1974fc02c4d0e68244b342438538e9b580e2a6eb
[cascardo/linux.git] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/pfn_t.h>
54 #include <linux/writeback.h>
55 #include <linux/memcontrol.h>
56 #include <linux/mmu_notifier.h>
57 #include <linux/kallsyms.h>
58 #include <linux/swapops.h>
59 #include <linux/elf.h>
60 #include <linux/gfp.h>
61 #include <linux/migrate.h>
62 #include <linux/string.h>
63 #include <linux/dma-debug.h>
64 #include <linux/debugfs.h>
65 #include <linux/userfaultfd_k.h>
66
67 #include <asm/io.h>
68 #include <asm/pgalloc.h>
69 #include <asm/uaccess.h>
70 #include <asm/tlb.h>
71 #include <asm/tlbflush.h>
72 #include <asm/pgtable.h>
73
74 #include "internal.h"
75
76 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
77 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
78 #endif
79
80 #ifndef CONFIG_NEED_MULTIPLE_NODES
81 /* use the per-pgdat data instead for discontigmem - mbligh */
82 unsigned long max_mapnr;
83 struct page *mem_map;
84
85 EXPORT_SYMBOL(max_mapnr);
86 EXPORT_SYMBOL(mem_map);
87 #endif
88
89 /*
90  * A number of key systems in x86 including ioremap() rely on the assumption
91  * that high_memory defines the upper bound on direct map memory, then end
92  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
93  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
94  * and ZONE_HIGHMEM.
95  */
96 void * high_memory;
97
98 EXPORT_SYMBOL(high_memory);
99
100 /*
101  * Randomize the address space (stacks, mmaps, brk, etc.).
102  *
103  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
104  *   as ancient (libc5 based) binaries can segfault. )
105  */
106 int randomize_va_space __read_mostly =
107 #ifdef CONFIG_COMPAT_BRK
108                                         1;
109 #else
110                                         2;
111 #endif
112
113 static int __init disable_randmaps(char *s)
114 {
115         randomize_va_space = 0;
116         return 1;
117 }
118 __setup("norandmaps", disable_randmaps);
119
120 unsigned long zero_pfn __read_mostly;
121 unsigned long highest_memmap_pfn __read_mostly;
122
123 EXPORT_SYMBOL(zero_pfn);
124
125 /*
126  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
127  */
128 static int __init init_zero_pfn(void)
129 {
130         zero_pfn = page_to_pfn(ZERO_PAGE(0));
131         return 0;
132 }
133 core_initcall(init_zero_pfn);
134
135
136 #if defined(SPLIT_RSS_COUNTING)
137
138 void sync_mm_rss(struct mm_struct *mm)
139 {
140         int i;
141
142         for (i = 0; i < NR_MM_COUNTERS; i++) {
143                 if (current->rss_stat.count[i]) {
144                         add_mm_counter(mm, i, current->rss_stat.count[i]);
145                         current->rss_stat.count[i] = 0;
146                 }
147         }
148         current->rss_stat.events = 0;
149 }
150
151 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
152 {
153         struct task_struct *task = current;
154
155         if (likely(task->mm == mm))
156                 task->rss_stat.count[member] += val;
157         else
158                 add_mm_counter(mm, member, val);
159 }
160 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
161 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
162
163 /* sync counter once per 64 page faults */
164 #define TASK_RSS_EVENTS_THRESH  (64)
165 static void check_sync_rss_stat(struct task_struct *task)
166 {
167         if (unlikely(task != current))
168                 return;
169         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
170                 sync_mm_rss(task->mm);
171 }
172 #else /* SPLIT_RSS_COUNTING */
173
174 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
175 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
176
177 static void check_sync_rss_stat(struct task_struct *task)
178 {
179 }
180
181 #endif /* SPLIT_RSS_COUNTING */
182
183 #ifdef HAVE_GENERIC_MMU_GATHER
184
185 static bool tlb_next_batch(struct mmu_gather *tlb)
186 {
187         struct mmu_gather_batch *batch;
188
189         batch = tlb->active;
190         if (batch->next) {
191                 tlb->active = batch->next;
192                 return true;
193         }
194
195         if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
196                 return false;
197
198         batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
199         if (!batch)
200                 return false;
201
202         tlb->batch_count++;
203         batch->next = NULL;
204         batch->nr   = 0;
205         batch->max  = MAX_GATHER_BATCH;
206
207         tlb->active->next = batch;
208         tlb->active = batch;
209
210         return true;
211 }
212
213 /* tlb_gather_mmu
214  *      Called to initialize an (on-stack) mmu_gather structure for page-table
215  *      tear-down from @mm. The @fullmm argument is used when @mm is without
216  *      users and we're going to destroy the full address space (exit/execve).
217  */
218 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
219 {
220         tlb->mm = mm;
221
222         /* Is it from 0 to ~0? */
223         tlb->fullmm     = !(start | (end+1));
224         tlb->need_flush_all = 0;
225         tlb->local.next = NULL;
226         tlb->local.nr   = 0;
227         tlb->local.max  = ARRAY_SIZE(tlb->__pages);
228         tlb->active     = &tlb->local;
229         tlb->batch_count = 0;
230
231 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
232         tlb->batch = NULL;
233 #endif
234
235         __tlb_reset_range(tlb);
236 }
237
238 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
239 {
240         if (!tlb->end)
241                 return;
242
243         tlb_flush(tlb);
244         mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
245 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
246         tlb_table_flush(tlb);
247 #endif
248         __tlb_reset_range(tlb);
249 }
250
251 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
252 {
253         struct mmu_gather_batch *batch;
254
255         for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
256                 free_pages_and_swap_cache(batch->pages, batch->nr);
257                 batch->nr = 0;
258         }
259         tlb->active = &tlb->local;
260 }
261
262 void tlb_flush_mmu(struct mmu_gather *tlb)
263 {
264         tlb_flush_mmu_tlbonly(tlb);
265         tlb_flush_mmu_free(tlb);
266 }
267
268 /* tlb_finish_mmu
269  *      Called at the end of the shootdown operation to free up any resources
270  *      that were required.
271  */
272 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
273 {
274         struct mmu_gather_batch *batch, *next;
275
276         tlb_flush_mmu(tlb);
277
278         /* keep the page table cache within bounds */
279         check_pgt_cache();
280
281         for (batch = tlb->local.next; batch; batch = next) {
282                 next = batch->next;
283                 free_pages((unsigned long)batch, 0);
284         }
285         tlb->local.next = NULL;
286 }
287
288 /* __tlb_remove_page
289  *      Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
290  *      handling the additional races in SMP caused by other CPUs caching valid
291  *      mappings in their TLBs. Returns the number of free page slots left.
292  *      When out of page slots we must call tlb_flush_mmu().
293  */
294 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
295 {
296         struct mmu_gather_batch *batch;
297
298         VM_BUG_ON(!tlb->end);
299
300         batch = tlb->active;
301         batch->pages[batch->nr++] = page;
302         if (batch->nr == batch->max) {
303                 if (!tlb_next_batch(tlb))
304                         return 0;
305                 batch = tlb->active;
306         }
307         VM_BUG_ON_PAGE(batch->nr > batch->max, page);
308
309         return batch->max - batch->nr;
310 }
311
312 #endif /* HAVE_GENERIC_MMU_GATHER */
313
314 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
315
316 /*
317  * See the comment near struct mmu_table_batch.
318  */
319
320 static void tlb_remove_table_smp_sync(void *arg)
321 {
322         /* Simply deliver the interrupt */
323 }
324
325 static void tlb_remove_table_one(void *table)
326 {
327         /*
328          * This isn't an RCU grace period and hence the page-tables cannot be
329          * assumed to be actually RCU-freed.
330          *
331          * It is however sufficient for software page-table walkers that rely on
332          * IRQ disabling. See the comment near struct mmu_table_batch.
333          */
334         smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
335         __tlb_remove_table(table);
336 }
337
338 static void tlb_remove_table_rcu(struct rcu_head *head)
339 {
340         struct mmu_table_batch *batch;
341         int i;
342
343         batch = container_of(head, struct mmu_table_batch, rcu);
344
345         for (i = 0; i < batch->nr; i++)
346                 __tlb_remove_table(batch->tables[i]);
347
348         free_page((unsigned long)batch);
349 }
350
351 void tlb_table_flush(struct mmu_gather *tlb)
352 {
353         struct mmu_table_batch **batch = &tlb->batch;
354
355         if (*batch) {
356                 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
357                 *batch = NULL;
358         }
359 }
360
361 void tlb_remove_table(struct mmu_gather *tlb, void *table)
362 {
363         struct mmu_table_batch **batch = &tlb->batch;
364
365         /*
366          * When there's less then two users of this mm there cannot be a
367          * concurrent page-table walk.
368          */
369         if (atomic_read(&tlb->mm->mm_users) < 2) {
370                 __tlb_remove_table(table);
371                 return;
372         }
373
374         if (*batch == NULL) {
375                 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
376                 if (*batch == NULL) {
377                         tlb_remove_table_one(table);
378                         return;
379                 }
380                 (*batch)->nr = 0;
381         }
382         (*batch)->tables[(*batch)->nr++] = table;
383         if ((*batch)->nr == MAX_TABLE_BATCH)
384                 tlb_table_flush(tlb);
385 }
386
387 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
388
389 /*
390  * Note: this doesn't free the actual pages themselves. That
391  * has been handled earlier when unmapping all the memory regions.
392  */
393 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
394                            unsigned long addr)
395 {
396         pgtable_t token = pmd_pgtable(*pmd);
397         pmd_clear(pmd);
398         pte_free_tlb(tlb, token, addr);
399         atomic_long_dec(&tlb->mm->nr_ptes);
400 }
401
402 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
403                                 unsigned long addr, unsigned long end,
404                                 unsigned long floor, unsigned long ceiling)
405 {
406         pmd_t *pmd;
407         unsigned long next;
408         unsigned long start;
409
410         start = addr;
411         pmd = pmd_offset(pud, addr);
412         do {
413                 next = pmd_addr_end(addr, end);
414                 if (pmd_none_or_clear_bad(pmd))
415                         continue;
416                 free_pte_range(tlb, pmd, addr);
417         } while (pmd++, addr = next, addr != end);
418
419         start &= PUD_MASK;
420         if (start < floor)
421                 return;
422         if (ceiling) {
423                 ceiling &= PUD_MASK;
424                 if (!ceiling)
425                         return;
426         }
427         if (end - 1 > ceiling - 1)
428                 return;
429
430         pmd = pmd_offset(pud, start);
431         pud_clear(pud);
432         pmd_free_tlb(tlb, pmd, start);
433         mm_dec_nr_pmds(tlb->mm);
434 }
435
436 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
437                                 unsigned long addr, unsigned long end,
438                                 unsigned long floor, unsigned long ceiling)
439 {
440         pud_t *pud;
441         unsigned long next;
442         unsigned long start;
443
444         start = addr;
445         pud = pud_offset(pgd, addr);
446         do {
447                 next = pud_addr_end(addr, end);
448                 if (pud_none_or_clear_bad(pud))
449                         continue;
450                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
451         } while (pud++, addr = next, addr != end);
452
453         start &= PGDIR_MASK;
454         if (start < floor)
455                 return;
456         if (ceiling) {
457                 ceiling &= PGDIR_MASK;
458                 if (!ceiling)
459                         return;
460         }
461         if (end - 1 > ceiling - 1)
462                 return;
463
464         pud = pud_offset(pgd, start);
465         pgd_clear(pgd);
466         pud_free_tlb(tlb, pud, start);
467 }
468
469 /*
470  * This function frees user-level page tables of a process.
471  */
472 void free_pgd_range(struct mmu_gather *tlb,
473                         unsigned long addr, unsigned long end,
474                         unsigned long floor, unsigned long ceiling)
475 {
476         pgd_t *pgd;
477         unsigned long next;
478
479         /*
480          * The next few lines have given us lots of grief...
481          *
482          * Why are we testing PMD* at this top level?  Because often
483          * there will be no work to do at all, and we'd prefer not to
484          * go all the way down to the bottom just to discover that.
485          *
486          * Why all these "- 1"s?  Because 0 represents both the bottom
487          * of the address space and the top of it (using -1 for the
488          * top wouldn't help much: the masks would do the wrong thing).
489          * The rule is that addr 0 and floor 0 refer to the bottom of
490          * the address space, but end 0 and ceiling 0 refer to the top
491          * Comparisons need to use "end - 1" and "ceiling - 1" (though
492          * that end 0 case should be mythical).
493          *
494          * Wherever addr is brought up or ceiling brought down, we must
495          * be careful to reject "the opposite 0" before it confuses the
496          * subsequent tests.  But what about where end is brought down
497          * by PMD_SIZE below? no, end can't go down to 0 there.
498          *
499          * Whereas we round start (addr) and ceiling down, by different
500          * masks at different levels, in order to test whether a table
501          * now has no other vmas using it, so can be freed, we don't
502          * bother to round floor or end up - the tests don't need that.
503          */
504
505         addr &= PMD_MASK;
506         if (addr < floor) {
507                 addr += PMD_SIZE;
508                 if (!addr)
509                         return;
510         }
511         if (ceiling) {
512                 ceiling &= PMD_MASK;
513                 if (!ceiling)
514                         return;
515         }
516         if (end - 1 > ceiling - 1)
517                 end -= PMD_SIZE;
518         if (addr > end - 1)
519                 return;
520
521         pgd = pgd_offset(tlb->mm, addr);
522         do {
523                 next = pgd_addr_end(addr, end);
524                 if (pgd_none_or_clear_bad(pgd))
525                         continue;
526                 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
527         } while (pgd++, addr = next, addr != end);
528 }
529
530 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
531                 unsigned long floor, unsigned long ceiling)
532 {
533         while (vma) {
534                 struct vm_area_struct *next = vma->vm_next;
535                 unsigned long addr = vma->vm_start;
536
537                 /*
538                  * Hide vma from rmap and truncate_pagecache before freeing
539                  * pgtables
540                  */
541                 unlink_anon_vmas(vma);
542                 unlink_file_vma(vma);
543
544                 if (is_vm_hugetlb_page(vma)) {
545                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
546                                 floor, next? next->vm_start: ceiling);
547                 } else {
548                         /*
549                          * Optimization: gather nearby vmas into one call down
550                          */
551                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
552                                && !is_vm_hugetlb_page(next)) {
553                                 vma = next;
554                                 next = vma->vm_next;
555                                 unlink_anon_vmas(vma);
556                                 unlink_file_vma(vma);
557                         }
558                         free_pgd_range(tlb, addr, vma->vm_end,
559                                 floor, next? next->vm_start: ceiling);
560                 }
561                 vma = next;
562         }
563 }
564
565 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
566 {
567         spinlock_t *ptl;
568         pgtable_t new = pte_alloc_one(mm, address);
569         if (!new)
570                 return -ENOMEM;
571
572         /*
573          * Ensure all pte setup (eg. pte page lock and page clearing) are
574          * visible before the pte is made visible to other CPUs by being
575          * put into page tables.
576          *
577          * The other side of the story is the pointer chasing in the page
578          * table walking code (when walking the page table without locking;
579          * ie. most of the time). Fortunately, these data accesses consist
580          * of a chain of data-dependent loads, meaning most CPUs (alpha
581          * being the notable exception) will already guarantee loads are
582          * seen in-order. See the alpha page table accessors for the
583          * smp_read_barrier_depends() barriers in page table walking code.
