mm: accelerate mm_populate() treatment of THP pages
[cascardo/linux.git] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60 #include <linux/migrate.h>
61 #include <linux/string.h>
62
63 #include <asm/io.h>
64 #include <asm/pgalloc.h>
65 #include <asm/uaccess.h>
66 #include <asm/tlb.h>
67 #include <asm/tlbflush.h>
68 #include <asm/pgtable.h>
69
70 #include "internal.h"
71
72 #ifdef LAST_NID_NOT_IN_PAGE_FLAGS
73 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_nid.
74 #endif
75
76 #ifndef CONFIG_NEED_MULTIPLE_NODES
77 /* use the per-pgdat data instead for discontigmem - mbligh */
78 unsigned long max_mapnr;
79 struct page *mem_map;
80
81 EXPORT_SYMBOL(max_mapnr);
82 EXPORT_SYMBOL(mem_map);
83 #endif
84
85 unsigned long num_physpages;
86 /*
87  * A number of key systems in x86 including ioremap() rely on the assumption
88  * that high_memory defines the upper bound on direct map memory, then end
89  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
90  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
91  * and ZONE_HIGHMEM.
92  */
93 void * high_memory;
94
95 EXPORT_SYMBOL(num_physpages);
96 EXPORT_SYMBOL(high_memory);
97
98 /*
99  * Randomize the address space (stacks, mmaps, brk, etc.).
100  *
101  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
102  *   as ancient (libc5 based) binaries can segfault. )
103  */
104 int randomize_va_space __read_mostly =
105 #ifdef CONFIG_COMPAT_BRK
106                                         1;
107 #else
108                                         2;
109 #endif
110
111 static int __init disable_randmaps(char *s)
112 {
113         randomize_va_space = 0;
114         return 1;
115 }
116 __setup("norandmaps", disable_randmaps);
117
118 unsigned long zero_pfn __read_mostly;
119 unsigned long highest_memmap_pfn __read_mostly;
120
121 /*
122  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
123  */
124 static int __init init_zero_pfn(void)
125 {
126         zero_pfn = page_to_pfn(ZERO_PAGE(0));
127         return 0;
128 }
129 core_initcall(init_zero_pfn);
130
131
132 #if defined(SPLIT_RSS_COUNTING)
133
134 void sync_mm_rss(struct mm_struct *mm)
135 {
136         int i;
137
138         for (i = 0; i < NR_MM_COUNTERS; i++) {
139                 if (current->rss_stat.count[i]) {
140                         add_mm_counter(mm, i, current->rss_stat.count[i]);
141                         current->rss_stat.count[i] = 0;
142                 }
143         }
144         current->rss_stat.events = 0;
145 }
146
147 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
148 {
149         struct task_struct *task = current;
150
151         if (likely(task->mm == mm))
152                 task->rss_stat.count[member] += val;
153         else
154                 add_mm_counter(mm, member, val);
155 }
156 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
157 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
158
159 /* sync counter once per 64 page faults */
160 #define TASK_RSS_EVENTS_THRESH  (64)
161 static void check_sync_rss_stat(struct task_struct *task)
162 {
163         if (unlikely(task != current))
164                 return;
165         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
166                 sync_mm_rss(task->mm);
167 }
168 #else /* SPLIT_RSS_COUNTING */
169
170 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
171 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
172
173 static void check_sync_rss_stat(struct task_struct *task)
174 {
175 }
176
177 #endif /* SPLIT_RSS_COUNTING */
178
179 #ifdef HAVE_GENERIC_MMU_GATHER
180
181 static int tlb_next_batch(struct mmu_gather *tlb)
182 {
183         struct mmu_gather_batch *batch;
184
185         batch = tlb->active;
186         if (batch->next) {
187                 tlb->active = batch->next;
188                 return 1;
189         }
190
191         if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
192                 return 0;
193
194         batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
195         if (!batch)
196                 return 0;
197
198         tlb->batch_count++;
199         batch->next = NULL;
200         batch->nr   = 0;
201         batch->max  = MAX_GATHER_BATCH;
202
203         tlb->active->next = batch;
204         tlb->active = batch;
205
206         return 1;
207 }
208
209 /* tlb_gather_mmu
210  *      Called to initialize an (on-stack) mmu_gather structure for page-table
211  *      tear-down from @mm. The @fullmm argument is used when @mm is without
212  *      users and we're going to destroy the full address space (exit/execve).
213  */
214 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, bool fullmm)
215 {
216         tlb->mm = mm;
217
218         tlb->fullmm     = fullmm;
219         tlb->start      = -1UL;
220         tlb->end        = 0;
221         tlb->need_flush = 0;
222         tlb->fast_mode  = (num_possible_cpus() == 1);
223         tlb->local.next = NULL;
224         tlb->local.nr   = 0;
225         tlb->local.max  = ARRAY_SIZE(tlb->__pages);
226         tlb->active     = &tlb->local;
227         tlb->batch_count = 0;
228
229 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
230         tlb->batch = NULL;
231 #endif
232 }
233
234 void tlb_flush_mmu(struct mmu_gather *tlb)
235 {
236         struct mmu_gather_batch *batch;
237
238         if (!tlb->need_flush)
239                 return;
240         tlb->need_flush = 0;
241         tlb_flush(tlb);
242 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
243         tlb_table_flush(tlb);
244 #endif
245
246         if (tlb_fast_mode(tlb))
247                 return;
248
249         for (batch = &tlb->local; batch; batch = batch->next) {
250                 free_pages_and_swap_cache(batch->pages, batch->nr);
251                 batch->nr = 0;
252         }
253         tlb->active = &tlb->local;
254 }
255
256 /* tlb_finish_mmu
257  *      Called at the end of the shootdown operation to free up any resources
258  *      that were required.
259  */
260 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
261 {
262         struct mmu_gather_batch *batch, *next;
263
264         tlb->start = start;
265         tlb->end   = end;
266         tlb_flush_mmu(tlb);
267
268         /* keep the page table cache within bounds */
269         check_pgt_cache();
270
271         for (batch = tlb->local.next; batch; batch = next) {
272                 next = batch->next;
273                 free_pages((unsigned long)batch, 0);
274         }
275         tlb->local.next = NULL;
276 }
277
278 /* __tlb_remove_page
279  *      Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
280  *      handling the additional races in SMP caused by other CPUs caching valid
281  *      mappings in their TLBs. Returns the number of free page slots left.
282  *      When out of page slots we must call tlb_flush_mmu().
283  */
284 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
285 {
286         struct mmu_gather_batch *batch;
287
288         VM_BUG_ON(!tlb->need_flush);
289
290         if (tlb_fast_mode(tlb)) {
291                 free_page_and_swap_cache(page);
292                 return 1; /* avoid calling tlb_flush_mmu() */
293         }
294
295         batch = tlb->active;
296         batch->pages[batch->nr++] = page;
297         if (batch->nr == batch->max) {
298                 if (!tlb_next_batch(tlb))
299                         return 0;
300                 batch = tlb->active;
301         }
302         VM_BUG_ON(batch->nr > batch->max);
303
304         return batch->max - batch->nr;
305 }
306
307 #endif /* HAVE_GENERIC_MMU_GATHER */
308
309 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
310
311 /*
312  * See the comment near struct mmu_table_batch.
313  */
314
315 static void tlb_remove_table_smp_sync(void *arg)
316 {
317         /* Simply deliver the interrupt */
318 }
319
320 static void tlb_remove_table_one(void *table)
321 {
322         /*
323          * This isn't an RCU grace period and hence the page-tables cannot be
324          * assumed to be actually RCU-freed.
325          *
326          * It is however sufficient for software page-table walkers that rely on
327          * IRQ disabling. See the comment near struct mmu_table_batch.
328          */
329         smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
330         __tlb_remove_table(table);
331 }
332
333 static void tlb_remove_table_rcu(struct rcu_head *head)
334 {
335         struct mmu_table_batch *batch;
336         int i;
337
338         batch = container_of(head, struct mmu_table_batch, rcu);
339
340         for (i = 0; i < batch->nr; i++)
341                 __tlb_remove_table(batch->tables[i]);
342
343         free_page((unsigned long)batch);
344 }
345
346 void tlb_table_flush(struct mmu_gather *tlb)
347 {
348         struct mmu_table_batch **batch = &tlb->batch;
349
350         if (*batch) {
351                 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
352                 *batch = NULL;
353         }
354 }
355
356 void tlb_remove_table(struct mmu_gather *tlb, void *table)
357 {
358         struct mmu_table_batch **batch = &tlb->batch;
359
360         tlb->need_flush = 1;
361
362         /*
363          * When there's less then two users of this mm there cannot be a
364          * concurrent page-table walk.
365          */
366         if (atomic_read(&tlb->mm->mm_users) < 2) {
367                 __tlb_remove_table(table);
368                 return;
369         }
370
371         if (*batch == NULL) {
372                 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
373                 if (*batch == NULL) {
374                         tlb_remove_table_one(table);
375                         return;
376                 }
377                 (*batch)->nr = 0;
378         }
379         (*batch)->tables[(*batch)->nr++] = table;
380         if ((*batch)->nr == MAX_TABLE_BATCH)
381                 tlb_table_flush(tlb);
382 }
383
384 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
385
386 /*
387  * If a p?d_bad entry is found while walking page tables, report
388  * the error, before resetting entry to p?d_none.  Usually (but
389  * very seldom) called out from the p?d_none_or_clear_bad macros.
390  */
391
392 void pgd_clear_bad(pgd_t *pgd)
393 {
394         pgd_ERROR(*pgd);
395         pgd_clear(pgd);
396 }
397
398 void pud_clear_bad(pud_t *pud)
399 {
400         pud_ERROR(*pud);
401         pud_clear(pud);
402 }
403
404 void pmd_clear_bad(pmd_t *pmd)
405 {
406         pmd_ERROR(*pmd);
407         pmd_clear(pmd);
408 }
409
410 /*
411  * Note: this doesn't free the actual pages themselves. That
412  * has been handled earlier when unmapping all the memory regions.
413  */
414 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
415                            unsigned long addr)
416 {
417         pgtable_t token = pmd_pgtable(*pmd);
418         pmd_clear(pmd);
419         pte_free_tlb(tlb, token, addr);
420         tlb->mm->nr_ptes--;
421 }
422
423 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
424                                 unsigned long addr, unsigned long end,
425                                 unsigned long floor, unsigned long ceiling)
426 {
427         pmd_t *pmd;
428         unsigned long next;
429         unsigned long start;
430
431         start = addr;
432         pmd = pmd_offset(pud, addr);
433         do {
434                 next = pmd_addr_end(addr, end);
435                 if (pmd_none_or_clear_bad(pmd))
436                         continue;
437                 free_pte_range(tlb, pmd, addr);
438         } while (pmd++, addr = next, addr != end);
439
440         start &= PUD_MASK;
441         if (start < floor)
442                 return;
443         if (ceiling) {
444                 ceiling &= PUD_MASK;
445                 if (!ceiling)
446                         return;
447         }
448         if (end - 1 > ceiling - 1)
449                 return;
450
451         pmd = pmd_offset(pud, start);
452         pud_clear(pud);
453         pmd_free_tlb(tlb, pmd, start);
454 }
455
456 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
457                                 unsigned long addr, unsigned long end,
458                                 unsigned long floor, unsigned long ceiling)
459 {
460         pud_t *pud;
461         unsigned long next;
462         unsigned long start;
463
464         start = addr;
465         pud = pud_offset(pgd, addr);
466         do {
467                 next = pud_addr_end(addr, end);
468                 if (pud_none_or_clear_bad(pud))
469                         continue;
470                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
471         } while (pud++, addr = next, addr != end);
472
473         start &= PGDIR_MASK;
474         if (start < floor)
475                 return;
476         if (ceiling) {
477                 ceiling &= PGDIR_MASK;
478                 if (!ceiling)
479                         return;
480         }
481         if (end - 1 > ceiling - 1)
482                 return;
483
484         pud = pud_offset(pgd, start);
485         pgd_clear(pgd);
486         pud_free_tlb(tlb, pud, start);
487 }
488
489 /*
490  * This function frees user-level page tables of a process.
491  *
492  * Must be called with pagetable lock held.
493  */
494 void free_pgd_range(struct mmu_gather *tlb,
495                         unsigned long addr, unsigned long end,
496                         unsigned long floor, unsigned long ceiling)
497 {
498         pgd_t *pgd;
499         unsigned long next;
500
501         /*
502          * The next few lines have given us lots of grief...
503          *
504          * Why are we testing PMD* at this top level?  Because often
505          * there will be no work to do at all, and we'd prefer not to
506          * go all the way down to the bottom just to discover that.
507          *
508          * Why all these "- 1"s?  Because 0 represents both the bottom
509          * of the address space and the top of it (using -1 for the
510          * top wouldn't help much: the masks would do the wrong thing).
511          * The rule is that addr 0 and floor 0 refer to the bottom of
512          * the address space, but end 0 and ceiling 0 refer to the top
513          * Comparisons need to use "end - 1" and "ceiling - 1" (though
514          * that end 0 case should be mythical).
515          *
516          * Wherever addr is brought up or ceiling brought down, we must
517          * be careful to reject "the opposite 0" before it confuses the
518          * subsequent tests.  But what about where end is brought down
519          * by PMD_SIZE below? no, end can't go down to 0 there.
520          *
521          * Whereas we round start (addr) and ceiling down, by different
522          * masks at different levels, in order to test whether a table
523          * now has no other vmas using it, so can be freed, we don't
524          * bother to round floor or end up - the tests don't need that.
525          */
526
527         addr &= PMD_MASK;
528         if (addr < floor) {
529                 addr += PMD_SIZE;
530                 if (!addr)
531                         return;
532         }
533         if (ceiling) {
534                 ceiling &= PMD_MASK;
535                 if (!ceiling)
536                         return;
537         }
538         if (end - 1 > ceiling - 1)
539                 end -= PMD_SIZE;
540         if (addr > end - 1)
541                 return;
542
543         pgd = pgd_offset(tlb->mm, addr);
544         do {
545                 next = pgd_addr_end(addr, end);
546                 if (pgd_none_or_clear_bad(pgd))
547                         continue;
548                 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
549         } while (pgd++, addr = next, addr != end);
550 }
551
552 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
553                 unsigned long floor, unsigned long ceiling)
554 {
555         while (vma) {
556                 struct vm_area_struct *next = vma->vm_next;
557                 unsigned long addr = vma->vm_start;
558
559                 /*
560                  * Hide vma from rmap and truncate_pagecache before freeing
561                  * pgtables
562                  */
563                 unlink_anon_vmas(vma);
564                 unlink_file_vma(vma);
565
566                 if (is_vm_hugetlb_page(vma)) {
567                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
568                                 floor, next? next->vm_start: ceiling);
569                 } else {
570                         /*
571                          * Optimization: gather nearby vmas into one call down
572                          */
573                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
574                                && !is_vm_hugetlb_page(next)) {
575                                 vma = next;
576                                 next = vma->vm_next;
577                                 unlink_anon_vmas(vma);
578                                 unlink_file_vma(vma);
579                         }
580                         free_pgd_range(tlb, addr, vma->vm_end,
581                                 floor, next? next->vm_start: ceiling);
582                 }
583                 vma = next;
584         }
585 }
586
587 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
588                 pmd_t *pmd, unsigned long address)
589 {
590         pgtable_t new = pte_alloc_one(mm, address);
591         int wait_split_huge_page;
592         if (!new)
593                 return -ENOMEM;
594
595         /*
596          * Ensure all pte setup (eg. pte page lock and page clearing) are
597          * visible before the pte is made visible to other CPUs by being
598          * put into page tables.
599          *
600          * The other side of the story is the pointer chasing in the page
601          * table walking code (when walking the page table without locking;
602          * ie. most of the time). Fortunately, these data accesses consist
603          * of a chain of data-dependent loads, meaning most CPUs (alpha
604          * being the notable exception) will already guarantee loads are
605          * seen in-order. See the alpha page table accessors for the
606          * smp_read_barrier_depends() barriers in page table walking code.
607          */
608         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
609
610         spin_lock(&mm->page_table_lock);
611         wait_split_huge_page = 0;
612         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
613                 mm->nr_ptes++;
614                 pmd_populate(mm, pmd, new);
615                 new = NULL;
616         } else if (unlikely(pmd_trans_splitting(*pmd)))
617                 wait_split_huge_page = 1;
618         spin_unlock(&mm->page_table_lock);
619         if (new)
620                 pte_free(mm, new);
621         if (wait_split_huge_page)
622                 wait_split_huge_page(vma->anon_vma, pmd);
623         return 0;
624 }
625
626 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
627 {
628         pte_t *new = pte_alloc_one_kernel(&init_mm, address);
629         if (!new)
630                 return -ENOMEM;
631
632         smp_wmb(); /* See comment in __pte_alloc */
633
634         spin_lock(&init_mm.page_table_lock);
635         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
636                 pmd_populate_kernel(&init_mm, pmd, new);
637                 new = NULL;
638         } else
639                 VM_BUG_ON(pmd_trans_splitting(*pmd));
640         spin_unlock(&init_mm.page_table_lock);
641         if (new)
642                 pte_free_kernel(&init_mm, new);
643         return 0;
644 }
645
646 static inline void init_rss_vec(int *rss)
647 {
648         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
649 }
650
651 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
652 {
653         int i;
654
655         if (current->mm == mm)
656                 sync_mm_rss(mm);
657         for (i = 0; i < NR_MM_COUNTERS; i++)
658                 if (rss[i])
659                         add_mm_counter(mm, i, rss[i]);
660 }
661
662 /*
663  * This function is called to print an error when a bad pte
664  * is found. For example, we might have a PFN-mapped pte in
665  * a region that doesn't allow it.
