mm: remove rest usage of VM_NONLINEAR and pte_file()
[cascardo/linux.git] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60 #include <linux/migrate.h>
61 #include <linux/string.h>
62 #include <linux/dma-debug.h>
63 #include <linux/debugfs.h>
64
65 #include <asm/io.h>
66 #include <asm/pgalloc.h>
67 #include <asm/uaccess.h>
68 #include <asm/tlb.h>
69 #include <asm/tlbflush.h>
70 #include <asm/pgtable.h>
71
72 #include "internal.h"
73
74 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
75 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
76 #endif
77
78 #ifndef CONFIG_NEED_MULTIPLE_NODES
79 /* use the per-pgdat data instead for discontigmem - mbligh */
80 unsigned long max_mapnr;
81 struct page *mem_map;
82
83 EXPORT_SYMBOL(max_mapnr);
84 EXPORT_SYMBOL(mem_map);
85 #endif
86
87 /*
88  * A number of key systems in x86 including ioremap() rely on the assumption
89  * that high_memory defines the upper bound on direct map memory, then end
90  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
91  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
92  * and ZONE_HIGHMEM.
93  */
94 void * high_memory;
95
96 EXPORT_SYMBOL(high_memory);
97
98 /*
99  * Randomize the address space (stacks, mmaps, brk, etc.).
100  *
101  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
102  *   as ancient (libc5 based) binaries can segfault. )
103  */
104 int randomize_va_space __read_mostly =
105 #ifdef CONFIG_COMPAT_BRK
106                                         1;
107 #else
108                                         2;
109 #endif
110
111 static int __init disable_randmaps(char *s)
112 {
113         randomize_va_space = 0;
114         return 1;
115 }
116 __setup("norandmaps", disable_randmaps);
117
118 unsigned long zero_pfn __read_mostly;
119 unsigned long highest_memmap_pfn __read_mostly;
120
121 EXPORT_SYMBOL(zero_pfn);
122
123 /*
124  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
125  */
126 static int __init init_zero_pfn(void)
127 {
128         zero_pfn = page_to_pfn(ZERO_PAGE(0));
129         return 0;
130 }
131 core_initcall(init_zero_pfn);
132
133
134 #if defined(SPLIT_RSS_COUNTING)
135
136 void sync_mm_rss(struct mm_struct *mm)
137 {
138         int i;
139
140         for (i = 0; i < NR_MM_COUNTERS; i++) {
141                 if (current->rss_stat.count[i]) {
142                         add_mm_counter(mm, i, current->rss_stat.count[i]);
143                         current->rss_stat.count[i] = 0;
144                 }
145         }
146         current->rss_stat.events = 0;
147 }
148
149 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
150 {
151         struct task_struct *task = current;
152
153         if (likely(task->mm == mm))
154                 task->rss_stat.count[member] += val;
155         else
156                 add_mm_counter(mm, member, val);
157 }
158 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
159 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
160
161 /* sync counter once per 64 page faults */
162 #define TASK_RSS_EVENTS_THRESH  (64)
163 static void check_sync_rss_stat(struct task_struct *task)
164 {
165         if (unlikely(task != current))
166                 return;
167         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
168                 sync_mm_rss(task->mm);
169 }
170 #else /* SPLIT_RSS_COUNTING */
171
172 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
173 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
174
175 static void check_sync_rss_stat(struct task_struct *task)
176 {
177 }
178
179 #endif /* SPLIT_RSS_COUNTING */
180
181 #ifdef HAVE_GENERIC_MMU_GATHER
182
183 static int tlb_next_batch(struct mmu_gather *tlb)
184 {
185         struct mmu_gather_batch *batch;
186
187         batch = tlb->active;
188         if (batch->next) {
189                 tlb->active = batch->next;
190                 return 1;
191         }
192
193         if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
194                 return 0;
195
196         batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
197         if (!batch)
198                 return 0;
199
200         tlb->batch_count++;
201         batch->next = NULL;
202         batch->nr   = 0;
203         batch->max  = MAX_GATHER_BATCH;
204
205         tlb->active->next = batch;
206         tlb->active = batch;
207
208         return 1;
209 }
210
211 /* tlb_gather_mmu
212  *      Called to initialize an (on-stack) mmu_gather structure for page-table
213  *      tear-down from @mm. The @fullmm argument is used when @mm is without
214  *      users and we're going to destroy the full address space (exit/execve).
215  */
216 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
217 {
218         tlb->mm = mm;
219
220         /* Is it from 0 to ~0? */
221         tlb->fullmm     = !(start | (end+1));
222         tlb->need_flush_all = 0;
223         tlb->local.next = NULL;
224         tlb->local.nr   = 0;
225         tlb->local.max  = ARRAY_SIZE(tlb->__pages);
226         tlb->active     = &tlb->local;
227         tlb->batch_count = 0;
228
229 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
230         tlb->batch = NULL;
231 #endif
232
233         __tlb_reset_range(tlb);
234 }
235
236 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
237 {
238         if (!tlb->end)
239                 return;
240
241         tlb_flush(tlb);
242         mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
243 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
244         tlb_table_flush(tlb);
245 #endif
246         __tlb_reset_range(tlb);
247 }
248
249 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
250 {
251         struct mmu_gather_batch *batch;
252
253         for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
254                 free_pages_and_swap_cache(batch->pages, batch->nr);
255                 batch->nr = 0;
256         }
257         tlb->active = &tlb->local;
258 }
259
260 void tlb_flush_mmu(struct mmu_gather *tlb)
261 {
262         tlb_flush_mmu_tlbonly(tlb);
263         tlb_flush_mmu_free(tlb);
264 }
265
266 /* tlb_finish_mmu
267  *      Called at the end of the shootdown operation to free up any resources
268  *      that were required.
269  */
270 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
271 {
272         struct mmu_gather_batch *batch, *next;
273
274         tlb_flush_mmu(tlb);
275
276         /* keep the page table cache within bounds */
277         check_pgt_cache();
278
279         for (batch = tlb->local.next; batch; batch = next) {
280                 next = batch->next;
281                 free_pages((unsigned long)batch, 0);
282         }
283         tlb->local.next = NULL;
284 }
285
286 /* __tlb_remove_page
287  *      Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
288  *      handling the additional races in SMP caused by other CPUs caching valid
289  *      mappings in their TLBs. Returns the number of free page slots left.
290  *      When out of page slots we must call tlb_flush_mmu().
291  */
292 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
293 {
294         struct mmu_gather_batch *batch;
295
296         VM_BUG_ON(!tlb->end);
297
298         batch = tlb->active;
299         batch->pages[batch->nr++] = page;
300         if (batch->nr == batch->max) {
301                 if (!tlb_next_batch(tlb))
302                         return 0;
303                 batch = tlb->active;
304         }
305         VM_BUG_ON_PAGE(batch->nr > batch->max, page);
306
307         return batch->max - batch->nr;
308 }
309
310 #endif /* HAVE_GENERIC_MMU_GATHER */
311
312 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
313
314 /*
315  * See the comment near struct mmu_table_batch.
316  */
317
318 static void tlb_remove_table_smp_sync(void *arg)
319 {
320         /* Simply deliver the interrupt */
321 }
322
323 static void tlb_remove_table_one(void *table)
324 {
325         /*
326          * This isn't an RCU grace period and hence the page-tables cannot be
327          * assumed to be actually RCU-freed.
328          *
329          * It is however sufficient for software page-table walkers that rely on
330          * IRQ disabling. See the comment near struct mmu_table_batch.
331          */
332         smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
333         __tlb_remove_table(table);
334 }
335
336 static void tlb_remove_table_rcu(struct rcu_head *head)
337 {
338         struct mmu_table_batch *batch;
339         int i;
340
341         batch = container_of(head, struct mmu_table_batch, rcu);
342
343         for (i = 0; i < batch->nr; i++)
344                 __tlb_remove_table(batch->tables[i]);
345
346         free_page((unsigned long)batch);
347 }
348
349 void tlb_table_flush(struct mmu_gather *tlb)
350 {
351         struct mmu_table_batch **batch = &tlb->batch;
352
353         if (*batch) {
354                 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
355                 *batch = NULL;
356         }
357 }
358
359 void tlb_remove_table(struct mmu_gather *tlb, void *table)
360 {
361         struct mmu_table_batch **batch = &tlb->batch;
362
363         /*
364          * When there's less then two users of this mm there cannot be a
365          * concurrent page-table walk.
366          */
367         if (atomic_read(&tlb->mm->mm_users) < 2) {
368                 __tlb_remove_table(table);
369                 return;
370         }
371
372         if (*batch == NULL) {
373                 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
374                 if (*batch == NULL) {
375                         tlb_remove_table_one(table);
376                         return;
377                 }
378                 (*batch)->nr = 0;
379         }
380         (*batch)->tables[(*batch)->nr++] = table;
381         if ((*batch)->nr == MAX_TABLE_BATCH)
382                 tlb_table_flush(tlb);
383 }
384
385 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
386
387 /*
388  * Note: this doesn't free the actual pages themselves. That
389  * has been handled earlier when unmapping all the memory regions.
390  */
391 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
392                            unsigned long addr)
393 {
394         pgtable_t token = pmd_pgtable(*pmd);
395         pmd_clear(pmd);
396         pte_free_tlb(tlb, token, addr);
397         atomic_long_dec(&tlb->mm->nr_ptes);
398 }
399
400 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
401                                 unsigned long addr, unsigned long end,
402                                 unsigned long floor, unsigned long ceiling)
403 {
404         pmd_t *pmd;
405         unsigned long next;
406         unsigned long start;
407
408         start = addr;
409         pmd = pmd_offset(pud, addr);
410         do {
411                 next = pmd_addr_end(addr, end);
412                 if (pmd_none_or_clear_bad(pmd))
413                         continue;
414                 free_pte_range(tlb, pmd, addr);
415         } while (pmd++, addr = next, addr != end);
416
417         start &= PUD_MASK;
418         if (start < floor)
419                 return;
420         if (ceiling) {
421                 ceiling &= PUD_MASK;
422                 if (!ceiling)
423                         return;
424         }
425         if (end - 1 > ceiling - 1)
426                 return;
427
428         pmd = pmd_offset(pud, start);
429         pud_clear(pud);
430         pmd_free_tlb(tlb, pmd, start);
431 }
432
433 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
434                                 unsigned long addr, unsigned long end,
435                                 unsigned long floor, unsigned long ceiling)
436 {
437         pud_t *pud;
438         unsigned long next;
439         unsigned long start;
440
441         start = addr;
442         pud = pud_offset(pgd, addr);
443         do {
444                 next = pud_addr_end(addr, end);
445                 if (pud_none_or_clear_bad(pud))
446                         continue;
447                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
448         } while (pud++, addr = next, addr != end);
449
450         start &= PGDIR_MASK;
451         if (start < floor)
452                 return;
453         if (ceiling) {
454                 ceiling &= PGDIR_MASK;
455                 if (!ceiling)
456                         return;
457         }
458         if (end - 1 > ceiling - 1)
459                 return;
460
461         pud = pud_offset(pgd, start);
462         pgd_clear(pgd);
463         pud_free_tlb(tlb, pud, start);
464 }
465
466 /*
467  * This function frees user-level page tables of a process.
468  */
469 void free_pgd_range(struct mmu_gather *tlb,
470                         unsigned long addr, unsigned long end,
471                         unsigned long floor, unsigned long ceiling)
472 {
473         pgd_t *pgd;
474         unsigned long next;
475
476         /*
477          * The next few lines have given us lots of grief...
478          *
479          * Why are we testing PMD* at this top level?  Because often
480          * there will be no work to do at all, and we'd prefer not to
481          * go all the way down to the bottom just to discover that.
482          *
483          * Why all these "- 1"s?  Because 0 represents both the bottom
484          * of the address space and the top of it (using -1 for the
485          * top wouldn't help much: the masks would do the wrong thing).
486          * The rule is that addr 0 and floor 0 refer to the bottom of
487          * the address space, but end 0 and ceiling 0 refer to the top
488          * Comparisons need to use "end - 1" and "ceiling - 1" (though
489          * that end 0 case should be mythical).
490          *
491          * Wherever addr is brought up or ceiling brought down, we must
492          * be careful to reject "the opposite 0" before it confuses the
493          * subsequent tests.  But what about where end is brought down
494          * by PMD_SIZE below? no, end can't go down to 0 there.
495          *
496          * Whereas we round start (addr) and ceiling down, by different
497          * masks at different levels, in order to test whether a table
498          * now has no other vmas using it, so can be freed, we don't
499          * bother to round floor or end up - the tests don't need that.
500          */
501
502         addr &= PMD_MASK;
503         if (addr < floor) {
504                 addr += PMD_SIZE;
505                 if (!addr)
506                         return;
507         }
508         if (ceiling) {
509                 ceiling &= PMD_MASK;
510                 if (!ceiling)
511                         return;
512         }
513         if (end - 1 > ceiling - 1)
514                 end -= PMD_SIZE;
515         if (addr > end - 1)
516                 return;
517
518         pgd = pgd_offset(tlb->mm, addr);
519         do {
520                 next = pgd_addr_end(addr, end);
521                 if (pgd_none_or_clear_bad(pgd))
522                         continue;
523                 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
524         } while (pgd++, addr = next, addr != end);
525 }
526
527 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
528                 unsigned long floor, unsigned long ceiling)
529 {
530         while (vma) {
531                 struct vm_area_struct *next = vma->vm_next;
532                 unsigned long addr = vma->vm_start;
533
534                 /*
535                  * Hide vma from rmap and truncate_pagecache before freeing
536                  * pgtables
537                  */
538                 unlink_anon_vmas(vma);
539                 unlink_file_vma(vma);
540
541                 if (is_vm_hugetlb_page(vma)) {
542                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
543                                 floor, next? next->vm_start: ceiling);
544                 } else {
545                         /*
546                          * Optimization: gather nearby vmas into one call down
547                          */
548                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
549                                && !is_vm_hugetlb_page(next)) {
550                                 vma = next;
551                                 next = vma->vm_next;
552                                 unlink_anon_vmas(vma);
553                                 unlink_file_vma(vma);
554                         }
555                         free_pgd_range(tlb, addr, vma->vm_end,
556                                 floor, next? next->vm_start: ceiling);
557                 }
558                 vma = next;
559         }
560 }
561
562 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
563                 pmd_t *pmd, unsigned long address)
564 {
565         spinlock_t *ptl;
566         pgtable_t new = pte_alloc_one(mm, address);
567         int wait_split_huge_page;
568         if (!new)
569                 return -ENOMEM;
570
571         /*
572          * Ensure all pte setup (eg. pte page lock and page clearing) are
573          * visible before the pte is made visible to other CPUs by being
574          * put into page tables.
