socket: initial cgroup code.
[cascardo/linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  */
23
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
27 #include <linux/mm.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/export.h>
37 #include <linux/mutex.h>
38 #include <linux/rbtree.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/swapops.h>
42 #include <linux/spinlock.h>
43 #include <linux/eventfd.h>
44 #include <linux/sort.h>
45 #include <linux/fs.h>
46 #include <linux/seq_file.h>
47 #include <linux/vmalloc.h>
48 #include <linux/mm_inline.h>
49 #include <linux/page_cgroup.h>
50 #include <linux/cpu.h>
51 #include <linux/oom.h>
52 #include "internal.h"
53
54 #include <asm/uaccess.h>
55
56 #include <trace/events/vmscan.h>
57
58 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
59 #define MEM_CGROUP_RECLAIM_RETRIES      5
60 struct mem_cgroup *root_mem_cgroup __read_mostly;
61
62 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
63 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
64 int do_swap_account __read_mostly;
65
66 /* for remember boot option*/
67 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
68 static int really_do_swap_account __initdata = 1;
69 #else
70 static int really_do_swap_account __initdata = 0;
71 #endif
72
73 #else
74 #define do_swap_account         (0)
75 #endif
76
77
78 /*
79  * Statistics for memory cgroup.
80  */
81 enum mem_cgroup_stat_index {
82         /*
83          * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
84          */
85         MEM_CGROUP_STAT_CACHE,     /* # of pages charged as cache */
86         MEM_CGROUP_STAT_RSS,       /* # of pages charged as anon rss */
87         MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
88         MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
89         MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
90         MEM_CGROUP_ON_MOVE,     /* someone is moving account between groups */
91         MEM_CGROUP_STAT_NSTATS,
92 };
93
94 enum mem_cgroup_events_index {
95         MEM_CGROUP_EVENTS_PGPGIN,       /* # of pages paged in */
96         MEM_CGROUP_EVENTS_PGPGOUT,      /* # of pages paged out */
97         MEM_CGROUP_EVENTS_COUNT,        /* # of pages paged in/out */
98         MEM_CGROUP_EVENTS_PGFAULT,      /* # of page-faults */
99         MEM_CGROUP_EVENTS_PGMAJFAULT,   /* # of major page-faults */
100         MEM_CGROUP_EVENTS_NSTATS,
101 };
102 /*
103  * Per memcg event counter is incremented at every pagein/pageout. With THP,
104  * it will be incremated by the number of pages. This counter is used for
105  * for trigger some periodic events. This is straightforward and better
106  * than using jiffies etc. to handle periodic memcg event.
107  */
108 enum mem_cgroup_events_target {
109         MEM_CGROUP_TARGET_THRESH,
110         MEM_CGROUP_TARGET_SOFTLIMIT,
111         MEM_CGROUP_TARGET_NUMAINFO,
112         MEM_CGROUP_NTARGETS,
113 };
114 #define THRESHOLDS_EVENTS_TARGET (128)
115 #define SOFTLIMIT_EVENTS_TARGET (1024)
116 #define NUMAINFO_EVENTS_TARGET  (1024)
117
118 struct mem_cgroup_stat_cpu {
119         long count[MEM_CGROUP_STAT_NSTATS];
120         unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
121         unsigned long targets[MEM_CGROUP_NTARGETS];
122 };
123
124 /*
125  * per-zone information in memory controller.
126  */
127 struct mem_cgroup_per_zone {
128         /*
129          * spin_lock to protect the per cgroup LRU
130          */
131         struct list_head        lists[NR_LRU_LISTS];
132         unsigned long           count[NR_LRU_LISTS];
133
134         struct zone_reclaim_stat reclaim_stat;
135         struct rb_node          tree_node;      /* RB tree node */
136         unsigned long long      usage_in_excess;/* Set to the value by which */
137                                                 /* the soft limit is exceeded*/
138         bool                    on_tree;
139         struct mem_cgroup       *mem;           /* Back pointer, we cannot */
140                                                 /* use container_of        */
141 };
142 /* Macro for accessing counter */
143 #define MEM_CGROUP_ZSTAT(mz, idx)       ((mz)->count[(idx)])
144
145 struct mem_cgroup_per_node {
146         struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
147 };
148
149 struct mem_cgroup_lru_info {
150         struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
151 };
152
153 /*
154  * Cgroups above their limits are maintained in a RB-Tree, independent of
155  * their hierarchy representation
156  */
157
158 struct mem_cgroup_tree_per_zone {
159         struct rb_root rb_root;
160         spinlock_t lock;
161 };
162
163 struct mem_cgroup_tree_per_node {
164         struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
165 };
166
167 struct mem_cgroup_tree {
168         struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
169 };
170
171 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
172
173 struct mem_cgroup_threshold {
174         struct eventfd_ctx *eventfd;
175         u64 threshold;
176 };
177
178 /* For threshold */
179 struct mem_cgroup_threshold_ary {
180         /* An array index points to threshold just below usage. */
181         int current_threshold;
182         /* Size of entries[] */
183         unsigned int size;
184         /* Array of thresholds */
185         struct mem_cgroup_threshold entries[0];
186 };
187
188 struct mem_cgroup_thresholds {
189         /* Primary thresholds array */
190         struct mem_cgroup_threshold_ary *primary;
191         /*
192          * Spare threshold array.
193          * This is needed to make mem_cgroup_unregister_event() "never fail".
194          * It must be able to store at least primary->size - 1 entries.
195          */
196         struct mem_cgroup_threshold_ary *spare;
197 };
198
199 /* for OOM */
200 struct mem_cgroup_eventfd_list {
201         struct list_head list;
202         struct eventfd_ctx *eventfd;
203 };
204
205 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
206 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
207
208 /*
209  * The memory controller data structure. The memory controller controls both
210  * page cache and RSS per cgroup. We would eventually like to provide
211  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
212  * to help the administrator determine what knobs to tune.
213  *
214  * TODO: Add a water mark for the memory controller. Reclaim will begin when
215  * we hit the water mark. May be even add a low water mark, such that
216  * no reclaim occurs from a cgroup at it's low water mark, this is
217  * a feature that will be implemented much later in the future.
218  */
219 struct mem_cgroup {
220         struct cgroup_subsys_state css;
221         /*
222          * the counter to account for memory usage
223          */
224         struct res_counter res;
225         /*
226          * the counter to account for mem+swap usage.
227          */
228         struct res_counter memsw;
229         /*
230          * the counter to account for kmem usage.
231          */
232         struct res_counter kmem;
233         /*
234          * Per cgroup active and inactive list, similar to the
235          * per zone LRU lists.
236          */
237         struct mem_cgroup_lru_info info;
238         /*
239          * While reclaiming in a hierarchy, we cache the last child we
240          * reclaimed from.
241          */
242         int last_scanned_child;
243         int last_scanned_node;
244 #if MAX_NUMNODES > 1
245         nodemask_t      scan_nodes;
246         atomic_t        numainfo_events;
247         atomic_t        numainfo_updating;
248 #endif
249         /*
250          * Should the accounting and control be hierarchical, per subtree?
251          */
252         bool use_hierarchy;
253
254         bool            oom_lock;
255         atomic_t        under_oom;
256
257         atomic_t        refcnt;
258
259         int     swappiness;
260         /* OOM-Killer disable */
261         int             oom_kill_disable;
262
263         /* set when res.limit == memsw.limit */
264         bool            memsw_is_minimum;
265
266         /* protect arrays of thresholds */
267         struct mutex thresholds_lock;
268
269         /* thresholds for memory usage. RCU-protected */
270         struct mem_cgroup_thresholds thresholds;
271
272         /* thresholds for mem+swap usage. RCU-protected */
273         struct mem_cgroup_thresholds memsw_thresholds;
274
275         /* For oom notifier event fd */
276         struct list_head oom_notify;
277
278         /*
279          * Should we move charges of a task when a task is moved into this
280          * mem_cgroup ? And what type of charges should we move ?
281          */
282         unsigned long   move_charge_at_immigrate;
283         /*
284          * Should kernel memory limits be stabilished independently
285          * from user memory ?
286          */
287         int             kmem_independent_accounting;
288         /*
289          * percpu counter.
290          */
291         struct mem_cgroup_stat_cpu *stat;
292         /*
293          * used when a cpu is offlined or other synchronizations
294          * See mem_cgroup_read_stat().
295          */
296         struct mem_cgroup_stat_cpu nocpu_base;
297         spinlock_t pcp_counter_lock;
298 };
299
300 /* Stuffs for move charges at task migration. */
301 /*
302  * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
303  * left-shifted bitmap of these types.
304  */
305 enum move_type {
306         MOVE_CHARGE_TYPE_ANON,  /* private anonymous page and swap of it */
307         MOVE_CHARGE_TYPE_FILE,  /* file page(including tmpfs) and swap of it */
308         NR_MOVE_TYPE,
309 };
310
311 /* "mc" and its members are protected by cgroup_mutex */
312 static struct move_charge_struct {
313         spinlock_t        lock; /* for from, to */
314         struct mem_cgroup *from;
315         struct mem_cgroup *to;
316         unsigned long precharge;
317         unsigned long moved_charge;
318         unsigned long moved_swap;
319         struct task_struct *moving_task;        /* a task moving charges */
320         wait_queue_head_t waitq;                /* a waitq for other context */
321 } mc = {
322         .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
323         .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
324 };
325
326 static bool move_anon(void)
327 {
328         return test_bit(MOVE_CHARGE_TYPE_ANON,
329                                         &mc.to->move_charge_at_immigrate);
330 }
331
332 static bool move_file(void)
333 {
334         return test_bit(MOVE_CHARGE_TYPE_FILE,
335                                         &mc.to->move_charge_at_immigrate);
336 }
337
338 /*
339  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
340  * limit reclaim to prevent infinite loops, if they ever occur.
341  */
342 #define MEM_CGROUP_MAX_RECLAIM_LOOPS            (100)
343 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
344
345 enum charge_type {
346         MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
347         MEM_CGROUP_CHARGE_TYPE_MAPPED,
348         MEM_CGROUP_CHARGE_TYPE_SHMEM,   /* used by page migration of shmem */
349         MEM_CGROUP_CHARGE_TYPE_FORCE,   /* used by force_empty */
350         MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
351         MEM_CGROUP_CHARGE_TYPE_DROP,    /* a page was unused swap cache */
352         NR_CHARGE_TYPE,
353 };
354
355 /* for encoding cft->private value on file */
356
357 enum mem_type {
358         _MEM = 0,
359         _MEMSWAP,
360         _OOM_TYPE,
361         _KMEM,
362 };
363
364 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
365 #define MEMFILE_TYPE(val)       (((val) >> 16) & 0xffff)
366 #define MEMFILE_ATTR(val)       ((val) & 0xffff)
367 /* Used for OOM nofiier */
368 #define OOM_CONTROL             (0)
369
370 /*
371  * Reclaim flags for mem_cgroup_hierarchical_reclaim
372  */
373 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT   0x0
374 #define MEM_CGROUP_RECLAIM_NOSWAP       (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
375 #define MEM_CGROUP_RECLAIM_SHRINK_BIT   0x1
376 #define MEM_CGROUP_RECLAIM_SHRINK       (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
377 #define MEM_CGROUP_RECLAIM_SOFT_BIT     0x2
378 #define MEM_CGROUP_RECLAIM_SOFT         (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
379
380 static void mem_cgroup_get(struct mem_cgroup *memcg);
381 static void mem_cgroup_put(struct mem_cgroup *memcg);
382
383 /* Writing them here to avoid exposing memcg's inner layout */
384 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
385 #ifdef CONFIG_INET
386 #include <net/sock.h>
387
388 static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
389 void sock_update_memcg(struct sock *sk)
390 {
391         /* A socket spends its whole life in the same cgroup */
392         if (sk->sk_cgrp) {
393                 WARN_ON(1);
394                 return;
395         }
396         if (static_branch(&memcg_socket_limit_enabled)) {
397                 struct mem_cgroup *memcg;
398
399                 BUG_ON(!sk->sk_prot->proto_cgroup);
400
401                 rcu_read_lock();
402                 memcg = mem_cgroup_from_task(current);
403                 if (!mem_cgroup_is_root(memcg)) {
404                         mem_cgroup_get(memcg);
405                         sk->sk_cgrp = sk->sk_prot->proto_cgroup(memcg);
406                 }
407                 rcu_read_unlock();
408         }
409 }
410 EXPORT_SYMBOL(sock_update_memcg);
411
412 void sock_release_memcg(struct sock *sk)
413 {
414         if (static_branch(&memcg_socket_limit_enabled) && sk->sk_cgrp) {
415                 struct mem_cgroup *memcg;
416                 WARN_ON(!sk->sk_cgrp->memcg);
417                 memcg = sk->sk_cgrp->memcg;
418                 mem_cgroup_put(memcg);
419         }
420 }
421 #endif /* CONFIG_INET */
422 #endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */
423
424 static void drain_all_stock_async(struct mem_cgroup *memcg);
425
426 static struct mem_cgroup_per_zone *
427 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
428 {
429         return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
430 }
431
432 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
433 {
434         return &memcg->css;
435 }
436
437 static struct mem_cgroup_per_zone *
438 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
439 {
440         int nid = page_to_nid(page);
441         int zid = page_zonenum(page);
442
443         return mem_cgroup_zoneinfo(memcg, nid, zid);
444 }
445
446 static struct mem_cgroup_tree_per_zone *
447 soft_limit_tree_node_zone(int nid, int zid)
448 {
449         return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
450 }
451
452 static struct mem_cgroup_tree_per_zone *
453 soft_limit_tree_from_page(struct page *page)
454 {
455         int nid = page_to_nid(page);
456         int zid = page_zonenum(page);
457
458         return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
459 }
460
461 static void
462 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
463                                 struct mem_cgroup_per_zone *mz,
464                                 struct mem_cgroup_tree_per_zone *mctz,
465                                 unsigned long long new_usage_in_excess)
466 {
467         struct rb_node **p = &mctz->rb_root.rb_node;
468         struct rb_node *parent = NULL;
469         struct mem_cgroup_per_zone *mz_node;
470
471         if (mz->on_tree)
472                 return;
473
474         mz->usage_in_excess = new_usage_in_excess;
475         if (!mz->usage_in_excess)
476                 return;
477         while (*p) {
478                 parent = *p;
479                 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
480                                         tree_node);
481                 if (mz->usage_in_excess < mz_node->usage_in_excess)
482                         p = &(*p)->rb_left;
483                 /*
484                  * We can't avoid mem cgroups that are over their soft
485                  * limit by the same amount
486                  */
487                 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
488                         p = &(*p)->rb_right;
489         }
490         rb_link_node(&mz->tree_node, parent, p);
491         rb_insert_color(&mz->tree_node, &mctz->rb_root);
492         mz->on_tree = true;
493 }
494
495 static void
496 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
497                                 struct mem_cgroup_per_zone *mz,
498                                 struct mem_cgroup_tree_per_zone *mctz)
499 {
500         if (!mz->on_tree)
501                 return;
502         rb_erase(&mz->tree_node, &mctz->rb_root);
503         mz->on_tree = false;
504 }
505
506 static void
507 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
508                                 struct mem_cgroup_per_zone *mz,
509                                 struct mem_cgroup_tree_per_zone *mctz)
510 {
511         spin_lock(&mctz->lock);
512         __mem_cgroup_remove_exceeded(memcg, mz, mctz);
513         spin_unlock(&mctz->lock);
514 }
515
516
517 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
518 {
519         unsigned long long excess;
520         struct mem_cgroup_per_zone *mz;
521         struct mem_cgroup_tree_per_zone *mctz;
522         int nid = page_to_nid(page);
523         int zid = page_zonenum(page);
524         mctz = soft_limit_tree_from_page(page);
525
526         /*
527          * Necessary to update all ancestors when hierarchy is used.
528          * because their event counter is not touched.
529          */
530         for (; memcg; memcg = parent_mem_cgroup(memcg)) {
531                 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
532                 excess = res_counter_soft_limit_excess(&memcg->res);
533                 /*
534                  * We have to update the tree if mz is on RB-tree or
535                  * mem is over its softlimit.
536                  */
537                 if (excess || mz->on_tree) {
538                         spin_lock(&mctz->lock);
539                         /* if on-tree, remove it */
540                         if (mz->on_tree)
541                                 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
542                         /*
543                          * Insert again. mz->usage_in_excess will be updated.
544                          * If excess is 0, no tree ops.
545                          */
546                         __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
547                         spin_unlock(&mctz->lock);
548                 }
549         }
550 }
551
552 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
553 {
554         int node, zone;
555         struct mem_cgroup_per_zone *mz;
556         struct mem_cgroup_tree_per_zone *mctz;
557
558         for_each_node_state(node, N_POSSIBLE) {
559                 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
560                         mz = mem_cgroup_zoneinfo(memcg, node, zone);
561                         mctz = soft_limit_tree_node_zone(node, zone);
562                         mem_cgroup_remove_exceeded(memcg, mz, mctz);
563                 }
564         }
565 }
566
567 static struct mem_cgroup_per_zone *
568 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
569 {
570         struct rb_node *rightmost = NULL;
571         struct mem_cgroup_per_zone *mz;
572
573 retry:
574         mz = NULL;
575         rightmost = rb_last(&mctz->rb_root);
576         if (!rightmost)
577                 goto done;              /* Nothing to reclaim from */
578
579         mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
580         /*
581          * Remove the node now but someone else can add it back,
582          * we will to add it back at the end of reclaim to its correct
583          * position in the tree.
584          */
585         __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
586         if (!res_counter_soft_limit_excess(&mz->mem->res) ||
587                 !css_tryget(&mz->mem->css))
588                 goto retry;
589 done:
590         return mz;
591 }
592
593 static struct mem_cgroup_per_zone *
594 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
595 {
596         struct mem_cgroup_per_zone *mz;
597
598         spin_lock(&mctz->lock);
599         mz = __mem_cgroup_largest_soft_limit_node(mctz);
600         spin_unlock(&mctz->lock);
601         return mz;
602 }
603
604 /*
605  * Implementation Note: reading percpu statistics for memcg.
606  *
607  * Both of vmstat[] and percpu_counter has threshold and do periodic
608  * synchronization to implement "quick" read. There are trade-off between
609  * reading cost and precision of value. Then, we may have a chance to implement
610  * a periodic synchronizion of counter in memcg's counter.
611  *
612  * But this _read() function is used for user interface now. The user accounts
613  * memory usage by memory cgroup and he _always_ requires exact value because
614  * he accounts memory. Even if we provide quick-and-fuzzy read, we always
615  * have to visit all online cpus and make sum. So, for now, unnecessary
616  * synchronization is not implemented. (just implemented for cpu hotplug)
617  *
618  * If there are kernel internal actions which can make use of some not-exact
619  * value, and reading all cpu value can be performance bottleneck in some
620  * common workload, threashold and synchonization as vmstat[] should be
621  * implemented.
622  */
623 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
624                                  enum mem_cgroup_stat_index idx)
625 {
626         long val = 0;
627         int cpu;
628
629         get_online_cpus();
630         for_each_online_cpu(cpu)
631                 val += per_cpu(memcg->stat->count[idx], cpu);
632 #ifdef CONFIG_HOTPLUG_CPU
633         spin_lock(&memcg->pcp_counter_lock);
634         val += memcg->nocpu_base.count[idx];
635         spin_unlock(&memcg->pcp_counter_lock);
636 #endif
637         put_online_cpus();
638         return val;
639 }
640
641 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
642                                          bool charge)
643 {
644         int val = (charge) ? 1 : -1;
645         this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
646 }
647
648 void mem_cgroup_pgfault(struct mem_cgroup *memcg, int val)
649 {
650         this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT], val);
651 }
652
653 void mem_cgroup_pgmajfault(struct mem_cgroup *memcg, int val)
654 {
655         this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT], val);
656 }
657
658 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
659                                             enum mem_cgroup_events_index idx)
660 {
661         unsigned long val = 0;
662         int cpu;
663
664         for_each_online_cpu(cpu)
665                 val += per_cpu(memcg->stat->events[idx], cpu);
666 #ifdef CONFIG_HOTPLUG_CPU
667         spin_lock(&memcg->pcp_counter_lock);
668         val += memcg->nocpu_base.events[idx];
669         spin_unlock(&memcg->pcp_counter_lock);
670 #endif
671         return val;
672 }
673
674 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
675                                          bool file, int nr_pages)
676 {
677         preempt_disable();
678
679         if (file)
680                 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
681                                 nr_pages);
682         else
683                 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
684                                 nr_pages);
685
686         /* pagein of a big page is an event. So, ignore page size */
687         if (nr_pages > 0)
688                 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
689         else {
690                 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
691                 nr_pages = -nr_pages; /* for event */
692         }
693
694         __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
695
696         preempt_enable();
697 }
698
699 unsigned long
700 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
701                         unsigned int lru_mask)
702 {
703         struct mem_cgroup_per_zone *mz;
704         enum lru_list l;
705         unsigned long ret = 0;
706
707         mz = mem_cgroup_zoneinfo(memcg, nid, zid);
708
709         for_each_lru(l) {
710                 if (BIT(l) & lru_mask)
711                         ret += MEM_CGROUP_ZSTAT(mz, l);
712         }
713         return ret;
714 }
715
716 static unsigned long
717 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
718                         int nid, unsigned int lru_mask)
719 {
720         u64 total = 0;
721         int zid;
722
723         for (zid = 0; zid < MAX_NR_ZONES; zid++)
724                 total += mem_cgroup_zone_nr_lru_pages(memcg,
725                                                 nid, zid, lru_mask);
726
727         return total;
728 }
729
730 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
731                         unsigned int lru_mask)
732 {
733         int nid;
734         u64 total = 0;
735
736         for_each_node_state(nid, N_HIGH_MEMORY)
737                 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
738         return total;
739 }
740
741 static bool __memcg_event_check(struct mem_cgroup *memcg, int target)
742 {
743         unsigned long val, next;
744
745         val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
746         next = __this_cpu_read(memcg->stat->targets[target]);
747         /* from time_after() in jiffies.h */
748         return ((long)next - (long)val < 0);
749 }
750
751 static void __mem_cgroup_target_update(struct mem_cgroup *memcg, int target)
752 {
753         unsigned long val, next;
754
755         val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
756
757         switch (target) {
758         case MEM_CGROUP_TARGET_THRESH:
759                 next = val + THRESHOLDS_EVENTS_TARGET;
760                 break;
761         case MEM_CGROUP_TARGET_SOFTLIMIT:
762                 next = val + SOFTLIMIT_EVENTS_TARGET;
763                 break;
764         case MEM_CGROUP_TARGET_NUMAINFO:
765                 next = val + NUMAINFO_EVENTS_TARGET;
766                 break;
767         default:
768                 return;
769         }
770
771         __this_cpu_write(memcg->stat->targets[target], next);
772 }
773
774 /*
775  * Check events in order.