666  *
667  * The calling function must still handle the error.
668  */
669 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
670                           pte_t pte, struct page *page)
671 {
672         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
673         pud_t *pud = pud_offset(pgd, addr);
674         pmd_t *pmd = pmd_offset(pud, addr);
675         struct address_space *mapping;
676         pgoff_t index;
677         static unsigned long resume;
678         static unsigned long nr_shown;
679         static unsigned long nr_unshown;
680
681         /*
682          * Allow a burst of 60 reports, then keep quiet for that minute;
683          * or allow a steady drip of one report per second.
684          */
685         if (nr_shown == 60) {
686                 if (time_before(jiffies, resume)) {
687                         nr_unshown++;
688                         return;
689                 }
690                 if (nr_unshown) {
691                         printk(KERN_ALERT
692                                 "BUG: Bad page map: %lu messages suppressed\n",
693                                 nr_unshown);
694                         nr_unshown = 0;
695                 }
696                 nr_shown = 0;
697         }
698         if (nr_shown++ == 0)
699                 resume = jiffies + 60 * HZ;
700
701         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
702         index = linear_page_index(vma, addr);
703
704         printk(KERN_ALERT
705                 "BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
706                 current->comm,
707                 (long long)pte_val(pte), (long long)pmd_val(*pmd));
708         if (page)
709                 dump_page(page);
710         printk(KERN_ALERT
711                 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
712                 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
713         /*
714          * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
715          */
716         if (vma->vm_ops)
717                 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
718                                 (unsigned long)vma->vm_ops->fault);
719         if (vma->vm_file && vma->vm_file->f_op)
720                 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
721                                 (unsigned long)vma->vm_file->f_op->mmap);
722         dump_stack();
723         add_taint(TAINT_BAD_PAGE);
724 }
725
726 static inline bool is_cow_mapping(vm_flags_t flags)
727 {
728         return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
729 }
730
731 /*
732  * vm_normal_page -- This function gets the "struct page" associated with a pte.
733  *
734  * "Special" mappings do not wish to be associated with a "struct page" (either
735  * it doesn't exist, or it exists but they don't want to touch it). In this
736  * case, NULL is returned here. "Normal" mappings do have a struct page.
737  *
738  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
739  * pte bit, in which case this function is trivial. Secondly, an architecture
740  * may not have a spare pte bit, which requires a more complicated scheme,
741  * described below.
742  *
743  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
744  * special mapping (even if there are underlying and valid "struct pages").
745  * COWed pages of a VM_PFNMAP are always normal.
746  *
747  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
748  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
749  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
750  * mapping will always honor the rule
751  *
752  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
753  *
754  * And for normal mappings this is false.
755  *
756  * This restricts such mappings to be a linear translation from virtual address
757  * to pfn. To get around this restriction, we allow arbitrary mappings so long
758  * as the vma is not a COW mapping; in that case, we know that all ptes are
759  * special (because none can have been COWed).
760  *
761  *
762  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
763  *
764  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
765  * page" backing, however the difference is that _all_ pages with a struct
766  * page (that is, those where pfn_valid is true) are refcounted and considered
767  * normal pages by the VM. The disadvantage is that pages are refcounted
768  * (which can be slower and simply not an option for some PFNMAP users). The
769  * advantage is that we don't have to follow the strict linearity rule of
770  * PFNMAP mappings in order to support COWable mappings.
771  *
772  */
773 #ifdef __HAVE_ARCH_PTE_SPECIAL
774 # define HAVE_PTE_SPECIAL 1
775 #else
776 # define HAVE_PTE_SPECIAL 0
777 #endif
778 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
779                                 pte_t pte)
780 {
781         unsigned long pfn = pte_pfn(pte);
782
783         if (HAVE_PTE_SPECIAL) {
784                 if (likely(!pte_special(pte)))
785                         goto check_pfn;
786                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
787                         return NULL;
788                 if (!is_zero_pfn(pfn))
789                         print_bad_pte(vma, addr, pte, NULL);
790                 return NULL;
791         }
792
793         /* !HAVE_PTE_SPECIAL case follows: */
794
795         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
796                 if (vma->vm_flags & VM_MIXEDMAP) {
797                         if (!pfn_valid(pfn))
798                                 return NULL;
799                         goto out;
800                 } else {
801                         unsigned long off;
802                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
803                         if (pfn == vma->vm_pgoff + off)
804                                 return NULL;
805                         if (!is_cow_mapping(vma->vm_flags))
806                                 return NULL;
807                 }
808         }
809
810         if (is_zero_pfn(pfn))
811                 return NULL;
812 check_pfn:
813         if (unlikely(pfn > highest_memmap_pfn)) {
814                 print_bad_pte(vma, addr, pte, NULL);
815                 return NULL;
816         }
817
818         /*
819          * NOTE! We still have PageReserved() pages in the page tables.
820          * eg. VDSO mappings can cause them to exist.
821          */
822 out:
823         return pfn_to_page(pfn);
824 }
825
826 /*
827  * copy one vm_area from one task to the other. Assumes the page tables
828  * already present in the new task to be cleared in the whole range
829  * covered by this vma.
830  */
831
832 static inline unsigned long
833 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
834                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
835                 unsigned long addr, int *rss)
836 {
837         unsigned long vm_flags = vma->vm_flags;
838         pte_t pte = *src_pte;
839         struct page *page;
840
841         /* pte contains position in swap or file, so copy. */
842         if (unlikely(!pte_present(pte))) {
843                 if (!pte_file(pte)) {
844                         swp_entry_t entry = pte_to_swp_entry(pte);
845
846                         if (swap_duplicate(entry) < 0)
847                                 return entry.val;
848
849                         /* make sure dst_mm is on swapoff's mmlist. */
850                         if (unlikely(list_empty(&dst_mm->mmlist))) {
851                                 spin_lock(&mmlist_lock);
852                                 if (list_empty(&dst_mm->mmlist))
853                                         list_add(&dst_mm->mmlist,
854                                                  &src_mm->mmlist);
855                                 spin_unlock(&mmlist_lock);
856                         }
857                         if (likely(!non_swap_entry(entry)))
858                                 rss[MM_SWAPENTS]++;
859                         else if (is_migration_entry(entry)) {
860                                 page = migration_entry_to_page(entry);
861
862                                 if (PageAnon(page))
863                                         rss[MM_ANONPAGES]++;
864                                 else
865                                         rss[MM_FILEPAGES]++;
866
867                                 if (is_write_migration_entry(entry) &&
868                                     is_cow_mapping(vm_flags)) {
869                                         /*
870                                          * COW mappings require pages in both
871                                          * parent and child to be set to read.
872                                          */
873                                         make_migration_entry_read(&entry);
874                                         pte = swp_entry_to_pte(entry);
875                                         set_pte_at(src_mm, addr, src_pte, pte);
876                                 }
877                         }
878                 }
879                 goto out_set_pte;
880         }
881
882         /*
883          * If it's a COW mapping, write protect it both
884          * in the parent and the child
885          */
886         if (is_cow_mapping(vm_flags)) {
887                 ptep_set_wrprotect(src_mm, addr, src_pte);
888                 pte = pte_wrprotect(pte);
889         }
890
891         /*
892          * If it's a shared mapping, mark it clean in
893          * the child
894          */
895         if (vm_flags & VM_SHARED)
896                 pte = pte_mkclean(pte);
897         pte = pte_mkold(pte);
898
899         page = vm_normal_page(vma, addr, pte);
900         if (page) {
901                 get_page(page);
902                 page_dup_rmap(page);
903                 if (PageAnon(page))
904                         rss[MM_ANONPAGES]++;
905                 else
906                         rss[MM_FILEPAGES]++;
907         }
908
909 out_set_pte:
910         set_pte_at(dst_mm, addr, dst_pte, pte);
911         return 0;
912 }
913
914 int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
915                    pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
916                    unsigned long addr, unsigned long end)
917 {
918         pte_t *orig_src_pte, *orig_dst_pte;
919         pte_t *src_pte, *dst_pte;
920         spinlock_t *src_ptl, *dst_ptl;
921         int progress = 0;
922         int rss[NR_MM_COUNTERS];
923         swp_entry_t entry = (swp_entry_t){0};
924
925 again:
926         init_rss_vec(rss);
927
928         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
929         if (!dst_pte)
930                 return -ENOMEM;
931         src_pte = pte_offset_map(src_pmd, addr);
932         src_ptl = pte_lockptr(src_mm, src_pmd);
933         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
934         orig_src_pte = src_pte;
935         orig_dst_pte = dst_pte;
936         arch_enter_lazy_mmu_mode();
937
938         do {
939                 /*
940                  * We are holding two locks at this point - either of them
941                  * could generate latencies in another task on another CPU.
942                  */
943                 if (progress >= 32) {
944                         progress = 0;
945                         if (need_resched() ||
946                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
947                                 break;
948                 }
949                 if (pte_none(*src_pte)) {
950                         progress++;
951                         continue;
952                 }
953                 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
954                                                         vma, addr, rss);
955                 if (entry.val)
956                         break;
957                 progress += 8;
958         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
959
960         arch_leave_lazy_mmu_mode();
961         spin_unlock(src_ptl);
962         pte_unmap(orig_src_pte);
963         add_mm_rss_vec(dst_mm, rss);
964         pte_unmap_unlock(orig_dst_pte, dst_ptl);
965         cond_resched();
966
967         if (entry.val) {
968                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
969                         return -ENOMEM;
970                 progress = 0;
971         }
972         if (addr != end)
973                 goto again;
974         return 0;
975 }
976
977 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
978                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
979                 unsigned long addr, unsigned long end)
980 {
981         pmd_t *src_pmd, *dst_pmd;
982         unsigned long next;
983
984         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
985         if (!dst_pmd)
986                 return -ENOMEM;
987         src_pmd = pmd_offset(src_pud, addr);
988         do {
989                 next = pmd_addr_end(addr, end);
990                 if (pmd_trans_huge(*src_pmd)) {
991                         int err;
992                         VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
993                         err = copy_huge_pmd(dst_mm, src_mm,
994                                             dst_pmd, src_pmd, addr, vma);
995                         if (err == -ENOMEM)
996                                 return -ENOMEM;
997                         if (!err)
998                                 continue;
999                         /* fall through */
1000                 }
1001                 if (pmd_none_or_clear_bad(src_pmd))
1002                         continue;
1003                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1004                                                 vma, addr, next))
1005                         return -ENOMEM;
1006         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1007         return 0;
1008 }
1009
1010 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1011                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1012                 unsigned long addr, unsigned long end)
1013 {
1014         pud_t *src_pud, *dst_pud;
1015         unsigned long next;
1016
1017         dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1018         if (!dst_pud)
1019                 return -ENOMEM;
1020         src_pud = pud_offset(src_pgd, addr);
1021         do {
1022                 next = pud_addr_end(addr, end);
1023                 if (pud_none_or_clear_bad(src_pud))
1024                         continue;
1025                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1026                                                 vma, addr, next))
1027                         return -ENOMEM;
1028         } while (dst_pud++, src_pud++, addr = next, addr != end);
1029         return 0;
1030 }
1031
1032 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1033                 struct vm_area_struct *vma)
1034 {
1035         pgd_t *src_pgd, *dst_pgd;
1036         unsigned long next;
1037         unsigned long addr = vma->vm_start;
1038         unsigned long end = vma->vm_end;
1039         unsigned long mmun_start;       /* For mmu_notifiers */
1040         unsigned long mmun_end;         /* For mmu_notifiers */
1041         bool is_cow;
1042         int ret;
1043
1044         /*
1045          * Don't copy ptes where a page fault will fill them correctly.
1046          * Fork becomes much lighter when there are big shared or private
1047          * readonly mappings. The tradeoff is that copy_page_range is more
1048          * efficient than faulting.
1049          */
1050         if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR |
1051                                VM_PFNMAP | VM_MIXEDMAP))) {
1052                 if (!vma->anon_vma)
1053                         return 0;
1054         }
1055
1056         if (is_vm_hugetlb_page(vma))
1057                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1058
1059         if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1060                 /*
1061                  * We do not free on error cases below as remove_vma
1062                  * gets called on error from higher level routine
1063                  */
1064                 ret = track_pfn_copy(vma);
1065                 if (ret)
1066                         return ret;
1067         }
1068
1069         /*
1070          * We need to invalidate the secondary MMU mappings only when
1071          * there could be a permission downgrade on the ptes of the
1072          * parent mm. And a permission downgrade will only happen if
1073          * is_cow_mapping() returns true.
1074          */
1075         is_cow = is_cow_mapping(vma->vm_flags);
1076         mmun_start = addr;
1077         mmun_end   = end;
1078         if (is_cow)
1079                 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1080                                                     mmun_end);
1081
1082         ret = 0;
1083         dst_pgd = pgd_offset(dst_mm, addr);
1084         src_pgd = pgd_offset(src_mm, addr);
1085         do {
1086                 next = pgd_addr_end(addr, end);
1087                 if (pgd_none_or_clear_bad(src_pgd))
1088                         continue;
1089                 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1090                                             vma, addr, next))) {
1091                         ret = -ENOMEM;
1092                         break;
1093                 }
1094         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1095
1096         if (is_cow)
1097                 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1098         return ret;
1099 }
1100
1101 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1102                                 struct vm_area_struct *vma, pmd_t *pmd,
1103                                 unsigned long addr, unsigned long end,
1104                                 struct zap_details *details)
1105 {
1106         struct mm_struct *mm = tlb->mm;
1107         int force_flush = 0;
1108         int rss[NR_MM_COUNTERS];
1109         spinlock_t *ptl;
1110         pte_t *start_pte;
1111         pte_t *pte;
1112
1113 again:
1114         init_rss_vec(rss);
1115         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1116         pte = start_pte;
1117         arch_enter_lazy_mmu_mode();
1118         do {
1119                 pte_t ptent = *pte;
1120                 if (pte_none(ptent)) {
1121                         continue;
1122                 }
1123
1124                 if (pte_present(ptent)) {
1125                         struct page *page;
1126
1127                         page = vm_normal_page(vma, addr, ptent);
1128                         if (unlikely(details) && page) {
1129                                 /*
1130                                  * unmap_shared_mapping_pages() wants to
1131                                  * invalidate cache without truncating:
1132                                  * unmap shared but keep private pages.
1133                                  */
1134                                 if (details->check_mapping &&
1135                                     details->check_mapping != page->mapping)
1136                                         continue;
1137                                 /*
1138                                  * Each page->index must be checked when
1139                                  * invalidating or truncating nonlinear.
1140                                  */
1141                                 if (details->nonlinear_vma &&
1142                                     (page->index < details->first_index ||
1143                                      page->index > details->last_index))
1144                                         continue;
1145                         }
1146                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1147                                                         tlb->fullmm);
1148                         tlb_remove_tlb_entry(tlb, pte, addr);
1149                         if (unlikely(!page))
1150                                 continue;
1151                         if (unlikely(details) && details->nonlinear_vma
1152                             && linear_page_index(details->nonlinear_vma,
1153                                                 addr) != page->index)
1154                                 set_pte_at(mm, addr, pte,
1155                                            pgoff_to_pte(page->index));
1156                         if (PageAnon(page))
1157                                 rss[MM_ANONPAGES]--;
1158                         else {
1159                                 if (pte_dirty(ptent))
1160                                         set_page_dirty(page);
1161                                 if (pte_young(ptent) &&
1162                                     likely(!VM_SequentialReadHint(vma)))
1163                                         mark_page_accessed(page);
1164                                 rss[MM_FILEPAGES]--;
1165                         }
1166                         page_remove_rmap(page);
1167                         if (unlikely(page_mapcount(page) < 0))
1168                                 print_bad_pte(vma, addr, ptent, page);
1169                         force_flush = !__tlb_remove_page(tlb, page);
1170                         if (force_flush)
1171                                 break;
1172                         continue;
1173                 }
1174                 /*
1175                  * If details->check_mapping, we leave swap entries;
1176                  * if details->nonlinear_vma, we leave file entries.
1177                  */
1178                 if (unlikely(details))
1179                         continue;
1180                 if (pte_file(ptent)) {
1181                         if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1182                                 print_bad_pte(vma, addr, ptent, NULL);
1183                 } else {
1184                         swp_entry_t entry = pte_to_swp_entry(ptent);
1185
1186                         if (!non_swap_entry(entry))
1187                                 rss[MM_SWAPENTS]--;
1188                         else if (is_migration_entry(entry)) {
1189                                 struct page *page;
1190
1191                                 page = migration_entry_to_page(entry);
1192
1193                                 if (PageAnon(page))
1194                                         rss[MM_ANONPAGES]--;
1195                                 else
1196                                         rss[MM_FILEPAGES]--;
1197                         }
1198                         if (unlikely(!free_swap_and_cache(entry)))
1199                                 print_bad_pte(vma, addr, ptent, NULL);
1200                 }
1201                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1202         } while (pte++, addr += PAGE_SIZE, addr != end);
1203
1204         add_mm_rss_vec(mm, rss);
1205         arch_leave_lazy_mmu_mode();
1206         pte_unmap_unlock(start_pte, ptl);
1207
1208         /*
1209          * mmu_gather ran out of room to batch pages, we break out of
1210          * the PTE lock to avoid doing the potential expensive TLB invalidate
1211          * and page-free while holding it.