575          *
576          * The other side of the story is the pointer chasing in the page
577          * table walking code (when walking the page table without locking;
578          * ie. most of the time). Fortunately, these data accesses consist
579          * of a chain of data-dependent loads, meaning most CPUs (alpha
580          * being the notable exception) will already guarantee loads are
581          * seen in-order. See the alpha page table accessors for the
582          * smp_read_barrier_depends() barriers in page table walking code.
583          */
584         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
585
586         ptl = pmd_lock(mm, pmd);
587         wait_split_huge_page = 0;
588         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
589                 atomic_long_inc(&mm->nr_ptes);
590                 pmd_populate(mm, pmd, new);
591                 new = NULL;
592         } else if (unlikely(pmd_trans_splitting(*pmd)))
593                 wait_split_huge_page = 1;
594         spin_unlock(ptl);
595         if (new)
596                 pte_free(mm, new);
597         if (wait_split_huge_page)
598                 wait_split_huge_page(vma->anon_vma, pmd);
599         return 0;
600 }
601
602 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
603 {
604         pte_t *new = pte_alloc_one_kernel(&init_mm, address);
605         if (!new)
606                 return -ENOMEM;
607
608         smp_wmb(); /* See comment in __pte_alloc */
609
610         spin_lock(&init_mm.page_table_lock);
611         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
612                 pmd_populate_kernel(&init_mm, pmd, new);
613                 new = NULL;
614         } else
615                 VM_BUG_ON(pmd_trans_splitting(*pmd));
616         spin_unlock(&init_mm.page_table_lock);
617         if (new)
618                 pte_free_kernel(&init_mm, new);
619         return 0;
620 }
621
622 static inline void init_rss_vec(int *rss)
623 {
624         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
625 }
626
627 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
628 {
629         int i;
630
631         if (current->mm == mm)
632                 sync_mm_rss(mm);
633         for (i = 0; i < NR_MM_COUNTERS; i++)
634                 if (rss[i])
635                         add_mm_counter(mm, i, rss[i]);
636 }
637
638 /*
639  * This function is called to print an error when a bad pte
640  * is found. For example, we might have a PFN-mapped pte in
641  * a region that doesn't allow it.
642  *
643  * The calling function must still handle the error.
644  */
645 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
646                           pte_t pte, struct page *page)
647 {
648         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
649         pud_t *pud = pud_offset(pgd, addr);
650         pmd_t *pmd = pmd_offset(pud, addr);
651         struct address_space *mapping;
652         pgoff_t index;
653         static unsigned long resume;
654         static unsigned long nr_shown;
655         static unsigned long nr_unshown;
656
657         /*
658          * Allow a burst of 60 reports, then keep quiet for that minute;
659          * or allow a steady drip of one report per second.
660          */
661         if (nr_shown == 60) {
662                 if (time_before(jiffies, resume)) {
663                         nr_unshown++;
664                         return;
665                 }
666                 if (nr_unshown) {
667                         printk(KERN_ALERT
668                                 "BUG: Bad page map: %lu messages suppressed\n",
669                                 nr_unshown);
670                         nr_unshown = 0;
671                 }
672                 nr_shown = 0;
673         }
674         if (nr_shown++ == 0)
675                 resume = jiffies + 60 * HZ;
676
677         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
678         index = linear_page_index(vma, addr);
679
680         printk(KERN_ALERT
681                 "BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
682                 current->comm,
683                 (long long)pte_val(pte), (long long)pmd_val(*pmd));
684         if (page)
685                 dump_page(page, "bad pte");
686         printk(KERN_ALERT
687                 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
688                 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
689         /*
690          * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
691          */
692         if (vma->vm_ops)
693                 printk(KERN_ALERT "vma->vm_ops->fault: %pSR\n",
694                        vma->vm_ops->fault);
695         if (vma->vm_file)
696                 printk(KERN_ALERT "vma->vm_file->f_op->mmap: %pSR\n",
697                        vma->vm_file->f_op->mmap);
698         dump_stack();
699         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
700 }
701
702 /*
703  * vm_normal_page -- This function gets the "struct page" associated with a pte.
704  *
705  * "Special" mappings do not wish to be associated with a "struct page" (either
706  * it doesn't exist, or it exists but they don't want to touch it). In this
707  * case, NULL is returned here. "Normal" mappings do have a struct page.
708  *
709  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
710  * pte bit, in which case this function is trivial. Secondly, an architecture
711  * may not have a spare pte bit, which requires a more complicated scheme,
712  * described below.
713  *
714  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
715  * special mapping (even if there are underlying and valid "struct pages").
716  * COWed pages of a VM_PFNMAP are always normal.
717  *
718  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
719  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
720  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
721  * mapping will always honor the rule
722  *
723  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
724  *
725  * And for normal mappings this is false.
726  *
727  * This restricts such mappings to be a linear translation from virtual address
728  * to pfn. To get around this restriction, we allow arbitrary mappings so long
729  * as the vma is not a COW mapping; in that case, we know that all ptes are
730  * special (because none can have been COWed).
731  *
732  *
733  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
734  *
735  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
736  * page" backing, however the difference is that _all_ pages with a struct
737  * page (that is, those where pfn_valid is true) are refcounted and considered
738  * normal pages by the VM. The disadvantage is that pages are refcounted
739  * (which can be slower and simply not an option for some PFNMAP users). The
740  * advantage is that we don't have to follow the strict linearity rule of
741  * PFNMAP mappings in order to support COWable mappings.
742  *
743  */
744 #ifdef __HAVE_ARCH_PTE_SPECIAL
745 # define HAVE_PTE_SPECIAL 1
746 #else
747 # define HAVE_PTE_SPECIAL 0
748 #endif
749 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
750                                 pte_t pte)
751 {
752         unsigned long pfn = pte_pfn(pte);
753
754         if (HAVE_PTE_SPECIAL) {
755                 if (likely(!pte_special(pte)))
756                         goto check_pfn;
757                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
758                         return NULL;
759                 if (!is_zero_pfn(pfn))
760                         print_bad_pte(vma, addr, pte, NULL);
761                 return NULL;
762         }
763
764         /* !HAVE_PTE_SPECIAL case follows: */
765
766         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
767                 if (vma->vm_flags & VM_MIXEDMAP) {
768                         if (!pfn_valid(pfn))
769                                 return NULL;
770                         goto out;
771                 } else {
772                         unsigned long off;
773                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
774                         if (pfn == vma->vm_pgoff + off)
775                                 return NULL;
776                         if (!is_cow_mapping(vma->vm_flags))
777                                 return NULL;
778                 }
779         }
780
781         if (is_zero_pfn(pfn))
782                 return NULL;
783 check_pfn:
784         if (unlikely(pfn > highest_memmap_pfn)) {
785                 print_bad_pte(vma, addr, pte, NULL);
786                 return NULL;
787         }
788
789         /*
790          * NOTE! We still have PageReserved() pages in the page tables.
791          * eg. VDSO mappings can cause them to exist.
792          */
793 out:
794         return pfn_to_page(pfn);
795 }
796
797 /*
798  * copy one vm_area from one task to the other. Assumes the page tables
799  * already present in the new task to be cleared in the whole range
800  * covered by this vma.
801  */
802
803 static inline unsigned long
804 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
805                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
806                 unsigned long addr, int *rss)
807 {
808         unsigned long vm_flags = vma->vm_flags;
809         pte_t pte = *src_pte;
810         struct page *page;
811
812         /* pte contains position in swap or file, so copy. */
813         if (unlikely(!pte_present(pte))) {
814                 swp_entry_t entry = pte_to_swp_entry(pte);
815
816                 if (likely(!non_swap_entry(entry))) {
817                         if (swap_duplicate(entry) < 0)
818                                 return entry.val;
819
820                         /* make sure dst_mm is on swapoff's mmlist. */
821                         if (unlikely(list_empty(&dst_mm->mmlist))) {
822                                 spin_lock(&mmlist_lock);
823                                 if (list_empty(&dst_mm->mmlist))
824                                         list_add(&dst_mm->mmlist,
825                                                         &src_mm->mmlist);
826                                 spin_unlock(&mmlist_lock);
827                         }
828                         rss[MM_SWAPENTS]++;
829                 } else if (is_migration_entry(entry)) {
830                         page = migration_entry_to_page(entry);
831
832                         if (PageAnon(page))
833                                 rss[MM_ANONPAGES]++;
834                         else
835                                 rss[MM_FILEPAGES]++;
836
837                         if (is_write_migration_entry(entry) &&
838                                         is_cow_mapping(vm_flags)) {
839                                 /*
840                                  * COW mappings require pages in both
841                                  * parent and child to be set to read.
842                                  */
843                                 make_migration_entry_read(&entry);
844                                 pte = swp_entry_to_pte(entry);
845                                 if (pte_swp_soft_dirty(*src_pte))
846                                         pte = pte_swp_mksoft_dirty(pte);
847                                 set_pte_at(src_mm, addr, src_pte, pte);
848                         }
849                 }
850                 goto out_set_pte;
851         }
852
853         /*
854          * If it's a COW mapping, write protect it both
855          * in the parent and the child
856          */
857         if (is_cow_mapping(vm_flags)) {
858                 ptep_set_wrprotect(src_mm, addr, src_pte);
859                 pte = pte_wrprotect(pte);
860         }
861
862         /*
863          * If it's a shared mapping, mark it clean in
864          * the child
865          */
866         if (vm_flags & VM_SHARED)
867                 pte = pte_mkclean(pte);
868         pte = pte_mkold(pte);
869
870         page = vm_normal_page(vma, addr, pte);
871         if (page) {
872                 get_page(page);
873                 page_dup_rmap(page);
874                 if (PageAnon(page))
875                         rss[MM_ANONPAGES]++;
876                 else
877                         rss[MM_FILEPAGES]++;
878         }
879
880 out_set_pte:
881         set_pte_at(dst_mm, addr, dst_pte, pte);
882         return 0;
883 }
884
885 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
886                    pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
887                    unsigned long addr, unsigned long end)
888 {
889         pte_t *orig_src_pte, *orig_dst_pte;
890         pte_t *src_pte, *dst_pte;
891         spinlock_t *src_ptl, *dst_ptl;
892         int progress = 0;
893         int rss[NR_MM_COUNTERS];
894         swp_entry_t entry = (swp_entry_t){0};
895
896 again:
897         init_rss_vec(rss);
898
899         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
900         if (!dst_pte)
901                 return -ENOMEM;
902         src_pte = pte_offset_map(src_pmd, addr);
903         src_ptl = pte_lockptr(src_mm, src_pmd);
904         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
905         orig_src_pte = src_pte;
906         orig_dst_pte = dst_pte;
907         arch_enter_lazy_mmu_mode();
908
909         do {
910                 /*
911                  * We are holding two locks at this point - either of them
912                  * could generate latencies in another task on another CPU.
913                  */
914                 if (progress >= 32) {
915                         progress = 0;
916                         if (need_resched() ||
917                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
918                                 break;
919                 }
920                 if (pte_none(*src_pte)) {
921                         progress++;
922                         continue;
923                 }
924                 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
925                                                         vma, addr, rss);
926                 if (entry.val)
927                         break;
928                 progress += 8;
929         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
930
931         arch_leave_lazy_mmu_mode();
932         spin_unlock(src_ptl);
933         pte_unmap(orig_src_pte);
934         add_mm_rss_vec(dst_mm, rss);
935         pte_unmap_unlock(orig_dst_pte, dst_ptl);
936         cond_resched();
937
938         if (entry.val) {
939                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
940                         return -ENOMEM;
941                 progress = 0;
942         }
943         if (addr != end)
944                 goto again;
945         return 0;
946 }
947
948 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
949                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
950                 unsigned long addr, unsigned long end)
951 {
952         pmd_t *src_pmd, *dst_pmd;
953         unsigned long next;
954
955         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
956         if (!dst_pmd)
957                 return -ENOMEM;
958         src_pmd = pmd_offset(src_pud, addr);
959         do {
960                 next = pmd_addr_end(addr, end);
961                 if (pmd_trans_huge(*src_pmd)) {
962                         int err;
963                         VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
964                         err = copy_huge_pmd(dst_mm, src_mm,
965                                             dst_pmd, src_pmd, addr, vma);
966                         if (err == -ENOMEM)
967                                 return -ENOMEM;
968                         if (!err)
969                                 continue;
970                         /* fall through */
971                 }
972                 if (pmd_none_or_clear_bad(src_pmd))
973                         continue;
974                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
975                                                 vma, addr, next))
976                         return -ENOMEM;
977         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
978         return 0;
979 }
980
981 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
982                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
983                 unsigned long addr, unsigned long end)
984 {
985         pud_t *src_pud, *dst_pud;
986         unsigned long next;
987
988         dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
989         if (!dst_pud)
990                 return -ENOMEM;
991         src_pud = pud_offset(src_pgd, addr);
992         do {
993                 next = pud_addr_end(addr, end);
994                 if (pud_none_or_clear_bad(src_pud))
995                         continue;
996                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
997                                                 vma, addr, next))
998                         return -ENOMEM;
999         } while (dst_pud++, src_pud++, addr = next, addr != end);
1000         return 0;
1001 }
1002
1003 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1004                 struct vm_area_struct *vma)
1005 {
1006         pgd_t *src_pgd, *dst_pgd;
1007         unsigned long next;
1008         unsigned long addr = vma->vm_start;
1009         unsigned long end = vma->vm_end;
1010         unsigned long mmun_start;       /* For mmu_notifiers */
1011         unsigned long mmun_end;         /* For mmu_notifiers */
1012         bool is_cow;
1013         int ret;
1014
1015         /*
1016          * Don't copy ptes where a page fault will fill them correctly.
1017          * Fork becomes much lighter when there are big shared or private
1018          * readonly mappings. The tradeoff is that copy_page_range is more
1019          * efficient than faulting.
1020          */
1021         if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1022                         !vma->anon_vma)
1023                 return 0;
1024
1025         if (is_vm_hugetlb_page(vma))
1026                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1027
1028         if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1029                 /*
1030                  * We do not free on error cases below as remove_vma
1031                  * gets called on error from higher level routine
1032                  */
1033                 ret = track_pfn_copy(vma);
1034                 if (ret)
1035                         return ret;
1036         }
1037
1038         /*
1039          * We need to invalidate the secondary MMU mappings only when
1040          * there could be a permission downgrade on the ptes of the
1041          * parent mm. And a permission downgrade will only happen if
1042          * is_cow_mapping() returns true.