584          */
585         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
586
587         ptl = pmd_lock(mm, pmd);
588         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
589                 atomic_long_inc(&mm->nr_ptes);
590                 pmd_populate(mm, pmd, new);
591                 new = NULL;
592         }
593         spin_unlock(ptl);
594         if (new)
595                 pte_free(mm, new);
596         return 0;
597 }
598
599 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
600 {
601         pte_t *new = pte_alloc_one_kernel(&init_mm, address);
602         if (!new)
603                 return -ENOMEM;
604
605         smp_wmb(); /* See comment in __pte_alloc */
606
607         spin_lock(&init_mm.page_table_lock);
608         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
609                 pmd_populate_kernel(&init_mm, pmd, new);
610                 new = NULL;
611         }
612         spin_unlock(&init_mm.page_table_lock);
613         if (new)
614                 pte_free_kernel(&init_mm, new);
615         return 0;
616 }
617
618 static inline void init_rss_vec(int *rss)
619 {
620         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
621 }
622
623 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
624 {
625         int i;
626
627         if (current->mm == mm)
628                 sync_mm_rss(mm);
629         for (i = 0; i < NR_MM_COUNTERS; i++)
630                 if (rss[i])
631                         add_mm_counter(mm, i, rss[i]);
632 }
633
634 /*
635  * This function is called to print an error when a bad pte
636  * is found. For example, we might have a PFN-mapped pte in
637  * a region that doesn't allow it.
638  *
639  * The calling function must still handle the error.
640  */
641 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
642                           pte_t pte, struct page *page)
643 {
644         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
645         pud_t *pud = pud_offset(pgd, addr);
646         pmd_t *pmd = pmd_offset(pud, addr);
647         struct address_space *mapping;
648         pgoff_t index;
649         static unsigned long resume;
650         static unsigned long nr_shown;
651         static unsigned long nr_unshown;
652
653         /*
654          * Allow a burst of 60 reports, then keep quiet for that minute;
655          * or allow a steady drip of one report per second.
656          */
657         if (nr_shown == 60) {
658                 if (time_before(jiffies, resume)) {
659                         nr_unshown++;
660                         return;
661                 }
662                 if (nr_unshown) {
663                         printk(KERN_ALERT
664                                 "BUG: Bad page map: %lu messages suppressed\n",
665                                 nr_unshown);
666                         nr_unshown = 0;
667                 }
668                 nr_shown = 0;
669         }
670         if (nr_shown++ == 0)
671                 resume = jiffies + 60 * HZ;
672
673         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
674         index = linear_page_index(vma, addr);
675
676         printk(KERN_ALERT
677                 "BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
678                 current->comm,
679                 (long long)pte_val(pte), (long long)pmd_val(*pmd));
680         if (page)
681                 dump_page(page, "bad pte");
682         printk(KERN_ALERT
683                 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
684                 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
685         /*
686          * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
687          */
688         pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
689                  vma->vm_file,
690                  vma->vm_ops ? vma->vm_ops->fault : NULL,
691                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
692                  mapping ? mapping->a_ops->readpage : NULL);
693         dump_stack();
694         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
695 }
696
697 /*
698  * vm_normal_page -- This function gets the "struct page" associated with a pte.
699  *
700  * "Special" mappings do not wish to be associated with a "struct page" (either
701  * it doesn't exist, or it exists but they don't want to touch it). In this
702  * case, NULL is returned here. "Normal" mappings do have a struct page.
703  *
704  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
705  * pte bit, in which case this function is trivial. Secondly, an architecture
706  * may not have a spare pte bit, which requires a more complicated scheme,
707  * described below.
708  *
709  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
710  * special mapping (even if there are underlying and valid "struct pages").
711  * COWed pages of a VM_PFNMAP are always normal.
712  *
713  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
714  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
715  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
716  * mapping will always honor the rule
717  *
718  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
719  *
720  * And for normal mappings this is false.
721  *
722  * This restricts such mappings to be a linear translation from virtual address
723  * to pfn. To get around this restriction, we allow arbitrary mappings so long
724  * as the vma is not a COW mapping; in that case, we know that all ptes are
725  * special (because none can have been COWed).
726  *
727  *
728  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
729  *
730  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
731  * page" backing, however the difference is that _all_ pages with a struct
732  * page (that is, those where pfn_valid is true) are refcounted and considered
733  * normal pages by the VM. The disadvantage is that pages are refcounted
734  * (which can be slower and simply not an option for some PFNMAP users). The
735  * advantage is that we don't have to follow the strict linearity rule of
736  * PFNMAP mappings in order to support COWable mappings.
737  *
738  */
739 #ifdef __HAVE_ARCH_PTE_SPECIAL
740 # define HAVE_PTE_SPECIAL 1
741 #else
742 # define HAVE_PTE_SPECIAL 0
743 #endif
744 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
745                                 pte_t pte)
746 {
747         unsigned long pfn = pte_pfn(pte);
748
749         if (HAVE_PTE_SPECIAL) {
750                 if (likely(!pte_special(pte)))
751                         goto check_pfn;
752                 if (vma->vm_ops && vma->vm_ops->find_special_page)
753                         return vma->vm_ops->find_special_page(vma, addr);
754                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
755                         return NULL;
756                 if (!is_zero_pfn(pfn))
757                         print_bad_pte(vma, addr, pte, NULL);
758                 return NULL;
759         }
760
761         /* !HAVE_PTE_SPECIAL case follows: */
762
763         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
764                 if (vma->vm_flags & VM_MIXEDMAP) {
765                         if (!pfn_valid(pfn))
766                                 return NULL;
767                         goto out;
768                 } else {
769                         unsigned long off;
770                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
771                         if (pfn == vma->vm_pgoff + off)
772                                 return NULL;
773                         if (!is_cow_mapping(vma->vm_flags))
774                                 return NULL;
775                 }
776         }
777
778         if (is_zero_pfn(pfn))
779                 return NULL;
780 check_pfn:
781         if (unlikely(pfn > highest_memmap_pfn)) {
782                 print_bad_pte(vma, addr, pte, NULL);
783                 return NULL;
784         }
785
786         /*
787          * NOTE! We still have PageReserved() pages in the page tables.
788          * eg. VDSO mappings can cause them to exist.
789          */
790 out:
791         return pfn_to_page(pfn);
792 }
793
794 /*
795  * copy one vm_area from one task to the other. Assumes the page tables
796  * already present in the new task to be cleared in the whole range
797  * covered by this vma.
798  */
799
800 static inline unsigned long
801 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
802                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
803                 unsigned long addr, int *rss)
804 {
805         unsigned long vm_flags = vma->vm_flags;
806         pte_t pte = *src_pte;
807         struct page *page;
808
809         /* pte contains position in swap or file, so copy. */
810         if (unlikely(!pte_present(pte))) {
811                 swp_entry_t entry = pte_to_swp_entry(pte);
812
813                 if (likely(!non_swap_entry(entry))) {
814                         if (swap_duplicate(entry) < 0)
815                                 return entry.val;
816
817                         /* make sure dst_mm is on swapoff's mmlist. */
818                         if (unlikely(list_empty(&dst_mm->mmlist))) {
819                                 spin_lock(&mmlist_lock);
820                                 if (list_empty(&dst_mm->mmlist))
821                                         list_add(&dst_mm->mmlist,
822                                                         &src_mm->mmlist);
823                                 spin_unlock(&mmlist_lock);
824                         }
825                         rss[MM_SWAPENTS]++;
826                 } else if (is_migration_entry(entry)) {
827                         page = migration_entry_to_page(entry);
828
829                         rss[mm_counter(page)]++;
830
831                         if (is_write_migration_entry(entry) &&
832                                         is_cow_mapping(vm_flags)) {
833                                 /*
834                                  * COW mappings require pages in both
835                                  * parent and child to be set to read.
836                                  */
837                                 make_migration_entry_read(&entry);
838                                 pte = swp_entry_to_pte(entry);
839                                 if (pte_swp_soft_dirty(*src_pte))
840                                         pte = pte_swp_mksoft_dirty(pte);
841                                 set_pte_at(src_mm, addr, src_pte, pte);
842                         }
843                 }
844                 goto out_set_pte;
845         }
846
847         /*
848          * If it's a COW mapping, write protect it both
849          * in the parent and the child
850          */
851         if (is_cow_mapping(vm_flags)) {
852                 ptep_set_wrprotect(src_mm, addr, src_pte);
853                 pte = pte_wrprotect(pte);
854         }
855
856         /*
857          * If it's a shared mapping, mark it clean in
858          * the child
859          */
860         if (vm_flags & VM_SHARED)
861                 pte = pte_mkclean(pte);
862         pte = pte_mkold(pte);
863
864         page = vm_normal_page(vma, addr, pte);
865         if (page) {
866                 get_page(page);
867                 page_dup_rmap(page, false);
868                 rss[mm_counter(page)]++;
869         }
870
871 out_set_pte:
872         set_pte_at(dst_mm, addr, dst_pte, pte);
873         return 0;
874 }
875
876 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
877                    pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
878                    unsigned long addr, unsigned long end)
879 {
880         pte_t *orig_src_pte, *orig_dst_pte;
881         pte_t *src_pte, *dst_pte;
882         spinlock_t *src_ptl, *dst_ptl;
883         int progress = 0;
884         int rss[NR_MM_COUNTERS];
885         swp_entry_t entry = (swp_entry_t){0};
886
887 again:
888         init_rss_vec(rss);
889
890         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
891         if (!dst_pte)
892                 return -ENOMEM;
893         src_pte = pte_offset_map(src_pmd, addr);
894         src_ptl = pte_lockptr(src_mm, src_pmd);
895         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
896         orig_src_pte = src_pte;
897         orig_dst_pte = dst_pte;
898         arch_enter_lazy_mmu_mode();
899
900         do {
901                 /*
902                  * We are holding two locks at this point - either of them
903                  * could generate latencies in another task on another CPU.
904                  */
905                 if (progress >= 32) {
906                         progress = 0;
907                         if (need_resched() ||
908                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
909                                 break;
910                 }
911                 if (pte_none(*src_pte)) {
912                         progress++;
913                         continue;
914                 }
915                 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
916                                                         vma, addr, rss);
917                 if (entry.val)
918                         break;
919                 progress += 8;
920         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
921
922         arch_leave_lazy_mmu_mode();
923         spin_unlock(src_ptl);
924         pte_unmap(orig_src_pte);
925         add_mm_rss_vec(dst_mm, rss);
926         pte_unmap_unlock(orig_dst_pte, dst_ptl);
927         cond_resched();
928
929         if (entry.val) {
930                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
931                         return -ENOMEM;
932                 progress = 0;
933         }
934         if (addr != end)
935                 goto again;
936         return 0;
937 }
938
939 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
940                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
941                 unsigned long addr, unsigned long end)
942 {
943         pmd_t *src_pmd, *dst_pmd;
944         unsigned long next;
945
946         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
947         if (!dst_pmd)
948                 return -ENOMEM;
949         src_pmd = pmd_offset(src_pud, addr);
950         do {
951                 next = pmd_addr_end(addr, end);
952                 if (pmd_trans_huge(*src_pmd) || pmd_devmap(*src_pmd)) {
953                         int err;
954                         VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
955                         err = copy_huge_pmd(dst_mm, src_mm,
956                                             dst_pmd, src_pmd, addr, vma);
957                         if (err == -ENOMEM)
958                                 return -ENOMEM;
959                         if (!err)
960                                 continue;
961                         /* fall through */
962                 }
963                 if (pmd_none_or_clear_bad(src_pmd))
964                         continue;
965                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
966                                                 vma, addr, next))
967                         return -ENOMEM;
968         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
969         return 0;
970 }
971
972 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
973                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
974                 unsigned long addr, unsigned long end)
975 {
976         pud_t *src_pud, *dst_pud;
977         unsigned long next;
978
979         dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
980         if (!dst_pud)
981                 return -ENOMEM;
982         src_pud = pud_offset(src_pgd, addr);
983         do {
984                 next = pud_addr_end(addr, end);
985                 if (pud_none_or_clear_bad(src_pud))
986                         continue;
987                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
988                                                 vma, addr, next))
989                         return -ENOMEM;
990         } while (dst_pud++, src_pud++, addr = next, addr != end);
991         return 0;
992 }
993
994 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
995                 struct vm_area_struct *vma)
996 {
997         pgd_t *src_pgd, *dst_pgd;
998         unsigned long next;
999         unsigned long addr = vma->vm_start;
1000         unsigned long end = vma->vm_end;
1001         unsigned long mmun_start;       /* For mmu_notifiers */
1002         unsigned long mmun_end;         /* For mmu_notifiers */
1003         bool is_cow;
1004         int ret;
1005
1006         /*
1007          * Don't copy ptes where a page fault will fill them correctly.
1008          * Fork becomes much lighter when there are big shared or private
1009          * readonly mappings. The tradeoff is that copy_page_range is more
1010          * efficient than faulting.
1011          */
1012         if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1013                         !vma->anon_vma)
1014                 return 0;
1015
1016         if (is_vm_hugetlb_page(vma))
1017                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1018
1019         if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1020                 /*
1021                  * We do not free on error cases below as remove_vma
1022                  * gets called on error from higher level routine
1023                  */
1024                 ret = track_pfn_copy(vma);
1025                 if (ret)
1026                         return ret;
1027         }
1028
1029         /*
1030          * We need to invalidate the secondary MMU mappings only when
1031          * there could be a permission downgrade on the ptes of the
1032          * parent mm. And a permission downgrade will only happen if
1033          * is_cow_mapping() returns true.
1034          */
1035         is_cow = is_cow_mapping(vma->vm_flags);
1036         mmun_start = addr;
1037         mmun_end   = end;
1038         if (is_cow)
1039                 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1040                                                     mmun_end);
1041
1042         ret = 0;
1043         dst_pgd = pgd_offset(dst_mm, addr);
1044         src_pgd = pgd_offset(src_mm, addr);
1045         do {
1046                 next = pgd_addr_end(addr, end);
1047                 if (pgd_none_or_clear_bad(src_pgd))
1048                         continue;
1049                 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1050                                             vma, addr, next))) {
1051                         ret = -ENOMEM;
1052                         break;
1053                 }
1054         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1055
1056         if (is_cow)
1057                 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1058         return ret;
1059 }
1060
1061 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1062                                 struct vm_area_struct *vma, pmd_t *pmd,
1063                                 unsigned long addr, unsigned long end,
1064                                 struct zap_details *details)
1065 {
1066         struct mm_struct *mm = tlb->mm;
1067         int force_flush = 0;
1068         int rss[NR_MM_COUNTERS];
1069         spinlock_t *ptl;
1070         pte_t *start_pte;
1071         pte_t *pte;
1072         swp_entry_t entry;
1073
1074 again:
1075         init_rss_vec(rss);
1076         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1077         pte = start_pte;
1078         arch_enter_lazy_mmu_mode();
1079         do {
1080                 pte_t ptent = *pte;
1081                 if (pte_none(ptent)) {
1082                         continue;
1083                 }
1084
1085                 if (pte_present(ptent)) {
1086                         struct page *page;
1087
1088                         page = vm_normal_page(vma, addr, ptent);
1089                         if (unlikely(details) && page) {
1090                                 /*
1091                                  * unmap_shared_mapping_pages() wants to
1092                                  * invalidate cache without truncating:
1093                                  * unmap shared but keep private pages.