1212          */
1213         if (force_flush) {
1214                 force_flush = 0;
1215
1216 #ifdef HAVE_GENERIC_MMU_GATHER
1217                 tlb->start = addr;
1218                 tlb->end = end;
1219 #endif
1220                 tlb_flush_mmu(tlb);
1221                 if (addr != end)
1222                         goto again;
1223         }
1224
1225         return addr;
1226 }
1227
1228 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1229                                 struct vm_area_struct *vma, pud_t *pud,
1230                                 unsigned long addr, unsigned long end,
1231                                 struct zap_details *details)
1232 {
1233         pmd_t *pmd;
1234         unsigned long next;
1235
1236         pmd = pmd_offset(pud, addr);
1237         do {
1238                 next = pmd_addr_end(addr, end);
1239                 if (pmd_trans_huge(*pmd)) {
1240                         if (next - addr != HPAGE_PMD_SIZE) {
1241 #ifdef CONFIG_DEBUG_VM
1242                                 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1243                                         pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1244                                                 __func__, addr, end,
1245                                                 vma->vm_start,
1246                                                 vma->vm_end);
1247                                         BUG();
1248                                 }
1249 #endif
1250                                 split_huge_page_pmd(vma, addr, pmd);
1251                         } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1252                                 goto next;
1253                         /* fall through */
1254                 }
1255                 /*
1256                  * Here there can be other concurrent MADV_DONTNEED or
1257                  * trans huge page faults running, and if the pmd is
1258                  * none or trans huge it can change under us. This is
1259                  * because MADV_DONTNEED holds the mmap_sem in read
1260                  * mode.
1261                  */
1262                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1263                         goto next;
1264                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1265 next:
1266                 cond_resched();
1267         } while (pmd++, addr = next, addr != end);
1268
1269         return addr;
1270 }
1271
1272 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1273                                 struct vm_area_struct *vma, pgd_t *pgd,
1274                                 unsigned long addr, unsigned long end,
1275                                 struct zap_details *details)
1276 {
1277         pud_t *pud;
1278         unsigned long next;
1279
1280         pud = pud_offset(pgd, addr);
1281         do {
1282                 next = pud_addr_end(addr, end);
1283                 if (pud_none_or_clear_bad(pud))
1284                         continue;
1285                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1286         } while (pud++, addr = next, addr != end);
1287
1288         return addr;
1289 }
1290
1291 static void unmap_page_range(struct mmu_gather *tlb,
1292                              struct vm_area_struct *vma,
1293                              unsigned long addr, unsigned long end,
1294                              struct zap_details *details)
1295 {
1296         pgd_t *pgd;
1297         unsigned long next;
1298
1299         if (details && !details->check_mapping && !details->nonlinear_vma)
1300                 details = NULL;
1301
1302         BUG_ON(addr >= end);
1303         mem_cgroup_uncharge_start();
1304         tlb_start_vma(tlb, vma);
1305         pgd = pgd_offset(vma->vm_mm, addr);
1306         do {
1307                 next = pgd_addr_end(addr, end);
1308                 if (pgd_none_or_clear_bad(pgd))
1309                         continue;
1310                 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1311         } while (pgd++, addr = next, addr != end);
1312         tlb_end_vma(tlb, vma);
1313         mem_cgroup_uncharge_end();
1314 }
1315
1316
1317 static void unmap_single_vma(struct mmu_gather *tlb,
1318                 struct vm_area_struct *vma, unsigned long start_addr,
1319                 unsigned long end_addr,
1320                 struct zap_details *details)
1321 {
1322         unsigned long start = max(vma->vm_start, start_addr);
1323         unsigned long end;
1324
1325         if (start >= vma->vm_end)
1326                 return;
1327         end = min(vma->vm_end, end_addr);
1328         if (end <= vma->vm_start)
1329                 return;
1330
1331         if (vma->vm_file)
1332                 uprobe_munmap(vma, start, end);
1333
1334         if (unlikely(vma->vm_flags & VM_PFNMAP))
1335                 untrack_pfn(vma, 0, 0);
1336
1337         if (start != end) {
1338                 if (unlikely(is_vm_hugetlb_page(vma))) {
1339                         /*
1340                          * It is undesirable to test vma->vm_file as it
1341                          * should be non-null for valid hugetlb area.
1342                          * However, vm_file will be NULL in the error
1343                          * cleanup path of do_mmap_pgoff. When
1344                          * hugetlbfs ->mmap method fails,
1345                          * do_mmap_pgoff() nullifies vma->vm_file
1346                          * before calling this function to clean up.
1347                          * Since no pte has actually been setup, it is
1348                          * safe to do nothing in this case.
1349                          */
1350                         if (vma->vm_file) {
1351                                 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
1352                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1353                                 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
1354                         }
1355                 } else
1356                         unmap_page_range(tlb, vma, start, end, details);
1357         }
1358 }
1359
1360 /**
1361  * unmap_vmas - unmap a range of memory covered by a list of vma's
1362  * @tlb: address of the caller's struct mmu_gather
1363  * @vma: the starting vma
1364  * @start_addr: virtual address at which to start unmapping
1365  * @end_addr: virtual address at which to end unmapping
1366  *
1367  * Unmap all pages in the vma list.
1368  *
1369  * Only addresses between `start' and `end' will be unmapped.
1370  *
1371  * The VMA list must be sorted in ascending virtual address order.
1372  *
1373  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1374  * range after unmap_vmas() returns.  So the only responsibility here is to
1375  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1376  * drops the lock and schedules.
1377  */
1378 void unmap_vmas(struct mmu_gather *tlb,
1379                 struct vm_area_struct *vma, unsigned long start_addr,
1380                 unsigned long end_addr)
1381 {
1382         struct mm_struct *mm = vma->vm_mm;
1383
1384         mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1385         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1386                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1387         mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1388 }
1389
1390 /**
1391  * zap_page_range - remove user pages in a given range
1392  * @vma: vm_area_struct holding the applicable pages
1393  * @start: starting address of pages to zap
1394  * @size: number of bytes to zap
1395  * @details: details of nonlinear truncation or shared cache invalidation
1396  *
1397  * Caller must protect the VMA list
1398  */
1399 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1400                 unsigned long size, struct zap_details *details)
1401 {
1402         struct mm_struct *mm = vma->vm_mm;
1403         struct mmu_gather tlb;
1404         unsigned long end = start + size;
1405
1406         lru_add_drain();
1407         tlb_gather_mmu(&tlb, mm, 0);
1408         update_hiwater_rss(mm);
1409         mmu_notifier_invalidate_range_start(mm, start, end);
1410         for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1411                 unmap_single_vma(&tlb, vma, start, end, details);
1412         mmu_notifier_invalidate_range_end(mm, start, end);
1413         tlb_finish_mmu(&tlb, start, end);
1414 }
1415
1416 /**
1417  * zap_page_range_single - remove user pages in a given range
1418  * @vma: vm_area_struct holding the applicable pages
1419  * @address: starting address of pages to zap
1420  * @size: number of bytes to zap
1421  * @details: details of nonlinear truncation or shared cache invalidation
1422  *
1423  * The range must fit into one VMA.
1424  */
1425 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1426                 unsigned long size, struct zap_details *details)
1427 {
1428         struct mm_struct *mm = vma->vm_mm;
1429         struct mmu_gather tlb;
1430         unsigned long end = address + size;
1431
1432         lru_add_drain();
1433         tlb_gather_mmu(&tlb, mm, 0);
1434         update_hiwater_rss(mm);
1435         mmu_notifier_invalidate_range_start(mm, address, end);
1436         unmap_single_vma(&tlb, vma, address, end, details);
1437         mmu_notifier_invalidate_range_end(mm, address, end);
1438         tlb_finish_mmu(&tlb, address, end);
1439 }
1440
1441 /**
1442  * zap_vma_ptes - remove ptes mapping the vma
1443  * @vma: vm_area_struct holding ptes to be zapped
1444  * @address: starting address of pages to zap
1445  * @size: number of bytes to zap
1446  *
1447  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1448  *
1449  * The entire address range must be fully contained within the vma.
1450  *
1451  * Returns 0 if successful.
1452  */
1453 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1454                 unsigned long size)
1455 {
1456         if (address < vma->vm_start || address + size > vma->vm_end ||
1457                         !(vma->vm_flags & VM_PFNMAP))
1458                 return -1;
1459         zap_page_range_single(vma, address, size, NULL);
1460         return 0;
1461 }
1462 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1463
1464 /**
1465  * follow_page_mask - look up a page descriptor from a user-virtual address
1466  * @vma: vm_area_struct mapping @address
1467  * @address: virtual address to look up
1468  * @flags: flags modifying lookup behaviour
1469  * @page_mask: on output, *page_mask is set according to the size of the page
1470  *
1471  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1472  *
1473  * Returns the mapped (struct page *), %NULL if no mapping exists, or
1474  * an error pointer if there is a mapping to something not represented
1475  * by a page descriptor (see also vm_normal_page()).
1476  */
1477 struct page *follow_page_mask(struct vm_area_struct *vma,
1478                               unsigned long address, unsigned int flags,
1479                               unsigned int *page_mask)
1480 {
1481         pgd_t *pgd;
1482         pud_t *pud;
1483         pmd_t *pmd;
1484         pte_t *ptep, pte;
1485         spinlock_t *ptl;
1486         struct page *page;
1487         struct mm_struct *mm = vma->vm_mm;
1488
1489         *page_mask = 0;
1490
1491         page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1492         if (!IS_ERR(page)) {
1493                 BUG_ON(flags & FOLL_GET);
1494                 goto out;
1495         }
1496
1497         page = NULL;
1498         pgd = pgd_offset(mm, address);
1499         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1500                 goto no_page_table;
1501
1502         pud = pud_offset(pgd, address);
1503         if (pud_none(*pud))
1504                 goto no_page_table;
1505         if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1506                 BUG_ON(flags & FOLL_GET);
1507                 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1508                 goto out;
1509         }
1510         if (unlikely(pud_bad(*pud)))
1511                 goto no_page_table;
1512
1513         pmd = pmd_offset(pud, address);
1514         if (pmd_none(*pmd))
1515                 goto no_page_table;
1516         if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
1517                 BUG_ON(flags & FOLL_GET);
1518                 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1519                 goto out;
1520         }
1521         if ((flags & FOLL_NUMA) && pmd_numa(*pmd))
1522                 goto no_page_table;
1523         if (pmd_trans_huge(*pmd)) {
1524                 if (flags & FOLL_SPLIT) {
1525                         split_huge_page_pmd(vma, address, pmd);
1526                         goto split_fallthrough;
1527                 }
1528                 spin_lock(&mm->page_table_lock);
1529                 if (likely(pmd_trans_huge(*pmd))) {
1530                         if (unlikely(pmd_trans_splitting(*pmd))) {
1531                                 spin_unlock(&mm->page_table_lock);
1532                                 wait_split_huge_page(vma->anon_vma, pmd);
1533                         } else {
1534                                 page = follow_trans_huge_pmd(vma, address,
1535                                                              pmd, flags);
1536                                 spin_unlock(&mm->page_table_lock);
1537                                 *page_mask = HPAGE_PMD_NR - 1;
1538                                 goto out;
1539                         }
1540                 } else
1541                         spin_unlock(&mm->page_table_lock);
1542                 /* fall through */
1543         }
1544 split_fallthrough:
1545         if (unlikely(pmd_bad(*pmd)))
1546                 goto no_page_table;
1547
1548         ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1549
1550         pte = *ptep;
1551         if (!pte_present(pte))
1552                 goto no_page;
1553         if ((flags & FOLL_NUMA) && pte_numa(pte))
1554                 goto no_page;
1555         if ((flags & FOLL_WRITE) && !pte_write(pte))
1556                 goto unlock;
1557
1558         page = vm_normal_page(vma, address, pte);
1559         if (unlikely(!page)) {
1560                 if ((flags & FOLL_DUMP) ||
1561                     !is_zero_pfn(pte_pfn(pte)))
1562                         goto bad_page;
1563                 page = pte_page(pte);
1564         }
1565
1566         if (flags & FOLL_GET)
1567                 get_page_foll(page);
1568         if (flags & FOLL_TOUCH) {
1569                 if ((flags & FOLL_WRITE) &&
1570                     !pte_dirty(pte) && !PageDirty(page))
1571                         set_page_dirty(page);
1572                 /*
1573                  * pte_mkyoung() would be more correct here, but atomic care
1574                  * is needed to avoid losing the dirty bit: it is easier to use
1575                  * mark_page_accessed().
1576                  */
1577                 mark_page_accessed(page);
1578         }
1579         if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1580                 /*
1581                  * The preliminary mapping check is mainly to avoid the
1582                  * pointless overhead of lock_page on the ZERO_PAGE
1583                  * which might bounce very badly if there is contention.
1584                  *
1585                  * If the page is already locked, we don't need to
1586                  * handle it now - vmscan will handle it later if and
1587                  * when it attempts to reclaim the page.
1588                  */
1589                 if (page->mapping && trylock_page(page)) {
1590                         lru_add_drain();  /* push cached pages to LRU */
1591                         /*
1592                          * Because we lock page here, and migration is
1593                          * blocked by the pte's page reference, and we
1594                          * know the page is still mapped, we don't even
1595                          * need to check for file-cache page truncation.
1596                          */
1597                         mlock_vma_page(page);
1598                         unlock_page(page);
1599                 }
1600         }
1601 unlock:
1602         pte_unmap_unlock(ptep, ptl);
1603 out:
1604         return page;
1605
1606 bad_page:
1607         pte_unmap_unlock(ptep, ptl);
1608         return ERR_PTR(-EFAULT);
1609
1610 no_page:
1611         pte_unmap_unlock(ptep, ptl);
1612         if (!pte_none(pte))
1613                 return page;
1614
1615 no_page_table:
1616         /*
1617          * When core dumping an enormous anonymous area that nobody
1618          * has touched so far, we don't want to allocate unnecessary pages or
1619          * page tables.  Return error instead of NULL to skip handle_mm_fault,
1620          * then get_dump_page() will return NULL to leave a hole in the dump.
1621          * But we can only make this optimization where a hole would surely
1622          * be zero-filled if handle_mm_fault() actually did handle it.
1623          */
1624         if ((flags & FOLL_DUMP) &&
1625             (!vma->vm_ops || !vma->vm_ops->fault))
1626                 return ERR_PTR(-EFAULT);
1627         return page;
1628 }
1629
1630 static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1631 {
1632         return stack_guard_page_start(vma, addr) ||
1633                stack_guard_page_end(vma, addr+PAGE_SIZE);
1634 }
1635
1636 /**
1637  * __get_user_pages() - pin user pages in memory
1638  * @tsk:        task_struct of target task
1639  * @mm:         mm_struct of target mm
1640  * @start:      starting user address
1641  * @nr_pages:   number of pages from start to pin
1642  * @gup_flags:  flags modifying pin behaviour
1643  * @pages:      array that receives pointers to the pages pinned.
1644  *              Should be at least nr_pages long. Or NULL, if caller
1645  *              only intends to ensure the pages are faulted in.
1646  * @vmas:       array of pointers to vmas corresponding to each page.
1647  *              Or NULL if the caller does not require them.
1648  * @nonblocking: whether waiting for disk IO or mmap_sem contention
1649  *
1650  * Returns number of pages pinned. This may be fewer than the number
1651  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1652  * were pinned, returns -errno. Each page returned must be released
1653  * with a put_page() call when it is finished with. vmas will only
1654  * remain valid while mmap_sem is held.
1655  *
1656  * Must be called with mmap_sem held for read or write.
1657  *
1658  * __get_user_pages walks a process's page tables and takes a reference to
1659  * each struct page that each user address corresponds to at a given
1660  * instant. That is, it takes the page that would be accessed if a user
1661  * thread accesses the given user virtual address at that instant.
1662  *
1663  * This does not guarantee that the page exists in the user mappings when
1664  * __get_user_pages returns, and there may even be a completely different
1665  * page there in some cases (eg. if mmapped pagecache has been invalidated
1666  * and subsequently re faulted). However it does guarantee that the page
1667  * won't be freed completely. And mostly callers simply care that the page
1668  * contains data that was valid *at some point in time*. Typically, an IO
1669  * or similar operation cannot guarantee anything stronger anyway because
1670  * locks can't be held over the syscall boundary.
1671  *
1672  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1673  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1674  * appropriate) must be called after the page is finished with, and
1675  * before put_page is called.
1676  *
1677  * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1678  * or mmap_sem contention, and if waiting is needed to pin all pages,
1679  * *@nonblocking will be set to 0.
1680  *
1681  * In most cases, get_user_pages or get_user_pages_fast should be used
1682  * instead of __get_user_pages. __get_user_pages should be used only if
1683  * you need some special @gup_flags.
