846         spin_unlock(&ksm_mmlist_lock);
1847
1848         if (easy_to_free) {
1849                 free_mm_slot(mm_slot);
1850                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1851                 mmdrop(mm);
1852         } else if (mm_slot) {
1853                 down_write(&mm->mmap_sem);
1854                 up_write(&mm->mmap_sem);
1855         }
1856 }
1857
1858 struct page *ksm_might_need_to_copy(struct page *page,
1859                         struct vm_area_struct *vma, unsigned long address)
1860 {
1861         struct anon_vma *anon_vma = page_anon_vma(page);
1862         struct page *new_page;
1863
1864         if (PageKsm(page)) {
1865                 if (page_stable_node(page) &&
1866                     !(ksm_run & KSM_RUN_UNMERGE))
1867                         return page;    /* no need to copy it */
1868         } else if (!anon_vma) {
1869                 return page;            /* no need to copy it */
1870         } else if (anon_vma->root == vma->anon_vma->root &&
1871                  page->index == linear_page_index(vma, address)) {
1872                 return page;            /* still no need to copy it */
1873         }
1874         if (!PageUptodate(page))
1875                 return page;            /* let do_swap_page report the error */
1876
1877         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1878         if (new_page) {
1879                 copy_user_highpage(new_page, page, address, vma);
1880
1881                 SetPageDirty(new_page);
1882                 __SetPageUptodate(new_page);
1883                 __set_page_locked(new_page);
1884         }
1885
1886         return new_page;
1887 }
1888
1889 int page_referenced_ksm(struct page *page, struct mem_cgroup *memcg,
1890                         unsigned long *vm_flags)
1891 {
1892         struct stable_node *stable_node;
1893         struct rmap_item *rmap_item;
1894         struct hlist_node *hlist;
1895         unsigned int mapcount = page_mapcount(page);
1896         int referenced = 0;
1897         int search_new_forks = 0;
1898
1899         VM_BUG_ON(!PageKsm(page));
1900         VM_BUG_ON(!PageLocked(page));
1901
1902         stable_node = page_stable_node(page);
1903         if (!stable_node)
1904                 return 0;
1905 again:
1906         hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
1907                 struct anon_vma *anon_vma = rmap_item->anon_vma;
1908                 struct anon_vma_chain *vmac;
1909                 struct vm_area_struct *vma;
1910
1911                 anon_vma_lock_read(anon_vma);
1912                 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
1913                                                0, ULONG_MAX) {
1914                         vma = vmac->vma;
1915                         if (rmap_item->address < vma->vm_start ||
1916                             rmap_item->address >= vma->vm_end)
1917                                 continue;
1918                         /*
1919                          * Initially we examine only the vma which covers this
1920                          * rmap_item; but later, if there is still work to do,
1921                          * we examine covering vmas in other mms: in case they
1922                          * were forked from the original since ksmd passed.
1923                          */
1924                         if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1925                                 continue;
1926
1927                         if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
1928                                 continue;
1929
1930                         referenced += page_referenced_one(page, vma,
1931                                 rmap_item->address, &mapcount, vm_flags);
1932                         if (!search_new_forks || !mapcount)
1933                                 break;
1934                 }
1935                 anon_vma_unlock_read(anon_vma);
1936                 if (!mapcount)
1937                         goto out;
1938         }
1939         if (!search_new_forks++)
1940                 goto again;
1941 out:
1942         return referenced;
1943 }
1944
1945 int try_to_unmap_ksm(struct page *page, enum ttu_flags flags)
1946 {
1947         struct stable_node *stable_node;
1948         struct hlist_node *hlist;
1949         struct rmap_item *rmap_item;
1950         int ret = SWAP_AGAIN;
1951         int search_new_forks = 0;
1952
1953         VM_BUG_ON(!PageKsm(page));
1954         VM_BUG_ON(!PageLocked(page));
1955
1956         stable_node = page_stable_node(page);
1957         if (!stable_node)
1958                 return SWAP_FAIL;
1959 again:
1960         hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
1961                 struct anon_vma *anon_vma = rmap_item->anon_vma;
1962                 struct anon_vma_chain *vmac;
1963                 struct vm_area_struct *vma;
1964
1965                 anon_vma_lock_read(anon_vma);
1966                 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
1967                                                0, ULONG_MAX) {
1968                         vma = vmac->vma;
1969                         if (rmap_item->address < vma->vm_start ||
1970                             rmap_item->address >= vma->vm_end)
1971                                 continue;
1972                         /*
1973                          * Initially we examine only the vma which covers this
1974                          * rmap_item; but later, if there is still work to do,
1975                          * we examine covering vmas in other mms: in case they
1976                          * were forked from the original since ksmd passed.