1043          */
1044         is_cow = is_cow_mapping(vma->vm_flags);
1045         mmun_start = addr;
1046         mmun_end   = end;
1047         if (is_cow)
1048                 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1049                                                     mmun_end);
1050
1051         ret = 0;
1052         dst_pgd = pgd_offset(dst_mm, addr);
1053         src_pgd = pgd_offset(src_mm, addr);
1054         do {
1055                 next = pgd_addr_end(addr, end);
1056                 if (pgd_none_or_clear_bad(src_pgd))
1057                         continue;
1058                 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1059                                             vma, addr, next))) {
1060                         ret = -ENOMEM;
1061                         break;
1062                 }
1063         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1064
1065         if (is_cow)
1066                 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1067         return ret;
1068 }
1069
1070 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1071                                 struct vm_area_struct *vma, pmd_t *pmd,
1072                                 unsigned long addr, unsigned long end,
1073                                 struct zap_details *details)
1074 {
1075         struct mm_struct *mm = tlb->mm;
1076         int force_flush = 0;
1077         int rss[NR_MM_COUNTERS];
1078         spinlock_t *ptl;
1079         pte_t *start_pte;
1080         pte_t *pte;
1081         swp_entry_t entry;
1082
1083 again:
1084         init_rss_vec(rss);
1085         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1086         pte = start_pte;
1087         arch_enter_lazy_mmu_mode();
1088         do {
1089                 pte_t ptent = *pte;
1090                 if (pte_none(ptent)) {
1091                         continue;
1092                 }
1093
1094                 if (pte_present(ptent)) {
1095                         struct page *page;
1096
1097                         page = vm_normal_page(vma, addr, ptent);
1098                         if (unlikely(details) && page) {
1099                                 /*
1100                                  * unmap_shared_mapping_pages() wants to
1101                                  * invalidate cache without truncating:
1102                                  * unmap shared but keep private pages.
1103                                  */
1104                                 if (details->check_mapping &&
1105                                     details->check_mapping != page->mapping)
1106                                         continue;
1107                         }
1108                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1109                                                         tlb->fullmm);
1110                         tlb_remove_tlb_entry(tlb, pte, addr);
1111                         if (unlikely(!page))
1112                                 continue;
1113                         if (PageAnon(page))
1114                                 rss[MM_ANONPAGES]--;
1115                         else {
1116                                 if (pte_dirty(ptent)) {
1117                                         force_flush = 1;
1118                                         set_page_dirty(page);
1119                                 }
1120                                 if (pte_young(ptent) &&
1121                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1122                                         mark_page_accessed(page);
1123                                 rss[MM_FILEPAGES]--;
1124                         }
1125                         page_remove_rmap(page);
1126                         if (unlikely(page_mapcount(page) < 0))
1127                                 print_bad_pte(vma, addr, ptent, page);
1128                         if (unlikely(!__tlb_remove_page(tlb, page))) {
1129                                 force_flush = 1;
1130                                 addr += PAGE_SIZE;
1131                                 break;
1132                         }
1133                         continue;
1134                 }
1135                 /* If details->check_mapping, we leave swap entries. */
1136                 if (unlikely(details))
1137                         continue;
1138
1139                 entry = pte_to_swp_entry(ptent);
1140                 if (!non_swap_entry(entry))
1141                         rss[MM_SWAPENTS]--;
1142                 else if (is_migration_entry(entry)) {
1143                         struct page *page;
1144
1145                         page = migration_entry_to_page(entry);
1146
1147                         if (PageAnon(page))
1148                                 rss[MM_ANONPAGES]--;
1149                         else
1150                                 rss[MM_FILEPAGES]--;
1151                 }
1152                 if (unlikely(!free_swap_and_cache(entry)))
1153                         print_bad_pte(vma, addr, ptent, NULL);
1154                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1155         } while (pte++, addr += PAGE_SIZE, addr != end);
1156
1157         add_mm_rss_vec(mm, rss);
1158         arch_leave_lazy_mmu_mode();
1159
1160         /* Do the actual TLB flush before dropping ptl */
1161         if (force_flush)
1162                 tlb_flush_mmu_tlbonly(tlb);
1163         pte_unmap_unlock(start_pte, ptl);
1164
1165         /*
1166          * If we forced a TLB flush (either due to running out of
1167          * batch buffers or because we needed to flush dirty TLB
1168          * entries before releasing the ptl), free the batched
1169          * memory too. Restart if we didn't do everything.
1170          */
1171         if (force_flush) {
1172                 force_flush = 0;
1173                 tlb_flush_mmu_free(tlb);
1174
1175                 if (addr != end)
1176                         goto again;
1177         }
1178
1179         return addr;
1180 }
1181
1182 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1183                                 struct vm_area_struct *vma, pud_t *pud,
1184                                 unsigned long addr, unsigned long end,
1185                                 struct zap_details *details)
1186 {
1187         pmd_t *pmd;
1188         unsigned long next;
1189
1190         pmd = pmd_offset(pud, addr);
1191         do {
1192                 next = pmd_addr_end(addr, end);
1193                 if (pmd_trans_huge(*pmd)) {
1194                         if (next - addr != HPAGE_PMD_SIZE) {
1195 #ifdef CONFIG_DEBUG_VM
1196                                 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1197                                         pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1198                                                 __func__, addr, end,
1199                                                 vma->vm_start,
1200                                                 vma->vm_end);
1201                                         BUG();
1202                                 }
1203 #endif
1204                                 split_huge_page_pmd(vma, addr, pmd);
1205                         } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1206                                 goto next;
1207                         /* fall through */
1208                 }
1209                 /*
1210                  * Here there can be other concurrent MADV_DONTNEED or
1211                  * trans huge page faults running, and if the pmd is
1212                  * none or trans huge it can change under us. This is
1213                  * because MADV_DONTNEED holds the mmap_sem in read
1214                  * mode.
1215                  */
1216                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1217                         goto next;
1218                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1219 next:
1220                 cond_resched();
1221         } while (pmd++, addr = next, addr != end);
1222
1223         return addr;
1224 }
1225
1226 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1227                                 struct vm_area_struct *vma, pgd_t *pgd,
1228                                 unsigned long addr, unsigned long end,
1229                                 struct zap_details *details)
1230 {
1231         pud_t *pud;
1232         unsigned long next;
1233
1234         pud = pud_offset(pgd, addr);
1235         do {
1236                 next = pud_addr_end(addr, end);
1237                 if (pud_none_or_clear_bad(pud))
1238                         continue;
1239                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1240         } while (pud++, addr = next, addr != end);
1241
1242         return addr;
1243 }
1244
1245 static void unmap_page_range(struct mmu_gather *tlb,
1246                              struct vm_area_struct *vma,
1247                              unsigned long addr, unsigned long end,
1248                              struct zap_details *details)
1249 {
1250         pgd_t *pgd;
1251         unsigned long next;
1252
1253         if (details && !details->check_mapping)
1254                 details = NULL;
1255
1256         BUG_ON(addr >= end);
1257         tlb_start_vma(tlb, vma);
1258         pgd = pgd_offset(vma->vm_mm, addr);
1259         do {
1260                 next = pgd_addr_end(addr, end);
1261                 if (pgd_none_or_clear_bad(pgd))
1262                         continue;
1263                 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1264         } while (pgd++, addr = next, addr != end);
1265         tlb_end_vma(tlb, vma);
1266 }
1267
1268
1269 static void unmap_single_vma(struct mmu_gather *tlb,
1270                 struct vm_area_struct *vma, unsigned long start_addr,
1271                 unsigned long end_addr,
1272                 struct zap_details *details)
1273 {
1274         unsigned long start = max(vma->vm_start, start_addr);
1275         unsigned long end;
1276
1277         if (start >= vma->vm_end)
1278                 return;
1279         end = min(vma->vm_end, end_addr);
1280         if (end <= vma->vm_start)
1281                 return;
1282
1283         if (vma->vm_file)
1284                 uprobe_munmap(vma, start, end);
1285
1286         if (unlikely(vma->vm_flags & VM_PFNMAP))
1287                 untrack_pfn(vma, 0, 0);
1288
1289         if (start != end) {
1290                 if (unlikely(is_vm_hugetlb_page(vma))) {
1291                         /*
1292                          * It is undesirable to test vma->vm_file as it
1293                          * should be non-null for valid hugetlb area.
1294                          * However, vm_file will be NULL in the error
1295                          * cleanup path of mmap_region. When
1296                          * hugetlbfs ->mmap method fails,
1297                          * mmap_region() nullifies vma->vm_file
1298                          * before calling this function to clean up.
1299                          * Since no pte has actually been setup, it is
1300                          * safe to do nothing in this case.
1301                          */
1302                         if (vma->vm_file) {
1303                                 i_mmap_lock_write(vma->vm_file->f_mapping);
1304                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1305                                 i_mmap_unlock_write(vma->vm_file->f_mapping);
1306                         }
1307                 } else
1308                         unmap_page_range(tlb, vma, start, end, details);
1309         }
1310 }
1311
1312 /**
1313  * unmap_vmas - unmap a range of memory covered by a list of vma's
1314  * @tlb: address of the caller's struct mmu_gather
1315  * @vma: the starting vma
1316  * @start_addr: virtual address at which to start unmapping
1317  * @end_addr: virtual address at which to end unmapping
1318  *
1319  * Unmap all pages in the vma list.
1320  *
1321  * Only addresses between `start' and `end' will be unmapped.
1322  *
1323  * The VMA list must be sorted in ascending virtual address order.
1324  *
1325  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1326  * range after unmap_vmas() returns.  So the only responsibility here is to
1327  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1328  * drops the lock and schedules.
1329  */
1330 void unmap_vmas(struct mmu_gather *tlb,
1331                 struct vm_area_struct *vma, unsigned long start_addr,
1332                 unsigned long end_addr)
1333 {
1334         struct mm_struct *mm = vma->vm_mm;
1335
1336         mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1337         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1338                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1339         mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1340 }
1341
1342 /**
1343  * zap_page_range - remove user pages in a given range
1344  * @vma: vm_area_struct holding the applicable pages
1345  * @start: starting address of pages to zap
1346  * @size: number of bytes to zap
1347  * @details: details of shared cache invalidation
1348  *
1349  * Caller must protect the VMA list
1350  */
1351 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1352                 unsigned long size, struct zap_details *details)
1353 {
1354         struct mm_struct *mm = vma->vm_mm;
1355         struct mmu_gather tlb;
1356         unsigned long end = start + size;
1357
1358         lru_add_drain();
1359         tlb_gather_mmu(&tlb, mm, start, end);
1360         update_hiwater_rss(mm);
1361         mmu_notifier_invalidate_range_start(mm, start, end);
1362         for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1363                 unmap_single_vma(&tlb, vma, start, end, details);
1364         mmu_notifier_invalidate_range_end(mm, start, end);
1365         tlb_finish_mmu(&tlb, start, end);
1366 }
1367
1368 /**
1369  * zap_page_range_single - remove user pages in a given range
1370  * @vma: vm_area_struct holding the applicable pages
1371  * @address: starting address of pages to zap
1372  * @size: number of bytes to zap
1373  * @details: details of shared cache invalidation
1374  *
1375  * The range must fit into one VMA.
1376  */
1377 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1378                 unsigned long size, struct zap_details *details)
1379 {
1380         struct mm_struct *mm = vma->vm_mm;
1381         struct mmu_gather tlb;
1382         unsigned long end = address + size;
1383
1384         lru_add_drain();
1385         tlb_gather_mmu(&tlb, mm, address, end);
1386         update_hiwater_rss(mm);
1387         mmu_notifier_invalidate_range_start(mm, address, end);
1388         unmap_single_vma(&tlb, vma, address, end, details);
1389         mmu_notifier_invalidate_range_end(mm, address, end);
1390         tlb_finish_mmu(&tlb, address, end);
1391 }
1392
1393 /**
1394  * zap_vma_ptes - remove ptes mapping the vma
1395  * @vma: vm_area_struct holding ptes to be zapped
1396  * @address: starting address of pages to zap
1397  * @size: number of bytes to zap
1398  *
1399  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1400  *
1401  * The entire address range must be fully contained within the vma.
1402  *
1403  * Returns 0 if successful.
1404  */
1405 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1406                 unsigned long size)
1407 {
1408         if (address < vma->vm_start || address + size > vma->vm_end ||
1409                         !(vma->vm_flags & VM_PFNMAP))
1410                 return -1;
1411         zap_page_range_single(vma, address, size, NULL);
1412         return 0;
1413 }
1414 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1415
1416 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1417                         spinlock_t **ptl)
1418 {
1419         pgd_t * pgd = pgd_offset(mm, addr);
1420         pud_t * pud = pud_alloc(mm, pgd, addr);
1421         if (pud) {
1422                 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1423                 if (pmd) {
1424                         VM_BUG_ON(pmd_trans_huge(*pmd));
1425                         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1426                 }
1427         }
1428         return NULL;
1429 }
1430
1431 /*
1432  * This is the old fallback for page remapping.
1433  *
1434  * For historical reasons, it only allows reserved pages. Only
1435  * old drivers should use this, and they needed to mark their
1436  * pages reserved for the old functions anyway.
1437  */
1438 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1439                         struct page *page, pgprot_t prot)
1440 {
1441         struct mm_struct *mm = vma->vm_mm;
1442         int retval;
1443         pte_t *pte;
1444         spinlock_t *ptl;
1445
1446         retval = -EINVAL;
1447         if (PageAnon(page))
1448                 goto out;
1449         retval = -ENOMEM;
1450         flush_dcache_page(page);
1451         pte = get_locked_pte(mm, addr, &ptl);
1452         if (!pte)
1453                 goto out;
1454         retval = -EBUSY;
1455         if (!pte_none(*pte))
1456                 goto out_unlock;
1457
1458         /* Ok, finally just insert the thing.. */
1459         get_page(page);
1460         inc_mm_counter_fast(mm, MM_FILEPAGES);
1461         page_add_file_rmap(page);
1462         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1463
1464         retval = 0;
1465         pte_unmap_unlock(pte, ptl);
1466         return retval;
1467 out_unlock:
1468         pte_unmap_unlock(pte, ptl);
1469 out:
1470         return retval;
1471 }
1472
1473 /**
1474  * vm_insert_page - insert single page into user vma
1475  * @vma: user vma to map to
1476  * @addr: target user address of this page
1477  * @page: source kernel page
1478  *
1479  * This allows drivers to insert individual pages they've allocated
1480  * into a user vma.
1481  *
1482  * The page has to be a nice clean _individual_ kernel allocation.
1483  * If you allocate a compound page, you need to have marked it as
1484  * such (__GFP_COMP), or manually just split the page up yourself
1485  * (see split_page()).
1486  *
1487  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1488  * took an arbitrary page protection parameter. This doesn't allow
1489  * that. Your vma protection will have to be set up correctly, which
1490  * means that if you want a shared writable mapping, you'd better
1491  * ask for a shared writable mapping!
1492  *
1493  * The page does not need to be reserved.
1494  *
1495  * Usually this function is called from f_op->mmap() handler
1496  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1497  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1498  * function from other places, for example from page-fault handler.