1684  */
1685 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1686                 unsigned long start, unsigned long nr_pages,
1687                 unsigned int gup_flags, struct page **pages,
1688                 struct vm_area_struct **vmas, int *nonblocking)
1689 {
1690         long i;
1691         unsigned long vm_flags;
1692         unsigned int page_mask;
1693
1694         if (!nr_pages)
1695                 return 0;
1696
1697         VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1698
1699         /* 
1700          * Require read or write permissions.
1701          * If FOLL_FORCE is set, we only require the "MAY" flags.
1702          */
1703         vm_flags  = (gup_flags & FOLL_WRITE) ?
1704                         (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1705         vm_flags &= (gup_flags & FOLL_FORCE) ?
1706                         (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1707
1708         /*
1709          * If FOLL_FORCE and FOLL_NUMA are both set, handle_mm_fault
1710          * would be called on PROT_NONE ranges. We must never invoke
1711          * handle_mm_fault on PROT_NONE ranges or the NUMA hinting
1712          * page faults would unprotect the PROT_NONE ranges if
1713          * _PAGE_NUMA and _PAGE_PROTNONE are sharing the same pte/pmd
1714          * bitflag. So to avoid that, don't set FOLL_NUMA if
1715          * FOLL_FORCE is set.
1716          */
1717         if (!(gup_flags & FOLL_FORCE))
1718                 gup_flags |= FOLL_NUMA;
1719
1720         i = 0;
1721
1722         do {
1723                 struct vm_area_struct *vma;
1724
1725                 vma = find_extend_vma(mm, start);
1726                 if (!vma && in_gate_area(mm, start)) {
1727                         unsigned long pg = start & PAGE_MASK;
1728                         pgd_t *pgd;
1729                         pud_t *pud;
1730                         pmd_t *pmd;
1731                         pte_t *pte;
1732
1733                         /* user gate pages are read-only */
1734                         if (gup_flags & FOLL_WRITE)
1735                                 return i ? : -EFAULT;
1736                         if (pg > TASK_SIZE)
1737                                 pgd = pgd_offset_k(pg);
1738                         else
1739                                 pgd = pgd_offset_gate(mm, pg);
1740                         BUG_ON(pgd_none(*pgd));
1741                         pud = pud_offset(pgd, pg);
1742                         BUG_ON(pud_none(*pud));
1743                         pmd = pmd_offset(pud, pg);
1744                         if (pmd_none(*pmd))
1745                                 return i ? : -EFAULT;
1746                         VM_BUG_ON(pmd_trans_huge(*pmd));
1747                         pte = pte_offset_map(pmd, pg);
1748                         if (pte_none(*pte)) {
1749                                 pte_unmap(pte);
1750                                 return i ? : -EFAULT;
1751                         }
1752                         vma = get_gate_vma(mm);
1753                         if (pages) {
1754                                 struct page *page;
1755
1756                                 page = vm_normal_page(vma, start, *pte);
1757                                 if (!page) {
1758                                         if (!(gup_flags & FOLL_DUMP) &&
1759                                              is_zero_pfn(pte_pfn(*pte)))
1760                                                 page = pte_page(*pte);
1761                                         else {
1762                                                 pte_unmap(pte);
1763                                                 return i ? : -EFAULT;
1764                                         }
1765                                 }
1766                                 pages[i] = page;
1767                                 get_page(page);
1768                         }
1769                         pte_unmap(pte);
1770                         page_mask = 0;
1771                         goto next_page;
1772                 }
1773
1774                 if (!vma ||
1775                     (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1776                     !(vm_flags & vma->vm_flags))
1777                         return i ? : -EFAULT;
1778
1779                 if (is_vm_hugetlb_page(vma)) {
1780                         i = follow_hugetlb_page(mm, vma, pages, vmas,
1781                                         &start, &nr_pages, i, gup_flags);
1782                         continue;
1783                 }
1784
1785                 do {
1786                         struct page *page;
1787                         unsigned int foll_flags = gup_flags;
1788                         unsigned int page_increm;
1789
1790                         /*
1791                          * If we have a pending SIGKILL, don't keep faulting
1792                          * pages and potentially allocating memory.
1793                          */
1794                         if (unlikely(fatal_signal_pending(current)))
1795                                 return i ? i : -ERESTARTSYS;
1796
1797                         cond_resched();
1798                         while (!(page = follow_page_mask(vma, start,
1799                                                 foll_flags, &page_mask))) {
1800                                 int ret;
1801                                 unsigned int fault_flags = 0;
1802
1803                                 /* For mlock, just skip the stack guard page. */
1804                                 if (foll_flags & FOLL_MLOCK) {
1805                                         if (stack_guard_page(vma, start))
1806                                                 goto next_page;
1807                                 }
1808                                 if (foll_flags & FOLL_WRITE)
1809                                         fault_flags |= FAULT_FLAG_WRITE;
1810                                 if (nonblocking)
1811                                         fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1812                                 if (foll_flags & FOLL_NOWAIT)
1813                                         fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
1814
1815                                 ret = handle_mm_fault(mm, vma, start,
1816                                                         fault_flags);
1817
1818                                 if (ret & VM_FAULT_ERROR) {
1819                                         if (ret & VM_FAULT_OOM)
1820                                                 return i ? i : -ENOMEM;
1821                                         if (ret & (VM_FAULT_HWPOISON |
1822                                                    VM_FAULT_HWPOISON_LARGE)) {
1823                                                 if (i)
1824                                                         return i;
1825                                                 else if (gup_flags & FOLL_HWPOISON)
1826                                                         return -EHWPOISON;
1827                                                 else
1828                                                         return -EFAULT;
1829                                         }
1830                                         if (ret & VM_FAULT_SIGBUS)
1831                                                 return i ? i : -EFAULT;
1832                                         BUG();
1833                                 }
1834
1835                                 if (tsk) {
1836                                         if (ret & VM_FAULT_MAJOR)
1837                                                 tsk->maj_flt++;
1838                                         else
1839                                                 tsk->min_flt++;
1840                                 }
1841
1842                                 if (ret & VM_FAULT_RETRY) {
1843                                         if (nonblocking)
1844                                                 *nonblocking = 0;
1845                                         return i;
1846                                 }
1847
1848                                 /*
1849                                  * The VM_FAULT_WRITE bit tells us that
1850                                  * do_wp_page has broken COW when necessary,
1851                                  * even if maybe_mkwrite decided not to set
1852                                  * pte_write. We can thus safely do subsequent
1853                                  * page lookups as if they were reads. But only
1854                                  * do so when looping for pte_write is futile:
1855                                  * in some cases userspace may also be wanting
1856                                  * to write to the gotten user page, which a
1857                                  * read fault here might prevent (a readonly
1858                                  * page might get reCOWed by userspace write).
1859                                  */
1860                                 if ((ret & VM_FAULT_WRITE) &&
1861                                     !(vma->vm_flags & VM_WRITE))
1862                                         foll_flags &= ~FOLL_WRITE;
1863
1864                                 cond_resched();
1865                         }
1866                         if (IS_ERR(page))
1867                                 return i ? i : PTR_ERR(page);
1868                         if (pages) {
1869                                 pages[i] = page;
1870
1871                                 flush_anon_page(vma, page, start);
1872                                 flush_dcache_page(page);
1873                                 page_mask = 0;
1874                         }
1875 next_page:
1876                         if (vmas) {
1877                                 vmas[i] = vma;
1878                                 page_mask = 0;
1879                         }
1880                         page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
1881                         if (page_increm > nr_pages)
1882                                 page_increm = nr_pages;
1883                         i += page_increm;
1884                         start += page_increm * PAGE_SIZE;
1885                         nr_pages -= page_increm;
1886                 } while (nr_pages && start < vma->vm_end);
1887         } while (nr_pages);
1888         return i;
1889 }
1890 EXPORT_SYMBOL(__get_user_pages);
1891
1892 /*
1893  * fixup_user_fault() - manually resolve a user page fault
1894  * @tsk:        the task_struct to use for page fault accounting, or
1895  *              NULL if faults are not to be recorded.
1896  * @mm:         mm_struct of target mm
1897  * @address:    user address
1898  * @fault_flags:flags to pass down to handle_mm_fault()
1899  *
1900  * This is meant to be called in the specific scenario where for locking reasons
1901  * we try to access user memory in atomic context (within a pagefault_disable()
1902  * section), this returns -EFAULT, and we want to resolve the user fault before
1903  * trying again.
1904  *
1905  * Typically this is meant to be used by the futex code.
1906  *
1907  * The main difference with get_user_pages() is that this function will
1908  * unconditionally call handle_mm_fault() which will in turn perform all the
1909  * necessary SW fixup of the dirty and young bits in the PTE, while
1910  * handle_mm_fault() only guarantees to update these in the struct page.
1911  *
1912  * This is important for some architectures where those bits also gate the
1913  * access permission to the page because they are maintained in software.  On
1914  * such architectures, gup() will not be enough to make a subsequent access
1915  * succeed.
1916  *
1917  * This should be called with the mm_sem held for read.
1918  */
1919 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1920                      unsigned long address, unsigned int fault_flags)
1921 {
1922         struct vm_area_struct *vma;
1923         int ret;
1924
1925         vma = find_extend_vma(mm, address);
1926         if (!vma || address < vma->vm_start)
1927                 return -EFAULT;
1928
1929         ret = handle_mm_fault(mm, vma, address, fault_flags);
1930         if (ret & VM_FAULT_ERROR) {
1931                 if (ret & VM_FAULT_OOM)
1932                         return -ENOMEM;
1933                 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
1934                         return -EHWPOISON;
1935                 if (ret & VM_FAULT_SIGBUS)
1936                         return -EFAULT;
1937                 BUG();
1938         }
1939         if (tsk) {
1940                 if (ret & VM_FAULT_MAJOR)
1941                         tsk->maj_flt++;
1942                 else
1943                         tsk->min_flt++;
1944         }
1945         return 0;
1946 }
1947
1948 /*
1949  * get_user_pages() - pin user pages in memory
1950  * @tsk:        the task_struct to use for page fault accounting, or
1951  *              NULL if faults are not to be recorded.
1952  * @mm:         mm_struct of target mm
1953  * @start:      starting user address
1954  * @nr_pages:   number of pages from start to pin
1955  * @write:      whether pages will be written to by the caller
1956  * @force:      whether to force write access even if user mapping is
1957  *              readonly. This will result in the page being COWed even
1958  *              in MAP_SHARED mappings. You do not want this.
1959  * @pages:      array that receives pointers to the pages pinned.
1960  *              Should be at least nr_pages long. Or NULL, if caller
1961  *              only intends to ensure the pages are faulted in.
1962  * @vmas:       array of pointers to vmas corresponding to each page.
1963  *              Or NULL if the caller does not require them.
1964  *
1965  * Returns number of pages pinned. This may be fewer than the number
1966  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1967  * were pinned, returns -errno. Each page returned must be released
1968  * with a put_page() call when it is finished with. vmas will only
1969  * remain valid while mmap_sem is held.
1970  *
1971  * Must be called with mmap_sem held for read or write.
1972  *
1973  * get_user_pages walks a process's page tables and takes a reference to
1974  * each struct page that each user address corresponds to at a given
1975  * instant. That is, it takes the page that would be accessed if a user
1976  * thread accesses the given user virtual address at that instant.
1977  *
1978  * This does not guarantee that the page exists in the user mappings when
1979  * get_user_pages returns, and there may even be a completely different
1980  * page there in some cases (eg. if mmapped pagecache has been invalidated
1981  * and subsequently re faulted). However it does guarantee that the page
1982  * won't be freed completely. And mostly callers simply care that the page
1983  * contains data that was valid *at some point in time*. Typically, an IO
1984  * or similar operation cannot guarantee anything stronger anyway because
1985  * locks can't be held over the syscall boundary.
1986  *
1987  * If write=0, the page must not be written to. If the page is written to,
1988  * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1989  * after the page is finished with, and before put_page is called.
1990  *
1991  * get_user_pages is typically used for fewer-copy IO operations, to get a
1992  * handle on the memory by some means other than accesses via the user virtual
1993  * addresses. The pages may be submitted for DMA to devices or accessed via
1994  * their kernel linear mapping (via the kmap APIs). Care should be taken to
1995  * use the correct cache flushing APIs.
1996  *
1997  * See also get_user_pages_fast, for performance critical applications.
1998  */
1999 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
2000                 unsigned long start, unsigned long nr_pages, int write,
2001                 int force, struct page **pages, struct vm_area_struct **vmas)
2002 {
2003         int flags = FOLL_TOUCH;
2004
2005         if (pages)
2006                 flags |= FOLL_GET;
2007         if (write)
2008                 flags |= FOLL_WRITE;
2009         if (force)
2010                 flags |= FOLL_FORCE;
2011
2012         return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
2013                                 NULL);
2014 }
2015 EXPORT_SYMBOL(get_user_pages);
2016
2017 /**
2018  * get_dump_page() - pin user page in memory while writing it to core dump
2019  * @addr: user address
2020  *
2021  * Returns struct page pointer of user page pinned for dump,
2022  * to be freed afterwards by page_cache_release() or put_page().
2023  *
2024  * Returns NULL on any kind of failure - a hole must then be inserted into
2025  * the corefile, to preserve alignment with its headers; and also returns
2026  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
2027  * allowing a hole to be left in the corefile to save diskspace.
2028  *
2029  * Called without mmap_sem, but after all other threads have been killed.
2030  */
2031 #ifdef CONFIG_ELF_CORE
2032 struct page *get_dump_page(unsigned long addr)
2033 {
2034         struct vm_area_struct *vma;
2035         struct page *page;
2036
2037         if (__get_user_pages(current, current->mm, addr, 1,
2038                              FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
2039                              NULL) < 1)
2040                 return NULL;
2041         flush_cache_page(vma, addr, page_to_pfn(page));
2042         return page;
2043 }
2044 #endif /* CONFIG_ELF_CORE */
2045
2046 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2047                         spinlock_t **ptl)
2048 {
2049         pgd_t * pgd = pgd_offset(mm, addr);
2050         pud_t * pud = pud_alloc(mm, pgd, addr);
2051         if (pud) {
2052                 pmd_t * pmd = pmd_alloc(mm, pud, addr);
2053                 if (pmd) {
2054                         VM_BUG_ON(pmd_trans_huge(*pmd));
2055                         return pte_alloc_map_lock(mm, pmd, addr, ptl);
2056                 }
2057         }
2058         return NULL;
2059 }
2060
2061 /*
2062  * This is the old fallback for page remapping.
2063  *
2064  * For historical reasons, it only allows reserved pages. Only
2065  * old drivers should use this, and they needed to mark their
2066  * pages reserved for the old functions anyway.
2067  */
2068 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2069                         struct page *page, pgprot_t prot)
2070 {
2071         struct mm_struct *mm = vma->vm_mm;
2072         int retval;
2073         pte_t *pte;
2074         spinlock_t *ptl;
2075
2076         retval = -EINVAL;
2077         if (PageAnon(page))
2078                 goto out;
2079         retval = -ENOMEM;
2080         flush_dcache_page(page);
2081         pte = get_locked_pte(mm, addr, &ptl);
2082         if (!pte)
2083                 goto out;
2084         retval = -EBUSY;
2085         if (!pte_none(*pte))
2086                 goto out_unlock;
2087
2088         /* Ok, finally just insert the thing.. */
2089         get_page(page);
2090         inc_mm_counter_fast(mm, MM_FILEPAGES);
2091         page_add_file_rmap(page);
2092         set_pte_at(mm, addr, pte, mk_pte(page, prot));
2093
2094         retval = 0;
2095         pte_unmap_unlock(pte, ptl);
2096         return retval;
2097 out_unlock:
2098         pte_unmap_unlock(pte, ptl);
2099 out:
2100         return retval;
2101 }
2102
2103 /**
2104  * vm_insert_page - insert single page into user vma
2105  * @vma: user vma to map to
2106  * @addr: target user address of this page
2107  * @page: source kernel page
2108  *
2109  * This allows drivers to insert individual pages they've allocated
2110  * into a user vma.
2111  *
2112  * The page has to be a nice clean _individual_ kernel allocation.
2113  * If you allocate a compound page, you need to have marked it as
2114  * such (__GFP_COMP), or manually just split the page up yourself
2115  * (see split_page()).
2116  *
2117  * NOTE! Traditionally this was done with "remap_pfn_range()" which
2118  * took an arbitrary page protection parameter. This doesn't allow
2119  * that. Your vma protection will have to be set up correctly, which
2120  * means that if you want a shared writable mapping, you'd better
2121  * ask for a shared writable mapping!
2122  *
2123  * The page does not need to be reserved.
2124  *
2125  * Usually this function is called from f_op->mmap() handler
2126  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
2127  * Caller must set VM_MIXEDMAP on vma if it wants to call this
2128  * function from other places, for example from page-fault handler.