1977                          */
1978                         if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1979                                 continue;
1980
1981                         ret = try_to_unmap_one(page, vma,
1982                                         rmap_item->address, flags);
1983                         if (ret != SWAP_AGAIN || !page_mapped(page)) {
1984                                 anon_vma_unlock_read(anon_vma);
1985                                 goto out;
1986                         }
1987                 }
1988                 anon_vma_unlock_read(anon_vma);
1989         }
1990         if (!search_new_forks++)
1991                 goto again;
1992 out:
1993         return ret;
1994 }
1995
1996 #ifdef CONFIG_MIGRATION
1997 int rmap_walk_ksm(struct page *page, int (*rmap_one)(struct page *,
1998                   struct vm_area_struct *, unsigned long, void *), void *arg)
1999 {
2000         struct stable_node *stable_node;
2001         struct hlist_node *hlist;
2002         struct rmap_item *rmap_item;
2003         int ret = SWAP_AGAIN;
2004         int search_new_forks = 0;
2005
2006         VM_BUG_ON(!PageKsm(page));
2007         VM_BUG_ON(!PageLocked(page));
2008
2009         stable_node = page_stable_node(page);
2010         if (!stable_node)
2011                 return ret;
2012 again:
2013         hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
2014                 struct anon_vma *anon_vma = rmap_item->anon_vma;
2015                 struct anon_vma_chain *vmac;
2016                 struct vm_area_struct *vma;
2017
2018                 anon_vma_lock_read(anon_vma);
2019                 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2020                                                0, ULONG_MAX) {
2021                         vma = vmac->vma;
2022                         if (rmap_item->address < vma->vm_start ||
2023                             rmap_item->address >= vma->vm_end)
2024                                 continue;
2025                         /*
2026                          * Initially we examine only the vma which covers this
2027                          * rmap_item; but later, if there is still work to do,
2028                          * we examine covering vmas in other mms: in case they
2029                          * were forked from the original since ksmd passed.
2030                          */
2031                         if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2032                                 continue;
2033
2034                         ret = rmap_one(page, vma, rmap_item->address, arg);
2035                         if (ret != SWAP_AGAIN) {
2036                                 anon_vma_unlock_read(anon_vma);
2037                                 goto out;
2038                         }
2039                 }
2040                 anon_vma_unlock_read(anon_vma);
2041         }
2042         if (!search_new_forks++)
2043                 goto again;
2044 out:
2045         return ret;
2046 }
2047
2048 void ksm_migrate_page(struct page *newpage, struct page *oldpage)
2049 {
2050         struct stable_node *stable_node;
2051
2052         VM_BUG_ON(!PageLocked(oldpage));
2053         VM_BUG_ON(!PageLocked(newpage));
2054         VM_BUG_ON(newpage->mapping != oldpage->mapping);
2055
2056         stable_node = page_stable_node(newpage);
2057         if (stable_node) {
2058                 VM_BUG_ON(stable_node->kpfn != page_to_pfn(oldpage));
2059                 stable_node->kpfn = page_to_pfn(newpage);
2060                 /*
2061                  * newpage->mapping was set in advance; now we need smp_wmb()
2062                  * to make sure that the new stable_node->kpfn is visible
2063                  * to get_ksm_page() before it can see that oldpage->mapping
2064                  * has gone stale (or that PageSwapCache has been cleared).