1499  */
1500 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1501                         struct page *page)
1502 {
1503         if (addr < vma->vm_start || addr >= vma->vm_end)
1504                 return -EFAULT;
1505         if (!page_count(page))
1506                 return -EINVAL;
1507         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1508                 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1509                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1510                 vma->vm_flags |= VM_MIXEDMAP;
1511         }
1512         return insert_page(vma, addr, page, vma->vm_page_prot);
1513 }
1514 EXPORT_SYMBOL(vm_insert_page);
1515
1516 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1517                         unsigned long pfn, pgprot_t prot)
1518 {
1519         struct mm_struct *mm = vma->vm_mm;
1520         int retval;
1521         pte_t *pte, entry;
1522         spinlock_t *ptl;
1523
1524         retval = -ENOMEM;
1525         pte = get_locked_pte(mm, addr, &ptl);
1526         if (!pte)
1527                 goto out;
1528         retval = -EBUSY;
1529         if (!pte_none(*pte))
1530                 goto out_unlock;
1531
1532         /* Ok, finally just insert the thing.. */
1533         entry = pte_mkspecial(pfn_pte(pfn, prot));
1534         set_pte_at(mm, addr, pte, entry);
1535         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1536
1537         retval = 0;
1538 out_unlock:
1539         pte_unmap_unlock(pte, ptl);
1540 out:
1541         return retval;
1542 }
1543
1544 /**
1545  * vm_insert_pfn - insert single pfn into user vma
1546  * @vma: user vma to map to
1547  * @addr: target user address of this page
1548  * @pfn: source kernel pfn
1549  *
1550  * Similar to vm_insert_page, this allows drivers to insert individual pages
1551  * they've allocated into a user vma. Same comments apply.
1552  *
1553  * This function should only be called from a vm_ops->fault handler, and
1554  * in that case the handler should return NULL.
1555  *
1556  * vma cannot be a COW mapping.
1557  *
1558  * As this is called only for pages that do not currently exist, we
1559  * do not need to flush old virtual caches or the TLB.
1560  */
1561 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1562                         unsigned long pfn)
1563 {
1564         int ret;
1565         pgprot_t pgprot = vma->vm_page_prot;
1566         /*
1567          * Technically, architectures with pte_special can avoid all these
1568          * restrictions (same for remap_pfn_range).  However we would like
1569          * consistency in testing and feature parity among all, so we should
1570          * try to keep these invariants in place for everybody.
1571          */
1572         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1573         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1574                                                 (VM_PFNMAP|VM_MIXEDMAP));
1575         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1576         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1577
1578         if (addr < vma->vm_start || addr >= vma->vm_end)
1579                 return -EFAULT;
1580         if (track_pfn_insert(vma, &pgprot, pfn))
1581                 return -EINVAL;
1582
1583         ret = insert_pfn(vma, addr, pfn, pgprot);
1584
1585         return ret;
1586 }
1587 EXPORT_SYMBOL(vm_insert_pfn);
1588
1589 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1590                         unsigned long pfn)
1591 {
1592         BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1593
1594         if (addr < vma->vm_start || addr >= vma->vm_end)
1595                 return -EFAULT;
1596
1597         /*
1598          * If we don't have pte special, then we have to use the pfn_valid()
1599          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1600          * refcount the page if pfn_valid is true (hence insert_page rather
1601          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1602          * without pte special, it would there be refcounted as a normal page.
1603          */
1604         if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1605                 struct page *page;
1606
1607                 page = pfn_to_page(pfn);
1608                 return insert_page(vma, addr, page, vma->vm_page_prot);
1609         }
1610         return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1611 }
1612 EXPORT_SYMBOL(vm_insert_mixed);
1613
1614 /*
1615  * maps a range of physical memory into the requested pages. the old
1616  * mappings are removed. any references to nonexistent pages results
1617  * in null mappings (currently treated as "copy-on-access")
1618  */
1619 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1620                         unsigned long addr, unsigned long end,
1621                         unsigned long pfn, pgprot_t prot)
1622 {
1623         pte_t *pte;
1624         spinlock_t *ptl;
1625
1626         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1627         if (!pte)
1628                 return -ENOMEM;
1629         arch_enter_lazy_mmu_mode();
1630         do {
1631                 BUG_ON(!pte_none(*pte));
1632                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1633                 pfn++;
1634         } while (pte++, addr += PAGE_SIZE, addr != end);
1635         arch_leave_lazy_mmu_mode();
1636         pte_unmap_unlock(pte - 1, ptl);
1637         return 0;
1638 }
1639
1640 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1641                         unsigned long addr, unsigned long end,
1642                         unsigned long pfn, pgprot_t prot)
1643 {
1644         pmd_t *pmd;
1645         unsigned long next;
1646
1647         pfn -= addr >> PAGE_SHIFT;
1648         pmd = pmd_alloc(mm, pud, addr);
1649         if (!pmd)
1650                 return -ENOMEM;
1651         VM_BUG_ON(pmd_trans_huge(*pmd));
1652         do {
1653                 next = pmd_addr_end(addr, end);
1654                 if (remap_pte_range(mm, pmd, addr, next,
1655                                 pfn + (addr >> PAGE_SHIFT), prot))
1656                         return -ENOMEM;
1657         } while (pmd++, addr = next, addr != end);
1658         return 0;
1659 }
1660
1661 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1662                         unsigned long addr, unsigned long end,
1663                         unsigned long pfn, pgprot_t prot)
1664 {
1665         pud_t *pud;
1666         unsigned long next;
1667
1668         pfn -= addr >> PAGE_SHIFT;
1669         pud = pud_alloc(mm, pgd, addr);
1670         if (!pud)
1671                 return -ENOMEM;
1672         do {
1673                 next = pud_addr_end(addr, end);
1674                 if (remap_pmd_range(mm, pud, addr, next,
1675                                 pfn + (addr >> PAGE_SHIFT), prot))
1676                         return -ENOMEM;
1677         } while (pud++, addr = next, addr != end);
1678         return 0;
1679 }
1680
1681 /**
1682  * remap_pfn_range - remap kernel memory to userspace
1683  * @vma: user vma to map to
1684  * @addr: target user address to start at
1685  * @pfn: physical address of kernel memory
1686  * @size: size of map area
1687  * @prot: page protection flags for this mapping
1688  *
1689  *  Note: this is only safe if the mm semaphore is held when called.
1690  */
1691 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1692                     unsigned long pfn, unsigned long size, pgprot_t prot)
1693 {
1694         pgd_t *pgd;
1695         unsigned long next;
1696         unsigned long end = addr + PAGE_ALIGN(size);
1697         struct mm_struct *mm = vma->vm_mm;
1698         int err;
1699
1700         /*
1701          * Physically remapped pages are special. Tell the
1702          * rest of the world about it:
1703          *   VM_IO tells people not to look at these pages
1704          *      (accesses can have side effects).
1705          *   VM_PFNMAP tells the core MM that the base pages are just
1706          *      raw PFN mappings, and do not have a "struct page" associated
1707          *      with them.
1708          *   VM_DONTEXPAND
1709          *      Disable vma merging and expanding with mremap().
1710          *   VM_DONTDUMP
1711          *      Omit vma from core dump, even when VM_IO turned off.
1712          *
1713          * There's a horrible special case to handle copy-on-write
1714          * behaviour that some programs depend on. We mark the "original"
1715          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1716          * See vm_normal_page() for details.
1717          */
1718         if (is_cow_mapping(vma->vm_flags)) {
1719                 if (addr != vma->vm_start || end != vma->vm_end)
1720                         return -EINVAL;
1721                 vma->vm_pgoff = pfn;
1722         }
1723
1724         err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
1725         if (err)
1726                 return -EINVAL;
1727
1728         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1729
1730         BUG_ON(addr >= end);
1731         pfn -= addr >> PAGE_SHIFT;
1732         pgd = pgd_offset(mm, addr);
1733         flush_cache_range(vma, addr, end);
1734         do {
1735                 next = pgd_addr_end(addr, end);
1736                 err = remap_pud_range(mm, pgd, addr, next,
1737                                 pfn + (addr >> PAGE_SHIFT), prot);
1738                 if (err)
1739                         break;
1740         } while (pgd++, addr = next, addr != end);
1741
1742         if (err)
1743                 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
1744
1745         return err;
1746 }
1747 EXPORT_SYMBOL(remap_pfn_range);
1748
1749 /**
1750  * vm_iomap_memory - remap memory to userspace
1751  * @vma: user vma to map to
1752  * @start: start of area
1753  * @len: size of area
1754  *
1755  * This is a simplified io_remap_pfn_range() for common driver use. The
1756  * driver just needs to give us the physical memory range to be mapped,
1757  * we'll figure out the rest from the vma information.
1758  *
1759  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1760  * whatever write-combining details or similar.
1761  */
1762 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1763 {
1764         unsigned long vm_len, pfn, pages;
1765
1766         /* Check that the physical memory area passed in looks valid */
1767         if (start + len < start)
1768                 return -EINVAL;
1769         /*
1770          * You *really* shouldn't map things that aren't page-aligned,
1771          * but we've historically allowed it because IO memory might
1772          * just have smaller alignment.
1773          */
1774         len += start & ~PAGE_MASK;
1775         pfn = start >> PAGE_SHIFT;
1776         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1777         if (pfn + pages < pfn)
1778                 return -EINVAL;
1779
1780         /* We start the mapping 'vm_pgoff' pages into the area */
1781         if (vma->vm_pgoff > pages)
1782                 return -EINVAL;
1783         pfn += vma->vm_pgoff;
1784         pages -= vma->vm_pgoff;
1785
1786         /* Can we fit all of the mapping? */
1787         vm_len = vma->vm_end - vma->vm_start;
1788         if (vm_len >> PAGE_SHIFT > pages)
1789                 return -EINVAL;
1790
1791         /* Ok, let it rip */
1792         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1793 }
1794 EXPORT_SYMBOL(vm_iomap_memory);
1795
1796 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1797                                      unsigned long addr, unsigned long end,
1798                                      pte_fn_t fn, void *data)
1799 {
1800         pte_t *pte;
1801         int err;
1802         pgtable_t token;
1803         spinlock_t *uninitialized_var(ptl);
1804
1805         pte = (mm == &init_mm) ?
1806                 pte_alloc_kernel(pmd, addr) :
1807                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1808         if (!pte)
1809                 return -ENOMEM;
1810
1811         BUG_ON(pmd_huge(*pmd));
1812
1813         arch_enter_lazy_mmu_mode();
1814
1815         token = pmd_pgtable(*pmd);
1816
1817         do {
1818                 err = fn(pte++, token, addr, data);
1819                 if (err)
1820                         break;
1821         } while (addr += PAGE_SIZE, addr != end);
1822
1823         arch_leave_lazy_mmu_mode();
1824
1825         if (mm != &init_mm)
1826                 pte_unmap_unlock(pte-1, ptl);
1827         return err;
1828 }
1829
1830 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1831                                      unsigned long addr, unsigned long end,
1832                                      pte_fn_t fn, void *data)
1833 {
1834         pmd_t *pmd;
1835         unsigned long next;
1836         int err;
1837
1838         BUG_ON(pud_huge(*pud));
1839
1840         pmd = pmd_alloc(mm, pud, addr);
1841         if (!pmd)
1842                 return -ENOMEM;
1843         do {
1844                 next = pmd_addr_end(addr, end);
1845                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1846                 if (err)
1847                         break;
1848         } while (pmd++, addr = next, addr != end);
1849         return err;
1850 }
1851
1852 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1853                                      unsigned long addr, unsigned long end,
1854                                      pte_fn_t fn, void *data)
1855 {
1856         pud_t *pud;
1857         unsigned long next;
1858         int err;
1859
1860         pud = pud_alloc(mm, pgd, addr);
1861         if (!pud)
1862                 return -ENOMEM;
1863         do {
1864                 next = pud_addr_end(addr, end);
1865                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1866                 if (err)
1867                         break;
1868         } while (pud++, addr = next, addr != end);
1869         return err;
1870 }
1871
1872 /*
1873  * Scan a region of virtual memory, filling in page tables as necessary
1874  * and calling a provided function on each leaf page table.
1875  */
1876 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1877                         unsigned long size, pte_fn_t fn, void *data)
1878 {
1879         pgd_t *pgd;
1880         unsigned long next;
1881         unsigned long end = addr + size;
1882         int err;
1883
1884         BUG_ON(addr >= end);
1885         pgd = pgd_offset(mm, addr);
1886         do {
1887                 next = pgd_addr_end(addr, end);
1888                 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1889                 if (err)
1890                         break;
1891         } while (pgd++, addr = next, addr != end);
1892
1893         return err;
1894 }
1895 EXPORT_SYMBOL_GPL(apply_to_page_range);
1896
1897 /*
1898  * handle_pte_fault chooses page fault handler according to an entry which was
1899  * read non-atomically.  Before making any commitment, on those architectures
1900  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
1901  * parts, do_swap_page must check under lock before unmapping the pte and
1902  * proceeding (but do_wp_page is only called after already making such a check;
1903  * and do_anonymous_page can safely check later on).
1904  */
1905 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1906                                 pte_t *page_table, pte_t orig_pte)
1907 {
1908         int same = 1;
1909 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1910         if (sizeof(pte_t) > sizeof(unsigned long)) {
1911                 spinlock_t *ptl = pte_lockptr(mm, pmd);
1912                 spin_lock(ptl);
1913                 same = pte_same(*page_table, orig_pte);
1914                 spin_unlock(ptl);
1915         }
1916 #endif
1917         pte_unmap(page_table);
1918         return same;
1919 }
1920
1921 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1922 {
1923         debug_dma_assert_idle(src);
1924
1925         /*
1926          * If the source page was a PFN mapping, we don't have
1927          * a "struct page" for it. We do a best-effort copy by
1928          * just copying from the original user address. If that
1929          * fails, we just zero-fill it. Live with it.
1930          */
1931         if (unlikely(!src)) {
1932                 void *kaddr = kmap_atomic(dst);
1933                 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1934
1935                 /*
1936                  * This really shouldn't fail, because the page is there
1937                  * in the page tables. But it might just be unreadable,
1938                  * in which case we just give up and fill the result with
1939                  * zeroes.
1940                  */
1941                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1942                         clear_page(kaddr);
1943                 kunmap_atomic(kaddr);
1944                 flush_dcache_page(dst);
1945         } else
1946                 copy_user_highpage(dst, src, va, vma);
1947 }
1948
1949 /*
1950  * Notify the address space that the page is about to become writable so that
1951  * it can prohibit this or wait for the page to get into an appropriate state.
1952  *
1953  * We do this without the lock held, so that it can sleep if it needs to.