2129  */
2130 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2131                         struct page *page)
2132 {
2133         if (addr < vma->vm_start || addr >= vma->vm_end)
2134                 return -EFAULT;
2135         if (!page_count(page))
2136                 return -EINVAL;
2137         if (!(vma->vm_flags & VM_MIXEDMAP)) {
2138                 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
2139                 BUG_ON(vma->vm_flags & VM_PFNMAP);
2140                 vma->vm_flags |= VM_MIXEDMAP;
2141         }
2142         return insert_page(vma, addr, page, vma->vm_page_prot);
2143 }
2144 EXPORT_SYMBOL(vm_insert_page);
2145
2146 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2147                         unsigned long pfn, pgprot_t prot)
2148 {
2149         struct mm_struct *mm = vma->vm_mm;
2150         int retval;
2151         pte_t *pte, entry;
2152         spinlock_t *ptl;
2153
2154         retval = -ENOMEM;
2155         pte = get_locked_pte(mm, addr, &ptl);
2156         if (!pte)
2157                 goto out;
2158         retval = -EBUSY;
2159         if (!pte_none(*pte))
2160                 goto out_unlock;
2161
2162         /* Ok, finally just insert the thing.. */
2163         entry = pte_mkspecial(pfn_pte(pfn, prot));
2164         set_pte_at(mm, addr, pte, entry);
2165         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2166
2167         retval = 0;
2168 out_unlock:
2169         pte_unmap_unlock(pte, ptl);
2170 out:
2171         return retval;
2172 }
2173
2174 /**
2175  * vm_insert_pfn - insert single pfn into user vma
2176  * @vma: user vma to map to
2177  * @addr: target user address of this page
2178  * @pfn: source kernel pfn
2179  *
2180  * Similar to vm_insert_page, this allows drivers to insert individual pages
2181  * they've allocated into a user vma. Same comments apply.
2182  *
2183  * This function should only be called from a vm_ops->fault handler, and
2184  * in that case the handler should return NULL.
2185  *
2186  * vma cannot be a COW mapping.
2187  *
2188  * As this is called only for pages that do not currently exist, we
2189  * do not need to flush old virtual caches or the TLB.
2190  */
2191 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2192                         unsigned long pfn)
2193 {
2194         int ret;
2195         pgprot_t pgprot = vma->vm_page_prot;
2196         /*
2197          * Technically, architectures with pte_special can avoid all these
2198          * restrictions (same for remap_pfn_range).  However we would like
2199          * consistency in testing and feature parity among all, so we should
2200          * try to keep these invariants in place for everybody.
2201          */
2202         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2203         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2204                                                 (VM_PFNMAP|VM_MIXEDMAP));
2205         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2206         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2207
2208         if (addr < vma->vm_start || addr >= vma->vm_end)
2209                 return -EFAULT;
2210         if (track_pfn_insert(vma, &pgprot, pfn))
2211                 return -EINVAL;
2212
2213         ret = insert_pfn(vma, addr, pfn, pgprot);
2214
2215         return ret;
2216 }
2217 EXPORT_SYMBOL(vm_insert_pfn);
2218
2219 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2220                         unsigned long pfn)
2221 {
2222         BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
2223
2224         if (addr < vma->vm_start || addr >= vma->vm_end)
2225                 return -EFAULT;
2226
2227         /*
2228          * If we don't have pte special, then we have to use the pfn_valid()
2229          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2230          * refcount the page if pfn_valid is true (hence insert_page rather
2231          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2232          * without pte special, it would there be refcounted as a normal page.
2233          */
2234         if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2235                 struct page *page;
2236
2237                 page = pfn_to_page(pfn);
2238                 return insert_page(vma, addr, page, vma->vm_page_prot);
2239         }
2240         return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
2241 }
2242 EXPORT_SYMBOL(vm_insert_mixed);
2243
2244 /*
2245  * maps a range of physical memory into the requested pages. the old
2246  * mappings are removed. any references to nonexistent pages results
2247  * in null mappings (currently treated as "copy-on-access")
2248  */
2249 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2250                         unsigned long addr, unsigned long end,
2251                         unsigned long pfn, pgprot_t prot)
2252 {
2253         pte_t *pte;
2254         spinlock_t *ptl;
2255
2256         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2257         if (!pte)
2258                 return -ENOMEM;
2259         arch_enter_lazy_mmu_mode();
2260         do {
2261                 BUG_ON(!pte_none(*pte));
2262                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2263                 pfn++;
2264         } while (pte++, addr += PAGE_SIZE, addr != end);
2265         arch_leave_lazy_mmu_mode();
2266         pte_unmap_unlock(pte - 1, ptl);
2267         return 0;
2268 }
2269
2270 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2271                         unsigned long addr, unsigned long end,
2272                         unsigned long pfn, pgprot_t prot)
2273 {
2274         pmd_t *pmd;
2275         unsigned long next;
2276
2277         pfn -= addr >> PAGE_SHIFT;
2278         pmd = pmd_alloc(mm, pud, addr);
2279         if (!pmd)
2280                 return -ENOMEM;
2281         VM_BUG_ON(pmd_trans_huge(*pmd));
2282         do {
2283                 next = pmd_addr_end(addr, end);
2284                 if (remap_pte_range(mm, pmd, addr, next,
2285                                 pfn + (addr >> PAGE_SHIFT), prot))
2286                         return -ENOMEM;
2287         } while (pmd++, addr = next, addr != end);
2288         return 0;
2289 }
2290
2291 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2292                         unsigned long addr, unsigned long end,
2293                         unsigned long pfn, pgprot_t prot)
2294 {
2295         pud_t *pud;
2296         unsigned long next;
2297
2298         pfn -= addr >> PAGE_SHIFT;
2299         pud = pud_alloc(mm, pgd, addr);
2300         if (!pud)
2301                 return -ENOMEM;
2302         do {
2303                 next = pud_addr_end(addr, end);
2304                 if (remap_pmd_range(mm, pud, addr, next,
2305                                 pfn + (addr >> PAGE_SHIFT), prot))
2306                         return -ENOMEM;
2307         } while (pud++, addr = next, addr != end);
2308         return 0;
2309 }
2310
2311 /**
2312  * remap_pfn_range - remap kernel memory to userspace
2313  * @vma: user vma to map to
2314  * @addr: target user address to start at
2315  * @pfn: physical address of kernel memory
2316  * @size: size of map area
2317  * @prot: page protection flags for this mapping
2318  *
2319  *  Note: this is only safe if the mm semaphore is held when called.
2320  */
2321 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2322                     unsigned long pfn, unsigned long size, pgprot_t prot)
2323 {
2324         pgd_t *pgd;
2325         unsigned long next;
2326         unsigned long end = addr + PAGE_ALIGN(size);
2327         struct mm_struct *mm = vma->vm_mm;
2328         int err;
2329
2330         /*
2331          * Physically remapped pages are special. Tell the
2332          * rest of the world about it:
2333          *   VM_IO tells people not to look at these pages
2334          *      (accesses can have side effects).
2335          *   VM_PFNMAP tells the core MM that the base pages are just
2336          *      raw PFN mappings, and do not have a "struct page" associated
2337          *      with them.
2338          *   VM_DONTEXPAND
2339          *      Disable vma merging and expanding with mremap().
2340          *   VM_DONTDUMP
2341          *      Omit vma from core dump, even when VM_IO turned off.
2342          *
2343          * There's a horrible special case to handle copy-on-write
2344          * behaviour that some programs depend on. We mark the "original"
2345          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2346          * See vm_normal_page() for details.
2347          */
2348         if (is_cow_mapping(vma->vm_flags)) {
2349                 if (addr != vma->vm_start || end != vma->vm_end)
2350                         return -EINVAL;
2351                 vma->vm_pgoff = pfn;
2352         }
2353
2354         err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2355         if (err)
2356                 return -EINVAL;
2357
2358         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2359
2360         BUG_ON(addr >= end);
2361         pfn -= addr >> PAGE_SHIFT;
2362         pgd = pgd_offset(mm, addr);
2363         flush_cache_range(vma, addr, end);
2364         do {
2365                 next = pgd_addr_end(addr, end);
2366                 err = remap_pud_range(mm, pgd, addr, next,
2367                                 pfn + (addr >> PAGE_SHIFT), prot);
2368                 if (err)
2369                         break;
2370         } while (pgd++, addr = next, addr != end);
2371
2372         if (err)
2373                 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2374
2375         return err;
2376 }
2377 EXPORT_SYMBOL(remap_pfn_range);
2378
2379 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2380                                      unsigned long addr, unsigned long end,
2381                                      pte_fn_t fn, void *data)
2382 {
2383         pte_t *pte;
2384         int err;
2385         pgtable_t token;
2386         spinlock_t *uninitialized_var(ptl);
2387
2388         pte = (mm == &init_mm) ?
2389                 pte_alloc_kernel(pmd, addr) :
2390                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2391         if (!pte)
2392                 return -ENOMEM;
2393
2394         BUG_ON(pmd_huge(*pmd));
2395
2396         arch_enter_lazy_mmu_mode();
2397
2398         token = pmd_pgtable(*pmd);
2399
2400         do {
2401                 err = fn(pte++, token, addr, data);
2402                 if (err)
2403                         break;
2404         } while (addr += PAGE_SIZE, addr != end);
2405
2406         arch_leave_lazy_mmu_mode();
2407
2408         if (mm != &init_mm)
2409                 pte_unmap_unlock(pte-1, ptl);
2410         return err;
2411 }
2412
2413 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2414                                      unsigned long addr, unsigned long end,
2415                                      pte_fn_t fn, void *data)
2416 {
2417         pmd_t *pmd;
2418         unsigned long next;
2419         int err;
2420
2421         BUG_ON(pud_huge(*pud));
2422
2423         pmd = pmd_alloc(mm, pud, addr);
2424         if (!pmd)
2425                 return -ENOMEM;
2426         do {
2427                 next = pmd_addr_end(addr, end);
2428                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2429                 if (err)
2430                         break;
2431         } while (pmd++, addr = next, addr != end);
2432         return err;
2433 }
2434
2435 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2436                                      unsigned long addr, unsigned long end,
2437                                      pte_fn_t fn, void *data)
2438 {
2439         pud_t *pud;
2440         unsigned long next;
2441         int err;
2442
2443         pud = pud_alloc(mm, pgd, addr);
2444         if (!pud)
2445                 return -ENOMEM;
2446         do {
2447                 next = pud_addr_end(addr, end);
2448                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2449                 if (err)
2450                         break;
2451         } while (pud++, addr = next, addr != end);
2452         return err;
2453 }
2454
2455 /*
2456  * Scan a region of virtual memory, filling in page tables as necessary
2457  * and calling a provided function on each leaf page table.
2458  */
2459 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2460                         unsigned long size, pte_fn_t fn, void *data)
2461 {
2462         pgd_t *pgd;
2463         unsigned long next;
2464         unsigned long end = addr + size;
2465         int err;
2466
2467         BUG_ON(addr >= end);
2468         pgd = pgd_offset(mm, addr);
2469         do {
2470                 next = pgd_addr_end(addr, end);
2471                 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2472                 if (err)
2473                         break;
2474         } while (pgd++, addr = next, addr != end);
2475
2476         return err;
2477 }
2478 EXPORT_SYMBOL_GPL(apply_to_page_range);
2479
2480 /*
2481  * handle_pte_fault chooses page fault handler according to an entry
2482  * which was read non-atomically.  Before making any commitment, on
2483  * those architectures or configurations (e.g. i386 with PAE) which
2484  * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2485  * must check under lock before unmapping the pte and proceeding
2486  * (but do_wp_page is only called after already making such a check;
2487  * and do_anonymous_page can safely check later on).
2488  */
2489 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2490                                 pte_t *page_table, pte_t orig_pte)
2491 {
2492         int same = 1;
2493 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2494         if (sizeof(pte_t) > sizeof(unsigned long)) {
2495                 spinlock_t *ptl = pte_lockptr(mm, pmd);
2496                 spin_lock(ptl);
2497                 same = pte_same(*page_table, orig_pte);
2498                 spin_unlock(ptl);
2499         }
2500 #endif
2501         pte_unmap(page_table);
2502         return same;
2503 }
2504
2505 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2506 {
2507         /*
2508          * If the source page was a PFN mapping, we don't have
2509          * a "struct page" for it. We do a best-effort copy by
2510          * just copying from the original user address. If that
2511          * fails, we just zero-fill it. Live with it.
2512          */
2513         if (unlikely(!src)) {
2514                 void *kaddr = kmap_atomic(dst);
2515                 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2516
2517                 /*
2518                  * This really shouldn't fail, because the page is there
2519                  * in the page tables. But it might just be unreadable,
2520                  * in which case we just give up and fill the result with
2521                  * zeroes.
2522                  */
2523                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2524                         clear_page(kaddr);
2525                 kunmap_atomic(kaddr);
2526                 flush_dcache_page(dst);
2527         } else
2528                 copy_user_highpage(dst, src, va, vma);
2529 }
2530
2531 /*
2532  * This routine handles present pages, when users try to write
2533  * to a shared page. It is done by copying the page to a new address
2534  * and decrementing the shared-page counter for the old page.
2535  *
2536  * Note that this routine assumes that the protection checks have been
2537  * done by the caller (the low-level page fault routine in most cases).
2538  * Thus we can safely just mark it writable once we've done any necessary
2539  * COW.
2540  *
2541  * We also mark the page dirty at this point even though the page will
2542  * change only once the write actually happens. This avoids a few races,
2543  * and potentially makes it more efficient.
2544  *
2545  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2546  * but allow concurrent faults), with pte both mapped and locked.
2547  * We return with mmap_sem still held, but pte unmapped and unlocked.
2548  */
2549 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2550                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2551                 spinlock_t *ptl, pte_t orig_pte)
2552         __releases(ptl)
2553 {
2554         struct page *old_page, *new_page = NULL;
2555         pte_t entry;
2556         int ret = 0;
2557         int page_mkwrite = 0;
2558         struct page *dirty_page = NULL;
2559         unsigned long mmun_start = 0;   /* For mmu_notifiers */
2560         unsigned long mmun_end = 0;     /* For mmu_notifiers */
2561
2562         old_page = vm_normal_page(vma, address, orig_pte);
2563         if (!old_page) {
2564                 /*
2565                  * VM_MIXEDMAP !pfn_valid() case
2566                  *
2567                  * We should not cow pages in a shared writeable mapping.
2568                  * Just mark the pages writable as we can't do any dirty
2569                  * accounting on raw pfn maps.
2570                  */
2571                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2572                                      (VM_WRITE|VM_SHARED))
2573                         goto reuse;
2574                 goto gotten;
2575         }
2576
2577         /*
2578          * Take out anonymous pages first, anonymous shared vmas are
2579          * not dirty accountable.
2580          */
2581         if (PageAnon(old_page) && !PageKsm(old_page)) {
2582                 if (!trylock_page(old_page)) {
2583                         page_cache_get(old_page);
2584                         pte_unmap_unlock(page_table, ptl);
2585                         lock_page(old_page);
2586                         page_table = pte_offset_map_lock(mm, pmd, address,
2587                                                          &ptl);
2588                         if (!pte_same(*page_table, orig_pte)) {
2589                                 unlock_page(old_page);
2590                                 goto unlock;
2591                         }
2592                         page_cache_release(old_page);
2593                 }
2594                 if (reuse_swap_page(old_page)) {
2595                         /*
2596                          * The page is all ours.  Move it to our anon_vma so
2597                          * the rmap code will not search our parent or siblings.
2598                          * Protected against the rmap code by the page lock.
2599                          */
2600                         page_move_anon_rmap(old_page, vma, address);
2601                         unlock_page(old_page);
2602                         goto reuse;
2603                 }
2604                 unlock_page(old_page);
2605         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2606                                         (VM_WRITE|VM_SHARED))) {
2607                 /*
2608                  * Only catch write-faults on shared writable pages,
2609                  * read-only shared pages can get COWed by
2610                  * get_user_pages(.write=1, .force=1).
2611                  */
2612                 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2613                         struct vm_fault vmf;
2614                         int tmp;
2615
2616                         vmf.virtual_address = (void __user *)(address &
2617                                                                 PAGE_MASK);
2618                         vmf.pgoff = old_page->index;
2619                         vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2620                         vmf.page = old_page;
2621
2622                         /*
2623                          * Notify the address space that the page is about to
2624                          * become writable so that it can prohibit this or wait
2625                          * for the page to get into an appropriate state.
2626                          *
2627                          * We do this without the lock held, so that it can
2628                          * sleep if it needs to.
2629                          */
2630                         page_cache_get(old_page);
2631                         pte_unmap_unlock(page_table, ptl);
2632
2633                         tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2634                         if (unlikely(tmp &
2635                                         (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2636                                 ret = tmp;
2637                                 goto unwritable_page;
2638                         }
2639                         if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2640                                 lock_page(old_page);
2641                                 if (!old_page->mapping) {
2642                                         ret = 0; /* retry the fault */
2643                                         unlock_page(old_page);
2644                                         goto unwritable_page;
2645                                 }
2646                         } else
2647                                 VM_BUG_ON(!PageLocked(old_page));
2648
2649                         /*
2650                          * Since we dropped the lock we need to revalidate
2651                          * the PTE as someone else may have changed it.  If
2652                          * they did, we just return, as we can count on the
2653                          * MMU to tell us if they didn't also make it writable.