776  *
777  */
778 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
779 {
780         preempt_disable();
781         /* threshold event is triggered in finer grain than soft limit */
782         if (unlikely(__memcg_event_check(memcg, MEM_CGROUP_TARGET_THRESH))) {
783                 mem_cgroup_threshold(memcg);
784                 __mem_cgroup_target_update(memcg, MEM_CGROUP_TARGET_THRESH);
785                 if (unlikely(__memcg_event_check(memcg,
786                              MEM_CGROUP_TARGET_SOFTLIMIT))) {
787                         mem_cgroup_update_tree(memcg, page);
788                         __mem_cgroup_target_update(memcg,
789                                                    MEM_CGROUP_TARGET_SOFTLIMIT);
790                 }
791 #if MAX_NUMNODES > 1
792                 if (unlikely(__memcg_event_check(memcg,
793                         MEM_CGROUP_TARGET_NUMAINFO))) {
794                         atomic_inc(&memcg->numainfo_events);
795                         __mem_cgroup_target_update(memcg,
796                                 MEM_CGROUP_TARGET_NUMAINFO);
797                 }
798 #endif
799         }
800         preempt_enable();
801 }
802
803 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
804 {
805         return container_of(cgroup_subsys_state(cont,
806                                 mem_cgroup_subsys_id), struct mem_cgroup,
807                                 css);
808 }
809
810 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
811 {
812         /*
813          * mm_update_next_owner() may clear mm->owner to NULL
814          * if it races with swapoff, page migration, etc.
815          * So this can be called with p == NULL.
816          */
817         if (unlikely(!p))
818                 return NULL;
819
820         return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
821                                 struct mem_cgroup, css);
822 }
823
824 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
825 {
826         struct mem_cgroup *memcg = NULL;
827
828         if (!mm)
829                 return NULL;
830         /*
831          * Because we have no locks, mm->owner's may be being moved to other
832          * cgroup. We use css_tryget() here even if this looks
833          * pessimistic (rather than adding locks here).
834          */
835         rcu_read_lock();
836         do {
837                 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
838                 if (unlikely(!memcg))
839                         break;
840         } while (!css_tryget(&memcg->css));
841         rcu_read_unlock();
842         return memcg;
843 }
844
845 /* The caller has to guarantee "mem" exists before calling this */
846 static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *memcg)
847 {
848         struct cgroup_subsys_state *css;
849         int found;
850
851         if (!memcg) /* ROOT cgroup has the smallest ID */
852                 return root_mem_cgroup; /*css_put/get against root is ignored*/
853         if (!memcg->use_hierarchy) {
854                 if (css_tryget(&memcg->css))
855                         return memcg;
856                 return NULL;
857         }
858         rcu_read_lock();
859         /*
860          * searching a memory cgroup which has the smallest ID under given
861          * ROOT cgroup. (ID >= 1)
862          */
863         css = css_get_next(&mem_cgroup_subsys, 1, &memcg->css, &found);
864         if (css && css_tryget(css))
865                 memcg = container_of(css, struct mem_cgroup, css);
866         else
867                 memcg = NULL;
868         rcu_read_unlock();
869         return memcg;
870 }
871
872 static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
873                                         struct mem_cgroup *root,
874                                         bool cond)
875 {
876         int nextid = css_id(&iter->css) + 1;
877         int found;
878         int hierarchy_used;
879         struct cgroup_subsys_state *css;
880
881         hierarchy_used = iter->use_hierarchy;
882
883         css_put(&iter->css);
884         /* If no ROOT, walk all, ignore hierarchy */
885         if (!cond || (root && !hierarchy_used))
886                 return NULL;
887
888         if (!root)
889                 root = root_mem_cgroup;
890
891         do {
892                 iter = NULL;
893                 rcu_read_lock();
894
895                 css = css_get_next(&mem_cgroup_subsys, nextid,
896                                 &root->css, &found);
897                 if (css && css_tryget(css))
898                         iter = container_of(css, struct mem_cgroup, css);
899                 rcu_read_unlock();
900                 /* If css is NULL, no more cgroups will be found */
901                 nextid = found + 1;
902         } while (css && !iter);
903
904         return iter;
905 }
906 /*
907  * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
908  * be careful that "break" loop is not allowed. We have reference count.
909  * Instead of that modify "cond" to be false and "continue" to exit the loop.
910  */
911 #define for_each_mem_cgroup_tree_cond(iter, root, cond) \
912         for (iter = mem_cgroup_start_loop(root);\
913              iter != NULL;\
914              iter = mem_cgroup_get_next(iter, root, cond))
915
916 #define for_each_mem_cgroup_tree(iter, root) \
917         for_each_mem_cgroup_tree_cond(iter, root, true)
918
919 #define for_each_mem_cgroup_all(iter) \
920         for_each_mem_cgroup_tree_cond(iter, NULL, true)
921
922
923 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
924 {
925         return (memcg == root_mem_cgroup);
926 }
927
928 void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
929 {
930         struct mem_cgroup *memcg;
931
932         if (!mm)
933                 return;
934
935         rcu_read_lock();
936         memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
937         if (unlikely(!memcg))
938                 goto out;
939
940         switch (idx) {
941         case PGMAJFAULT:
942                 mem_cgroup_pgmajfault(memcg, 1);
943                 break;
944         case PGFAULT:
945                 mem_cgroup_pgfault(memcg, 1);
946                 break;
947         default:
948                 BUG();
949         }
950 out:
951         rcu_read_unlock();
952 }
953 EXPORT_SYMBOL(mem_cgroup_count_vm_event);
954
955 /*
956  * Following LRU functions are allowed to be used without PCG_LOCK.
957  * Operations are called by routine of global LRU independently from memcg.
958  * What we have to take care of here is validness of pc->mem_cgroup.
959  *
960  * Changes to pc->mem_cgroup happens when
961  * 1. charge
962  * 2. moving account
963  * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
964  * It is added to LRU before charge.
965  * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
966  * When moving account, the page is not on LRU. It's isolated.
967  */
968
969 void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
970 {
971         struct page_cgroup *pc;
972         struct mem_cgroup_per_zone *mz;
973
974         if (mem_cgroup_disabled())
975                 return;
976         pc = lookup_page_cgroup(page);
977         /* can happen while we handle swapcache. */
978         if (!TestClearPageCgroupAcctLRU(pc))
979                 return;
980         VM_BUG_ON(!pc->mem_cgroup);
981         /*
982          * We don't check PCG_USED bit. It's cleared when the "page" is finally
983          * removed from global LRU.
984          */
985         mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
986         /* huge page split is done under lru_lock. so, we have no races. */
987         MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
988         if (mem_cgroup_is_root(pc->mem_cgroup))
989                 return;
990         VM_BUG_ON(list_empty(&pc->lru));
991         list_del_init(&pc->lru);
992 }
993
994 void mem_cgroup_del_lru(struct page *page)
995 {
996         mem_cgroup_del_lru_list(page, page_lru(page));
997 }
998
999 /*
1000  * Writeback is about to end against a page which has been marked for immediate
1001  * reclaim.  If it still appears to be reclaimable, move it to the tail of the
1002  * inactive list.
1003  */
1004 void mem_cgroup_rotate_reclaimable_page(struct page *page)
1005 {
1006         struct mem_cgroup_per_zone *mz;
1007         struct page_cgroup *pc;
1008         enum lru_list lru = page_lru(page);
1009
1010         if (mem_cgroup_disabled())
1011                 return;
1012
1013         pc = lookup_page_cgroup(page);
1014         /* unused or root page is not rotated. */
1015         if (!PageCgroupUsed(pc))
1016                 return;
1017         /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1018         smp_rmb();
1019         if (mem_cgroup_is_root(pc->mem_cgroup))
1020                 return;
1021         mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1022         list_move_tail(&pc->lru, &mz->lists[lru]);
1023 }
1024
1025 void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
1026 {
1027         struct mem_cgroup_per_zone *mz;
1028         struct page_cgroup *pc;
1029
1030         if (mem_cgroup_disabled())
1031                 return;
1032
1033         pc = lookup_page_cgroup(page);
1034         /* unused or root page is not rotated. */
1035         if (!PageCgroupUsed(pc))
1036                 return;
1037         /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1038         smp_rmb();
1039         if (mem_cgroup_is_root(pc->mem_cgroup))
1040                 return;
1041         mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1042         list_move(&pc->lru, &mz->lists[lru]);
1043 }
1044
1045 void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
1046 {
1047         struct page_cgroup *pc;
1048         struct mem_cgroup_per_zone *mz;
1049
1050         if (mem_cgroup_disabled())
1051                 return;
1052         pc = lookup_page_cgroup(page);
1053         VM_BUG_ON(PageCgroupAcctLRU(pc));
1054         /*
1055          * putback:                             charge:
1056          * SetPageLRU                           SetPageCgroupUsed
1057          * smp_mb                               smp_mb
1058          * PageCgroupUsed && add to memcg LRU   PageLRU && add to memcg LRU
1059          *
1060          * Ensure that one of the two sides adds the page to the memcg
1061          * LRU during a race.
1062          */
1063         smp_mb();
1064         if (!PageCgroupUsed(pc))
1065                 return;
1066         /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1067         smp_rmb();
1068         mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1069         /* huge page split is done under lru_lock. so, we have no races. */
1070         MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
1071         SetPageCgroupAcctLRU(pc);
1072         if (mem_cgroup_is_root(pc->mem_cgroup))
1073                 return;
1074         list_add(&pc->lru, &mz->lists[lru]);
1075 }
1076
1077 /*
1078  * At handling SwapCache and other FUSE stuff, pc->mem_cgroup may be changed
1079  * while it's linked to lru because the page may be reused after it's fully
1080  * uncharged. To handle that, unlink page_cgroup from LRU when charge it again.
1081  * It's done under lock_page and expected that zone->lru_lock isnever held.
1082  */
1083 static void mem_cgroup_lru_del_before_commit(struct page *page)
1084 {
1085         unsigned long flags;
1086         struct zone *zone = page_zone(page);
1087         struct page_cgroup *pc = lookup_page_cgroup(page);
1088
1089         /*
1090          * Doing this check without taking ->lru_lock seems wrong but this
1091          * is safe. Because if page_cgroup's USED bit is unset, the page
1092          * will not be added to any memcg's LRU. If page_cgroup's USED bit is
1093          * set, the commit after this will fail, anyway.
1094          * This all charge/uncharge is done under some mutual execustion.
1095          * So, we don't need to taking care of changes in USED bit.
1096          */
1097         if (likely(!PageLRU(page)))
1098                 return;
1099
1100         spin_lock_irqsave(&zone->lru_lock, flags);
1101         /*
1102          * Forget old LRU when this page_cgroup is *not* used. This Used bit
1103          * is guarded by lock_page() because the page is SwapCache.
1104          */
1105         if (!PageCgroupUsed(pc))
1106                 mem_cgroup_del_lru_list(page, page_lru(page));
1107         spin_unlock_irqrestore(&zone->lru_lock, flags);
1108 }
1109
1110 static void mem_cgroup_lru_add_after_commit(struct page *page)
1111 {
1112         unsigned long flags;
1113         struct zone *zone = page_zone(page);
1114         struct page_cgroup *pc = lookup_page_cgroup(page);
1115         /*
1116          * putback:                             charge:
1117          * SetPageLRU                           SetPageCgroupUsed
1118          * smp_mb                               smp_mb
1119          * PageCgroupUsed && add to memcg LRU   PageLRU && add to memcg LRU
1120          *
1121          * Ensure that one of the two sides adds the page to the memcg
1122          * LRU during a race.
1123          */
1124         smp_mb();
1125         /* taking care of that the page is added to LRU while we commit it */
1126         if (likely(!PageLRU(page)))
1127                 return;
1128         spin_lock_irqsave(&zone->lru_lock, flags);
1129         /* link when the page is linked to LRU but page_cgroup isn't */
1130         if (PageLRU(page) && !PageCgroupAcctLRU(pc))
1131                 mem_cgroup_add_lru_list(page, page_lru(page));
1132         spin_unlock_irqrestore(&zone->lru_lock, flags);
1133 }
1134
1135
1136 void mem_cgroup_move_lists(struct page *page,
1137                            enum lru_list from, enum lru_list to)
1138 {
1139         if (mem_cgroup_disabled())
1140                 return;
1141         mem_cgroup_del_lru_list(page, from);
1142         mem_cgroup_add_lru_list(page, to);
1143 }
1144
1145 /*
1146  * Checks whether given mem is same or in the root_mem_cgroup's
1147  * hierarchy subtree
1148  */
1149 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1150                 struct mem_cgroup *memcg)
1151 {
1152         if (root_memcg != memcg) {
1153                 return (root_memcg->use_hierarchy &&
1154                         css_is_ancestor(&memcg->css, &root_memcg->css));
1155         }
1156
1157         return true;
1158 }
1159
1160 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1161 {
1162         int ret;
1163         struct mem_cgroup *curr = NULL;
1164         struct task_struct *p;
1165
1166         p = find_lock_task_mm(task);
1167         if (!p)
1168                 return 0;
1169         curr = try_get_mem_cgroup_from_mm(p->mm);
1170         task_unlock(p);
1171         if (!curr)
1172                 return 0;
1173         /*
1174          * We should check use_hierarchy of "memcg" not "curr". Because checking
1175          * use_hierarchy of "curr" here make this function true if hierarchy is
1176          * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1177          * hierarchy(even if use_hierarchy is disabled in "memcg").
1178          */
1179         ret = mem_cgroup_same_or_subtree(memcg, curr);
1180         css_put(&curr->css);
1181         return ret;
1182 }
1183
1184 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg, struct zone *zone)
1185 {
1186         unsigned long inactive_ratio;
1187         int nid = zone_to_nid(zone);
1188         int zid = zone_idx(zone);
1189         unsigned long inactive;
1190         unsigned long active;
1191         unsigned long gb;
1192
1193         inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1194                                                 BIT(LRU_INACTIVE_ANON));
1195         active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1196                                               BIT(LRU_ACTIVE_ANON));
1197
1198         gb = (inactive + active) >> (30 - PAGE_SHIFT);
1199         if (gb)
1200                 inactive_ratio = int_sqrt(10 * gb);
1201         else
1202                 inactive_ratio = 1;
1203
1204         return inactive * inactive_ratio < active;
1205 }
1206
1207 int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg, struct zone *zone)
1208 {
1209         unsigned long active;
1210         unsigned long inactive;
1211         int zid = zone_idx(zone);
1212         int nid = zone_to_nid(zone);
1213
1214         inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1215                                                 BIT(LRU_INACTIVE_FILE));
1216         active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1217                                               BIT(LRU_ACTIVE_FILE));
1218
1219         return (active > inactive);
1220 }
1221
1222 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1223                                                       struct zone *zone)
1224 {
1225         int nid = zone_to_nid(zone);
1226         int zid = zone_idx(zone);
1227         struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1228
1229         return &mz->reclaim_stat;
1230 }
1231
1232 struct zone_reclaim_stat *
1233 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1234 {
1235         struct page_cgroup *pc;
1236         struct mem_cgroup_per_zone *mz;
1237
1238         if (mem_cgroup_disabled())
1239                 return NULL;
1240
1241         pc = lookup_page_cgroup(page);
1242         if (!PageCgroupUsed(pc))
1243                 return NULL;
1244         /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1245         smp_rmb();
1246         mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1247         return &mz->reclaim_stat;
1248 }
1249
1250 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
1251                                         struct list_head *dst,
1252                                         unsigned long *scanned, int order,
1253                                         isolate_mode_t mode,
1254                                         struct zone *z,
1255                                         struct mem_cgroup *mem_cont,
1256                                         int active, int file)
1257 {
1258         unsigned long nr_taken = 0;
1259         struct page *page;
1260         unsigned long scan;
1261         LIST_HEAD(pc_list);
1262         struct list_head *src;
1263         struct page_cgroup *pc, *tmp;
1264         int nid = zone_to_nid(z);
1265         int zid = zone_idx(z);
1266         struct mem_cgroup_per_zone *mz;
1267         int lru = LRU_FILE * file + active;
1268         int ret;
1269
1270         BUG_ON(!mem_cont);
1271         mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1272         src = &mz->lists[lru];
1273
1274         scan = 0;
1275         list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
1276                 if (scan >= nr_to_scan)
1277                         break;
1278
1279                 if (unlikely(!PageCgroupUsed(pc)))
1280                         continue;
1281
1282                 page = lookup_cgroup_page(pc);
1283
1284                 if (unlikely(!PageLRU(page)))
1285                         continue;
1286
1287                 scan++;
1288                 ret = __isolate_lru_page(page, mode, file);
1289                 switch (ret) {
1290                 case 0:
1291                         list_move(&page->lru, dst);
1292                         mem_cgroup_del_lru(page);
1293                         nr_taken += hpage_nr_pages(page);
1294                         break;
1295                 case -EBUSY:
1296                         /* we don't affect global LRU but rotate in our LRU */
1297                         mem_cgroup_rotate_lru_list(page, page_lru(page));
1298                         break;
1299                 default:
1300                         break;
1301                 }
1302         }
1303
1304         *scanned = scan;
1305
1306         trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
1307                                       0, 0, 0, mode);
1308
1309         return nr_taken;
1310 }
1311
1312 #define mem_cgroup_from_res_counter(counter, member)    \
1313         container_of(counter, struct mem_cgroup, member)
1314
1315 /**
1316  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1317  * @mem: the memory cgroup
1318  *
1319  * Returns the maximum amount of memory @mem can be charged with, in
1320  * pages.
1321  */
1322 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1323 {
1324         unsigned long long margin;
1325
1326         margin = res_counter_margin(&memcg->res);
1327         if (do_swap_account)
1328                 margin = min(margin, res_counter_margin(&memcg->memsw));
1329         return margin >> PAGE_SHIFT;
1330 }
1331
1332 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1333 {
1334         struct cgroup *cgrp = memcg->css.cgroup;
1335
1336         /* root ? */
1337         if (cgrp->parent == NULL)
1338                 return vm_swappiness;
1339
1340         return memcg->swappiness;
1341 }
1342
1343 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1344 {
1345         int cpu;
1346
1347         get_online_cpus();
1348         spin_lock(&memcg->pcp_counter_lock);
1349         for_each_online_cpu(cpu)
1350                 per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1351         memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1352         spin_unlock(&memcg->pcp_counter_lock);
1353         put_online_cpus();
1354
1355         synchronize_rcu();
1356 }
1357
1358 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1359 {
1360         int cpu;
1361
1362         if (!memcg)
1363                 return;
1364         get_online_cpus();
1365         spin_lock(&memcg->pcp_counter_lock);
1366         for_each_online_cpu(cpu)
1367                 per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1368         memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1369         spin_unlock(&memcg->pcp_counter_lock);
1370         put_online_cpus();
1371 }
1372 /*
1373  * 2 routines for checking "mem" is under move_account() or not.
1374  *
1375  * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1376  *                        for avoiding race in accounting. If true,
1377  *                        pc->mem_cgroup may be overwritten.
1378  *
1379  * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1380  *                        under hierarchy of moving cgroups. This is for
1381  *                        waiting at hith-memory prressure caused by "move".
1382  */
1383
1384 static bool mem_cgroup_stealed(struct mem_cgroup *memcg)
1385 {
1386         VM_BUG_ON(!rcu_read_lock_held());
1387         return this_cpu_read(memcg->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1388 }
1389
1390 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1391 {
1392         struct mem_cgroup *from;
1393         struct mem_cgroup *to;
1394         bool ret = false;
1395         /*
1396          * Unlike task_move routines, we access mc.to, mc.from not under
1397          * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1398          */
1399         spin_lock(&mc.lock);
1400         from = mc.from;
1401         to = mc.to;
1402         if (!from)
1403                 goto unlock;
1404
1405         ret = mem_cgroup_same_or_subtree(memcg, from)
1406                 || mem_cgroup_same_or_subtree(memcg, to);
1407 unlock:
1408         spin_unlock(&mc.lock);
1409         return ret;
1410 }
1411
1412 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1413 {
1414         if (mc.moving_task && current != mc.moving_task) {
1415                 if (mem_cgroup_under_move(memcg)) {
1416                         DEFINE_WAIT(wait);
1417                         prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1418                         /* moving charge context might have finished. */
1419                         if (mc.moving_task)
1420                                 schedule();
1421                         finish_wait(&mc.waitq, &wait);
1422                         return true;
1423                 }
1424         }
1425         return false;
1426 }
1427
1428 /**
1429  * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1430  * @memcg: The memory cgroup that went over limit
1431  * @p: Task that is going to be killed
1432  *
1433  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1434  * enabled
1435  */
1436 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1437 {
1438         struct cgroup *task_cgrp;
1439         struct cgroup *mem_cgrp;
1440         /*
1441          * Need a buffer in BSS, can't rely on allocations. The code relies
1442          * on the assumption that OOM is serialized for memory controller.
1443          * If this assumption is broken, revisit this code.
1444          */
1445         static char memcg_name[PATH_MAX];
1446         int ret;
1447
1448         if (!memcg || !p)
1449                 return;
1450
1451
1452         rcu_read_lock();
1453
1454         mem_cgrp = memcg->css.cgroup;
1455         task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1456
1457         ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1458         if (ret < 0) {
1459                 /*
1460                  * Unfortunately, we are unable to convert to a useful name
1461                  * But we'll still print out the usage information
1462                  */
1463                 rcu_read_unlock();
1464                 goto done;
1465         }
1466         rcu_read_unlock();
1467
1468         printk(KERN_INFO "Task in %s killed", memcg_name);
1469
1470         rcu_read_lock();
1471         ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1472         if (ret < 0) {
1473                 rcu_read_unlock();
1474                 goto done;
1475         }
1476         rcu_read_unlock();
1477
1478         /*
1479          * Continues from above, so we don't need an KERN_ level
1480          */
1481         printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1482 done:
1483
1484         printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1485                 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1486                 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1487                 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1488         printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1489                 "failcnt %llu\n",
1490                 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1491                 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1492                 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1493 }
1494
1495 /*
1496  * This function returns the number of memcg under hierarchy tree. Returns
1497  * 1(self count) if no children.
1498  */
1499 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1500 {
1501         int num = 0;
1502         struct mem_cgroup *iter;
1503
1504         for_each_mem_cgroup_tree(iter, memcg)
1505                 num++;
1506         return num;
1507 }
1508
1509 /*
1510  * Return the memory (and swap, if configured) limit for a memcg.
1511  */
1512 u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1513 {
1514         u64 limit;
1515         u64 memsw;
1516
1517         limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1518         limit += total_swap_pages << PAGE_SHIFT;
1519
1520         memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1521         /*
1522          * If memsw is finite and limits the amount of swap space available
1523          * to this memcg, return that limit.
1524          */
1525         return min(limit, memsw);
1526 }
1527
1528 /*
1529  * Visit the first child (need not be the first child as per the ordering
1530  * of the cgroup list, since we track last_scanned_child) of @mem and use
1531  * that to reclaim free pages from.
1532  */
1533 static struct mem_cgroup *
1534 mem_cgroup_select_victim(struct mem_cgroup *root_memcg)
1535 {
1536         struct mem_cgroup *ret = NULL;
1537         struct cgroup_subsys_state *css;
1538         int nextid, found;
1539
1540         if (!root_memcg->use_hierarchy) {
1541                 css_get(&root_memcg->css);
1542                 ret = root_memcg;
1543         }
1544
1545         while (!ret) {
1546                 rcu_read_lock();
1547                 nextid = root_memcg->last_scanned_child + 1;
1548                 css = css_get_next(&mem_cgroup_subsys, nextid, &root_memcg->css,
1549                                    &found);
1550                 if (css && css_tryget(css))
1551                         ret = container_of(css, struct mem_cgroup, css);
1552
1553                 rcu_read_unlock();
1554                 /* Updates scanning parameter */
1555                 if (!css) {
1556                         /* this means start scan from ID:1 */
1557                         root_memcg->last_scanned_child = 0;
1558                 } else
1559                         root_memcg->last_scanned_child = found;
1560         }
1561
1562         return ret;
1563 }
1564
1565 /**
1566  * test_mem_cgroup_node_reclaimable
1567  * @mem: the target memcg
1568  * @nid: the node ID to be checked.
1569  * @noswap : specify true here if the user wants flle only information.
1570  *
1571  * This function returns whether the specified memcg contains any
1572  * reclaimable pages on a node. Returns true if there are any reclaimable
1573  * pages in the node.
1574  */
1575 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1576                 int nid, bool noswap)
1577 {
1578         if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1579                 return true;
1580         if (noswap || !total_swap_pages)
1581                 return false;
1582         if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1583                 return true;
1584         return false;
1585
1586 }
1587 #if MAX_NUMNODES > 1
1588
1589 /*
1590  * Always updating the nodemask is not very good - even if we have an empty
1591  * list or the wrong list here, we can start from some node and traverse all
1592  * nodes based on the zonelist. So update the list loosely once per 10 secs.
1593  *
1594  */
1595 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1596 {
1597         int nid;
1598         /*
1599          * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1600          * pagein/pageout changes since the last update.
1601          */
1602         if (!atomic_read(&memcg->numainfo_events))
1603                 return;
1604         if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1605                 return;
1606
1607         /* make a nodemask where this memcg uses memory from */
1608         memcg->scan_nodes = node_states[N_HIGH_MEMORY];
1609
1610         for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1611
1612                 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1613                         node_clear(nid, memcg->scan_nodes);
1614         }
1615
1616         atomic_set(&memcg->numainfo_events, 0);
1617         atomic_set(&memcg->numainfo_updating, 0);
1618 }
1619
1620 /*
1621  * Selecting a node where we start reclaim from. Because what we need is just
1622  * reducing usage counter, start from anywhere is O,K. Considering
1623  * memory reclaim from current node, there are pros. and cons.
1624  *
1625  * Freeing memory from current node means freeing memory from a node which
1626  * we'll use or we've used. So, it may make LRU bad. And if several threads
1627  * hit limits, it will see a contention on a node. But freeing from remote
1628  * node means more costs for memory reclaim because of memory latency.
1629  *
1630  * Now, we use round-robin. Better algorithm is welcomed.
1631  */
1632 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1633 {
1634         int node;
1635
1636         mem_cgroup_may_update_nodemask(memcg);
1637         node = memcg->last_scanned_node;
1638
1639         node = next_node(node, memcg->scan_nodes);
1640         if (node == MAX_NUMNODES)
1641                 node = first_node(memcg->scan_nodes);
1642         /*
1643          * We call this when we hit limit, not when pages are added to LRU.
1644          * No LRU may hold pages because all pages are UNEVICTABLE or
1645          * memcg is too small and all pages are not on LRU. In that case,
1646          * we use curret node.
1647          */
1648         if (unlikely(node == MAX_NUMNODES))
1649                 node = numa_node_id();
1650
1651         memcg->last_scanned_node = node;
1652         return node;
1653 }
1654
1655 /*
1656  * Check all nodes whether it contains reclaimable pages or not.
1657  * For quick scan, we make use of scan_nodes. This will allow us to skip
1658  * unused nodes. But scan_nodes is lazily updated and may not cotain
1659  * enough new information. We need to do double check.
1660  */
1661 bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1662 {
1663         int nid;
1664
1665         /*
1666          * quick check...making use of scan_node.
1667          * We can skip unused nodes.
1668          */
1669         if (!nodes_empty(memcg->scan_nodes)) {
1670                 for (nid = first_node(memcg->scan_nodes);
1671                      nid < MAX_NUMNODES;
1672                      nid = next_node(nid, memcg->scan_nodes)) {
1673
1674                         if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1675                                 return true;
1676                 }
1677         }
1678         /*
1679          * Check rest of nodes.
1680          */
1681         for_each_node_state(nid, N_HIGH_MEMORY) {
1682                 if (node_isset(nid, memcg->scan_nodes))
1683                         continue;
1684                 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1685                         return true;
1686         }
1687         return false;
1688 }
1689
1690 #else
1691 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1692 {
1693         return 0;
1694 }
1695
1696 bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1697 {
1698         return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1699 }
1700 #endif
1701
1702 /*
1703  * Scan the hierarchy if needed to reclaim memory. We remember the last child
1704  * we reclaimed from, so that we don't end up penalizing one child extensively
1705  * based on its position in the children list.
1706  *
1707  * root_memcg is the original ancestor that we've been reclaim from.
1708  *
1709  * We give up and return to the caller when we visit root_memcg twice.
1710  * (other groups can be removed while we're walking....)
1711  *
1712  * If shrink==true, for avoiding to free too much, this returns immedieately.
1713  */
1714 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_memcg,
1715                                                 struct zone *zone,
1716                                                 gfp_t gfp_mask,
1717                                                 unsigned long reclaim_options,
1718                                                 unsigned long *total_scanned)
1719 {
1720         struct mem_cgroup *victim;
1721         int ret, total = 0;
1722         int loop = 0;
1723         bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1724         bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1725         bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1726         unsigned long excess;
1727         unsigned long nr_scanned;
1728
1729         excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
1730
1731         /* If memsw_is_minimum==1, swap-out is of-no-use. */
1732         if (!check_soft && !shrink && root_memcg->memsw_is_minimum)
1733                 noswap = true;
1734
1735         while (1) {
1736                 victim = mem_cgroup_select_victim(root_memcg);
1737                 if (victim == root_memcg) {
1738                         loop++;
1739                         /*
1740                          * We are not draining per cpu cached charges during
1741                          * soft limit reclaim  because global reclaim doesn't
1742                          * care about charges. It tries to free some memory and
1743                          * charges will not give any.
1744                          */
1745                         if (!check_soft && loop >= 1)
1746                                 drain_all_stock_async(root_memcg);
1747                         if (loop >= 2) {
1748                                 /*
1749                                  * If we have not been able to reclaim
1750                                  * anything, it might because there are
1751                                  * no reclaimable pages under this hierarchy
1752                                  */
1753                                 if (!check_soft || !total) {
1754                                         css_put(&victim->css);
1755                                         break;
1756                                 }
1757                                 /*
1758                                  * We want to do more targeted reclaim.
1759                                  * excess >> 2 is not to excessive so as to
1760                                  * reclaim too much, nor too less that we keep
1761                                  * coming back to reclaim from this cgroup
1762                                  */
1763                                 if (total >= (excess >> 2) ||
1764                                         (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1765                                         css_put(&victim->css);
1766                                         break;
1767                                 }
1768                         }
1769                 }
1770                 if (!mem_cgroup_reclaimable(victim, noswap)) {
1771                         /* this cgroup's local usage == 0 */
1772                         css_put(&victim->css);
1773                         continue;
1774                 }
1775                 /* we use swappiness of local cgroup */
1776                 if (check_soft) {
1777                         ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1778                                 noswap, zone, &nr_scanned);
1779                         *total_scanned += nr_scanned;
1780                 } else
1781                         ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1782                                                 noswap);
1783                 css_put(&victim->css);
1784                 /*
1785                  * At shrinking usage, we can't check we should stop here or
1786                  * reclaim more. It's depends on callers. last_scanned_child
1787                  * will work enough for keeping fairness under tree.
1788                  */
1789                 if (shrink)
1790                         return ret;
1791                 total += ret;
1792                 if (check_soft) {
1793                         if (!res_counter_soft_limit_excess(&root_memcg->res))
1794                                 return total;
1795                 } else if (mem_cgroup_margin(root_memcg))
1796                         return total;
1797         }
1798         return total;
1799 }
1800
1801 /*
1802  * Check OOM-Killer is already running under our hierarchy.
1803  * If someone is running, return false.
1804  * Has to be called with memcg_oom_lock
1805  */
1806 static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
1807 {
1808         struct mem_cgroup *iter, *failed = NULL;
1809         bool cond = true;
1810
1811         for_each_mem_cgroup_tree_cond(iter, memcg, cond) {
1812                 if (iter->oom_lock) {
1813                         /*
1814                          * this subtree of our hierarchy is already locked
1815                          * so we cannot give a lock.
1816                          */
1817                         failed = iter;
1818                         cond = false;
1819                 } else
1820                         iter->oom_lock = true;
1821         }
1822
1823         if (!failed)
1824                 return true;
1825
1826         /*
1827          * OK, we failed to lock the whole subtree so we have to clean up
1828          * what we set up to the failing subtree
1829          */
1830         cond = true;
1831         for_each_mem_cgroup_tree_cond(iter, memcg, cond) {
1832                 if (iter == failed) {
1833                         cond = false;
1834                         continue;
1835                 }
1836                 iter->oom_lock = false;
1837         }
1838         return false;
1839 }
1840
1841 /*
1842  * Has to be called with memcg_oom_lock
1843  */
1844 static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1845 {
1846         struct mem_cgroup *iter;
1847
1848         for_each_mem_cgroup_tree(iter, memcg)
1849                 iter->oom_lock = false;
1850         return 0;
1851 }
1852
1853 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1854 {
1855         struct mem_cgroup *iter;
1856
1857         for_each_mem_cgroup_tree(iter, memcg)
1858                 atomic_inc(&iter->under_oom);
1859 }
1860
1861 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1862 {
1863         struct mem_cgroup *iter;
1864
1865         /*
1866          * When a new child is created while the hierarchy is under oom,
1867          * mem_cgroup_oom_lock() may not be called. We have to use
1868          * atomic_add_unless() here.
1869          */
1870         for_each_mem_cgroup_tree(iter, memcg)
1871                 atomic_add_unless(&iter->under_oom, -1, 0);
1872 }
1873
1874 static DEFINE_SPINLOCK(memcg_oom_lock);
1875 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1876
1877 struct oom_wait_info {
1878         struct mem_cgroup *mem;
1879         wait_queue_t    wait;
1880 };
1881
1882 static int memcg_oom_wake_function(wait_queue_t *wait,
1883         unsigned mode, int sync, void *arg)
1884 {
1885         struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg,
1886                           *oom_wait_memcg;
1887         struct oom_wait_info *oom_wait_info;
1888
1889         oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1890         oom_wait_memcg = oom_wait_info->mem;
1891
1892         /*
1893          * Both of oom_wait_info->mem and wake_mem are stable under us.
1894          * Then we can use css_is_ancestor without taking care of RCU.
1895          */
1896         if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1897                 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
1898                 return 0;
1899         return autoremove_wake_function(wait, mode, sync, arg);
1900 }
1901
1902 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
1903 {
1904         /* for filtering, pass "memcg" as argument. */
1905         __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1906 }
1907
1908 static void memcg_oom_recover(struct mem_cgroup *memcg)
1909 {
1910         if (memcg && atomic_read(&memcg->under_oom))
1911                 memcg_wakeup_oom(memcg);
1912 }
1913
1914 /*
1915  * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1916  */
1917 bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask)
1918 {
1919         struct oom_wait_info owait;
1920         bool locked, need_to_kill;
1921
1922         owait.mem = memcg;
1923         owait.wait.flags = 0;
1924         owait.wait.func = memcg_oom_wake_function;
1925         owait.wait.private = current;
1926         INIT_LIST_HEAD(&owait.wait.task_list);
1927         need_to_kill = true;
1928         mem_cgroup_mark_under_oom(memcg);
1929
1930         /* At first, try to OOM lock hierarchy under memcg.*/
1931         spin_lock(&memcg_oom_lock);
1932         locked = mem_cgroup_oom_lock(memcg);
1933         /*
1934          * Even if signal_pending(), we can't quit charge() loop without
1935          * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1936          * under OOM is always welcomed, use TASK_KILLABLE here.
1937          */
1938         prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1939         if (!locked || memcg->oom_kill_disable)
1940                 need_to_kill = false;
1941         if (locked)
1942                 mem_cgroup_oom_notify(memcg);
1943         spin_unlock(&memcg_oom_lock);
1944
1945         if (need_to_kill) {
1946                 finish_wait(&memcg_oom_waitq, &owait.wait);
1947                 mem_cgroup_out_of_memory(memcg, mask);
1948         } else {
1949                 schedule();
1950                 finish_wait(&memcg_oom_waitq, &owait.wait);
1951         }
1952         spin_lock(&memcg_oom_lock);
1953         if (locked)
1954                 mem_cgroup_oom_unlock(memcg);
1955         memcg_wakeup_oom(memcg);
1956         spin_unlock(&memcg_oom_lock);
1957
1958         mem_cgroup_unmark_under_oom(memcg);
1959
1960         if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1961                 return false;
1962         /* Give chance to dying process */
1963         schedule_timeout_uninterruptible(1);
1964         return true;
1965 }
1966
1967 /*
1968  * Currently used to update mapped file statistics, but the routine can be
1969  * generalized to update other statistics as well.
1970  *
1971  * Notes: Race condition
1972  *
1973  * We usually use page_cgroup_lock() for accessing page_cgroup member but
1974  * it tends to be costly. But considering some conditions, we doesn't need
1975  * to do so _always_.
1976  *
1977  * Considering "charge", lock_page_cgroup() is not required because all
1978  * file-stat operations happen after a page is attached to radix-tree. There
1979  * are no race with "charge".
1980  *
1981  * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1982  * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1983  * if there are race with "uncharge". Statistics itself is properly handled
1984  * by flags.
1985  *
1986  * Considering "move", this is an only case we see a race. To make the race
1987  * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1988  * possibility of race condition. If there is, we take a lock.
1989  */
1990
1991 void mem_cgroup_update_page_stat(struct page *page,
1992                                  enum mem_cgroup_page_stat_item idx, int val)
1993 {
1994         struct mem_cgroup *memcg;
1995         struct page_cgroup *pc = lookup_page_cgroup(page);
1996         bool need_unlock = false;
1997         unsigned long uninitialized_var(flags);
1998
1999         if (unlikely(!pc))
2000                 return;
2001
2002         rcu_read_lock();
2003         memcg = pc->mem_cgroup;
2004         if (unlikely(!memcg || !PageCgroupUsed(pc)))
2005                 goto out;
2006         /* pc->mem_cgroup is unstable ? */
2007         if (unlikely(mem_cgroup_stealed(memcg)) || PageTransHuge(page)) {
2008                 /* take a lock against to access pc->mem_cgroup */
2009                 move_lock_page_cgroup(pc, &flags);
2010                 need_unlock = true;
2011                 memcg = pc->mem_cgroup;
2012                 if (!memcg || !PageCgroupUsed(pc))
2013                         goto out;
2014         }
2015
2016         switch (idx) {
2017         case MEMCG_NR_FILE_MAPPED:
2018                 if (val > 0)
2019                         SetPageCgroupFileMapped(pc);
2020                 else if (!page_mapped(page))
2021                         ClearPageCgroupFileMapped(pc);
2022                 idx = MEM_CGROUP_STAT_FILE_MAPPED;
2023                 break;
2024         default:
2025                 BUG();
2026         }
2027
2028         this_cpu_add(memcg->stat->count[idx], val);
2029
2030 out:
2031         if (unlikely(need_unlock))
2032                 move_unlock_page_cgroup(pc, &flags);
2033         rcu_read_unlock();
2034         return;
2035 }
2036 EXPORT_SYMBOL(mem_cgroup_update_page_stat);
2037
2038 /*
2039  * size of first charge trial. "32" comes from vmscan.c's magic value.
2040  * TODO: maybe necessary to use big numbers in big irons.
2041  */
2042 #define CHARGE_BATCH    32U
2043 struct memcg_stock_pcp {
2044         struct mem_cgroup *cached; /* this never be root cgroup */
2045         unsigned int nr_pages;
2046         struct work_struct work;
2047         unsigned long flags;
2048 #define FLUSHING_CACHED_CHARGE  (0)
2049 };
2050 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2051 static DEFINE_MUTEX(percpu_charge_mutex);
2052
2053 /*
2054  * Try to consume stocked charge on this cpu. If success, one page is consumed
2055  * from local stock and true is returned. If the stock is 0 or charges from a
2056  * cgroup which is not current target, returns false. This stock will be
2057  * refilled.
2058  */
2059 static bool consume_stock(struct mem_cgroup *memcg)
2060 {
2061         struct memcg_stock_pcp *stock;
2062         bool ret = true;
2063
2064         stock = &get_cpu_var(memcg_stock);
2065         if (memcg == stock->cached && stock->nr_pages)
2066                 stock->nr_pages--;
2067         else /* need to call res_counter_charge */
2068                 ret = false;
2069         put_cpu_var(memcg_stock);
2070         return ret;
2071 }
2072
2073 /*
2074  * Returns stocks cached in percpu to res_counter and reset cached information.
2075  */
2076 static void drain_stock(struct memcg_stock_pcp *stock)
2077 {
2078         struct mem_cgroup *old = stock->cached;
2079
2080         if (stock->nr_pages) {
2081                 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2082
2083                 res_counter_uncharge(&old->res, bytes);
2084                 if (do_swap_account)
2085                         res_counter_uncharge(&old->memsw, bytes);
2086                 stock->nr_pages = 0;
2087         }
2088         stock->cached = NULL;
2089 }
2090
2091 /*
2092  * This must be called under preempt disabled or must be called by
2093  * a thread which is pinned to local cpu.
2094  */
2095 static void drain_local_stock(struct work_struct *dummy)
2096 {
2097         struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2098         drain_stock(stock);
2099         clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2100 }
2101
2102 /*
2103  * Cache charges(val) which is from res_counter, to local per_cpu area.
2104  * This will be consumed by consume_stock() function, later.
2105  */
2106 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2107 {
2108         struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2109
2110         if (stock->cached != memcg) { /* reset if necessary */
2111                 drain_stock(stock);
2112                 stock->cached = memcg;
2113         }
2114         stock->nr_pages += nr_pages;
2115         put_cpu_var(memcg_stock);
2116 }
2117
2118 /*
2119  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2120  * of the hierarchy under it. sync flag says whether we should block
2121  * until the work is done.
2122  */
2123 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2124 {
2125         int cpu, curcpu;
2126
2127         /* Notify other cpus that system-wide "drain" is running */
2128         get_online_cpus();
2129         curcpu = get_cpu();
2130         for_each_online_cpu(cpu) {
2131                 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2132                 struct mem_cgroup *memcg;
2133
2134                 memcg = stock->cached;
2135                 if (!memcg || !stock->nr_pages)
2136                         continue;
2137                 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2138                         continue;
2139                 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2140                         if (cpu == curcpu)
2141                                 drain_local_stock(&stock->work);
2142                         else
2143                                 schedule_work_on(cpu, &stock->work);
2144                 }
2145         }
2146         put_cpu();
2147
2148         if (!sync)
2149                 goto out;
2150
2151         for_each_online_cpu(cpu) {
2152                 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2153                 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2154                         flush_work(&stock->work);
2155         }
2156 out:
2157         put_online_cpus();
2158 }
2159
2160 /*
2161  * Tries to drain stocked charges in other cpus. This function is asynchronous
2162  * and just put a work per cpu for draining localy on each cpu. Caller can
2163  * expects some charges will be back to res_counter later but cannot wait for
2164  * it.
2165  */
2166 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2167 {
2168         /*
2169          * If someone calls draining, avoid adding more kworker runs.
2170          */
2171         if (!mutex_trylock(&percpu_charge_mutex))
2172                 return;
2173         drain_all_stock(root_memcg, false);
2174         mutex_unlock(&percpu_charge_mutex);
2175 }
2176
2177 /* This is a synchronous drain interface. */
2178 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2179 {
2180         /* called when force_empty is called */
2181         mutex_lock(&percpu_charge_mutex);
2182         drain_all_stock(root_memcg, true);
2183         mutex_unlock(&percpu_charge_mutex);
2184 }
2185
2186 /*
2187  * This function drains percpu counter value from DEAD cpu and
2188  * move it to local cpu. Note that this function can be preempted.
