Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial
[cascardo/linux.git] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60 #include <linux/migrate.h>
61 #include <linux/string.h>
62 #include <linux/dma-debug.h>
63 #include <linux/debugfs.h>
64
65 #include <asm/io.h>
66 #include <asm/pgalloc.h>
67 #include <asm/uaccess.h>
68 #include <asm/tlb.h>
69 #include <asm/tlbflush.h>
70 #include <asm/pgtable.h>
71
72 #include "internal.h"
73
74 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
75 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
76 #endif
77
78 #ifndef CONFIG_NEED_MULTIPLE_NODES
79 /* use the per-pgdat data instead for discontigmem - mbligh */
80 unsigned long max_mapnr;
81 struct page *mem_map;
82
83 EXPORT_SYMBOL(max_mapnr);
84 EXPORT_SYMBOL(mem_map);
85 #endif
86
87 /*
88  * A number of key systems in x86 including ioremap() rely on the assumption
89  * that high_memory defines the upper bound on direct map memory, then end
90  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
91  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
92  * and ZONE_HIGHMEM.
93  */
94 void * high_memory;
95
96 EXPORT_SYMBOL(high_memory);
97
98 /*
99  * Randomize the address space (stacks, mmaps, brk, etc.).
100  *
101  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
102  *   as ancient (libc5 based) binaries can segfault. )
103  */
104 int randomize_va_space __read_mostly =
105 #ifdef CONFIG_COMPAT_BRK
106                                         1;
107 #else
108                                         2;
109 #endif
110
111 static int __init disable_randmaps(char *s)
112 {
113         randomize_va_space = 0;
114         return 1;
115 }
116 __setup("norandmaps", disable_randmaps);
117
118 unsigned long zero_pfn __read_mostly;
119 unsigned long highest_memmap_pfn __read_mostly;
120
121 EXPORT_SYMBOL(zero_pfn);
122
123 /*
124  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
125  */
126 static int __init init_zero_pfn(void)
127 {
128         zero_pfn = page_to_pfn(ZERO_PAGE(0));
129         return 0;
130 }
131 core_initcall(init_zero_pfn);
132
133
134 #if defined(SPLIT_RSS_COUNTING)
135
136 void sync_mm_rss(struct mm_struct *mm)
137 {
138         int i;
139
140         for (i = 0; i < NR_MM_COUNTERS; i++) {
141                 if (current->rss_stat.count[i]) {
142                         add_mm_counter(mm, i, current->rss_stat.count[i]);
143                         current->rss_stat.count[i] = 0;
144                 }
145         }
146         current->rss_stat.events = 0;
147 }
148
149 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
150 {
151         struct task_struct *task = current;
152
153         if (likely(task->mm == mm))
154                 task->rss_stat.count[member] += val;
155         else
156                 add_mm_counter(mm, member, val);
157 }
158 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
159 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
160
161 /* sync counter once per 64 page faults */
162 #define TASK_RSS_EVENTS_THRESH  (64)
163 static void check_sync_rss_stat(struct task_struct *task)
164 {
165         if (unlikely(task != current))
166                 return;
167         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
168                 sync_mm_rss(task->mm);
169 }
170 #else /* SPLIT_RSS_COUNTING */
171
172 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
173 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
174
175 static void check_sync_rss_stat(struct task_struct *task)
176 {
177 }
178
179 #endif /* SPLIT_RSS_COUNTING */
180
181 #ifdef HAVE_GENERIC_MMU_GATHER
182
183 static int tlb_next_batch(struct mmu_gather *tlb)
184 {
185         struct mmu_gather_batch *batch;
186
187         batch = tlb->active;
188         if (batch->next) {
189                 tlb->active = batch->next;
190                 return 1;
191         }
192
193         if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
194                 return 0;
195
196         batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
197         if (!batch)
198                 return 0;
199
200         tlb->batch_count++;
201         batch->next = NULL;
202         batch->nr   = 0;
203         batch->max  = MAX_GATHER_BATCH;
204
205         tlb->active->next = batch;
206         tlb->active = batch;
207
208         return 1;
209 }
210
211 /* tlb_gather_mmu
212  *      Called to initialize an (on-stack) mmu_gather structure for page-table
213  *      tear-down from @mm. The @fullmm argument is used when @mm is without
214  *      users and we're going to destroy the full address space (exit/execve).
215  */
216 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
217 {
218         tlb->mm = mm;
219
220         /* Is it from 0 to ~0? */
221         tlb->fullmm     = !(start | (end+1));
222         tlb->need_flush_all = 0;
223         tlb->local.next = NULL;
224         tlb->local.nr   = 0;
225         tlb->local.max  = ARRAY_SIZE(tlb->__pages);
226         tlb->active     = &tlb->local;
227         tlb->batch_count = 0;
228
229 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
230         tlb->batch = NULL;
231 #endif
232
233         __tlb_reset_range(tlb);
234 }
235
236 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
237 {
238         if (!tlb->end)
239                 return;
240
241         tlb_flush(tlb);
242         mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
243 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
244         tlb_table_flush(tlb);
245 #endif
246         __tlb_reset_range(tlb);
247 }
248
249 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
250 {
251         struct mmu_gather_batch *batch;
252
253         for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
254                 free_pages_and_swap_cache(batch->pages, batch->nr);
255                 batch->nr = 0;
256         }
257         tlb->active = &tlb->local;
258 }
259
260 void tlb_flush_mmu(struct mmu_gather *tlb)
261 {
262         tlb_flush_mmu_tlbonly(tlb);
263         tlb_flush_mmu_free(tlb);
264 }
265
266 /* tlb_finish_mmu
267  *      Called at the end of the shootdown operation to free up any resources
268  *      that were required.
269  */
270 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
271 {
272         struct mmu_gather_batch *batch, *next;
273
274         tlb_flush_mmu(tlb);
275
276         /* keep the page table cache within bounds */
277         check_pgt_cache();
278
279         for (batch = tlb->local.next; batch; batch = next) {
280                 next = batch->next;
281                 free_pages((unsigned long)batch, 0);
282         }
283         tlb->local.next = NULL;
284 }
285
286 /* __tlb_remove_page
287  *      Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
288  *      handling the additional races in SMP caused by other CPUs caching valid
289  *      mappings in their TLBs. Returns the number of free page slots left.
290  *      When out of page slots we must call tlb_flush_mmu().
291  */
292 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
293 {
294         struct mmu_gather_batch *batch;
295
296         VM_BUG_ON(!tlb->end);
297
298         batch = tlb->active;
299         batch->pages[batch->nr++] = page;
300         if (batch->nr == batch->max) {
301                 if (!tlb_next_batch(tlb))
302                         return 0;
303                 batch = tlb->active;
304         }
305         VM_BUG_ON_PAGE(batch->nr > batch->max, page);
306
307         return batch->max - batch->nr;
308 }
309
310 #endif /* HAVE_GENERIC_MMU_GATHER */
311
312 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
313
314 /*
315  * See the comment near struct mmu_table_batch.
316  */
317
318 static void tlb_remove_table_smp_sync(void *arg)
319 {
320         /* Simply deliver the interrupt */
321 }
322
323 static void tlb_remove_table_one(void *table)
324 {
325         /*
326          * This isn't an RCU grace period and hence the page-tables cannot be
327          * assumed to be actually RCU-freed.
328          *
329          * It is however sufficient for software page-table walkers that rely on
330          * IRQ disabling. See the comment near struct mmu_table_batch.
331          */
332         smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
333         __tlb_remove_table(table);
334 }
335
336 static void tlb_remove_table_rcu(struct rcu_head *head)
337 {
338         struct mmu_table_batch *batch;
339         int i;
340
341         batch = container_of(head, struct mmu_table_batch, rcu);
342
343         for (i = 0; i < batch->nr; i++)
344                 __tlb_remove_table(batch->tables[i]);
345
346         free_page((unsigned long)batch);
347 }
348
349 void tlb_table_flush(struct mmu_gather *tlb)
350 {
351         struct mmu_table_batch **batch = &tlb->batch;
352
353         if (*batch) {
354                 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
355                 *batch = NULL;
356         }
357 }
358
359 void tlb_remove_table(struct mmu_gather *tlb, void *table)
360 {
361         struct mmu_table_batch **batch = &tlb->batch;
362
363         /*
364          * When there's less then two users of this mm there cannot be a
365          * concurrent page-table walk.
366          */
367         if (atomic_read(&tlb->mm->mm_users) < 2) {
368                 __tlb_remove_table(table);
369                 return;
370         }
371
372         if (*batch == NULL) {
373                 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
374                 if (*batch == NULL) {
375                         tlb_remove_table_one(table);
376                         return;
377                 }
378                 (*batch)->nr = 0;
379         }
380         (*batch)->tables[(*batch)->nr++] = table;
381         if ((*batch)->nr == MAX_TABLE_BATCH)
382                 tlb_table_flush(tlb);
383 }
384
385 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
386
387 /*
388  * Note: this doesn't free the actual pages themselves. That
389  * has been handled earlier when unmapping all the memory regions.
390  */
391 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
392                            unsigned long addr)
393 {
394         pgtable_t token = pmd_pgtable(*pmd);
395         pmd_clear(pmd);
396         pte_free_tlb(tlb, token, addr);
397         atomic_long_dec(&tlb->mm->nr_ptes);
398 }
399
400 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
401                                 unsigned long addr, unsigned long end,
402                                 unsigned long floor, unsigned long ceiling)
403 {
404         pmd_t *pmd;
405         unsigned long next;
406         unsigned long start;
407
408         start = addr;
409         pmd = pmd_offset(pud, addr);
410         do {
411                 next = pmd_addr_end(addr, end);
412                 if (pmd_none_or_clear_bad(pmd))
413                         continue;
414                 free_pte_range(tlb, pmd, addr);
415         } while (pmd++, addr = next, addr != end);
416
417         start &= PUD_MASK;
418         if (start < floor)
419                 return;
420         if (ceiling) {
421                 ceiling &= PUD_MASK;
422                 if (!ceiling)
423                         return;
424         }
425         if (end - 1 > ceiling - 1)
426                 return;
427
428         pmd = pmd_offset(pud, start);
429         pud_clear(pud);
430         pmd_free_tlb(tlb, pmd, start);
431 }
432
433 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
434                                 unsigned long addr, unsigned long end,
435                                 unsigned long floor, unsigned long ceiling)
436 {
437         pud_t *pud;
438         unsigned long next;
439         unsigned long start;
440
441         start = addr;
442         pud = pud_offset(pgd, addr);
443         do {
444                 next = pud_addr_end(addr, end);
445                 if (pud_none_or_clear_bad(pud))
446                         continue;
447                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
448         } while (pud++, addr = next, addr != end);
449
450         start &= PGDIR_MASK;
451         if (start < floor)
452                 return;
453         if (ceiling) {
454                 ceiling &= PGDIR_MASK;
455                 if (!ceiling)
456                         return;
457         }
458         if (end - 1 > ceiling - 1)
459                 return;
460
461         pud = pud_offset(pgd, start);
462         pgd_clear(pgd);
463         pud_free_tlb(tlb, pud, start);
464 }
465
466 /*
467  * This function frees user-level page tables of a process.
468  */
469 void free_pgd_range(struct mmu_gather *tlb,
470                         unsigned long addr, unsigned long end,
471                         unsigned long floor, unsigned long ceiling)
472 {
473         pgd_t *pgd;
474         unsigned long next;
475
476         /*
477          * The next few lines have given us lots of grief...
478          *
479          * Why are we testing PMD* at this top level?  Because often
480          * there will be no work to do at all, and we'd prefer not to
481          * go all the way down to the bottom just to discover that.
482          *
483          * Why all these "- 1"s?  Because 0 represents both the bottom
484          * of the address space and the top of it (using -1 for the
485          * top wouldn't help much: the masks would do the wrong thing).
486          * The rule is that addr 0 and floor 0 refer to the bottom of
487          * the address space, but end 0 and ceiling 0 refer to the top
488          * Comparisons need to use "end - 1" and "ceiling - 1" (though
489          * that end 0 case should be mythical).
490          *
491          * Wherever addr is brought up or ceiling brought down, we must
492          * be careful to reject "the opposite 0" before it confuses the
493          * subsequent tests.  But what about where end is brought down
494          * by PMD_SIZE below? no, end can't go down to 0 there.
495          *
496          * Whereas we round start (addr) and ceiling down, by different
497          * masks at different levels, in order to test whether a table
498          * now has no other vmas using it, so can be freed, we don't
499          * bother to round floor or end up - the tests don't need that.
500          */
501
502         addr &= PMD_MASK;
503         if (addr < floor) {
504                 addr += PMD_SIZE;
505                 if (!addr)
506                         return;
507         }
508         if (ceiling) {
509                 ceiling &= PMD_MASK;
510                 if (!ceiling)
511                         return;
512         }
513         if (end - 1 > ceiling - 1)
514                 end -= PMD_SIZE;
515         if (addr > end - 1)
516                 return;
517
518         pgd = pgd_offset(tlb->mm, addr);
519         do {
520                 next = pgd_addr_end(addr, end);
521                 if (pgd_none_or_clear_bad(pgd))
522                         continue;
523                 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
524         } while (pgd++, addr = next, addr != end);
525 }
526
527 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
528                 unsigned long floor, unsigned long ceiling)
529 {
530         while (vma) {
531                 struct vm_area_struct *next = vma->vm_next;
532                 unsigned long addr = vma->vm_start;
533
534                 /*
535                  * Hide vma from rmap and truncate_pagecache before freeing
536                  * pgtables
537                  */
538                 unlink_anon_vmas(vma);
539                 unlink_file_vma(vma);
540
541                 if (is_vm_hugetlb_page(vma)) {
542                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
543                                 floor, next? next->vm_start: ceiling);
544                 } else {
545                         /*
546                          * Optimization: gather nearby vmas into one call down
547                          */
548                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
549                                && !is_vm_hugetlb_page(next)) {
550                                 vma = next;
551                                 next = vma->vm_next;
552                                 unlink_anon_vmas(vma);
553                                 unlink_file_vma(vma);
554                         }
555                         free_pgd_range(tlb, addr, vma->vm_end,
556                                 floor, next? next->vm_start: ceiling);
557                 }
558                 vma = next;
559         }
560 }
561
562 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
563                 pmd_t *pmd, unsigned long address)
564 {
565         spinlock_t *ptl;
566         pgtable_t new = pte_alloc_one(mm, address);
567         int wait_split_huge_page;
568         if (!new)
569                 return -ENOMEM;
570
571         /*
572          * Ensure all pte setup (eg. pte page lock and page clearing) are
573          * visible before the pte is made visible to other CPUs by being
574          * put into page tables.