2654                          */
2655                         page_table = pte_offset_map_lock(mm, pmd, address,
2656                                                          &ptl);
2657                         if (!pte_same(*page_table, orig_pte)) {
2658                                 unlock_page(old_page);
2659                                 goto unlock;
2660                         }
2661
2662                         page_mkwrite = 1;
2663                 }
2664                 dirty_page = old_page;
2665                 get_page(dirty_page);
2666
2667 reuse:
2668                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2669                 entry = pte_mkyoung(orig_pte);
2670                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2671                 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2672                         update_mmu_cache(vma, address, page_table);
2673                 pte_unmap_unlock(page_table, ptl);
2674                 ret |= VM_FAULT_WRITE;
2675
2676                 if (!dirty_page)
2677                         return ret;
2678
2679                 /*
2680                  * Yes, Virginia, this is actually required to prevent a race
2681                  * with clear_page_dirty_for_io() from clearing the page dirty
2682                  * bit after it clear all dirty ptes, but before a racing
2683                  * do_wp_page installs a dirty pte.
2684                  *
2685                  * __do_fault is protected similarly.
2686                  */
2687                 if (!page_mkwrite) {
2688                         wait_on_page_locked(dirty_page);
2689                         set_page_dirty_balance(dirty_page, page_mkwrite);
2690                         /* file_update_time outside page_lock */
2691                         if (vma->vm_file)
2692                                 file_update_time(vma->vm_file);
2693                 }
2694                 put_page(dirty_page);
2695                 if (page_mkwrite) {
2696                         struct address_space *mapping = dirty_page->mapping;
2697
2698                         set_page_dirty(dirty_page);
2699                         unlock_page(dirty_page);
2700                         page_cache_release(dirty_page);
2701                         if (mapping)    {
2702                                 /*
2703                                  * Some device drivers do not set page.mapping
2704                                  * but still dirty their pages
2705                                  */
2706                                 balance_dirty_pages_ratelimited(mapping);
2707                         }
2708                 }
2709
2710                 return ret;
2711         }
2712
2713         /*
2714          * Ok, we need to copy. Oh, well..
2715          */
2716         page_cache_get(old_page);
2717 gotten:
2718         pte_unmap_unlock(page_table, ptl);
2719
2720         if (unlikely(anon_vma_prepare(vma)))
2721                 goto oom;
2722
2723         if (is_zero_pfn(pte_pfn(orig_pte))) {
2724                 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2725                 if (!new_page)
2726                         goto oom;
2727         } else {
2728                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2729                 if (!new_page)
2730                         goto oom;
2731                 cow_user_page(new_page, old_page, address, vma);
2732         }
2733         __SetPageUptodate(new_page);
2734
2735         if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2736                 goto oom_free_new;
2737
2738         mmun_start  = address & PAGE_MASK;
2739         mmun_end    = mmun_start + PAGE_SIZE;
2740         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2741
2742         /*
2743          * Re-check the pte - we dropped the lock
2744          */
2745         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2746         if (likely(pte_same(*page_table, orig_pte))) {
2747                 if (old_page) {
2748                         if (!PageAnon(old_page)) {
2749                                 dec_mm_counter_fast(mm, MM_FILEPAGES);
2750                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2751                         }
2752                 } else
2753                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2754                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2755                 entry = mk_pte(new_page, vma->vm_page_prot);
2756                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2757                 /*
2758                  * Clear the pte entry and flush it first, before updating the
2759                  * pte with the new entry. This will avoid a race condition
2760                  * seen in the presence of one thread doing SMC and another
2761                  * thread doing COW.
2762                  */
2763                 ptep_clear_flush(vma, address, page_table);
2764                 page_add_new_anon_rmap(new_page, vma, address);
2765                 /*
2766                  * We call the notify macro here because, when using secondary
2767                  * mmu page tables (such as kvm shadow page tables), we want the
2768                  * new page to be mapped directly into the secondary page table.
2769                  */
2770                 set_pte_at_notify(mm, address, page_table, entry);
2771                 update_mmu_cache(vma, address, page_table);
2772                 if (old_page) {
2773                         /*
2774                          * Only after switching the pte to the new page may
2775                          * we remove the mapcount here. Otherwise another
2776                          * process may come and find the rmap count decremented
2777                          * before the pte is switched to the new page, and
2778                          * "reuse" the old page writing into it while our pte
2779                          * here still points into it and can be read by other
2780                          * threads.
2781                          *
2782                          * The critical issue is to order this
2783                          * page_remove_rmap with the ptp_clear_flush above.
2784                          * Those stores are ordered by (if nothing else,)
2785                          * the barrier present in the atomic_add_negative
2786                          * in page_remove_rmap.
2787                          *
2788                          * Then the TLB flush in ptep_clear_flush ensures that
2789                          * no process can access the old page before the
2790                          * decremented mapcount is visible. And the old page
2791                          * cannot be reused until after the decremented
2792                          * mapcount is visible. So transitively, TLBs to
2793                          * old page will be flushed before it can be reused.
2794                          */
2795                         page_remove_rmap(old_page);
2796                 }
2797
2798                 /* Free the old page.. */
2799                 new_page = old_page;
2800                 ret |= VM_FAULT_WRITE;
2801         } else
2802                 mem_cgroup_uncharge_page(new_page);
2803
2804         if (new_page)
2805                 page_cache_release(new_page);
2806 unlock:
2807         pte_unmap_unlock(page_table, ptl);
2808         if (mmun_end > mmun_start)
2809                 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2810         if (old_page) {
2811                 /*
2812                  * Don't let another task, with possibly unlocked vma,
2813                  * keep the mlocked page.
2814                  */
2815                 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2816                         lock_page(old_page);    /* LRU manipulation */
2817                         munlock_vma_page(old_page);
2818                         unlock_page(old_page);
2819                 }
2820                 page_cache_release(old_page);
2821         }
2822         return ret;
2823 oom_free_new:
2824         page_cache_release(new_page);
2825 oom:
2826         if (old_page)
2827                 page_cache_release(old_page);
2828         return VM_FAULT_OOM;
2829
2830 unwritable_page:
2831         page_cache_release(old_page);
2832         return ret;
2833 }
2834
2835 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2836                 unsigned long start_addr, unsigned long end_addr,
2837                 struct zap_details *details)
2838 {
2839         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2840 }
2841
2842 static inline void unmap_mapping_range_tree(struct rb_root *root,
2843                                             struct zap_details *details)
2844 {
2845         struct vm_area_struct *vma;
2846         pgoff_t vba, vea, zba, zea;
2847
2848         vma_interval_tree_foreach(vma, root,
2849                         details->first_index, details->last_index) {
2850
2851                 vba = vma->vm_pgoff;
2852                 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2853                 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2854                 zba = details->first_index;
2855                 if (zba < vba)
2856                         zba = vba;
2857                 zea = details->last_index;
2858                 if (zea > vea)
2859                         zea = vea;
2860
2861                 unmap_mapping_range_vma(vma,
2862                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2863                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2864                                 details);
2865         }
2866 }
2867
2868 static inline void unmap_mapping_range_list(struct list_head *head,
2869                                             struct zap_details *details)
2870 {
2871         struct vm_area_struct *vma;
2872
2873         /*
2874          * In nonlinear VMAs there is no correspondence between virtual address
2875          * offset and file offset.  So we must perform an exhaustive search
2876          * across *all* the pages in each nonlinear VMA, not just the pages
2877          * whose virtual address lies outside the file truncation point.
2878          */
2879         list_for_each_entry(vma, head, shared.nonlinear) {
2880                 details->nonlinear_vma = vma;
2881                 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2882         }
2883 }
2884
2885 /**
2886  * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2887  * @mapping: the address space containing mmaps to be unmapped.
2888  * @holebegin: byte in first page to unmap, relative to the start of
2889  * the underlying file.  This will be rounded down to a PAGE_SIZE
2890  * boundary.  Note that this is different from truncate_pagecache(), which
2891  * must keep the partial page.  In contrast, we must get rid of
2892  * partial pages.
2893  * @holelen: size of prospective hole in bytes.  This will be rounded
2894  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2895  * end of the file.
2896  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2897  * but 0 when invalidating pagecache, don't throw away private data.
2898  */
2899 void unmap_mapping_range(struct address_space *mapping,
2900                 loff_t const holebegin, loff_t const holelen, int even_cows)
2901 {
2902         struct zap_details details;
2903         pgoff_t hba = holebegin >> PAGE_SHIFT;
2904         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2905
2906         /* Check for overflow. */
2907         if (sizeof(holelen) > sizeof(hlen)) {
2908                 long long holeend =
2909                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2910                 if (holeend & ~(long long)ULONG_MAX)
2911                         hlen = ULONG_MAX - hba + 1;
2912         }
2913
2914         details.check_mapping = even_cows? NULL: mapping;
2915         details.nonlinear_vma = NULL;
2916         details.first_index = hba;
2917         details.last_index = hba + hlen - 1;
2918         if (details.last_index < details.first_index)
2919                 details.last_index = ULONG_MAX;
2920
2921
2922         mutex_lock(&mapping->i_mmap_mutex);
2923         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2924                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2925         if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2926                 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2927         mutex_unlock(&mapping->i_mmap_mutex);
2928 }
2929 EXPORT_SYMBOL(unmap_mapping_range);
2930
2931 /*
2932  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2933  * but allow concurrent faults), and pte mapped but not yet locked.
2934  * We return with mmap_sem still held, but pte unmapped and unlocked.
2935  */
2936 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2937                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2938                 unsigned int flags, pte_t orig_pte)
2939 {
2940         spinlock_t *ptl;
2941         struct page *page, *swapcache = NULL;
2942         swp_entry_t entry;
2943         pte_t pte;
2944         int locked;
2945         struct mem_cgroup *ptr;
2946         int exclusive = 0;
2947         int ret = 0;
2948
2949         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2950                 goto out;
2951
2952         entry = pte_to_swp_entry(orig_pte);
2953         if (unlikely(non_swap_entry(entry))) {
2954                 if (is_migration_entry(entry)) {
2955                         migration_entry_wait(mm, pmd, address);
2956                 } else if (is_hwpoison_entry(entry)) {
2957                         ret = VM_FAULT_HWPOISON;
2958                 } else {
2959                         print_bad_pte(vma, address, orig_pte, NULL);
2960                         ret = VM_FAULT_SIGBUS;
2961                 }
2962                 goto out;
2963         }
2964         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2965         page = lookup_swap_cache(entry);
2966         if (!page) {
2967                 page = swapin_readahead(entry,
2968                                         GFP_HIGHUSER_MOVABLE, vma, address);
2969                 if (!page) {
2970                         /*
2971                          * Back out if somebody else faulted in this pte
2972                          * while we released the pte lock.
2973                          */
2974                         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2975                         if (likely(pte_same(*page_table, orig_pte)))
2976                                 ret = VM_FAULT_OOM;
2977                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2978                         goto unlock;
2979                 }
2980
2981                 /* Had to read the page from swap area: Major fault */
2982                 ret = VM_FAULT_MAJOR;
2983                 count_vm_event(PGMAJFAULT);
2984                 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2985         } else if (PageHWPoison(page)) {
2986                 /*
2987                  * hwpoisoned dirty swapcache pages are kept for killing
2988                  * owner processes (which may be unknown at hwpoison time)
2989                  */
2990                 ret = VM_FAULT_HWPOISON;
2991                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2992                 goto out_release;
2993         }
2994
2995         locked = lock_page_or_retry(page, mm, flags);
2996
2997         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2998         if (!locked) {
2999                 ret |= VM_FAULT_RETRY;
3000                 goto out_release;
3001         }
3002
3003         /*
3004          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3005          * release the swapcache from under us.  The page pin, and pte_same
3006          * test below, are not enough to exclude that.  Even if it is still
3007          * swapcache, we need to check that the page's swap has not changed.
3008          */
3009         if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
3010                 goto out_page;
3011
3012         swapcache = page;
3013         page = ksm_might_need_to_copy(page, vma, address);
3014         if (unlikely(!page)) {
3015                 ret = VM_FAULT_OOM;
3016                 page = swapcache;
3017                 swapcache = NULL;
3018                 goto out_page;
3019         }
3020         if (page == swapcache)
3021                 swapcache = NULL;
3022
3023         if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
3024                 ret = VM_FAULT_OOM;
3025                 goto out_page;
3026         }
3027
3028         /*
3029          * Back out if somebody else already faulted in this pte.
3030          */
3031         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3032         if (unlikely(!pte_same(*page_table, orig_pte)))
3033                 goto out_nomap;
3034
3035         if (unlikely(!PageUptodate(page))) {
3036                 ret = VM_FAULT_SIGBUS;
3037                 goto out_nomap;
3038         }
3039
3040         /*
3041          * The page isn't present yet, go ahead with the fault.
3042          *
3043          * Be careful about the sequence of operations here.
3044          * To get its accounting right, reuse_swap_page() must be called
3045          * while the page is counted on swap but not yet in mapcount i.e.
3046          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3047          * must be called after the swap_free(), or it will never succeed.
3048          * Because delete_from_swap_page() may be called by reuse_swap_page(),
3049          * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
3050          * in page->private. In this case, a record in swap_cgroup  is silently
3051          * discarded at swap_free().
3052          */
3053
3054         inc_mm_counter_fast(mm, MM_ANONPAGES);
3055         dec_mm_counter_fast(mm, MM_SWAPENTS);
3056         pte = mk_pte(page, vma->vm_page_prot);
3057         if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
3058                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3059                 flags &= ~FAULT_FLAG_WRITE;
3060                 ret |= VM_FAULT_WRITE;
3061                 exclusive = 1;
3062         }
3063         flush_icache_page(vma, page);
3064         set_pte_at(mm, address, page_table, pte);
3065         if (swapcache) /* ksm created a completely new copy */
3066                 page_add_new_anon_rmap(page, vma, address);
3067         else
3068                 do_page_add_anon_rmap(page, vma, address, exclusive);
3069         /* It's better to call commit-charge after rmap is established */
3070         mem_cgroup_commit_charge_swapin(page, ptr);
3071
3072         swap_free(entry);
3073         if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3074                 try_to_free_swap(page);
3075         unlock_page(page);
3076         if (swapcache) {
3077                 /*
3078                  * Hold the lock to avoid the swap entry to be reused
3079                  * until we take the PT lock for the pte_same() check
3080                  * (to avoid false positives from pte_same). For
3081                  * further safety release the lock after the swap_free
3082                  * so that the swap count won't change under a
3083                  * parallel locked swapcache.
3084                  */
3085                 unlock_page(swapcache);
3086                 page_cache_release(swapcache);
3087         }
3088
3089         if (flags & FAULT_FLAG_WRITE) {
3090                 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
3091                 if (ret & VM_FAULT_ERROR)
3092                         ret &= VM_FAULT_ERROR;
3093                 goto out;
3094         }
3095
3096         /* No need to invalidate - it was non-present before */
3097         update_mmu_cache(vma, address, page_table);
3098 unlock:
3099         pte_unmap_unlock(page_table, ptl);
3100 out:
3101         return ret;
3102 out_nomap:
3103         mem_cgroup_cancel_charge_swapin(ptr);
3104         pte_unmap_unlock(page_table, ptl);
3105 out_page:
3106         unlock_page(page);
3107 out_release:
3108         page_cache_release(page);
3109         if (swapcache) {
3110                 unlock_page(swapcache);
3111                 page_cache_release(swapcache);
3112         }
3113         return ret;
3114 }
3115
3116 /*
3117  * This is like a special single-page "expand_{down|up}wards()",
3118  * except we must first make sure that 'address{-|+}PAGE_SIZE'
3119  * doesn't hit another vma.
3120  */
3121 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
3122 {
3123         address &= PAGE_MASK;
3124         if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
3125                 struct vm_area_struct *prev = vma->vm_prev;
3126
3127                 /*
3128                  * Is there a mapping abutting this one below?
3129                  *
3130                  * That's only ok if it's the same stack mapping
3131                  * that has gotten split..
3132                  */
3133                 if (prev && prev->vm_end == address)
3134                         return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
3135
3136                 expand_downwards(vma, address - PAGE_SIZE);
3137         }
3138         if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
3139                 struct vm_area_struct *next = vma->vm_next;
3140
3141                 /* As VM_GROWSDOWN but s/below/above/ */
3142                 if (next && next->vm_start == address + PAGE_SIZE)
3143                         return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3144
3145                 expand_upwards(vma, address + PAGE_SIZE);
3146         }
3147         return 0;
3148 }
3149
3150 /*
3151  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3152  * but allow concurrent faults), and pte mapped but not yet locked.
3153  * We return with mmap_sem still held, but pte unmapped and unlocked.