2189  */
2190 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2191 {
2192         int i;
2193
2194         spin_lock(&memcg->pcp_counter_lock);
2195         for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
2196                 long x = per_cpu(memcg->stat->count[i], cpu);
2197
2198                 per_cpu(memcg->stat->count[i], cpu) = 0;
2199                 memcg->nocpu_base.count[i] += x;
2200         }
2201         for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2202                 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2203
2204                 per_cpu(memcg->stat->events[i], cpu) = 0;
2205                 memcg->nocpu_base.events[i] += x;
2206         }
2207         /* need to clear ON_MOVE value, works as a kind of lock. */
2208         per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
2209         spin_unlock(&memcg->pcp_counter_lock);
2210 }
2211
2212 static void synchronize_mem_cgroup_on_move(struct mem_cgroup *memcg, int cpu)
2213 {
2214         int idx = MEM_CGROUP_ON_MOVE;
2215
2216         spin_lock(&memcg->pcp_counter_lock);
2217         per_cpu(memcg->stat->count[idx], cpu) = memcg->nocpu_base.count[idx];
2218         spin_unlock(&memcg->pcp_counter_lock);
2219 }
2220
2221 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2222                                         unsigned long action,
2223                                         void *hcpu)
2224 {
2225         int cpu = (unsigned long)hcpu;
2226         struct memcg_stock_pcp *stock;
2227         struct mem_cgroup *iter;
2228
2229         if ((action == CPU_ONLINE)) {
2230                 for_each_mem_cgroup_all(iter)
2231                         synchronize_mem_cgroup_on_move(iter, cpu);
2232                 return NOTIFY_OK;
2233         }
2234
2235         if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
2236                 return NOTIFY_OK;
2237
2238         for_each_mem_cgroup_all(iter)
2239                 mem_cgroup_drain_pcp_counter(iter, cpu);
2240
2241         stock = &per_cpu(memcg_stock, cpu);
2242         drain_stock(stock);
2243         return NOTIFY_OK;
2244 }
2245
2246
2247 /* See __mem_cgroup_try_charge() for details */
2248 enum {
2249         CHARGE_OK,              /* success */
2250         CHARGE_RETRY,           /* need to retry but retry is not bad */
2251         CHARGE_NOMEM,           /* we can't do more. return -ENOMEM */
2252         CHARGE_WOULDBLOCK,      /* GFP_WAIT wasn't set and no enough res. */
2253         CHARGE_OOM_DIE,         /* the current is killed because of OOM */
2254 };
2255
2256 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2257                                 unsigned int nr_pages, bool oom_check)
2258 {
2259         unsigned long csize = nr_pages * PAGE_SIZE;
2260         struct mem_cgroup *mem_over_limit;
2261         struct res_counter *fail_res;
2262         unsigned long flags = 0;
2263         int ret;
2264
2265         ret = res_counter_charge(&memcg->res, csize, &fail_res);
2266
2267         if (likely(!ret)) {
2268                 if (!do_swap_account)
2269                         return CHARGE_OK;
2270                 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2271                 if (likely(!ret))
2272                         return CHARGE_OK;
2273
2274                 res_counter_uncharge(&memcg->res, csize);
2275                 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2276                 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2277         } else
2278                 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2279         /*
2280          * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2281          * of regular pages (CHARGE_BATCH), or a single regular page (1).
2282          *
2283          * Never reclaim on behalf of optional batching, retry with a
2284          * single page instead.
2285          */
2286         if (nr_pages == CHARGE_BATCH)
2287                 return CHARGE_RETRY;
2288
2289         if (!(gfp_mask & __GFP_WAIT))
2290                 return CHARGE_WOULDBLOCK;
2291
2292         ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
2293                                               gfp_mask, flags, NULL);
2294         if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2295                 return CHARGE_RETRY;
2296         /*
2297          * Even though the limit is exceeded at this point, reclaim
2298          * may have been able to free some pages.  Retry the charge
2299          * before killing the task.
2300          *
2301          * Only for regular pages, though: huge pages are rather
2302          * unlikely to succeed so close to the limit, and we fall back
2303          * to regular pages anyway in case of failure.
2304          */
2305         if (nr_pages == 1 && ret)
2306                 return CHARGE_RETRY;
2307
2308         /*
2309          * At task move, charge accounts can be doubly counted. So, it's
2310          * better to wait until the end of task_move if something is going on.
2311          */
2312         if (mem_cgroup_wait_acct_move(mem_over_limit))
2313                 return CHARGE_RETRY;
2314
2315         /* If we don't need to call oom-killer at el, return immediately */
2316         if (!oom_check)
2317                 return CHARGE_NOMEM;
2318         /* check OOM */
2319         if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
2320                 return CHARGE_OOM_DIE;
2321
2322         return CHARGE_RETRY;
2323 }
2324
2325 /*
2326  * Unlike exported interface, "oom" parameter is added. if oom==true,
2327  * oom-killer can be invoked.
2328  */
2329 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2330                                    gfp_t gfp_mask,
2331                                    unsigned int nr_pages,
2332                                    struct mem_cgroup **ptr,
2333                                    bool oom)
2334 {
2335         unsigned int batch = max(CHARGE_BATCH, nr_pages);
2336         int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2337         struct mem_cgroup *memcg = NULL;
2338         int ret;
2339
2340         /*
2341          * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2342          * in system level. So, allow to go ahead dying process in addition to
2343          * MEMDIE process.
2344          */
2345         if (unlikely(test_thread_flag(TIF_MEMDIE)
2346                      || fatal_signal_pending(current)))
2347                 goto bypass;
2348
2349         /*
2350          * We always charge the cgroup the mm_struct belongs to.
2351          * The mm_struct's mem_cgroup changes on task migration if the
2352          * thread group leader migrates. It's possible that mm is not
2353          * set, if so charge the init_mm (happens for pagecache usage).
2354          */
2355         if (!*ptr && !mm)
2356                 goto bypass;
2357 again:
2358         if (*ptr) { /* css should be a valid one */
2359                 memcg = *ptr;
2360                 VM_BUG_ON(css_is_removed(&memcg->css));
2361                 if (mem_cgroup_is_root(memcg))
2362                         goto done;
2363                 if (nr_pages == 1 && consume_stock(memcg))
2364                         goto done;
2365                 css_get(&memcg->css);
2366         } else {
2367                 struct task_struct *p;
2368
2369                 rcu_read_lock();
2370                 p = rcu_dereference(mm->owner);
2371                 /*
2372                  * Because we don't have task_lock(), "p" can exit.
2373                  * In that case, "memcg" can point to root or p can be NULL with
2374                  * race with swapoff. Then, we have small risk of mis-accouning.
2375                  * But such kind of mis-account by race always happens because
2376                  * we don't have cgroup_mutex(). It's overkill and we allo that
2377                  * small race, here.
2378                  * (*) swapoff at el will charge against mm-struct not against
2379                  * task-struct. So, mm->owner can be NULL.
2380                  */
2381                 memcg = mem_cgroup_from_task(p);
2382                 if (!memcg || mem_cgroup_is_root(memcg)) {
2383                         rcu_read_unlock();
2384                         goto done;
2385                 }
2386                 if (nr_pages == 1 && consume_stock(memcg)) {
2387                         /*
2388                          * It seems dagerous to access memcg without css_get().
2389                          * But considering how consume_stok works, it's not
2390                          * necessary. If consume_stock success, some charges
2391                          * from this memcg are cached on this cpu. So, we
2392                          * don't need to call css_get()/css_tryget() before
2393                          * calling consume_stock().
2394                          */
2395                         rcu_read_unlock();
2396                         goto done;
2397                 }
2398                 /* after here, we may be blocked. we need to get refcnt */
2399                 if (!css_tryget(&memcg->css)) {
2400                         rcu_read_unlock();
2401                         goto again;
2402                 }
2403                 rcu_read_unlock();
2404         }
2405
2406         do {
2407                 bool oom_check;
2408
2409                 /* If killed, bypass charge */
2410                 if (fatal_signal_pending(current)) {
2411                         css_put(&memcg->css);
2412                         goto bypass;
2413                 }
2414
2415                 oom_check = false;
2416                 if (oom && !nr_oom_retries) {
2417                         oom_check = true;
2418                         nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2419                 }
2420
2421                 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
2422                 switch (ret) {
2423                 case CHARGE_OK:
2424                         break;
2425                 case CHARGE_RETRY: /* not in OOM situation but retry */
2426                         batch = nr_pages;
2427                         css_put(&memcg->css);
2428                         memcg = NULL;
2429                         goto again;
2430                 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2431                         css_put(&memcg->css);
2432                         goto nomem;
2433                 case CHARGE_NOMEM: /* OOM routine works */
2434                         if (!oom) {
2435                                 css_put(&memcg->css);
2436                                 goto nomem;
2437                         }
2438                         /* If oom, we never return -ENOMEM */
2439                         nr_oom_retries--;
2440                         break;
2441                 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2442                         css_put(&memcg->css);
2443                         goto bypass;
2444                 }
2445         } while (ret != CHARGE_OK);
2446
2447         if (batch > nr_pages)
2448                 refill_stock(memcg, batch - nr_pages);
2449         css_put(&memcg->css);
2450 done:
2451         *ptr = memcg;
2452         return 0;
2453 nomem:
2454         *ptr = NULL;
2455         return -ENOMEM;
2456 bypass:
2457         *ptr = NULL;
2458         return 0;
2459 }
2460
2461 /*
2462  * Somemtimes we have to undo a charge we got by try_charge().
2463  * This function is for that and do uncharge, put css's refcnt.
2464  * gotten by try_charge().
2465  */
2466 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2467                                        unsigned int nr_pages)
2468 {
2469         if (!mem_cgroup_is_root(memcg)) {
2470                 unsigned long bytes = nr_pages * PAGE_SIZE;
2471
2472                 res_counter_uncharge(&memcg->res, bytes);
2473                 if (do_swap_account)
2474                         res_counter_uncharge(&memcg->memsw, bytes);
2475         }
2476 }
2477
2478 /*
2479  * A helper function to get mem_cgroup from ID. must be called under
2480  * rcu_read_lock(). The caller must check css_is_removed() or some if
2481  * it's concern. (dropping refcnt from swap can be called against removed
2482  * memcg.)
2483  */
2484 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2485 {
2486         struct cgroup_subsys_state *css;
2487
2488         /* ID 0 is unused ID */
2489         if (!id)
2490                 return NULL;
2491         css = css_lookup(&mem_cgroup_subsys, id);
2492         if (!css)
2493                 return NULL;
2494         return container_of(css, struct mem_cgroup, css);
2495 }
2496
2497 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2498 {
2499         struct mem_cgroup *memcg = NULL;
2500         struct page_cgroup *pc;
2501         unsigned short id;
2502         swp_entry_t ent;
2503
2504         VM_BUG_ON(!PageLocked(page));
2505
2506         pc = lookup_page_cgroup(page);
2507         lock_page_cgroup(pc);
2508         if (PageCgroupUsed(pc)) {
2509                 memcg = pc->mem_cgroup;
2510                 if (memcg && !css_tryget(&memcg->css))
2511                         memcg = NULL;
2512         } else if (PageSwapCache(page)) {
2513                 ent.val = page_private(page);
2514                 id = lookup_swap_cgroup(ent);
2515                 rcu_read_lock();
2516                 memcg = mem_cgroup_lookup(id);
2517                 if (memcg && !css_tryget(&memcg->css))
2518                         memcg = NULL;
2519                 rcu_read_unlock();
2520         }
2521         unlock_page_cgroup(pc);
2522         return memcg;
2523 }
2524
2525 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2526                                        struct page *page,
2527                                        unsigned int nr_pages,
2528                                        struct page_cgroup *pc,
2529                                        enum charge_type ctype)
2530 {
2531         lock_page_cgroup(pc);
2532         if (unlikely(PageCgroupUsed(pc))) {
2533                 unlock_page_cgroup(pc);
2534                 __mem_cgroup_cancel_charge(memcg, nr_pages);
2535                 return;
2536         }
2537         /*
2538          * we don't need page_cgroup_lock about tail pages, becase they are not
2539          * accessed by any other context at this point.
2540          */
2541         pc->mem_cgroup = memcg;
2542         /*
2543          * We access a page_cgroup asynchronously without lock_page_cgroup().
2544          * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2545          * is accessed after testing USED bit. To make pc->mem_cgroup visible
2546          * before USED bit, we need memory barrier here.
2547          * See mem_cgroup_add_lru_list(), etc.
2548          */
2549         smp_wmb();
2550         switch (ctype) {
2551         case MEM_CGROUP_CHARGE_TYPE_CACHE:
2552         case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2553                 SetPageCgroupCache(pc);
2554                 SetPageCgroupUsed(pc);
2555                 break;
2556         case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2557                 ClearPageCgroupCache(pc);
2558                 SetPageCgroupUsed(pc);
2559                 break;
2560         default:
2561                 break;
2562         }
2563
2564         mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), nr_pages);
2565         unlock_page_cgroup(pc);
2566         /*
2567          * "charge_statistics" updated event counter. Then, check it.
2568          * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2569          * if they exceeds softlimit.
2570          */
2571         memcg_check_events(memcg, page);
2572 }
2573
2574 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2575
2576 #define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2577                         (1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
2578 /*
2579  * Because tail pages are not marked as "used", set it. We're under
2580  * zone->lru_lock, 'splitting on pmd' and compund_lock.
2581  */
2582 void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
2583 {
2584         struct page_cgroup *head_pc = lookup_page_cgroup(head);
2585         struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
2586         unsigned long flags;
2587
2588         if (mem_cgroup_disabled())
2589                 return;
2590         /*
2591          * We have no races with charge/uncharge but will have races with
2592          * page state accounting.
2593          */
2594         move_lock_page_cgroup(head_pc, &flags);
2595
2596         tail_pc->mem_cgroup = head_pc->mem_cgroup;
2597         smp_wmb(); /* see __commit_charge() */
2598         if (PageCgroupAcctLRU(head_pc)) {
2599                 enum lru_list lru;
2600                 struct mem_cgroup_per_zone *mz;
2601
2602                 /*
2603                  * LRU flags cannot be copied because we need to add tail
2604                  *.page to LRU by generic call and our hook will be called.
2605                  * We hold lru_lock, then, reduce counter directly.
2606                  */
2607                 lru = page_lru(head);
2608                 mz = page_cgroup_zoneinfo(head_pc->mem_cgroup, head);
2609                 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
2610         }
2611         tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2612         move_unlock_page_cgroup(head_pc, &flags);
2613 }
2614 #endif
2615
2616 /**
2617  * mem_cgroup_move_account - move account of the page
2618  * @page: the page
2619  * @nr_pages: number of regular pages (>1 for huge pages)
2620  * @pc: page_cgroup of the page.
2621  * @from: mem_cgroup which the page is moved from.
2622  * @to: mem_cgroup which the page is moved to. @from != @to.
2623  * @uncharge: whether we should call uncharge and css_put against @from.
2624  *
2625  * The caller must confirm following.
2626  * - page is not on LRU (isolate_page() is useful.)
2627  * - compound_lock is held when nr_pages > 1
2628  *
2629  * This function doesn't do "charge" nor css_get to new cgroup. It should be
2630  * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2631  * true, this function does "uncharge" from old cgroup, but it doesn't if
2632  * @uncharge is false, so a caller should do "uncharge".
2633  */
2634 static int mem_cgroup_move_account(struct page *page,
2635                                    unsigned int nr_pages,
2636                                    struct page_cgroup *pc,
2637                                    struct mem_cgroup *from,
2638                                    struct mem_cgroup *to,
2639                                    bool uncharge)
2640 {
2641         unsigned long flags;
2642         int ret;
2643
2644         VM_BUG_ON(from == to);
2645         VM_BUG_ON(PageLRU(page));
2646         /*
2647          * The page is isolated from LRU. So, collapse function
2648          * will not handle this page. But page splitting can happen.
2649          * Do this check under compound_page_lock(). The caller should
2650          * hold it.
2651          */
2652         ret = -EBUSY;
2653         if (nr_pages > 1 && !PageTransHuge(page))
2654                 goto out;
2655
2656         lock_page_cgroup(pc);
2657
2658         ret = -EINVAL;
2659         if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2660                 goto unlock;
2661
2662         move_lock_page_cgroup(pc, &flags);
2663
2664         if (PageCgroupFileMapped(pc)) {
2665                 /* Update mapped_file data for mem_cgroup */
2666                 preempt_disable();
2667                 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2668                 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2669                 preempt_enable();
2670         }
2671         mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2672         if (uncharge)
2673                 /* This is not "cancel", but cancel_charge does all we need. */
2674                 __mem_cgroup_cancel_charge(from, nr_pages);
2675
2676         /* caller should have done css_get */
2677         pc->mem_cgroup = to;
2678         mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2679         /*
2680          * We charges against "to" which may not have any tasks. Then, "to"
2681          * can be under rmdir(). But in current implementation, caller of
2682          * this function is just force_empty() and move charge, so it's
2683          * guaranteed that "to" is never removed. So, we don't check rmdir
2684          * status here.
2685          */
2686         move_unlock_page_cgroup(pc, &flags);
2687         ret = 0;
2688 unlock:
2689         unlock_page_cgroup(pc);
2690         /*
2691          * check events
2692          */
2693         memcg_check_events(to, page);
2694         memcg_check_events(from, page);
2695 out:
2696         return ret;
2697 }
2698
2699 /*
2700  * move charges to its parent.
2701  */
2702
2703 static int mem_cgroup_move_parent(struct page *page,
2704                                   struct page_cgroup *pc,
2705                                   struct mem_cgroup *child,
2706                                   gfp_t gfp_mask)
2707 {
2708         struct cgroup *cg = child->css.cgroup;
2709         struct cgroup *pcg = cg->parent;
2710         struct mem_cgroup *parent;
2711         unsigned int nr_pages;
2712         unsigned long uninitialized_var(flags);
2713         int ret;
2714
2715         /* Is ROOT ? */
2716         if (!pcg)
2717                 return -EINVAL;
2718
2719         ret = -EBUSY;
2720         if (!get_page_unless_zero(page))
2721                 goto out;
2722         if (isolate_lru_page(page))
2723                 goto put;
2724
2725         nr_pages = hpage_nr_pages(page);
2726
2727         parent = mem_cgroup_from_cont(pcg);
2728         ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
2729         if (ret || !parent)
2730                 goto put_back;
2731
2732         if (nr_pages > 1)
2733                 flags = compound_lock_irqsave(page);
2734
2735         ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
2736         if (ret)
2737                 __mem_cgroup_cancel_charge(parent, nr_pages);
2738
2739         if (nr_pages > 1)
2740                 compound_unlock_irqrestore(page, flags);
2741 put_back:
2742         putback_lru_page(page);
2743 put:
2744         put_page(page);
2745 out:
2746         return ret;
2747 }
2748
2749 /*
2750  * Charge the memory controller for page usage.
2751  * Return
2752  * 0 if the charge was successful
2753  * < 0 if the cgroup is over its limit
2754  */
2755 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2756                                 gfp_t gfp_mask, enum charge_type ctype)
2757 {
2758         struct mem_cgroup *memcg = NULL;
2759         unsigned int nr_pages = 1;
2760         struct page_cgroup *pc;
2761         bool oom = true;
2762         int ret;
2763
2764         if (PageTransHuge(page)) {
2765                 nr_pages <<= compound_order(page);
2766                 VM_BUG_ON(!PageTransHuge(page));
2767                 /*
2768                  * Never OOM-kill a process for a huge page.  The
2769                  * fault handler will fall back to regular pages.
2770                  */
2771                 oom = false;
2772         }
2773
2774         pc = lookup_page_cgroup(page);
2775         BUG_ON(!pc); /* XXX: remove this and move pc lookup into commit */
2776
2777         ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
2778         if (ret || !memcg)
2779                 return ret;
2780
2781         __mem_cgroup_commit_charge(memcg, page, nr_pages, pc, ctype);
2782         return 0;
2783 }
2784
2785 int mem_cgroup_newpage_charge(struct page *page,
2786                               struct mm_struct *mm, gfp_t gfp_mask)
2787 {
2788         if (mem_cgroup_disabled())
2789                 return 0;
2790         /*
2791          * If already mapped, we don't have to account.
2792          * If page cache, page->mapping has address_space.
2793          * But page->mapping may have out-of-use anon_vma pointer,
2794          * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2795          * is NULL.
2796          */
2797         if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2798                 return 0;
2799         if (unlikely(!mm))
2800                 mm = &init_mm;
2801         return mem_cgroup_charge_common(page, mm, gfp_mask,
2802                                 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2803 }
2804
2805 static void
2806 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2807                                         enum charge_type ctype);
2808
2809 static void
2810 __mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *memcg,
2811                                         enum charge_type ctype)
2812 {
2813         struct page_cgroup *pc = lookup_page_cgroup(page);
2814         /*
2815          * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
2816          * is already on LRU. It means the page may on some other page_cgroup's
2817          * LRU. Take care of it.
2818          */
2819         mem_cgroup_lru_del_before_commit(page);
2820         __mem_cgroup_commit_charge(memcg, page, 1, pc, ctype);
2821         mem_cgroup_lru_add_after_commit(page);
2822         return;
2823 }
2824
2825 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2826                                 gfp_t gfp_mask)
2827 {
2828         struct mem_cgroup *memcg = NULL;
2829         int ret;
2830
2831         if (mem_cgroup_disabled())
2832                 return 0;
2833         if (PageCompound(page))
2834                 return 0;
2835
2836         if (unlikely(!mm))
2837                 mm = &init_mm;
2838
2839         if (page_is_file_cache(page)) {
2840                 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, &memcg, true);
2841                 if (ret || !memcg)
2842                         return ret;
2843
2844                 /*
2845                  * FUSE reuses pages without going through the final
2846                  * put that would remove them from the LRU list, make
2847                  * sure that they get relinked properly.
2848                  */
2849                 __mem_cgroup_commit_charge_lrucare(page, memcg,
2850                                         MEM_CGROUP_CHARGE_TYPE_CACHE);
2851                 return ret;
2852         }
2853         /* shmem */
2854         if (PageSwapCache(page)) {
2855                 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
2856                 if (!ret)
2857                         __mem_cgroup_commit_charge_swapin(page, memcg,
2858                                         MEM_CGROUP_CHARGE_TYPE_SHMEM);
2859         } else
2860                 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2861                                         MEM_CGROUP_CHARGE_TYPE_SHMEM);
2862
2863         return ret;
2864 }
2865
2866 /*
2867  * While swap-in, try_charge -> commit or cancel, the page is locked.
2868  * And when try_charge() successfully returns, one refcnt to memcg without
2869  * struct page_cgroup is acquired. This refcnt will be consumed by
2870  * "commit()" or removed by "cancel()"
2871  */
2872 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2873                                  struct page *page,
2874                                  gfp_t mask, struct mem_cgroup **ptr)
2875 {
2876         struct mem_cgroup *memcg;
2877         int ret;
2878
2879         *ptr = NULL;
2880
2881         if (mem_cgroup_disabled())
2882                 return 0;
2883
2884         if (!do_swap_account)
2885                 goto charge_cur_mm;
2886         /*
2887          * A racing thread's fault, or swapoff, may have already updated
2888          * the pte, and even removed page from swap cache: in those cases
2889          * do_swap_page()'s pte_same() test will fail; but there's also a
2890          * KSM case which does need to charge the page.
2891          */
2892         if (!PageSwapCache(page))
2893                 goto charge_cur_mm;
2894         memcg = try_get_mem_cgroup_from_page(page);
2895         if (!memcg)
2896                 goto charge_cur_mm;
2897         *ptr = memcg;
2898         ret = __mem_cgroup_try_charge(NULL, mask, 1, ptr, true);
2899         css_put(&memcg->css);
2900         return ret;
2901 charge_cur_mm:
2902         if (unlikely(!mm))
2903                 mm = &init_mm;
2904         return __mem_cgroup_try_charge(mm, mask, 1, ptr, true);
2905 }
2906
2907 static void
2908 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2909                                         enum charge_type ctype)
2910 {
2911         if (mem_cgroup_disabled())
2912                 return;
2913         if (!ptr)
2914                 return;
2915         cgroup_exclude_rmdir(&ptr->css);
2916
2917         __mem_cgroup_commit_charge_lrucare(page, ptr, ctype);
2918         /*
2919          * Now swap is on-memory. This means this page may be
2920          * counted both as mem and swap....double count.
2921          * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2922          * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2923          * may call delete_from_swap_cache() before reach here.
2924          */
2925         if (do_swap_account && PageSwapCache(page)) {
2926                 swp_entry_t ent = {.val = page_private(page)};
2927                 unsigned short id;
2928                 struct mem_cgroup *memcg;
2929
2930                 id = swap_cgroup_record(ent, 0);
2931                 rcu_read_lock();
2932                 memcg = mem_cgroup_lookup(id);
2933                 if (memcg) {
2934                         /*
2935                          * This recorded memcg can be obsolete one. So, avoid
2936                          * calling css_tryget
2937                          */
2938                         if (!mem_cgroup_is_root(memcg))
2939                                 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2940                         mem_cgroup_swap_statistics(memcg, false);
2941                         mem_cgroup_put(memcg);
2942                 }
2943                 rcu_read_unlock();
2944         }
2945         /*
2946          * At swapin, we may charge account against cgroup which has no tasks.
2947          * So, rmdir()->pre_destroy() can be called while we do this charge.
2948          * In that case, we need to call pre_destroy() again. check it here.
2949          */
2950         cgroup_release_and_wakeup_rmdir(&ptr->css);
2951 }
2952
2953 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2954 {
2955         __mem_cgroup_commit_charge_swapin(page, ptr,
2956                                         MEM_CGROUP_CHARGE_TYPE_MAPPED);
2957 }
2958
2959 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2960 {
2961         if (mem_cgroup_disabled())
2962                 return;
2963         if (!memcg)
2964                 return;
2965         __mem_cgroup_cancel_charge(memcg, 1);
2966 }
2967
2968 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2969                                    unsigned int nr_pages,
2970                                    const enum charge_type ctype)
2971 {
2972         struct memcg_batch_info *batch = NULL;
2973         bool uncharge_memsw = true;
2974
2975         /* If swapout, usage of swap doesn't decrease */
2976         if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2977                 uncharge_memsw = false;
2978
2979         batch = &current->memcg_batch;
2980         /*
2981          * In usual, we do css_get() when we remember memcg pointer.
2982          * But in this case, we keep res->usage until end of a series of
2983          * uncharges. Then, it's ok to ignore memcg's refcnt.
2984          */
2985         if (!batch->memcg)
2986                 batch->memcg = memcg;
2987         /*
2988          * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2989          * In those cases, all pages freed continuously can be expected to be in
2990          * the same cgroup and we have chance to coalesce uncharges.
2991          * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2992          * because we want to do uncharge as soon as possible.
2993          */
2994
2995         if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2996                 goto direct_uncharge;
2997
2998         if (nr_pages > 1)
2999                 goto direct_uncharge;
3000
3001         /*
3002          * In typical case, batch->memcg == mem. This means we can
3003          * merge a series of uncharges to an uncharge of res_counter.
3004          * If not, we uncharge res_counter ony by one.
3005          */
3006         if (batch->memcg != memcg)
3007                 goto direct_uncharge;
3008         /* remember freed charge and uncharge it later */
3009         batch->nr_pages++;
3010         if (uncharge_memsw)
3011                 batch->memsw_nr_pages++;
3012         return;
3013 direct_uncharge:
3014         res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
3015         if (uncharge_memsw)
3016                 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
3017         if (unlikely(batch->memcg != memcg))
3018                 memcg_oom_recover(memcg);
3019         return;
3020 }
3021
3022 /*
3023  * uncharge if !page_mapped(page)
3024  */
3025 static struct mem_cgroup *
3026 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
3027 {
3028         struct mem_cgroup *memcg = NULL;
3029         unsigned int nr_pages = 1;
3030         struct page_cgroup *pc;
3031
3032         if (mem_cgroup_disabled())
3033                 return NULL;
3034
3035         if (PageSwapCache(page))
3036                 return NULL;
3037
3038         if (PageTransHuge(page)) {
3039                 nr_pages <<= compound_order(page);
3040                 VM_BUG_ON(!PageTransHuge(page));
3041         }
3042         /*
3043          * Check if our page_cgroup is valid
3044          */
3045         pc = lookup_page_cgroup(page);
3046         if (unlikely(!pc || !PageCgroupUsed(pc)))
3047                 return NULL;
3048
3049         lock_page_cgroup(pc);
3050
3051         memcg = pc->mem_cgroup;
3052
3053         if (!PageCgroupUsed(pc))
3054                 goto unlock_out;
3055
3056         switch (ctype) {
3057         case MEM_CGROUP_CHARGE_TYPE_MAPPED:
3058         case MEM_CGROUP_CHARGE_TYPE_DROP:
3059                 /* See mem_cgroup_prepare_migration() */
3060                 if (page_mapped(page) || PageCgroupMigration(pc))
3061                         goto unlock_out;
3062                 break;
3063         case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
3064                 if (!PageAnon(page)) {  /* Shared memory */
3065                         if (page->mapping && !page_is_file_cache(page))
3066                                 goto unlock_out;
3067                 } else if (page_mapped(page)) /* Anon */
3068                                 goto unlock_out;
3069                 break;
3070         default:
3071                 break;
3072         }
3073
3074         mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), -nr_pages);
3075
3076         ClearPageCgroupUsed(pc);
3077         /*
3078          * pc->mem_cgroup is not cleared here. It will be accessed when it's
3079          * freed from LRU. This is safe because uncharged page is expected not
3080          * to be reused (freed soon). Exception is SwapCache, it's handled by
3081          * special functions.
3082          */
3083
3084         unlock_page_cgroup(pc);
3085         /*
3086          * even after unlock, we have memcg->res.usage here and this memcg
3087          * will never be freed.
3088          */
3089         memcg_check_events(memcg, page);
3090         if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3091                 mem_cgroup_swap_statistics(memcg, true);
3092                 mem_cgroup_get(memcg);
3093         }
3094         if (!mem_cgroup_is_root(memcg))
3095                 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
3096
3097         return memcg;
3098
3099 unlock_out:
3100         unlock_page_cgroup(pc);
3101         return NULL;
3102 }
3103
3104 void mem_cgroup_uncharge_page(struct page *page)
3105 {
3106         /* early check. */
3107         if (page_mapped(page))
3108                 return;
3109         if (page->mapping && !PageAnon(page))
3110                 return;
3111         __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
3112 }
3113
3114 void mem_cgroup_uncharge_cache_page(struct page *page)
3115 {
3116         VM_BUG_ON(page_mapped(page));
3117         VM_BUG_ON(page->mapping);
3118         __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
3119 }
3120
3121 /*
3122  * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3123  * In that cases, pages are freed continuously and we can expect pages
3124  * are in the same memcg. All these calls itself limits the number of
3125  * pages freed at once, then uncharge_start/end() is called properly.
3126  * This may be called prural(2) times in a context,
3127  */
3128
3129 void mem_cgroup_uncharge_start(void)
3130 {
3131         current->memcg_batch.do_batch++;
3132         /* We can do nest. */
3133         if (current->memcg_batch.do_batch == 1) {
3134                 current->memcg_batch.memcg = NULL;
3135                 current->memcg_batch.nr_pages = 0;
3136                 current->memcg_batch.memsw_nr_pages = 0;
3137         }
3138 }
3139
3140 void mem_cgroup_uncharge_end(void)
3141 {
3142         struct memcg_batch_info *batch = &current->memcg_batch;
3143
3144         if (!batch->do_batch)
3145                 return;
3146
3147         batch->do_batch--;
3148         if (batch->do_batch) /* If stacked, do nothing. */
3149                 return;
3150
3151         if (!batch->memcg)
3152                 return;
3153         /*
3154          * This "batch->memcg" is valid without any css_get/put etc...
3155          * bacause we hide charges behind us.
3156          */
3157         if (batch->nr_pages)
3158                 res_counter_uncharge(&batch->memcg->res,
3159                                      batch->nr_pages * PAGE_SIZE);
3160         if (batch->memsw_nr_pages)
3161                 res_counter_uncharge(&batch->memcg->memsw,
3162                                      batch->memsw_nr_pages * PAGE_SIZE);
3163         memcg_oom_recover(batch->memcg);
3164         /* forget this pointer (for sanity check) */
3165         batch->memcg = NULL;
3166 }
3167
3168 #ifdef CONFIG_SWAP
3169 /*
3170  * called after __delete_from_swap_cache() and drop "page" account.
3171  * memcg information is recorded to swap_cgroup of "ent"
3172  */
3173 void
3174 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3175 {
3176         struct mem_cgroup *memcg;
3177         int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3178
3179         if (!swapout) /* this was a swap cache but the swap is unused ! */
3180                 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3181
3182         memcg = __mem_cgroup_uncharge_common(page, ctype);
3183
3184         /*
3185          * record memcg information,  if swapout && memcg != NULL,
3186          * mem_cgroup_get() was called in uncharge().
3187          */
3188         if (do_swap_account && swapout && memcg)
3189                 swap_cgroup_record(ent, css_id(&memcg->css));
3190 }
3191 #endif
3192
3193 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3194 /*
3195  * called from swap_entry_free(). remove record in swap_cgroup and
3196  * uncharge "memsw" account.
3197  */
3198 void mem_cgroup_uncharge_swap(swp_entry_t ent)
3199 {
3200         struct mem_cgroup *memcg;
3201         unsigned short id;
3202
3203         if (!do_swap_account)
3204                 return;
3205
3206         id = swap_cgroup_record(ent, 0);
3207         rcu_read_lock();
3208         memcg = mem_cgroup_lookup(id);
3209         if (memcg) {
3210                 /*
3211                  * We uncharge this because swap is freed.
3212                  * This memcg can be obsolete one. We avoid calling css_tryget
3213                  */
3214                 if (!mem_cgroup_is_root(memcg))
3215                         res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3216                 mem_cgroup_swap_statistics(memcg, false);
3217                 mem_cgroup_put(memcg);
3218         }
3219         rcu_read_unlock();
3220 }
3221
3222 /**
3223  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3224  * @entry: swap entry to be moved
3225  * @from:  mem_cgroup which the entry is moved from
3226  * @to:  mem_cgroup which the entry is moved to
3227  * @need_fixup: whether we should fixup res_counters and refcounts.
3228  *
3229  * It succeeds only when the swap_cgroup's record for this entry is the same
3230  * as the mem_cgroup's id of @from.
3231  *
3232  * Returns 0 on success, -EINVAL on failure.
3233  *
3234  * The caller must have charged to @to, IOW, called res_counter_charge() about
3235  * both res and memsw, and called css_get().
3236  */
3237 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3238                 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3239 {
3240         unsigned short old_id, new_id;
3241
3242         old_id = css_id(&from->css);
3243         new_id = css_id(&to->css);
3244
3245         if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3246                 mem_cgroup_swap_statistics(from, false);
3247                 mem_cgroup_swap_statistics(to, true);
3248                 /*
3249                  * This function is only called from task migration context now.
3250                  * It postpones res_counter and refcount handling till the end
3251                  * of task migration(mem_cgroup_clear_mc()) for performance
3252                  * improvement. But we cannot postpone mem_cgroup_get(to)
3253                  * because if the process that has been moved to @to does
3254                  * swap-in, the refcount of @to might be decreased to 0.
3255                  */
3256                 mem_cgroup_get(to);
3257                 if (need_fixup) {
3258                         if (!mem_cgroup_is_root(from))
3259                                 res_counter_uncharge(&from->memsw, PAGE_SIZE);
3260                         mem_cgroup_put(from);
3261                         /*
3262                          * we charged both to->res and to->memsw, so we should
3263                          * uncharge to->res.
3264                          */
3265                         if (!mem_cgroup_is_root(to))
3266                                 res_counter_uncharge(&to->res, PAGE_SIZE);
3267                 }
3268                 return 0;
3269         }
3270         return -EINVAL;
3271 }
3272 #else
3273 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3274                 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3275 {
3276         return -EINVAL;
3277 }
3278 #endif
3279
3280 /*
3281  * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3282  * page belongs to.
3283  */
3284 int mem_cgroup_prepare_migration(struct page *page,
3285         struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask)
3286 {
3287         struct mem_cgroup *memcg = NULL;
3288         struct page_cgroup *pc;
3289         enum charge_type ctype;
3290         int ret = 0;
3291
3292         *ptr = NULL;
3293
3294         VM_BUG_ON(PageTransHuge(page));
3295         if (mem_cgroup_disabled())
3296                 return 0;
3297
3298         pc = lookup_page_cgroup(page);
3299         lock_page_cgroup(pc);
3300         if (PageCgroupUsed(pc)) {
3301                 memcg = pc->mem_cgroup;
3302                 css_get(&memcg->css);
3303                 /*
3304                  * At migrating an anonymous page, its mapcount goes down
3305                  * to 0 and uncharge() will be called. But, even if it's fully
3306                  * unmapped, migration may fail and this page has to be
3307                  * charged again. We set MIGRATION flag here and delay uncharge
3308                  * until end_migration() is called
3309                  *
3310                  * Corner Case Thinking
3311                  * A)
3312                  * When the old page was mapped as Anon and it's unmap-and-freed
3313                  * while migration was ongoing.
3314                  * If unmap finds the old page, uncharge() of it will be delayed
3315                  * until end_migration(). If unmap finds a new page, it's
3316                  * uncharged when it make mapcount to be 1->0. If unmap code
3317                  * finds swap_migration_entry, the new page will not be mapped
3318                  * and end_migration() will find it(mapcount==0).
3319                  *
3320                  * B)
3321                  * When the old page was mapped but migraion fails, the kernel
3322                  * remaps it. A charge for it is kept by MIGRATION flag even
3323                  * if mapcount goes down to 0. We can do remap successfully
3324                  * without charging it again.
3325                  *
3326                  * C)
3327                  * The "old" page is under lock_page() until the end of
3328                  * migration, so, the old page itself will not be swapped-out.
3329                  * If the new page is swapped out before end_migraton, our
3330                  * hook to usual swap-out path will catch the event.
3331                  */
3332                 if (PageAnon(page))
3333                         SetPageCgroupMigration(pc);
3334         }
3335         unlock_page_cgroup(pc);
3336         /*
3337          * If the page is not charged at this point,
3338          * we return here.
3339          */
3340         if (!memcg)
3341                 return 0;
3342
3343         *ptr = memcg;
3344         ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, ptr, false);
3345         css_put(&memcg->css);/* drop extra refcnt */
3346         if (ret || *ptr == NULL) {
3347                 if (PageAnon(page)) {
3348                         lock_page_cgroup(pc);
3349                         ClearPageCgroupMigration(pc);
3350                         unlock_page_cgroup(pc);
3351                         /*
3352                          * The old page may be fully unmapped while we kept it.
3353                          */
3354                         mem_cgroup_uncharge_page(page);
3355                 }
3356                 return -ENOMEM;
3357         }
3358         /*
3359          * We charge new page before it's used/mapped. So, even if unlock_page()
3360          * is called before end_migration, we can catch all events on this new
3361          * page. In the case new page is migrated but not remapped, new page's
3362          * mapcount will be finally 0 and we call uncharge in end_migration().
3363          */
3364         pc = lookup_page_cgroup(newpage);
3365         if (PageAnon(page))
3366                 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
3367         else if (page_is_file_cache(page))
3368                 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3369         else
3370                 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3371         __mem_cgroup_commit_charge(memcg, page, 1, pc, ctype);
3372         return ret;
3373 }
3374
3375 /* remove redundant charge if migration failed*/
3376 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3377         struct page *oldpage, struct page *newpage, bool migration_ok)
3378 {
3379         struct page *used, *unused;
3380         struct page_cgroup *pc;
3381
3382         if (!memcg)
3383                 return;
3384         /* blocks rmdir() */
3385         cgroup_exclude_rmdir(&memcg->css);
3386         if (!migration_ok) {
3387                 used = oldpage;
3388                 unused = newpage;
3389         } else {
3390                 used = newpage;
3391                 unused = oldpage;
3392         }
3393         /*
3394          * We disallowed uncharge of pages under migration because mapcount
3395          * of the page goes down to zero, temporarly.
3396          * Clear the flag and check the page should be charged.
3397          */
3398         pc = lookup_page_cgroup(oldpage);
3399         lock_page_cgroup(pc);
3400         ClearPageCgroupMigration(pc);
3401         unlock_page_cgroup(pc);
3402
3403         __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
3404
3405         /*
3406          * If a page is a file cache, radix-tree replacement is very atomic
3407          * and we can skip this check. When it was an Anon page, its mapcount
3408          * goes down to 0. But because we added MIGRATION flage, it's not
3409          * uncharged yet. There are several case but page->mapcount check
3410          * and USED bit check in mem_cgroup_uncharge_page() will do enough
3411          * check. (see prepare_charge() also)
3412          */
3413         if (PageAnon(used))
3414                 mem_cgroup_uncharge_page(used);
3415         /*
3416          * At migration, we may charge account against cgroup which has no
3417          * tasks.
3418          * So, rmdir()->pre_destroy() can be called while we do this charge.
3419          * In that case, we need to call pre_destroy() again. check it here.
3420          */
3421         cgroup_release_and_wakeup_rmdir(&memcg->css);
3422 }
3423
3424 #ifdef CONFIG_DEBUG_VM
3425 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3426 {
3427         struct page_cgroup *pc;
3428
3429         pc = lookup_page_cgroup(page);
3430         if (likely(pc) && PageCgroupUsed(pc))
3431                 return pc;
3432         return NULL;
3433 }
3434
3435 bool mem_cgroup_bad_page_check(struct page *page)
3436 {
3437         if (mem_cgroup_disabled())
3438                 return false;
3439
3440         return lookup_page_cgroup_used(page) != NULL;
3441 }
3442
3443 void mem_cgroup_print_bad_page(struct page *page)
3444 {
3445         struct page_cgroup *pc;
3446
3447         pc = lookup_page_cgroup_used(page);
3448         if (pc) {
3449                 int ret = -1;
3450                 char *path;
3451
3452                 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
3453                        pc, pc->flags, pc->mem_cgroup);
3454
3455                 path = kmalloc(PATH_MAX, GFP_KERNEL);
3456                 if (path) {
3457                         rcu_read_lock();
3458                         ret = cgroup_path(pc->mem_cgroup->css.cgroup,
3459                                                         path, PATH_MAX);
3460                         rcu_read_unlock();
3461                 }
3462
3463                 printk(KERN_CONT "(%s)\n",
3464                                 (ret < 0) ? "cannot get the path" : path);
3465                 kfree(path);
3466         }
3467 }
3468 #endif
3469
3470 static DEFINE_MUTEX(set_limit_mutex);
3471
3472 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3473                                 unsigned long long val)
3474 {
3475         int retry_count;
3476         u64 memswlimit, memlimit;
3477         int ret = 0;
3478         int children = mem_cgroup_count_children(memcg);
3479         u64 curusage, oldusage;
3480         int enlarge;
3481
3482         /*
3483          * For keeping hierarchical_reclaim simple, how long we should retry
3484          * is depends on callers. We set our retry-count to be function
3485          * of # of children which we should visit in this loop.
3486          */
3487         retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3488
3489         oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3490
3491         enlarge = 0;
3492         while (retry_count) {
3493                 if (signal_pending(current)) {
3494                         ret = -EINTR;
3495                         break;
3496                 }
3497                 /*
3498                  * Rather than hide all in some function, I do this in
3499                  * open coded manner. You see what this really does.
3500                  * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3501                  */
3502                 mutex_lock(&set_limit_mutex);
3503                 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3504                 if (memswlimit < val) {
3505                         ret = -EINVAL;
3506                         mutex_unlock(&set_limit_mutex);
3507                         break;
3508                 }
3509
3510                 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3511                 if (memlimit < val)
3512                         enlarge = 1;
3513
3514                 ret = res_counter_set_limit(&memcg->res, val);
3515                 if (!ret) {
3516                         if (memswlimit == val)
3517                                 memcg->memsw_is_minimum = true;
3518                         else
3519                                 memcg->memsw_is_minimum = false;
3520                 }
3521                 mutex_unlock(&set_limit_mutex);
3522
3523                 if (!ret)
3524                         break;
3525
3526                 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3527                                                 MEM_CGROUP_RECLAIM_SHRINK,
3528                                                 NULL);
3529                 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3530                 /* Usage is reduced ? */
3531                 if (curusage >= oldusage)
3532                         retry_count--;
3533                 else
3534                         oldusage = curusage;
3535         }
3536         if (!ret && enlarge)
3537                 memcg_oom_recover(memcg);
3538
3539         return ret;
3540 }
3541
3542 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3543                                         unsigned long long val)
3544 {
3545         int retry_count;
3546         u64 memlimit, memswlimit, oldusage, curusage;
3547         int children = mem_cgroup_count_children(memcg);
3548         int ret = -EBUSY;
3549         int enlarge = 0;
3550
3551         /* see mem_cgroup_resize_res_limit */
3552         retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3553         oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3554         while (retry_count) {
3555                 if (signal_pending(current)) {
3556                         ret = -EINTR;
3557                         break;
3558                 }
3559                 /*
3560                  * Rather than hide all in some function, I do this in
3561                  * open coded manner. You see what this really does.
3562                  * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3563                  */
3564                 mutex_lock(&set_limit_mutex);
3565                 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3566                 if (memlimit > val) {
3567                         ret = -EINVAL;
3568                         mutex_unlock(&set_limit_mutex);
3569                         break;
3570                 }
3571                 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3572                 if (memswlimit < val)
3573                         enlarge = 1;
3574                 ret = res_counter_set_limit(&memcg->memsw, val);
3575                 if (!ret) {
3576                         if (memlimit == val)
3577                                 memcg->memsw_is_minimum = true;
3578                         else
3579                                 memcg->memsw_is_minimum = false;
3580                 }
3581                 mutex_unlock(&set_limit_mutex);
3582
3583                 if (!ret)
3584                         break;
3585
3586                 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3587                                                 MEM_CGROUP_RECLAIM_NOSWAP |
3588                                                 MEM_CGROUP_RECLAIM_SHRINK,
3589                                                 NULL);
3590                 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3591                 /* Usage is reduced ? */
3592                 if (curusage >= oldusage)
3593                         retry_count--;
3594                 else
3595                         oldusage = curusage;
3596         }
3597         if (!ret && enlarge)
3598                 memcg_oom_recover(memcg);
3599         return ret;
3600 }
3601
3602 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3603                                             gfp_t gfp_mask,
3604                                             unsigned long *total_scanned)
3605 {
3606         unsigned long nr_reclaimed = 0;
3607         struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3608         unsigned long reclaimed;
3609         int loop = 0;
3610         struct mem_cgroup_tree_per_zone *mctz;
3611         unsigned long long excess;
3612         unsigned long nr_scanned;
3613
3614         if (order > 0)
3615                 return 0;
3616
3617         mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3618         /*
3619          * This loop can run a while, specially if mem_cgroup's continuously
3620          * keep exceeding their soft limit and putting the system under
3621          * pressure
3622          */
3623         do {
3624                 if (next_mz)
3625                         mz = next_mz;
3626                 else
3627                         mz = mem_cgroup_largest_soft_limit_node(mctz);
3628                 if (!mz)
3629                         break;
3630
3631                 nr_scanned = 0;
3632                 reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
3633                                                 gfp_mask,
3634                                                 MEM_CGROUP_RECLAIM_SOFT,
3635                                                 &nr_scanned);
3636                 nr_reclaimed += reclaimed;
3637                 *total_scanned += nr_scanned;
3638                 spin_lock(&mctz->lock);
3639
3640                 /*
3641                  * If we failed to reclaim anything from this memory cgroup
3642                  * it is time to move on to the next cgroup
3643                  */
3644                 next_mz = NULL;
3645                 if (!reclaimed) {
3646                         do {
3647                                 /*
3648                                  * Loop until we find yet another one.
3649                                  *
3650                                  * By the time we get the soft_limit lock
3651                                  * again, someone might have aded the
3652                                  * group back on the RB tree. Iterate to
3653                                  * make sure we get a different mem.
3654                                  * mem_cgroup_largest_soft_limit_node returns
3655                                  * NULL if no other cgroup is present on
3656                                  * the tree
3657                                  */
3658                                 next_mz =
3659                                 __mem_cgroup_largest_soft_limit_node(mctz);
3660                                 if (next_mz == mz)
3661                                         css_put(&next_mz->mem->css);
3662                                 else /* next_mz == NULL or other memcg */
3663                                         break;
3664                         } while (1);
3665                 }
3666                 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3667                 excess = res_counter_soft_limit_excess(&mz->mem->res);
3668                 /*
3669                  * One school of thought says that we should not add
3670                  * back the node to the tree if reclaim returns 0.
3671                  * But our reclaim could return 0, simply because due
3672                  * to priority we are exposing a smaller subset of
3673                  * memory to reclaim from. Consider this as a longer
3674                  * term TODO.
3675                  */
3676                 /* If excess == 0, no tree ops */
3677                 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3678                 spin_unlock(&mctz->lock);
3679                 css_put(&mz->mem->css);
3680                 loop++;
3681                 /*
3682                  * Could not reclaim anything and there are no more
3683                  * mem cgroups to try or we seem to be looping without
3684                  * reclaiming anything.
3685                  */
3686                 if (!nr_reclaimed &&
3687                         (next_mz == NULL ||
3688                         loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3689                         break;
3690         } while (!nr_reclaimed);
3691         if (next_mz)
3692                 css_put(&next_mz->mem->css);
3693         return nr_reclaimed;
3694 }
3695
3696 /*
3697  * This routine traverse page_cgroup in given list and drop them all.
3698  * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3699  */
3700 static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
3701                                 int node, int zid, enum lru_list lru)
3702 {
3703         struct zone *zone;
3704         struct mem_cgroup_per_zone *mz;
3705         struct page_cgroup *pc, *busy;
3706         unsigned long flags, loop;
3707         struct list_head *list;
3708         int ret = 0;
3709
3710         zone = &NODE_DATA(node)->node_zones[zid];
3711         mz = mem_cgroup_zoneinfo(memcg, node, zid);
3712         list = &mz->lists[lru];
3713
3714         loop = MEM_CGROUP_ZSTAT(mz, lru);
3715         /* give some margin against EBUSY etc...*/
3716         loop += 256;
3717         busy = NULL;
3718         while (loop--) {
3719                 struct page *page;
3720
3721                 ret = 0;
3722                 spin_lock_irqsave(&zone->lru_lock, flags);
3723                 if (list_empty(list)) {
3724                         spin_unlock_irqrestore(&zone->lru_lock, flags);
3725                         break;
3726                 }
3727                 pc = list_entry(list->prev, struct page_cgroup, lru);
3728                 if (busy == pc) {
3729                         list_move(&pc->lru, list);
3730                         busy = NULL;
3731                         spin_unlock_irqrestore(&zone->lru_lock, flags);
3732                         continue;
3733                 }
3734                 spin_unlock_irqrestore(&zone->lru_lock, flags);
3735
3736                 page = lookup_cgroup_page(pc);
3737
3738                 ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL);
3739                 if (ret == -ENOMEM)
3740                         break;
3741
3742                 if (ret == -EBUSY || ret == -EINVAL) {
3743                         /* found lock contention or "pc" is obsolete. */
3744                         busy = pc;
3745                         cond_resched();
3746                 } else
3747                         busy = NULL;
3748         }
3749
3750         if (!ret && !list_empty(list))
3751                 return -EBUSY;
3752         return ret;
3753 }
3754
3755 /*
3756  * make mem_cgroup's charge to be 0 if there is no task.
3757  * This enables deleting this mem_cgroup.
3758  */
3759 static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
3760 {
3761         int ret;
3762         int node, zid, shrink;
3763         int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3764         struct cgroup *cgrp = memcg->css.cgroup;
3765
3766         css_get(&memcg->css);
3767
3768         shrink = 0;
3769         /* should free all ? */
3770         if (free_all)
3771                 goto try_to_free;
3772 move_account:
3773         do {
3774                 ret = -EBUSY;
3775                 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3776                         goto out;
3777                 ret = -EINTR;
3778                 if (signal_pending(current))
3779                         goto out;
3780                 /* This is for making all *used* pages to be on LRU. */
3781                 lru_add_drain_all();
3782                 drain_all_stock_sync(memcg);
3783                 ret = 0;
3784                 mem_cgroup_start_move(memcg);
3785                 for_each_node_state(node, N_HIGH_MEMORY) {
3786                         for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3787                                 enum lru_list l;
3788                                 for_each_lru(l) {
3789                                         ret = mem_cgroup_force_empty_list(memcg,
3790                                                         node, zid, l);
3791                                         if (ret)
3792                                                 break;
3793                                 }
3794                         }
3795                         if (ret)
3796                                 break;
3797                 }
3798                 mem_cgroup_end_move(memcg);
3799                 memcg_oom_recover(memcg);
3800                 /* it seems parent cgroup doesn't have enough mem */
3801                 if (ret == -ENOMEM)
3802                         goto try_to_free;
3803                 cond_resched();
3804         /* "ret" should also be checked to ensure all lists are empty. */
3805         } while (memcg->res.usage > 0 || ret);
3806 out:
3807         css_put(&memcg->css);
3808         return ret;
3809
3810 try_to_free:
3811         /* returns EBUSY if there is a task or if we come here twice. */
3812         if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3813                 ret = -EBUSY;
3814                 goto out;
3815         }
3816         /* we call try-to-free pages for make this cgroup empty */
3817         lru_add_drain_all();
3818         /* try to free all pages in this cgroup */
3819         shrink = 1;
3820         while (nr_retries && memcg->res.usage > 0) {
3821                 int progress;
3822
3823                 if (signal_pending(current)) {
3824                         ret = -EINTR;
3825                         goto out;
3826                 }
3827                 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3828                                                 false);
3829                 if (!progress) {
3830                         nr_retries--;
3831                         /* maybe some writeback is necessary */
3832                         congestion_wait(BLK_RW_ASYNC, HZ/10);
3833                 }
3834
3835         }
3836         lru_add_drain();
3837         /* try move_account...there may be some *locked* pages. */
3838         goto move_account;
3839 }
3840
3841 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3842 {
3843         return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3844 }
3845
3846
3847 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3848 {
3849         return mem_cgroup_from_cont(cont)->use_hierarchy;
3850 }
3851
3852 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3853                                         u64 val)
3854 {
3855         int retval = 0;
3856         struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3857         struct cgroup *parent = cont->parent;
3858         struct mem_cgroup *parent_memcg = NULL;
3859
3860         if (parent)
3861                 parent_memcg = mem_cgroup_from_cont(parent);
3862
3863         cgroup_lock();
3864         /*
3865          * If parent's use_hierarchy is set, we can't make any modifications
3866          * in the child subtrees. If it is unset, then the change can
3867          * occur, provided the current cgroup has no children.
3868          *
3869          * For the root cgroup, parent_mem is NULL, we allow value to be
3870          * set if there are no children.
3871          */
3872         if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3873                                 (val == 1 || val == 0)) {
3874                 if (list_empty(&cont->children))
3875                         memcg->use_hierarchy = val;
3876                 else
3877                         retval = -EBUSY;
3878         } else
3879                 retval = -EINVAL;
3880         cgroup_unlock();
3881
3882         return retval;
3883 }
3884
3885
3886 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3887                                                enum mem_cgroup_stat_index idx)
3888 {
3889         struct mem_cgroup *iter;
3890         long val = 0;
3891
3892         /* Per-cpu values can be negative, use a signed accumulator */
3893         for_each_mem_cgroup_tree(iter, memcg)
3894                 val += mem_cgroup_read_stat(iter, idx);
3895
3896         if (val < 0) /* race ? */
3897                 val = 0;
3898         return val;
3899 }
3900
3901 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3902 {
3903         u64 val;
3904
3905         if (!mem_cgroup_is_root(memcg)) {
3906                 val = 0;
3907 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
3908                 if (!memcg->kmem_independent_accounting)
3909                         val = res_counter_read_u64(&memcg->kmem, RES_USAGE);
3910 #endif
3911                 if (!swap)
3912                         val += res_counter_read_u64(&memcg->res, RES_USAGE);
3913                 else
3914                         val += res_counter_read_u64(&memcg->memsw, RES_USAGE);
3915
3916                 return val;
3917         }
3918
3919         val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
3920         val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3921
3922         if (swap)
3923                 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
3924
3925         return val << PAGE_SHIFT;
3926 }
3927
3928 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
3929 {
3930         struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3931         u64 val;
3932         int type, name;
3933
3934         type = MEMFILE_TYPE(cft->private);
3935         name = MEMFILE_ATTR(cft->private);
3936         switch (type) {
3937         case _MEM:
3938                 if (name == RES_USAGE)
3939                         val = mem_cgroup_usage(memcg, false);
3940                 else
3941                         val = res_counter_read_u64(&memcg->res, name);
3942                 break;
3943         case _MEMSWAP:
3944                 if (name == RES_USAGE)
3945                         val = mem_cgroup_usage(memcg, true);
3946                 else
3947                         val = res_counter_read_u64(&memcg->memsw, name);
3948                 break;
3949 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
3950         case _KMEM:
3951                 val = res_counter_read_u64(&memcg->kmem, name);
3952                 break;
3953 #endif
3954         default:
3955                 BUG();
3956                 break;
3957         }
3958         return val;
3959 }
3960 /*
3961  * The user of this function is...
3962  * RES_LIMIT.
3963  */
3964 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3965                             const char *buffer)
3966 {
3967         struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3968         int type, name;
3969         unsigned long long val;
3970         int ret;
3971
3972         type = MEMFILE_TYPE(cft->private);
3973         name = MEMFILE_ATTR(cft->private);
3974         switch (name) {
3975         case RES_LIMIT:
3976                 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3977                         ret = -EINVAL;
3978                         break;
3979                 }
3980                 /* This function does all necessary parse...reuse it */
3981                 ret = res_counter_memparse_write_strategy(buffer, &val);
3982                 if (ret)
3983                         break;
3984                 if (type == _MEM)
3985                         ret = mem_cgroup_resize_limit(memcg, val);
3986                 else
3987                         ret = mem_cgroup_resize_memsw_limit(memcg, val);
3988                 break;
3989         case RES_SOFT_LIMIT:
3990                 ret = res_counter_memparse_write_strategy(buffer, &val);
3991                 if (ret)
3992                         break;
3993                 /*
3994                  * For memsw, soft limits are hard to implement in terms
3995                  * of semantics, for now, we support soft limits for
3996                  * control without swap
3997                  */
3998                 if (type == _MEM)
3999                         ret = res_counter_set_soft_limit(&memcg->res, val);
4000                 else
4001                         ret = -EINVAL;
4002                 break;
4003         default:
4004                 ret = -EINVAL; /* should be BUG() ? */
4005                 break;
4006         }
4007         return ret;
4008 }
4009
4010 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
4011                 unsigned long long *mem_limit, unsigned long long *memsw_limit)
4012 {
4013         struct cgroup *cgroup;
4014         unsigned long long min_limit, min_memsw_limit, tmp;
4015
4016         min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4017         min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4018         cgroup = memcg->css.cgroup;
4019         if (!memcg->use_hierarchy)
4020                 goto out;
4021
4022         while (cgroup->parent) {
4023                 cgroup = cgroup->parent;
4024                 memcg = mem_cgroup_from_cont(cgroup);
4025                 if (!memcg->use_hierarchy)
4026                         break;
4027                 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
4028                 min_limit = min(min_limit, tmp);
4029                 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4030                 min_memsw_limit = min(min_memsw_limit, tmp);
4031         }
4032 out:
4033         *mem_limit = min_limit;
4034         *memsw_limit = min_memsw_limit;
4035         return;
4036 }
4037
4038 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
4039 {
4040         struct mem_cgroup *memcg;
4041         int type, name;
4042
4043         memcg = mem_cgroup_from_cont(cont);
4044         type = MEMFILE_TYPE(event);
4045         name = MEMFILE_ATTR(event);
4046         switch (name) {
4047         case RES_MAX_USAGE:
4048                 if (type == _MEM)
4049                         res_counter_reset_max(&memcg->res);
4050                 else
4051                         res_counter_reset_max(&memcg->memsw);
4052                 break;
4053         case RES_FAILCNT:
4054                 if (type == _MEM)
4055                         res_counter_reset_failcnt(&memcg->res);
4056                 else
4057                         res_counter_reset_failcnt(&memcg->memsw);
4058                 break;
4059         }
4060
4061         return 0;
4062 }
4063
4064 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
4065                                         struct cftype *cft)
4066 {
4067         return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
4068 }
4069
4070 #ifdef CONFIG_MMU
4071 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4072                                         struct cftype *cft, u64 val)
4073 {
4074         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4075
4076         if (val >= (1 << NR_MOVE_TYPE))
4077                 return -EINVAL;
4078         /*
4079          * We check this value several times in both in can_attach() and
4080          * attach(), so we need cgroup lock to prevent this value from being
4081          * inconsistent.
4082          */
4083         cgroup_lock();
4084         memcg->move_charge_at_immigrate = val;
4085         cgroup_unlock();
4086
4087         return 0;
4088 }
4089 #else
4090 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4091                                         struct cftype *cft, u64 val)
4092 {
4093         return -ENOSYS;
4094 }
4095 #endif
4096
4097
4098 /* For read statistics */
4099 enum {
4100         MCS_CACHE,
4101         MCS_RSS,
4102         MCS_FILE_MAPPED,
4103         MCS_PGPGIN,
4104         MCS_PGPGOUT,
4105         MCS_SWAP,
4106         MCS_PGFAULT,
4107         MCS_PGMAJFAULT,
4108         MCS_INACTIVE_ANON,
4109         MCS_ACTIVE_ANON,
4110         MCS_INACTIVE_FILE,
4111         MCS_ACTIVE_FILE,
4112         MCS_UNEVICTABLE,
4113         NR_MCS_STAT,
4114 };
4115
4116 struct mcs_total_stat {
4117         s64 stat[NR_MCS_STAT];
4118 };
4119
4120 struct {
4121         char *local_name;
4122         char *total_name;
4123 } memcg_stat_strings[NR_MCS_STAT] = {
4124         {"cache", "total_cache"},
4125         {"rss", "total_rss"},
4126         {"mapped_file", "total_mapped_file"},
4127         {"pgpgin", "total_pgpgin"},
4128         {"pgpgout", "total_pgpgout"},
4129         {"swap", "total_swap"},
4130         {"pgfault", "total_pgfault"},
4131         {"pgmajfault", "total_pgmajfault"},
4132         {"inactive_anon", "total_inactive_anon"},
4133         {"active_anon", "total_active_anon"},
4134         {"inactive_file", "total_inactive_file"},
4135         {"active_file", "total_active_file"},
4136         {"unevictable", "total_unevictable"}
4137 };
4138
4139
4140 static void
4141 mem_cgroup_get_local_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
4142 {
4143         s64 val;
4144
4145         /* per cpu stat */
4146         val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_CACHE);
4147         s->stat[MCS_CACHE] += val * PAGE_SIZE;
4148         val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_RSS);
4149         s->stat[MCS_RSS] += val * PAGE_SIZE;
4150         val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
4151         s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
4152         val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGIN);
4153         s->stat[MCS_PGPGIN] += val;
4154         val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGOUT);
4155         s->stat[MCS_PGPGOUT] += val;
4156         if (do_swap_account) {
4157                 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
4158                 s->stat[MCS_SWAP] += val * PAGE_SIZE;
4159         }
4160         val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGFAULT);
4161         s->stat[MCS_PGFAULT] += val;
4162         val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGMAJFAULT);
4163         s->stat[MCS_PGMAJFAULT] += val;
4164
4165         /* per zone stat */
4166         val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
4167         s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
4168         val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
4169         s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
4170         val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
4171         s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
4172         val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
4173         s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
4174         val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4175         s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
4176 }
4177
4178 static void
4179 mem_cgroup_get_total_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
4180 {
4181         struct mem_cgroup *iter;
4182
4183         for_each_mem_cgroup_tree(iter, memcg)
4184                 mem_cgroup_get_local_stat(iter, s);
4185 }
4186
4187 #ifdef CONFIG_NUMA
4188 static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
4189 {
4190         int nid;
4191         unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4192         unsigned long node_nr;
4193         struct cgroup *cont = m->private;
4194         struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4195
4196         total_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL);
4197         seq_printf(m, "total=%lu", total_nr);
4198         for_each_node_state(nid, N_HIGH_MEMORY) {
4199                 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid, LRU_ALL);
4200                 seq_printf(m, " N%d=%lu", nid, node_nr);
4201         }
4202         seq_putc(m, '\n');
4203
4204         file_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_FILE);
4205         seq_printf(m, "file=%lu", file_nr);
4206         for_each_node_state(nid, N_HIGH_MEMORY) {
4207                 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4208                                 LRU_ALL_FILE);
4209                 seq_printf(m, " N%d=%lu", nid, node_nr);
4210         }
4211         seq_putc(m, '\n');
4212
4213         anon_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_ANON);
4214         seq_printf(m, "anon=%lu", anon_nr);
4215         for_each_node_state(nid, N_HIGH_MEMORY) {
4216                 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4217                                 LRU_ALL_ANON);
4218                 seq_printf(m, " N%d=%lu", nid, node_nr);
4219         }
4220         seq_putc(m, '\n');
4221
4222         unevictable_nr = mem_cgroup_nr_lru_pages(mem_cont, BIT(LRU_UNEVICTABLE));
4223         seq_printf(m, "unevictable=%lu", unevictable_nr);
4224         for_each_node_state(nid, N_HIGH_MEMORY) {
4225                 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4226                                 BIT(LRU_UNEVICTABLE));
4227                 seq_printf(m, " N%d=%lu", nid, node_nr);
4228         }
4229         seq_putc(m, '\n');
4230         return 0;
4231 }
4232 #endif /* CONFIG_NUMA */
4233
4234 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
4235                                  struct cgroup_map_cb *cb)
4236 {
4237         struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4238         struct mcs_total_stat mystat;
4239         int i;
4240
4241         memset(&mystat, 0, sizeof(mystat));
4242         mem_cgroup_get_local_stat(mem_cont, &mystat);
4243
4244
4245         for (i = 0; i < NR_MCS_STAT; i++) {
4246                 if (i == MCS_SWAP && !do_swap_account)
4247                         continue;
4248                 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
4249         }
4250
4251         /* Hierarchical information */
4252         {
4253                 unsigned long long limit, memsw_limit;
4254                 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
4255                 cb->fill(cb, "hierarchical_memory_limit", limit);
4256                 if (do_swap_account)
4257                         cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
4258         }
4259
4260         memset(&mystat, 0, sizeof(mystat));
4261         mem_cgroup_get_total_stat(mem_cont, &mystat);
4262         for (i = 0; i < NR_MCS_STAT; i++) {
4263                 if (i == MCS_SWAP && !do_swap_account)
4264                         continue;
4265                 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
4266         }
4267
4268 #ifdef CONFIG_DEBUG_VM
4269         {
4270                 int nid, zid;
4271                 struct mem_cgroup_per_zone *mz;
4272                 unsigned long recent_rotated[2] = {0, 0};
4273                 unsigned long recent_scanned[2] = {0, 0};
4274
4275                 for_each_online_node(nid)
4276                         for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4277                                 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
4278
4279                                 recent_rotated[0] +=
4280                                         mz->reclaim_stat.recent_rotated[0];
4281                                 recent_rotated[1] +=
4282                                         mz->reclaim_stat.recent_rotated[1];
4283                                 recent_scanned[0] +=
4284                                         mz->reclaim_stat.recent_scanned[0];
4285                                 recent_scanned[1] +=
4286                                         mz->reclaim_stat.recent_scanned[1];
4287                         }
4288                 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
4289                 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
4290                 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
4291                 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
4292         }
4293 #endif
4294
4295         return 0;
4296 }
4297
4298 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4299 {
4300         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4301
4302         return mem_cgroup_swappiness(memcg);
4303 }
4304
4305 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4306                                        u64 val)
4307 {
4308         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4309         struct mem_cgroup *parent;
4310
4311         if (val > 100)
4312                 return -EINVAL;
4313
4314         if (cgrp->parent == NULL)
4315                 return -EINVAL;
4316
4317         parent = mem_cgroup_from_cont(cgrp->parent);
4318
4319         cgroup_lock();
4320
4321         /* If under hierarchy, only empty-root can set this value */
4322         if ((parent->use_hierarchy) ||
4323             (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4324                 cgroup_unlock();
4325                 return -EINVAL;
4326         }
4327
4328         memcg->swappiness = val;
4329
4330         cgroup_unlock();
4331
4332         return 0;
4333 }
4334
4335 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4336 {
4337         struct mem_cgroup_threshold_ary *t;
4338         u64 usage;
4339         int i;
4340
4341         rcu_read_lock();
4342         if (!swap)
4343                 t = rcu_dereference(memcg->thresholds.primary);
4344         else
4345                 t = rcu_dereference(memcg->memsw_thresholds.primary);
4346
4347         if (!t)
4348                 goto unlock;
4349
4350         usage = mem_cgroup_usage(memcg, swap);
4351
4352         /*
4353          * current_threshold points to threshold just below usage.
4354          * If it's not true, a threshold was crossed after last
4355          * call of __mem_cgroup_threshold().
4356          */
4357         i = t->current_threshold;
4358
4359         /*
4360          * Iterate backward over array of thresholds starting from
4361          * current_threshold and check if a threshold is crossed.
4362          * If none of thresholds below usage is crossed, we read
4363          * only one element of the array here.
4364          */
4365         for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4366                 eventfd_signal(t->entries[i].eventfd, 1);
4367
4368         /* i = current_threshold + 1 */
4369         i++;
4370
4371         /*
4372          * Iterate forward over array of thresholds starting from
4373          * current_threshold+1 and check if a threshold is crossed.
4374          * If none of thresholds above usage is crossed, we read
4375          * only one element of the array here.
4376          */
4377         for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4378                 eventfd_signal(t->entries[i].eventfd, 1);
4379
4380         /* Update current_threshold */
4381         t->current_threshold = i - 1;
4382 unlock:
4383         rcu_read_unlock();
4384 }
4385
4386 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4387 {
4388         while (memcg) {
4389                 __mem_cgroup_threshold(memcg, false);
4390                 if (do_swap_account)
4391                         __mem_cgroup_threshold(memcg, true);
4392
4393                 memcg = parent_mem_cgroup(memcg);
4394         }
4395 }
4396
4397 static int compare_thresholds(const void *a, const void *b)
4398 {
4399         const struct mem_cgroup_threshold *_a = a;
4400         const struct mem_cgroup_threshold *_b = b;
4401
4402         return _a->threshold - _b->threshold;
4403 }
4404
4405 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4406 {
4407         struct mem_cgroup_eventfd_list *ev;
4408
4409         list_for_each_entry(ev, &memcg->oom_notify, list)
4410                 eventfd_signal(ev->eventfd, 1);
4411         return 0;
4412 }
4413
4414 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4415 {
4416         struct mem_cgroup *iter;
4417
4418         for_each_mem_cgroup_tree(iter, memcg)
4419                 mem_cgroup_oom_notify_cb(iter);
4420 }
4421
4422 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4423         struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4424 {
4425         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4426         struct mem_cgroup_thresholds *thresholds;
4427         struct mem_cgroup_threshold_ary *new;
4428         int type = MEMFILE_TYPE(cft->private);
4429         u64 threshold, usage;
4430         int i, size, ret;
4431
4432         ret = res_counter_memparse_write_strategy(args, &threshold);
4433         if (ret)
4434                 return ret;
4435
4436         mutex_lock(&memcg->thresholds_lock);
4437
4438         if (type == _MEM)
4439                 thresholds = &memcg->thresholds;
4440         else if (type == _MEMSWAP)
4441                 thresholds = &memcg->memsw_thresholds;
4442         else
4443                 BUG();
4444
4445         usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4446
4447         /* Check if a threshold crossed before adding a new one */
4448         if (thresholds->primary)
4449                 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4450
4451         size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4452
4453         /* Allocate memory for new array of thresholds */
4454         new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4455                         GFP_KERNEL);
4456         if (!new) {
4457                 ret = -ENOMEM;
4458                 goto unlock;
4459         }
4460         new->size = size;
4461
4462         /* Copy thresholds (if any) to new array */
4463         if (thresholds->primary) {
4464                 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4465                                 sizeof(struct mem_cgroup_threshold));
4466         }
4467
4468         /* Add new threshold */
4469         new->entries[size - 1].eventfd = eventfd;
4470         new->entries[size - 1].threshold = threshold;
4471
4472         /* Sort thresholds. Registering of new threshold isn't time-critical */
4473         sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4474                         compare_thresholds, NULL);
4475
4476         /* Find current threshold */
4477         new->current_threshold = -1;
4478         for (i = 0; i < size; i++) {
4479                 if (new->entries[i].threshold < usage) {
4480                         /*
4481                          * new->current_threshold will not be used until
4482                          * rcu_assign_pointer(), so it's safe to increment
4483                          * it here.
4484                          */
4485                         ++new->current_threshold;
4486                 }
4487         }
4488
4489         /* Free old spare buffer and save old primary buffer as spare */
4490         kfree(thresholds->spare);
4491         thresholds->spare = thresholds->primary;
4492
4493         rcu_assign_pointer(thresholds->primary, new);
4494
4495         /* To be sure that nobody uses thresholds */
4496         synchronize_rcu();
4497
4498 unlock:
4499         mutex_unlock(&memcg->thresholds_lock);
4500
4501         return ret;
4502 }
4503
4504 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4505         struct cftype *cft, struct eventfd_ctx *eventfd)
4506 {
4507         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4508         struct mem_cgroup_thresholds *thresholds;
4509         struct mem_cgroup_threshold_ary *new;
4510         int type = MEMFILE_TYPE(cft->private);
4511         u64 usage;
4512         int i, j, size;
4513
4514         mutex_lock(&memcg->thresholds_lock);
4515         if (type == _MEM)
4516                 thresholds = &memcg->thresholds;
4517         else if (type == _MEMSWAP)
4518                 thresholds = &memcg->memsw_thresholds;
4519         else
4520                 BUG();
4521
4522         /*
4523          * Something went wrong if we trying to unregister a threshold
4524          * if we don't have thresholds
4525          */
4526         BUG_ON(!thresholds);
4527
4528         usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4529
4530         /* Check if a threshold crossed before removing */
4531         __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4532
4533         /* Calculate new number of threshold */
4534         size = 0;
4535         for (i = 0; i < thresholds->primary->size; i++) {
4536                 if (thresholds->primary->entries[i].eventfd != eventfd)
4537                         size++;
4538         }
4539
4540         new = thresholds->spare;
4541
4542         /* Set thresholds array to NULL if we don't have thresholds */
4543         if (!size) {
4544                 kfree(new);
4545                 new = NULL;
4546                 goto swap_buffers;
4547         }
4548
4549         new->size = size;
4550
4551         /* Copy thresholds and find current threshold */
4552         new->current_threshold = -1;
4553         for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4554                 if (thresholds->primary->entries[i].eventfd == eventfd)
4555                         continue;
4556
4557                 new->entries[j] = thresholds->primary->entries[i];
4558                 if (new->entries[j].threshold < usage) {
4559                         /*
4560                          * new->current_threshold will not be used
4561                          * until rcu_assign_pointer(), so it's safe to increment
4562                          * it here.
4563                          */
4564                         ++new->current_threshold;
4565                 }
4566                 j++;
4567         }
4568
4569 swap_buffers:
4570         /* Swap primary and spare array */
4571         thresholds->spare = thresholds->primary;
4572         rcu_assign_pointer(thresholds->primary, new);
4573
4574         /* To be sure that nobody uses thresholds */
4575         synchronize_rcu();
4576
4577         mutex_unlock(&memcg->thresholds_lock);
4578 }
4579
4580 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4581         struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4582 {
4583         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4584         struct mem_cgroup_eventfd_list *event;
4585         int type = MEMFILE_TYPE(cft->private);
4586
4587         BUG_ON(type != _OOM_TYPE);
4588         event = kmalloc(sizeof(*event), GFP_KERNEL);
4589         if (!event)
4590                 return -ENOMEM;
4591
4592         spin_lock(&memcg_oom_lock);
4593
4594         event->eventfd = eventfd;
4595         list_add(&event->list, &memcg->oom_notify);
4596
4597         /* already in OOM ? */
4598         if (atomic_read(&memcg->under_oom))
4599                 eventfd_signal(eventfd, 1);
4600         spin_unlock(&memcg_oom_lock);
4601
4602         return 0;
4603 }
4604
4605 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4606         struct cftype *cft, struct eventfd_ctx *eventfd)
4607 {
4608         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4609         struct mem_cgroup_eventfd_list *ev, *tmp;
4610         int type = MEMFILE_TYPE(cft->private);
4611
4612         BUG_ON(type != _OOM_TYPE);
4613
4614         spin_lock(&memcg_oom_lock);
4615
4616         list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4617                 if (ev->eventfd == eventfd) {
4618                         list_del(&ev->list);
4619                         kfree(ev);
4620                 }
4621         }
4622
4623         spin_unlock(&memcg_oom_lock);
4624 }
4625
4626 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4627         struct cftype *cft,  struct cgroup_map_cb *cb)
4628 {
4629         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4630
4631         cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4632
4633         if (atomic_read(&memcg->under_oom))
4634                 cb->fill(cb, "under_oom", 1);
4635         else
4636                 cb->fill(cb, "under_oom", 0);
4637         return 0;
4638 }
4639
4640 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4641         struct cftype *cft, u64 val)
4642 {
4643         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4644         struct mem_cgroup *parent;
4645
4646         /* cannot set to root cgroup and only 0 and 1 are allowed */
4647         if (!cgrp->parent || !((val == 0) || (val == 1)))
4648                 return -EINVAL;
4649
4650         parent = mem_cgroup_from_cont(cgrp->parent);
4651
4652         cgroup_lock();
4653         /* oom-kill-disable is a flag for subhierarchy. */
4654         if ((parent->use_hierarchy) ||
4655             (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4656                 cgroup_unlock();
4657                 return -EINVAL;
4658         }
4659         memcg->oom_kill_disable = val;
4660         if (!val)
4661                 memcg_oom_recover(memcg);
4662         cgroup_unlock();
4663         return 0;
4664 }
4665
4666 #ifdef CONFIG_NUMA
4667 static const struct file_operations mem_control_numa_stat_file_operations = {
4668         .read = seq_read,
4669         .llseek = seq_lseek,
4670         .release = single_release,
4671 };
4672
4673 static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
4674 {
4675         struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;
4676
4677         file->f_op = &mem_control_numa_stat_file_operations;
4678         return single_open(file, mem_control_numa_stat_show, cont);
4679 }
4680 #endif /* CONFIG_NUMA */
4681
4682 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
4683 static u64 kmem_limit_independent_read(struct cgroup *cgroup, struct cftype *cft)
4684 {
4685         return mem_cgroup_from_cont(cgroup)->kmem_independent_accounting;
4686 }
4687
4688 static int kmem_limit_independent_write(struct cgroup *cgroup, struct cftype *cft,
4689                                         u64 val)
4690 {
4691         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
4692         struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4693
4694         val = !!val;
4695
4696         /*
4697          * This follows the same hierarchy restrictions than
4698          * mem_cgroup_hierarchy_write()
4699          */
4700         if (!parent || !parent->use_hierarchy) {
4701                 if (list_empty(&cgroup->children))
4702                         memcg->kmem_independent_accounting = val;
4703                 else
4704                         return -EBUSY;
4705         }
4706         else
4707                 return -EINVAL;
4708
4709         return 0;
4710 }
4711 static struct cftype kmem_cgroup_files[] = {
4712         {
4713                 .name = "independent_kmem_limit",
4714                 .read_u64 = kmem_limit_independent_read,
4715                 .write_u64 = kmem_limit_independent_write,
4716         },
4717         {
4718                 .name = "kmem.usage_in_bytes",
4719                 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4720                 .read_u64 = mem_cgroup_read,
4721         },
4722         {
4723                 .name = "kmem.limit_in_bytes",
4724                 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4725                 .read_u64 = mem_cgroup_read,
4726         },
4727 };
4728
4729 static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
4730 {
4731         int ret = 0;
4732
4733         ret = cgroup_add_files(cont, ss, kmem_cgroup_files,
4734                                ARRAY_SIZE(kmem_cgroup_files));
4735         return ret;
4736 };
4737
4738 #else
4739 static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
4740 {
4741         return 0;
4742 }
4743 #endif
4744
4745 static struct cftype mem_cgroup_files[] = {
4746         {
4747                 .name = "usage_in_bytes",
4748                 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4749                 .read_u64 = mem_cgroup_read,
4750                 .register_event = mem_cgroup_usage_register_event,
4751                 .unregister_event = mem_cgroup_usage_unregister_event,
4752         },
4753         {
4754                 .name = "max_usage_in_bytes",
4755                 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4756                 .trigger = mem_cgroup_reset,
4757                 .read_u64 = mem_cgroup_read,
4758         },
4759         {
4760                 .name = "limit_in_bytes",
4761                 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4762                 .write_string = mem_cgroup_write,
4763                 .read_u64 = mem_cgroup_read,
4764         },
4765         {
4766                 .name = "soft_limit_in_bytes",
4767                 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4768                 .write_string = mem_cgroup_write,
4769                 .read_u64 = mem_cgroup_read,
4770         },
4771         {
4772                 .name = "failcnt",
4773                 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4774                 .trigger = mem_cgroup_reset,
4775                 .read_u64 = mem_cgroup_read,
4776         },
4777         {
4778                 .name = "stat",
4779                 .read_map = mem_control_stat_show,
4780         },
4781         {
4782                 .name = "force_empty",
4783                 .trigger = mem_cgroup_force_empty_write,
4784         },
4785         {
4786                 .name = "use_hierarchy",
4787                 .write_u64 = mem_cgroup_hierarchy_write,
4788                 .read_u64 = mem_cgroup_hierarchy_read,
4789         },
4790         {
4791                 .name = "swappiness",
4792                 .read_u64 = mem_cgroup_swappiness_read,
4793                 .write_u64 = mem_cgroup_swappiness_write,
4794         },
4795         {
4796                 .name = "move_charge_at_immigrate",
4797                 .read_u64 = mem_cgroup_move_charge_read,
4798                 .write_u64 = mem_cgroup_move_charge_write,
4799         },
4800         {
4801                 .name = "oom_control",
4802                 .read_map = mem_cgroup_oom_control_read,
4803                 .write_u64 = mem_cgroup_oom_control_write,
4804                 .register_event = mem_cgroup_oom_register_event,
4805                 .unregister_event = mem_cgroup_oom_unregister_event,
4806                 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4807         },
4808 #ifdef CONFIG_NUMA
4809         {
4810                 .name = "numa_stat",
4811                 .open = mem_control_numa_stat_open,
4812                 .mode = S_IRUGO,
4813         },
4814 #endif
4815 };
4816
4817 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4818 static struct cftype memsw_cgroup_files[] = {
4819         {
4820                 .name = "memsw.usage_in_bytes",
4821                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4822                 .read_u64 = mem_cgroup_read,
4823                 .register_event = mem_cgroup_usage_register_event,
4824                 .unregister_event = mem_cgroup_usage_unregister_event,
4825         },
4826         {
4827                 .name = "memsw.max_usage_in_bytes",
4828                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4829                 .trigger = mem_cgroup_reset,
4830                 .read_u64 = mem_cgroup_read,
4831         },
4832         {
4833                 .name = "memsw.limit_in_bytes",
4834                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4835                 .write_string = mem_cgroup_write,
4836                 .read_u64 = mem_cgroup_read,
4837         },
4838         {
4839                 .name = "memsw.failcnt",
4840                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4841                 .trigger = mem_cgroup_reset,
4842                 .read_u64 = mem_cgroup_read,
4843         },
4844 };
4845
4846 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4847 {
4848         if (!do_swap_account)
4849                 return 0;
4850         return cgroup_add_files(cont, ss, memsw_cgroup_files,
4851                                 ARRAY_SIZE(memsw_cgroup_files));
4852 };
4853 #else
4854 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4855 {
4856         return 0;
4857 }
4858 #endif
4859
4860 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4861 {
4862         struct mem_cgroup_per_node *pn;
4863         struct mem_cgroup_per_zone *mz;
4864         enum lru_list l;
4865         int zone, tmp = node;
4866         /*
4867          * This routine is called against possible nodes.
4868          * But it's BUG to call kmalloc() against offline node.
4869          *
4870          * TODO: this routine can waste much memory for nodes which will
4871          *       never be onlined. It's better to use memory hotplug callback
4872          *       function.
4873          */
4874         if (!node_state(node, N_NORMAL_MEMORY))
4875                 tmp = -1;
4876         pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4877         if (!pn)
4878                 return 1;
4879
4880         for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4881                 mz = &pn->zoneinfo[zone];
4882                 for_each_lru(l)
4883                         INIT_LIST_HEAD(&mz->lists[l]);
4884                 mz->usage_in_excess = 0;
4885                 mz->on_tree = false;
4886                 mz->mem = memcg;
4887         }
4888         memcg->info.nodeinfo[node] = pn;
4889         return 0;
4890 }
4891
4892 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4893 {
4894         kfree(memcg->info.nodeinfo[node]);
4895 }
4896
4897 static struct mem_cgroup *mem_cgroup_alloc(void)
4898 {
4899         struct mem_cgroup *mem;
4900         int size = sizeof(struct mem_cgroup);
4901
4902         /* Can be very big if MAX_NUMNODES is very big */
4903         if (size < PAGE_SIZE)
4904                 mem = kzalloc(size, GFP_KERNEL);
4905         else
4906                 mem = vzalloc(size);
4907
4908         if (!mem)
4909                 return NULL;
4910
4911         mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4912         if (!mem->stat)
4913                 goto out_free;
4914         spin_lock_init(&mem->pcp_counter_lock);
4915         return mem;
4916
4917 out_free:
4918         if (size < PAGE_SIZE)
4919                 kfree(mem);
4920         else
4921                 vfree(mem);
4922         return NULL;
4923 }
4924
4925 /*
4926  * At destroying mem_cgroup, references from swap_cgroup can remain.
4927  * (scanning all at force_empty is too costly...)
4928  *
4929  * Instead of clearing all references at force_empty, we remember
4930  * the number of reference from swap_cgroup and free mem_cgroup when
4931  * it goes down to 0.
4932  *
4933  * Removal of cgroup itself succeeds regardless of refs from swap.
4934  */
4935
4936 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4937 {
4938         int node;
4939
4940         mem_cgroup_remove_from_trees(memcg);
4941         free_css_id(&mem_cgroup_subsys, &memcg->css);
4942
4943         for_each_node_state(node, N_POSSIBLE)
4944                 free_mem_cgroup_per_zone_info(memcg, node);
4945
4946         free_percpu(memcg->stat);
4947         if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4948                 kfree(memcg);
4949         else
4950                 vfree(memcg);
4951 }
4952
4953 static void mem_cgroup_get(struct mem_cgroup *memcg)
4954 {
4955         atomic_inc(&memcg->refcnt);
4956 }
4957
4958 static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
4959 {
4960         if (atomic_sub_and_test(count, &memcg->refcnt)) {
4961                 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4962                 __mem_cgroup_free(memcg);
4963                 if (parent)
4964                         mem_cgroup_put(parent);
4965         }
4966 }
4967
4968 static void mem_cgroup_put(struct mem_cgroup *memcg)
4969 {
4970         __mem_cgroup_put(memcg, 1);
4971 }
4972
4973 /*
4974  * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4975  */
4976 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4977 {
4978         if (!memcg->res.parent)
4979                 return NULL;
4980         return mem_cgroup_from_res_counter(memcg->res.parent, res);
4981 }
4982 EXPORT_SYMBOL(parent_mem_cgroup);
4983
4984 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4985 static void __init enable_swap_cgroup(void)
4986 {
4987         if (!mem_cgroup_disabled() && really_do_swap_account)
4988                 do_swap_account = 1;
4989 }
4990 #else
4991 static void __init enable_swap_cgroup(void)
4992 {
4993 }
4994 #endif
4995
4996 static int mem_cgroup_soft_limit_tree_init(void)
4997 {
4998         struct mem_cgroup_tree_per_node *rtpn;
4999         struct mem_cgroup_tree_per_zone *rtpz;
5000         int tmp, node, zone;
5001
5002         for_each_node_state(node, N_POSSIBLE) {
5003                 tmp = node;
5004                 if (!node_state(node, N_NORMAL_MEMORY))
5005                         tmp = -1;
5006                 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
5007                 if (!rtpn)
5008                         return 1;
5009
5010                 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5011
5012                 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5013                         rtpz = &rtpn->rb_tree_per_zone[zone];
5014                         rtpz->rb_root = RB_ROOT;
5015                         spin_lock_init(&rtpz->lock);
5016                 }
5017         }
5018         return 0;
5019 }
5020
5021 static struct cgroup_subsys_state * __ref
5022 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
5023 {
5024         struct mem_cgroup *memcg, *parent;
5025         long error = -ENOMEM;
5026         int node;
5027
5028         memcg = mem_cgroup_alloc();
5029         if (!memcg)
5030                 return ERR_PTR(error);
5031
5032         for_each_node_state(node, N_POSSIBLE)
5033                 if (alloc_mem_cgroup_per_zone_info(memcg, node))
5034                         goto free_out;
5035
5036         /* root ? */
5037         if (cont->parent == NULL) {
5038                 int cpu;
5039                 enable_swap_cgroup();
5040                 parent = NULL;
5041                 root_mem_cgroup = memcg;
5042                 if (mem_cgroup_soft_limit_tree_init())
5043                         goto free_out;
5044                 for_each_possible_cpu(cpu) {
5045                         struct memcg_stock_pcp *stock =
5046                                                 &per_cpu(memcg_stock, cpu);
5047                         INIT_WORK(&stock->work, drain_local_stock);
5048                 }
5049                 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5050         } else {
5051                 parent = mem_cgroup_from_cont(cont->parent);
5052                 memcg->use_hierarchy = parent->use_hierarchy;
5053                 memcg->oom_kill_disable = parent->oom_kill_disable;
5054         }
5055
5056         if (parent && parent->use_hierarchy) {
5057                 res_counter_init(&memcg->res, &parent->res);
5058                 res_counter_init(&memcg->memsw, &parent->memsw);
5059                 res_counter_init(&memcg->kmem, &parent->kmem);
5060                 /*
5061                  * We increment refcnt of the parent to ensure that we can
5062                  * safely access it on res_counter_charge/uncharge.
5063                  * This refcnt will be decremented when freeing this
5064                  * mem_cgroup(see mem_cgroup_put).
5065                  */
5066                 mem_cgroup_get(parent);
5067         } else {
5068                 res_counter_init(&memcg->res, NULL);
5069                 res_counter_init(&memcg->memsw, NULL);
5070                 res_counter_init(&memcg->kmem, NULL);
5071         }
5072         memcg->last_scanned_child = 0;
5073         memcg->last_scanned_node = MAX_NUMNODES;
5074         INIT_LIST_HEAD(&memcg->oom_notify);
5075
5076         if (parent)
5077                 memcg->swappiness = mem_cgroup_swappiness(parent);
5078         atomic_set(&memcg->refcnt, 1);
5079         memcg->move_charge_at_immigrate = 0;
5080         mutex_init(&memcg->thresholds_lock);
5081         return &memcg->css;
5082 free_out:
5083         __mem_cgroup_free(memcg);
5084         root_mem_cgroup = NULL;
5085         return ERR_PTR(error);
5086 }
5087
5088 static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
5089                                         struct cgroup *cont)
5090 {
5091         struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5092
5093         return mem_cgroup_force_empty(memcg, false);
5094 }
5095
5096 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
5097                                 struct cgroup *cont)
5098 {
5099         struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5100
5101         mem_cgroup_put(memcg);
5102 }
5103
5104 static int mem_cgroup_populate(struct cgroup_subsys *ss,
5105                                 struct cgroup *cont)
5106 {
5107         int ret;
5108
5109         ret = cgroup_add_files(cont, ss, mem_cgroup_files,
5110                                 ARRAY_SIZE(mem_cgroup_files));
5111
5112         if (!ret)
5113                 ret = register_memsw_files(cont, ss);
5114
5115         if (!ret)
5116                 ret = register_kmem_files(cont, ss);
5117
5118         return ret;
5119 }
5120
5121 #ifdef CONFIG_MMU
5122 /* Handlers for move charge at task migration. */
5123 #define PRECHARGE_COUNT_AT_ONCE 256
5124 static int mem_cgroup_do_precharge(unsigned long count)
5125 {
5126         int ret = 0;
5127         int batch_count = PRECHARGE_COUNT_AT_ONCE;
5128         struct mem_cgroup *memcg = mc.to;
5129
5130         if (mem_cgroup_is_root(memcg)) {
5131                 mc.precharge += count;
5132                 /* we don't need css_get for root */
5133                 return ret;
5134         }
5135         /* try to charge at once */
5136         if (count > 1) {
5137                 struct res_counter *dummy;
5138                 /*
5139                  * "memcg" cannot be under rmdir() because we've already checked
5140                  * by cgroup_lock_live_cgroup() that it is not removed and we
5141                  * are still under the same cgroup_mutex. So we can postpone
5142                  * css_get().
5143                  */
5144                 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
5145                         goto one_by_one;
5146                 if (do_swap_account && res_counter_charge(&memcg->memsw,
5147                                                 PAGE_SIZE * count, &dummy)) {
5148                         res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
5149                         goto one_by_one;
5150                 }
5151                 mc.precharge += count;
5152                 return ret;
5153         }
5154 one_by_one:
5155         /* fall back to one by one charge */
5156         while (count--) {
5157                 if (signal_pending(current)) {
5158                         ret = -EINTR;
5159                         break;
5160                 }
5161                 if (!batch_count--) {
5162                         batch_count = PRECHARGE_COUNT_AT_ONCE;
5163                         cond_resched();
5164                 }
5165                 ret = __mem_cgroup_try_charge(NULL,
5166                                         GFP_KERNEL, 1, &memcg, false);
5167                 if (ret || !memcg)
5168                         /* mem_cgroup_clear_mc() will do uncharge later */
5169                         return -ENOMEM;
5170                 mc.precharge++;
5171         }
5172         return ret;
5173 }
5174
5175 /**
5176  * is_target_pte_for_mc - check a pte whether it is valid for move charge
5177  * @vma: the vma the pte to be checked belongs
5178  * @addr: the address corresponding to the pte to be checked
5179  * @ptent: the pte to be checked
5180  * @target: the pointer the target page or swap ent will be stored(can be NULL)
5181  *
5182  * Returns
5183  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5184  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5185  *     move charge. if @target is not NULL, the page is stored in target->page
5186  *     with extra refcnt got(Callers should handle it).
5187  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5188  *     target for charge migration. if @target is not NULL, the entry is stored
5189  *     in target->ent.
5190  *
5191  * Called with pte lock held.
5192  */
5193 union mc_target {
5194         struct page     *page;
5195         swp_entry_t     ent;
5196 };
5197
5198 enum mc_target_type {
5199         MC_TARGET_NONE, /* not used */
5200         MC_TARGET_PAGE,
5201         MC_TARGET_SWAP,
5202 };
5203
5204 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5205                                                 unsigned long addr, pte_t ptent)
5206 {
5207         struct page *page = vm_normal_page(vma, addr, ptent);
5208
5209         if (!page || !page_mapped(page))
5210                 return NULL;
5211         if (PageAnon(page)) {
5212                 /* we don't move shared anon */
5213                 if (!move_anon() || page_mapcount(page) > 2)
5214                         return NULL;
5215         } else if (!move_file())
5216                 /* we ignore mapcount for file pages */
5217                 return NULL;
5218         if (!get_page_unless_zero(page))
5219                 return NULL;
5220
5221         return page;
5222 }
5223
5224 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5225                         unsigned long addr, pte_t ptent, swp_entry_t *entry)
5226 {
5227         int usage_count;
5228         struct page *page = NULL;
5229         swp_entry_t ent = pte_to_swp_entry(ptent);
5230
5231         if (!move_anon() || non_swap_entry(ent))
5232                 return NULL;
5233         usage_count = mem_cgroup_count_swap_user(ent, &page);
5234         if (usage_count > 1) { /* we don't move shared anon */
5235                 if (page)
5236                         put_page(page);
5237                 return NULL;
5238         }
5239         if (do_swap_account)
5240                 entry->val = ent.val;
5241
5242         return page;
5243 }
5244
5245 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5246                         unsigned long addr, pte_t ptent, swp_entry_t *entry)
5247 {
5248         struct page *page = NULL;
5249         struct inode *inode;
5250         struct address_space *mapping;
5251         pgoff_t pgoff;
5252
5253         if (!vma->vm_file) /* anonymous vma */
5254                 return NULL;
5255         if (!move_file())
5256                 return NULL;
5257
5258         inode = vma->vm_file->f_path.dentry->d_inode;
5259         mapping = vma->vm_file->f_mapping;
5260         if (pte_none(ptent))
5261                 pgoff = linear_page_index(vma, addr);
5262         else /* pte_file(ptent) is true */
5263                 pgoff = pte_to_pgoff(ptent);
5264
5265         /* page is moved even if it's not RSS of this task(page-faulted). */
5266         page = find_get_page(mapping, pgoff);
5267
5268 #ifdef CONFIG_SWAP
5269         /* shmem/tmpfs may report page out on swap: account for that too. */
5270         if (radix_tree_exceptional_entry(page)) {
5271                 swp_entry_t swap = radix_to_swp_entry(page);
5272                 if (do_swap_account)
5273                         *entry = swap;
5274                 page = find_get_page(&swapper_space, swap.val);
5275         }
5276 #endif
5277         return page;
5278 }
5279
5280 static int is_target_pte_for_mc(struct vm_area_struct *vma,
5281                 unsigned long addr, pte_t ptent, union mc_target *target)
5282 {
5283         struct page *page = NULL;
5284         struct page_cgroup *pc;
5285         int ret = 0;
5286         swp_entry_t ent = { .val = 0 };
5287
5288         if (pte_present(ptent))
5289                 page = mc_handle_present_pte(vma, addr, ptent);
5290         else if (is_swap_pte(ptent))
5291                 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5292         else if (pte_none(ptent) || pte_file(ptent))
5293                 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5294
5295         if (!page && !ent.val)
5296                 return 0;
5297         if (page) {
5298                 pc = lookup_page_cgroup(page);
5299                 /*
5300                  * Do only loose check w/o page_cgroup lock.
5301                  * mem_cgroup_move_account() checks the pc is valid or not under
5302                  * the lock.
5303                  */
5304                 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5305                         ret = MC_TARGET_PAGE;
5306                         if (target)
5307                                 target->page = page;
5308                 }
5309                 if (!ret || !target)
5310                         put_page(page);
5311         }
5312         /* There is a swap entry and a page doesn't exist or isn't charged */
5313         if (ent.val && !ret &&
5314                         css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
5315                 ret = MC_TARGET_SWAP;
5316                 if (target)
5317                         target->ent = ent;
5318         }
5319         return ret;
5320 }
5321
5322 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5323                                         unsigned long addr, unsigned long end,
5324                                         struct mm_walk *walk)
5325 {
5326         struct vm_area_struct *vma = walk->private;
5327         pte_t *pte;
5328         spinlock_t *ptl;
5329
5330         split_huge_page_pmd(walk->mm, pmd);
5331
5332         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5333         for (; addr != end; pte++, addr += PAGE_SIZE)
5334                 if (is_target_pte_for_mc(vma, addr, *pte, NULL))
5335                         mc.precharge++; /* increment precharge temporarily */
5336         pte_unmap_unlock(pte - 1, ptl);
5337         cond_resched();
5338
5339         return 0;
5340 }
5341
5342 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5343 {
5344         unsigned long precharge;
5345         struct vm_area_struct *vma;
5346
5347         down_read(&mm->mmap_sem);
5348         for (vma = mm->mmap; vma; vma = vma->vm_next) {
5349                 struct mm_walk mem_cgroup_count_precharge_walk = {
5350                         .pmd_entry = mem_cgroup_count_precharge_pte_range,
5351                         .mm = mm,
5352                         .private = vma,
5353                 };
5354                 if (is_vm_hugetlb_page(vma))
5355                         continue;
5356                 walk_page_range(vma->vm_start, vma->vm_end,
5357                                         &mem_cgroup_count_precharge_walk);
5358         }
5359         up_read(&mm->mmap_sem);
5360
5361         precharge = mc.precharge;
5362         mc.precharge = 0;
5363
5364         return precharge;
5365 }
5366
5367 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5368 {
5369         unsigned long precharge = mem_cgroup_count_precharge(mm);
5370
5371         VM_BUG_ON(mc.moving_task);
5372         mc.moving_task = current;
5373         return mem_cgroup_do_precharge(precharge);
5374 }
5375
5376 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5377 static void __mem_cgroup_clear_mc(void)
5378 {
5379         struct mem_cgroup *from = mc.from;
5380         struct mem_cgroup *to = mc.to;
5381
5382         /* we must uncharge all the leftover precharges from mc.to */
5383         if (mc.precharge) {
5384                 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
5385                 mc.precharge = 0;
5386         }
5387         /*
5388          * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5389          * we must uncharge here.
5390          */
5391         if (mc.moved_charge) {
5392                 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5393                 mc.moved_charge = 0;
5394         }
5395         /* we must fixup refcnts and charges */
5396         if (mc.moved_swap) {
5397                 /* uncharge swap account from the old cgroup */
5398                 if (!mem_cgroup_is_root(mc.from))
5399                         res_counter_uncharge(&mc.from->memsw,
5400                                                 PAGE_SIZE * mc.moved_swap);
5401                 __mem_cgroup_put(mc.from, mc.moved_swap);
5402
5403                 if (!mem_cgroup_is_root(mc.to)) {
5404                         /*
5405                          * we charged both to->res and to->memsw, so we should
5406                          * uncharge to->res.
5407                          */
5408                         res_counter_uncharge(&mc.to->res,
5409                                                 PAGE_SIZE * mc.moved_swap);
5410                 }
5411                 /* we've already done mem_cgroup_get(mc.to) */
5412                 mc.moved_swap = 0;
5413         }
5414         memcg_oom_recover(from);
5415         memcg_oom_recover(to);
5416         wake_up_all(&mc.waitq);
5417 }
5418
5419 static void mem_cgroup_clear_mc(void)
5420 {
5421         struct mem_cgroup *from = mc.from;
5422
5423         /*
5424          * we must clear moving_task before waking up waiters at the end of
5425          * task migration.
5426          */
5427         mc.moving_task = NULL;
5428         __mem_cgroup_clear_mc();
5429         spin_lock(&mc.lock);
5430         mc.from = NULL;
5431         mc.to = NULL;
5432         spin_unlock(&mc.lock);
5433         mem_cgroup_end_move(from);
5434 }
5435
5436 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5437                                 struct cgroup *cgroup,
5438                                 struct task_struct *p)
5439 {
5440         int ret = 0;
5441         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5442
5443         if (memcg->move_charge_at_immigrate) {
5444                 struct mm_struct *mm;
5445                 struct mem_cgroup *from = mem_cgroup_from_task(p);
5446
5447                 VM_BUG_ON(from == memcg);
5448
5449                 mm = get_task_mm(p);
5450                 if (!mm)
5451                         return 0;
5452                 /* We move charges only when we move a owner of the mm */
5453                 if (mm->owner == p) {
5454                         VM_BUG_ON(mc.from);
5455                         VM_BUG_ON(mc.to);
5456                         VM_BUG_ON(mc.precharge);
5457                         VM_BUG_ON(mc.moved_charge);
5458                         VM_BUG_ON(mc.moved_swap);
5459                         mem_cgroup_start_move(from);
5460                         spin_lock(&mc.lock);
5461                         mc.from = from;
5462                         mc.to = memcg;
5463                         spin_unlock(&mc.lock);
5464                         /* We set mc.moving_task later */
5465
5466                         ret = mem_cgroup_precharge_mc(mm);
5467                         if (ret)
5468                                 mem_cgroup_clear_mc();
5469                 }
5470                 mmput(mm);
5471         }
5472         return ret;
5473 }
5474
5475 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5476                                 struct cgroup *cgroup,
5477                                 struct task_struct *p)
5478 {
5479         mem_cgroup_clear_mc();
5480 }
5481
5482 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5483                                 unsigned long addr, unsigned long end,
5484                                 struct mm_walk *walk)
5485 {
5486         int ret = 0;
5487         struct vm_area_struct *vma = walk->private;
5488         pte_t *pte;
5489         spinlock_t *ptl;
5490
5491         split_huge_page_pmd(walk->mm, pmd);
5492 retry:
5493         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5494         for (; addr != end; addr += PAGE_SIZE) {
5495                 pte_t ptent = *(pte++);
5496                 union mc_target target;
5497                 int type;
5498                 struct page *page;
5499                 struct page_cgroup *pc;
5500                 swp_entry_t ent;
5501
5502                 if (!mc.precharge)
5503                         break;
5504
5505                 type = is_target_pte_for_mc(vma, addr, ptent, &target);
5506                 switch (type) {
5507                 case MC_TARGET_PAGE:
5508                         page = target.page;
5509                         if (isolate_lru_page(page))
5510                                 goto put;
5511                         pc = lookup_page_cgroup(page);
5512                         if (!mem_cgroup_move_account(page, 1, pc,
5513                                                      mc.from, mc.to, false)) {
5514                                 mc.precharge--;
5515                                 /* we uncharge from mc.from later. */
5516                                 mc.moved_charge++;
5517                         }
5518                         putback_lru_page(page);
5519 put:                    /* is_target_pte_for_mc() gets the page */
5520                         put_page(page);
5521                         break;
5522                 case MC_TARGET_SWAP:
5523                         ent = target.ent;
5524                         if (!mem_cgroup_move_swap_account(ent,
5525                                                 mc.from, mc.to, false)) {
5526                                 mc.precharge--;
5527                                 /* we fixup refcnts and charges later. */
5528                                 mc.moved_swap++;
5529                         }
5530                         break;
5531                 default:
5532                         break;
5533                 }
5534         }
5535         pte_unmap_unlock(pte - 1, ptl);
5536         cond_resched();
5537
5538         if (addr != end) {
5539                 /*
5540                  * We have consumed all precharges we got in can_attach().
5541                  * We try charge one by one, but don't do any additional
5542                  * charges to mc.to if we have failed in charge once in attach()
5543                  * phase.
5544                  */
5545                 ret = mem_cgroup_do_precharge(1);
5546                 if (!ret)
5547                         goto retry;
5548         }
5549
5550         return ret;
5551 }
5552
5553 static void mem_cgroup_move_charge(struct mm_struct *mm)
5554 {
5555         struct vm_area_struct *vma;
5556
5557         lru_add_drain_all();
5558 retry:
5559         if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5560                 /*
5561                  * Someone who are holding the mmap_sem might be waiting in
5562                  * waitq. So we cancel all extra charges, wake up all waiters,
5563                  * and retry. Because we cancel precharges, we might not be able
5564                  * to move enough charges, but moving charge is a best-effort
5565                  * feature anyway, so it wouldn't be a big problem.
5566                  */
5567                 __mem_cgroup_clear_mc();
5568                 cond_resched();
5569                 goto retry;
5570         }
5571         for (vma = mm->mmap; vma; vma = vma->vm_next) {
5572                 int ret;
5573                 struct mm_walk mem_cgroup_move_charge_walk = {
5574                         .pmd_entry = mem_cgroup_move_charge_pte_range,
5575                         .mm = mm,
5576                         .private = vma,
5577                 };
5578                 if (is_vm_hugetlb_page(vma))
5579                         continue;
5580                 ret = walk_page_range(vma->vm_start, vma->vm_end,
5581                                                 &mem_cgroup_move_charge_walk);
5582                 if (ret)
5583                         /*
5584                          * means we have consumed all precharges and failed in
5585                          * doing additional charge. Just abandon here.
5586                          */
5587                         break;
5588         }
5589         up_read(&mm->mmap_sem);
5590 }
5591
5592 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5593                                 struct cgroup *cont,
5594                                 struct cgroup *old_cont,
5595                                 struct task_struct *p)
5596 {
5597         struct mm_struct *mm = get_task_mm(p);
5598
5599         if (mm) {
5600                 if (mc.to)
5601                         mem_cgroup_move_charge(mm);
5602                 put_swap_token(mm);
5603                 mmput(mm);
5604         }
5605         if (mc.to)
5606                 mem_cgroup_clear_mc();
5607 }
5608 #else   /* !CONFIG_MMU */
5609 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5610                                 struct cgroup *cgroup,
5611                                 struct task_struct *p)
5612 {
5613         return 0;
5614 }
5615 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5616                                 struct cgroup *cgroup,
5617                                 struct task_struct *p)
5618 {
5619 }
5620 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5621                                 struct cgroup *cont,
5622                                 struct cgroup *old_cont,
5623                                 struct task_struct *p)
5624 {
5625 }
5626 #endif
5627
5628 struct cgroup_subsys mem_cgroup_subsys = {
5629         .name = "memory",
5630         .subsys_id = mem_cgroup_subsys_id,
5631         .create = mem_cgroup_create,
5632         .pre_destroy = mem_cgroup_pre_destroy,
5633         .destroy = mem_cgroup_destroy,
5634         .populate = mem_cgroup_populate,
5635         .can_attach = mem_cgroup_can_attach,
5636         .cancel_attach = mem_cgroup_cancel_attach,
5637         .attach = mem_cgroup_move_task,
5638         .early_init = 0,
5639         .use_id = 1,
5640 };
5641
5642 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5643 static int __init enable_swap_account(char *s)
5644 {
5645         /* consider enabled if no parameter or 1 is given */
5646         if (!strcmp(s, "1"))
5647                 really_do_swap_account = 1;
5648         else if (!strcmp(s, "0"))
5649                 really_do_swap_account = 0;
5650         return 1;
5651 }
5652 __setup("swapaccount=", enable_swap_account);
5653
5654 #endif