1094                                  */
1095                                 if (details->check_mapping &&
1096                                     details->check_mapping != page->mapping)
1097                                         continue;
1098                         }
1099                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1100                                                         tlb->fullmm);
1101                         tlb_remove_tlb_entry(tlb, pte, addr);
1102                         if (unlikely(!page))
1103                                 continue;
1104
1105                         if (!PageAnon(page)) {
1106                                 if (pte_dirty(ptent)) {
1107                                         force_flush = 1;
1108                                         set_page_dirty(page);
1109                                 }
1110                                 if (pte_young(ptent) &&
1111                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1112                                         mark_page_accessed(page);
1113                         }
1114                         rss[mm_counter(page)]--;
1115                         page_remove_rmap(page, false);
1116                         if (unlikely(page_mapcount(page) < 0))
1117                                 print_bad_pte(vma, addr, ptent, page);
1118                         if (unlikely(!__tlb_remove_page(tlb, page))) {
1119                                 force_flush = 1;
1120                                 addr += PAGE_SIZE;
1121                                 break;
1122                         }
1123                         continue;
1124                 }
1125                 /* If details->check_mapping, we leave swap entries. */
1126                 if (unlikely(details))
1127                         continue;
1128
1129                 entry = pte_to_swp_entry(ptent);
1130                 if (!non_swap_entry(entry))
1131                         rss[MM_SWAPENTS]--;
1132                 else if (is_migration_entry(entry)) {
1133                         struct page *page;
1134
1135                         page = migration_entry_to_page(entry);
1136                         rss[mm_counter(page)]--;
1137                 }
1138                 if (unlikely(!free_swap_and_cache(entry)))
1139                         print_bad_pte(vma, addr, ptent, NULL);
1140                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1141         } while (pte++, addr += PAGE_SIZE, addr != end);
1142
1143         add_mm_rss_vec(mm, rss);
1144         arch_leave_lazy_mmu_mode();
1145
1146         /* Do the actual TLB flush before dropping ptl */
1147         if (force_flush)
1148                 tlb_flush_mmu_tlbonly(tlb);
1149         pte_unmap_unlock(start_pte, ptl);
1150
1151         /*
1152          * If we forced a TLB flush (either due to running out of
1153          * batch buffers or because we needed to flush dirty TLB
1154          * entries before releasing the ptl), free the batched
1155          * memory too. Restart if we didn't do everything.
1156          */
1157         if (force_flush) {
1158                 force_flush = 0;
1159                 tlb_flush_mmu_free(tlb);
1160
1161                 if (addr != end)
1162                         goto again;
1163         }
1164
1165         return addr;
1166 }
1167
1168 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1169                                 struct vm_area_struct *vma, pud_t *pud,
1170                                 unsigned long addr, unsigned long end,
1171                                 struct zap_details *details)
1172 {
1173         pmd_t *pmd;
1174         unsigned long next;
1175
1176         pmd = pmd_offset(pud, addr);
1177         do {
1178                 next = pmd_addr_end(addr, end);
1179                 if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1180                         if (next - addr != HPAGE_PMD_SIZE) {
1181 #ifdef CONFIG_DEBUG_VM
1182                                 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1183                                         pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1184                                                 __func__, addr, end,
1185                                                 vma->vm_start,
1186                                                 vma->vm_end);
1187                                         BUG();
1188                                 }
1189 #endif
1190                                 split_huge_pmd(vma, pmd, addr);
1191                         } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1192                                 goto next;
1193                         /* fall through */
1194                 }
1195                 /*
1196                  * Here there can be other concurrent MADV_DONTNEED or
1197                  * trans huge page faults running, and if the pmd is
1198                  * none or trans huge it can change under us. This is
1199                  * because MADV_DONTNEED holds the mmap_sem in read
1200                  * mode.
1201                  */
1202                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1203                         goto next;
1204                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1205 next:
1206                 cond_resched();
1207         } while (pmd++, addr = next, addr != end);
1208
1209         return addr;
1210 }
1211
1212 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1213                                 struct vm_area_struct *vma, pgd_t *pgd,
1214                                 unsigned long addr, unsigned long end,
1215                                 struct zap_details *details)
1216 {
1217         pud_t *pud;
1218         unsigned long next;
1219
1220         pud = pud_offset(pgd, addr);
1221         do {
1222                 next = pud_addr_end(addr, end);
1223                 if (pud_none_or_clear_bad(pud))
1224                         continue;
1225                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1226         } while (pud++, addr = next, addr != end);
1227
1228         return addr;
1229 }
1230
1231 static void unmap_page_range(struct mmu_gather *tlb,
1232                              struct vm_area_struct *vma,
1233                              unsigned long addr, unsigned long end,
1234                              struct zap_details *details)
1235 {
1236         pgd_t *pgd;
1237         unsigned long next;
1238
1239         if (details && !details->check_mapping)
1240                 details = NULL;
1241
1242         BUG_ON(addr >= end);
1243         tlb_start_vma(tlb, vma);
1244         pgd = pgd_offset(vma->vm_mm, addr);
1245         do {
1246                 next = pgd_addr_end(addr, end);
1247                 if (pgd_none_or_clear_bad(pgd))
1248                         continue;
1249                 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1250         } while (pgd++, addr = next, addr != end);
1251         tlb_end_vma(tlb, vma);
1252 }
1253
1254
1255 static void unmap_single_vma(struct mmu_gather *tlb,
1256                 struct vm_area_struct *vma, unsigned long start_addr,
1257                 unsigned long end_addr,
1258                 struct zap_details *details)
1259 {
1260         unsigned long start = max(vma->vm_start, start_addr);
1261         unsigned long end;
1262
1263         if (start >= vma->vm_end)
1264                 return;
1265         end = min(vma->vm_end, end_addr);
1266         if (end <= vma->vm_start)
1267                 return;
1268
1269         if (vma->vm_file)
1270                 uprobe_munmap(vma, start, end);
1271
1272         if (unlikely(vma->vm_flags & VM_PFNMAP))
1273                 untrack_pfn(vma, 0, 0);
1274
1275         if (start != end) {
1276                 if (unlikely(is_vm_hugetlb_page(vma))) {
1277                         /*
1278                          * It is undesirable to test vma->vm_file as it
1279                          * should be non-null for valid hugetlb area.
1280                          * However, vm_file will be NULL in the error
1281                          * cleanup path of mmap_region. When
1282                          * hugetlbfs ->mmap method fails,
1283                          * mmap_region() nullifies vma->vm_file
1284                          * before calling this function to clean up.
1285                          * Since no pte has actually been setup, it is
1286                          * safe to do nothing in this case.
1287                          */
1288                         if (vma->vm_file) {
1289                                 i_mmap_lock_write(vma->vm_file->f_mapping);
1290                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1291                                 i_mmap_unlock_write(vma->vm_file->f_mapping);
1292                         }
1293                 } else
1294                         unmap_page_range(tlb, vma, start, end, details);
1295         }
1296 }
1297
1298 /**
1299  * unmap_vmas - unmap a range of memory covered by a list of vma's
1300  * @tlb: address of the caller's struct mmu_gather
1301  * @vma: the starting vma
1302  * @start_addr: virtual address at which to start unmapping
1303  * @end_addr: virtual address at which to end unmapping
1304  *
1305  * Unmap all pages in the vma list.
1306  *
1307  * Only addresses between `start' and `end' will be unmapped.
1308  *
1309  * The VMA list must be sorted in ascending virtual address order.
1310  *
1311  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1312  * range after unmap_vmas() returns.  So the only responsibility here is to
1313  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1314  * drops the lock and schedules.
1315  */
1316 void unmap_vmas(struct mmu_gather *tlb,
1317                 struct vm_area_struct *vma, unsigned long start_addr,
1318                 unsigned long end_addr)
1319 {
1320         struct mm_struct *mm = vma->vm_mm;
1321
1322         mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1323         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1324                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1325         mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1326 }
1327
1328 /**
1329  * zap_page_range - remove user pages in a given range
1330  * @vma: vm_area_struct holding the applicable pages
1331  * @start: starting address of pages to zap
1332  * @size: number of bytes to zap
1333  * @details: details of shared cache invalidation
1334  *
1335  * Caller must protect the VMA list
1336  */
1337 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1338                 unsigned long size, struct zap_details *details)
1339 {
1340         struct mm_struct *mm = vma->vm_mm;
1341         struct mmu_gather tlb;
1342         unsigned long end = start + size;
1343
1344         lru_add_drain();
1345         tlb_gather_mmu(&tlb, mm, start, end);
1346         update_hiwater_rss(mm);
1347         mmu_notifier_invalidate_range_start(mm, start, end);
1348         for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1349                 unmap_single_vma(&tlb, vma, start, end, details);
1350         mmu_notifier_invalidate_range_end(mm, start, end);
1351         tlb_finish_mmu(&tlb, start, end);
1352 }
1353
1354 /**
1355  * zap_page_range_single - remove user pages in a given range
1356  * @vma: vm_area_struct holding the applicable pages
1357  * @address: starting address of pages to zap
1358  * @size: number of bytes to zap
1359  * @details: details of shared cache invalidation
1360  *
1361  * The range must fit into one VMA.
1362  */
1363 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1364                 unsigned long size, struct zap_details *details)
1365 {
1366         struct mm_struct *mm = vma->vm_mm;
1367         struct mmu_gather tlb;
1368         unsigned long end = address + size;
1369
1370         lru_add_drain();
1371         tlb_gather_mmu(&tlb, mm, address, end);
1372         update_hiwater_rss(mm);
1373         mmu_notifier_invalidate_range_start(mm, address, end);
1374         unmap_single_vma(&tlb, vma, address, end, details);
1375         mmu_notifier_invalidate_range_end(mm, address, end);
1376         tlb_finish_mmu(&tlb, address, end);
1377 }
1378
1379 /**
1380  * zap_vma_ptes - remove ptes mapping the vma
1381  * @vma: vm_area_struct holding ptes to be zapped
1382  * @address: starting address of pages to zap
1383  * @size: number of bytes to zap
1384  *
1385  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1386  *
1387  * The entire address range must be fully contained within the vma.
1388  *
1389  * Returns 0 if successful.
1390  */
1391 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1392                 unsigned long size)
1393 {
1394         if (address < vma->vm_start || address + size > vma->vm_end ||
1395                         !(vma->vm_flags & VM_PFNMAP))
1396                 return -1;
1397         zap_page_range_single(vma, address, size, NULL);
1398         return 0;
1399 }
1400 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1401
1402 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1403                         spinlock_t **ptl)
1404 {
1405         pgd_t * pgd = pgd_offset(mm, addr);
1406         pud_t * pud = pud_alloc(mm, pgd, addr);
1407         if (pud) {
1408                 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1409                 if (pmd) {
1410                         VM_BUG_ON(pmd_trans_huge(*pmd));
1411                         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1412                 }
1413         }
1414         return NULL;
1415 }
1416
1417 /*
1418  * This is the old fallback for page remapping.
1419  *
1420  * For historical reasons, it only allows reserved pages. Only
1421  * old drivers should use this, and they needed to mark their
1422  * pages reserved for the old functions anyway.
1423  */
1424 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1425                         struct page *page, pgprot_t prot)
1426 {
1427         struct mm_struct *mm = vma->vm_mm;
1428         int retval;
1429         pte_t *pte;
1430         spinlock_t *ptl;
1431
1432         retval = -EINVAL;
1433         if (PageAnon(page))
1434                 goto out;
1435         retval = -ENOMEM;
1436         flush_dcache_page(page);
1437         pte = get_locked_pte(mm, addr, &ptl);
1438         if (!pte)
1439                 goto out;
1440         retval = -EBUSY;
1441         if (!pte_none(*pte))
1442                 goto out_unlock;
1443
1444         /* Ok, finally just insert the thing.. */
1445         get_page(page);
1446         inc_mm_counter_fast(mm, mm_counter_file(page));
1447         page_add_file_rmap(page);
1448         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1449
1450         retval = 0;
1451         pte_unmap_unlock(pte, ptl);
1452         return retval;
1453 out_unlock:
1454         pte_unmap_unlock(pte, ptl);
1455 out:
1456         return retval;
1457 }
1458
1459 /**
1460  * vm_insert_page - insert single page into user vma
1461  * @vma: user vma to map to
1462  * @addr: target user address of this page
1463  * @page: source kernel page
1464  *
1465  * This allows drivers to insert individual pages they've allocated
1466  * into a user vma.
1467  *
1468  * The page has to be a nice clean _individual_ kernel allocation.
1469  * If you allocate a compound page, you need to have marked it as
1470  * such (__GFP_COMP), or manually just split the page up yourself
1471  * (see split_page()).
1472  *
1473  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1474  * took an arbitrary page protection parameter. This doesn't allow
1475  * that. Your vma protection will have to be set up correctly, which
1476  * means that if you want a shared writable mapping, you'd better
1477  * ask for a shared writable mapping!
1478  *
1479  * The page does not need to be reserved.
1480  *
1481  * Usually this function is called from f_op->mmap() handler
1482  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1483  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1484  * function from other places, for example from page-fault handler.
1485  */
1486 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1487                         struct page *page)
1488 {
1489         if (addr < vma->vm_start || addr >= vma->vm_end)
1490                 return -EFAULT;
1491         if (!page_count(page))
1492                 return -EINVAL;
1493         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1494                 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1495                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1496                 vma->vm_flags |= VM_MIXEDMAP;
1497         }
1498         return insert_page(vma, addr, page, vma->vm_page_prot);
1499 }
1500 EXPORT_SYMBOL(vm_insert_page);
1501
1502 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1503                         pfn_t pfn, pgprot_t prot)
1504 {
1505         struct mm_struct *mm = vma->vm_mm;
1506         int retval;
1507         pte_t *pte, entry;
1508         spinlock_t *ptl;
1509
1510         retval = -ENOMEM;
1511         pte = get_locked_pte(mm, addr, &ptl);
1512         if (!pte)
1513                 goto out;
1514         retval = -EBUSY;
1515         if (!pte_none(*pte))
1516                 goto out_unlock;
1517
1518         /* Ok, finally just insert the thing.. */
1519         if (pfn_t_devmap(pfn))
1520                 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1521         else
1522                 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1523         set_pte_at(mm, addr, pte, entry);
1524         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1525
1526         retval = 0;
1527 out_unlock:
1528         pte_unmap_unlock(pte, ptl);
1529 out:
1530         return retval;
1531 }
1532
1533 /**
1534  * vm_insert_pfn - insert single pfn into user vma
1535  * @vma: user vma to map to
1536  * @addr: target user address of this page
1537  * @pfn: source kernel pfn
1538  *
1539  * Similar to vm_insert_page, this allows drivers to insert individual pages
1540  * they've allocated into a user vma. Same comments apply.
1541  *
1542  * This function should only be called from a vm_ops->fault handler, and
1543  * in that case the handler should return NULL.
1544  *
1545  * vma cannot be a COW mapping.
1546  *
1547  * As this is called only for pages that do not currently exist, we
1548  * do not need to flush old virtual caches or the TLB.
1549  */
1550 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1551                         unsigned long pfn)
1552 {
1553         return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1554 }
1555 EXPORT_SYMBOL(vm_insert_pfn);
1556
1557 /**
1558  * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1559  * @vma: user vma to map to
1560  * @addr: target user address of this page
1561  * @pfn: source kernel pfn
1562  * @pgprot: pgprot flags for the inserted page
1563  *
1564  * This is exactly like vm_insert_pfn, except that it allows drivers to
1565  * to override pgprot on a per-page basis.
1566  *
1567  * This only makes sense for IO mappings, and it makes no sense for
1568  * cow mappings.  In general, using multiple vmas is preferable;
1569  * vm_insert_pfn_prot should only be used if using multiple VMAs is
1570  * impractical.
1571  */
1572 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1573                         unsigned long pfn, pgprot_t pgprot)
1574 {
1575         int ret;
1576         /*
1577          * Technically, architectures with pte_special can avoid all these
1578          * restrictions (same for remap_pfn_range).  However we would like
1579          * consistency in testing and feature parity among all, so we should
1580          * try to keep these invariants in place for everybody.
1581          */
1582         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1583         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1584                                                 (VM_PFNMAP|VM_MIXEDMAP));
1585         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1586         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1587
1588         if (addr < vma->vm_start || addr >= vma->vm_end)
1589                 return -EFAULT;
1590         if (track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)))
1591                 return -EINVAL;
1592
1593         ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot);
1594
1595         return ret;
1596 }
1597 EXPORT_SYMBOL(vm_insert_pfn_prot);
1598
1599 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1600                         pfn_t pfn)
1601 {
1602         BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1603
1604         if (addr < vma->vm_start || addr >= vma->vm_end)
1605                 return -EFAULT;
1606
1607         /*
1608          * If we don't have pte special, then we have to use the pfn_valid()
1609          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1610          * refcount the page if pfn_valid is true (hence insert_page rather
1611          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1612          * without pte special, it would there be refcounted as a normal page.
1613          */
1614         if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1615                 struct page *page;
1616
1617                 /*
1618                  * At this point we are committed to insert_page()
1619                  * regardless of whether the caller specified flags that
1620                  * result in pfn_t_has_page() == false.
1621                  */
1622                 page = pfn_to_page(pfn_t_to_pfn(pfn));
1623                 return insert_page(vma, addr, page, vma->vm_page_prot);
1624         }
1625         return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1626 }
1627 EXPORT_SYMBOL(vm_insert_mixed);
1628
1629 /*
1630  * maps a range of physical memory into the requested pages. the old
1631  * mappings are removed. any references to nonexistent pages results
1632  * in null mappings (currently treated as "copy-on-access")
1633  */
1634 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1635                         unsigned long addr, unsigned long end,
1636                         unsigned long pfn, pgprot_t prot)
1637 {
1638         pte_t *pte;
1639         spinlock_t *ptl;
1640
1641         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1642         if (!pte)
1643                 return -ENOMEM;
1644         arch_enter_lazy_mmu_mode();
1645         do {
1646                 BUG_ON(!pte_none(*pte));
1647                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1648                 pfn++;
1649         } while (pte++, addr += PAGE_SIZE, addr != end);
1650         arch_leave_lazy_mmu_mode();
1651         pte_unmap_unlock(pte - 1, ptl);
1652         return 0;
1653 }
1654
1655 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1656                         unsigned long addr, unsigned long end,
1657                         unsigned long pfn, pgprot_t prot)
1658 {
1659         pmd_t *pmd;
1660         unsigned long next;
1661
1662         pfn -= addr >> PAGE_SHIFT;
1663         pmd = pmd_alloc(mm, pud, addr);
1664         if (!pmd)
1665                 return -ENOMEM;
1666         VM_BUG_ON(pmd_trans_huge(*pmd));
1667         do {
1668                 next = pmd_addr_end(addr, end);
1669                 if (remap_pte_range(mm, pmd, addr, next,
1670                                 pfn + (addr >> PAGE_SHIFT), prot))
1671                         return -ENOMEM;
1672         } while (pmd++, addr = next, addr != end);
1673         return 0;
1674 }
1675
1676 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1677                         unsigned long addr, unsigned long end,
1678                         unsigned long pfn, pgprot_t prot)
1679 {
1680         pud_t *pud;
1681         unsigned long next;
1682
1683         pfn -= addr >> PAGE_SHIFT;
1684         pud = pud_alloc(mm, pgd, addr);
1685         if (!pud)
1686                 return -ENOMEM;
1687         do {
1688                 next = pud_addr_end(addr, end);
1689                 if (remap_pmd_range(mm, pud, addr, next,
1690                                 pfn + (addr >> PAGE_SHIFT), prot))
1691                         return -ENOMEM;
1692         } while (pud++, addr = next, addr != end);
1693         return 0;
1694 }
1695
1696 /**
1697  * remap_pfn_range - remap kernel memory to userspace
1698  * @vma: user vma to map to
1699  * @addr: target user address to start at
1700  * @pfn: physical address of kernel memory
1701  * @size: size of map area
1702  * @prot: page protection flags for this mapping
1703  *
1704  *  Note: this is only safe if the mm semaphore is held when called.
1705  */
1706 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1707                     unsigned long pfn, unsigned long size, pgprot_t prot)
1708 {
1709         pgd_t *pgd;
1710         unsigned long next;
1711         unsigned long end = addr + PAGE_ALIGN(size);
1712         struct mm_struct *mm = vma->vm_mm;
1713         int err;
1714
1715         /*
1716          * Physically remapped pages are special. Tell the
1717          * rest of the world about it:
1718          *   VM_IO tells people not to look at these pages
1719          *      (accesses can have side effects).
1720          *   VM_PFNMAP tells the core MM that the base pages are just
1721          *      raw PFN mappings, and do not have a "struct page" associated
1722          *      with them.
1723          *   VM_DONTEXPAND
1724          *      Disable vma merging and expanding with mremap().
1725          *   VM_DONTDUMP
1726          *      Omit vma from core dump, even when VM_IO turned off.
1727          *
1728          * There's a horrible special case to handle copy-on-write
1729          * behaviour that some programs depend on. We mark the "original"
1730          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1731          * See vm_normal_page() for details.
1732          */
1733         if (is_cow_mapping(vma->vm_flags)) {
1734                 if (addr != vma->vm_start || end != vma->vm_end)
1735                         return -EINVAL;
1736                 vma->vm_pgoff = pfn;
1737         }
1738
1739         err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
1740         if (err)
1741                 return -EINVAL;
1742
1743         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1744
1745         BUG_ON(addr >= end);
1746         pfn -= addr >> PAGE_SHIFT;
1747         pgd = pgd_offset(mm, addr);
1748         flush_cache_range(vma, addr, end);
1749         do {
1750                 next = pgd_addr_end(addr, end);
1751                 err = remap_pud_range(mm, pgd, addr, next,
1752                                 pfn + (addr >> PAGE_SHIFT), prot);
1753                 if (err)
1754                         break;
1755         } while (pgd++, addr = next, addr != end);
1756
1757         if (err)
1758                 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
1759
1760         return err;
1761 }
1762 EXPORT_SYMBOL(remap_pfn_range);
1763
1764 /**
1765  * vm_iomap_memory - remap memory to userspace
1766  * @vma: user vma to map to
1767  * @start: start of area
1768  * @len: size of area
1769  *
1770  * This is a simplified io_remap_pfn_range() for common driver use. The
1771  * driver just needs to give us the physical memory range to be mapped,
1772  * we'll figure out the rest from the vma information.
1773  *
1774  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1775  * whatever write-combining details or similar.
1776  */
1777 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1778 {
1779         unsigned long vm_len, pfn, pages;
1780
1781         /* Check that the physical memory area passed in looks valid */
1782         if (start + len < start)
1783                 return -EINVAL;
1784         /*
1785          * You *really* shouldn't map things that aren't page-aligned,
1786          * but we've historically allowed it because IO memory might
1787          * just have smaller alignment.
1788          */
1789         len += start & ~PAGE_MASK;
1790         pfn = start >> PAGE_SHIFT;
1791         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1792         if (pfn + pages < pfn)
1793                 return -EINVAL;
1794
1795         /* We start the mapping 'vm_pgoff' pages into the area */
1796         if (vma->vm_pgoff > pages)
1797                 return -EINVAL;
1798         pfn += vma->vm_pgoff;
1799         pages -= vma->vm_pgoff;
1800
1801         /* Can we fit all of the mapping? */
1802         vm_len = vma->vm_end - vma->vm_start;
1803         if (vm_len >> PAGE_SHIFT > pages)
1804                 return -EINVAL;
1805
1806         /* Ok, let it rip */
1807         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1808 }
1809 EXPORT_SYMBOL(vm_iomap_memory);
1810
1811 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1812                                      unsigned long addr, unsigned long end,
1813                                      pte_fn_t fn, void *data)
1814 {
1815         pte_t *pte;
1816         int err;
1817         pgtable_t token;
1818         spinlock_t *uninitialized_var(ptl);
1819
1820         pte = (mm == &init_mm) ?
1821                 pte_alloc_kernel(pmd, addr) :
1822                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1823         if (!pte)
1824                 return -ENOMEM;
1825
1826         BUG_ON(pmd_huge(*pmd));
1827
1828         arch_enter_lazy_mmu_mode();
1829
1830         token = pmd_pgtable(*pmd);
1831
1832         do {
1833                 err = fn(pte++, token, addr, data);
1834                 if (err)
1835                         break;
1836         } while (addr += PAGE_SIZE, addr != end);
1837
1838         arch_leave_lazy_mmu_mode();
1839
1840         if (mm != &init_mm)
1841                 pte_unmap_unlock(pte-1, ptl);
1842         return err;
1843 }
1844
1845 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1846                                      unsigned long addr, unsigned long end,
1847                                      pte_fn_t fn, void *data)
1848 {
1849         pmd_t *pmd;
1850         unsigned long next;
1851         int err;
1852
1853         BUG_ON(pud_huge(*pud));
1854
1855         pmd = pmd_alloc(mm, pud, addr);
1856         if (!pmd)
1857                 return -ENOMEM;
1858         do {
1859                 next = pmd_addr_end(addr, end);
1860                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1861                 if (err)
1862                         break;
1863         } while (pmd++, addr = next, addr != end);
1864         return err;
1865 }
1866
1867 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1868                                      unsigned long addr, unsigned long end,
1869                                      pte_fn_t fn, void *data)
1870 {
1871         pud_t *pud;
1872         unsigned long next;
1873         int err;
1874
1875         pud = pud_alloc(mm, pgd, addr);
1876         if (!pud)
1877                 return -ENOMEM;
1878         do {
1879                 next = pud_addr_end(addr, end);
1880                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1881                 if (err)
1882                         break;
1883         } while (pud++, addr = next, addr != end);
1884         return err;
1885 }
1886
1887 /*
1888  * Scan a region of virtual memory, filling in page tables as necessary
1889  * and calling a provided function on each leaf page table.
1890  */
1891 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1892                         unsigned long size, pte_fn_t fn, void *data)
1893 {
1894         pgd_t *pgd;
1895         unsigned long next;
1896         unsigned long end = addr + size;
1897         int err;
1898
1899         if (WARN_ON(addr >= end))
1900                 return -EINVAL;
1901
1902         pgd = pgd_offset(mm, addr);
1903         do {
1904                 next = pgd_addr_end(addr, end);
1905                 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1906                 if (err)
1907                         break;
1908         } while (pgd++, addr = next, addr != end);
1909
1910         return err;
1911 }
1912 EXPORT_SYMBOL_GPL(apply_to_page_range);
1913
1914 /*
1915  * handle_pte_fault chooses page fault handler according to an entry which was
1916  * read non-atomically.  Before making any commitment, on those architectures
1917  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
1918  * parts, do_swap_page must check under lock before unmapping the pte and
1919  * proceeding (but do_wp_page is only called after already making such a check;
1920  * and do_anonymous_page can safely check later on).
1921  */
1922 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1923                                 pte_t *page_table, pte_t orig_pte)
1924 {
1925         int same = 1;
1926 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1927         if (sizeof(pte_t) > sizeof(unsigned long)) {
1928                 spinlock_t *ptl = pte_lockptr(mm, pmd);
1929                 spin_lock(ptl);
1930                 same = pte_same(*page_table, orig_pte);
1931                 spin_unlock(ptl);
1932         }
1933 #endif
1934         pte_unmap(page_table);
1935         return same;
1936 }
1937
1938 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1939 {
1940         debug_dma_assert_idle(src);
1941
1942         /*
1943          * If the source page was a PFN mapping, we don't have
1944          * a "struct page" for it. We do a best-effort copy by
1945          * just copying from the original user address. If that
1946          * fails, we just zero-fill it. Live with it.
1947          */
1948         if (unlikely(!src)) {
1949                 void *kaddr = kmap_atomic(dst);
1950                 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1951
1952                 /*
1953                  * This really shouldn't fail, because the page is there
1954                  * in the page tables. But it might just be unreadable,
1955                  * in which case we just give up and fill the result with
1956                  * zeroes.
1957                  */
1958                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1959                         clear_page(kaddr);
1960                 kunmap_atomic(kaddr);
1961                 flush_dcache_page(dst);
1962         } else
1963                 copy_user_highpage(dst, src, va, vma);
1964 }
1965
1966 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
1967 {
1968         struct file *vm_file = vma->vm_file;
1969
1970         if (vm_file)
1971                 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
1972
1973         /*
1974          * Special mappings (e.g. VDSO) do not have any file so fake
1975          * a default GFP_KERNEL for them.
1976          */
1977         return GFP_KERNEL;
1978 }
1979
1980 /*
1981  * Notify the address space that the page is about to become writable so that
1982  * it can prohibit this or wait for the page to get into an appropriate state.
1983  *
1984  * We do this without the lock held, so that it can sleep if it needs to.
1985  */
1986 static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
1987                unsigned long address)
1988 {
1989         struct vm_fault vmf;
1990         int ret;
1991
1992         vmf.virtual_address = (void __user *)(address & PAGE_MASK);
1993         vmf.pgoff = page->index;
1994         vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
1995         vmf.gfp_mask = __get_fault_gfp_mask(vma);
1996         vmf.page = page;
1997         vmf.cow_page = NULL;
1998
1999         ret = vma->vm_ops->page_mkwrite(vma, &vmf);
2000         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2001                 return ret;
2002         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2003                 lock_page(page);
2004                 if (!page->mapping) {
2005                         unlock_page(page);
2006                         return 0; /* retry */
2007                 }
2008                 ret |= VM_FAULT_LOCKED;
2009         } else
2010                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2011         return ret;
2012 }
2013
2014 /*
2015  * Handle write page faults for pages that can be reused in the current vma
2016  *
2017  * This can happen either due to the mapping being with the VM_SHARED flag,
2018  * or due to us being the last reference standing to the page. In either
2019  * case, all we need to do here is to mark the page as writable and update
2020  * any related book-keeping.
2021  */
2022 static inline int wp_page_reuse(struct mm_struct *mm,
2023                         struct vm_area_struct *vma, unsigned long address,
2024                         pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
2025                         struct page *page, int page_mkwrite,
2026                         int dirty_shared)
2027         __releases(ptl)
2028 {
2029         pte_t entry;
2030         /*
2031          * Clear the pages cpupid information as the existing
2032          * information potentially belongs to a now completely
2033          * unrelated process.
2034          */
2035         if (page)
2036                 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2037
2038         flush_cache_page(vma, address, pte_pfn(orig_pte));
2039         entry = pte_mkyoung(orig_pte);
2040         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2041         if (ptep_set_access_flags(vma, address, page_table, entry, 1))
2042                 update_mmu_cache(vma, address, page_table);
2043         pte_unmap_unlock(page_table, ptl);
2044
2045         if (dirty_shared) {
2046                 struct address_space *mapping;
2047                 int dirtied;
2048
2049                 if (!page_mkwrite)
2050                         lock_page(page);
2051
2052                 dirtied = set_page_dirty(page);
2053                 VM_BUG_ON_PAGE(PageAnon(page), page);
2054                 mapping = page->mapping;
2055                 unlock_page(page);
2056                 page_cache_release(page);
2057
2058                 if ((dirtied || page_mkwrite) && mapping) {
2059                         /*
2060                          * Some device drivers do not set page.mapping
2061                          * but still dirty their pages
2062                          */
2063                         balance_dirty_pages_ratelimited(mapping);
2064                 }
2065
2066                 if (!page_mkwrite)
2067                         file_update_time(vma->vm_file);
2068         }
2069
2070         return VM_FAULT_WRITE;
2071 }
2072
2073 /*
2074  * Handle the case of a page which we actually need to copy to a new page.
2075  *
2076  * Called with mmap_sem locked and the old page referenced, but
2077  * without the ptl held.
2078  *
2079  * High level logic flow:
2080  *
2081  * - Allocate a page, copy the content of the old page to the new one.
2082  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2083  * - Take the PTL. If the pte changed, bail out and release the allocated page
2084  * - If the pte is still the way we remember it, update the page table and all
2085  *   relevant references. This includes dropping the reference the page-table
2086  *   held to the old page, as well as updating the rmap.
2087  * - In any case, unlock the PTL and drop the reference we took to the old page.
2088  */
2089 static int wp_page_copy(struct mm_struct *mm, struct vm_area_struct *vma,
2090                         unsigned long address, pte_t *page_table, pmd_t *pmd,
2091                         pte_t orig_pte, struct page *old_page)
2092 {
2093         struct page *new_page = NULL;
2094         spinlock_t *ptl = NULL;
2095         pte_t entry;
2096         int page_copied = 0;
2097         const unsigned long mmun_start = address & PAGE_MASK;   /* For mmu_notifiers */
2098         const unsigned long mmun_end = mmun_start + PAGE_SIZE;  /* For mmu_notifiers */
2099         struct mem_cgroup *memcg;
2100
2101         if (unlikely(anon_vma_prepare(vma)))
2102                 goto oom;
2103
2104         if (is_zero_pfn(pte_pfn(orig_pte))) {
2105                 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2106                 if (!new_page)
2107                         goto oom;
2108         } else {
2109                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2110                 if (!new_page)
2111                         goto oom;
2112                 cow_user_page(new_page, old_page, address, vma);
2113         }
2114
2115         if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
2116                 goto oom_free_new;
2117
2118         __SetPageUptodate(new_page);
2119
2120         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2121
2122         /*
2123          * Re-check the pte - we dropped the lock
2124          */
2125         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2126         if (likely(pte_same(*page_table, orig_pte))) {
2127                 if (old_page) {
2128                         if (!PageAnon(old_page)) {
2129                                 dec_mm_counter_fast(mm,
2130                                                 mm_counter_file(old_page));
2131                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2132                         }
2133                 } else {
2134                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2135                 }
2136                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2137                 entry = mk_pte(new_page, vma->vm_page_prot);
2138                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2139                 /*
2140                  * Clear the pte entry and flush it first, before updating the
2141                  * pte with the new entry. This will avoid a race condition
2142                  * seen in the presence of one thread doing SMC and another
2143                  * thread doing COW.
2144                  */
2145                 ptep_clear_flush_notify(vma, address, page_table);
2146                 page_add_new_anon_rmap(new_page, vma, address, false);
2147                 mem_cgroup_commit_charge(new_page, memcg, false, false);
2148                 lru_cache_add_active_or_unevictable(new_page, vma);
2149                 /*
2150                  * We call the notify macro here because, when using secondary
2151                  * mmu page tables (such as kvm shadow page tables), we want the
2152                  * new page to be mapped directly into the secondary page table.
2153                  */
2154                 set_pte_at_notify(mm, address, page_table, entry);
2155                 update_mmu_cache(vma, address, page_table);
2156                 if (old_page) {
2157                         /*
2158                          * Only after switching the pte to the new page may
2159                          * we remove the mapcount here. Otherwise another
2160                          * process may come and find the rmap count decremented
2161                          * before the pte is switched to the new page, and
2162                          * "reuse" the old page writing into it while our pte
2163                          * here still points into it and can be read by other
2164                          * threads.
2165                          *
2166                          * The critical issue is to order this
2167                          * page_remove_rmap with the ptp_clear_flush above.
2168                          * Those stores are ordered by (if nothing else,)
2169                          * the barrier present in the atomic_add_negative
2170                          * in page_remove_rmap.
2171                          *
2172                          * Then the TLB flush in ptep_clear_flush ensures that
2173                          * no process can access the old page before the
2174                          * decremented mapcount is visible. And the old page
2175                          * cannot be reused until after the decremented
2176                          * mapcount is visible. So transitively, TLBs to
2177                          * old page will be flushed before it can be reused.
2178                          */
2179                         page_remove_rmap(old_page, false);
2180                 }
2181
2182                 /* Free the old page.. */
2183                 new_page = old_page;
2184                 page_copied = 1;
2185         } else {
2186                 mem_cgroup_cancel_charge(new_page, memcg, false);
2187         }
2188
2189         if (new_page)
2190                 page_cache_release(new_page);
2191
2192         pte_unmap_unlock(page_table, ptl);
2193         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2194         if (old_page) {
2195                 /*
2196                  * Don't let another task, with possibly unlocked vma,
2197                  * keep the mlocked page.
2198                  */
2199                 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2200                         lock_page(old_page);    /* LRU manipulation */
2201                         if (PageMlocked(old_page))
2202                                 munlock_vma_page(old_page);
2203                         unlock_page(old_page);
2204                 }
2205                 page_cache_release(old_page);
2206         }
2207         return page_copied ? VM_FAULT_WRITE : 0;
2208 oom_free_new:
2209         page_cache_release(new_page);
2210 oom:
2211         if (old_page)
2212                 page_cache_release(old_page);
2213         return VM_FAULT_OOM;
2214 }
2215
2216 /*
2217  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2218  * mapping
2219  */
2220 static int wp_pfn_shared(struct mm_struct *mm,
2221                         struct vm_area_struct *vma, unsigned long address,
2222                         pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
2223                         pmd_t *pmd)
2224 {
2225         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2226                 struct vm_fault vmf = {
2227                         .page = NULL,
2228                         .pgoff = linear_page_index(vma, address),
2229                         .virtual_address = (void __user *)(address & PAGE_MASK),
2230                         .flags = FAULT_FLAG_WRITE | FAULT_FLAG_MKWRITE,
2231                 };
2232                 int ret;
2233
2234                 pte_unmap_unlock(page_table, ptl);
2235                 ret = vma->vm_ops->pfn_mkwrite(vma, &vmf);
2236                 if (ret & VM_FAULT_ERROR)
2237                         return ret;
2238                 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2239                 /*
2240                  * We might have raced with another page fault while we
2241                  * released the pte_offset_map_lock.
2242                  */
2243                 if (!pte_same(*page_table, orig_pte)) {
2244                         pte_unmap_unlock(page_table, ptl);
2245                         return 0;
2246                 }
2247         }
2248         return wp_page_reuse(mm, vma, address, page_table, ptl, orig_pte,
2249                              NULL, 0, 0);
2250 }
2251
2252 static int wp_page_shared(struct mm_struct *mm, struct vm_area_struct *vma,
2253                           unsigned long address, pte_t *page_table,
2254                           pmd_t *pmd, spinlock_t *ptl, pte_t orig_pte,
2255                           struct page *old_page)
2256         __releases(ptl)
2257 {
2258         int page_mkwrite = 0;
2259
2260         page_cache_get(old_page);
2261
2262         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2263                 int tmp;
2264
2265                 pte_unmap_unlock(page_table, ptl);
2266                 tmp = do_page_mkwrite(vma, old_page, address);
2267                 if (unlikely(!tmp || (tmp &
2268                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2269                         page_cache_release(old_page);
2270                         return tmp;
2271                 }
2272                 /*
2273                  * Since we dropped the lock we need to revalidate
2274                  * the PTE as someone else may have changed it.  If
2275                  * they did, we just return, as we can count on the
2276                  * MMU to tell us if they didn't also make it writable.
2277                  */
2278                 page_table = pte_offset_map_lock(mm, pmd, address,
2279                                                  &ptl);
2280                 if (!pte_same(*page_table, orig_pte)) {
2281                         unlock_page(old_page);
2282                         pte_unmap_unlock(page_table, ptl);
2283                         page_cache_release(old_page);
2284                         return 0;
2285                 }
2286                 page_mkwrite = 1;
2287         }
2288
2289         return wp_page_reuse(mm, vma, address, page_table, ptl,
2290                              orig_pte, old_page, page_mkwrite, 1);
2291 }
2292
2293 /*
2294  * This routine handles present pages, when users try to write
2295  * to a shared page. It is done by copying the page to a new address
2296  * and decrementing the shared-page counter for the old page.
2297  *
2298  * Note that this routine assumes that the protection checks have been
2299  * done by the caller (the low-level page fault routine in most cases).
2300  * Thus we can safely just mark it writable once we've done any necessary
2301  * COW.
2302  *
2303  * We also mark the page dirty at this point even though the page will
2304  * change only once the write actually happens. This avoids a few races,
2305  * and potentially makes it more efficient.
2306  *
2307  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2308  * but allow concurrent faults), with pte both mapped and locked.
2309  * We return with mmap_sem still held, but pte unmapped and unlocked.
2310  */
2311 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2312                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2313                 spinlock_t *ptl, pte_t orig_pte)
2314         __releases(ptl)
2315 {
2316         struct page *old_page;
2317
2318         old_page = vm_normal_page(vma, address, orig_pte);
2319         if (!old_page) {
2320                 /*
2321                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2322                  * VM_PFNMAP VMA.
2323                  *
2324                  * We should not cow pages in a shared writeable mapping.
2325                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
2326                  */
2327                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2328                                      (VM_WRITE|VM_SHARED))
2329                         return wp_pfn_shared(mm, vma, address, page_table, ptl,
2330                                              orig_pte, pmd);
2331
2332                 pte_unmap_unlock(page_table, ptl);
2333                 return wp_page_copy(mm, vma, address, page_table, pmd,
2334                                     orig_pte, old_page);
2335         }
2336
2337         /*
2338          * Take out anonymous pages first, anonymous shared vmas are
2339          * not dirty accountable.
2340          */
2341         if (PageAnon(old_page) && !PageKsm(old_page)) {
2342                 if (!trylock_page(old_page)) {
2343                         page_cache_get(old_page);
2344                         pte_unmap_unlock(page_table, ptl);
2345                         lock_page(old_page);
2346                         page_table = pte_offset_map_lock(mm, pmd, address,
2347                                                          &ptl);
2348                         if (!pte_same(*page_table, orig_pte)) {
2349                                 unlock_page(old_page);
2350                                 pte_unmap_unlock(page_table, ptl);
2351                                 page_cache_release(old_page);
2352                                 return 0;
2353                         }
2354                         page_cache_release(old_page);
2355                 }
2356                 if (reuse_swap_page(old_page)) {
2357                         /*
2358                          * The page is all ours.  Move it to our anon_vma so
2359                          * the rmap code will not search our parent or siblings.
2360                          * Protected against the rmap code by the page lock.
2361                          */
2362                         page_move_anon_rmap(old_page, vma, address);
2363                         unlock_page(old_page);
2364                         return wp_page_reuse(mm, vma, address, page_table, ptl,
2365                                              orig_pte, old_page, 0, 0);
2366                 }
2367                 unlock_page(old_page);
2368         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2369                                         (VM_WRITE|VM_SHARED))) {
2370                 return wp_page_shared(mm, vma, address, page_table, pmd,
2371                                       ptl, orig_pte, old_page);
2372         }
2373
2374         /*
2375          * Ok, we need to copy. Oh, well..
2376          */
2377         page_cache_get(old_page);
2378
2379         pte_unmap_unlock(page_table, ptl);
2380         return wp_page_copy(mm, vma, address, page_table, pmd,
2381                             orig_pte, old_page);
2382 }
2383
2384 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2385                 unsigned long start_addr, unsigned long end_addr,
2386                 struct zap_details *details)
2387 {
2388         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2389 }
2390
2391 static inline void unmap_mapping_range_tree(struct rb_root *root,
2392                                             struct zap_details *details)
2393 {
2394         struct vm_area_struct *vma;
2395         pgoff_t vba, vea, zba, zea;
2396
2397         vma_interval_tree_foreach(vma, root,
2398                         details->first_index, details->last_index) {
2399
2400                 vba = vma->vm_pgoff;
2401                 vea = vba + vma_pages(vma) - 1;
2402                 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2403                 zba = details->first_index;
2404                 if (zba < vba)
2405                         zba = vba;
2406                 zea = details->last_index;
2407                 if (zea > vea)
2408                         zea = vea;
2409
2410                 unmap_mapping_range_vma(vma,
2411                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2412                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2413                                 details);
2414         }
2415 }
2416
2417 /**
2418  * unmap_mapping_range - unmap the portion of all mmaps in the specified
2419  * address_space corresponding to the specified page range in the underlying
2420  * file.
2421  *
2422  * @mapping: the address space containing mmaps to be unmapped.
2423  * @holebegin: byte in first page to unmap, relative to the start of
2424  * the underlying file.  This will be rounded down to a PAGE_SIZE
2425  * boundary.  Note that this is different from truncate_pagecache(), which
2426  * must keep the partial page.  In contrast, we must get rid of
2427  * partial pages.
2428  * @holelen: size of prospective hole in bytes.  This will be rounded
2429  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2430  * end of the file.
2431  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2432  * but 0 when invalidating pagecache, don't throw away private data.
2433  */
2434 void unmap_mapping_range(struct address_space *mapping,
2435                 loff_t const holebegin, loff_t const holelen, int even_cows)
2436 {
2437         struct zap_details details;
2438         pgoff_t hba = holebegin >> PAGE_SHIFT;
2439         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2440
2441         /* Check for overflow. */
2442         if (sizeof(holelen) > sizeof(hlen)) {
2443                 long long holeend =
2444                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2445                 if (holeend & ~(long long)ULONG_MAX)
2446                         hlen = ULONG_MAX - hba + 1;
2447         }
2448
2449         details.check_mapping = even_cows? NULL: mapping;
2450         details.first_index = hba;
2451         details.last_index = hba + hlen - 1;
2452         if (details.last_index < details.first_index)
2453                 details.last_index = ULONG_MAX;
2454
2455
2456         /* DAX uses i_mmap_lock to serialise file truncate vs page fault */
2457         i_mmap_lock_write(mapping);
2458         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2459                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2460         i_mmap_unlock_write(mapping);
2461 }
2462 EXPORT_SYMBOL(unmap_mapping_range);
2463
2464 /*
2465  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2466  * but allow concurrent faults), and pte mapped but not yet locked.
2467  * We return with pte unmapped and unlocked.
2468  *
2469  * We return with the mmap_sem locked or unlocked in the same cases
2470  * as does filemap_fault().
2471  */
2472 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2473                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2474                 unsigned int flags, pte_t orig_pte)
2475 {
2476         spinlock_t *ptl;
2477         struct page *page, *swapcache;
2478         struct mem_cgroup *memcg;
2479         swp_entry_t entry;
2480         pte_t pte;
2481         int locked;
2482         int exclusive = 0;
2483         int ret = 0;
2484
2485         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2486                 goto out;
2487
2488         entry = pte_to_swp_entry(orig_pte);
2489         if (unlikely(non_swap_entry(entry))) {
2490                 if (is_migration_entry(entry)) {
2491                         migration_entry_wait(mm, pmd, address);
2492                 } else if (is_hwpoison_entry(entry)) {
2493                         ret = VM_FAULT_HWPOISON;
2494                 } else {
2495                         print_bad_pte(vma, address, orig_pte, NULL);
2496                         ret = VM_FAULT_SIGBUS;
2497                 }
2498                 goto out;
2499         }
2500         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2501         page = lookup_swap_cache(entry);
2502         if (!page) {
2503                 page = swapin_readahead(entry,
2504                                         GFP_HIGHUSER_MOVABLE, vma, address);
2505                 if (!page) {
2506                         /*
2507                          * Back out if somebody else faulted in this pte
2508                          * while we released the pte lock.
2509                          */
2510                         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2511                         if (likely(pte_same(*page_table, orig_pte)))
2512                                 ret = VM_FAULT_OOM;
2513                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2514                         goto unlock;
2515                 }
2516
2517                 /* Had to read the page from swap area: Major fault */
2518                 ret = VM_FAULT_MAJOR;
2519                 count_vm_event(PGMAJFAULT);
2520                 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2521         } else if (PageHWPoison(page)) {
2522                 /*
2523                  * hwpoisoned dirty swapcache pages are kept for killing
2524                  * owner processes (which may be unknown at hwpoison time)
2525                  */
2526                 ret = VM_FAULT_HWPOISON;
2527                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2528                 swapcache = page;
2529                 goto out_release;
2530         }
2531
2532         swapcache = page;
2533         locked = lock_page_or_retry(page, mm, flags);
2534
2535         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2536         if (!locked) {
2537                 ret |= VM_FAULT_RETRY;
2538                 goto out_release;
2539         }
2540
2541         /*
2542          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2543          * release the swapcache from under us.  The page pin, and pte_same
2544          * test below, are not enough to exclude that.  Even if it is still
2545          * swapcache, we need to check that the page's swap has not changed.
2546          */
2547         if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2548                 goto out_page;
2549
2550         page = ksm_might_need_to_copy(page, vma, address);
2551         if (unlikely(!page)) {
2552                 ret = VM_FAULT_OOM;
2553                 page = swapcache;
2554                 goto out_page;
2555         }
2556
2557         if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg, false)) {
2558                 ret = VM_FAULT_OOM;
2559                 goto out_page;
2560         }
2561
2562         /*
2563          * Back out if somebody else already faulted in this pte.
2564          */
2565         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2566         if (unlikely(!pte_same(*page_table, orig_pte)))
2567                 goto out_nomap;
2568
2569         if (unlikely(!PageUptodate(page))) {
2570                 ret = VM_FAULT_SIGBUS;
2571                 goto out_nomap;
2572         }
2573
2574         /*
2575          * The page isn't present yet, go ahead with the fault.
2576          *
2577          * Be careful about the sequence of operations here.
2578          * To get its accounting right, reuse_swap_page() must be called
2579          * while the page is counted on swap but not yet in mapcount i.e.
2580          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2581          * must be called after the swap_free(), or it will never succeed.
2582          */
2583
2584         inc_mm_counter_fast(mm, MM_ANONPAGES);
2585         dec_mm_counter_fast(mm, MM_SWAPENTS);
2586         pte = mk_pte(page, vma->vm_page_prot);
2587         if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2588                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2589                 flags &= ~FAULT_FLAG_WRITE;
2590                 ret |= VM_FAULT_WRITE;
2591                 exclusive = RMAP_EXCLUSIVE;
2592         }
2593         flush_icache_page(vma, page);
2594         if (pte_swp_soft_dirty(orig_pte))
2595                 pte = pte_mksoft_dirty(pte);
2596         set_pte_at(mm, address, page_table, pte);
2597         if (page == swapcache) {
2598                 do_page_add_anon_rmap(page, vma, address, exclusive);
2599                 mem_cgroup_commit_charge(page, memcg, true, false);
2600         } else { /* ksm created a completely new copy */
2601                 page_add_new_anon_rmap(page, vma, address, false);
2602                 mem_cgroup_commit_charge(page, memcg, false, false);
2603                 lru_cache_add_active_or_unevictable(page, vma);
2604         }
2605
2606         swap_free(entry);
2607         if (mem_cgroup_swap_full(page) ||
2608             (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2609                 try_to_free_swap(page);
2610         unlock_page(page);
2611         if (page != swapcache) {
2612                 /*
2613                  * Hold the lock to avoid the swap entry to be reused
2614                  * until we take the PT lock for the pte_same() check
2615                  * (to avoid false positives from pte_same). For
2616                  * further safety release the lock after the swap_free
2617                  * so that the swap count won't change under a
2618                  * parallel locked swapcache.
2619                  */
2620                 unlock_page(swapcache);
2621                 page_cache_release(swapcache);
2622         }
2623
2624         if (flags & FAULT_FLAG_WRITE) {
2625                 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2626                 if (ret & VM_FAULT_ERROR)
2627                         ret &= VM_FAULT_ERROR;
2628                 goto out;
2629         }
2630
2631         /* No need to invalidate - it was non-present before */
2632         update_mmu_cache(vma, address, page_table);
2633 unlock:
2634         pte_unmap_unlock(page_table, ptl);
2635 out:
2636         return ret;
2637 out_nomap:
2638         mem_cgroup_cancel_charge(page, memcg, false);
2639         pte_unmap_unlock(page_table, ptl);
2640 out_page:
2641         unlock_page(page);
2642 out_release:
2643         page_cache_release(page);
2644         if (page != swapcache) {
2645                 unlock_page(swapcache);
2646                 page_cache_release(swapcache);
2647         }
2648         return ret;
2649 }
2650
2651 /*
2652  * This is like a special single-page "expand_{down|up}wards()",
2653  * except we must first make sure that 'address{-|+}PAGE_SIZE'
2654  * doesn't hit another vma.
2655  */
2656 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2657 {
2658         address &= PAGE_MASK;
2659         if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
2660                 struct vm_area_struct *prev = vma->vm_prev;
2661
2662                 /*
2663                  * Is there a mapping abutting this one below?
2664                  *
2665                  * That's only ok if it's the same stack mapping
2666                  * that has gotten split..
2667                  */
2668                 if (prev && prev->vm_end == address)
2669                         return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
2670
2671                 return expand_downwards(vma, address - PAGE_SIZE);
2672         }
2673         if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2674                 struct vm_area_struct *next = vma->vm_next;
2675
2676                 /* As VM_GROWSDOWN but s/below/above/ */
2677                 if (next && next->vm_start == address + PAGE_SIZE)
2678                         return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
2679
2680                 return expand_upwards(vma, address + PAGE_SIZE);
2681         }
2682         return 0;
2683 }
2684
2685 /*
2686  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2687  * but allow concurrent faults), and pte mapped but not yet locked.
2688  * We return with mmap_sem still held, but pte unmapped and unlocked.
2689  */
2690 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2691                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2692                 unsigned int flags)
2693 {
2694         struct mem_cgroup *memcg;
2695         struct page *page;
2696         spinlock_t *ptl;
2697         pte_t entry;
2698
2699         pte_unmap(page_table);
2700
2701         /* File mapping without ->vm_ops ? */
2702         if (vma->vm_flags & VM_SHARED)
2703                 return VM_FAULT_SIGBUS;
2704
2705         /* Check if we need to add a guard page to the stack */
2706         if (check_stack_guard_page(vma, address) < 0)
2707                 return VM_FAULT_SIGSEGV;
2708
2709         /* Use the zero-page for reads */
2710         if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm)) {
2711                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2712                                                 vma->vm_page_prot));
2713                 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2714                 if (!pte_none(*page_table))
2715                         goto unlock;
2716                 /* Deliver the page fault to userland, check inside PT lock */
2717                 if (userfaultfd_missing(vma)) {
2718                         pte_unmap_unlock(page_table, ptl);
2719                         return handle_userfault(vma, address, flags,
2720                                                 VM_UFFD_MISSING);
2721                 }
2722                 goto setpte;
2723         }
2724
2725         /* Allocate our own private page. */
2726         if (unlikely(anon_vma_prepare(vma)))
2727                 goto oom;
2728         page = alloc_zeroed_user_highpage_movable(vma, address);
2729         if (!page)
2730                 goto oom;
2731
2732         if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg, false))
2733                 goto oom_free_page;
2734
2735         /*
2736          * The memory barrier inside __SetPageUptodate makes sure that
2737          * preceeding stores to the page contents become visible before
2738          * the set_pte_at() write.
2739          */
2740         __SetPageUptodate(page);
2741
2742         entry = mk_pte(page, vma->vm_page_prot);
2743         if (vma->vm_flags & VM_WRITE)
2744                 entry = pte_mkwrite(pte_mkdirty(entry));
2745
2746         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2747         if (!pte_none(*page_table))
2748                 goto release;
2749
2750         /* Deliver the page fault to userland, check inside PT lock */
2751         if (userfaultfd_missing(vma)) {
2752                 pte_unmap_unlock(page_table, ptl);
2753                 mem_cgroup_cancel_charge(page, memcg, false);
2754                 page_cache_release(page);
2755                 return handle_userfault(vma, address, flags,
2756                                         VM_UFFD_MISSING);
2757         }
2758
2759         inc_mm_counter_fast(mm, MM_ANONPAGES);
2760         page_add_new_anon_rmap(page, vma, address, false);
2761         mem_cgroup_commit_charge(page, memcg, false, false);
2762         lru_cache_add_active_or_unevictable(page, vma);
2763 setpte:
2764         set_pte_at(mm, address, page_table, entry);
2765
2766         /* No need to invalidate - it was non-present before */
2767         update_mmu_cache(vma, address, page_table);
2768 unlock:
2769         pte_unmap_unlock(page_table, ptl);
2770         return 0;
2771 release:
2772         mem_cgroup_cancel_charge(page, memcg, false);
2773         page_cache_release(page);
2774         goto unlock;
2775 oom_free_page:
2776         page_cache_release(page);
2777 oom:
2778         return VM_FAULT_OOM;
2779 }
2780
2781 /*
2782  * The mmap_sem must have been held on entry, and may have been
2783  * released depending on flags and vma->vm_ops->fault() return value.
2784  * See filemap_fault() and __lock_page_retry().
2785  */
2786 static int __do_fault(struct vm_area_struct *vma, unsigned long address,
2787                         pgoff_t pgoff, unsigned int flags,
2788                         struct page *cow_page, struct page **page)
2789 {
2790         struct vm_fault vmf;
2791         int ret;
2792
2793         vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2794         vmf.pgoff = pgoff;
2795         vmf.flags = flags;
2796         vmf.page = NULL;
2797         vmf.gfp_mask = __get_fault_gfp_mask(vma);
2798         vmf.cow_page = cow_page;
2799
2800         ret = vma->vm_ops->fault(vma, &vmf);
2801         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2802                 return ret;
2803         if (!vmf.page)
2804                 goto out;
2805
2806         if (unlikely(PageHWPoison(vmf.page))) {
2807                 if (ret & VM_FAULT_LOCKED)
2808                         unlock_page(vmf.page);
2809                 page_cache_release(vmf.page);
2810                 return VM_FAULT_HWPOISON;
2811         }
2812
2813         if (unlikely(!(ret & VM_FAULT_LOCKED)))
2814                 lock_page(vmf.page);
2815         else
2816                 VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
2817
2818  out:
2819         *page = vmf.page;
2820         return ret;
2821 }
2822
2823 /**
2824  * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
2825  *
2826  * @vma: virtual memory area
2827  * @address: user virtual address
2828  * @page: page to map
2829  * @pte: pointer to target page table entry
2830  * @write: true, if new entry is writable
2831  * @anon: true, if it's anonymous page
2832  *
2833  * Caller must hold page table lock relevant for @pte.
2834  *
2835  * Target users are page handler itself and implementations of
2836  * vm_ops->map_pages.
2837  */
2838 void do_set_pte(struct vm_area_struct *vma, unsigned long address,
2839                 struct page *page, pte_t *pte, bool write, bool anon)
2840 {
2841         pte_t entry;
2842
2843         flush_icache_page(vma, page);
2844         entry = mk_pte(page, vma->vm_page_prot);
2845         if (write)
2846                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2847         if (anon) {
2848                 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2849                 page_add_new_anon_rmap(page, vma, address, false);
2850         } else {
2851                 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
2852                 page_add_file_rmap(page);
2853         }
2854         set_pte_at(vma->vm_mm, address, pte, entry);
2855
2856         /* no need to invalidate: a not-present page won't be cached */
2857         update_mmu_cache(vma, address, pte);
2858 }
2859
2860 static unsigned long fault_around_bytes __read_mostly =
2861         rounddown_pow_of_two(65536);
2862
2863 #ifdef CONFIG_DEBUG_FS
2864 static int fault_around_bytes_get(void *data, u64 *val)
2865 {
2866         *val = fault_around_bytes;
2867         return 0;
2868 }
2869
2870 /*
2871  * fault_around_pages() and fault_around_mask() expects fault_around_bytes
2872  * rounded down to nearest page order. It's what do_fault_around() expects to
2873  * see.
2874  */
2875 static int fault_around_bytes_set(void *data, u64 val)
2876 {
2877         if (val / PAGE_SIZE > PTRS_PER_PTE)
2878                 return -EINVAL;
2879         if (val > PAGE_SIZE)
2880                 fault_around_bytes = rounddown_pow_of_two(val);
2881         else
2882                 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
2883         return 0;
2884 }
2885 DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
2886                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
2887
2888 static int __init fault_around_debugfs(void)
2889 {
2890         void *ret;
2891
2892         ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
2893                         &fault_around_bytes_fops);
2894         if (!ret)
2895                 pr_warn("Failed to create fault_around_bytes in debugfs");
2896         return 0;
2897 }
2898 late_initcall(fault_around_debugfs);
2899 #endif
2900
2901 /*
2902  * do_fault_around() tries to map few pages around the fault address. The hope
2903  * is that the pages will be needed soon and this will lower the number of
2904  * faults to handle.
2905  *
2906  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
2907  * not ready to be mapped: not up-to-date, locked, etc.
2908  *
2909  * This function is called with the page table lock taken. In the split ptlock
2910  * case the page table lock only protects only those entries which belong to
2911  * the page table corresponding to the fault address.
2912  *
2913  * This function doesn't cross the VMA boundaries, in order to call map_pages()
2914  * only once.
2915  *
2916  * fault_around_pages() defines how many pages we'll try to map.
2917  * do_fault_around() expects it to return a power of two less than or equal to
2918  * PTRS_PER_PTE.
2919  *
2920  * The virtual address of the area that we map is naturally aligned to the
2921  * fault_around_pages() value (and therefore to page order).  This way it's
2922  * easier to guarantee that we don't cross page table boundaries.
2923  */
2924 static void do_fault_around(struct vm_area_struct *vma, unsigned long address,
2925                 pte_t *pte, pgoff_t pgoff, unsigned int flags)
2926 {
2927         unsigned long start_addr, nr_pages, mask;
2928         pgoff_t max_pgoff;
2929         struct vm_fault vmf;
2930         int off;
2931
2932         nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
2933         mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
2934
2935         start_addr = max(address & mask, vma->vm_start);
2936         off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
2937         pte -= off;
2938         pgoff -= off;
2939
2940         /*
2941          *  max_pgoff is either end of page table or end of vma
2942          *  or fault_around_pages() from pgoff, depending what is nearest.
2943          */
2944         max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
2945                 PTRS_PER_PTE - 1;
2946         max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1,
2947                         pgoff + nr_pages - 1);
2948
2949         /* Check if it makes any sense to call ->map_pages */
2950         while (!pte_none(*pte)) {
2951                 if (++pgoff > max_pgoff)
2952                         return;
2953                 start_addr += PAGE_SIZE;
2954                 if (start_addr >= vma->vm_end)
2955                         return;
2956                 pte++;
2957         }
2958
2959         vmf.virtual_address = (void __user *) start_addr;
2960         vmf.pte = pte;
2961         vmf.pgoff = pgoff;
2962         vmf.max_pgoff = max_pgoff;
2963         vmf.flags = flags;
2964         vmf.gfp_mask = __get_fault_gfp_mask(vma);
2965         vma->vm_ops->map_pages(vma, &vmf);
2966 }
2967
2968 static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2969                 unsigned long address, pmd_t *pmd,
2970                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2971 {
2972         struct page *fault_page;
2973         spinlock_t *ptl;
2974         pte_t *pte;
2975         int ret = 0;
2976
2977         /*
2978          * Let's call ->map_pages() first and use ->fault() as fallback
2979          * if page by the offset is not ready to be mapped (cold cache or
2980          * something).