2065                  */
2066                 smp_wmb();
2067                 set_page_stable_node(oldpage, NULL);
2068         }
2069 }
2070 #endif /* CONFIG_MIGRATION */
2071
2072 #ifdef CONFIG_MEMORY_HOTREMOVE
2073 static int just_wait(void *word)
2074 {
2075         schedule();
2076         return 0;
2077 }
2078
2079 static void wait_while_offlining(void)
2080 {
2081         while (ksm_run & KSM_RUN_OFFLINE) {
2082                 mutex_unlock(&ksm_thread_mutex);
2083                 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2084                                 just_wait, TASK_UNINTERRUPTIBLE);
2085                 mutex_lock(&ksm_thread_mutex);
2086         }
2087 }
2088
2089 static void ksm_check_stable_tree(unsigned long start_pfn,
2090                                   unsigned long end_pfn)
2091 {
2092         struct stable_node *stable_node;
2093         struct list_head *this, *next;
2094         struct rb_node *node;
2095         int nid;
2096
2097         for (nid = 0; nid < nr_node_ids; nid++) {
2098                 node = rb_first(&root_stable_tree[nid]);
2099                 while (node) {
2100                         stable_node = rb_entry(node, struct stable_node, node);
2101                         if (stable_node->kpfn >= start_pfn &&
2102                             stable_node->kpfn < end_pfn) {
2103                                 /*
2104                                  * Don't get_ksm_page, page has already gone:
2105                                  * which is why we keep kpfn instead of page*
2106                                  */
2107                                 remove_node_from_stable_tree(stable_node);
2108                                 node = rb_first(&root_stable_tree[nid]);
2109                         } else
2110                                 node = rb_next(node);
2111                         cond_resched();
2112                 }
2113         }
2114         list_for_each_safe(this, next, &migrate_nodes) {
2115                 stable_node = list_entry(this, struct stable_node, list);
2116                 if (stable_node->kpfn >= start_pfn &&
2117                     stable_node->kpfn < end_pfn)
2118                         remove_node_from_stable_tree(stable_node);
2119                 cond_resched();
2120         }
2121 }
2122
2123 static int ksm_memory_callback(struct notifier_block *self,
2124                                unsigned long action, void *arg)
2125 {
2126         struct memory_notify *mn = arg;
2127
2128         switch (action) {
2129         case MEM_GOING_OFFLINE:
2130                 /*
2131                  * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2132                  * and remove_all_stable_nodes() while memory is going offline:
2133                  * it is unsafe for them to touch the stable tree at this time.
2134                  * But unmerge_ksm_pages(), rmap lookups and other entry points
2135                  * which do not need the ksm_thread_mutex are all safe.
2136                  */
2137                 mutex_lock(&ksm_thread_mutex);
2138                 ksm_run |= KSM_RUN_OFFLINE;
2139                 mutex_unlock(&ksm_thread_mutex);
2140                 break;
2141
2142         case MEM_OFFLINE:
2143                 /*
2144                  * Most of the work is done by page migration; but there might
2145                  * be a few stable_nodes left over, still pointing to struct
2146                  * pages which have been offlined: prune those from the tree,
2147                  * otherwise get_ksm_page() might later try to access a
2148                  * non-existent struct page.
2149                  */
2150                 ksm_check_stable_tree(mn->start_pfn,
2151                                       mn->start_pfn + mn->nr_pages);
2152                 /* fallthrough */
2153
2154         case MEM_CANCEL_OFFLINE:
2155                 mutex_lock(&ksm_thread_mutex);
2156                 ksm_run &= ~KSM_RUN_OFFLINE;
2157                 mutex_unlock(&ksm_thread_mutex);
2158
2159                 smp_mb();       /* wake_up_bit advises this */
2160                 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2161                 break;
2162         }
2163         return NOTIFY_OK;
2164 }
2165 #else
2166 static void wait_while_offlining(void)
2167 {
2168 }
2169 #endif /* CONFIG_MEMORY_HOTREMOVE */
2170
2171 #ifdef CONFIG_SYSFS
2172 /*
2173  * This all compiles without CONFIG_SYSFS, but is a waste of space.
2174  */
2175
2176 #define KSM_ATTR_RO(_name) \
2177         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2178 #define KSM_ATTR(_name) \
2179         static struct kobj_attribute _name##_attr = \
2180                 __ATTR(_name, 0644, _name##_show, _name##_store)
2181
2182 static ssize_t sleep_millisecs_show(struct kobject *kobj,
2183                                     struct kobj_attribute *attr, char *buf)
2184 {
2185         return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2186 }
2187
2188 static ssize_t sleep_millisecs_store(struct kobject *kobj,
2189                                      struct kobj_attribute *attr,
2190                                      const char *buf, size_t count)
2191 {
2192         unsigned long msecs;
2193         int err;
2194
2195         err = strict_strtoul(buf, 10, &msecs);
2196         if (err || msecs > UINT_MAX)
2197                 return -EINVAL;
2198
2199         ksm_thread_sleep_millisecs = msecs;
2200
2201         return count;
2202 }
2203 KSM_ATTR(sleep_millisecs);
2204
2205 static ssize_t pages_to_scan_show(struct kobject *kobj,
2206                                   struct kobj_attribute *attr, char *buf)
2207 {
2208         return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2209 }
2210
2211 static ssize_t pages_to_scan_store(struct kobject *kobj,
2212                                    struct kobj_attribute *attr,
2213                                    const char *buf, size_t count)
2214 {
2215         int err;
2216         unsigned long nr_pages;
2217
2218         err = strict_strtoul(buf, 10, &nr_pages);
2219         if (err || nr_pages > UINT_MAX)
2220                 return -EINVAL;
2221
2222         ksm_thread_pages_to_scan = nr_pages;
2223
2224         return count;
2225 }
2226 KSM_ATTR(pages_to_scan);
2227
2228 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2229                         char *buf)
2230 {
2231         return sprintf(buf, "%lu\n", ksm_run);
2232 }
2233
2234 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2235                          const char *buf, size_t count)
2236 {
2237         int err;
2238         unsigned long flags;
2239
2240         err = strict_strtoul(buf, 10, &flags);
2241         if (err || flags > UINT_MAX)
2242                 return -EINVAL;
2243         if (flags > KSM_RUN_UNMERGE)
2244                 return -EINVAL;
2245
2246         /*
2247          * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2248          * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2249          * breaking COW to free the pages_shared (but leaves mm_slots
2250          * on the list for when ksmd may be set running again).
2251          */
2252
2253         mutex_lock(&ksm_thread_mutex);
2254         wait_while_offlining();
2255         if (ksm_run != flags) {
2256                 ksm_run = flags;
2257                 if (flags & KSM_RUN_UNMERGE) {
2258                         set_current_oom_origin();
2259                         err = unmerge_and_remove_all_rmap_items();
2260                         clear_current_oom_origin();
2261                         if (err) {
2262                                 ksm_run = KSM_RUN_STOP;
2263                                 count = err;
2264                         }
2265                 }
2266         }
2267         mutex_unlock(&ksm_thread_mutex);
2268
2269         if (flags & KSM_RUN_MERGE)
2270                 wake_up_interruptible(&ksm_thread_wait);
2271
2272         return count;
2273 }
2274 KSM_ATTR(run);
2275
2276 #ifdef CONFIG_NUMA
2277 static ssize_t merge_across_nodes_show(struct kobject *kobj,
2278                                 struct kobj_attribute *attr, char *buf)
2279 {
2280         return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2281 }
2282
2283 static ssize_t merge_across_nodes_store(struct kobject *kobj,
2284                                    struct kobj_attribute *attr,
2285                                    const char *buf, size_t count)
2286 {
2287         int err;
2288         unsigned long knob;
2289
2290         err = kstrtoul(buf, 10, &knob);
2291         if (err)
2292                 return err;
2293         if (knob > 1)
2294                 return -EINVAL;
2295
2296         mutex_lock(&ksm_thread_mutex);
2297         wait_while_offlining();
2298         if (ksm_merge_across_nodes != knob) {
2299                 if (ksm_pages_shared || remove_all_stable_nodes())
2300                         err = -EBUSY;
2301                 else
2302                         ksm_merge_across_nodes = knob;
2303         }
2304         mutex_unlock(&ksm_thread_mutex);
2305
2306         return err ? err : count;
2307 }
2308 KSM_ATTR(merge_across_nodes);
2309 #endif
2310
2311 static ssize_t pages_shared_show(struct kobject *kobj,
2312                                  struct kobj_attribute *attr, char *buf)
2313 {
2314         return sprintf(buf, "%lu\n", ksm_pages_shared);
2315 }
2316 KSM_ATTR_RO(pages_shared);
2317
2318 static ssize_t pages_sharing_show(struct kobject *kobj,
2319                                   struct kobj_attribute *attr, char *buf)
2320 {
2321         return sprintf(buf, "%lu\n", ksm_pages_sharing);
2322 }
2323 KSM_ATTR_RO(pages_sharing);
2324
2325 static ssize_t pages_unshared_show(struct kobject *kobj,
2326                                    struct kobj_attribute *attr, char *buf)
2327 {
2328         return sprintf(buf, "%lu\n", ksm_pages_unshared);
2329 }
2330 KSM_ATTR_RO(pages_unshared);
2331
2332 static ssize_t pages_volatile_show(struct kobject *kobj,
2333                                    struct kobj_attribute *attr, char *buf)
2334 {
2335         long ksm_pages_volatile;
2336
2337         ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
2338                                 - ksm_pages_sharing - ksm_pages_unshared;
2339         /*
2340          * It was not worth any locking to calculate that statistic,
2341          * but it might therefore sometimes be negative: conceal that.
2342          */
2343         if (ksm_pages_volatile < 0)
2344                 ksm_pages_volatile = 0;
2345         return sprintf(buf, "%ld\n", ksm_pages_volatile);
2346 }
2347 KSM_ATTR_RO(pages_volatile);
2348
2349 static ssize_t full_scans_show(struct kobject *kobj,
2350                                struct kobj_attribute *attr, char *buf)
2351 {
2352         return sprintf(buf, "%lu\n", ksm_scan.seqnr);
2353 }
2354 KSM_ATTR_RO(full_scans);
2355
2356 static struct attribute *ksm_attrs[] = {
2357         &sleep_millisecs_attr.attr,
2358         &pages_to_scan_attr.attr,
2359         &run_attr.attr,
2360         &pages_shared_attr.attr,
2361         &pages_sharing_attr.attr,
2362         &pages_unshared_attr.attr,
2363         &pages_volatile_attr.attr,
2364         &full_scans_attr.attr,
2365 #ifdef CONFIG_NUMA
2366         &merge_across_nodes_attr.attr,
2367 #endif
2368         NULL,
2369 };
2370
2371 static struct attribute_group ksm_attr_group = {
2372         .attrs = ksm_attrs,
2373         .name = "ksm",
2374 };
2375 #endif /* CONFIG_SYSFS */
2376
2377 static int __init ksm_init(void)
2378 {
2379         struct task_struct *ksm_thread;
2380         int err;
2381         int nid;
2382
2383         err = ksm_slab_init();
2384         if (err)
2385                 goto out;
2386
2387         for (nid = 0; nid < nr_node_ids; nid++)
2388                 root_stable_tree[nid] = RB_ROOT;
2389
2390         ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
2391         if (IS_ERR(ksm_thread)) {
2392                 printk(KERN_ERR "ksm: creating kthread failed\n");
2393                 err = PTR_ERR(ksm_thread);
2394                 goto out_free;
2395         }
2396
2397 #ifdef CONFIG_SYSFS
2398         err = sysfs_create_group(mm_kobj, &ksm_attr_group);
2399         if (err) {
2400                 printk(KERN_ERR "ksm: register sysfs failed\n");
2401                 kthread_stop(ksm_thread);
2402                 goto out_free;
2403         }
2404 #else
2405         ksm_run = KSM_RUN_MERGE;        /* no way for user to start it */
2406
2407 #endif /* CONFIG_SYSFS */
2408
2409 #ifdef CONFIG_MEMORY_HOTREMOVE
2410         /* There is no significance to this priority 100 */
2411         hotplug_memory_notifier(ksm_memory_callback, 100);
2412 #endif
2413         return 0;
2414
2415 out_free:
2416         ksm_slab_free();
2417 out:
2418         return err;
2419 }
2420 module_init(ksm_init)