3154  */
3155 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3156                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3157                 unsigned int flags)
3158 {
3159         struct page *page;
3160         spinlock_t *ptl;
3161         pte_t entry;
3162
3163         pte_unmap(page_table);
3164
3165         /* Check if we need to add a guard page to the stack */
3166         if (check_stack_guard_page(vma, address) < 0)
3167                 return VM_FAULT_SIGBUS;
3168
3169         /* Use the zero-page for reads */
3170         if (!(flags & FAULT_FLAG_WRITE)) {
3171                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3172                                                 vma->vm_page_prot));
3173                 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3174                 if (!pte_none(*page_table))
3175                         goto unlock;
3176                 goto setpte;
3177         }
3178
3179         /* Allocate our own private page. */
3180         if (unlikely(anon_vma_prepare(vma)))
3181                 goto oom;
3182         page = alloc_zeroed_user_highpage_movable(vma, address);
3183         if (!page)
3184                 goto oom;
3185         __SetPageUptodate(page);
3186
3187         if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
3188                 goto oom_free_page;
3189
3190         entry = mk_pte(page, vma->vm_page_prot);
3191         if (vma->vm_flags & VM_WRITE)
3192                 entry = pte_mkwrite(pte_mkdirty(entry));
3193
3194         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3195         if (!pte_none(*page_table))
3196                 goto release;
3197
3198         inc_mm_counter_fast(mm, MM_ANONPAGES);
3199         page_add_new_anon_rmap(page, vma, address);
3200 setpte:
3201         set_pte_at(mm, address, page_table, entry);
3202
3203         /* No need to invalidate - it was non-present before */
3204         update_mmu_cache(vma, address, page_table);
3205 unlock:
3206         pte_unmap_unlock(page_table, ptl);
3207         return 0;
3208 release:
3209         mem_cgroup_uncharge_page(page);
3210         page_cache_release(page);
3211         goto unlock;
3212 oom_free_page:
3213         page_cache_release(page);
3214 oom:
3215         return VM_FAULT_OOM;
3216 }
3217
3218 /*
3219  * __do_fault() tries to create a new page mapping. It aggressively
3220  * tries to share with existing pages, but makes a separate copy if
3221  * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3222  * the next page fault.
3223  *
3224  * As this is called only for pages that do not currently exist, we
3225  * do not need to flush old virtual caches or the TLB.
3226  *
3227  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3228  * but allow concurrent faults), and pte neither mapped nor locked.
3229  * We return with mmap_sem still held, but pte unmapped and unlocked.
3230  */
3231 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3232                 unsigned long address, pmd_t *pmd,
3233                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3234 {
3235         pte_t *page_table;
3236         spinlock_t *ptl;
3237         struct page *page;
3238         struct page *cow_page;
3239         pte_t entry;
3240         int anon = 0;
3241         struct page *dirty_page = NULL;
3242         struct vm_fault vmf;
3243         int ret;
3244         int page_mkwrite = 0;
3245
3246         /*
3247          * If we do COW later, allocate page befor taking lock_page()
3248          * on the file cache page. This will reduce lock holding time.
3249          */
3250         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3251
3252                 if (unlikely(anon_vma_prepare(vma)))
3253                         return VM_FAULT_OOM;
3254
3255                 cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3256                 if (!cow_page)
3257                         return VM_FAULT_OOM;
3258
3259                 if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
3260                         page_cache_release(cow_page);
3261                         return VM_FAULT_OOM;
3262                 }
3263         } else
3264                 cow_page = NULL;
3265
3266         vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3267         vmf.pgoff = pgoff;
3268         vmf.flags = flags;
3269         vmf.page = NULL;
3270
3271         ret = vma->vm_ops->fault(vma, &vmf);
3272         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3273                             VM_FAULT_RETRY)))
3274                 goto uncharge_out;
3275
3276         if (unlikely(PageHWPoison(vmf.page))) {
3277                 if (ret & VM_FAULT_LOCKED)
3278                         unlock_page(vmf.page);
3279                 ret = VM_FAULT_HWPOISON;
3280                 goto uncharge_out;
3281         }
3282
3283         /*
3284          * For consistency in subsequent calls, make the faulted page always
3285          * locked.
3286          */
3287         if (unlikely(!(ret & VM_FAULT_LOCKED)))
3288                 lock_page(vmf.page);
3289         else
3290                 VM_BUG_ON(!PageLocked(vmf.page));
3291
3292         /*
3293          * Should we do an early C-O-W break?
3294          */
3295         page = vmf.page;
3296         if (flags & FAULT_FLAG_WRITE) {
3297                 if (!(vma->vm_flags & VM_SHARED)) {
3298                         page = cow_page;
3299                         anon = 1;
3300                         copy_user_highpage(page, vmf.page, address, vma);
3301                         __SetPageUptodate(page);
3302                 } else {
3303                         /*
3304                          * If the page will be shareable, see if the backing
3305                          * address space wants to know that the page is about
3306                          * to become writable
3307                          */
3308                         if (vma->vm_ops->page_mkwrite) {
3309                                 int tmp;
3310
3311                                 unlock_page(page);
3312                                 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3313                                 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3314                                 if (unlikely(tmp &
3315                                           (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3316                                         ret = tmp;
3317                                         goto unwritable_page;
3318                                 }
3319                                 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3320                                         lock_page(page);
3321                                         if (!page->mapping) {
3322                                                 ret = 0; /* retry the fault */
3323                                                 unlock_page(page);
3324                                                 goto unwritable_page;
3325                                         }
3326                                 } else
3327                                         VM_BUG_ON(!PageLocked(page));
3328                                 page_mkwrite = 1;
3329                         }
3330                 }
3331
3332         }
3333
3334         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3335
3336         /*
3337          * This silly early PAGE_DIRTY setting removes a race
3338          * due to the bad i386 page protection. But it's valid
3339          * for other architectures too.
3340          *
3341          * Note that if FAULT_FLAG_WRITE is set, we either now have
3342          * an exclusive copy of the page, or this is a shared mapping,
3343          * so we can make it writable and dirty to avoid having to
3344          * handle that later.
3345          */
3346         /* Only go through if we didn't race with anybody else... */
3347         if (likely(pte_same(*page_table, orig_pte))) {
3348                 flush_icache_page(vma, page);
3349                 entry = mk_pte(page, vma->vm_page_prot);
3350                 if (flags & FAULT_FLAG_WRITE)
3351                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3352                 if (anon) {
3353                         inc_mm_counter_fast(mm, MM_ANONPAGES);
3354                         page_add_new_anon_rmap(page, vma, address);
3355                 } else {
3356                         inc_mm_counter_fast(mm, MM_FILEPAGES);
3357                         page_add_file_rmap(page);
3358                         if (flags & FAULT_FLAG_WRITE) {
3359                                 dirty_page = page;
3360                                 get_page(dirty_page);
3361                         }
3362                 }
3363                 set_pte_at(mm, address, page_table, entry);
3364
3365                 /* no need to invalidate: a not-present page won't be cached */
3366                 update_mmu_cache(vma, address, page_table);
3367         } else {
3368                 if (cow_page)
3369                         mem_cgroup_uncharge_page(cow_page);
3370                 if (anon)
3371                         page_cache_release(page);
3372                 else
3373                         anon = 1; /* no anon but release faulted_page */
3374         }
3375
3376         pte_unmap_unlock(page_table, ptl);
3377
3378         if (dirty_page) {
3379                 struct address_space *mapping = page->mapping;
3380                 int dirtied = 0;
3381
3382                 if (set_page_dirty(dirty_page))
3383                         dirtied = 1;
3384                 unlock_page(dirty_page);
3385                 put_page(dirty_page);
3386                 if ((dirtied || page_mkwrite) && mapping) {
3387                         /*
3388                          * Some device drivers do not set page.mapping but still
3389                          * dirty their pages
3390                          */
3391                         balance_dirty_pages_ratelimited(mapping);
3392                 }
3393
3394                 /* file_update_time outside page_lock */
3395                 if (vma->vm_file && !page_mkwrite)
3396                         file_update_time(vma->vm_file);
3397         } else {
3398                 unlock_page(vmf.page);
3399                 if (anon)
3400                         page_cache_release(vmf.page);
3401         }
3402
3403         return ret;
3404
3405 unwritable_page:
3406         page_cache_release(page);
3407         return ret;
3408 uncharge_out:
3409         /* fs's fault handler get error */
3410         if (cow_page) {
3411                 mem_cgroup_uncharge_page(cow_page);
3412                 page_cache_release(cow_page);
3413         }
3414         return ret;
3415 }
3416
3417 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3418                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3419                 unsigned int flags, pte_t orig_pte)
3420 {
3421         pgoff_t pgoff = (((address & PAGE_MASK)
3422                         - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3423
3424         pte_unmap(page_table);
3425         return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3426 }
3427
3428 /*
3429  * Fault of a previously existing named mapping. Repopulate the pte
3430  * from the encoded file_pte if possible. This enables swappable
3431  * nonlinear vmas.
3432  *
3433  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3434  * but allow concurrent faults), and pte mapped but not yet locked.
3435  * We return with mmap_sem still held, but pte unmapped and unlocked.
3436  */
3437 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3438                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3439                 unsigned int flags, pte_t orig_pte)
3440 {
3441         pgoff_t pgoff;
3442
3443         flags |= FAULT_FLAG_NONLINEAR;
3444
3445         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3446                 return 0;
3447
3448         if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3449                 /*
3450                  * Page table corrupted: show pte and kill process.
3451                  */
3452                 print_bad_pte(vma, address, orig_pte, NULL);
3453                 return VM_FAULT_SIGBUS;
3454         }
3455
3456         pgoff = pte_to_pgoff(orig_pte);
3457         return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3458 }
3459
3460 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3461                                 unsigned long addr, int current_nid)
3462 {
3463         get_page(page);
3464
3465         count_vm_numa_event(NUMA_HINT_FAULTS);
3466         if (current_nid == numa_node_id())
3467                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3468
3469         return mpol_misplaced(page, vma, addr);
3470 }
3471
3472 int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3473                    unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3474 {
3475         struct page *page = NULL;
3476         spinlock_t *ptl;
3477         int current_nid = -1;
3478         int target_nid;
3479         bool migrated = false;
3480
3481         /*
3482         * The "pte" at this point cannot be used safely without
3483         * validation through pte_unmap_same(). It's of NUMA type but
3484         * the pfn may be screwed if the read is non atomic.
3485         *
3486         * ptep_modify_prot_start is not called as this is clearing
3487         * the _PAGE_NUMA bit and it is not really expected that there
3488         * would be concurrent hardware modifications to the PTE.
3489         */
3490         ptl = pte_lockptr(mm, pmd);
3491         spin_lock(ptl);
3492         if (unlikely(!pte_same(*ptep, pte))) {
3493                 pte_unmap_unlock(ptep, ptl);
3494                 goto out;
3495         }
3496
3497         pte = pte_mknonnuma(pte);
3498         set_pte_at(mm, addr, ptep, pte);
3499         update_mmu_cache(vma, addr, ptep);
3500
3501         page = vm_normal_page(vma, addr, pte);
3502         if (!page) {
3503                 pte_unmap_unlock(ptep, ptl);
3504                 return 0;
3505         }
3506
3507         current_nid = page_to_nid(page);
3508         target_nid = numa_migrate_prep(page, vma, addr, current_nid);
3509         pte_unmap_unlock(ptep, ptl);
3510         if (target_nid == -1) {
3511                 /*
3512                  * Account for the fault against the current node if it not
3513                  * being replaced regardless of where the page is located.
3514                  */
3515                 current_nid = numa_node_id();
3516                 put_page(page);
3517                 goto out;
3518         }
3519
3520         /* Migrate to the requested node */
3521         migrated = migrate_misplaced_page(page, target_nid);
3522         if (migrated)
3523                 current_nid = target_nid;
3524
3525 out:
3526         if (current_nid != -1)
3527                 task_numa_fault(current_nid, 1, migrated);
3528         return 0;
3529 }
3530
3531 /* NUMA hinting page fault entry point for regular pmds */
3532 #ifdef CONFIG_NUMA_BALANCING
3533 static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3534                      unsigned long addr, pmd_t *pmdp)
3535 {
3536         pmd_t pmd;
3537         pte_t *pte, *orig_pte;
3538         unsigned long _addr = addr & PMD_MASK;
3539         unsigned long offset;
3540         spinlock_t *ptl;
3541         bool numa = false;
3542         int local_nid = numa_node_id();
3543
3544         spin_lock(&mm->page_table_lock);
3545         pmd = *pmdp;
3546         if (pmd_numa(pmd)) {
3547                 set_pmd_at(mm, _addr, pmdp, pmd_mknonnuma(pmd));
3548                 numa = true;
3549         }
3550         spin_unlock(&mm->page_table_lock);
3551
3552         if (!numa)
3553                 return 0;
3554
3555         /* we're in a page fault so some vma must be in the range */
3556         BUG_ON(!vma);
3557         BUG_ON(vma->vm_start >= _addr + PMD_SIZE);
3558         offset = max(_addr, vma->vm_start) & ~PMD_MASK;
3559         VM_BUG_ON(offset >= PMD_SIZE);
3560         orig_pte = pte = pte_offset_map_lock(mm, pmdp, _addr, &ptl);
3561         pte += offset >> PAGE_SHIFT;
3562         for (addr = _addr + offset; addr < _addr + PMD_SIZE; pte++, addr += PAGE_SIZE) {
3563                 pte_t pteval = *pte;
3564                 struct page *page;
3565                 int curr_nid = local_nid;
3566                 int target_nid;
3567                 bool migrated;
3568                 if (!pte_present(pteval))
3569                         continue;
3570                 if (!pte_numa(pteval))
3571                         continue;
3572                 if (addr >= vma->vm_end) {
3573                         vma = find_vma(mm, addr);
3574                         /* there's a pte present so there must be a vma */
3575                         BUG_ON(!vma);
3576                         BUG_ON(addr < vma->vm_start);
3577                 }
3578                 if (pte_numa(pteval)) {
3579                         pteval = pte_mknonnuma(pteval);
3580                         set_pte_at(mm, addr, pte, pteval);
3581                 }
3582                 page = vm_normal_page(vma, addr, pteval);
3583                 if (unlikely(!page))
3584                         continue;
3585                 /* only check non-shared pages */
3586                 if (unlikely(page_mapcount(page) != 1))
3587                         continue;
3588
3589                 /*
3590                  * Note that the NUMA fault is later accounted to either
3591                  * the node that is currently running or where the page is
3592                  * migrated to.
3593                  */
3594                 curr_nid = local_nid;
3595                 target_nid = numa_migrate_prep(page, vma, addr,
3596                                                page_to_nid(page));
3597                 if (target_nid == -1) {
3598                         put_page(page);
3599                         continue;
3600                 }
3601
3602                 /* Migrate to the requested node */
3603                 pte_unmap_unlock(pte, ptl);
3604                 migrated = migrate_misplaced_page(page, target_nid);
3605                 if (migrated)
3606                         curr_nid = target_nid;
3607                 task_numa_fault(curr_nid, 1, migrated);
3608
3609                 pte = pte_offset_map_lock(mm, pmdp, addr, &ptl);
3610         }
3611         pte_unmap_unlock(orig_pte, ptl);
3612
3613         return 0;
3614 }
3615 #else
3616 static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3617                      unsigned long addr, pmd_t *pmdp)
3618 {
3619         BUG();
3620         return 0;
3621 }
3622 #endif /* CONFIG_NUMA_BALANCING */
3623
3624 /*
3625  * These routines also need to handle stuff like marking pages dirty
3626  * and/or accessed for architectures that don't do it in hardware (most
3627  * RISC architectures).  The early dirtying is also good on the i386.
3628  *
3629  * There is also a hook called "update_mmu_cache()" that architectures
3630  * with external mmu caches can use to update those (ie the Sparc or
3631  * PowerPC hashed page tables that act as extended TLBs).
3632  *
3633  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3634  * but allow concurrent faults), and pte mapped but not yet locked.
3635  * We return with mmap_sem still held, but pte unmapped and unlocked.
3636  */
3637 int handle_pte_fault(struct mm_struct *mm,
3638                      struct vm_area_struct *vma, unsigned long address,
3639                      pte_t *pte, pmd_t *pmd, unsigned int flags)
3640 {
3641         pte_t entry;
3642         spinlock_t *ptl;
3643
3644         entry = *pte;
3645         if (!pte_present(entry)) {
3646                 if (pte_none(entry)) {
3647                         if (vma->vm_ops) {
3648                                 if (likely(vma->vm_ops->fault))
3649                                         return do_linear_fault(mm, vma, address,
3650                                                 pte, pmd, flags, entry);
3651                         }
3652                         return do_anonymous_page(mm, vma, address,
3653                                                  pte, pmd, flags);
3654                 }
3655                 if (pte_file(entry))
3656                         return do_nonlinear_fault(mm, vma, address,
3657                                         pte, pmd, flags, entry);
3658                 return do_swap_page(mm, vma, address,
3659                                         pte, pmd, flags, entry);
3660         }
3661
3662         if (pte_numa(entry))
3663                 return do_numa_page(mm, vma, address, entry, pte, pmd);
3664
3665         ptl = pte_lockptr(mm, pmd);
3666         spin_lock(ptl);
3667         if (unlikely(!pte_same(*pte, entry)))
3668                 goto unlock;
3669         if (flags & FAULT_FLAG_WRITE) {
3670                 if (!pte_write(entry))
3671                         return do_wp_page(mm, vma, address,
3672                                         pte, pmd, ptl, entry);
3673                 entry = pte_mkdirty(entry);
3674         }
3675         entry = pte_mkyoung(entry);
3676         if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3677                 update_mmu_cache(vma, address, pte);
3678         } else {
3679                 /*
3680                  * This is needed only for protection faults but the arch code
3681                  * is not yet telling us if this is a protection fault or not.
3682                  * This still avoids useless tlb flushes for .text page faults
3683                  * with threads.