2981          */
2982         if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
2983                 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2984                 do_fault_around(vma, address, pte, pgoff, flags);
2985                 if (!pte_same(*pte, orig_pte))
2986                         goto unlock_out;
2987                 pte_unmap_unlock(pte, ptl);
2988         }
2989
2990         ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
2991         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2992                 return ret;
2993
2994         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2995         if (unlikely(!pte_same(*pte, orig_pte))) {
2996                 pte_unmap_unlock(pte, ptl);
2997                 unlock_page(fault_page);
2998                 page_cache_release(fault_page);
2999                 return ret;
3000         }
3001         do_set_pte(vma, address, fault_page, pte, false, false);
3002         unlock_page(fault_page);
3003 unlock_out:
3004         pte_unmap_unlock(pte, ptl);
3005         return ret;
3006 }
3007
3008 static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3009                 unsigned long address, pmd_t *pmd,
3010                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3011 {
3012         struct page *fault_page, *new_page;
3013         struct mem_cgroup *memcg;
3014         spinlock_t *ptl;
3015         pte_t *pte;
3016         int ret;
3017
3018         if (unlikely(anon_vma_prepare(vma)))
3019                 return VM_FAULT_OOM;
3020
3021         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3022         if (!new_page)
3023                 return VM_FAULT_OOM;
3024
3025         if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false)) {
3026                 page_cache_release(new_page);
3027                 return VM_FAULT_OOM;
3028         }
3029
3030         ret = __do_fault(vma, address, pgoff, flags, new_page, &fault_page);
3031         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3032                 goto uncharge_out;
3033
3034         if (fault_page)
3035                 copy_user_highpage(new_page, fault_page, address, vma);
3036         __SetPageUptodate(new_page);
3037
3038         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3039         if (unlikely(!pte_same(*pte, orig_pte))) {
3040                 pte_unmap_unlock(pte, ptl);
3041                 if (fault_page) {
3042                         unlock_page(fault_page);
3043                         page_cache_release(fault_page);
3044                 } else {
3045                         /*
3046                          * The fault handler has no page to lock, so it holds
3047                          * i_mmap_lock for read to protect against truncate.
3048                          */
3049                         i_mmap_unlock_read(vma->vm_file->f_mapping);
3050                 }
3051                 goto uncharge_out;
3052         }
3053         do_set_pte(vma, address, new_page, pte, true, true);
3054         mem_cgroup_commit_charge(new_page, memcg, false, false);
3055         lru_cache_add_active_or_unevictable(new_page, vma);
3056         pte_unmap_unlock(pte, ptl);
3057         if (fault_page) {
3058                 unlock_page(fault_page);
3059                 page_cache_release(fault_page);
3060         } else {
3061                 /*
3062                  * The fault handler has no page to lock, so it holds
3063                  * i_mmap_lock for read to protect against truncate.
3064                  */
3065                 i_mmap_unlock_read(vma->vm_file->f_mapping);
3066         }
3067         return ret;
3068 uncharge_out:
3069         mem_cgroup_cancel_charge(new_page, memcg, false);
3070         page_cache_release(new_page);
3071         return ret;
3072 }
3073
3074 static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3075                 unsigned long address, pmd_t *pmd,
3076                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3077 {
3078         struct page *fault_page;
3079         struct address_space *mapping;
3080         spinlock_t *ptl;
3081         pte_t *pte;
3082         int dirtied = 0;
3083         int ret, tmp;
3084
3085         ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
3086         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3087                 return ret;
3088
3089         /*
3090          * Check if the backing address space wants to know that the page is
3091          * about to become writable
3092          */
3093         if (vma->vm_ops->page_mkwrite) {
3094                 unlock_page(fault_page);
3095                 tmp = do_page_mkwrite(vma, fault_page, address);
3096                 if (unlikely(!tmp ||
3097                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3098                         page_cache_release(fault_page);
3099                         return tmp;
3100                 }
3101         }
3102
3103         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3104         if (unlikely(!pte_same(*pte, orig_pte))) {
3105                 pte_unmap_unlock(pte, ptl);
3106                 unlock_page(fault_page);
3107                 page_cache_release(fault_page);
3108                 return ret;
3109         }
3110         do_set_pte(vma, address, fault_page, pte, true, false);
3111         pte_unmap_unlock(pte, ptl);
3112
3113         if (set_page_dirty(fault_page))
3114                 dirtied = 1;
3115         /*
3116          * Take a local copy of the address_space - page.mapping may be zeroed
3117          * by truncate after unlock_page().   The address_space itself remains
3118          * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
3119          * release semantics to prevent the compiler from undoing this copying.
3120          */
3121         mapping = page_rmapping(fault_page);
3122         unlock_page(fault_page);
3123         if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
3124                 /*
3125                  * Some device drivers do not set page.mapping but still
3126                  * dirty their pages
3127                  */
3128                 balance_dirty_pages_ratelimited(mapping);
3129         }
3130
3131         if (!vma->vm_ops->page_mkwrite)
3132                 file_update_time(vma->vm_file);
3133
3134         return ret;
3135 }
3136
3137 /*
3138  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3139  * but allow concurrent faults).
3140  * The mmap_sem may have been released depending on flags and our
3141  * return value.  See filemap_fault() and __lock_page_or_retry().
3142  */
3143 static int do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3144                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3145                 unsigned int flags, pte_t orig_pte)
3146 {
3147         pgoff_t pgoff = linear_page_index(vma, address);
3148
3149         pte_unmap(page_table);
3150         /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3151         if (!vma->vm_ops->fault)
3152                 return VM_FAULT_SIGBUS;
3153         if (!(flags & FAULT_FLAG_WRITE))
3154                 return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3155                                 orig_pte);
3156         if (!(vma->vm_flags & VM_SHARED))
3157                 return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3158                                 orig_pte);
3159         return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3160 }
3161
3162 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3163                                 unsigned long addr, int page_nid,
3164                                 int *flags)
3165 {
3166         get_page(page);
3167
3168         count_vm_numa_event(NUMA_HINT_FAULTS);
3169         if (page_nid == numa_node_id()) {
3170                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3171                 *flags |= TNF_FAULT_LOCAL;
3172         }
3173
3174         return mpol_misplaced(page, vma, addr);
3175 }
3176
3177 static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3178                    unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3179 {
3180         struct page *page = NULL;
3181         spinlock_t *ptl;
3182         int page_nid = -1;
3183         int last_cpupid;
3184         int target_nid;
3185         bool migrated = false;
3186         bool was_writable = pte_write(pte);
3187         int flags = 0;
3188
3189         /* A PROT_NONE fault should not end up here */
3190         BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
3191
3192         /*
3193         * The "pte" at this point cannot be used safely without
3194         * validation through pte_unmap_same(). It's of NUMA type but
3195         * the pfn may be screwed if the read is non atomic.
3196         *
3197         * We can safely just do a "set_pte_at()", because the old
3198         * page table entry is not accessible, so there would be no
3199         * concurrent hardware modifications to the PTE.
3200         */
3201         ptl = pte_lockptr(mm, pmd);
3202         spin_lock(ptl);
3203         if (unlikely(!pte_same(*ptep, pte))) {
3204                 pte_unmap_unlock(ptep, ptl);
3205                 goto out;
3206         }
3207
3208         /* Make it present again */
3209         pte = pte_modify(pte, vma->vm_page_prot);
3210         pte = pte_mkyoung(pte);
3211         if (was_writable)
3212                 pte = pte_mkwrite(pte);
3213         set_pte_at(mm, addr, ptep, pte);
3214         update_mmu_cache(vma, addr, ptep);
3215
3216         page = vm_normal_page(vma, addr, pte);
3217         if (!page) {
3218                 pte_unmap_unlock(ptep, ptl);
3219                 return 0;
3220         }
3221
3222         /* TODO: handle PTE-mapped THP */
3223         if (PageCompound(page)) {
3224                 pte_unmap_unlock(ptep, ptl);
3225                 return 0;
3226         }
3227
3228         /*
3229          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3230          * much anyway since they can be in shared cache state. This misses
3231          * the case where a mapping is writable but the process never writes
3232          * to it but pte_write gets cleared during protection updates and
3233          * pte_dirty has unpredictable behaviour between PTE scan updates,
3234          * background writeback, dirty balancing and application behaviour.
3235          */
3236         if (!(vma->vm_flags & VM_WRITE))
3237                 flags |= TNF_NO_GROUP;
3238
3239         /*
3240          * Flag if the page is shared between multiple address spaces. This
3241          * is later used when determining whether to group tasks together
3242          */
3243         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3244                 flags |= TNF_SHARED;
3245
3246         last_cpupid = page_cpupid_last(page);
3247         page_nid = page_to_nid(page);
3248         target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
3249         pte_unmap_unlock(ptep, ptl);
3250         if (target_nid == -1) {
3251                 put_page(page);
3252                 goto out;
3253         }
3254
3255         /* Migrate to the requested node */
3256         migrated = migrate_misplaced_page(page, vma, target_nid);
3257         if (migrated) {
3258                 page_nid = target_nid;
3259                 flags |= TNF_MIGRATED;
3260         } else
3261                 flags |= TNF_MIGRATE_FAIL;
3262
3263 out:
3264         if (page_nid != -1)
3265                 task_numa_fault(last_cpupid, page_nid, 1, flags);
3266         return 0;
3267 }
3268
3269 static int create_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
3270                         unsigned long address, pmd_t *pmd, unsigned int flags)
3271 {
3272         if (vma_is_anonymous(vma))
3273                 return do_huge_pmd_anonymous_page(mm, vma, address, pmd, flags);
3274         if (vma->vm_ops->pmd_fault)
3275                 return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
3276         return VM_FAULT_FALLBACK;
3277 }
3278
3279 static int wp_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
3280                         unsigned long address, pmd_t *pmd, pmd_t orig_pmd,
3281                         unsigned int flags)
3282 {
3283         if (vma_is_anonymous(vma))
3284                 return do_huge_pmd_wp_page(mm, vma, address, pmd, orig_pmd);
3285         if (vma->vm_ops->pmd_fault)
3286                 return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
3287         return VM_FAULT_FALLBACK;
3288 }
3289
3290 /*
3291  * These routines also need to handle stuff like marking pages dirty
3292  * and/or accessed for architectures that don't do it in hardware (most
3293  * RISC architectures).  The early dirtying is also good on the i386.
3294  *
3295  * There is also a hook called "update_mmu_cache()" that architectures
3296  * with external mmu caches can use to update those (ie the Sparc or
3297  * PowerPC hashed page tables that act as extended TLBs).
3298  *
3299  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3300  * but allow concurrent faults), and pte mapped but not yet locked.
3301  * We return with pte unmapped and unlocked.
3302  *
3303  * The mmap_sem may have been released depending on flags and our
3304  * return value.  See filemap_fault() and __lock_page_or_retry().
3305  */
3306 static int handle_pte_fault(struct mm_struct *mm,
3307                      struct vm_area_struct *vma, unsigned long address,
3308                      pte_t *pte, pmd_t *pmd, unsigned int flags)
3309 {
3310         pte_t entry;
3311         spinlock_t *ptl;
3312
3313         /*
3314          * some architectures can have larger ptes than wordsize,
3315          * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and CONFIG_32BIT=y,
3316          * so READ_ONCE or ACCESS_ONCE cannot guarantee atomic accesses.
3317          * The code below just needs a consistent view for the ifs and
3318          * we later double check anyway with the ptl lock held. So here
3319          * a barrier will do.
3320          */
3321         entry = *pte;
3322         barrier();
3323         if (!pte_present(entry)) {
3324                 if (pte_none(entry)) {
3325                         if (vma_is_anonymous(vma))
3326                                 return do_anonymous_page(mm, vma, address,
3327                                                          pte, pmd, flags);
3328                         else
3329                                 return do_fault(mm, vma, address, pte, pmd,
3330                                                 flags, entry);
3331                 }
3332                 return do_swap_page(mm, vma, address,
3333                                         pte, pmd, flags, entry);
3334         }
3335
3336         if (pte_protnone(entry))
3337                 return do_numa_page(mm, vma, address, entry, pte, pmd);
3338
3339         ptl = pte_lockptr(mm, pmd);
3340         spin_lock(ptl);
3341         if (unlikely(!pte_same(*pte, entry)))
3342                 goto unlock;
3343         if (flags & FAULT_FLAG_WRITE) {
3344                 if (!pte_write(entry))
3345                         return do_wp_page(mm, vma, address,
3346                                         pte, pmd, ptl, entry);
3347                 entry = pte_mkdirty(entry);
3348         }
3349         entry = pte_mkyoung(entry);
3350         if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3351                 update_mmu_cache(vma, address, pte);
3352         } else {
3353                 /*
3354                  * This is needed only for protection faults but the arch code
3355                  * is not yet telling us if this is a protection fault or not.
3356                  * This still avoids useless tlb flushes for .text page faults
3357                  * with threads.
3358                  */
3359                 if (flags & FAULT_FLAG_WRITE)
3360                         flush_tlb_fix_spurious_fault(vma, address);
3361         }
3362 unlock:
3363         pte_unmap_unlock(pte, ptl);
3364         return 0;
3365 }
3366
3367 /*
3368  * By the time we get here, we already hold the mm semaphore
3369  *
3370  * The mmap_sem may have been released depending on flags and our
3371  * return value.  See filemap_fault() and __lock_page_or_retry().
3372  */
3373 static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3374                              unsigned long address, unsigned int flags)
3375 {
3376         pgd_t *pgd;
3377         pud_t *pud;
3378         pmd_t *pmd;
3379         pte_t *pte;
3380
3381         if (unlikely(is_vm_hugetlb_page(vma)))
3382                 return hugetlb_fault(mm, vma, address, flags);
3383
3384         pgd = pgd_offset(mm, address);
3385         pud = pud_alloc(mm, pgd, address);
3386         if (!pud)
3387                 return VM_FAULT_OOM;
3388         pmd = pmd_alloc(mm, pud, address);
3389         if (!pmd)
3390                 return VM_FAULT_OOM;
3391         if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3392                 int ret = create_huge_pmd(mm, vma, address, pmd, flags);
3393                 if (!(ret & VM_FAULT_FALLBACK))
3394                         return ret;
3395         } else {
3396                 pmd_t orig_pmd = *pmd;
3397                 int ret;
3398
3399                 barrier();
3400                 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
3401                         unsigned int dirty = flags & FAULT_FLAG_WRITE;
3402
3403                         if (pmd_protnone(orig_pmd))
3404                                 return do_huge_pmd_numa_page(mm, vma, address,
3405                                                              orig_pmd, pmd);
3406
3407                         if (dirty && !pmd_write(orig_pmd)) {
3408                                 ret = wp_huge_pmd(mm, vma, address, pmd,
3409                                                         orig_pmd, flags);
3410                                 if (!(ret & VM_FAULT_FALLBACK))
3411                                         return ret;
3412                         } else {
3413                                 huge_pmd_set_accessed(mm, vma, address, pmd,
3414                                                       orig_pmd, dirty);
3415                                 return 0;
3416                         }
3417                 }
3418         }
3419
3420         /*
3421          * Use pte_alloc() instead of pte_alloc_map, because we can't
3422          * run pte_offset_map on the pmd, if an huge pmd could
3423          * materialize from under us from a different thread.
3424          */
3425         if (unlikely(pte_alloc(mm, pmd, address)))
3426                 return VM_FAULT_OOM;
3427         /*
3428          * If a huge pmd materialized under us just retry later.  Use
3429          * pmd_trans_unstable() instead of pmd_trans_huge() to ensure the pmd
3430          * didn't become pmd_trans_huge under us and then back to pmd_none, as
3431          * a result of MADV_DONTNEED running immediately after a huge pmd fault
3432          * in a different thread of this mm, in turn leading to a misleading
3433          * pmd_trans_huge() retval.  All we have to ensure is that it is a
3434          * regular pmd that we can walk with pte_offset_map() and we can do that
3435          * through an atomic read in C, which is what pmd_trans_unstable()
3436          * provides.
3437          */
3438         if (unlikely(pmd_trans_unstable(pmd) || pmd_devmap(*pmd)))
3439                 return 0;
3440         /*
3441          * A regular pmd is established and it can't morph into a huge pmd
3442          * from under us anymore at this point because we hold the mmap_sem
3443          * read mode and khugepaged takes it in write mode. So now it's
3444          * safe to run pte_offset_map().
3445          */
3446         pte = pte_offset_map(pmd, address);
3447
3448         return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3449 }
3450
3451 /*
3452  * By the time we get here, we already hold the mm semaphore
3453  *
3454  * The mmap_sem may have been released depending on flags and our
3455  * return value.  See filemap_fault() and __lock_page_or_retry().
3456  */
3457 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3458                     unsigned long address, unsigned int flags)
3459 {
3460         int ret;
3461
3462         __set_current_state(TASK_RUNNING);
3463
3464         count_vm_event(PGFAULT);
3465         mem_cgroup_count_vm_event(mm, PGFAULT);
3466
3467         /* do counter updates before entering really critical section. */
3468         check_sync_rss_stat(current);
3469
3470         /*
3471          * Enable the memcg OOM handling for faults triggered in user
3472          * space.  Kernel faults are handled more gracefully.
3473          */
3474         if (flags & FAULT_FLAG_USER)
3475                 mem_cgroup_oom_enable();
3476
3477         ret = __handle_mm_fault(mm, vma, address, flags);
3478
3479         if (flags & FAULT_FLAG_USER) {
3480                 mem_cgroup_oom_disable();
3481                 /*
3482                  * The task may have entered a memcg OOM situation but
3483                  * if the allocation error was handled gracefully (no
3484                  * VM_FAULT_OOM), there is no need to kill anything.
3485                  * Just clean up the OOM state peacefully.
3486                  */
3487                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3488                         mem_cgroup_oom_synchronize(false);
3489         }
3490
3491         return ret;
3492 }
3493 EXPORT_SYMBOL_GPL(handle_mm_fault);
3494
3495 #ifndef __PAGETABLE_PUD_FOLDED
3496 /*
3497  * Allocate page upper directory.
3498  * We've already handled the fast-path in-line.
3499  */
3500 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3501 {
3502         pud_t *new = pud_alloc_one(mm, address);
3503         if (!new)
3504                 return -ENOMEM;
3505
3506         smp_wmb(); /* See comment in __pte_alloc */
3507
3508         spin_lock(&mm->page_table_lock);
3509         if (pgd_present(*pgd))          /* Another has populated it */
3510                 pud_free(mm, new);
3511         else
3512                 pgd_populate(mm, pgd, new);
3513         spin_unlock(&mm->page_table_lock);
3514         return 0;
3515 }
3516 #endif /* __PAGETABLE_PUD_FOLDED */
3517
3518 #ifndef __PAGETABLE_PMD_FOLDED
3519 /*
3520  * Allocate page middle directory.
3521  * We've already handled the fast-path in-line.
3522  */
3523 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3524 {
3525         pmd_t *new = pmd_alloc_one(mm, address);
3526         if (!new)
3527                 return -ENOMEM;
3528
3529         smp_wmb(); /* See comment in __pte_alloc */
3530
3531         spin_lock(&mm->page_table_lock);
3532 #ifndef __ARCH_HAS_4LEVEL_HACK
3533         if (!pud_present(*pud)) {
3534                 mm_inc_nr_pmds(mm);
3535                 pud_populate(mm, pud, new);
3536         } else  /* Another has populated it */
3537                 pmd_free(mm, new);
3538 #else
3539         if (!pgd_present(*pud)) {
3540                 mm_inc_nr_pmds(mm);
3541                 pgd_populate(mm, pud, new);
3542         } else /* Another has populated it */
3543                 pmd_free(mm, new);
3544 #endif /* __ARCH_HAS_4LEVEL_HACK */
3545         spin_unlock(&mm->page_table_lock);
3546         return 0;
3547 }
3548 #endif /* __PAGETABLE_PMD_FOLDED */
3549
3550 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3551                 pte_t **ptepp, spinlock_t **ptlp)
3552 {
3553         pgd_t *pgd;
3554         pud_t *pud;
3555         pmd_t *pmd;
3556         pte_t *ptep;
3557
3558         pgd = pgd_offset(mm, address);
3559         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3560                 goto out;
3561
3562         pud = pud_offset(pgd, address);
3563         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3564                 goto out;
3565
3566         pmd = pmd_offset(pud, address);
3567         VM_BUG_ON(pmd_trans_huge(*pmd));
3568         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3569                 goto out;
3570
3571         /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3572         if (pmd_huge(*pmd))
3573                 goto out;
3574
3575         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3576         if (!ptep)
3577                 goto out;
3578         if (!pte_present(*ptep))
3579                 goto unlock;
3580         *ptepp = ptep;
3581         return 0;
3582 unlock:
3583         pte_unmap_unlock(ptep, *ptlp);
3584 out:
3585         return -EINVAL;
3586 }
3587
3588 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3589                              pte_t **ptepp, spinlock_t **ptlp)
3590 {
3591         int res;
3592
3593         /* (void) is needed to make gcc happy */
3594         (void) __cond_lock(*ptlp,
3595                            !(res = __follow_pte(mm, address, ptepp, ptlp)));
3596         return res;
3597 }
3598
3599 /**
3600  * follow_pfn - look up PFN at a user virtual address
3601  * @vma: memory mapping
3602  * @address: user virtual address
3603  * @pfn: location to store found PFN
3604  *
3605  * Only IO mappings and raw PFN mappings are allowed.
3606  *
3607  * Returns zero and the pfn at @pfn on success, -ve otherwise.
3608  */
3609 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3610         unsigned long *pfn)
3611 {
3612         int ret = -EINVAL;
3613         spinlock_t *ptl;
3614         pte_t *ptep;
3615
3616         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3617                 return ret;
3618
3619         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3620         if (ret)
3621                 return ret;
3622         *pfn = pte_pfn(*ptep);
3623         pte_unmap_unlock(ptep, ptl);
3624         return 0;
3625 }
3626 EXPORT_SYMBOL(follow_pfn);
3627
3628 #ifdef CONFIG_HAVE_IOREMAP_PROT
3629 int follow_phys(struct vm_area_struct *vma,
3630                 unsigned long address, unsigned int flags,
3631                 unsigned long *prot, resource_size_t *phys)
3632 {
3633         int ret = -EINVAL;
3634         pte_t *ptep, pte;
3635         spinlock_t *ptl;
3636
3637         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3638                 goto out;
3639
3640         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3641                 goto out;
3642         pte = *ptep;
3643
3644         if ((flags & FOLL_WRITE) && !pte_write(pte))
3645                 goto unlock;
3646
3647         *prot = pgprot_val(pte_pgprot(pte));
3648         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3649
3650         ret = 0;
3651 unlock:
3652         pte_unmap_unlock(ptep, ptl);
3653 out:
3654         return ret;
3655 }
3656
3657 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3658                         void *buf, int len, int write)
3659 {
3660         resource_size_t phys_addr;
3661         unsigned long prot = 0;
3662         void __iomem *maddr;
3663         int offset = addr & (PAGE_SIZE-1);
3664
3665         if (follow_phys(vma, addr, write, &prot, &phys_addr))
3666                 return -EINVAL;
3667
3668         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
3669         if (write)
3670                 memcpy_toio(maddr + offset, buf, len);
3671         else
3672                 memcpy_fromio(buf, maddr + offset, len);
3673         iounmap(maddr);
3674
3675         return len;
3676 }
3677 EXPORT_SYMBOL_GPL(generic_access_phys);
3678 #endif
3679
3680 /*
3681  * Access another process' address space as given in mm.  If non-NULL, use the
3682  * given task for page fault accounting.
3683  */
3684 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3685                 unsigned long addr, void *buf, int len, int write)
3686 {
3687         struct vm_area_struct *vma;
3688         void *old_buf = buf;
3689
3690         down_read(&mm->mmap_sem);
3691         /* ignore errors, just check how much was successfully transferred */
3692         while (len) {
3693                 int bytes, ret, offset;
3694                 void *maddr;
3695                 struct page *page = NULL;
3696
3697                 ret = get_user_pages(tsk, mm, addr, 1,
3698                                 write, 1, &page, &vma);
3699                 if (ret <= 0) {
3700 #ifndef CONFIG_HAVE_IOREMAP_PROT
3701                         break;
3702 #else
3703                         /*
3704                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
3705                          * we can access using slightly different code.
3706                          */
3707                         vma = find_vma(mm, addr);
3708                         if (!vma || vma->vm_start > addr)
3709                                 break;
3710                         if (vma->vm_ops && vma->vm_ops->access)
3711                                 ret = vma->vm_ops->access(vma, addr, buf,
3712                                                           len, write);
3713                         if (ret <= 0)
3714                                 break;
3715                         bytes = ret;
3716 #endif
3717                 } else {
3718                         bytes = len;
3719                         offset = addr & (PAGE_SIZE-1);
3720                         if (bytes > PAGE_SIZE-offset)
3721                                 bytes = PAGE_SIZE-offset;
3722
3723                         maddr = kmap(page);
3724                         if (write) {
3725                                 copy_to_user_page(vma, page, addr,
3726                                                   maddr + offset, buf, bytes);
3727                                 set_page_dirty_lock(page);
3728                         } else {
3729                                 copy_from_user_page(vma, page, addr,
3730                                                     buf, maddr + offset, bytes);
3731                         }
3732                         kunmap(page);
3733                         page_cache_release(page);
3734                 }
3735                 len -= bytes;
3736                 buf += bytes;
3737                 addr += bytes;
3738         }
3739         up_read(&mm->mmap_sem);
3740
3741         return buf - old_buf;
3742 }
3743
3744 /**
3745  * access_remote_vm - access another process' address space
3746  * @mm:         the mm_struct of the target address space
3747  * @addr:       start address to access
3748  * @buf:        source or destination buffer
3749  * @len:        number of bytes to transfer
3750  * @write:      whether the access is a write
3751  *
3752  * The caller must hold a reference on @mm.
3753  */
3754 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3755                 void *buf, int len, int write)
3756 {
3757         return __access_remote_vm(NULL, mm, addr, buf, len, write);
3758 }
3759
3760 /*
3761  * Access another process' address space.
3762  * Source/target buffer must be kernel space,
3763  * Do not walk the page table directly, use get_user_pages
3764  */
3765 int access_process_vm(struct task_struct *tsk, unsigned long addr,
3766                 void *buf, int len, int write)
3767 {
3768         struct mm_struct *mm;
3769         int ret;
3770
3771         mm = get_task_mm(tsk);
3772         if (!mm)
3773                 return 0;
3774
3775         ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3776         mmput(mm);
3777
3778         return ret;
3779 }
3780
3781 /*
3782  * Print the name of a VMA.
3783  */
3784 void print_vma_addr(char *prefix, unsigned long ip)
3785 {
3786         struct mm_struct *mm = current->mm;
3787         struct vm_area_struct *vma;
3788
3789         /*
3790          * Do not print if we are in atomic
3791          * contexts (in exception stacks, etc.):
3792          */
3793         if (preempt_count())
3794                 return;
3795
3796         down_read(&mm->mmap_sem);
3797         vma = find_vma(mm, ip);
3798         if (vma && vma->vm_file) {
3799                 struct file *f = vma->vm_file;
3800                 char *buf = (char *)__get_free_page(GFP_KERNEL);
3801                 if (buf) {
3802                         char *p;
3803
3804                         p = file_path(f, buf, PAGE_SIZE);
3805                         if (IS_ERR(p))
3806                                 p = "?";
3807                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
3808                                         vma->vm_start,
3809                                         vma->vm_end - vma->vm_start);
3810                         free_page((unsigned long)buf);
3811                 }
3812         }
3813         up_read(&mm->mmap_sem);
3814 }
3815
3816 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3817 void __might_fault(const char *file, int line)
3818 {
3819         /*
3820          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3821          * holding the mmap_sem, this is safe because kernel memory doesn't
3822          * get paged out, therefore we'll never actually fault, and the
3823          * below annotations will generate false positives.
3824          */
3825         if (segment_eq(get_fs(), KERNEL_DS))
3826                 return;
3827         if (pagefault_disabled())
3828                 return;
3829         __might_sleep(file, line, 0);
3830 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3831         if (current->mm)
3832                 might_lock_read(&current->mm->mmap_sem);
3833 #endif
3834 }
3835 EXPORT_SYMBOL(__might_fault);
3836 #endif
3837
3838 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3839 static void clear_gigantic_page(struct page *page,
3840                                 unsigned long addr,
3841                                 unsigned int pages_per_huge_page)
3842 {
3843         int i;
3844         struct page *p = page;
3845
3846         might_sleep();
3847         for (i = 0; i < pages_per_huge_page;
3848              i++, p = mem_map_next(p, page, i)) {
3849                 cond_resched();
3850                 clear_user_highpage(p, addr + i * PAGE_SIZE);
3851         }
3852 }
3853 void clear_huge_page(struct page *page,
3854                      unsigned long addr, unsigned int pages_per_huge_page)
3855 {
3856         int i;
3857
3858         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3859                 clear_gigantic_page(page, addr, pages_per_huge_page);
3860                 return;
3861         }
3862
3863         might_sleep();
3864         for (i = 0; i < pages_per_huge_page; i++) {
3865                 cond_resched();
3866                 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3867         }
3868 }
3869
3870 static void copy_user_gigantic_page(struct page *dst, struct page *src,
3871                                     unsigned long addr,
3872                                     struct vm_area_struct *vma,
3873                                     unsigned int pages_per_huge_page)
3874 {
3875         int i;
3876         struct page *dst_base = dst;
3877         struct page *src_base = src;
3878
3879         for (i = 0; i < pages_per_huge_page; ) {
3880                 cond_resched();
3881                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3882
3883                 i++;
3884                 dst = mem_map_next(dst, dst_base, i);
3885                 src = mem_map_next(src, src_base, i);
3886         }
3887 }
3888
3889 void copy_user_huge_page(struct page *dst, struct page *src,
3890                          unsigned long addr, struct vm_area_struct *vma,
3891                          unsigned int pages_per_huge_page)
3892 {
3893         int i;
3894
3895         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3896                 copy_user_gigantic_page(dst, src, addr, vma,
3897                                         pages_per_huge_page);
3898                 return;
3899         }
3900
3901         might_sleep();
3902         for (i = 0; i < pages_per_huge_page; i++) {
3903                 cond_resched();
3904                 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
3905         }
3906 }
3907 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3908
3909 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
3910
3911 static struct kmem_cache *page_ptl_cachep;
3912
3913 void __init ptlock_cache_init(void)
3914 {
3915         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
3916                         SLAB_PANIC, NULL);
3917 }
3918
3919 bool ptlock_alloc(struct page *page)
3920 {
3921         spinlock_t *ptl;
3922
3923         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
3924         if (!ptl)
3925                 return false;
3926         page->ptl = ptl;
3927         return true;
3928 }
3929
3930 void ptlock_free(struct page *page)
3931 {
3932         kmem_cache_free(page_ptl_cachep, page->ptl);
3933 }
3934 #endif