1954  */
1955 static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
1956                unsigned long address)
1957 {
1958         struct vm_fault vmf;
1959         int ret;
1960
1961         vmf.virtual_address = (void __user *)(address & PAGE_MASK);
1962         vmf.pgoff = page->index;
1963         vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
1964         vmf.page = page;
1965
1966         ret = vma->vm_ops->page_mkwrite(vma, &vmf);
1967         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
1968                 return ret;
1969         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
1970                 lock_page(page);
1971                 if (!page->mapping) {
1972                         unlock_page(page);
1973                         return 0; /* retry */
1974                 }
1975                 ret |= VM_FAULT_LOCKED;
1976         } else
1977                 VM_BUG_ON_PAGE(!PageLocked(page), page);
1978         return ret;
1979 }
1980
1981 /*
1982  * This routine handles present pages, when users try to write
1983  * to a shared page. It is done by copying the page to a new address
1984  * and decrementing the shared-page counter for the old page.
1985  *
1986  * Note that this routine assumes that the protection checks have been
1987  * done by the caller (the low-level page fault routine in most cases).
1988  * Thus we can safely just mark it writable once we've done any necessary
1989  * COW.
1990  *
1991  * We also mark the page dirty at this point even though the page will
1992  * change only once the write actually happens. This avoids a few races,
1993  * and potentially makes it more efficient.
1994  *
1995  * We enter with non-exclusive mmap_sem (to exclude vma changes,
1996  * but allow concurrent faults), with pte both mapped and locked.
1997  * We return with mmap_sem still held, but pte unmapped and unlocked.
1998  */
1999 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2000                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2001                 spinlock_t *ptl, pte_t orig_pte)
2002         __releases(ptl)
2003 {
2004         struct page *old_page, *new_page = NULL;
2005         pte_t entry;
2006         int ret = 0;
2007         int page_mkwrite = 0;
2008         struct page *dirty_page = NULL;
2009         unsigned long mmun_start = 0;   /* For mmu_notifiers */
2010         unsigned long mmun_end = 0;     /* For mmu_notifiers */
2011         struct mem_cgroup *memcg;
2012
2013         old_page = vm_normal_page(vma, address, orig_pte);
2014         if (!old_page) {
2015                 /*
2016                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2017                  * VM_PFNMAP VMA.
2018                  *
2019                  * We should not cow pages in a shared writeable mapping.
2020                  * Just mark the pages writable as we can't do any dirty
2021                  * accounting on raw pfn maps.
2022                  */
2023                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2024                                      (VM_WRITE|VM_SHARED))
2025                         goto reuse;
2026                 goto gotten;
2027         }
2028
2029         /*
2030          * Take out anonymous pages first, anonymous shared vmas are
2031          * not dirty accountable.
2032          */
2033         if (PageAnon(old_page) && !PageKsm(old_page)) {
2034                 if (!trylock_page(old_page)) {
2035                         page_cache_get(old_page);
2036                         pte_unmap_unlock(page_table, ptl);
2037                         lock_page(old_page);
2038                         page_table = pte_offset_map_lock(mm, pmd, address,
2039                                                          &ptl);
2040                         if (!pte_same(*page_table, orig_pte)) {
2041                                 unlock_page(old_page);
2042                                 goto unlock;
2043                         }
2044                         page_cache_release(old_page);
2045                 }
2046                 if (reuse_swap_page(old_page)) {
2047                         /*
2048                          * The page is all ours.  Move it to our anon_vma so
2049                          * the rmap code will not search our parent or siblings.
2050                          * Protected against the rmap code by the page lock.
2051                          */
2052                         page_move_anon_rmap(old_page, vma, address);
2053                         unlock_page(old_page);
2054                         goto reuse;
2055                 }
2056                 unlock_page(old_page);
2057         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2058                                         (VM_WRITE|VM_SHARED))) {
2059                 /*
2060                  * Only catch write-faults on shared writable pages,
2061                  * read-only shared pages can get COWed by
2062                  * get_user_pages(.write=1, .force=1).
2063                  */
2064                 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2065                         int tmp;
2066                         page_cache_get(old_page);
2067                         pte_unmap_unlock(page_table, ptl);
2068                         tmp = do_page_mkwrite(vma, old_page, address);
2069                         if (unlikely(!tmp || (tmp &
2070                                         (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2071                                 page_cache_release(old_page);
2072                                 return tmp;
2073                         }
2074                         /*
2075                          * Since we dropped the lock we need to revalidate
2076                          * the PTE as someone else may have changed it.  If
2077                          * they did, we just return, as we can count on the
2078                          * MMU to tell us if they didn't also make it writable.
2079                          */
2080                         page_table = pte_offset_map_lock(mm, pmd, address,
2081                                                          &ptl);
2082                         if (!pte_same(*page_table, orig_pte)) {
2083                                 unlock_page(old_page);
2084                                 goto unlock;
2085                         }
2086
2087                         page_mkwrite = 1;
2088                 }
2089                 dirty_page = old_page;
2090                 get_page(dirty_page);
2091
2092 reuse:
2093                 /*
2094                  * Clear the pages cpupid information as the existing
2095                  * information potentially belongs to a now completely
2096                  * unrelated process.
2097                  */
2098                 if (old_page)
2099                         page_cpupid_xchg_last(old_page, (1 << LAST_CPUPID_SHIFT) - 1);
2100
2101                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2102                 entry = pte_mkyoung(orig_pte);
2103                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2104                 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2105                         update_mmu_cache(vma, address, page_table);
2106                 pte_unmap_unlock(page_table, ptl);
2107                 ret |= VM_FAULT_WRITE;
2108
2109                 if (!dirty_page)
2110                         return ret;
2111
2112                 if (!page_mkwrite) {
2113                         struct address_space *mapping;
2114                         int dirtied;
2115
2116                         lock_page(dirty_page);
2117                         dirtied = set_page_dirty(dirty_page);
2118                         VM_BUG_ON_PAGE(PageAnon(dirty_page), dirty_page);
2119                         mapping = dirty_page->mapping;
2120                         unlock_page(dirty_page);
2121
2122                         if (dirtied && mapping) {
2123                                 /*
2124                                  * Some device drivers do not set page.mapping
2125                                  * but still dirty their pages
2126                                  */
2127                                 balance_dirty_pages_ratelimited(mapping);
2128                         }
2129
2130                         /* file_update_time outside page_lock */
2131                         if (vma->vm_file)
2132                                 file_update_time(vma->vm_file);
2133                 }
2134                 put_page(dirty_page);
2135                 if (page_mkwrite) {
2136                         struct address_space *mapping = dirty_page->mapping;
2137
2138                         set_page_dirty(dirty_page);
2139                         unlock_page(dirty_page);
2140                         page_cache_release(dirty_page);
2141                         if (mapping)    {
2142                                 /*
2143                                  * Some device drivers do not set page.mapping
2144                                  * but still dirty their pages
2145                                  */
2146                                 balance_dirty_pages_ratelimited(mapping);
2147                         }
2148                 }
2149
2150                 return ret;
2151         }
2152
2153         /*
2154          * Ok, we need to copy. Oh, well..
2155          */
2156         page_cache_get(old_page);
2157 gotten:
2158         pte_unmap_unlock(page_table, ptl);
2159
2160         if (unlikely(anon_vma_prepare(vma)))
2161                 goto oom;
2162
2163         if (is_zero_pfn(pte_pfn(orig_pte))) {
2164                 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2165                 if (!new_page)
2166                         goto oom;
2167         } else {
2168                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2169                 if (!new_page)
2170                         goto oom;
2171                 cow_user_page(new_page, old_page, address, vma);
2172         }
2173         __SetPageUptodate(new_page);
2174
2175         if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg))
2176                 goto oom_free_new;
2177
2178         mmun_start  = address & PAGE_MASK;
2179         mmun_end    = mmun_start + PAGE_SIZE;
2180         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2181
2182         /*
2183          * Re-check the pte - we dropped the lock
2184          */
2185         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2186         if (likely(pte_same(*page_table, orig_pte))) {
2187                 if (old_page) {
2188                         if (!PageAnon(old_page)) {
2189                                 dec_mm_counter_fast(mm, MM_FILEPAGES);
2190                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2191                         }
2192                 } else
2193                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2194                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2195                 entry = mk_pte(new_page, vma->vm_page_prot);
2196                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2197                 /*
2198                  * Clear the pte entry and flush it first, before updating the
2199                  * pte with the new entry. This will avoid a race condition
2200                  * seen in the presence of one thread doing SMC and another
2201                  * thread doing COW.
2202                  */
2203                 ptep_clear_flush_notify(vma, address, page_table);
2204                 page_add_new_anon_rmap(new_page, vma, address);
2205                 mem_cgroup_commit_charge(new_page, memcg, false);
2206                 lru_cache_add_active_or_unevictable(new_page, vma);
2207                 /*
2208                  * We call the notify macro here because, when using secondary
2209                  * mmu page tables (such as kvm shadow page tables), we want the
2210                  * new page to be mapped directly into the secondary page table.
2211                  */
2212                 set_pte_at_notify(mm, address, page_table, entry);
2213                 update_mmu_cache(vma, address, page_table);
2214                 if (old_page) {
2215                         /*
2216                          * Only after switching the pte to the new page may
2217                          * we remove the mapcount here. Otherwise another
2218                          * process may come and find the rmap count decremented
2219                          * before the pte is switched to the new page, and
2220                          * "reuse" the old page writing into it while our pte
2221                          * here still points into it and can be read by other
2222                          * threads.
2223                          *
2224                          * The critical issue is to order this
2225                          * page_remove_rmap with the ptp_clear_flush above.
2226                          * Those stores are ordered by (if nothing else,)
2227                          * the barrier present in the atomic_add_negative
2228                          * in page_remove_rmap.
2229                          *
2230                          * Then the TLB flush in ptep_clear_flush ensures that
2231                          * no process can access the old page before the
2232                          * decremented mapcount is visible. And the old page
2233                          * cannot be reused until after the decremented
2234                          * mapcount is visible. So transitively, TLBs to
2235                          * old page will be flushed before it can be reused.
2236                          */
2237                         page_remove_rmap(old_page);
2238                 }
2239
2240                 /* Free the old page.. */
2241                 new_page = old_page;
2242                 ret |= VM_FAULT_WRITE;
2243         } else
2244                 mem_cgroup_cancel_charge(new_page, memcg);
2245
2246         if (new_page)
2247                 page_cache_release(new_page);
2248 unlock:
2249         pte_unmap_unlock(page_table, ptl);
2250         if (mmun_end > mmun_start)
2251                 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2252         if (old_page) {
2253                 /*
2254                  * Don't let another task, with possibly unlocked vma,
2255                  * keep the mlocked page.
2256                  */
2257                 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2258                         lock_page(old_page);    /* LRU manipulation */
2259                         munlock_vma_page(old_page);
2260                         unlock_page(old_page);
2261                 }
2262                 page_cache_release(old_page);
2263         }
2264         return ret;
2265 oom_free_new:
2266         page_cache_release(new_page);
2267 oom:
2268         if (old_page)
2269                 page_cache_release(old_page);
2270         return VM_FAULT_OOM;
2271 }
2272
2273 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2274                 unsigned long start_addr, unsigned long end_addr,
2275                 struct zap_details *details)
2276 {
2277         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2278 }
2279
2280 static inline void unmap_mapping_range_tree(struct rb_root *root,
2281                                             struct zap_details *details)
2282 {
2283         struct vm_area_struct *vma;
2284         pgoff_t vba, vea, zba, zea;
2285
2286         vma_interval_tree_foreach(vma, root,
2287                         details->first_index, details->last_index) {
2288
2289                 vba = vma->vm_pgoff;
2290                 vea = vba + vma_pages(vma) - 1;
2291                 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2292                 zba = details->first_index;
2293                 if (zba < vba)
2294                         zba = vba;
2295                 zea = details->last_index;
2296                 if (zea > vea)
2297                         zea = vea;
2298
2299                 unmap_mapping_range_vma(vma,
2300                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2301                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2302                                 details);
2303         }
2304 }
2305
2306 /**
2307  * unmap_mapping_range - unmap the portion of all mmaps in the specified
2308  * address_space corresponding to the specified page range in the underlying
2309  * file.
2310  *
2311  * @mapping: the address space containing mmaps to be unmapped.
2312  * @holebegin: byte in first page to unmap, relative to the start of
2313  * the underlying file.  This will be rounded down to a PAGE_SIZE
2314  * boundary.  Note that this is different from truncate_pagecache(), which
2315  * must keep the partial page.  In contrast, we must get rid of
2316  * partial pages.
2317  * @holelen: size of prospective hole in bytes.  This will be rounded
2318  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2319  * end of the file.
2320  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2321  * but 0 when invalidating pagecache, don't throw away private data.
2322  */
2323 void unmap_mapping_range(struct address_space *mapping,
2324                 loff_t const holebegin, loff_t const holelen, int even_cows)
2325 {
2326         struct zap_details details;
2327         pgoff_t hba = holebegin >> PAGE_SHIFT;
2328         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2329
2330         /* Check for overflow. */
2331         if (sizeof(holelen) > sizeof(hlen)) {
2332                 long long holeend =
2333                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2334                 if (holeend & ~(long long)ULONG_MAX)
2335                         hlen = ULONG_MAX - hba + 1;
2336         }
2337
2338         details.check_mapping = even_cows? NULL: mapping;
2339         details.first_index = hba;
2340         details.last_index = hba + hlen - 1;
2341         if (details.last_index < details.first_index)
2342                 details.last_index = ULONG_MAX;
2343
2344
2345         i_mmap_lock_write(mapping);
2346         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2347                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2348         i_mmap_unlock_write(mapping);
2349 }
2350 EXPORT_SYMBOL(unmap_mapping_range);
2351
2352 /*
2353  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2354  * but allow concurrent faults), and pte mapped but not yet locked.
2355  * We return with pte unmapped and unlocked.
2356  *
2357  * We return with the mmap_sem locked or unlocked in the same cases
2358  * as does filemap_fault().
2359  */
2360 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2361                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2362                 unsigned int flags, pte_t orig_pte)
2363 {
2364         spinlock_t *ptl;
2365         struct page *page, *swapcache;
2366         struct mem_cgroup *memcg;
2367         swp_entry_t entry;
2368         pte_t pte;
2369         int locked;
2370         int exclusive = 0;
2371         int ret = 0;
2372
2373         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2374                 goto out;
2375
2376         entry = pte_to_swp_entry(orig_pte);
2377         if (unlikely(non_swap_entry(entry))) {
2378                 if (is_migration_entry(entry)) {
2379                         migration_entry_wait(mm, pmd, address);
2380                 } else if (is_hwpoison_entry(entry)) {
2381                         ret = VM_FAULT_HWPOISON;
2382                 } else {
2383                         print_bad_pte(vma, address, orig_pte, NULL);
2384                         ret = VM_FAULT_SIGBUS;
2385                 }
2386                 goto out;
2387         }
2388         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2389         page = lookup_swap_cache(entry);
2390         if (!page) {
2391                 page = swapin_readahead(entry,
2392                                         GFP_HIGHUSER_MOVABLE, vma, address);
2393                 if (!page) {
2394                         /*
2395                          * Back out if somebody else faulted in this pte
2396                          * while we released the pte lock.
2397                          */
2398                         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2399                         if (likely(pte_same(*page_table, orig_pte)))
2400                                 ret = VM_FAULT_OOM;
2401                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2402                         goto unlock;
2403                 }
2404
2405                 /* Had to read the page from swap area: Major fault */
2406                 ret = VM_FAULT_MAJOR;
2407                 count_vm_event(PGMAJFAULT);
2408                 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2409         } else if (PageHWPoison(page)) {
2410                 /*
2411                  * hwpoisoned dirty swapcache pages are kept for killing
2412                  * owner processes (which may be unknown at hwpoison time)
2413                  */
2414                 ret = VM_FAULT_HWPOISON;
2415                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2416                 swapcache = page;
2417                 goto out_release;
2418         }
2419
2420         swapcache = page;
2421         locked = lock_page_or_retry(page, mm, flags);
2422
2423         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2424         if (!locked) {
2425                 ret |= VM_FAULT_RETRY;
2426                 goto out_release;
2427         }
2428
2429         /*
2430          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2431          * release the swapcache from under us.  The page pin, and pte_same
2432          * test below, are not enough to exclude that.  Even if it is still
2433          * swapcache, we need to check that the page's swap has not changed.
2434          */
2435         if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2436                 goto out_page;
2437
2438         page = ksm_might_need_to_copy(page, vma, address);
2439         if (unlikely(!page)) {
2440                 ret = VM_FAULT_OOM;
2441                 page = swapcache;
2442                 goto out_page;
2443         }
2444
2445         if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg)) {
2446                 ret = VM_FAULT_OOM;
2447                 goto out_page;
2448         }
2449
2450         /*
2451          * Back out if somebody else already faulted in this pte.
2452          */
2453         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2454         if (unlikely(!pte_same(*page_table, orig_pte)))
2455                 goto out_nomap;
2456
2457         if (unlikely(!PageUptodate(page))) {
2458                 ret = VM_FAULT_SIGBUS;
2459                 goto out_nomap;
2460         }
2461
2462         /*
2463          * The page isn't present yet, go ahead with the fault.
2464          *
2465          * Be careful about the sequence of operations here.
2466          * To get its accounting right, reuse_swap_page() must be called
2467          * while the page is counted on swap but not yet in mapcount i.e.
2468          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2469          * must be called after the swap_free(), or it will never succeed.
2470          */
2471
2472         inc_mm_counter_fast(mm, MM_ANONPAGES);
2473         dec_mm_counter_fast(mm, MM_SWAPENTS);
2474         pte = mk_pte(page, vma->vm_page_prot);
2475         if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2476                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2477                 flags &= ~FAULT_FLAG_WRITE;
2478                 ret |= VM_FAULT_WRITE;
2479                 exclusive = 1;
2480         }
2481         flush_icache_page(vma, page);
2482         if (pte_swp_soft_dirty(orig_pte))
2483                 pte = pte_mksoft_dirty(pte);
2484         set_pte_at(mm, address, page_table, pte);
2485         if (page == swapcache) {
2486                 do_page_add_anon_rmap(page, vma, address, exclusive);
2487                 mem_cgroup_commit_charge(page, memcg, true);
2488         } else { /* ksm created a completely new copy */
2489                 page_add_new_anon_rmap(page, vma, address);
2490                 mem_cgroup_commit_charge(page, memcg, false);
2491                 lru_cache_add_active_or_unevictable(page, vma);
2492         }
2493
2494         swap_free(entry);
2495         if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2496                 try_to_free_swap(page);
2497         unlock_page(page);
2498         if (page != swapcache) {
2499                 /*
2500                  * Hold the lock to avoid the swap entry to be reused
2501                  * until we take the PT lock for the pte_same() check
2502                  * (to avoid false positives from pte_same). For
2503                  * further safety release the lock after the swap_free
2504                  * so that the swap count won't change under a
2505                  * parallel locked swapcache.
2506                  */
2507                 unlock_page(swapcache);
2508                 page_cache_release(swapcache);
2509         }
2510
2511         if (flags & FAULT_FLAG_WRITE) {
2512                 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2513                 if (ret & VM_FAULT_ERROR)
2514                         ret &= VM_FAULT_ERROR;
2515                 goto out;
2516         }
2517
2518         /* No need to invalidate - it was non-present before */
2519         update_mmu_cache(vma, address, page_table);
2520 unlock:
2521         pte_unmap_unlock(page_table, ptl);
2522 out:
2523         return ret;
2524 out_nomap:
2525         mem_cgroup_cancel_charge(page, memcg);
2526         pte_unmap_unlock(page_table, ptl);
2527 out_page:
2528         unlock_page(page);
2529 out_release:
2530         page_cache_release(page);
2531         if (page != swapcache) {
2532                 unlock_page(swapcache);
2533                 page_cache_release(swapcache);
2534         }
2535         return ret;
2536 }
2537
2538 /*
2539  * This is like a special single-page "expand_{down|up}wards()",
2540  * except we must first make sure that 'address{-|+}PAGE_SIZE'
2541  * doesn't hit another vma.
2542  */
2543 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2544 {
2545         address &= PAGE_MASK;
2546         if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
2547                 struct vm_area_struct *prev = vma->vm_prev;
2548
2549                 /*
2550                  * Is there a mapping abutting this one below?
2551                  *
2552                  * That's only ok if it's the same stack mapping
2553                  * that has gotten split..
2554                  */
2555                 if (prev && prev->vm_end == address)
2556                         return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
2557
2558                 return expand_downwards(vma, address - PAGE_SIZE);
2559         }
2560         if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2561                 struct vm_area_struct *next = vma->vm_next;
2562
2563                 /* As VM_GROWSDOWN but s/below/above/ */
2564                 if (next && next->vm_start == address + PAGE_SIZE)
2565                         return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
2566
2567                 return expand_upwards(vma, address + PAGE_SIZE);
2568         }
2569         return 0;
2570 }
2571
2572 /*
2573  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2574  * but allow concurrent faults), and pte mapped but not yet locked.
2575  * We return with mmap_sem still held, but pte unmapped and unlocked.
2576  */
2577 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2578                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2579                 unsigned int flags)
2580 {
2581         struct mem_cgroup *memcg;
2582         struct page *page;
2583         spinlock_t *ptl;
2584         pte_t entry;
2585
2586         pte_unmap(page_table);
2587
2588         /* Check if we need to add a guard page to the stack */
2589         if (check_stack_guard_page(vma, address) < 0)
2590                 return VM_FAULT_SIGSEGV;
2591
2592         /* Use the zero-page for reads */
2593         if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm)) {
2594                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2595                                                 vma->vm_page_prot));
2596                 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2597                 if (!pte_none(*page_table))
2598                         goto unlock;
2599                 goto setpte;
2600         }
2601
2602         /* Allocate our own private page. */
2603         if (unlikely(anon_vma_prepare(vma)))
2604                 goto oom;
2605         page = alloc_zeroed_user_highpage_movable(vma, address);
2606         if (!page)
2607                 goto oom;
2608         /*
2609          * The memory barrier inside __SetPageUptodate makes sure that
2610          * preceeding stores to the page contents become visible before
2611          * the set_pte_at() write.
2612          */
2613         __SetPageUptodate(page);
2614
2615         if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg))
2616                 goto oom_free_page;
2617
2618         entry = mk_pte(page, vma->vm_page_prot);
2619         if (vma->vm_flags & VM_WRITE)
2620                 entry = pte_mkwrite(pte_mkdirty(entry));
2621
2622         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2623         if (!pte_none(*page_table))
2624                 goto release;
2625
2626         inc_mm_counter_fast(mm, MM_ANONPAGES);
2627         page_add_new_anon_rmap(page, vma, address);
2628         mem_cgroup_commit_charge(page, memcg, false);
2629         lru_cache_add_active_or_unevictable(page, vma);
2630 setpte:
2631         set_pte_at(mm, address, page_table, entry);
2632
2633         /* No need to invalidate - it was non-present before */
2634         update_mmu_cache(vma, address, page_table);
2635 unlock:
2636         pte_unmap_unlock(page_table, ptl);
2637         return 0;
2638 release:
2639         mem_cgroup_cancel_charge(page, memcg);
2640         page_cache_release(page);
2641         goto unlock;
2642 oom_free_page:
2643         page_cache_release(page);
2644 oom:
2645         return VM_FAULT_OOM;
2646 }
2647
2648 /*
2649  * The mmap_sem must have been held on entry, and may have been
2650  * released depending on flags and vma->vm_ops->fault() return value.
2651  * See filemap_fault() and __lock_page_retry().
2652  */
2653 static int __do_fault(struct vm_area_struct *vma, unsigned long address,
2654                 pgoff_t pgoff, unsigned int flags, struct page **page)
2655 {
2656         struct vm_fault vmf;
2657         int ret;
2658
2659         vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2660         vmf.pgoff = pgoff;
2661         vmf.flags = flags;
2662         vmf.page = NULL;
2663
2664         ret = vma->vm_ops->fault(vma, &vmf);
2665         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2666                 return ret;
2667
2668         if (unlikely(PageHWPoison(vmf.page))) {
2669                 if (ret & VM_FAULT_LOCKED)
2670                         unlock_page(vmf.page);
2671                 page_cache_release(vmf.page);
2672                 return VM_FAULT_HWPOISON;
2673         }
2674
2675         if (unlikely(!(ret & VM_FAULT_LOCKED)))
2676                 lock_page(vmf.page);
2677         else
2678                 VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
2679
2680         *page = vmf.page;
2681         return ret;
2682 }
2683
2684 /**
2685  * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
2686  *
2687  * @vma: virtual memory area
2688  * @address: user virtual address
2689  * @page: page to map
2690  * @pte: pointer to target page table entry
2691  * @write: true, if new entry is writable
2692  * @anon: true, if it's anonymous page
2693  *
2694  * Caller must hold page table lock relevant for @pte.
2695  *
2696  * Target users are page handler itself and implementations of
2697  * vm_ops->map_pages.
2698  */
2699 void do_set_pte(struct vm_area_struct *vma, unsigned long address,
2700                 struct page *page, pte_t *pte, bool write, bool anon)
2701 {
2702         pte_t entry;
2703
2704         flush_icache_page(vma, page);
2705         entry = mk_pte(page, vma->vm_page_prot);
2706         if (write)
2707                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2708         if (anon) {
2709                 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2710                 page_add_new_anon_rmap(page, vma, address);
2711         } else {
2712                 inc_mm_counter_fast(vma->vm_mm, MM_FILEPAGES);
2713                 page_add_file_rmap(page);
2714         }
2715         set_pte_at(vma->vm_mm, address, pte, entry);
2716
2717         /* no need to invalidate: a not-present page won't be cached */
2718         update_mmu_cache(vma, address, pte);
2719 }
2720
2721 static unsigned long fault_around_bytes __read_mostly =
2722         rounddown_pow_of_two(65536);
2723
2724 #ifdef CONFIG_DEBUG_FS
2725 static int fault_around_bytes_get(void *data, u64 *val)
2726 {
2727         *val = fault_around_bytes;
2728         return 0;
2729 }
2730
2731 /*
2732  * fault_around_pages() and fault_around_mask() expects fault_around_bytes
2733  * rounded down to nearest page order. It's what do_fault_around() expects to
2734  * see.
2735  */
2736 static int fault_around_bytes_set(void *data, u64 val)
2737 {
2738         if (val / PAGE_SIZE > PTRS_PER_PTE)
2739                 return -EINVAL;
2740         if (val > PAGE_SIZE)
2741                 fault_around_bytes = rounddown_pow_of_two(val);
2742         else
2743                 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
2744         return 0;
2745 }
2746 DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
2747                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
2748
2749 static int __init fault_around_debugfs(void)
2750 {
2751         void *ret;
2752
2753         ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
2754                         &fault_around_bytes_fops);
2755         if (!ret)
2756                 pr_warn("Failed to create fault_around_bytes in debugfs");
2757         return 0;
2758 }
2759 late_initcall(fault_around_debugfs);
2760 #endif
2761
2762 /*
2763  * do_fault_around() tries to map few pages around the fault address. The hope
2764  * is that the pages will be needed soon and this will lower the number of
2765  * faults to handle.
2766  *
2767  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
2768  * not ready to be mapped: not up-to-date, locked, etc.
2769  *
2770  * This function is called with the page table lock taken. In the split ptlock
2771  * case the page table lock only protects only those entries which belong to
2772  * the page table corresponding to the fault address.
2773  *
2774  * This function doesn't cross the VMA boundaries, in order to call map_pages()
2775  * only once.
2776  *
2777  * fault_around_pages() defines how many pages we'll try to map.
2778  * do_fault_around() expects it to return a power of two less than or equal to
2779  * PTRS_PER_PTE.
2780  *
2781  * The virtual address of the area that we map is naturally aligned to the
2782  * fault_around_pages() value (and therefore to page order).  This way it's
2783  * easier to guarantee that we don't cross page table boundaries.
2784  */
2785 static void do_fault_around(struct vm_area_struct *vma, unsigned long address,
2786                 pte_t *pte, pgoff_t pgoff, unsigned int flags)
2787 {
2788         unsigned long start_addr, nr_pages, mask;
2789         pgoff_t max_pgoff;
2790         struct vm_fault vmf;
2791         int off;
2792
2793         nr_pages = ACCESS_ONCE(fault_around_bytes) >> PAGE_SHIFT;
2794         mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
2795
2796         start_addr = max(address & mask, vma->vm_start);
2797         off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
2798         pte -= off;
2799         pgoff -= off;
2800
2801         /*
2802          *  max_pgoff is either end of page table or end of vma
2803          *  or fault_around_pages() from pgoff, depending what is nearest.
2804          */
2805         max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
2806                 PTRS_PER_PTE - 1;
2807         max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1,
2808                         pgoff + nr_pages - 1);
2809
2810         /* Check if it makes any sense to call ->map_pages */
2811         while (!pte_none(*pte)) {
2812                 if (++pgoff > max_pgoff)
2813                         return;
2814                 start_addr += PAGE_SIZE;
2815                 if (start_addr >= vma->vm_end)
2816                         return;
2817                 pte++;
2818         }
2819
2820         vmf.virtual_address = (void __user *) start_addr;
2821         vmf.pte = pte;
2822         vmf.pgoff = pgoff;
2823         vmf.max_pgoff = max_pgoff;
2824         vmf.flags = flags;
2825         vma->vm_ops->map_pages(vma, &vmf);
2826 }
2827
2828 static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2829                 unsigned long address, pmd_t *pmd,
2830                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2831 {
2832         struct page *fault_page;
2833         spinlock_t *ptl;
2834         pte_t *pte;
2835         int ret = 0;
2836
2837         /*
2838          * Let's call ->map_pages() first and use ->fault() as fallback
2839          * if page by the offset is not ready to be mapped (cold cache or
2840          * something).
2841          */
2842         if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
2843                 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2844                 do_fault_around(vma, address, pte, pgoff, flags);
2845                 if (!pte_same(*pte, orig_pte))
2846                         goto unlock_out;
2847                 pte_unmap_unlock(pte, ptl);
2848         }
2849
2850         ret = __do_fault(vma, address, pgoff, flags, &fault_page);
2851         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2852                 return ret;
2853
2854         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2855         if (unlikely(!pte_same(*pte, orig_pte))) {
2856                 pte_unmap_unlock(pte, ptl);
2857                 unlock_page(fault_page);
2858                 page_cache_release(fault_page);
2859                 return ret;
2860         }
2861         do_set_pte(vma, address, fault_page, pte, false, false);
2862         unlock_page(fault_page);
2863 unlock_out:
2864         pte_unmap_unlock(pte, ptl);
2865         return ret;
2866 }
2867
2868 static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2869                 unsigned long address, pmd_t *pmd,
2870                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2871 {
2872         struct page *fault_page, *new_page;
2873         struct mem_cgroup *memcg;
2874         spinlock_t *ptl;
2875         pte_t *pte;
2876         int ret;
2877
2878         if (unlikely(anon_vma_prepare(vma)))
2879                 return VM_FAULT_OOM;
2880
2881         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2882         if (!new_page)
2883                 return VM_FAULT_OOM;
2884
2885         if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg)) {
2886                 page_cache_release(new_page);
2887                 return VM_FAULT_OOM;
2888         }
2889
2890         ret = __do_fault(vma, address, pgoff, flags, &fault_page);
2891         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2892                 goto uncharge_out;
2893
2894         copy_user_highpage(new_page, fault_page, address, vma);
2895         __SetPageUptodate(new_page);
2896
2897         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2898         if (unlikely(!pte_same(*pte, orig_pte))) {
2899                 pte_unmap_unlock(pte, ptl);
2900                 unlock_page(fault_page);
2901                 page_cache_release(fault_page);
2902                 goto uncharge_out;
2903         }
2904         do_set_pte(vma, address, new_page, pte, true, true);
2905         mem_cgroup_commit_charge(new_page, memcg, false);
2906         lru_cache_add_active_or_unevictable(new_page, vma);
2907         pte_unmap_unlock(pte, ptl);
2908         unlock_page(fault_page);
2909         page_cache_release(fault_page);
2910         return ret;
2911 uncharge_out:
2912         mem_cgroup_cancel_charge(new_page, memcg);
2913         page_cache_release(new_page);
2914         return ret;
2915 }
2916
2917 static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2918                 unsigned long address, pmd_t *pmd,
2919                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2920 {
2921         struct page *fault_page;
2922         struct address_space *mapping;
2923         spinlock_t *ptl;
2924         pte_t *pte;
2925         int dirtied = 0;
2926         int ret, tmp;
2927
2928         ret = __do_fault(vma, address, pgoff, flags, &fault_page);
2929         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2930                 return ret;
2931
2932         /*
2933          * Check if the backing address space wants to know that the page is
2934          * about to become writable
2935          */
2936         if (vma->vm_ops->page_mkwrite) {
2937                 unlock_page(fault_page);
2938                 tmp = do_page_mkwrite(vma, fault_page, address);
2939                 if (unlikely(!tmp ||
2940                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2941                         page_cache_release(fault_page);
2942                         return tmp;
2943                 }
2944         }
2945
2946         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2947         if (unlikely(!pte_same(*pte, orig_pte))) {
2948                 pte_unmap_unlock(pte, ptl);
2949                 unlock_page(fault_page);
2950                 page_cache_release(fault_page);
2951                 return ret;
2952         }
2953         do_set_pte(vma, address, fault_page, pte, true, false);
2954         pte_unmap_unlock(pte, ptl);
2955
2956         if (set_page_dirty(fault_page))
2957                 dirtied = 1;
2958         /*
2959          * Take a local copy of the address_space - page.mapping may be zeroed
2960          * by truncate after unlock_page().   The address_space itself remains
2961          * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2962          * release semantics to prevent the compiler from undoing this copying.
2963          */
2964         mapping = fault_page->mapping;
2965         unlock_page(fault_page);
2966         if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
2967                 /*
2968                  * Some device drivers do not set page.mapping but still
2969                  * dirty their pages
2970                  */
2971                 balance_dirty_pages_ratelimited(mapping);
2972         }
2973
2974         /* file_update_time outside page_lock */
2975         if (vma->vm_file && !vma->vm_ops->page_mkwrite)
2976                 file_update_time(vma->vm_file);
2977
2978         return ret;
2979 }
2980
2981 /*
2982  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2983  * but allow concurrent faults).
2984  * The mmap_sem may have been released depending on flags and our
2985  * return value.  See filemap_fault() and __lock_page_or_retry().
2986  */
2987 static int do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2988                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2989                 unsigned int flags, pte_t orig_pte)
2990 {
2991         pgoff_t pgoff = (((address & PAGE_MASK)
2992                         - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2993
2994         pte_unmap(page_table);
2995         if (!(flags & FAULT_FLAG_WRITE))
2996                 return do_read_fault(mm, vma, address, pmd, pgoff, flags,
2997                                 orig_pte);
2998         if (!(vma->vm_flags & VM_SHARED))
2999                 return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3000                                 orig_pte);
3001         return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3002 }
3003
3004 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3005                                 unsigned long addr, int page_nid,
3006                                 int *flags)
3007 {
3008         get_page(page);
3009
3010         count_vm_numa_event(NUMA_HINT_FAULTS);
3011         if (page_nid == numa_node_id()) {
3012                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3013                 *flags |= TNF_FAULT_LOCAL;
3014         }
3015
3016         return mpol_misplaced(page, vma, addr);
3017 }
3018
3019 static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3020                    unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3021 {
3022         struct page *page = NULL;
3023         spinlock_t *ptl;
3024         int page_nid = -1;
3025         int last_cpupid;
3026         int target_nid;
3027         bool migrated = false;
3028         int flags = 0;
3029
3030         /*
3031         * The "pte" at this point cannot be used safely without
3032         * validation through pte_unmap_same(). It's of NUMA type but
3033         * the pfn may be screwed if the read is non atomic.
3034         *
3035         * ptep_modify_prot_start is not called as this is clearing
3036         * the _PAGE_NUMA bit and it is not really expected that there
3037         * would be concurrent hardware modifications to the PTE.
3038         */
3039         ptl = pte_lockptr(mm, pmd);
3040         spin_lock(ptl);
3041         if (unlikely(!pte_same(*ptep, pte))) {
3042                 pte_unmap_unlock(ptep, ptl);
3043                 goto out;
3044         }
3045
3046         pte = pte_mknonnuma(pte);
3047         set_pte_at(mm, addr, ptep, pte);
3048         update_mmu_cache(vma, addr, ptep);
3049
3050         page = vm_normal_page(vma, addr, pte);
3051         if (!page) {
3052                 pte_unmap_unlock(ptep, ptl);
3053                 return 0;
3054         }
3055         BUG_ON(is_zero_pfn(page_to_pfn(page)));
3056
3057         /*
3058          * Avoid grouping on DSO/COW pages in specific and RO pages
3059          * in general, RO pages shouldn't hurt as much anyway since
3060          * they can be in shared cache state.
3061          */
3062         if (!pte_write(pte))
3063                 flags |= TNF_NO_GROUP;
3064
3065         /*
3066          * Flag if the page is shared between multiple address spaces. This
3067          * is later used when determining whether to group tasks together
3068          */
3069         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3070                 flags |= TNF_SHARED;
3071
3072         last_cpupid = page_cpupid_last(page);
3073         page_nid = page_to_nid(page);
3074         target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
3075         pte_unmap_unlock(ptep, ptl);
3076         if (target_nid == -1) {
3077                 put_page(page);
3078                 goto out;
3079         }
3080
3081         /* Migrate to the requested node */
3082         migrated = migrate_misplaced_page(page, vma, target_nid);
3083         if (migrated) {
3084                 page_nid = target_nid;
3085                 flags |= TNF_MIGRATED;
3086         }
3087
3088 out:
3089         if (page_nid != -1)
3090                 task_numa_fault(last_cpupid, page_nid, 1, flags);
3091         return 0;
3092 }
3093
3094 /*
3095  * These routines also need to handle stuff like marking pages dirty
3096  * and/or accessed for architectures that don't do it in hardware (most
3097  * RISC architectures).  The early dirtying is also good on the i386.
3098  *
3099  * There is also a hook called "update_mmu_cache()" that architectures
3100  * with external mmu caches can use to update those (ie the Sparc or
3101  * PowerPC hashed page tables that act as extended TLBs).
3102  *
3103  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3104  * but allow concurrent faults), and pte mapped but not yet locked.
3105  * We return with pte unmapped and unlocked.
3106  *
3107  * The mmap_sem may have been released depending on flags and our
3108  * return value.  See filemap_fault() and __lock_page_or_retry().
3109  */
3110 static int handle_pte_fault(struct mm_struct *mm,
3111                      struct vm_area_struct *vma, unsigned long address,
3112                      pte_t *pte, pmd_t *pmd, unsigned int flags)
3113 {
3114         pte_t entry;
3115         spinlock_t *ptl;
3116
3117         /*
3118          * some architectures can have larger ptes than wordsize,
3119          * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and CONFIG_32BIT=y,
3120          * so READ_ONCE or ACCESS_ONCE cannot guarantee atomic accesses.
3121          * The code below just needs a consistent view for the ifs and
3122          * we later double check anyway with the ptl lock held. So here
3123          * a barrier will do.
3124          */
3125         entry = *pte;
3126         barrier();
3127         if (!pte_present(entry)) {
3128                 if (pte_none(entry)) {
3129                         if (vma->vm_ops) {
3130                                 if (likely(vma->vm_ops->fault))
3131                                         return do_fault(mm, vma, address, pte,
3132                                                         pmd, flags, entry);
3133                         }
3134                         return do_anonymous_page(mm, vma, address,
3135                                                  pte, pmd, flags);
3136                 }
3137                 return do_swap_page(mm, vma, address,
3138                                         pte, pmd, flags, entry);
3139         }
3140
3141         if (pte_numa(entry))
3142                 return do_numa_page(mm, vma, address, entry, pte, pmd);
3143
3144         ptl = pte_lockptr(mm, pmd);
3145         spin_lock(ptl);
3146         if (unlikely(!pte_same(*pte, entry)))
3147                 goto unlock;
3148         if (flags & FAULT_FLAG_WRITE) {
3149                 if (!pte_write(entry))
3150                         return do_wp_page(mm, vma, address,
3151                                         pte, pmd, ptl, entry);
3152                 entry = pte_mkdirty(entry);
3153         }
3154         entry = pte_mkyoung(entry);
3155         if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3156                 update_mmu_cache(vma, address, pte);
3157         } else {
3158                 /*
3159                  * This is needed only for protection faults but the arch code
3160                  * is not yet telling us if this is a protection fault or not.
3161                  * This still avoids useless tlb flushes for .text page faults
3162                  * with threads.
3163                  */
3164                 if (flags & FAULT_FLAG_WRITE)
3165                         flush_tlb_fix_spurious_fault(vma, address);
3166         }
3167 unlock:
3168         pte_unmap_unlock(pte, ptl);
3169         return 0;
3170 }
3171
3172 /*
3173  * By the time we get here, we already hold the mm semaphore
3174  *
3175  * The mmap_sem may have been released depending on flags and our
3176  * return value.  See filemap_fault() and __lock_page_or_retry().
3177  */
3178 static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3179                              unsigned long address, unsigned int flags)
3180 {
3181         pgd_t *pgd;
3182         pud_t *pud;
3183         pmd_t *pmd;
3184         pte_t *pte;
3185
3186         if (unlikely(is_vm_hugetlb_page(vma)))
3187                 return hugetlb_fault(mm, vma, address, flags);
3188
3189         pgd = pgd_offset(mm, address);
3190         pud = pud_alloc(mm, pgd, address);
3191         if (!pud)
3192                 return VM_FAULT_OOM;
3193         pmd = pmd_alloc(mm, pud, address);
3194         if (!pmd)
3195                 return VM_FAULT_OOM;
3196         if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3197                 int ret = VM_FAULT_FALLBACK;
3198                 if (!vma->vm_ops)
3199                         ret = do_huge_pmd_anonymous_page(mm, vma, address,
3200                                         pmd, flags);
3201                 if (!(ret & VM_FAULT_FALLBACK))
3202                         return ret;
3203         } else {
3204                 pmd_t orig_pmd = *pmd;
3205                 int ret;
3206
3207                 barrier();
3208                 if (pmd_trans_huge(orig_pmd)) {
3209                         unsigned int dirty = flags & FAULT_FLAG_WRITE;
3210
3211                         /*
3212                          * If the pmd is splitting, return and retry the
3213                          * the fault.  Alternative: wait until the split
3214                          * is done, and goto retry.
3215                          */
3216                         if (pmd_trans_splitting(orig_pmd))
3217                                 return 0;
3218
3219                         if (pmd_numa(orig_pmd))
3220                                 return do_huge_pmd_numa_page(mm, vma, address,
3221                                                              orig_pmd, pmd);
3222
3223                         if (dirty && !pmd_write(orig_pmd)) {
3224                                 ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3225                                                           orig_pmd);
3226                                 if (!(ret & VM_FAULT_FALLBACK))
3227                                         return ret;
3228                         } else {
3229                                 huge_pmd_set_accessed(mm, vma, address, pmd,
3230                                                       orig_pmd, dirty);
3231                                 return 0;
3232                         }
3233                 }
3234         }
3235
3236         /*
3237          * Use __pte_alloc instead of pte_alloc_map, because we can't
3238          * run pte_offset_map on the pmd, if an huge pmd could
3239          * materialize from under us from a different thread.
3240          */
3241         if (unlikely(pmd_none(*pmd)) &&
3242             unlikely(__pte_alloc(mm, vma, pmd, address)))
3243                 return VM_FAULT_OOM;
3244         /* if an huge pmd materialized from under us just retry later */
3245         if (unlikely(pmd_trans_huge(*pmd)))
3246                 return 0;
3247         /*
3248          * A regular pmd is established and it can't morph into a huge pmd
3249          * from under us anymore at this point because we hold the mmap_sem
3250          * read mode and khugepaged takes it in write mode. So now it's
3251          * safe to run pte_offset_map().
3252          */
3253         pte = pte_offset_map(pmd, address);
3254
3255         return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3256 }
3257
3258 /*
3259  * By the time we get here, we already hold the mm semaphore
3260  *
3261  * The mmap_sem may have been released depending on flags and our
3262  * return value.  See filemap_fault() and __lock_page_or_retry().
3263  */
3264 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3265                     unsigned long address, unsigned int flags)
3266 {
3267         int ret;
3268
3269         __set_current_state(TASK_RUNNING);
3270
3271         count_vm_event(PGFAULT);
3272         mem_cgroup_count_vm_event(mm, PGFAULT);
3273
3274         /* do counter updates before entering really critical section. */
3275         check_sync_rss_stat(current);
3276
3277         /*
3278          * Enable the memcg OOM handling for faults triggered in user
3279          * space.  Kernel faults are handled more gracefully.
3280          */
3281         if (flags & FAULT_FLAG_USER)
3282                 mem_cgroup_oom_enable();
3283
3284         ret = __handle_mm_fault(mm, vma, address, flags);
3285
3286         if (flags & FAULT_FLAG_USER) {
3287                 mem_cgroup_oom_disable();
3288                 /*
3289                  * The task may have entered a memcg OOM situation but
3290                  * if the allocation error was handled gracefully (no
3291                  * VM_FAULT_OOM), there is no need to kill anything.
3292                  * Just clean up the OOM state peacefully.
3293                  */
3294                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3295                         mem_cgroup_oom_synchronize(false);
3296         }
3297
3298         return ret;
3299 }
3300 EXPORT_SYMBOL_GPL(handle_mm_fault);
3301
3302 #ifndef __PAGETABLE_PUD_FOLDED
3303 /*
3304  * Allocate page upper directory.
3305  * We've already handled the fast-path in-line.
3306  */
3307 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3308 {
3309         pud_t *new = pud_alloc_one(mm, address);
3310         if (!new)
3311                 return -ENOMEM;
3312
3313         smp_wmb(); /* See comment in __pte_alloc */
3314
3315         spin_lock(&mm->page_table_lock);
3316         if (pgd_present(*pgd))          /* Another has populated it */
3317                 pud_free(mm, new);
3318         else
3319                 pgd_populate(mm, pgd, new);
3320         spin_unlock(&mm->page_table_lock);
3321         return 0;
3322 }
3323 #endif /* __PAGETABLE_PUD_FOLDED */
3324
3325 #ifndef __PAGETABLE_PMD_FOLDED
3326 /*
3327  * Allocate page middle directory.
3328  * We've already handled the fast-path in-line.
3329  */
3330 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3331 {
3332         pmd_t *new = pmd_alloc_one(mm, address);
3333         if (!new)
3334                 return -ENOMEM;
3335
3336         smp_wmb(); /* See comment in __pte_alloc */
3337
3338         spin_lock(&mm->page_table_lock);
3339 #ifndef __ARCH_HAS_4LEVEL_HACK
3340         if (pud_present(*pud))          /* Another has populated it */
3341                 pmd_free(mm, new);
3342         else
3343                 pud_populate(mm, pud, new);
3344 #else
3345         if (pgd_present(*pud))          /* Another has populated it */
3346                 pmd_free(mm, new);
3347         else
3348                 pgd_populate(mm, pud, new);
3349 #endif /* __ARCH_HAS_4LEVEL_HACK */
3350         spin_unlock(&mm->page_table_lock);
3351         return 0;
3352 }
3353 #endif /* __PAGETABLE_PMD_FOLDED */
3354
3355 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3356                 pte_t **ptepp, spinlock_t **ptlp)
3357 {
3358         pgd_t *pgd;
3359         pud_t *pud;
3360         pmd_t *pmd;
3361         pte_t *ptep;
3362
3363         pgd = pgd_offset(mm, address);
3364         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3365                 goto out;
3366
3367         pud = pud_offset(pgd, address);
3368         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3369                 goto out;
3370
3371         pmd = pmd_offset(pud, address);
3372         VM_BUG_ON(pmd_trans_huge(*pmd));
3373         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3374                 goto out;
3375
3376         /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3377         if (pmd_huge(*pmd))
3378                 goto out;
3379
3380         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3381         if (!ptep)
3382                 goto out;
3383         if (!pte_present(*ptep))
3384                 goto unlock;
3385         *ptepp = ptep;
3386         return 0;
3387 unlock:
3388         pte_unmap_unlock(ptep, *ptlp);
3389 out:
3390         return -EINVAL;
3391 }
3392
3393 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3394                              pte_t **ptepp, spinlock_t **ptlp)
3395 {
3396         int res;
3397
3398         /* (void) is needed to make gcc happy */
3399         (void) __cond_lock(*ptlp,
3400                            !(res = __follow_pte(mm, address, ptepp, ptlp)));
3401         return res;
3402 }
3403
3404 /**
3405  * follow_pfn - look up PFN at a user virtual address
3406  * @vma: memory mapping
3407  * @address: user virtual address
3408  * @pfn: location to store found PFN
3409  *
3410  * Only IO mappings and raw PFN mappings are allowed.
3411  *
3412  * Returns zero and the pfn at @pfn on success, -ve otherwise.
3413  */
3414 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3415         unsigned long *pfn)
3416 {
3417         int ret = -EINVAL;
3418         spinlock_t *ptl;
3419         pte_t *ptep;
3420
3421         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3422                 return ret;
3423
3424         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3425         if (ret)
3426                 return ret;
3427         *pfn = pte_pfn(*ptep);
3428         pte_unmap_unlock(ptep, ptl);
3429         return 0;
3430 }
3431 EXPORT_SYMBOL(follow_pfn);
3432
3433 #ifdef CONFIG_HAVE_IOREMAP_PROT
3434 int follow_phys(struct vm_area_struct *vma,
3435                 unsigned long address, unsigned int flags,
3436                 unsigned long *prot, resource_size_t *phys)
3437 {
3438         int ret = -EINVAL;
3439         pte_t *ptep, pte;
3440         spinlock_t *ptl;
3441
3442         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3443                 goto out;
3444
3445         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3446                 goto out;
3447         pte = *ptep;
3448
3449         if ((flags & FOLL_WRITE) && !pte_write(pte))
3450                 goto unlock;
3451
3452         *prot = pgprot_val(pte_pgprot(pte));
3453         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3454
3455         ret = 0;
3456 unlock:
3457         pte_unmap_unlock(ptep, ptl);
3458 out:
3459         return ret;
3460 }
3461
3462 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3463                         void *buf, int len, int write)
3464 {
3465         resource_size_t phys_addr;
3466         unsigned long prot = 0;
3467         void __iomem *maddr;
3468         int offset = addr & (PAGE_SIZE-1);
3469
3470         if (follow_phys(vma, addr, write, &prot, &phys_addr))
3471                 return -EINVAL;
3472
3473         maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3474         if (write)
3475                 memcpy_toio(maddr + offset, buf, len);
3476         else
3477                 memcpy_fromio(buf, maddr + offset, len);
3478         iounmap(maddr);
3479
3480         return len;
3481 }
3482 EXPORT_SYMBOL_GPL(generic_access_phys);
3483 #endif
3484
3485 /*
3486  * Access another process' address space as given in mm.  If non-NULL, use the
3487  * given task for page fault accounting.
3488  */
3489 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3490                 unsigned long addr, void *buf, int len, int write)
3491 {
3492         struct vm_area_struct *vma;
3493         void *old_buf = buf;
3494
3495         down_read(&mm->mmap_sem);
3496         /* ignore errors, just check how much was successfully transferred */
3497         while (len) {
3498                 int bytes, ret, offset;
3499                 void *maddr;
3500                 struct page *page = NULL;
3501
3502                 ret = get_user_pages(tsk, mm, addr, 1,
3503                                 write, 1, &page, &vma);
3504                 if (ret <= 0) {
3505 #ifndef CONFIG_HAVE_IOREMAP_PROT
3506                         break;
3507 #else
3508                         /*
3509                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
3510                          * we can access using slightly different code.
3511                          */
3512                         vma = find_vma(mm, addr);
3513                         if (!vma || vma->vm_start > addr)
3514                                 break;
3515                         if (vma->vm_ops && vma->vm_ops->access)
3516                                 ret = vma->vm_ops->access(vma, addr, buf,
3517                                                           len, write);
3518                         if (ret <= 0)
3519                                 break;
3520                         bytes = ret;
3521 #endif
3522                 } else {
3523                         bytes = len;
3524                         offset = addr & (PAGE_SIZE-1);
3525                         if (bytes > PAGE_SIZE-offset)
3526                                 bytes = PAGE_SIZE-offset;
3527
3528                         maddr = kmap(page);
3529                         if (write) {
3530                                 copy_to_user_page(vma, page, addr,
3531                                                   maddr + offset, buf, bytes);
3532                                 set_page_dirty_lock(page);
3533                         } else {
3534                                 copy_from_user_page(vma, page, addr,
3535                                                     buf, maddr + offset, bytes);
3536                         }
3537                         kunmap(page);
3538                         page_cache_release(page);
3539                 }
3540                 len -= bytes;
3541                 buf += bytes;
3542                 addr += bytes;
3543         }
3544         up_read(&mm->mmap_sem);
3545
3546         return buf - old_buf;
3547 }
3548
3549 /**
3550  * access_remote_vm - access another process' address space
3551  * @mm:         the mm_struct of the target address space
3552  * @addr:       start address to access
3553  * @buf:        source or destination buffer
3554  * @len:        number of bytes to transfer
3555  * @write:      whether the access is a write
3556  *
3557  * The caller must hold a reference on @mm.
3558  */
3559 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3560                 void *buf, int len, int write)
3561 {
3562         return __access_remote_vm(NULL, mm, addr, buf, len, write);
3563 }
3564
3565 /*
3566  * Access another process' address space.
3567  * Source/target buffer must be kernel space,
3568  * Do not walk the page table directly, use get_user_pages
3569  */
3570 int access_process_vm(struct task_struct *tsk, unsigned long addr,
3571                 void *buf, int len, int write)
3572 {
3573         struct mm_struct *mm;
3574         int ret;
3575
3576         mm = get_task_mm(tsk);
3577         if (!mm)
3578                 return 0;
3579
3580         ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3581         mmput(mm);
3582
3583         return ret;
3584 }
3585
3586 /*
3587  * Print the name of a VMA.
3588  */
3589 void print_vma_addr(char *prefix, unsigned long ip)
3590 {
3591         struct mm_struct *mm = current->mm;
3592         struct vm_area_struct *vma;
3593
3594         /*
3595          * Do not print if we are in atomic
3596          * contexts (in exception stacks, etc.):
3597          */
3598         if (preempt_count())
3599                 return;
3600
3601         down_read(&mm->mmap_sem);
3602         vma = find_vma(mm, ip);
3603         if (vma && vma->vm_file) {
3604                 struct file *f = vma->vm_file;
3605                 char *buf = (char *)__get_free_page(GFP_KERNEL);
3606                 if (buf) {
3607                         char *p;
3608
3609                         p = d_path(&f->f_path, buf, PAGE_SIZE);
3610                         if (IS_ERR(p))
3611                                 p = "?";
3612                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
3613                                         vma->vm_start,
3614                                         vma->vm_end - vma->vm_start);
3615                         free_page((unsigned long)buf);
3616                 }
3617         }
3618         up_read(&mm->mmap_sem);
3619 }
3620
3621 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3622 void might_fault(void)
3623 {
3624         /*
3625          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3626          * holding the mmap_sem, this is safe because kernel memory doesn't
3627          * get paged out, therefore we'll never actually fault, and the
3628          * below annotations will generate false positives.
3629          */
3630         if (segment_eq(get_fs(), KERNEL_DS))
3631                 return;
3632
3633         /*
3634          * it would be nicer only to annotate paths which are not under
3635          * pagefault_disable, however that requires a larger audit and
3636          * providing helpers like get_user_atomic.
3637          */
3638         if (in_atomic())
3639                 return;
3640
3641         __might_sleep(__FILE__, __LINE__, 0);
3642
3643         if (current->mm)
3644                 might_lock_read(&current->mm->mmap_sem);
3645 }
3646 EXPORT_SYMBOL(might_fault);
3647 #endif
3648
3649 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3650 static void clear_gigantic_page(struct page *page,
3651                                 unsigned long addr,
3652                                 unsigned int pages_per_huge_page)
3653 {
3654         int i;
3655         struct page *p = page;
3656
3657         might_sleep();
3658         for (i = 0; i < pages_per_huge_page;
3659              i++, p = mem_map_next(p, page, i)) {
3660                 cond_resched();
3661                 clear_user_highpage(p, addr + i * PAGE_SIZE);
3662         }
3663 }
3664 void clear_huge_page(struct page *page,
3665                      unsigned long addr, unsigned int pages_per_huge_page)
3666 {
3667         int i;
3668
3669         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3670                 clear_gigantic_page(page, addr, pages_per_huge_page);
3671                 return;
3672         }
3673
3674         might_sleep();
3675         for (i = 0; i < pages_per_huge_page; i++) {
3676                 cond_resched();
3677                 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3678         }
3679 }
3680
3681 static void copy_user_gigantic_page(struct page *dst, struct page *src,
3682                                     unsigned long addr,
3683                                     struct vm_area_struct *vma,
3684                                     unsigned int pages_per_huge_page)
3685 {
3686         int i;
3687         struct page *dst_base = dst;
3688         struct page *src_base = src;
3689
3690         for (i = 0; i < pages_per_huge_page; ) {
3691                 cond_resched();
3692                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3693
3694                 i++;
3695                 dst = mem_map_next(dst, dst_base, i);
3696                 src = mem_map_next(src, src_base, i);
3697         }
3698 }
3699
3700 void copy_user_huge_page(struct page *dst, struct page *src,
3701                          unsigned long addr, struct vm_area_struct *vma,
3702                          unsigned int pages_per_huge_page)
3703 {
3704         int i;
3705
3706         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3707                 copy_user_gigantic_page(dst, src, addr, vma,
3708                                         pages_per_huge_page);
3709                 return;
3710         }
3711
3712         might_sleep();
3713         for (i = 0; i < pages_per_huge_page; i++) {
3714                 cond_resched();
3715                 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
3716         }
3717 }
3718 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3719
3720 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
3721
3722 static struct kmem_cache *page_ptl_cachep;
3723
3724 void __init ptlock_cache_init(void)
3725 {
3726         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
3727                         SLAB_PANIC, NULL);
3728 }
3729
3730 bool ptlock_alloc(struct page *page)
3731 {
3732         spinlock_t *ptl;
3733
3734         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
3735         if (!ptl)
3736                 return false;
3737         page->ptl = ptl;
3738         return true;
3739 }
3740
3741 void ptlock_free(struct page *page)
3742 {
3743         kmem_cache_free(page_ptl_cachep, page->ptl);
3744 }
3745 #endif