575          *
576          * The other side of the story is the pointer chasing in the page
577          * table walking code (when walking the page table without locking;
578          * ie. most of the time). Fortunately, these data accesses consist
579          * of a chain of data-dependent loads, meaning most CPUs (alpha
580          * being the notable exception) will already guarantee loads are
581          * seen in-order. See the alpha page table accessors for the
582          * smp_read_barrier_depends() barriers in page table walking code.
583          */
584         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
585
586         ptl = pmd_lock(mm, pmd);
587         wait_split_huge_page = 0;
588         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
589                 atomic_long_inc(&mm->nr_ptes);
590                 pmd_populate(mm, pmd, new);
591                 new = NULL;
592         } else if (unlikely(pmd_trans_splitting(*pmd)))
593                 wait_split_huge_page = 1;
594         spin_unlock(ptl);
595         if (new)
596                 pte_free(mm, new);
597         if (wait_split_huge_page)
598                 wait_split_huge_page(vma->anon_vma, pmd);
599         return 0;
600 }
601
602 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
603 {
604         pte_t *new = pte_alloc_one_kernel(&init_mm, address);
605         if (!new)
606                 return -ENOMEM;
607
608         smp_wmb(); /* See comment in __pte_alloc */
609
610         spin_lock(&init_mm.page_table_lock);
611         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
612                 pmd_populate_kernel(&init_mm, pmd, new);
613                 new = NULL;
614         } else
615                 VM_BUG_ON(pmd_trans_splitting(*pmd));
616         spin_unlock(&init_mm.page_table_lock);
617         if (new)
618                 pte_free_kernel(&init_mm, new);
619         return 0;
620 }
621
622 static inline void init_rss_vec(int *rss)
623 {
624         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
625 }
626
627 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
628 {
629         int i;
630
631         if (current->mm == mm)
632                 sync_mm_rss(mm);
633         for (i = 0; i < NR_MM_COUNTERS; i++)
634                 if (rss[i])
635                         add_mm_counter(mm, i, rss[i]);
636 }
637
638 /*
639  * This function is called to print an error when a bad pte
640  * is found. For example, we might have a PFN-mapped pte in
641  * a region that doesn't allow it.
642  *
643  * The calling function must still handle the error.
644  */
645 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
646                           pte_t pte, struct page *page)
647 {
648         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
649         pud_t *pud = pud_offset(pgd, addr);
650         pmd_t *pmd = pmd_offset(pud, addr);
651         struct address_space *mapping;
652         pgoff_t index;
653         static unsigned long resume;
654         static unsigned long nr_shown;
655         static unsigned long nr_unshown;
656
657         /*
658          * Allow a burst of 60 reports, then keep quiet for that minute;
659          * or allow a steady drip of one report per second.
660          */
661         if (nr_shown == 60) {
662                 if (time_before(jiffies, resume)) {
663                         nr_unshown++;
664                         return;
665                 }
666                 if (nr_unshown) {
667                         printk(KERN_ALERT
668                                 "BUG: Bad page map: %lu messages suppressed\n",
669                                 nr_unshown);
670                         nr_unshown = 0;
671                 }
672                 nr_shown = 0;
673         }
674         if (nr_shown++ == 0)
675                 resume = jiffies + 60 * HZ;
676
677         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
678         index = linear_page_index(vma, addr);
679
680         printk(KERN_ALERT
681                 "BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
682                 current->comm,
683                 (long long)pte_val(pte), (long long)pmd_val(*pmd));
684         if (page)
685                 dump_page(page, "bad pte");
686         printk(KERN_ALERT
687                 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
688                 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
689         /*
690          * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
691          */
692         if (vma->vm_ops)
693                 printk(KERN_ALERT "vma->vm_ops->fault: %pSR\n",
694                        vma->vm_ops->fault);
695         if (vma->vm_file)
696                 printk(KERN_ALERT "vma->vm_file->f_op->mmap: %pSR\n",
697                        vma->vm_file->f_op->mmap);
698         dump_stack();
699         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
700 }
701
702 /*
703  * vm_normal_page -- This function gets the "struct page" associated with a pte.
704  *
705  * "Special" mappings do not wish to be associated with a "struct page" (either
706  * it doesn't exist, or it exists but they don't want to touch it). In this
707  * case, NULL is returned here. "Normal" mappings do have a struct page.
708  *
709  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
710  * pte bit, in which case this function is trivial. Secondly, an architecture
711  * may not have a spare pte bit, which requires a more complicated scheme,
712  * described below.
713  *
714  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
715  * special mapping (even if there are underlying and valid "struct pages").
716  * COWed pages of a VM_PFNMAP are always normal.
717  *
718  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
719  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
720  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
721  * mapping will always honor the rule
722  *
723  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
724  *
725  * And for normal mappings this is false.
726  *
727  * This restricts such mappings to be a linear translation from virtual address
728  * to pfn. To get around this restriction, we allow arbitrary mappings so long
729  * as the vma is not a COW mapping; in that case, we know that all ptes are
730  * special (because none can have been COWed).
731  *
732  *
733  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
734  *
735  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
736  * page" backing, however the difference is that _all_ pages with a struct
737  * page (that is, those where pfn_valid is true) are refcounted and considered
738  * normal pages by the VM. The disadvantage is that pages are refcounted
739  * (which can be slower and simply not an option for some PFNMAP users). The
740  * advantage is that we don't have to follow the strict linearity rule of
741  * PFNMAP mappings in order to support COWable mappings.
742  *
743  */
744 #ifdef __HAVE_ARCH_PTE_SPECIAL
745 # define HAVE_PTE_SPECIAL 1
746 #else
747 # define HAVE_PTE_SPECIAL 0
748 #endif
749 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
750                                 pte_t pte)
751 {
752         unsigned long pfn = pte_pfn(pte);
753
754         if (HAVE_PTE_SPECIAL) {
755                 if (likely(!pte_special(pte)))
756                         goto check_pfn;
757                 if (vma->vm_ops && vma->vm_ops->find_special_page)
758                         return vma->vm_ops->find_special_page(vma, addr);
759                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
760                         return NULL;
761                 if (!is_zero_pfn(pfn))
762                         print_bad_pte(vma, addr, pte, NULL);
763                 return NULL;
764         }
765
766         /* !HAVE_PTE_SPECIAL case follows: */
767
768         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
769                 if (vma->vm_flags & VM_MIXEDMAP) {
770                         if (!pfn_valid(pfn))
771                                 return NULL;
772                         goto out;
773                 } else {
774                         unsigned long off;
775                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
776                         if (pfn == vma->vm_pgoff + off)
777                                 return NULL;
778                         if (!is_cow_mapping(vma->vm_flags))
779                                 return NULL;
780                 }
781         }
782
783         if (is_zero_pfn(pfn))
784                 return NULL;
785 check_pfn:
786         if (unlikely(pfn > highest_memmap_pfn)) {
787                 print_bad_pte(vma, addr, pte, NULL);
788                 return NULL;
789         }
790
791         /*
792          * NOTE! We still have PageReserved() pages in the page tables.
793          * eg. VDSO mappings can cause them to exist.
794          */
795 out:
796         return pfn_to_page(pfn);
797 }
798
799 /*
800  * copy one vm_area from one task to the other. Assumes the page tables
801  * already present in the new task to be cleared in the whole range
802  * covered by this vma.
803  */
804
805 static inline unsigned long
806 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
807                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
808                 unsigned long addr, int *rss)
809 {
810         unsigned long vm_flags = vma->vm_flags;
811         pte_t pte = *src_pte;
812         struct page *page;
813
814         /* pte contains position in swap or file, so copy. */
815         if (unlikely(!pte_present(pte))) {
816                 swp_entry_t entry = pte_to_swp_entry(pte);
817
818                 if (likely(!non_swap_entry(entry))) {
819                         if (swap_duplicate(entry) < 0)
820                                 return entry.val;
821
822                         /* make sure dst_mm is on swapoff's mmlist. */
823                         if (unlikely(list_empty(&dst_mm->mmlist))) {
824                                 spin_lock(&mmlist_lock);
825                                 if (list_empty(&dst_mm->mmlist))
826                                         list_add(&dst_mm->mmlist,
827                                                         &src_mm->mmlist);
828                                 spin_unlock(&mmlist_lock);
829                         }
830                         rss[MM_SWAPENTS]++;
831                 } else if (is_migration_entry(entry)) {
832                         page = migration_entry_to_page(entry);
833
834                         if (PageAnon(page))
835                                 rss[MM_ANONPAGES]++;
836                         else
837                                 rss[MM_FILEPAGES]++;
838
839                         if (is_write_migration_entry(entry) &&
840                                         is_cow_mapping(vm_flags)) {
841                                 /*
842                                  * COW mappings require pages in both
843                                  * parent and child to be set to read.
844                                  */
845                                 make_migration_entry_read(&entry);
846                                 pte = swp_entry_to_pte(entry);
847                                 if (pte_swp_soft_dirty(*src_pte))
848                                         pte = pte_swp_mksoft_dirty(pte);
849                                 set_pte_at(src_mm, addr, src_pte, pte);
850                         }
851                 }
852                 goto out_set_pte;
853         }
854
855         /*
856          * If it's a COW mapping, write protect it both
857          * in the parent and the child
858          */
859         if (is_cow_mapping(vm_flags)) {
860                 ptep_set_wrprotect(src_mm, addr, src_pte);
861                 pte = pte_wrprotect(pte);
862         }
863
864         /*
865          * If it's a shared mapping, mark it clean in
866          * the child
867          */
868         if (vm_flags & VM_SHARED)
869                 pte = pte_mkclean(pte);
870         pte = pte_mkold(pte);
871
872         page = vm_normal_page(vma, addr, pte);
873         if (page) {
874                 get_page(page);
875                 page_dup_rmap(page);
876                 if (PageAnon(page))
877                         rss[MM_ANONPAGES]++;
878                 else
879                         rss[MM_FILEPAGES]++;
880         }
881
882 out_set_pte:
883         set_pte_at(dst_mm, addr, dst_pte, pte);
884         return 0;
885 }
886
887 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
888                    pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
889                    unsigned long addr, unsigned long end)
890 {
891         pte_t *orig_src_pte, *orig_dst_pte;
892         pte_t *src_pte, *dst_pte;
893         spinlock_t *src_ptl, *dst_ptl;
894         int progress = 0;
895         int rss[NR_MM_COUNTERS];
896         swp_entry_t entry = (swp_entry_t){0};
897
898 again:
899         init_rss_vec(rss);
900
901         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
902         if (!dst_pte)
903                 return -ENOMEM;
904         src_pte = pte_offset_map(src_pmd, addr);
905         src_ptl = pte_lockptr(src_mm, src_pmd);
906         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
907         orig_src_pte = src_pte;
908         orig_dst_pte = dst_pte;
909         arch_enter_lazy_mmu_mode();
910
911         do {
912                 /*
913                  * We are holding two locks at this point - either of them
914                  * could generate latencies in another task on another CPU.
915                  */
916                 if (progress >= 32) {
917                         progress = 0;
918                         if (need_resched() ||
919                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
920                                 break;
921                 }
922                 if (pte_none(*src_pte)) {
923                         progress++;
924                         continue;
925                 }
926                 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
927                                                         vma, addr, rss);
928                 if (entry.val)
929                         break;
930                 progress += 8;
931         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
932
933         arch_leave_lazy_mmu_mode();
934         spin_unlock(src_ptl);
935         pte_unmap(orig_src_pte);
936         add_mm_rss_vec(dst_mm, rss);
937         pte_unmap_unlock(orig_dst_pte, dst_ptl);
938         cond_resched();
939
940         if (entry.val) {
941                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
942                         return -ENOMEM;
943                 progress = 0;
944         }
945         if (addr != end)
946                 goto again;
947         return 0;
948 }
949
950 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
951                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
952                 unsigned long addr, unsigned long end)
953 {
954         pmd_t *src_pmd, *dst_pmd;
955         unsigned long next;
956
957         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
958         if (!dst_pmd)
959                 return -ENOMEM;
960         src_pmd = pmd_offset(src_pud, addr);
961         do {
962                 next = pmd_addr_end(addr, end);
963                 if (pmd_trans_huge(*src_pmd)) {
964                         int err;
965                         VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
966                         err = copy_huge_pmd(dst_mm, src_mm,
967                                             dst_pmd, src_pmd, addr, vma);
968                         if (err == -ENOMEM)
969                                 return -ENOMEM;
970                         if (!err)
971                                 continue;
972                         /* fall through */
973                 }
974                 if (pmd_none_or_clear_bad(src_pmd))
975                         continue;
976                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
977                                                 vma, addr, next))
978                         return -ENOMEM;
979         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
980         return 0;
981 }
982
983 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
984                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
985                 unsigned long addr, unsigned long end)
986 {
987         pud_t *src_pud, *dst_pud;
988         unsigned long next;
989
990         dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
991         if (!dst_pud)
992                 return -ENOMEM;
993         src_pud = pud_offset(src_pgd, addr);
994         do {
995                 next = pud_addr_end(addr, end);
996                 if (pud_none_or_clear_bad(src_pud))
997                         continue;
998                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
999                                                 vma, addr, next))
1000                         return -ENOMEM;
1001         } while (dst_pud++, src_pud++, addr = next, addr != end);
1002         return 0;
1003 }
1004
1005 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1006                 struct vm_area_struct *vma)
1007 {
1008         pgd_t *src_pgd, *dst_pgd;
1009         unsigned long next;
1010         unsigned long addr = vma->vm_start;
1011         unsigned long end = vma->vm_end;
1012         unsigned long mmun_start;       /* For mmu_notifiers */
1013         unsigned long mmun_end;         /* For mmu_notifiers */
1014         bool is_cow;
1015         int ret;
1016
1017         /*
1018          * Don't copy ptes where a page fault will fill them correctly.
1019          * Fork becomes much lighter when there are big shared or private
1020          * readonly mappings. The tradeoff is that copy_page_range is more
1021          * efficient than faulting.
1022          */
1023         if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1024                         !vma->anon_vma)
1025                 return 0;
1026
1027         if (is_vm_hugetlb_page(vma))
1028                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1029
1030         if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1031                 /*
1032                  * We do not free on error cases below as remove_vma
1033                  * gets called on error from higher level routine
1034                  */
1035                 ret = track_pfn_copy(vma);
1036                 if (ret)
1037                         return ret;
1038         }
1039
1040         /*
1041          * We need to invalidate the secondary MMU mappings only when
1042          * there could be a permission downgrade on the ptes of the
1043          * parent mm. And a permission downgrade will only happen if
1044          * is_cow_mapping() returns true.
1045          */
1046         is_cow = is_cow_mapping(vma->vm_flags);
1047         mmun_start = addr;
1048         mmun_end   = end;
1049         if (is_cow)
1050                 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1051                                                     mmun_end);
1052
1053         ret = 0;
1054         dst_pgd = pgd_offset(dst_mm, addr);
1055         src_pgd = pgd_offset(src_mm, addr);
1056         do {
1057                 next = pgd_addr_end(addr, end);
1058                 if (pgd_none_or_clear_bad(src_pgd))
1059                         continue;
1060                 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1061                                             vma, addr, next))) {
1062                         ret = -ENOMEM;
1063                         break;
1064                 }
1065         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1066
1067         if (is_cow)
1068                 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1069         return ret;
1070 }
1071
1072 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1073                                 struct vm_area_struct *vma, pmd_t *pmd,
1074                                 unsigned long addr, unsigned long end,
1075                                 struct zap_details *details)
1076 {
1077         struct mm_struct *mm = tlb->mm;
1078         int force_flush = 0;
1079         int rss[NR_MM_COUNTERS];
1080         spinlock_t *ptl;
1081         pte_t *start_pte;
1082         pte_t *pte;
1083         swp_entry_t entry;
1084
1085 again:
1086         init_rss_vec(rss);
1087         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1088         pte = start_pte;
1089         arch_enter_lazy_mmu_mode();
1090         do {
1091                 pte_t ptent = *pte;
1092                 if (pte_none(ptent)) {
1093                         continue;
1094                 }
1095
1096                 if (pte_present(ptent)) {
1097                         struct page *page;
1098
1099                         page = vm_normal_page(vma, addr, ptent);
1100                         if (unlikely(details) && page) {
1101                                 /*
1102                                  * unmap_shared_mapping_pages() wants to
1103                                  * invalidate cache without truncating:
1104                                  * unmap shared but keep private pages.
1105                                  */
1106                                 if (details->check_mapping &&
1107                                     details->check_mapping != page->mapping)
1108                                         continue;
1109                         }
1110                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1111                                                         tlb->fullmm);
1112                         tlb_remove_tlb_entry(tlb, pte, addr);
1113                         if (unlikely(!page))
1114                                 continue;
1115                         if (PageAnon(page))
1116                                 rss[MM_ANONPAGES]--;
1117                         else {
1118                                 if (pte_dirty(ptent)) {
1119                                         force_flush = 1;
1120                                         set_page_dirty(page);
1121                                 }
1122                                 if (pte_young(ptent) &&
1123                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1124                                         mark_page_accessed(page);
1125                                 rss[MM_FILEPAGES]--;
1126                         }
1127                         page_remove_rmap(page);
1128                         if (unlikely(page_mapcount(page) < 0))
1129                                 print_bad_pte(vma, addr, ptent, page);
1130                         if (unlikely(!__tlb_remove_page(tlb, page))) {
1131                                 force_flush = 1;
1132                                 addr += PAGE_SIZE;
1133                                 break;
1134                         }
1135                         continue;
1136                 }
1137                 /* If details->check_mapping, we leave swap entries. */
1138                 if (unlikely(details))
1139                         continue;
1140
1141                 entry = pte_to_swp_entry(ptent);
1142                 if (!non_swap_entry(entry))
1143                         rss[MM_SWAPENTS]--;
1144                 else if (is_migration_entry(entry)) {
1145                         struct page *page;
1146
1147                         page = migration_entry_to_page(entry);
1148
1149                         if (PageAnon(page))
1150                                 rss[MM_ANONPAGES]--;
1151                         else
1152                                 rss[MM_FILEPAGES]--;
1153                 }
1154                 if (unlikely(!free_swap_and_cache(entry)))
1155                         print_bad_pte(vma, addr, ptent, NULL);
1156                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1157         } while (pte++, addr += PAGE_SIZE, addr != end);
1158
1159         add_mm_rss_vec(mm, rss);
1160         arch_leave_lazy_mmu_mode();
1161
1162         /* Do the actual TLB flush before dropping ptl */
1163         if (force_flush)
1164                 tlb_flush_mmu_tlbonly(tlb);
1165         pte_unmap_unlock(start_pte, ptl);
1166
1167         /*
1168          * If we forced a TLB flush (either due to running out of
1169          * batch buffers or because we needed to flush dirty TLB
1170          * entries before releasing the ptl), free the batched
1171          * memory too. Restart if we didn't do everything.
1172          */
1173         if (force_flush) {
1174                 force_flush = 0;
1175                 tlb_flush_mmu_free(tlb);
1176
1177                 if (addr != end)
1178                         goto again;
1179         }
1180
1181         return addr;
1182 }
1183
1184 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1185                                 struct vm_area_struct *vma, pud_t *pud,
1186                                 unsigned long addr, unsigned long end,
1187                                 struct zap_details *details)
1188 {
1189         pmd_t *pmd;
1190         unsigned long next;
1191
1192         pmd = pmd_offset(pud, addr);
1193         do {
1194                 next = pmd_addr_end(addr, end);
1195                 if (pmd_trans_huge(*pmd)) {
1196                         if (next - addr != HPAGE_PMD_SIZE) {
1197 #ifdef CONFIG_DEBUG_VM
1198                                 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1199                                         pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1200                                                 __func__, addr, end,
1201                                                 vma->vm_start,
1202                                                 vma->vm_end);
1203                                         BUG();
1204                                 }
1205 #endif
1206                                 split_huge_page_pmd(vma, addr, pmd);
1207                         } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1208                                 goto next;
1209                         /* fall through */
1210                 }
1211                 /*
1212                  * Here there can be other concurrent MADV_DONTNEED or
1213                  * trans huge page faults running, and if the pmd is
1214                  * none or trans huge it can change under us. This is
1215                  * because MADV_DONTNEED holds the mmap_sem in read
1216                  * mode.
1217                  */
1218                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1219                         goto next;
1220                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1221 next:
1222                 cond_resched();
1223         } while (pmd++, addr = next, addr != end);
1224
1225         return addr;
1226 }
1227
1228 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1229                                 struct vm_area_struct *vma, pgd_t *pgd,
1230                                 unsigned long addr, unsigned long end,
1231                                 struct zap_details *details)
1232 {
1233         pud_t *pud;
1234         unsigned long next;
1235
1236         pud = pud_offset(pgd, addr);
1237         do {
1238                 next = pud_addr_end(addr, end);
1239                 if (pud_none_or_clear_bad(pud))
1240                         continue;
1241                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1242         } while (pud++, addr = next, addr != end);
1243
1244         return addr;
1245 }
1246
1247 static void unmap_page_range(struct mmu_gather *tlb,
1248                              struct vm_area_struct *vma,
1249                              unsigned long addr, unsigned long end,
1250                              struct zap_details *details)
1251 {
1252         pgd_t *pgd;
1253         unsigned long next;
1254
1255         if (details && !details->check_mapping)
1256                 details = NULL;
1257
1258         BUG_ON(addr >= end);
1259         tlb_start_vma(tlb, vma);
1260         pgd = pgd_offset(vma->vm_mm, addr);
1261         do {
1262                 next = pgd_addr_end(addr, end);
1263                 if (pgd_none_or_clear_bad(pgd))
1264                         continue;
1265                 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1266         } while (pgd++, addr = next, addr != end);
1267         tlb_end_vma(tlb, vma);
1268 }
1269
1270
1271 static void unmap_single_vma(struct mmu_gather *tlb,
1272                 struct vm_area_struct *vma, unsigned long start_addr,
1273                 unsigned long end_addr,
1274                 struct zap_details *details)
1275 {
1276         unsigned long start = max(vma->vm_start, start_addr);
1277         unsigned long end;
1278
1279         if (start >= vma->vm_end)
1280                 return;
1281         end = min(vma->vm_end, end_addr);
1282         if (end <= vma->vm_start)
1283                 return;
1284
1285         if (vma->vm_file)
1286                 uprobe_munmap(vma, start, end);
1287
1288         if (unlikely(vma->vm_flags & VM_PFNMAP))
1289                 untrack_pfn(vma, 0, 0);
1290
1291         if (start != end) {
1292                 if (unlikely(is_vm_hugetlb_page(vma))) {
1293                         /*
1294                          * It is undesirable to test vma->vm_file as it
1295                          * should be non-null for valid hugetlb area.
1296                          * However, vm_file will be NULL in the error
1297                          * cleanup path of mmap_region. When
1298                          * hugetlbfs ->mmap method fails,
1299                          * mmap_region() nullifies vma->vm_file
1300                          * before calling this function to clean up.
1301                          * Since no pte has actually been setup, it is
1302                          * safe to do nothing in this case.
1303                          */
1304                         if (vma->vm_file) {
1305                                 i_mmap_lock_write(vma->vm_file->f_mapping);
1306                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1307                                 i_mmap_unlock_write(vma->vm_file->f_mapping);
1308                         }
1309                 } else
1310                         unmap_page_range(tlb, vma, start, end, details);
1311         }
1312 }
1313
1314 /**
1315  * unmap_vmas - unmap a range of memory covered by a list of vma's
1316  * @tlb: address of the caller's struct mmu_gather
1317  * @vma: the starting vma
1318  * @start_addr: virtual address at which to start unmapping
1319  * @end_addr: virtual address at which to end unmapping
1320  *
1321  * Unmap all pages in the vma list.
1322  *
1323  * Only addresses between `start' and `end' will be unmapped.
1324  *
1325  * The VMA list must be sorted in ascending virtual address order.
1326  *
1327  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1328  * range after unmap_vmas() returns.  So the only responsibility here is to
1329  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1330  * drops the lock and schedules.
1331  */
1332 void unmap_vmas(struct mmu_gather *tlb,
1333                 struct vm_area_struct *vma, unsigned long start_addr,
1334                 unsigned long end_addr)
1335 {
1336         struct mm_struct *mm = vma->vm_mm;
1337
1338         mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1339         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1340                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1341         mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1342 }
1343
1344 /**
1345  * zap_page_range - remove user pages in a given range
1346  * @vma: vm_area_struct holding the applicable pages
1347  * @start: starting address of pages to zap
1348  * @size: number of bytes to zap
1349  * @details: details of shared cache invalidation
1350  *
1351  * Caller must protect the VMA list
1352  */
1353 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1354                 unsigned long size, struct zap_details *details)
1355 {
1356         struct mm_struct *mm = vma->vm_mm;
1357         struct mmu_gather tlb;
1358         unsigned long end = start + size;
1359
1360         lru_add_drain();
1361         tlb_gather_mmu(&tlb, mm, start, end);
1362         update_hiwater_rss(mm);
1363         mmu_notifier_invalidate_range_start(mm, start, end);
1364         for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1365                 unmap_single_vma(&tlb, vma, start, end, details);
1366         mmu_notifier_invalidate_range_end(mm, start, end);
1367         tlb_finish_mmu(&tlb, start, end);
1368 }
1369
1370 /**
1371  * zap_page_range_single - remove user pages in a given range
1372  * @vma: vm_area_struct holding the applicable pages
1373  * @address: starting address of pages to zap
1374  * @size: number of bytes to zap
1375  * @details: details of shared cache invalidation
1376  *
1377  * The range must fit into one VMA.
1378  */
1379 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1380                 unsigned long size, struct zap_details *details)
1381 {
1382         struct mm_struct *mm = vma->vm_mm;
1383         struct mmu_gather tlb;
1384         unsigned long end = address + size;
1385
1386         lru_add_drain();
1387         tlb_gather_mmu(&tlb, mm, address, end);
1388         update_hiwater_rss(mm);
1389         mmu_notifier_invalidate_range_start(mm, address, end);
1390         unmap_single_vma(&tlb, vma, address, end, details);
1391         mmu_notifier_invalidate_range_end(mm, address, end);
1392         tlb_finish_mmu(&tlb, address, end);
1393 }
1394
1395 /**
1396  * zap_vma_ptes - remove ptes mapping the vma
1397  * @vma: vm_area_struct holding ptes to be zapped
1398  * @address: starting address of pages to zap
1399  * @size: number of bytes to zap
1400  *
1401  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1402  *
1403  * The entire address range must be fully contained within the vma.
1404  *
1405  * Returns 0 if successful.
1406  */
1407 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1408                 unsigned long size)
1409 {
1410         if (address < vma->vm_start || address + size > vma->vm_end ||
1411                         !(vma->vm_flags & VM_PFNMAP))
1412                 return -1;
1413         zap_page_range_single(vma, address, size, NULL);
1414         return 0;
1415 }
1416 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1417
1418 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1419                         spinlock_t **ptl)
1420 {
1421         pgd_t * pgd = pgd_offset(mm, addr);
1422         pud_t * pud = pud_alloc(mm, pgd, addr);
1423         if (pud) {
1424                 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1425                 if (pmd) {
1426                         VM_BUG_ON(pmd_trans_huge(*pmd));
1427                         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1428                 }
1429         }
1430         return NULL;
1431 }
1432
1433 /*
1434  * This is the old fallback for page remapping.
1435  *
1436  * For historical reasons, it only allows reserved pages. Only
1437  * old drivers should use this, and they needed to mark their
1438  * pages reserved for the old functions anyway.
1439  */
1440 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1441                         struct page *page, pgprot_t prot)
1442 {
1443         struct mm_struct *mm = vma->vm_mm;
1444         int retval;
1445         pte_t *pte;
1446         spinlock_t *ptl;
1447
1448         retval = -EINVAL;
1449         if (PageAnon(page))
1450                 goto out;
1451         retval = -ENOMEM;
1452         flush_dcache_page(page);
1453         pte = get_locked_pte(mm, addr, &ptl);
1454         if (!pte)
1455                 goto out;
1456         retval = -EBUSY;
1457         if (!pte_none(*pte))
1458                 goto out_unlock;
1459
1460         /* Ok, finally just insert the thing.. */
1461         get_page(page);
1462         inc_mm_counter_fast(mm, MM_FILEPAGES);
1463         page_add_file_rmap(page);
1464         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1465
1466         retval = 0;
1467         pte_unmap_unlock(pte, ptl);
1468         return retval;
1469 out_unlock:
1470         pte_unmap_unlock(pte, ptl);
1471 out:
1472         return retval;
1473 }
1474
1475 /**
1476  * vm_insert_page - insert single page into user vma
1477  * @vma: user vma to map to
1478  * @addr: target user address of this page
1479  * @page: source kernel page
1480  *
1481  * This allows drivers to insert individual pages they've allocated
1482  * into a user vma.
1483  *
1484  * The page has to be a nice clean _individual_ kernel allocation.
1485  * If you allocate a compound page, you need to have marked it as
1486  * such (__GFP_COMP), or manually just split the page up yourself
1487  * (see split_page()).
1488  *
1489  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1490  * took an arbitrary page protection parameter. This doesn't allow
1491  * that. Your vma protection will have to be set up correctly, which
1492  * means that if you want a shared writable mapping, you'd better
1493  * ask for a shared writable mapping!
1494  *
1495  * The page does not need to be reserved.
1496  *
1497  * Usually this function is called from f_op->mmap() handler
1498  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1499  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1500  * function from other places, for example from page-fault handler.
1501  */
1502 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1503                         struct page *page)
1504 {
1505         if (addr < vma->vm_start || addr >= vma->vm_end)
1506                 return -EFAULT;
1507         if (!page_count(page))
1508                 return -EINVAL;
1509         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1510                 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1511                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1512                 vma->vm_flags |= VM_MIXEDMAP;
1513         }
1514         return insert_page(vma, addr, page, vma->vm_page_prot);
1515 }
1516 EXPORT_SYMBOL(vm_insert_page);
1517
1518 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1519                         unsigned long pfn, pgprot_t prot)
1520 {
1521         struct mm_struct *mm = vma->vm_mm;
1522         int retval;
1523         pte_t *pte, entry;
1524         spinlock_t *ptl;
1525
1526         retval = -ENOMEM;
1527         pte = get_locked_pte(mm, addr, &ptl);
1528         if (!pte)
1529                 goto out;
1530         retval = -EBUSY;
1531         if (!pte_none(*pte))
1532                 goto out_unlock;
1533
1534         /* Ok, finally just insert the thing.. */
1535         entry = pte_mkspecial(pfn_pte(pfn, prot));
1536         set_pte_at(mm, addr, pte, entry);
1537         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1538
1539         retval = 0;
1540 out_unlock:
1541         pte_unmap_unlock(pte, ptl);
1542 out:
1543         return retval;
1544 }
1545
1546 /**
1547  * vm_insert_pfn - insert single pfn into user vma
1548  * @vma: user vma to map to
1549  * @addr: target user address of this page
1550  * @pfn: source kernel pfn
1551  *
1552  * Similar to vm_insert_page, this allows drivers to insert individual pages
1553  * they've allocated into a user vma. Same comments apply.
1554  *
1555  * This function should only be called from a vm_ops->fault handler, and
1556  * in that case the handler should return NULL.
1557  *
1558  * vma cannot be a COW mapping.
1559  *
1560  * As this is called only for pages that do not currently exist, we
1561  * do not need to flush old virtual caches or the TLB.
1562  */
1563 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1564                         unsigned long pfn)
1565 {
1566         int ret;
1567         pgprot_t pgprot = vma->vm_page_prot;
1568         /*
1569          * Technically, architectures with pte_special can avoid all these
1570          * restrictions (same for remap_pfn_range).  However we would like
1571          * consistency in testing and feature parity among all, so we should
1572          * try to keep these invariants in place for everybody.
1573          */
1574         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1575         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1576                                                 (VM_PFNMAP|VM_MIXEDMAP));
1577         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1578         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1579
1580         if (addr < vma->vm_start || addr >= vma->vm_end)
1581                 return -EFAULT;
1582         if (track_pfn_insert(vma, &pgprot, pfn))
1583                 return -EINVAL;
1584
1585         ret = insert_pfn(vma, addr, pfn, pgprot);
1586
1587         return ret;
1588 }
1589 EXPORT_SYMBOL(vm_insert_pfn);
1590
1591 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1592                         unsigned long pfn)
1593 {
1594         BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1595
1596         if (addr < vma->vm_start || addr >= vma->vm_end)
1597                 return -EFAULT;
1598
1599         /*
1600          * If we don't have pte special, then we have to use the pfn_valid()
1601          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1602          * refcount the page if pfn_valid is true (hence insert_page rather
1603          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1604          * without pte special, it would there be refcounted as a normal page.
1605          */
1606         if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1607                 struct page *page;
1608
1609                 page = pfn_to_page(pfn);
1610                 return insert_page(vma, addr, page, vma->vm_page_prot);
1611         }
1612         return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1613 }
1614 EXPORT_SYMBOL(vm_insert_mixed);
1615
1616 /*
1617  * maps a range of physical memory into the requested pages. the old
1618  * mappings are removed. any references to nonexistent pages results
1619  * in null mappings (currently treated as "copy-on-access")
1620  */
1621 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1622                         unsigned long addr, unsigned long end,
1623                         unsigned long pfn, pgprot_t prot)
1624 {
1625         pte_t *pte;
1626         spinlock_t *ptl;
1627
1628         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1629         if (!pte)
1630                 return -ENOMEM;
1631         arch_enter_lazy_mmu_mode();
1632         do {
1633                 BUG_ON(!pte_none(*pte));
1634                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1635                 pfn++;
1636         } while (pte++, addr += PAGE_SIZE, addr != end);
1637         arch_leave_lazy_mmu_mode();
1638         pte_unmap_unlock(pte - 1, ptl);
1639         return 0;
1640 }
1641
1642 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1643                         unsigned long addr, unsigned long end,
1644                         unsigned long pfn, pgprot_t prot)
1645 {
1646         pmd_t *pmd;
1647         unsigned long next;
1648
1649         pfn -= addr >> PAGE_SHIFT;
1650         pmd = pmd_alloc(mm, pud, addr);
1651         if (!pmd)
1652                 return -ENOMEM;
1653         VM_BUG_ON(pmd_trans_huge(*pmd));
1654         do {
1655                 next = pmd_addr_end(addr, end);
1656                 if (remap_pte_range(mm, pmd, addr, next,
1657                                 pfn + (addr >> PAGE_SHIFT), prot))
1658                         return -ENOMEM;
1659         } while (pmd++, addr = next, addr != end);
1660         return 0;
1661 }
1662
1663 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1664                         unsigned long addr, unsigned long end,
1665                         unsigned long pfn, pgprot_t prot)
1666 {
1667         pud_t *pud;
1668         unsigned long next;
1669
1670         pfn -= addr >> PAGE_SHIFT;
1671         pud = pud_alloc(mm, pgd, addr);
1672         if (!pud)
1673                 return -ENOMEM;
1674         do {
1675                 next = pud_addr_end(addr, end);
1676                 if (remap_pmd_range(mm, pud, addr, next,
1677                                 pfn + (addr >> PAGE_SHIFT), prot))
1678                         return -ENOMEM;
1679         } while (pud++, addr = next, addr != end);
1680         return 0;
1681 }
1682
1683 /**
1684  * remap_pfn_range - remap kernel memory to userspace
1685  * @vma: user vma to map to
1686  * @addr: target user address to start at
1687  * @pfn: physical address of kernel memory
1688  * @size: size of map area
1689  * @prot: page protection flags for this mapping
1690  *
1691  *  Note: this is only safe if the mm semaphore is held when called.
1692  */
1693 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1694                     unsigned long pfn, unsigned long size, pgprot_t prot)
1695 {
1696         pgd_t *pgd;
1697         unsigned long next;
1698         unsigned long end = addr + PAGE_ALIGN(size);
1699         struct mm_struct *mm = vma->vm_mm;
1700         int err;
1701
1702         /*
1703          * Physically remapped pages are special. Tell the
1704          * rest of the world about it:
1705          *   VM_IO tells people not to look at these pages
1706          *      (accesses can have side effects).
1707          *   VM_PFNMAP tells the core MM that the base pages are just
1708          *      raw PFN mappings, and do not have a "struct page" associated
1709          *      with them.
1710          *   VM_DONTEXPAND
1711          *      Disable vma merging and expanding with mremap().
1712          *   VM_DONTDUMP
1713          *      Omit vma from core dump, even when VM_IO turned off.
1714          *
1715          * There's a horrible special case to handle copy-on-write
1716          * behaviour that some programs depend on. We mark the "original"
1717          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1718          * See vm_normal_page() for details.
1719          */
1720         if (is_cow_mapping(vma->vm_flags)) {
1721                 if (addr != vma->vm_start || end != vma->vm_end)
1722                         return -EINVAL;
1723                 vma->vm_pgoff = pfn;
1724         }
1725
1726         err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
1727         if (err)
1728                 return -EINVAL;
1729
1730         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1731
1732         BUG_ON(addr >= end);
1733         pfn -= addr >> PAGE_SHIFT;
1734         pgd = pgd_offset(mm, addr);
1735         flush_cache_range(vma, addr, end);
1736         do {
1737                 next = pgd_addr_end(addr, end);
1738                 err = remap_pud_range(mm, pgd, addr, next,
1739                                 pfn + (addr >> PAGE_SHIFT), prot);
1740                 if (err)
1741                         break;
1742         } while (pgd++, addr = next, addr != end);
1743
1744         if (err)
1745                 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
1746
1747         return err;
1748 }
1749 EXPORT_SYMBOL(remap_pfn_range);
1750
1751 /**
1752  * vm_iomap_memory - remap memory to userspace
1753  * @vma: user vma to map to
1754  * @start: start of area
1755  * @len: size of area
1756  *
1757  * This is a simplified io_remap_pfn_range() for common driver use. The
1758  * driver just needs to give us the physical memory range to be mapped,
1759  * we'll figure out the rest from the vma information.
1760  *
1761  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1762  * whatever write-combining details or similar.
1763  */
1764 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1765 {
1766         unsigned long vm_len, pfn, pages;
1767
1768         /* Check that the physical memory area passed in looks valid */
1769         if (start + len < start)
1770                 return -EINVAL;
1771         /*
1772          * You *really* shouldn't map things that aren't page-aligned,
1773          * but we've historically allowed it because IO memory might
1774          * just have smaller alignment.
1775          */
1776         len += start & ~PAGE_MASK;
1777         pfn = start >> PAGE_SHIFT;
1778         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1779         if (pfn + pages < pfn)
1780                 return -EINVAL;
1781
1782         /* We start the mapping 'vm_pgoff' pages into the area */
1783         if (vma->vm_pgoff > pages)
1784                 return -EINVAL;
1785         pfn += vma->vm_pgoff;
1786         pages -= vma->vm_pgoff;
1787
1788         /* Can we fit all of the mapping? */
1789         vm_len = vma->vm_end - vma->vm_start;
1790         if (vm_len >> PAGE_SHIFT > pages)
1791                 return -EINVAL;
1792
1793         /* Ok, let it rip */
1794         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1795 }
1796 EXPORT_SYMBOL(vm_iomap_memory);
1797
1798 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1799                                      unsigned long addr, unsigned long end,
1800                                      pte_fn_t fn, void *data)
1801 {
1802         pte_t *pte;
1803         int err;
1804         pgtable_t token;
1805         spinlock_t *uninitialized_var(ptl);
1806
1807         pte = (mm == &init_mm) ?
1808                 pte_alloc_kernel(pmd, addr) :
1809                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1810         if (!pte)
1811                 return -ENOMEM;
1812
1813         BUG_ON(pmd_huge(*pmd));
1814
1815         arch_enter_lazy_mmu_mode();
1816
1817         token = pmd_pgtable(*pmd);
1818
1819         do {
1820                 err = fn(pte++, token, addr, data);
1821                 if (err)
1822                         break;
1823         } while (addr += PAGE_SIZE, addr != end);
1824
1825         arch_leave_lazy_mmu_mode();
1826
1827         if (mm != &init_mm)
1828                 pte_unmap_unlock(pte-1, ptl);
1829         return err;
1830 }
1831
1832 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1833                                      unsigned long addr, unsigned long end,
1834                                      pte_fn_t fn, void *data)
1835 {
1836         pmd_t *pmd;
1837         unsigned long next;
1838         int err;
1839
1840         BUG_ON(pud_huge(*pud));
1841
1842         pmd = pmd_alloc(mm, pud, addr);
1843         if (!pmd)
1844                 return -ENOMEM;
1845         do {
1846                 next = pmd_addr_end(addr, end);
1847                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1848                 if (err)
1849                         break;
1850         } while (pmd++, addr = next, addr != end);
1851         return err;
1852 }
1853
1854 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1855                                      unsigned long addr, unsigned long end,
1856                                      pte_fn_t fn, void *data)
1857 {
1858         pud_t *pud;
1859         unsigned long next;
1860         int err;
1861
1862         pud = pud_alloc(mm, pgd, addr);
1863         if (!pud)
1864                 return -ENOMEM;
1865         do {
1866                 next = pud_addr_end(addr, end);
1867                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1868                 if (err)
1869                         break;
1870         } while (pud++, addr = next, addr != end);
1871         return err;
1872 }
1873
1874 /*
1875  * Scan a region of virtual memory, filling in page tables as necessary
1876  * and calling a provided function on each leaf page table.
1877  */
1878 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1879                         unsigned long size, pte_fn_t fn, void *data)
1880 {
1881         pgd_t *pgd;
1882         unsigned long next;
1883         unsigned long end = addr + size;
1884         int err;
1885
1886         BUG_ON(addr >= end);
1887         pgd = pgd_offset(mm, addr);
1888         do {
1889                 next = pgd_addr_end(addr, end);
1890                 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1891                 if (err)
1892                         break;
1893         } while (pgd++, addr = next, addr != end);
1894
1895         return err;
1896 }
1897 EXPORT_SYMBOL_GPL(apply_to_page_range);
1898
1899 /*
1900  * handle_pte_fault chooses page fault handler according to an entry which was
1901  * read non-atomically.  Before making any commitment, on those architectures
1902  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
1903  * parts, do_swap_page must check under lock before unmapping the pte and
1904  * proceeding (but do_wp_page is only called after already making such a check;
1905  * and do_anonymous_page can safely check later on).
1906  */
1907 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1908                                 pte_t *page_table, pte_t orig_pte)
1909 {
1910         int same = 1;
1911 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1912         if (sizeof(pte_t) > sizeof(unsigned long)) {
1913                 spinlock_t *ptl = pte_lockptr(mm, pmd);
1914                 spin_lock(ptl);
1915                 same = pte_same(*page_table, orig_pte);
1916                 spin_unlock(ptl);
1917         }
1918 #endif
1919         pte_unmap(page_table);
1920         return same;
1921 }
1922
1923 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1924 {
1925         debug_dma_assert_idle(src);
1926
1927         /*
1928          * If the source page was a PFN mapping, we don't have
1929          * a "struct page" for it. We do a best-effort copy by
1930          * just copying from the original user address. If that
1931          * fails, we just zero-fill it. Live with it.
1932          */
1933         if (unlikely(!src)) {
1934                 void *kaddr = kmap_atomic(dst);
1935                 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1936
1937                 /*
1938                  * This really shouldn't fail, because the page is there
1939                  * in the page tables. But it might just be unreadable,
1940                  * in which case we just give up and fill the result with
1941                  * zeroes.
1942                  */
1943                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1944                         clear_page(kaddr);
1945                 kunmap_atomic(kaddr);
1946                 flush_dcache_page(dst);
1947         } else
1948                 copy_user_highpage(dst, src, va, vma);
1949 }
1950
1951 /*
1952  * Notify the address space that the page is about to become writable so that
1953  * it can prohibit this or wait for the page to get into an appropriate state.
1954  *
1955  * We do this without the lock held, so that it can sleep if it needs to.
1956  */
1957 static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
1958                unsigned long address)
1959 {
1960         struct vm_fault vmf;
1961         int ret;
1962
1963         vmf.virtual_address = (void __user *)(address & PAGE_MASK);
1964         vmf.pgoff = page->index;
1965         vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
1966         vmf.page = page;
1967
1968         ret = vma->vm_ops->page_mkwrite(vma, &vmf);
1969         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
1970                 return ret;
1971         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
1972                 lock_page(page);
1973                 if (!page->mapping) {
1974                         unlock_page(page);
1975                         return 0; /* retry */
1976                 }
1977                 ret |= VM_FAULT_LOCKED;
1978         } else
1979                 VM_BUG_ON_PAGE(!PageLocked(page), page);
1980         return ret;
1981 }
1982
1983 /*
1984  * This routine handles present pages, when users try to write
1985  * to a shared page. It is done by copying the page to a new address
1986  * and decrementing the shared-page counter for the old page.
1987  *
1988  * Note that this routine assumes that the protection checks have been
1989  * done by the caller (the low-level page fault routine in most cases).
1990  * Thus we can safely just mark it writable once we've done any necessary
1991  * COW.
1992  *
1993  * We also mark the page dirty at this point even though the page will
1994  * change only once the write actually happens. This avoids a few races,
1995  * and potentially makes it more efficient.
1996  *
1997  * We enter with non-exclusive mmap_sem (to exclude vma changes,
1998  * but allow concurrent faults), with pte both mapped and locked.
1999  * We return with mmap_sem still held, but pte unmapped and unlocked.
2000  */
2001 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2002                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2003                 spinlock_t *ptl, pte_t orig_pte)
2004         __releases(ptl)
2005 {
2006         struct page *old_page, *new_page = NULL;
2007         pte_t entry;
2008         int ret = 0;
2009         int page_mkwrite = 0;
2010         bool dirty_shared = false;
2011         unsigned long mmun_start = 0;   /* For mmu_notifiers */
2012         unsigned long mmun_end = 0;     /* For mmu_notifiers */
2013         struct mem_cgroup *memcg;
2014
2015         old_page = vm_normal_page(vma, address, orig_pte);
2016         if (!old_page) {
2017                 /*
2018                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2019                  * VM_PFNMAP VMA.
2020                  *
2021                  * We should not cow pages in a shared writeable mapping.
2022                  * Just mark the pages writable as we can't do any dirty
2023                  * accounting on raw pfn maps.
2024                  */
2025                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2026                                      (VM_WRITE|VM_SHARED))
2027                         goto reuse;
2028                 goto gotten;
2029         }
2030
2031         /*
2032          * Take out anonymous pages first, anonymous shared vmas are
2033          * not dirty accountable.
2034          */
2035         if (PageAnon(old_page) && !PageKsm(old_page)) {
2036                 if (!trylock_page(old_page)) {
2037                         page_cache_get(old_page);
2038                         pte_unmap_unlock(page_table, ptl);
2039                         lock_page(old_page);
2040                         page_table = pte_offset_map_lock(mm, pmd, address,
2041                                                          &ptl);
2042                         if (!pte_same(*page_table, orig_pte)) {
2043                                 unlock_page(old_page);
2044                                 goto unlock;
2045                         }
2046                         page_cache_release(old_page);
2047                 }
2048                 if (reuse_swap_page(old_page)) {
2049                         /*
2050                          * The page is all ours.  Move it to our anon_vma so
2051                          * the rmap code will not search our parent or siblings.
2052                          * Protected against the rmap code by the page lock.
2053                          */
2054                         page_move_anon_rmap(old_page, vma, address);
2055                         unlock_page(old_page);
2056                         goto reuse;
2057                 }
2058                 unlock_page(old_page);
2059         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2060                                         (VM_WRITE|VM_SHARED))) {
2061                 page_cache_get(old_page);
2062                 /*
2063                  * Only catch write-faults on shared writable pages,
2064                  * read-only shared pages can get COWed by
2065                  * get_user_pages(.write=1, .force=1).
2066                  */
2067                 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2068                         int tmp;
2069
2070                         pte_unmap_unlock(page_table, ptl);
2071                         tmp = do_page_mkwrite(vma, old_page, address);
2072                         if (unlikely(!tmp || (tmp &
2073                                         (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2074                                 page_cache_release(old_page);
2075                                 return tmp;
2076                         }
2077                         /*
2078                          * Since we dropped the lock we need to revalidate
2079                          * the PTE as someone else may have changed it.  If
2080                          * they did, we just return, as we can count on the
2081                          * MMU to tell us if they didn't also make it writable.
2082                          */
2083                         page_table = pte_offset_map_lock(mm, pmd, address,
2084                                                          &ptl);
2085                         if (!pte_same(*page_table, orig_pte)) {
2086                                 unlock_page(old_page);
2087                                 goto unlock;
2088                         }
2089                         page_mkwrite = 1;
2090                 }
2091
2092                 dirty_shared = true;
2093
2094 reuse:
2095                 /*
2096                  * Clear the pages cpupid information as the existing
2097                  * information potentially belongs to a now completely
2098                  * unrelated process.
2099                  */
2100                 if (old_page)
2101                         page_cpupid_xchg_last(old_page, (1 << LAST_CPUPID_SHIFT) - 1);
2102
2103                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2104                 entry = pte_mkyoung(orig_pte);
2105                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2106                 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2107                         update_mmu_cache(vma, address, page_table);
2108                 pte_unmap_unlock(page_table, ptl);
2109                 ret |= VM_FAULT_WRITE;
2110
2111                 if (dirty_shared) {
2112                         struct address_space *mapping;
2113                         int dirtied;
2114
2115                         if (!page_mkwrite)
2116                                 lock_page(old_page);
2117
2118                         dirtied = set_page_dirty(old_page);
2119                         VM_BUG_ON_PAGE(PageAnon(old_page), old_page);
2120                         mapping = old_page->mapping;
2121                         unlock_page(old_page);
2122                         page_cache_release(old_page);
2123
2124                         if ((dirtied || page_mkwrite) && mapping) {
2125                                 /*
2126                                  * Some device drivers do not set page.mapping
2127                                  * but still dirty their pages
2128                                  */
2129                                 balance_dirty_pages_ratelimited(mapping);
2130                         }
2131
2132                         if (!page_mkwrite)
2133                                 file_update_time(vma->vm_file);
2134                 }
2135
2136                 return ret;
2137         }
2138
2139         /*
2140          * Ok, we need to copy. Oh, well..
2141          */
2142         page_cache_get(old_page);
2143 gotten:
2144         pte_unmap_unlock(page_table, ptl);
2145
2146         if (unlikely(anon_vma_prepare(vma)))
2147                 goto oom;
2148
2149         if (is_zero_pfn(pte_pfn(orig_pte))) {
2150                 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2151                 if (!new_page)
2152                         goto oom;
2153         } else {
2154                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2155                 if (!new_page)
2156                         goto oom;
2157                 cow_user_page(new_page, old_page, address, vma);
2158         }
2159         __SetPageUptodate(new_page);
2160
2161         if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg))
2162                 goto oom_free_new;
2163
2164         mmun_start  = address & PAGE_MASK;
2165         mmun_end    = mmun_start + PAGE_SIZE;
2166         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2167
2168         /*
2169          * Re-check the pte - we dropped the lock
2170          */
2171         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2172         if (likely(pte_same(*page_table, orig_pte))) {
2173                 if (old_page) {
2174                         if (!PageAnon(old_page)) {
2175                                 dec_mm_counter_fast(mm, MM_FILEPAGES);
2176                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2177                         }
2178                 } else
2179                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2180                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2181                 entry = mk_pte(new_page, vma->vm_page_prot);
2182                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2183                 /*
2184                  * Clear the pte entry and flush it first, before updating the
2185                  * pte with the new entry. This will avoid a race condition
2186                  * seen in the presence of one thread doing SMC and another
2187                  * thread doing COW.
2188                  */
2189                 ptep_clear_flush_notify(vma, address, page_table);
2190                 page_add_new_anon_rmap(new_page, vma, address);
2191                 mem_cgroup_commit_charge(new_page, memcg, false);
2192                 lru_cache_add_active_or_unevictable(new_page, vma);
2193                 /*
2194                  * We call the notify macro here because, when using secondary
2195                  * mmu page tables (such as kvm shadow page tables), we want the
2196                  * new page to be mapped directly into the secondary page table.
2197                  */
2198                 set_pte_at_notify(mm, address, page_table, entry);
2199                 update_mmu_cache(vma, address, page_table);
2200                 if (old_page) {
2201                         /*
2202                          * Only after switching the pte to the new page may
2203                          * we remove the mapcount here. Otherwise another
2204                          * process may come and find the rmap count decremented
2205                          * before the pte is switched to the new page, and
2206                          * "reuse" the old page writing into it while our pte
2207                          * here still points into it and can be read by other
2208                          * threads.
2209                          *
2210                          * The critical issue is to order this
2211                          * page_remove_rmap with the ptp_clear_flush above.
2212                          * Those stores are ordered by (if nothing else,)
2213                          * the barrier present in the atomic_add_negative
2214                          * in page_remove_rmap.
2215                          *
2216                          * Then the TLB flush in ptep_clear_flush ensures that
2217                          * no process can access the old page before the
2218                          * decremented mapcount is visible. And the old page
2219                          * cannot be reused until after the decremented
2220                          * mapcount is visible. So transitively, TLBs to
2221                          * old page will be flushed before it can be reused.
2222                          */
2223                         page_remove_rmap(old_page);
2224                 }
2225
2226                 /* Free the old page.. */
2227                 new_page = old_page;
2228                 ret |= VM_FAULT_WRITE;
2229         } else
2230                 mem_cgroup_cancel_charge(new_page, memcg);
2231
2232         if (new_page)
2233                 page_cache_release(new_page);
2234 unlock:
2235         pte_unmap_unlock(page_table, ptl);
2236         if (mmun_end > mmun_start)
2237                 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2238         if (old_page) {
2239                 /*
2240                  * Don't let another task, with possibly unlocked vma,
2241                  * keep the mlocked page.
2242                  */
2243                 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2244                         lock_page(old_page);    /* LRU manipulation */
2245                         munlock_vma_page(old_page);
2246                         unlock_page(old_page);
2247                 }
2248                 page_cache_release(old_page);
2249         }
2250         return ret;
2251 oom_free_new:
2252         page_cache_release(new_page);
2253 oom:
2254         if (old_page)
2255                 page_cache_release(old_page);
2256         return VM_FAULT_OOM;
2257 }
2258
2259 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2260                 unsigned long start_addr, unsigned long end_addr,
2261                 struct zap_details *details)
2262 {
2263         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2264 }
2265
2266 static inline void unmap_mapping_range_tree(struct rb_root *root,
2267                                             struct zap_details *details)
2268 {
2269         struct vm_area_struct *vma;
2270         pgoff_t vba, vea, zba, zea;
2271
2272         vma_interval_tree_foreach(vma, root,
2273                         details->first_index, details->last_index) {
2274
2275                 vba = vma->vm_pgoff;
2276                 vea = vba + vma_pages(vma) - 1;
2277                 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2278                 zba = details->first_index;
2279                 if (zba < vba)
2280                         zba = vba;
2281                 zea = details->last_index;
2282                 if (zea > vea)
2283                         zea = vea;
2284
2285                 unmap_mapping_range_vma(vma,
2286                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2287                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2288                                 details);
2289         }
2290 }
2291
2292 /**
2293  * unmap_mapping_range - unmap the portion of all mmaps in the specified
2294  * address_space corresponding to the specified page range in the underlying
2295  * file.
2296  *
2297  * @mapping: the address space containing mmaps to be unmapped.
2298  * @holebegin: byte in first page to unmap, relative to the start of
2299  * the underlying file.  This will be rounded down to a PAGE_SIZE
2300  * boundary.  Note that this is different from truncate_pagecache(), which
2301  * must keep the partial page.  In contrast, we must get rid of
2302  * partial pages.
2303  * @holelen: size of prospective hole in bytes.  This will be rounded
2304  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2305  * end of the file.
2306  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2307  * but 0 when invalidating pagecache, don't throw away private data.
2308  */
2309 void unmap_mapping_range(struct address_space *mapping,
2310                 loff_t const holebegin, loff_t const holelen, int even_cows)
2311 {
2312         struct zap_details details;
2313         pgoff_t hba = holebegin >> PAGE_SHIFT;
2314         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2315
2316         /* Check for overflow. */
2317         if (sizeof(holelen) > sizeof(hlen)) {
2318                 long long holeend =
2319                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2320                 if (holeend & ~(long long)ULONG_MAX)
2321                         hlen = ULONG_MAX - hba + 1;
2322         }
2323
2324         details.check_mapping = even_cows? NULL: mapping;
2325         details.first_index = hba;
2326         details.last_index = hba + hlen - 1;
2327         if (details.last_index < details.first_index)
2328                 details.last_index = ULONG_MAX;
2329
2330
2331         i_mmap_lock_write(mapping);
2332         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2333                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2334         i_mmap_unlock_write(mapping);
2335 }
2336 EXPORT_SYMBOL(unmap_mapping_range);
2337
2338 /*
2339  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2340  * but allow concurrent faults), and pte mapped but not yet locked.
2341  * We return with pte unmapped and unlocked.
2342  *
2343  * We return with the mmap_sem locked or unlocked in the same cases
2344  * as does filemap_fault().
2345  */
2346 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2347                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2348                 unsigned int flags, pte_t orig_pte)
2349 {
2350         spinlock_t *ptl;
2351         struct page *page, *swapcache;
2352         struct mem_cgroup *memcg;
2353         swp_entry_t entry;
2354         pte_t pte;
2355         int locked;
2356         int exclusive = 0;
2357         int ret = 0;
2358
2359         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2360                 goto out;
2361
2362         entry = pte_to_swp_entry(orig_pte);
2363         if (unlikely(non_swap_entry(entry))) {
2364                 if (is_migration_entry(entry)) {
2365                         migration_entry_wait(mm, pmd, address);
2366                 } else if (is_hwpoison_entry(entry)) {
2367                         ret = VM_FAULT_HWPOISON;
2368                 } else {
2369                         print_bad_pte(vma, address, orig_pte, NULL);
2370                         ret = VM_FAULT_SIGBUS;
2371                 }
2372                 goto out;
2373         }
2374         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2375         page = lookup_swap_cache(entry);
2376         if (!page) {
2377                 page = swapin_readahead(entry,
2378                                         GFP_HIGHUSER_MOVABLE, vma, address);
2379                 if (!page) {
2380                         /*
2381                          * Back out if somebody else faulted in this pte
2382                          * while we released the pte lock.
2383                          */
2384                         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2385                         if (likely(pte_same(*page_table, orig_pte)))
2386                                 ret = VM_FAULT_OOM;
2387                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2388                         goto unlock;
2389                 }
2390
2391                 /* Had to read the page from swap area: Major fault */
2392                 ret = VM_FAULT_MAJOR;
2393                 count_vm_event(PGMAJFAULT);
2394                 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2395         } else if (PageHWPoison(page)) {
2396                 /*
2397                  * hwpoisoned dirty swapcache pages are kept for killing
2398                  * owner processes (which may be unknown at hwpoison time)
2399                  */
2400                 ret = VM_FAULT_HWPOISON;
2401                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2402                 swapcache = page;
2403                 goto out_release;
2404         }
2405
2406         swapcache = page;
2407         locked = lock_page_or_retry(page, mm, flags);
2408
2409         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2410         if (!locked) {
2411                 ret |= VM_FAULT_RETRY;
2412                 goto out_release;
2413         }
2414
2415         /*
2416          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2417          * release the swapcache from under us.  The page pin, and pte_same
2418          * test below, are not enough to exclude that.  Even if it is still
2419          * swapcache, we need to check that the page's swap has not changed.
2420          */
2421         if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2422                 goto out_page;
2423
2424         page = ksm_might_need_to_copy(page, vma, address);
2425         if (unlikely(!page)) {
2426                 ret = VM_FAULT_OOM;
2427                 page = swapcache;
2428                 goto out_page;
2429         }
2430
2431         if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg)) {
2432                 ret = VM_FAULT_OOM;
2433                 goto out_page;
2434         }
2435
2436         /*
2437          * Back out if somebody else already faulted in this pte.
2438          */
2439         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2440         if (unlikely(!pte_same(*page_table, orig_pte)))
2441                 goto out_nomap;
2442
2443         if (unlikely(!PageUptodate(page))) {
2444                 ret = VM_FAULT_SIGBUS;
2445                 goto out_nomap;
2446         }
2447
2448         /*
2449          * The page isn't present yet, go ahead with the fault.
2450          *
2451          * Be careful about the sequence of operations here.
2452          * To get its accounting right, reuse_swap_page() must be called
2453          * while the page is counted on swap but not yet in mapcount i.e.
2454          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2455          * must be called after the swap_free(), or it will never succeed.
2456          */
2457
2458         inc_mm_counter_fast(mm, MM_ANONPAGES);
2459         dec_mm_counter_fast(mm, MM_SWAPENTS);
2460         pte = mk_pte(page, vma->vm_page_prot);
2461         if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2462                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2463                 flags &= ~FAULT_FLAG_WRITE;
2464                 ret |= VM_FAULT_WRITE;
2465                 exclusive = 1;
2466         }
2467         flush_icache_page(vma, page);
2468         if (pte_swp_soft_dirty(orig_pte))
2469                 pte = pte_mksoft_dirty(pte);
2470         set_pte_at(mm, address, page_table, pte);
2471         if (page == swapcache) {
2472                 do_page_add_anon_rmap(page, vma, address, exclusive);
2473                 mem_cgroup_commit_charge(page, memcg, true);
2474         } else { /* ksm created a completely new copy */
2475                 page_add_new_anon_rmap(page, vma, address);
2476                 mem_cgroup_commit_charge(page, memcg, false);
2477                 lru_cache_add_active_or_unevictable(page, vma);
2478         }
2479
2480         swap_free(entry);
2481         if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2482                 try_to_free_swap(page);
2483         unlock_page(page);
2484         if (page != swapcache) {
2485                 /*
2486                  * Hold the lock to avoid the swap entry to be reused
2487                  * until we take the PT lock for the pte_same() check
2488                  * (to avoid false positives from pte_same). For
2489                  * further safety release the lock after the swap_free
2490                  * so that the swap count won't change under a
2491                  * parallel locked swapcache.
2492                  */
2493                 unlock_page(swapcache);
2494                 page_cache_release(swapcache);
2495         }
2496
2497         if (flags & FAULT_FLAG_WRITE) {
2498                 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2499                 if (ret & VM_FAULT_ERROR)
2500                         ret &= VM_FAULT_ERROR;
2501                 goto out;
2502         }
2503
2504         /* No need to invalidate - it was non-present before */
2505         update_mmu_cache(vma, address, page_table);
2506 unlock:
2507         pte_unmap_unlock(page_table, ptl);
2508 out:
2509         return ret;
2510 out_nomap:
2511         mem_cgroup_cancel_charge(page, memcg);
2512         pte_unmap_unlock(page_table, ptl);
2513 out_page:
2514         unlock_page(page);
2515 out_release:
2516         page_cache_release(page);
2517         if (page != swapcache) {
2518                 unlock_page(swapcache);
2519                 page_cache_release(swapcache);
2520         }
2521         return ret;
2522 }
2523
2524 /*
2525  * This is like a special single-page "expand_{down|up}wards()",
2526  * except we must first make sure that 'address{-|+}PAGE_SIZE'
2527  * doesn't hit another vma.
2528  */
2529 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2530 {
2531         address &= PAGE_MASK;
2532         if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
2533                 struct vm_area_struct *prev = vma->vm_prev;
2534
2535                 /*
2536                  * Is there a mapping abutting this one below?
2537                  *
2538                  * That's only ok if it's the same stack mapping
2539                  * that has gotten split..
2540                  */
2541                 if (prev && prev->vm_end == address)
2542                         return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
2543
2544                 return expand_downwards(vma, address - PAGE_SIZE);
2545         }
2546         if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2547                 struct vm_area_struct *next = vma->vm_next;
2548
2549                 /* As VM_GROWSDOWN but s/below/above/ */
2550                 if (next && next->vm_start == address + PAGE_SIZE)
2551                         return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
2552
2553                 return expand_upwards(vma, address + PAGE_SIZE);
2554         }
2555         return 0;
2556 }
2557
2558 /*
2559  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2560  * but allow concurrent faults), and pte mapped but not yet locked.
2561  * We return with mmap_sem still held, but pte unmapped and unlocked.
2562  */
2563 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2564                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2565                 unsigned int flags)
2566 {
2567         struct mem_cgroup *memcg;
2568         struct page *page;
2569         spinlock_t *ptl;
2570         pte_t entry;
2571
2572         pte_unmap(page_table);
2573
2574         /* Check if we need to add a guard page to the stack */
2575         if (check_stack_guard_page(vma, address) < 0)
2576                 return VM_FAULT_SIGSEGV;
2577
2578         /* Use the zero-page for reads */
2579         if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm)) {
2580                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2581                                                 vma->vm_page_prot));
2582                 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2583                 if (!pte_none(*page_table))
2584                         goto unlock;
2585                 goto setpte;
2586         }
2587
2588         /* Allocate our own private page. */
2589         if (unlikely(anon_vma_prepare(vma)))
2590                 goto oom;
2591         page = alloc_zeroed_user_highpage_movable(vma, address);
2592         if (!page)
2593                 goto oom;
2594         /*
2595          * The memory barrier inside __SetPageUptodate makes sure that
2596          * preceeding stores to the page contents become visible before
2597          * the set_pte_at() write.
2598          */
2599         __SetPageUptodate(page);
2600
2601         if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg))
2602                 goto oom_free_page;
2603
2604         entry = mk_pte(page, vma->vm_page_prot);
2605         if (vma->vm_flags & VM_WRITE)
2606                 entry = pte_mkwrite(pte_mkdirty(entry));
2607
2608         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2609         if (!pte_none(*page_table))
2610                 goto release;
2611
2612         inc_mm_counter_fast(mm, MM_ANONPAGES);
2613         page_add_new_anon_rmap(page, vma, address);
2614         mem_cgroup_commit_charge(page, memcg, false);
2615         lru_cache_add_active_or_unevictable(page, vma);
2616 setpte:
2617         set_pte_at(mm, address, page_table, entry);
2618
2619         /* No need to invalidate - it was non-present before */
2620         update_mmu_cache(vma, address, page_table);
2621 unlock:
2622         pte_unmap_unlock(page_table, ptl);
2623         return 0;
2624 release:
2625         mem_cgroup_cancel_charge(page, memcg);
2626         page_cache_release(page);
2627         goto unlock;
2628 oom_free_page:
2629         page_cache_release(page);
2630 oom:
2631         return VM_FAULT_OOM;
2632 }
2633
2634 /*
2635  * The mmap_sem must have been held on entry, and may have been
2636  * released depending on flags and vma->vm_ops->fault() return value.
2637  * See filemap_fault() and __lock_page_retry().
2638  */
2639 static int __do_fault(struct vm_area_struct *vma, unsigned long address,
2640                 pgoff_t pgoff, unsigned int flags, struct page **page)
2641 {
2642         struct vm_fault vmf;
2643         int ret;
2644
2645         vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2646         vmf.pgoff = pgoff;
2647         vmf.flags = flags;
2648         vmf.page = NULL;
2649
2650         ret = vma->vm_ops->fault(vma, &vmf);
2651         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2652                 return ret;
2653
2654         if (unlikely(PageHWPoison(vmf.page))) {
2655                 if (ret & VM_FAULT_LOCKED)
2656                         unlock_page(vmf.page);
2657                 page_cache_release(vmf.page);
2658                 return VM_FAULT_HWPOISON;
2659         }
2660
2661         if (unlikely(!(ret & VM_FAULT_LOCKED)))
2662                 lock_page(vmf.page);
2663         else
2664                 VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
2665
2666         *page = vmf.page;
2667         return ret;
2668 }
2669
2670 /**
2671  * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
2672  *
2673  * @vma: virtual memory area
2674  * @address: user virtual address
2675  * @page: page to map
2676  * @pte: pointer to target page table entry
2677  * @write: true, if new entry is writable
2678  * @anon: true, if it's anonymous page
2679  *
2680  * Caller must hold page table lock relevant for @pte.
2681  *
2682  * Target users are page handler itself and implementations of
2683  * vm_ops->map_pages.
2684  */
2685 void do_set_pte(struct vm_area_struct *vma, unsigned long address,
2686                 struct page *page, pte_t *pte, bool write, bool anon)
2687 {
2688         pte_t entry;
2689
2690         flush_icache_page(vma, page);
2691         entry = mk_pte(page, vma->vm_page_prot);
2692         if (write)
2693                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2694         if (anon) {
2695                 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2696                 page_add_new_anon_rmap(page, vma, address);
2697         } else {
2698                 inc_mm_counter_fast(vma->vm_mm, MM_FILEPAGES);
2699                 page_add_file_rmap(page);
2700         }
2701         set_pte_at(vma->vm_mm, address, pte, entry);
2702
2703         /* no need to invalidate: a not-present page won't be cached */
2704         update_mmu_cache(vma, address, pte);
2705 }
2706
2707 static unsigned long fault_around_bytes __read_mostly =
2708         rounddown_pow_of_two(65536);
2709
2710 #ifdef CONFIG_DEBUG_FS
2711 static int fault_around_bytes_get(void *data, u64 *val)
2712 {
2713         *val = fault_around_bytes;
2714         return 0;
2715 }
2716
2717 /*
2718  * fault_around_pages() and fault_around_mask() expects fault_around_bytes
2719  * rounded down to nearest page order. It's what do_fault_around() expects to
2720  * see.
2721  */
2722 static int fault_around_bytes_set(void *data, u64 val)
2723 {
2724         if (val / PAGE_SIZE > PTRS_PER_PTE)
2725                 return -EINVAL;
2726         if (val > PAGE_SIZE)
2727                 fault_around_bytes = rounddown_pow_of_two(val);
2728         else
2729                 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
2730         return 0;
2731 }
2732 DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
2733                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
2734
2735 static int __init fault_around_debugfs(void)
2736 {
2737         void *ret;
2738
2739         ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
2740                         &fault_around_bytes_fops);
2741         if (!ret)
2742                 pr_warn("Failed to create fault_around_bytes in debugfs");
2743         return 0;
2744 }
2745 late_initcall(fault_around_debugfs);
2746 #endif
2747
2748 /*
2749  * do_fault_around() tries to map few pages around the fault address. The hope
2750  * is that the pages will be needed soon and this will lower the number of
2751  * faults to handle.
2752  *
2753  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
2754  * not ready to be mapped: not up-to-date, locked, etc.
2755  *
2756  * This function is called with the page table lock taken. In the split ptlock
2757  * case the page table lock only protects only those entries which belong to
2758  * the page table corresponding to the fault address.
2759  *
2760  * This function doesn't cross the VMA boundaries, in order to call map_pages()
2761  * only once.
2762  *
2763  * fault_around_pages() defines how many pages we'll try to map.
2764  * do_fault_around() expects it to return a power of two less than or equal to
2765  * PTRS_PER_PTE.
2766  *
2767  * The virtual address of the area that we map is naturally aligned to the
2768  * fault_around_pages() value (and therefore to page order).  This way it's
2769  * easier to guarantee that we don't cross page table boundaries.
2770  */
2771 static void do_fault_around(struct vm_area_struct *vma, unsigned long address,
2772                 pte_t *pte, pgoff_t pgoff, unsigned int flags)
2773 {
2774         unsigned long start_addr, nr_pages, mask;
2775         pgoff_t max_pgoff;
2776         struct vm_fault vmf;
2777         int off;
2778
2779         nr_pages = ACCESS_ONCE(fault_around_bytes) >> PAGE_SHIFT;
2780         mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
2781
2782         start_addr = max(address & mask, vma->vm_start);
2783         off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
2784         pte -= off;
2785         pgoff -= off;
2786
2787         /*
2788          *  max_pgoff is either end of page table or end of vma
2789          *  or fault_around_pages() from pgoff, depending what is nearest.
2790          */
2791         max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
2792                 PTRS_PER_PTE - 1;
2793         max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1,
2794                         pgoff + nr_pages - 1);
2795
2796         /* Check if it makes any sense to call ->map_pages */
2797         while (!pte_none(*pte)) {
2798                 if (++pgoff > max_pgoff)
2799                         return;
2800                 start_addr += PAGE_SIZE;
2801                 if (start_addr >= vma->vm_end)
2802                         return;
2803                 pte++;
2804         }
2805
2806         vmf.virtual_address = (void __user *) start_addr;
2807         vmf.pte = pte;
2808         vmf.pgoff = pgoff;
2809         vmf.max_pgoff = max_pgoff;
2810         vmf.flags = flags;
2811         vma->vm_ops->map_pages(vma, &vmf);
2812 }
2813
2814 static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2815                 unsigned long address, pmd_t *pmd,
2816                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2817 {
2818         struct page *fault_page;
2819         spinlock_t *ptl;
2820         pte_t *pte;
2821         int ret = 0;
2822
2823         /*
2824          * Let's call ->map_pages() first and use ->fault() as fallback
2825          * if page by the offset is not ready to be mapped (cold cache or
2826          * something).
2827          */
2828         if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
2829                 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2830                 do_fault_around(vma, address, pte, pgoff, flags);
2831                 if (!pte_same(*pte, orig_pte))
2832                         goto unlock_out;
2833                 pte_unmap_unlock(pte, ptl);
2834         }
2835
2836         ret = __do_fault(vma, address, pgoff, flags, &fault_page);
2837         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2838                 return ret;
2839
2840         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2841         if (unlikely(!pte_same(*pte, orig_pte))) {
2842                 pte_unmap_unlock(pte, ptl);
2843                 unlock_page(fault_page);
2844                 page_cache_release(fault_page);
2845                 return ret;
2846         }
2847         do_set_pte(vma, address, fault_page, pte, false, false);
2848         unlock_page(fault_page);
2849 unlock_out:
2850         pte_unmap_unlock(pte, ptl);
2851         return ret;
2852 }
2853
2854 static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2855                 unsigned long address, pmd_t *pmd,
2856                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2857 {
2858         struct page *fault_page, *new_page;
2859         struct mem_cgroup *memcg;
2860         spinlock_t *ptl;
2861         pte_t *pte;
2862         int ret;
2863
2864         if (unlikely(anon_vma_prepare(vma)))
2865                 return VM_FAULT_OOM;
2866
2867         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2868         if (!new_page)
2869                 return VM_FAULT_OOM;
2870
2871         if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg)) {
2872                 page_cache_release(new_page);
2873                 return VM_FAULT_OOM;
2874         }
2875
2876         ret = __do_fault(vma, address, pgoff, flags, &fault_page);
2877         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2878                 goto uncharge_out;
2879
2880         copy_user_highpage(new_page, fault_page, address, vma);
2881         __SetPageUptodate(new_page);
2882
2883         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2884         if (unlikely(!pte_same(*pte, orig_pte))) {
2885                 pte_unmap_unlock(pte, ptl);
2886                 unlock_page(fault_page);
2887                 page_cache_release(fault_page);
2888                 goto uncharge_out;
2889         }
2890         do_set_pte(vma, address, new_page, pte, true, true);
2891         mem_cgroup_commit_charge(new_page, memcg, false);
2892         lru_cache_add_active_or_unevictable(new_page, vma);
2893         pte_unmap_unlock(pte, ptl);
2894         unlock_page(fault_page);
2895         page_cache_release(fault_page);
2896         return ret;
2897 uncharge_out:
2898         mem_cgroup_cancel_charge(new_page, memcg);
2899         page_cache_release(new_page);
2900         return ret;
2901 }
2902
2903 static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2904                 unsigned long address, pmd_t *pmd,
2905                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2906 {
2907         struct page *fault_page;
2908         struct address_space *mapping;
2909         spinlock_t *ptl;
2910         pte_t *pte;
2911         int dirtied = 0;
2912         int ret, tmp;
2913
2914         ret = __do_fault(vma, address, pgoff, flags, &fault_page);
2915         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2916                 return ret;
2917
2918         /*
2919          * Check if the backing address space wants to know that the page is
2920          * about to become writable
2921          */
2922         if (vma->vm_ops->page_mkwrite) {
2923                 unlock_page(fault_page);
2924                 tmp = do_page_mkwrite(vma, fault_page, address);
2925                 if (unlikely(!tmp ||
2926                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2927                         page_cache_release(fault_page);
2928                         return tmp;
2929                 }
2930         }
2931
2932         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2933         if (unlikely(!pte_same(*pte, orig_pte))) {
2934                 pte_unmap_unlock(pte, ptl);
2935                 unlock_page(fault_page);
2936                 page_cache_release(fault_page);
2937                 return ret;
2938         }
2939         do_set_pte(vma, address, fault_page, pte, true, false);
2940         pte_unmap_unlock(pte, ptl);
2941
2942         if (set_page_dirty(fault_page))
2943                 dirtied = 1;
2944         /*
2945          * Take a local copy of the address_space - page.mapping may be zeroed
2946          * by truncate after unlock_page().   The address_space itself remains
2947          * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2948          * release semantics to prevent the compiler from undoing this copying.
2949          */
2950         mapping = fault_page->mapping;
2951         unlock_page(fault_page);
2952         if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
2953                 /*
2954                  * Some device drivers do not set page.mapping but still
2955                  * dirty their pages
2956                  */
2957                 balance_dirty_pages_ratelimited(mapping);
2958         }
2959
2960         if (!vma->vm_ops->page_mkwrite)
2961                 file_update_time(vma->vm_file);
2962
2963         return ret;
2964 }
2965
2966 /*
2967  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2968  * but allow concurrent faults).
2969  * The mmap_sem may have been released depending on flags and our
2970  * return value.  See filemap_fault() and __lock_page_or_retry().
2971  */
2972 static int do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2973                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2974                 unsigned int flags, pte_t orig_pte)
2975 {
2976         pgoff_t pgoff = (((address & PAGE_MASK)
2977                         - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2978
2979         pte_unmap(page_table);
2980         if (!(flags & FAULT_FLAG_WRITE))
2981                 return do_read_fault(mm, vma, address, pmd, pgoff, flags,
2982                                 orig_pte);
2983         if (!(vma->vm_flags & VM_SHARED))
2984                 return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
2985                                 orig_pte);
2986         return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2987 }
2988
2989 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
2990                                 unsigned long addr, int page_nid,
2991                                 int *flags)
2992 {
2993         get_page(page);
2994
2995         count_vm_numa_event(NUMA_HINT_FAULTS);
2996         if (page_nid == numa_node_id()) {
2997                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
2998                 *flags |= TNF_FAULT_LOCAL;
2999         }
3000
3001         return mpol_misplaced(page, vma, addr);
3002 }
3003
3004 static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3005                    unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3006 {
3007         struct page *page = NULL;
3008         spinlock_t *ptl;
3009         int page_nid = -1;
3010         int last_cpupid;
3011         int target_nid;
3012         bool migrated = false;
3013         int flags = 0;
3014
3015         /*
3016         * The "pte" at this point cannot be used safely without
3017         * validation through pte_unmap_same(). It's of NUMA type but
3018         * the pfn may be screwed if the read is non atomic.
3019         *
3020         * ptep_modify_prot_start is not called as this is clearing
3021         * the _PAGE_NUMA bit and it is not really expected that there
3022         * would be concurrent hardware modifications to the PTE.
3023         */
3024         ptl = pte_lockptr(mm, pmd);
3025         spin_lock(ptl);
3026         if (unlikely(!pte_same(*ptep, pte))) {
3027                 pte_unmap_unlock(ptep, ptl);
3028                 goto out;
3029         }
3030
3031         pte = pte_mknonnuma(pte);
3032         set_pte_at(mm, addr, ptep, pte);
3033         update_mmu_cache(vma, addr, ptep);
3034
3035         page = vm_normal_page(vma, addr, pte);
3036         if (!page) {
3037                 pte_unmap_unlock(ptep, ptl);
3038                 return 0;
3039         }
3040         BUG_ON(is_zero_pfn(page_to_pfn(page)));
3041
3042         /*
3043          * Avoid grouping on DSO/COW pages in specific and RO pages
3044          * in general, RO pages shouldn't hurt as much anyway since
3045          * they can be in shared cache state.
3046          */
3047         if (!pte_write(pte))
3048                 flags |= TNF_NO_GROUP;
3049
3050         /*
3051          * Flag if the page is shared between multiple address spaces. This
3052          * is later used when determining whether to group tasks together
3053          */
3054         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3055                 flags |= TNF_SHARED;
3056
3057         last_cpupid = page_cpupid_last(page);
3058         page_nid = page_to_nid(page);
3059         target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
3060         pte_unmap_unlock(ptep, ptl);
3061         if (target_nid == -1) {
3062                 put_page(page);
3063                 goto out;
3064         }
3065
3066         /* Migrate to the requested node */
3067         migrated = migrate_misplaced_page(page, vma, target_nid);
3068         if (migrated) {
3069                 page_nid = target_nid;
3070                 flags |= TNF_MIGRATED;
3071         }
3072
3073 out:
3074         if (page_nid != -1)
3075                 task_numa_fault(last_cpupid, page_nid, 1, flags);
3076         return 0;
3077 }
3078
3079 /*
3080  * These routines also need to handle stuff like marking pages dirty
3081  * and/or accessed for architectures that don't do it in hardware (most
3082  * RISC architectures).  The early dirtying is also good on the i386.
3083  *
3084  * There is also a hook called "update_mmu_cache()" that architectures
3085  * with external mmu caches can use to update those (ie the Sparc or
3086  * PowerPC hashed page tables that act as extended TLBs).
3087  *
3088  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3089  * but allow concurrent faults), and pte mapped but not yet locked.
3090  * We return with pte unmapped and unlocked.
3091  *
3092  * The mmap_sem may have been released depending on flags and our
3093  * return value.  See filemap_fault() and __lock_page_or_retry().
3094  */
3095 static int handle_pte_fault(struct mm_struct *mm,
3096                      struct vm_area_struct *vma, unsigned long address,
3097                      pte_t *pte, pmd_t *pmd, unsigned int flags)
3098 {
3099         pte_t entry;
3100         spinlock_t *ptl;
3101
3102         /*
3103          * some architectures can have larger ptes than wordsize,
3104          * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and CONFIG_32BIT=y,
3105          * so READ_ONCE or ACCESS_ONCE cannot guarantee atomic accesses.
3106          * The code below just needs a consistent view for the ifs and
3107          * we later double check anyway with the ptl lock held. So here
3108          * a barrier will do.
3109          */
3110         entry = *pte;
3111         barrier();
3112         if (!pte_present(entry)) {
3113                 if (pte_none(entry)) {
3114                         if (vma->vm_ops) {
3115                                 if (likely(vma->vm_ops->fault))
3116                                         return do_fault(mm, vma, address, pte,
3117                                                         pmd, flags, entry);
3118                         }
3119                         return do_anonymous_page(mm, vma, address,
3120                                                  pte, pmd, flags);
3121                 }
3122                 return do_swap_page(mm, vma, address,
3123                                         pte, pmd, flags, entry);
3124         }
3125
3126         if (pte_numa(entry))
3127                 return do_numa_page(mm, vma, address, entry, pte, pmd);
3128
3129         ptl = pte_lockptr(mm, pmd);
3130         spin_lock(ptl);
3131         if (unlikely(!pte_same(*pte, entry)))
3132                 goto unlock;
3133         if (flags & FAULT_FLAG_WRITE) {
3134                 if (!pte_write(entry))
3135                         return do_wp_page(mm, vma, address,
3136                                         pte, pmd, ptl, entry);
3137                 entry = pte_mkdirty(entry);
3138         }
3139         entry = pte_mkyoung(entry);
3140         if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3141                 update_mmu_cache(vma, address, pte);
3142         } else {
3143                 /*
3144                  * This is needed only for protection faults but the arch code
3145                  * is not yet telling us if this is a protection fault or not.
3146                  * This still avoids useless tlb flushes for .text page faults
3147                  * with threads.
3148                  */
3149                 if (flags & FAULT_FLAG_WRITE)
3150                         flush_tlb_fix_spurious_fault(vma, address);
3151         }
3152 unlock:
3153         pte_unmap_unlock(pte, ptl);
3154         return 0;
3155 }
3156
3157 /*
3158  * By the time we get here, we already hold the mm semaphore
3159  *
3160  * The mmap_sem may have been released depending on flags and our
3161  * return value.  See filemap_fault() and __lock_page_or_retry().
3162  */
3163 static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3164                              unsigned long address, unsigned int flags)
3165 {
3166         pgd_t *pgd;
3167         pud_t *pud;
3168         pmd_t *pmd;
3169         pte_t *pte;
3170
3171         if (unlikely(is_vm_hugetlb_page(vma)))
3172                 return hugetlb_fault(mm, vma, address, flags);
3173
3174         pgd = pgd_offset(mm, address);
3175         pud = pud_alloc(mm, pgd, address);
3176         if (!pud)
3177                 return VM_FAULT_OOM;
3178         pmd = pmd_alloc(mm, pud, address);
3179         if (!pmd)
3180                 return VM_FAULT_OOM;
3181         if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3182                 int ret = VM_FAULT_FALLBACK;
3183                 if (!vma->vm_ops)
3184                         ret = do_huge_pmd_anonymous_page(mm, vma, address,
3185                                         pmd, flags);
3186                 if (!(ret & VM_FAULT_FALLBACK))
3187                         return ret;
3188         } else {
3189                 pmd_t orig_pmd = *pmd;
3190                 int ret;
3191
3192                 barrier();
3193                 if (pmd_trans_huge(orig_pmd)) {
3194                         unsigned int dirty = flags & FAULT_FLAG_WRITE;
3195
3196                         /*
3197                          * If the pmd is splitting, return and retry the
3198                          * the fault.  Alternative: wait until the split
3199                          * is done, and goto retry.
3200                          */
3201                         if (pmd_trans_splitting(orig_pmd))
3202                                 return 0;
3203
3204                         if (pmd_numa(orig_pmd))
3205                                 return do_huge_pmd_numa_page(mm, vma, address,
3206                                                              orig_pmd, pmd);
3207
3208                         if (dirty && !pmd_write(orig_pmd)) {
3209                                 ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3210                                                           orig_pmd);
3211                                 if (!(ret & VM_FAULT_FALLBACK))
3212                                         return ret;
3213                         } else {
3214                                 huge_pmd_set_accessed(mm, vma, address, pmd,
3215                                                       orig_pmd, dirty);
3216                                 return 0;
3217                         }
3218                 }
3219         }
3220
3221         /*
3222          * Use __pte_alloc instead of pte_alloc_map, because we can't
3223          * run pte_offset_map on the pmd, if an huge pmd could
3224          * materialize from under us from a different thread.
3225          */
3226         if (unlikely(pmd_none(*pmd)) &&
3227             unlikely(__pte_alloc(mm, vma, pmd, address)))
3228                 return VM_FAULT_OOM;
3229         /* if an huge pmd materialized from under us just retry later */
3230         if (unlikely(pmd_trans_huge(*pmd)))
3231                 return 0;
3232         /*
3233          * A regular pmd is established and it can't morph into a huge pmd
3234          * from under us anymore at this point because we hold the mmap_sem
3235          * read mode and khugepaged takes it in write mode. So now it's
3236          * safe to run pte_offset_map().
3237          */
3238         pte = pte_offset_map(pmd, address);
3239
3240         return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3241 }
3242
3243 /*
3244  * By the time we get here, we already hold the mm semaphore
3245  *
3246  * The mmap_sem may have been released depending on flags and our
3247  * return value.  See filemap_fault() and __lock_page_or_retry().
3248  */
3249 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3250                     unsigned long address, unsigned int flags)
3251 {
3252         int ret;
3253
3254         __set_current_state(TASK_RUNNING);
3255
3256         count_vm_event(PGFAULT);
3257         mem_cgroup_count_vm_event(mm, PGFAULT);
3258
3259         /* do counter updates before entering really critical section. */
3260         check_sync_rss_stat(current);
3261
3262         /*
3263          * Enable the memcg OOM handling for faults triggered in user
3264          * space.  Kernel faults are handled more gracefully.
3265          */
3266         if (flags & FAULT_FLAG_USER)
3267                 mem_cgroup_oom_enable();
3268
3269         ret = __handle_mm_fault(mm, vma, address, flags);
3270
3271         if (flags & FAULT_FLAG_USER) {
3272                 mem_cgroup_oom_disable();
3273                 /*
3274                  * The task may have entered a memcg OOM situation but
3275                  * if the allocation error was handled gracefully (no
3276                  * VM_FAULT_OOM), there is no need to kill anything.
3277                  * Just clean up the OOM state peacefully.
3278                  */
3279                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3280                         mem_cgroup_oom_synchronize(false);
3281         }
3282
3283         return ret;
3284 }
3285 EXPORT_SYMBOL_GPL(handle_mm_fault);
3286
3287 #ifndef __PAGETABLE_PUD_FOLDED
3288 /*
3289  * Allocate page upper directory.
3290  * We've already handled the fast-path in-line.
3291  */
3292 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3293 {
3294         pud_t *new = pud_alloc_one(mm, address);
3295         if (!new)
3296                 return -ENOMEM;
3297
3298         smp_wmb(); /* See comment in __pte_alloc */
3299
3300         spin_lock(&mm->page_table_lock);
3301         if (pgd_present(*pgd))          /* Another has populated it */
3302                 pud_free(mm, new);
3303         else
3304                 pgd_populate(mm, pgd, new);
3305         spin_unlock(&mm->page_table_lock);
3306         return 0;
3307 }
3308 #endif /* __PAGETABLE_PUD_FOLDED */
3309
3310 #ifndef __PAGETABLE_PMD_FOLDED
3311 /*
3312  * Allocate page middle directory.
3313  * We've already handled the fast-path in-line.
3314  */
3315 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3316 {
3317         pmd_t *new = pmd_alloc_one(mm, address);
3318         if (!new)
3319                 return -ENOMEM;
3320
3321         smp_wmb(); /* See comment in __pte_alloc */
3322
3323         spin_lock(&mm->page_table_lock);
3324 #ifndef __ARCH_HAS_4LEVEL_HACK
3325         if (pud_present(*pud))          /* Another has populated it */
3326                 pmd_free(mm, new);
3327         else
3328                 pud_populate(mm, pud, new);
3329 #else
3330         if (pgd_present(*pud))          /* Another has populated it */
3331                 pmd_free(mm, new);
3332         else
3333                 pgd_populate(mm, pud, new);
3334 #endif /* __ARCH_HAS_4LEVEL_HACK */
3335         spin_unlock(&mm->page_table_lock);
3336         return 0;
3337 }
3338 #endif /* __PAGETABLE_PMD_FOLDED */
3339
3340 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3341                 pte_t **ptepp, spinlock_t **ptlp)
3342 {
3343         pgd_t *pgd;
3344         pud_t *pud;
3345         pmd_t *pmd;
3346         pte_t *ptep;
3347
3348         pgd = pgd_offset(mm, address);
3349         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3350                 goto out;
3351
3352         pud = pud_offset(pgd, address);
3353         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3354                 goto out;
3355
3356         pmd = pmd_offset(pud, address);
3357         VM_BUG_ON(pmd_trans_huge(*pmd));
3358         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3359                 goto out;
3360
3361         /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3362         if (pmd_huge(*pmd))
3363                 goto out;
3364
3365         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3366         if (!ptep)
3367                 goto out;
3368         if (!pte_present(*ptep))
3369                 goto unlock;
3370         *ptepp = ptep;
3371         return 0;
3372 unlock:
3373         pte_unmap_unlock(ptep, *ptlp);
3374 out:
3375         return -EINVAL;
3376 }
3377
3378 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3379                              pte_t **ptepp, spinlock_t **ptlp)
3380 {
3381         int res;
3382
3383         /* (void) is needed to make gcc happy */
3384         (void) __cond_lock(*ptlp,
3385                            !(res = __follow_pte(mm, address, ptepp, ptlp)));
3386         return res;
3387 }
3388
3389 /**
3390  * follow_pfn - look up PFN at a user virtual address
3391  * @vma: memory mapping
3392  * @address: user virtual address
3393  * @pfn: location to store found PFN
3394  *
3395  * Only IO mappings and raw PFN mappings are allowed.
3396  *
3397  * Returns zero and the pfn at @pfn on success, -ve otherwise.
3398  */
3399 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3400         unsigned long *pfn)
3401 {
3402         int ret = -EINVAL;
3403         spinlock_t *ptl;
3404         pte_t *ptep;
3405
3406         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3407                 return ret;
3408
3409         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3410         if (ret)
3411                 return ret;
3412         *pfn = pte_pfn(*ptep);
3413         pte_unmap_unlock(ptep, ptl);
3414         return 0;
3415 }
3416 EXPORT_SYMBOL(follow_pfn);
3417
3418 #ifdef CONFIG_HAVE_IOREMAP_PROT
3419 int follow_phys(struct vm_area_struct *vma,
3420                 unsigned long address, unsigned int flags,
3421                 unsigned long *prot, resource_size_t *phys)
3422 {
3423         int ret = -EINVAL;
3424         pte_t *ptep, pte;
3425         spinlock_t *ptl;
3426
3427         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3428                 goto out;
3429
3430         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3431                 goto out;
3432         pte = *ptep;
3433
3434         if ((flags & FOLL_WRITE) && !pte_write(pte))
3435                 goto unlock;
3436
3437         *prot = pgprot_val(pte_pgprot(pte));
3438         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3439
3440         ret = 0;
3441 unlock:
3442         pte_unmap_unlock(ptep, ptl);
3443 out:
3444         return ret;
3445 }
3446
3447 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3448                         void *buf, int len, int write)
3449 {
3450         resource_size_t phys_addr;
3451         unsigned long prot = 0;
3452         void __iomem *maddr;
3453         int offset = addr & (PAGE_SIZE-1);
3454
3455         if (follow_phys(vma, addr, write, &prot, &phys_addr))
3456                 return -EINVAL;
3457
3458         maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3459         if (write)
3460                 memcpy_toio(maddr + offset, buf, len);
3461         else
3462                 memcpy_fromio(buf, maddr + offset, len);
3463         iounmap(maddr);
3464
3465         return len;
3466 }
3467 EXPORT_SYMBOL_GPL(generic_access_phys);
3468 #endif
3469
3470 /*
3471  * Access another process' address space as given in mm.  If non-NULL, use the
3472  * given task for page fault accounting.
3473  */
3474 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3475                 unsigned long addr, void *buf, int len, int write)
3476 {
3477         struct vm_area_struct *vma;
3478         void *old_buf = buf;
3479
3480         down_read(&mm->mmap_sem);
3481         /* ignore errors, just check how much was successfully transferred */
3482         while (len) {
3483                 int bytes, ret, offset;
3484                 void *maddr;
3485                 struct page *page = NULL;
3486
3487                 ret = get_user_pages(tsk, mm, addr, 1,
3488                                 write, 1, &page, &vma);
3489                 if (ret <= 0) {
3490 #ifndef CONFIG_HAVE_IOREMAP_PROT
3491                         break;
3492 #else
3493                         /*
3494                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
3495                          * we can access using slightly different code.
3496                          */
3497                         vma = find_vma(mm, addr);
3498                         if (!vma || vma->vm_start > addr)
3499                                 break;
3500                         if (vma->vm_ops && vma->vm_ops->access)
3501                                 ret = vma->vm_ops->access(vma, addr, buf,
3502                                                           len, write);
3503                         if (ret <= 0)
3504                                 break;
3505                         bytes = ret;
3506 #endif
3507                 } else {
3508                         bytes = len;
3509                         offset = addr & (PAGE_SIZE-1);
3510                         if (bytes > PAGE_SIZE-offset)
3511                                 bytes = PAGE_SIZE-offset;
3512
3513                         maddr = kmap(page);
3514                         if (write) {
3515                                 copy_to_user_page(vma, page, addr,
3516                                                   maddr + offset, buf, bytes);
3517                                 set_page_dirty_lock(page);
3518                         } else {
3519                                 copy_from_user_page(vma, page, addr,
3520                                                     buf, maddr + offset, bytes);
3521                         }
3522                         kunmap(page);
3523                         page_cache_release(page);
3524                 }
3525                 len -= bytes;
3526                 buf += bytes;
3527                 addr += bytes;
3528         }
3529         up_read(&mm->mmap_sem);
3530
3531         return buf - old_buf;
3532 }
3533
3534 /**
3535  * access_remote_vm - access another process' address space
3536  * @mm:         the mm_struct of the target address space
3537  * @addr:       start address to access
3538  * @buf:        source or destination buffer
3539  * @len:        number of bytes to transfer
3540  * @write:      whether the access is a write
3541  *
3542  * The caller must hold a reference on @mm.
3543  */
3544 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3545                 void *buf, int len, int write)
3546 {
3547         return __access_remote_vm(NULL, mm, addr, buf, len, write);
3548 }
3549
3550 /*
3551  * Access another process' address space.
3552  * Source/target buffer must be kernel space,
3553  * Do not walk the page table directly, use get_user_pages
3554  */
3555 int access_process_vm(struct task_struct *tsk, unsigned long addr,
3556                 void *buf, int len, int write)
3557 {
3558         struct mm_struct *mm;
3559         int ret;
3560
3561         mm = get_task_mm(tsk);
3562         if (!mm)
3563                 return 0;
3564
3565         ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3566         mmput(mm);
3567
3568         return ret;
3569 }
3570
3571 /*
3572  * Print the name of a VMA.
3573  */
3574 void print_vma_addr(char *prefix, unsigned long ip)
3575 {
3576         struct mm_struct *mm = current->mm;
3577         struct vm_area_struct *vma;
3578
3579         /*
3580          * Do not print if we are in atomic
3581          * contexts (in exception stacks, etc.):
3582          */
3583         if (preempt_count())
3584                 return;
3585
3586         down_read(&mm->mmap_sem);
3587         vma = find_vma(mm, ip);
3588         if (vma && vma->vm_file) {
3589                 struct file *f = vma->vm_file;
3590                 char *buf = (char *)__get_free_page(GFP_KERNEL);
3591                 if (buf) {
3592                         char *p;
3593
3594                         p = d_path(&f->f_path, buf, PAGE_SIZE);
3595                         if (IS_ERR(p))
3596                                 p = "?";
3597                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
3598                                         vma->vm_start,
3599                                         vma->vm_end - vma->vm_start);
3600                         free_page((unsigned long)buf);
3601                 }
3602         }
3603         up_read(&mm->mmap_sem);
3604 }
3605
3606 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3607 void might_fault(void)
3608 {
3609         /*
3610          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3611          * holding the mmap_sem, this is safe because kernel memory doesn't
3612          * get paged out, therefore we'll never actually fault, and the
3613          * below annotations will generate false positives.
3614          */
3615         if (segment_eq(get_fs(), KERNEL_DS))
3616                 return;
3617
3618         /*
3619          * it would be nicer only to annotate paths which are not under
3620          * pagefault_disable, however that requires a larger audit and
3621          * providing helpers like get_user_atomic.
3622          */
3623         if (in_atomic())
3624                 return;
3625
3626         __might_sleep(__FILE__, __LINE__, 0);
3627
3628         if (current->mm)
3629                 might_lock_read(&current->mm->mmap_sem);
3630 }
3631 EXPORT_SYMBOL(might_fault);
3632 #endif
3633
3634 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3635 static void clear_gigantic_page(struct page *page,
3636                                 unsigned long addr,
3637                                 unsigned int pages_per_huge_page)
3638 {
3639         int i;
3640         struct page *p = page;
3641
3642         might_sleep();
3643         for (i = 0; i < pages_per_huge_page;
3644              i++, p = mem_map_next(p, page, i)) {
3645                 cond_resched();
3646                 clear_user_highpage(p, addr + i * PAGE_SIZE);
3647         }
3648 }
3649 void clear_huge_page(struct page *page,
3650                      unsigned long addr, unsigned int pages_per_huge_page)
3651 {
3652         int i;
3653
3654         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3655                 clear_gigantic_page(page, addr, pages_per_huge_page);
3656                 return;
3657         }
3658
3659         might_sleep();
3660         for (i = 0; i < pages_per_huge_page; i++) {
3661                 cond_resched();
3662                 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3663         }
3664 }
3665
3666 static void copy_user_gigantic_page(struct page *dst, struct page *src,
3667                                     unsigned long addr,
3668                                     struct vm_area_struct *vma,
3669                                     unsigned int pages_per_huge_page)
3670 {
3671         int i;
3672         struct page *dst_base = dst;
3673         struct page *src_base = src;
3674
3675         for (i = 0; i < pages_per_huge_page; ) {
3676                 cond_resched();
3677                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3678
3679                 i++;
3680                 dst = mem_map_next(dst, dst_base, i);
3681                 src = mem_map_next(src, src_base, i);
3682         }
3683 }
3684
3685 void copy_user_huge_page(struct page *dst, struct page *src,
3686                          unsigned long addr, struct vm_area_struct *vma,
3687                          unsigned int pages_per_huge_page)
3688 {
3689         int i;
3690
3691         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3692                 copy_user_gigantic_page(dst, src, addr, vma,
3693                                         pages_per_huge_page);
3694                 return;
3695         }
3696
3697         might_sleep();
3698         for (i = 0; i < pages_per_huge_page; i++) {
3699                 cond_resched();
3700                 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
3701         }
3702 }
3703 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3704
3705 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
3706
3707 static struct kmem_cache *page_ptl_cachep;
3708
3709 void __init ptlock_cache_init(void)
3710 {
3711         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
3712                         SLAB_PANIC, NULL);
3713 }
3714
3715 bool ptlock_alloc(struct page *page)
3716 {
3717         spinlock_t *ptl;
3718
3719         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
3720         if (!ptl)
3721                 return false;
3722         page->ptl = ptl;
3723         return true;
3724 }
3725
3726 void ptlock_free(struct page *page)
3727 {
3728         kmem_cache_free(page_ptl_cachep, page->ptl);
3729 }
3730 #endif