3684                  */
3685                 if (flags & FAULT_FLAG_WRITE)
3686                         flush_tlb_fix_spurious_fault(vma, address);
3687         }
3688 unlock:
3689         pte_unmap_unlock(pte, ptl);
3690         return 0;
3691 }
3692
3693 /*
3694  * By the time we get here, we already hold the mm semaphore
3695  */
3696 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3697                 unsigned long address, unsigned int flags)
3698 {
3699         pgd_t *pgd;
3700         pud_t *pud;
3701         pmd_t *pmd;
3702         pte_t *pte;
3703
3704         __set_current_state(TASK_RUNNING);
3705
3706         count_vm_event(PGFAULT);
3707         mem_cgroup_count_vm_event(mm, PGFAULT);
3708
3709         /* do counter updates before entering really critical section. */
3710         check_sync_rss_stat(current);
3711
3712         if (unlikely(is_vm_hugetlb_page(vma)))
3713                 return hugetlb_fault(mm, vma, address, flags);
3714
3715 retry:
3716         pgd = pgd_offset(mm, address);
3717         pud = pud_alloc(mm, pgd, address);
3718         if (!pud)
3719                 return VM_FAULT_OOM;
3720         pmd = pmd_alloc(mm, pud, address);
3721         if (!pmd)
3722                 return VM_FAULT_OOM;
3723         if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3724                 if (!vma->vm_ops)
3725                         return do_huge_pmd_anonymous_page(mm, vma, address,
3726                                                           pmd, flags);
3727         } else {
3728                 pmd_t orig_pmd = *pmd;
3729                 int ret;
3730
3731                 barrier();
3732                 if (pmd_trans_huge(orig_pmd)) {
3733                         unsigned int dirty = flags & FAULT_FLAG_WRITE;
3734
3735                         /*
3736                          * If the pmd is splitting, return and retry the
3737                          * the fault.  Alternative: wait until the split
3738                          * is done, and goto retry.
3739                          */
3740                         if (pmd_trans_splitting(orig_pmd))
3741                                 return 0;
3742
3743                         if (pmd_numa(orig_pmd))
3744                                 return do_huge_pmd_numa_page(mm, vma, address,
3745                                                              orig_pmd, pmd);
3746
3747                         if (dirty && !pmd_write(orig_pmd)) {
3748                                 ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3749                                                           orig_pmd);
3750                                 /*
3751                                  * If COW results in an oom, the huge pmd will
3752                                  * have been split, so retry the fault on the
3753                                  * pte for a smaller charge.
3754                                  */
3755                                 if (unlikely(ret & VM_FAULT_OOM))
3756                                         goto retry;
3757                                 return ret;
3758                         } else {
3759                                 huge_pmd_set_accessed(mm, vma, address, pmd,
3760                                                       orig_pmd, dirty);
3761                         }
3762
3763                         return 0;
3764                 }
3765         }
3766
3767         if (pmd_numa(*pmd))
3768                 return do_pmd_numa_page(mm, vma, address, pmd);
3769
3770         /*
3771          * Use __pte_alloc instead of pte_alloc_map, because we can't
3772          * run pte_offset_map on the pmd, if an huge pmd could
3773          * materialize from under us from a different thread.
3774          */
3775         if (unlikely(pmd_none(*pmd)) &&
3776             unlikely(__pte_alloc(mm, vma, pmd, address)))
3777                 return VM_FAULT_OOM;
3778         /* if an huge pmd materialized from under us just retry later */
3779         if (unlikely(pmd_trans_huge(*pmd)))
3780                 return 0;
3781         /*
3782          * A regular pmd is established and it can't morph into a huge pmd
3783          * from under us anymore at this point because we hold the mmap_sem
3784          * read mode and khugepaged takes it in write mode. So now it's
3785          * safe to run pte_offset_map().
3786          */
3787         pte = pte_offset_map(pmd, address);
3788
3789         return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3790 }
3791
3792 #ifndef __PAGETABLE_PUD_FOLDED
3793 /*
3794  * Allocate page upper directory.
3795  * We've already handled the fast-path in-line.
3796  */
3797 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3798 {
3799         pud_t *new = pud_alloc_one(mm, address);
3800         if (!new)
3801                 return -ENOMEM;
3802
3803         smp_wmb(); /* See comment in __pte_alloc */
3804
3805         spin_lock(&mm->page_table_lock);
3806         if (pgd_present(*pgd))          /* Another has populated it */
3807                 pud_free(mm, new);
3808         else
3809                 pgd_populate(mm, pgd, new);
3810         spin_unlock(&mm->page_table_lock);
3811         return 0;
3812 }
3813 #endif /* __PAGETABLE_PUD_FOLDED */
3814
3815 #ifndef __PAGETABLE_PMD_FOLDED
3816 /*
3817  * Allocate page middle directory.
3818  * We've already handled the fast-path in-line.
3819  */
3820 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3821 {
3822         pmd_t *new = pmd_alloc_one(mm, address);
3823         if (!new)
3824                 return -ENOMEM;
3825
3826         smp_wmb(); /* See comment in __pte_alloc */
3827
3828         spin_lock(&mm->page_table_lock);
3829 #ifndef __ARCH_HAS_4LEVEL_HACK
3830         if (pud_present(*pud))          /* Another has populated it */
3831                 pmd_free(mm, new);
3832         else
3833                 pud_populate(mm, pud, new);
3834 #else
3835         if (pgd_present(*pud))          /* Another has populated it */
3836                 pmd_free(mm, new);
3837         else
3838                 pgd_populate(mm, pud, new);
3839 #endif /* __ARCH_HAS_4LEVEL_HACK */
3840         spin_unlock(&mm->page_table_lock);
3841         return 0;
3842 }
3843 #endif /* __PAGETABLE_PMD_FOLDED */
3844
3845 #if !defined(__HAVE_ARCH_GATE_AREA)
3846
3847 #if defined(AT_SYSINFO_EHDR)
3848 static struct vm_area_struct gate_vma;
3849
3850 static int __init gate_vma_init(void)
3851 {
3852         gate_vma.vm_mm = NULL;
3853         gate_vma.vm_start = FIXADDR_USER_START;
3854         gate_vma.vm_end = FIXADDR_USER_END;
3855         gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3856         gate_vma.vm_page_prot = __P101;
3857
3858         return 0;
3859 }
3860 __initcall(gate_vma_init);
3861 #endif
3862
3863 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3864 {
3865 #ifdef AT_SYSINFO_EHDR
3866         return &gate_vma;
3867 #else
3868         return NULL;
3869 #endif
3870 }
3871
3872 int in_gate_area_no_mm(unsigned long addr)
3873 {
3874 #ifdef AT_SYSINFO_EHDR
3875         if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3876                 return 1;
3877 #endif
3878         return 0;
3879 }
3880
3881 #endif  /* __HAVE_ARCH_GATE_AREA */
3882
3883 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3884                 pte_t **ptepp, spinlock_t **ptlp)
3885 {
3886         pgd_t *pgd;
3887         pud_t *pud;
3888         pmd_t *pmd;
3889         pte_t *ptep;
3890
3891         pgd = pgd_offset(mm, address);
3892         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3893                 goto out;
3894
3895         pud = pud_offset(pgd, address);
3896         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3897                 goto out;
3898
3899         pmd = pmd_offset(pud, address);
3900         VM_BUG_ON(pmd_trans_huge(*pmd));
3901         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3902                 goto out;
3903
3904         /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3905         if (pmd_huge(*pmd))
3906                 goto out;
3907
3908         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3909         if (!ptep)
3910                 goto out;
3911         if (!pte_present(*ptep))
3912                 goto unlock;
3913         *ptepp = ptep;
3914         return 0;
3915 unlock:
3916         pte_unmap_unlock(ptep, *ptlp);
3917 out:
3918         return -EINVAL;
3919 }
3920
3921 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3922                              pte_t **ptepp, spinlock_t **ptlp)
3923 {
3924         int res;
3925
3926         /* (void) is needed to make gcc happy */
3927         (void) __cond_lock(*ptlp,
3928                            !(res = __follow_pte(mm, address, ptepp, ptlp)));
3929         return res;
3930 }
3931
3932 /**
3933  * follow_pfn - look up PFN at a user virtual address
3934  * @vma: memory mapping
3935  * @address: user virtual address
3936  * @pfn: location to store found PFN
3937  *
3938  * Only IO mappings and raw PFN mappings are allowed.
3939  *
3940  * Returns zero and the pfn at @pfn on success, -ve otherwise.
3941  */
3942 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3943         unsigned long *pfn)
3944 {
3945         int ret = -EINVAL;
3946         spinlock_t *ptl;
3947         pte_t *ptep;
3948
3949         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3950                 return ret;
3951
3952         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3953         if (ret)
3954                 return ret;
3955         *pfn = pte_pfn(*ptep);
3956         pte_unmap_unlock(ptep, ptl);
3957         return 0;
3958 }
3959 EXPORT_SYMBOL(follow_pfn);
3960
3961 #ifdef CONFIG_HAVE_IOREMAP_PROT
3962 int follow_phys(struct vm_area_struct *vma,
3963                 unsigned long address, unsigned int flags,
3964                 unsigned long *prot, resource_size_t *phys)
3965 {
3966         int ret = -EINVAL;
3967         pte_t *ptep, pte;
3968         spinlock_t *ptl;
3969
3970         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3971                 goto out;
3972
3973         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3974                 goto out;
3975         pte = *ptep;
3976
3977         if ((flags & FOLL_WRITE) && !pte_write(pte))
3978                 goto unlock;
3979
3980         *prot = pgprot_val(pte_pgprot(pte));
3981         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3982
3983         ret = 0;
3984 unlock:
3985         pte_unmap_unlock(ptep, ptl);
3986 out:
3987         return ret;
3988 }
3989
3990 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3991                         void *buf, int len, int write)
3992 {
3993         resource_size_t phys_addr;
3994         unsigned long prot = 0;
3995         void __iomem *maddr;
3996         int offset = addr & (PAGE_SIZE-1);
3997
3998         if (follow_phys(vma, addr, write, &prot, &phys_addr))
3999                 return -EINVAL;
4000
4001         maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
4002         if (write)
4003                 memcpy_toio(maddr + offset, buf, len);
4004         else
4005                 memcpy_fromio(buf, maddr + offset, len);
4006         iounmap(maddr);
4007
4008         return len;
4009 }
4010 #endif
4011
4012 /*
4013  * Access another process' address space as given in mm.  If non-NULL, use the
4014  * given task for page fault accounting.
4015  */
4016 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4017                 unsigned long addr, void *buf, int len, int write)
4018 {
4019         struct vm_area_struct *vma;
4020         void *old_buf = buf;
4021
4022         down_read(&mm->mmap_sem);
4023         /* ignore errors, just check how much was successfully transferred */
4024         while (len) {
4025                 int bytes, ret, offset;
4026                 void *maddr;
4027                 struct page *page = NULL;
4028
4029                 ret = get_user_pages(tsk, mm, addr, 1,
4030                                 write, 1, &page, &vma);
4031                 if (ret <= 0) {
4032                         /*
4033                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
4034                          * we can access using slightly different code.
4035                          */
4036 #ifdef CONFIG_HAVE_IOREMAP_PROT
4037                         vma = find_vma(mm, addr);
4038                         if (!vma || vma->vm_start > addr)
4039                                 break;
4040                         if (vma->vm_ops && vma->vm_ops->access)
4041                                 ret = vma->vm_ops->access(vma, addr, buf,
4042                                                           len, write);
4043                         if (ret <= 0)
4044 #endif
4045                                 break;
4046                         bytes = ret;
4047                 } else {
4048                         bytes = len;
4049                         offset = addr & (PAGE_SIZE-1);
4050                         if (bytes > PAGE_SIZE-offset)
4051                                 bytes = PAGE_SIZE-offset;
4052
4053                         maddr = kmap(page);
4054                         if (write) {
4055                                 copy_to_user_page(vma, page, addr,
4056                                                   maddr + offset, buf, bytes);
4057                                 set_page_dirty_lock(page);
4058                         } else {
4059                                 copy_from_user_page(vma, page, addr,
4060                                                     buf, maddr + offset, bytes);
4061                         }
4062                         kunmap(page);
4063                         page_cache_release(page);
4064                 }
4065                 len -= bytes;
4066                 buf += bytes;
4067                 addr += bytes;
4068         }
4069         up_read(&mm->mmap_sem);
4070
4071         return buf - old_buf;
4072 }
4073
4074 /**
4075  * access_remote_vm - access another process' address space
4076  * @mm:         the mm_struct of the target address space
4077  * @addr:       start address to access
4078  * @buf:        source or destination buffer
4079  * @len:        number of bytes to transfer
4080  * @write:      whether the access is a write
4081  *
4082  * The caller must hold a reference on @mm.
4083  */
4084 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4085                 void *buf, int len, int write)
4086 {
4087         return __access_remote_vm(NULL, mm, addr, buf, len, write);
4088 }
4089
4090 /*
4091  * Access another process' address space.
4092  * Source/target buffer must be kernel space,
4093  * Do not walk the page table directly, use get_user_pages
4094  */
4095 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4096                 void *buf, int len, int write)
4097 {
4098         struct mm_struct *mm;
4099         int ret;
4100
4101         mm = get_task_mm(tsk);
4102         if (!mm)
4103                 return 0;
4104
4105         ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
4106         mmput(mm);
4107
4108         return ret;
4109 }
4110
4111 /*
4112  * Print the name of a VMA.
4113  */
4114 void print_vma_addr(char *prefix, unsigned long ip)
4115 {
4116         struct mm_struct *mm = current->mm;
4117         struct vm_area_struct *vma;
4118
4119         /*
4120          * Do not print if we are in atomic
4121          * contexts (in exception stacks, etc.):
4122          */
4123         if (preempt_count())
4124                 return;
4125
4126         down_read(&mm->mmap_sem);
4127         vma = find_vma(mm, ip);
4128         if (vma && vma->vm_file) {
4129                 struct file *f = vma->vm_file;
4130                 char *buf = (char *)__get_free_page(GFP_KERNEL);
4131                 if (buf) {
4132                         char *p;
4133
4134                         p = d_path(&f->f_path, buf, PAGE_SIZE);
4135                         if (IS_ERR(p))
4136                                 p = "?";
4137                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4138                                         vma->vm_start,
4139                                         vma->vm_end - vma->vm_start);
4140                         free_page((unsigned long)buf);
4141                 }
4142         }
4143         up_read(&mm->mmap_sem);
4144 }
4145
4146 #ifdef CONFIG_PROVE_LOCKING
4147 void might_fault(void)
4148 {
4149         /*
4150          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4151          * holding the mmap_sem, this is safe because kernel memory doesn't
4152          * get paged out, therefore we'll never actually fault, and the
4153          * below annotations will generate false positives.
4154          */
4155         if (segment_eq(get_fs(), KERNEL_DS))
4156                 return;
4157
4158         might_sleep();
4159         /*
4160          * it would be nicer only to annotate paths which are not under
4161          * pagefault_disable, however that requires a larger audit and
4162          * providing helpers like get_user_atomic.
4163          */
4164         if (!in_atomic() && current->mm)
4165                 might_lock_read(&current->mm->mmap_sem);
4166 }
4167 EXPORT_SYMBOL(might_fault);
4168 #endif
4169
4170 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4171 static void clear_gigantic_page(struct page *page,
4172                                 unsigned long addr,
4173                                 unsigned int pages_per_huge_page)
4174 {
4175         int i;
4176         struct page *p = page;
4177
4178         might_sleep();
4179         for (i = 0; i < pages_per_huge_page;
4180              i++, p = mem_map_next(p, page, i)) {
4181                 cond_resched();
4182                 clear_user_highpage(p, addr + i * PAGE_SIZE);
4183         }
4184 }
4185 void clear_huge_page(struct page *page,
4186                      unsigned long addr, unsigned int pages_per_huge_page)
4187 {
4188         int i;
4189
4190         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4191                 clear_gigantic_page(page, addr, pages_per_huge_page);
4192                 return;
4193         }
4194
4195         might_sleep();
4196         for (i = 0; i < pages_per_huge_page; i++) {
4197                 cond_resched();
4198                 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4199         }
4200 }
4201
4202 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4203                                     unsigned long addr,
4204                                     struct vm_area_struct *vma,
4205                                     unsigned int pages_per_huge_page)
4206 {
4207         int i;
4208         struct page *dst_base = dst;
4209         struct page *src_base = src;
4210
4211         for (i = 0; i < pages_per_huge_page; ) {
4212                 cond_resched();
4213                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4214
4215                 i++;
4216                 dst = mem_map_next(dst, dst_base, i);
4217                 src = mem_map_next(src, src_base, i);
4218         }
4219 }
4220
4221 void copy_user_huge_page(struct page *dst, struct page *src,
4222                          unsigned long addr, struct vm_area_struct *vma,
4223                          unsigned int pages_per_huge_page)
4224 {
4225         int i;
4226
4227         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4228                 copy_user_gigantic_page(dst, src, addr, vma,
4229                                         pages_per_huge_page);
4230                 return;
4231         }
4232
4233         might_sleep();
4234         for (i = 0; i < pages_per_huge_page; i++) {
4235                 cond_resched();
4236                 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4237         }
4238 }
4239 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */