mm: drop support of non-linear mapping from unmap/zap codepath
[cascardo/linux.git] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60 #include <linux/migrate.h>
61 #include <linux/string.h>
62 #include <linux/dma-debug.h>
63 #include <linux/debugfs.h>
64
65 #include <asm/io.h>
66 #include <asm/pgalloc.h>
67 #include <asm/uaccess.h>
68 #include <asm/tlb.h>
69 #include <asm/tlbflush.h>
70 #include <asm/pgtable.h>
71
72 #include "internal.h"
73
74 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
75 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
76 #endif
77
78 #ifndef CONFIG_NEED_MULTIPLE_NODES
79 /* use the per-pgdat data instead for discontigmem - mbligh */
80 unsigned long max_mapnr;
81 struct page *mem_map;
82
83 EXPORT_SYMBOL(max_mapnr);
84 EXPORT_SYMBOL(mem_map);
85 #endif
86
87 /*
88  * A number of key systems in x86 including ioremap() rely on the assumption
89  * that high_memory defines the upper bound on direct map memory, then end
90  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
91  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
92  * and ZONE_HIGHMEM.
93  */
94 void * high_memory;
95
96 EXPORT_SYMBOL(high_memory);
97
98 /*
99  * Randomize the address space (stacks, mmaps, brk, etc.).
100  *
101  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
102  *   as ancient (libc5 based) binaries can segfault. )
103  */
104 int randomize_va_space __read_mostly =
105 #ifdef CONFIG_COMPAT_BRK
106                                         1;
107 #else
108                                         2;
109 #endif
110
111 static int __init disable_randmaps(char *s)
112 {
113         randomize_va_space = 0;
114         return 1;
115 }
116 __setup("norandmaps", disable_randmaps);
117
118 unsigned long zero_pfn __read_mostly;
119 unsigned long highest_memmap_pfn __read_mostly;
120
121 EXPORT_SYMBOL(zero_pfn);
122
123 /*
124  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
125  */
126 static int __init init_zero_pfn(void)
127 {
128         zero_pfn = page_to_pfn(ZERO_PAGE(0));
129         return 0;
130 }
131 core_initcall(init_zero_pfn);
132
133
134 #if defined(SPLIT_RSS_COUNTING)
135
136 void sync_mm_rss(struct mm_struct *mm)
137 {
138         int i;
139
140         for (i = 0; i < NR_MM_COUNTERS; i++) {
141                 if (current->rss_stat.count[i]) {
142                         add_mm_counter(mm, i, current->rss_stat.count[i]);
143                         current->rss_stat.count[i] = 0;
144                 }
145         }
146         current->rss_stat.events = 0;
147 }
148
149 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
150 {
151         struct task_struct *task = current;
152
153         if (likely(task->mm == mm))
154                 task->rss_stat.count[member] += val;
155         else
156                 add_mm_counter(mm, member, val);
157 }
158 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
159 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
160
161 /* sync counter once per 64 page faults */
162 #define TASK_RSS_EVENTS_THRESH  (64)
163 static void check_sync_rss_stat(struct task_struct *task)
164 {
165         if (unlikely(task != current))
166                 return;
167         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
168                 sync_mm_rss(task->mm);
169 }
170 #else /* SPLIT_RSS_COUNTING */
171
172 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
173 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
174
175 static void check_sync_rss_stat(struct task_struct *task)
176 {
177 }
178
179 #endif /* SPLIT_RSS_COUNTING */
180
181 #ifdef HAVE_GENERIC_MMU_GATHER
182
183 static int tlb_next_batch(struct mmu_gather *tlb)
184 {
185         struct mmu_gather_batch *batch;
186
187         batch = tlb->active;
188         if (batch->next) {
189                 tlb->active = batch->next;
190                 return 1;
191         }
192
193         if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
194                 return 0;
195
196         batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
197         if (!batch)
198                 return 0;
199
200         tlb->batch_count++;
201         batch->next = NULL;
202         batch->nr   = 0;
203         batch->max  = MAX_GATHER_BATCH;
204
205         tlb->active->next = batch;
206         tlb->active = batch;
207
208         return 1;
209 }
210
211 /* tlb_gather_mmu
212  *      Called to initialize an (on-stack) mmu_gather structure for page-table
213  *      tear-down from @mm. The @fullmm argument is used when @mm is without
214  *      users and we're going to destroy the full address space (exit/execve).
215  */
216 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
217 {
218         tlb->mm = mm;
219
220         /* Is it from 0 to ~0? */
221         tlb->fullmm     = !(start | (end+1));
222         tlb->need_flush_all = 0;
223         tlb->local.next = NULL;
224         tlb->local.nr   = 0;
225         tlb->local.max  = ARRAY_SIZE(tlb->__pages);
226         tlb->active     = &tlb->local;
227         tlb->batch_count = 0;
228
229 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
230         tlb->batch = NULL;
231 #endif
232
233         __tlb_reset_range(tlb);
234 }
235
236 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
237 {
238         if (!tlb->end)
239                 return;
240
241         tlb_flush(tlb);
242         mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
243 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
244         tlb_table_flush(tlb);
245 #endif
246         __tlb_reset_range(tlb);
247 }
248
249 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
250 {
251         struct mmu_gather_batch *batch;
252
253         for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
254                 free_pages_and_swap_cache(batch->pages, batch->nr);
255                 batch->nr = 0;
256         }
257         tlb->active = &tlb->local;
258 }
259
260 void tlb_flush_mmu(struct mmu_gather *tlb)
261 {
262         tlb_flush_mmu_tlbonly(tlb);
263         tlb_flush_mmu_free(tlb);
264 }
265
266 /* tlb_finish_mmu
267  *      Called at the end of the shootdown operation to free up any resources
268  *      that were required.
269  */
270 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
271 {
272         struct mmu_gather_batch *batch, *next;
273
274         tlb_flush_mmu(tlb);
275
276         /* keep the page table cache within bounds */
277         check_pgt_cache();
278
279         for (batch = tlb->local.next; batch; batch = next) {
280                 next = batch->next;
281                 free_pages((unsigned long)batch, 0);
282         }
283         tlb->local.next = NULL;
284 }
285
286 /* __tlb_remove_page
287  *      Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
288  *      handling the additional races in SMP caused by other CPUs caching valid
289  *      mappings in their TLBs. Returns the number of free page slots left.
290  *      When out of page slots we must call tlb_flush_mmu().
291  */
292 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
293 {
294         struct mmu_gather_batch *batch;
295
296         VM_BUG_ON(!tlb->end);
297
298         batch = tlb->active;
299         batch->pages[batch->nr++] = page;
300         if (batch->nr == batch->max) {
301                 if (!tlb_next_batch(tlb))
302                         return 0;
303                 batch = tlb->active;
304         }
305         VM_BUG_ON_PAGE(batch->nr > batch->max, page);
306
307         return batch->max - batch->nr;
308 }
309
310 #endif /* HAVE_GENERIC_MMU_GATHER */
311
312 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
313
314 /*
315  * See the comment near struct mmu_table_batch.
316  */
317
318 static void tlb_remove_table_smp_sync(void *arg)
319 {
320         /* Simply deliver the interrupt */
321 }
322
323 static void tlb_remove_table_one(void *table)
324 {
325         /*
326          * This isn't an RCU grace period and hence the page-tables cannot be
327          * assumed to be actually RCU-freed.
328          *
329          * It is however sufficient for software page-table walkers that rely on
330          * IRQ disabling. See the comment near struct mmu_table_batch.
331          */
332         smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
333         __tlb_remove_table(table);
334 }
335
336 static void tlb_remove_table_rcu(struct rcu_head *head)
337 {
338         struct mmu_table_batch *batch;
339         int i;
340
341         batch = container_of(head, struct mmu_table_batch, rcu);
342
343         for (i = 0; i < batch->nr; i++)
344                 __tlb_remove_table(batch->tables[i]);
345
346         free_page((unsigned long)batch);
347 }
348
349 void tlb_table_flush(struct mmu_gather *tlb)
350 {
351         struct mmu_table_batch **batch = &tlb->batch;
352
353         if (*batch) {
354                 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
355                 *batch = NULL;
356         }
357 }
358
359 void tlb_remove_table(struct mmu_gather *tlb, void *table)
360 {
361         struct mmu_table_batch **batch = &tlb->batch;
362
363         /*
364          * When there's less then two users of this mm there cannot be a
365          * concurrent page-table walk.
366          */
367         if (atomic_read(&tlb->mm->mm_users) < 2) {
368                 __tlb_remove_table(table);
369                 return;
370         }
371
372         if (*batch == NULL) {
373                 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
374                 if (*batch == NULL) {
375                         tlb_remove_table_one(table);
376                         return;
377                 }
378                 (*batch)->nr = 0;
379         }
380         (*batch)->tables[(*batch)->nr++] = table;
381         if ((*batch)->nr == MAX_TABLE_BATCH)
382                 tlb_table_flush(tlb);
383 }
384
385 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
386
387 /*
388  * Note: this doesn't free the actual pages themselves. That
389  * has been handled earlier when unmapping all the memory regions.
390  */
391 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
392                            unsigned long addr)
393 {
394         pgtable_t token = pmd_pgtable(*pmd);
395         pmd_clear(pmd);
396         pte_free_tlb(tlb, token, addr);
397         atomic_long_dec(&tlb->mm->nr_ptes);
398 }
399
400 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
401                                 unsigned long addr, unsigned long end,
402                                 unsigned long floor, unsigned long ceiling)
403 {
404         pmd_t *pmd;
405         unsigned long next;
406         unsigned long start;
407
408         start = addr;
409         pmd = pmd_offset(pud, addr);
410         do {
411                 next = pmd_addr_end(addr, end);
412                 if (pmd_none_or_clear_bad(pmd))
413                         continue;
414                 free_pte_range(tlb, pmd, addr);
415         } while (pmd++, addr = next, addr != end);
416
417         start &= PUD_MASK;
418         if (start < floor)
419                 return;
420         if (ceiling) {
421                 ceiling &= PUD_MASK;
422                 if (!ceiling)
423                         return;
424         }
425         if (end - 1 > ceiling - 1)
426                 return;
427
428         pmd = pmd_offset(pud, start);
429         pud_clear(pud);
430         pmd_free_tlb(tlb, pmd, start);
431 }
432
433 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
434                                 unsigned long addr, unsigned long end,
435                                 unsigned long floor, unsigned long ceiling)
436 {
437         pud_t *pud;
438         unsigned long next;
439         unsigned long start;
440
441         start = addr;
442         pud = pud_offset(pgd, addr);
443         do {
444                 next = pud_addr_end(addr, end);
445                 if (pud_none_or_clear_bad(pud))
446                         continue;
447                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
448         } while (pud++, addr = next, addr != end);
449
450         start &= PGDIR_MASK;
451         if (start < floor)
452                 return;
453         if (ceiling) {
454                 ceiling &= PGDIR_MASK;
455                 if (!ceiling)
456                         return;
457         }
458         if (end - 1 > ceiling - 1)
459                 return;
460
461         pud = pud_offset(pgd, start);
462         pgd_clear(pgd);
463         pud_free_tlb(tlb, pud, start);
464 }
465
466 /*
467  * This function frees user-level page tables of a process.
468  */
469 void free_pgd_range(struct mmu_gather *tlb,
470                         unsigned long addr, unsigned long end,
471                         unsigned long floor, unsigned long ceiling)
472 {
473         pgd_t *pgd;
474         unsigned long next;
475
476         /*
477          * The next few lines have given us lots of grief...
478          *
479          * Why are we testing PMD* at this top level?  Because often
480          * there will be no work to do at all, and we'd prefer not to
481          * go all the way down to the bottom just to discover that.
482          *
483          * Why all these "- 1"s?  Because 0 represents both the bottom
484          * of the address space and the top of it (using -1 for the
485          * top wouldn't help much: the masks would do the wrong thing).
486          * The rule is that addr 0 and floor 0 refer to the bottom of
487          * the address space, but end 0 and ceiling 0 refer to the top
488          * Comparisons need to use "end - 1" and "ceiling - 1" (though
489          * that end 0 case should be mythical).
490          *
491          * Wherever addr is brought up or ceiling brought down, we must
492          * be careful to reject "the opposite 0" before it confuses the
493          * subsequent tests.  But what about where end is brought down
494          * by PMD_SIZE below? no, end can't go down to 0 there.
495          *
496          * Whereas we round start (addr) and ceiling down, by different
497          * masks at different levels, in order to test whether a table
498          * now has no other vmas using it, so can be freed, we don't
499          * bother to round floor or end up - the tests don't need that.
500          */
501
502         addr &= PMD_MASK;
503         if (addr < floor) {
504                 addr += PMD_SIZE;
505                 if (!addr)
506                         return;
507         }
508         if (ceiling) {
509                 ceiling &= PMD_MASK;
510                 if (!ceiling)
511                         return;
512         }
513         if (end - 1 > ceiling - 1)
514                 end -= PMD_SIZE;
515         if (addr > end - 1)
516                 return;
517
518         pgd = pgd_offset(tlb->mm, addr);
519         do {
520                 next = pgd_addr_end(addr, end);
521                 if (pgd_none_or_clear_bad(pgd))
522                         continue;
523                 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
524         } while (pgd++, addr = next, addr != end);
525 }
526
527 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
528                 unsigned long floor, unsigned long ceiling)
529 {
530         while (vma) {
531                 struct vm_area_struct *next = vma->vm_next;
532                 unsigned long addr = vma->vm_start;
533
534                 /*
535                  * Hide vma from rmap and truncate_pagecache before freeing
536                  * pgtables
537                  */
538                 unlink_anon_vmas(vma);
539                 unlink_file_vma(vma);
540
541                 if (is_vm_hugetlb_page(vma)) {
542                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
543                                 floor, next? next->vm_start: ceiling);
544                 } else {
545                         /*
546                          * Optimization: gather nearby vmas into one call down
547                          */
548                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
549                                && !is_vm_hugetlb_page(next)) {
550                                 vma = next;
551                                 next = vma->vm_next;
552                                 unlink_anon_vmas(vma);
553                                 unlink_file_vma(vma);
554                         }
555                         free_pgd_range(tlb, addr, vma->vm_end,
556                                 floor, next? next->vm_start: ceiling);
557                 }
558                 vma = next;
559         }
560 }
561
562 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
563                 pmd_t *pmd, unsigned long address)
564 {
565         spinlock_t *ptl;
566         pgtable_t new = pte_alloc_one(mm, address);
567         int wait_split_huge_page;
568         if (!new)
569                 return -ENOMEM;
570
571         /*
572          * Ensure all pte setup (eg. pte page lock and page clearing) are
573          * visible before the pte is made visible to other CPUs by being
574          * put into page tables.
575          *
576          * The other side of the story is the pointer chasing in the page
577          * table walking code (when walking the page table without locking;
578          * ie. most of the time). Fortunately, these data accesses consist
579          * of a chain of data-dependent loads, meaning most CPUs (alpha
580          * being the notable exception) will already guarantee loads are
581          * seen in-order. See the alpha page table accessors for the
582          * smp_read_barrier_depends() barriers in page table walking code.
583          */
584         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
585
586         ptl = pmd_lock(mm, pmd);
587         wait_split_huge_page = 0;
588         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
589                 atomic_long_inc(&mm->nr_ptes);
590                 pmd_populate(mm, pmd, new);
591                 new = NULL;
592         } else if (unlikely(pmd_trans_splitting(*pmd)))
593                 wait_split_huge_page = 1;
594         spin_unlock(ptl);
595         if (new)
596                 pte_free(mm, new);
597         if (wait_split_huge_page)
598                 wait_split_huge_page(vma->anon_vma, pmd);
599         return 0;
600 }
601
602 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
603 {
604         pte_t *new = pte_alloc_one_kernel(&init_mm, address);
605         if (!new)
606                 return -ENOMEM;
607
608         smp_wmb(); /* See comment in __pte_alloc */
609
610         spin_lock(&init_mm.page_table_lock);
611         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
612                 pmd_populate_kernel(&init_mm, pmd, new);
613                 new = NULL;
614         } else
615                 VM_BUG_ON(pmd_trans_splitting(*pmd));
616         spin_unlock(&init_mm.page_table_lock);
617         if (new)
618                 pte_free_kernel(&init_mm, new);
619         return 0;
620 }
621
622 static inline void init_rss_vec(int *rss)
623 {
624         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
625 }
626
627 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
628 {
629         int i;
630
631         if (current->mm == mm)
632                 sync_mm_rss(mm);
633         for (i = 0; i < NR_MM_COUNTERS; i++)
634                 if (rss[i])
635                         add_mm_counter(mm, i, rss[i]);
636 }
637
638 /*
639  * This function is called to print an error when a bad pte
640  * is found. For example, we might have a PFN-mapped pte in
641  * a region that doesn't allow it.
642  *
643  * The calling function must still handle the error.
644  */
645 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
646                           pte_t pte, struct page *page)
647 {
648         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
649         pud_t *pud = pud_offset(pgd, addr);
650         pmd_t *pmd = pmd_offset(pud, addr);
651         struct address_space *mapping;
652         pgoff_t index;
653         static unsigned long resume;
654         static unsigned long nr_shown;
655         static unsigned long nr_unshown;
656
657         /*
658          * Allow a burst of 60 reports, then keep quiet for that minute;
659          * or allow a steady drip of one report per second.
660          */
661         if (nr_shown == 60) {
662                 if (time_before(jiffies, resume)) {
663                         nr_unshown++;
664                         return;
665                 }
666                 if (nr_unshown) {
667                         printk(KERN_ALERT
668                                 "BUG: Bad page map: %lu messages suppressed\n",
669                                 nr_unshown);
670                         nr_unshown = 0;
671                 }
672                 nr_shown = 0;
673         }
674         if (nr_shown++ == 0)
675                 resume = jiffies + 60 * HZ;
676
677         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
678         index = linear_page_index(vma, addr);
679
680         printk(KERN_ALERT
681                 "BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
682                 current->comm,
683                 (long long)pte_val(pte), (long long)pmd_val(*pmd));
684         if (page)
685                 dump_page(page, "bad pte");
686         printk(KERN_ALERT
687                 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
688                 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
689         /*
690          * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
691          */
692         if (vma->vm_ops)
693                 printk(KERN_ALERT "vma->vm_ops->fault: %pSR\n",
694                        vma->vm_ops->fault);
695         if (vma->vm_file)
696                 printk(KERN_ALERT "vma->vm_file->f_op->mmap: %pSR\n",
697                        vma->vm_file->f_op->mmap);
698         dump_stack();
699         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
700 }
701
702 /*
703  * vm_normal_page -- This function gets the "struct page" associated with a pte.
704  *
705  * "Special" mappings do not wish to be associated with a "struct page" (either
706  * it doesn't exist, or it exists but they don't want to touch it). In this
707  * case, NULL is returned here. "Normal" mappings do have a struct page.
708  *
709  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
710  * pte bit, in which case this function is trivial. Secondly, an architecture
711  * may not have a spare pte bit, which requires a more complicated scheme,
712  * described below.
713  *
714  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
715  * special mapping (even if there are underlying and valid "struct pages").
716  * COWed pages of a VM_PFNMAP are always normal.
717  *
718  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
719  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
720  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
721  * mapping will always honor the rule
722  *
723  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
724  *
725  * And for normal mappings this is false.
726  *
727  * This restricts such mappings to be a linear translation from virtual address
728  * to pfn. To get around this restriction, we allow arbitrary mappings so long
729  * as the vma is not a COW mapping; in that case, we know that all ptes are
730  * special (because none can have been COWed).
731  *
732  *
733  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
734  *
735  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
736  * page" backing, however the difference is that _all_ pages with a struct
737  * page (that is, those where pfn_valid is true) are refcounted and considered
738  * normal pages by the VM. The disadvantage is that pages are refcounted
739  * (which can be slower and simply not an option for some PFNMAP users). The
740  * advantage is that we don't have to follow the strict linearity rule of
741  * PFNMAP mappings in order to support COWable mappings.
742  *
743  */
744 #ifdef __HAVE_ARCH_PTE_SPECIAL
745 # define HAVE_PTE_SPECIAL 1
746 #else
747 # define HAVE_PTE_SPECIAL 0
748 #endif
749 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
750                                 pte_t pte)
751 {
752         unsigned long pfn = pte_pfn(pte);
753
754         if (HAVE_PTE_SPECIAL) {
755                 if (likely(!pte_special(pte)))
756                         goto check_pfn;
757                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
758                         return NULL;
759                 if (!is_zero_pfn(pfn))
760                         print_bad_pte(vma, addr, pte, NULL);
761                 return NULL;
762         }
763
764         /* !HAVE_PTE_SPECIAL case follows: */
765
766         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
767                 if (vma->vm_flags & VM_MIXEDMAP) {
768                         if (!pfn_valid(pfn))
769                                 return NULL;
770                         goto out;
771                 } else {
772                         unsigned long off;
773                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
774                         if (pfn == vma->vm_pgoff + off)
775                                 return NULL;
776                         if (!is_cow_mapping(vma->vm_flags))
777                                 return NULL;
778                 }
779         }
780
781         if (is_zero_pfn(pfn))
782                 return NULL;
783 check_pfn:
784         if (unlikely(pfn > highest_memmap_pfn)) {
785                 print_bad_pte(vma, addr, pte, NULL);
786                 return NULL;
787         }
788
789         /*
790          * NOTE! We still have PageReserved() pages in the page tables.
791          * eg. VDSO mappings can cause them to exist.
792          */
793 out:
794         return pfn_to_page(pfn);
795 }
796
797 /*
798  * copy one vm_area from one task to the other. Assumes the page tables
799  * already present in the new task to be cleared in the whole range
800  * covered by this vma.
801  */
802
803 static inline unsigned long
804 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
805                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
806                 unsigned long addr, int *rss)
807 {
808         unsigned long vm_flags = vma->vm_flags;
809         pte_t pte = *src_pte;
810         struct page *page;
811
812         /* pte contains position in swap or file, so copy. */
813         if (unlikely(!pte_present(pte))) {
814                 if (!pte_file(pte)) {
815                         swp_entry_t entry = pte_to_swp_entry(pte);
816
817                         if (likely(!non_swap_entry(entry))) {
818                                 if (swap_duplicate(entry) < 0)
819                                         return entry.val;
820
821                                 /* make sure dst_mm is on swapoff's mmlist. */
822                                 if (unlikely(list_empty(&dst_mm->mmlist))) {
823                                         spin_lock(&mmlist_lock);
824                                         if (list_empty(&dst_mm->mmlist))
825                                                 list_add(&dst_mm->mmlist,
826                                                          &src_mm->mmlist);
827                                         spin_unlock(&mmlist_lock);
828                                 }
829                                 rss[MM_SWAPENTS]++;
830                         } else if (is_migration_entry(entry)) {
831                                 page = migration_entry_to_page(entry);
832
833                                 if (PageAnon(page))
834                                         rss[MM_ANONPAGES]++;
835                                 else
836                                         rss[MM_FILEPAGES]++;
837
838                                 if (is_write_migration_entry(entry) &&
839                                     is_cow_mapping(vm_flags)) {
840                                         /*
841                                          * COW mappings require pages in both
842                                          * parent and child to be set to read.
843                                          */
844                                         make_migration_entry_read(&entry);
845                                         pte = swp_entry_to_pte(entry);
846                                         if (pte_swp_soft_dirty(*src_pte))
847                                                 pte = pte_swp_mksoft_dirty(pte);
848                                         set_pte_at(src_mm, addr, src_pte, pte);
849                                 }
850                         }
851                 }
852                 goto out_set_pte;
853         }
854
855         /*
856          * If it's a COW mapping, write protect it both
857          * in the parent and the child
858          */
859         if (is_cow_mapping(vm_flags)) {
860                 ptep_set_wrprotect(src_mm, addr, src_pte);
861                 pte = pte_wrprotect(pte);
862         }
863
864         /*
865          * If it's a shared mapping, mark it clean in
866          * the child
867          */
868         if (vm_flags & VM_SHARED)
869                 pte = pte_mkclean(pte);
870         pte = pte_mkold(pte);
871
872         page = vm_normal_page(vma, addr, pte);
873         if (page) {
874                 get_page(page);
875                 page_dup_rmap(page);
876                 if (PageAnon(page))
877                         rss[MM_ANONPAGES]++;
878                 else
879                         rss[MM_FILEPAGES]++;
880         }
881
882 out_set_pte:
883         set_pte_at(dst_mm, addr, dst_pte, pte);
884         return 0;
885 }
886
887 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
888                    pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
889                    unsigned long addr, unsigned long end)
890 {
891         pte_t *orig_src_pte, *orig_dst_pte;
892         pte_t *src_pte, *dst_pte;
893         spinlock_t *src_ptl, *dst_ptl;
894         int progress = 0;
895         int rss[NR_MM_COUNTERS];
896         swp_entry_t entry = (swp_entry_t){0};
897
898 again:
899         init_rss_vec(rss);
900
901         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
902         if (!dst_pte)
903                 return -ENOMEM;
904         src_pte = pte_offset_map(src_pmd, addr);
905         src_ptl = pte_lockptr(src_mm, src_pmd);
906         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
907         orig_src_pte = src_pte;
908         orig_dst_pte = dst_pte;
909         arch_enter_lazy_mmu_mode();
910
911         do {
912                 /*
913                  * We are holding two locks at this point - either of them
914                  * could generate latencies in another task on another CPU.
915                  */
916                 if (progress >= 32) {
917                         progress = 0;
918                         if (need_resched() ||
919                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
920                                 break;
921                 }
922                 if (pte_none(*src_pte)) {
923                         progress++;
924                         continue;
925                 }
926                 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
927                                                         vma, addr, rss);
928                 if (entry.val)
929                         break;
930                 progress += 8;
931         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
932
933         arch_leave_lazy_mmu_mode();
934         spin_unlock(src_ptl);
935         pte_unmap(orig_src_pte);
936         add_mm_rss_vec(dst_mm, rss);
937         pte_unmap_unlock(orig_dst_pte, dst_ptl);
938         cond_resched();
939
940         if (entry.val) {
941                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
942                         return -ENOMEM;
943                 progress = 0;
944         }
945         if (addr != end)
946                 goto again;
947         return 0;
948 }
949
950 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
951                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
952                 unsigned long addr, unsigned long end)
953 {
954         pmd_t *src_pmd, *dst_pmd;
955         unsigned long next;
956
957         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
958         if (!dst_pmd)
959                 return -ENOMEM;
960         src_pmd = pmd_offset(src_pud, addr);
961         do {
962                 next = pmd_addr_end(addr, end);
963                 if (pmd_trans_huge(*src_pmd)) {
964                         int err;
965                         VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
966                         err = copy_huge_pmd(dst_mm, src_mm,
967                                             dst_pmd, src_pmd, addr, vma);
968                         if (err == -ENOMEM)
969                                 return -ENOMEM;
970                         if (!err)
971                                 continue;
972                         /* fall through */
973                 }
974                 if (pmd_none_or_clear_bad(src_pmd))
975                         continue;
976                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
977                                                 vma, addr, next))
978                         return -ENOMEM;
979         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
980         return 0;
981 }
982
983 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
984                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
985                 unsigned long addr, unsigned long end)
986 {
987         pud_t *src_pud, *dst_pud;
988         unsigned long next;
989
990         dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
991         if (!dst_pud)
992                 return -ENOMEM;
993         src_pud = pud_offset(src_pgd, addr);
994         do {
995                 next = pud_addr_end(addr, end);
996                 if (pud_none_or_clear_bad(src_pud))
997                         continue;
998                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
999                                                 vma, addr, next))
1000                         return -ENOMEM;
1001         } while (dst_pud++, src_pud++, addr = next, addr != end);
1002         return 0;
1003 }
1004
1005 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1006                 struct vm_area_struct *vma)
1007 {
1008         pgd_t *src_pgd, *dst_pgd;
1009         unsigned long next;
1010         unsigned long addr = vma->vm_start;
1011         unsigned long end = vma->vm_end;
1012         unsigned long mmun_start;       /* For mmu_notifiers */
1013         unsigned long mmun_end;         /* For mmu_notifiers */
1014         bool is_cow;
1015         int ret;
1016
1017         /*
1018          * Don't copy ptes where a page fault will fill them correctly.
1019          * Fork becomes much lighter when there are big shared or private
1020          * readonly mappings. The tradeoff is that copy_page_range is more
1021          * efficient than faulting.
1022          */
1023         if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR |
1024                                VM_PFNMAP | VM_MIXEDMAP))) {
1025                 if (!vma->anon_vma)
1026                         return 0;
1027         }
1028
1029         if (is_vm_hugetlb_page(vma))
1030                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1031
1032         if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1033                 /*
1034                  * We do not free on error cases below as remove_vma
1035                  * gets called on error from higher level routine
1036                  */
1037                 ret = track_pfn_copy(vma);
1038                 if (ret)
1039                         return ret;
1040         }
1041
1042         /*
1043          * We need to invalidate the secondary MMU mappings only when
1044          * there could be a permission downgrade on the ptes of the
1045          * parent mm. And a permission downgrade will only happen if
1046          * is_cow_mapping() returns true.
1047          */
1048         is_cow = is_cow_mapping(vma->vm_flags);
1049         mmun_start = addr;
1050         mmun_end   = end;
1051         if (is_cow)
1052                 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1053                                                     mmun_end);
1054
1055         ret = 0;
1056         dst_pgd = pgd_offset(dst_mm, addr);
1057         src_pgd = pgd_offset(src_mm, addr);
1058         do {
1059                 next = pgd_addr_end(addr, end);
1060                 if (pgd_none_or_clear_bad(src_pgd))
1061                         continue;
1062                 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1063                                             vma, addr, next))) {
1064                         ret = -ENOMEM;
1065                         break;
1066                 }
1067         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1068
1069         if (is_cow)
1070                 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1071         return ret;
1072 }
1073
1074 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1075                                 struct vm_area_struct *vma, pmd_t *pmd,
1076                                 unsigned long addr, unsigned long end,
1077                                 struct zap_details *details)
1078 {
1079         struct mm_struct *mm = tlb->mm;
1080         int force_flush = 0;
1081         int rss[NR_MM_COUNTERS];
1082         spinlock_t *ptl;
1083         pte_t *start_pte;
1084         pte_t *pte;
1085         swp_entry_t entry;
1086
1087 again:
1088         init_rss_vec(rss);
1089         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1090         pte = start_pte;
1091         arch_enter_lazy_mmu_mode();
1092         do {
1093                 pte_t ptent = *pte;
1094                 if (pte_none(ptent)) {
1095                         continue;
1096                 }
1097
1098                 if (pte_present(ptent)) {
1099                         struct page *page;
1100
1101                         page = vm_normal_page(vma, addr, ptent);
1102                         if (unlikely(details) && page) {
1103                                 /*
1104                                  * unmap_shared_mapping_pages() wants to
1105                                  * invalidate cache without truncating:
1106                                  * unmap shared but keep private pages.
1107                                  */
1108                                 if (details->check_mapping &&
1109                                     details->check_mapping != page->mapping)
1110                                         continue;
1111                         }
1112                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1113                                                         tlb->fullmm);
1114                         tlb_remove_tlb_entry(tlb, pte, addr);
1115                         if (unlikely(!page))
1116                                 continue;
1117                         if (PageAnon(page))
1118                                 rss[MM_ANONPAGES]--;
1119                         else {
1120                                 if (pte_dirty(ptent)) {
1121                                         force_flush = 1;
1122                                         set_page_dirty(page);
1123                                 }
1124                                 if (pte_young(ptent) &&
1125                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1126                                         mark_page_accessed(page);
1127                                 rss[MM_FILEPAGES]--;
1128                         }
1129                         page_remove_rmap(page);
1130                         if (unlikely(page_mapcount(page) < 0))
1131                                 print_bad_pte(vma, addr, ptent, page);
1132                         if (unlikely(!__tlb_remove_page(tlb, page))) {
1133                                 force_flush = 1;
1134                                 addr += PAGE_SIZE;
1135                                 break;
1136                         }
1137                         continue;
1138                 }
1139                 /* If details->check_mapping, we leave swap entries. */
1140                 if (unlikely(details))
1141                         continue;
1142
1143                 entry = pte_to_swp_entry(ptent);
1144                 if (!non_swap_entry(entry))
1145                         rss[MM_SWAPENTS]--;
1146                 else if (is_migration_entry(entry)) {
1147                         struct page *page;
1148
1149                         page = migration_entry_to_page(entry);
1150
1151                         if (PageAnon(page))
1152                                 rss[MM_ANONPAGES]--;
1153                         else
1154                                 rss[MM_FILEPAGES]--;
1155                 }
1156                 if (unlikely(!free_swap_and_cache(entry)))
1157                         print_bad_pte(vma, addr, ptent, NULL);
1158                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1159         } while (pte++, addr += PAGE_SIZE, addr != end);
1160
1161         add_mm_rss_vec(mm, rss);
1162         arch_leave_lazy_mmu_mode();
1163
1164         /* Do the actual TLB flush before dropping ptl */
1165         if (force_flush)
1166                 tlb_flush_mmu_tlbonly(tlb);
1167         pte_unmap_unlock(start_pte, ptl);
1168
1169         /*
1170          * If we forced a TLB flush (either due to running out of
1171          * batch buffers or because we needed to flush dirty TLB
1172          * entries before releasing the ptl), free the batched
1173          * memory too. Restart if we didn't do everything.
1174          */
1175         if (force_flush) {
1176                 force_flush = 0;
1177                 tlb_flush_mmu_free(tlb);
1178
1179                 if (addr != end)
1180                         goto again;
1181         }
1182
1183         return addr;
1184 }
1185
1186 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1187                                 struct vm_area_struct *vma, pud_t *pud,
1188                                 unsigned long addr, unsigned long end,
1189                                 struct zap_details *details)
1190 {
1191         pmd_t *pmd;
1192         unsigned long next;
1193
1194         pmd = pmd_offset(pud, addr);
1195         do {
1196                 next = pmd_addr_end(addr, end);
1197                 if (pmd_trans_huge(*pmd)) {
1198                         if (next - addr != HPAGE_PMD_SIZE) {
1199 #ifdef CONFIG_DEBUG_VM
1200                                 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1201                                         pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1202                                                 __func__, addr, end,
1203                                                 vma->vm_start,
1204                                                 vma->vm_end);
1205                                         BUG();
1206                                 }
1207 #endif
1208                                 split_huge_page_pmd(vma, addr, pmd);
1209                         } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1210                                 goto next;
1211                         /* fall through */
1212                 }
1213                 /*
1214                  * Here there can be other concurrent MADV_DONTNEED or
1215                  * trans huge page faults running, and if the pmd is
1216                  * none or trans huge it can change under us. This is
1217                  * because MADV_DONTNEED holds the mmap_sem in read
1218                  * mode.
1219                  */
1220                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1221                         goto next;
1222                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1223 next:
1224                 cond_resched();
1225         } while (pmd++, addr = next, addr != end);
1226
1227         return addr;
1228 }
1229
1230 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1231                                 struct vm_area_struct *vma, pgd_t *pgd,
1232                                 unsigned long addr, unsigned long end,
1233                                 struct zap_details *details)
1234 {
1235         pud_t *pud;
1236         unsigned long next;
1237
1238         pud = pud_offset(pgd, addr);
1239         do {
1240                 next = pud_addr_end(addr, end);
1241                 if (pud_none_or_clear_bad(pud))
1242                         continue;
1243                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1244         } while (pud++, addr = next, addr != end);
1245
1246         return addr;
1247 }
1248
1249 static void unmap_page_range(struct mmu_gather *tlb,
1250                              struct vm_area_struct *vma,
1251                              unsigned long addr, unsigned long end,
1252                              struct zap_details *details)
1253 {
1254         pgd_t *pgd;
1255         unsigned long next;
1256
1257         if (details && !details->check_mapping)
1258                 details = NULL;
1259
1260         BUG_ON(addr >= end);
1261         tlb_start_vma(tlb, vma);
1262         pgd = pgd_offset(vma->vm_mm, addr);
1263         do {
1264                 next = pgd_addr_end(addr, end);
1265                 if (pgd_none_or_clear_bad(pgd))
1266                         continue;
1267                 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1268         } while (pgd++, addr = next, addr != end);
1269         tlb_end_vma(tlb, vma);
1270 }
1271
1272
1273 static void unmap_single_vma(struct mmu_gather *tlb,
1274                 struct vm_area_struct *vma, unsigned long start_addr,
1275                 unsigned long end_addr,
1276                 struct zap_details *details)
1277 {
1278         unsigned long start = max(vma->vm_start, start_addr);
1279         unsigned long end;
1280
1281         if (start >= vma->vm_end)
1282                 return;
1283         end = min(vma->vm_end, end_addr);
1284         if (end <= vma->vm_start)
1285                 return;
1286
1287         if (vma->vm_file)
1288                 uprobe_munmap(vma, start, end);
1289
1290         if (unlikely(vma->vm_flags & VM_PFNMAP))
1291                 untrack_pfn(vma, 0, 0);
1292
1293         if (start != end) {
1294                 if (unlikely(is_vm_hugetlb_page(vma))) {
1295                         /*
1296                          * It is undesirable to test vma->vm_file as it
1297                          * should be non-null for valid hugetlb area.
1298                          * However, vm_file will be NULL in the error
1299                          * cleanup path of mmap_region. When
1300                          * hugetlbfs ->mmap method fails,
1301                          * mmap_region() nullifies vma->vm_file
1302                          * before calling this function to clean up.
1303                          * Since no pte has actually been setup, it is
1304                          * safe to do nothing in this case.
1305                          */
1306                         if (vma->vm_file) {
1307                                 i_mmap_lock_write(vma->vm_file->f_mapping);
1308                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1309                                 i_mmap_unlock_write(vma->vm_file->f_mapping);
1310                         }
1311                 } else
1312                         unmap_page_range(tlb, vma, start, end, details);
1313         }
1314 }
1315
1316 /**
1317  * unmap_vmas - unmap a range of memory covered by a list of vma's
1318  * @tlb: address of the caller's struct mmu_gather
1319  * @vma: the starting vma
1320  * @start_addr: virtual address at which to start unmapping
1321  * @end_addr: virtual address at which to end unmapping
1322  *
1323  * Unmap all pages in the vma list.
1324  *
1325  * Only addresses between `start' and `end' will be unmapped.
1326  *
1327  * The VMA list must be sorted in ascending virtual address order.
1328  *
1329  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1330  * range after unmap_vmas() returns.  So the only responsibility here is to
1331  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1332  * drops the lock and schedules.
1333  */
1334 void unmap_vmas(struct mmu_gather *tlb,
1335                 struct vm_area_struct *vma, unsigned long start_addr,
1336                 unsigned long end_addr)
1337 {
1338         struct mm_struct *mm = vma->vm_mm;
1339
1340         mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1341         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1342                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1343         mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1344 }
1345
1346 /**
1347  * zap_page_range - remove user pages in a given range
1348  * @vma: vm_area_struct holding the applicable pages
1349  * @start: starting address of pages to zap
1350  * @size: number of bytes to zap
1351  * @details: details of shared cache invalidation
1352  *
1353  * Caller must protect the VMA list
1354  */
1355 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1356                 unsigned long size, struct zap_details *details)
1357 {
1358         struct mm_struct *mm = vma->vm_mm;
1359         struct mmu_gather tlb;
1360         unsigned long end = start + size;
1361
1362         lru_add_drain();
1363         tlb_gather_mmu(&tlb, mm, start, end);
1364         update_hiwater_rss(mm);
1365         mmu_notifier_invalidate_range_start(mm, start, end);
1366         for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1367                 unmap_single_vma(&tlb, vma, start, end, details);
1368         mmu_notifier_invalidate_range_end(mm, start, end);
1369         tlb_finish_mmu(&tlb, start, end);
1370 }
1371
1372 /**
1373  * zap_page_range_single - remove user pages in a given range
1374  * @vma: vm_area_struct holding the applicable pages
1375  * @address: starting address of pages to zap
1376  * @size: number of bytes to zap
1377  * @details: details of shared cache invalidation
1378  *
1379  * The range must fit into one VMA.
1380  */
1381 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1382                 unsigned long size, struct zap_details *details)
1383 {
1384         struct mm_struct *mm = vma->vm_mm;
1385         struct mmu_gather tlb;
1386         unsigned long end = address + size;
1387
1388         lru_add_drain();
1389         tlb_gather_mmu(&tlb, mm, address, end);
1390         update_hiwater_rss(mm);
1391         mmu_notifier_invalidate_range_start(mm, address, end);
1392         unmap_single_vma(&tlb, vma, address, end, details);
1393         mmu_notifier_invalidate_range_end(mm, address, end);
1394         tlb_finish_mmu(&tlb, address, end);
1395 }
1396
1397 /**
1398  * zap_vma_ptes - remove ptes mapping the vma
1399  * @vma: vm_area_struct holding ptes to be zapped
1400  * @address: starting address of pages to zap
1401  * @size: number of bytes to zap
1402  *
1403  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1404  *
1405  * The entire address range must be fully contained within the vma.
1406  *
1407  * Returns 0 if successful.
1408  */
1409 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1410                 unsigned long size)
1411 {
1412         if (address < vma->vm_start || address + size > vma->vm_end ||
1413                         !(vma->vm_flags & VM_PFNMAP))
1414                 return -1;
1415         zap_page_range_single(vma, address, size, NULL);
1416         return 0;
1417 }
1418 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1419
1420 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1421                         spinlock_t **ptl)
1422 {
1423         pgd_t * pgd = pgd_offset(mm, addr);
1424         pud_t * pud = pud_alloc(mm, pgd, addr);
1425         if (pud) {
1426                 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1427                 if (pmd) {
1428                         VM_BUG_ON(pmd_trans_huge(*pmd));
1429                         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1430                 }
1431         }
1432         return NULL;
1433 }
1434
1435 /*
1436  * This is the old fallback for page remapping.
1437  *
1438  * For historical reasons, it only allows reserved pages. Only
1439  * old drivers should use this, and they needed to mark their
1440  * pages reserved for the old functions anyway.
1441  */
1442 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1443                         struct page *page, pgprot_t prot)
1444 {
1445         struct mm_struct *mm = vma->vm_mm;
1446         int retval;
1447         pte_t *pte;
1448         spinlock_t *ptl;
1449
1450         retval = -EINVAL;
1451         if (PageAnon(page))
1452                 goto out;
1453         retval = -ENOMEM;
1454         flush_dcache_page(page);
1455         pte = get_locked_pte(mm, addr, &ptl);
1456         if (!pte)
1457                 goto out;
1458         retval = -EBUSY;
1459         if (!pte_none(*pte))
1460                 goto out_unlock;
1461
1462         /* Ok, finally just insert the thing.. */
1463         get_page(page);
1464         inc_mm_counter_fast(mm, MM_FILEPAGES);
1465         page_add_file_rmap(page);
1466         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1467
1468         retval = 0;
1469         pte_unmap_unlock(pte, ptl);
1470         return retval;
1471 out_unlock:
1472         pte_unmap_unlock(pte, ptl);
1473 out:
1474         return retval;
1475 }
1476
1477 /**
1478  * vm_insert_page - insert single page into user vma
1479  * @vma: user vma to map to
1480  * @addr: target user address of this page
1481  * @page: source kernel page
1482  *
1483  * This allows drivers to insert individual pages they've allocated
1484  * into a user vma.
1485  *
1486  * The page has to be a nice clean _individual_ kernel allocation.
1487  * If you allocate a compound page, you need to have marked it as
1488  * such (__GFP_COMP), or manually just split the page up yourself
1489  * (see split_page()).
1490  *
1491  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1492  * took an arbitrary page protection parameter. This doesn't allow
1493  * that. Your vma protection will have to be set up correctly, which
1494  * means that if you want a shared writable mapping, you'd better
1495  * ask for a shared writable mapping!
1496  *
1497  * The page does not need to be reserved.
1498  *
1499  * Usually this function is called from f_op->mmap() handler
1500  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1501  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1502  * function from other places, for example from page-fault handler.
1503  */
1504 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1505                         struct page *page)
1506 {
1507         if (addr < vma->vm_start || addr >= vma->vm_end)
1508                 return -EFAULT;
1509         if (!page_count(page))
1510                 return -EINVAL;
1511         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1512                 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1513                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1514                 vma->vm_flags |= VM_MIXEDMAP;
1515         }
1516         return insert_page(vma, addr, page, vma->vm_page_prot);
1517 }
1518 EXPORT_SYMBOL(vm_insert_page);
1519
1520 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1521                         unsigned long pfn, pgprot_t prot)
1522 {
1523         struct mm_struct *mm = vma->vm_mm;
1524         int retval;
1525         pte_t *pte, entry;
1526         spinlock_t *ptl;
1527
1528         retval = -ENOMEM;
1529         pte = get_locked_pte(mm, addr, &ptl);
1530         if (!pte)
1531                 goto out;
1532         retval = -EBUSY;
1533         if (!pte_none(*pte))
1534                 goto out_unlock;
1535
1536         /* Ok, finally just insert the thing.. */
1537         entry = pte_mkspecial(pfn_pte(pfn, prot));
1538         set_pte_at(mm, addr, pte, entry);
1539         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1540
1541         retval = 0;
1542 out_unlock:
1543         pte_unmap_unlock(pte, ptl);
1544 out:
1545         return retval;
1546 }
1547
1548 /**
1549  * vm_insert_pfn - insert single pfn into user vma
1550  * @vma: user vma to map to
1551  * @addr: target user address of this page
1552  * @pfn: source kernel pfn
1553  *
1554  * Similar to vm_insert_page, this allows drivers to insert individual pages
1555  * they've allocated into a user vma. Same comments apply.
1556  *
1557  * This function should only be called from a vm_ops->fault handler, and
1558  * in that case the handler should return NULL.
1559  *
1560  * vma cannot be a COW mapping.
1561  *
1562  * As this is called only for pages that do not currently exist, we
1563  * do not need to flush old virtual caches or the TLB.
1564  */
1565 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1566                         unsigned long pfn)
1567 {
1568         int ret;
1569         pgprot_t pgprot = vma->vm_page_prot;
1570         /*
1571          * Technically, architectures with pte_special can avoid all these
1572          * restrictions (same for remap_pfn_range).  However we would like
1573          * consistency in testing and feature parity among all, so we should
1574          * try to keep these invariants in place for everybody.
1575          */
1576         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1577         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1578                                                 (VM_PFNMAP|VM_MIXEDMAP));
1579         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1580         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1581
1582         if (addr < vma->vm_start || addr >= vma->vm_end)
1583                 return -EFAULT;
1584         if (track_pfn_insert(vma, &pgprot, pfn))
1585                 return -EINVAL;
1586
1587         ret = insert_pfn(vma, addr, pfn, pgprot);
1588
1589         return ret;
1590 }
1591 EXPORT_SYMBOL(vm_insert_pfn);
1592
1593 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1594                         unsigned long pfn)
1595 {
1596         BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1597
1598         if (addr < vma->vm_start || addr >= vma->vm_end)
1599                 return -EFAULT;
1600
1601         /*
1602          * If we don't have pte special, then we have to use the pfn_valid()
1603          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1604          * refcount the page if pfn_valid is true (hence insert_page rather
1605          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1606          * without pte special, it would there be refcounted as a normal page.
1607          */
1608         if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1609                 struct page *page;
1610
1611                 page = pfn_to_page(pfn);
1612                 return insert_page(vma, addr, page, vma->vm_page_prot);
1613         }
1614         return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1615 }
1616 EXPORT_SYMBOL(vm_insert_mixed);
1617
1618 /*
1619  * maps a range of physical memory into the requested pages. the old
1620  * mappings are removed. any references to nonexistent pages results
1621  * in null mappings (currently treated as "copy-on-access")
1622  */
1623 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1624                         unsigned long addr, unsigned long end,
1625                         unsigned long pfn, pgprot_t prot)
1626 {
1627         pte_t *pte;
1628         spinlock_t *ptl;
1629
1630         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1631         if (!pte)
1632                 return -ENOMEM;
1633         arch_enter_lazy_mmu_mode();
1634         do {
1635                 BUG_ON(!pte_none(*pte));
1636                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1637                 pfn++;
1638         } while (pte++, addr += PAGE_SIZE, addr != end);
1639         arch_leave_lazy_mmu_mode();
1640         pte_unmap_unlock(pte - 1, ptl);
1641         return 0;
1642 }
1643
1644 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1645                         unsigned long addr, unsigned long end,
1646                         unsigned long pfn, pgprot_t prot)
1647 {
1648         pmd_t *pmd;
1649         unsigned long next;
1650
1651         pfn -= addr >> PAGE_SHIFT;
1652         pmd = pmd_alloc(mm, pud, addr);
1653         if (!pmd)
1654                 return -ENOMEM;
1655         VM_BUG_ON(pmd_trans_huge(*pmd));
1656         do {
1657                 next = pmd_addr_end(addr, end);
1658                 if (remap_pte_range(mm, pmd, addr, next,
1659                                 pfn + (addr >> PAGE_SHIFT), prot))
1660                         return -ENOMEM;
1661         } while (pmd++, addr = next, addr != end);
1662         return 0;
1663 }
1664
1665 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1666                         unsigned long addr, unsigned long end,
1667                         unsigned long pfn, pgprot_t prot)
1668 {
1669         pud_t *pud;
1670         unsigned long next;
1671
1672         pfn -= addr >> PAGE_SHIFT;
1673         pud = pud_alloc(mm, pgd, addr);
1674         if (!pud)
1675                 return -ENOMEM;
1676         do {
1677                 next = pud_addr_end(addr, end);
1678                 if (remap_pmd_range(mm, pud, addr, next,
1679                                 pfn + (addr >> PAGE_SHIFT), prot))
1680                         return -ENOMEM;
1681         } while (pud++, addr = next, addr != end);
1682         return 0;
1683 }
1684
1685 /**
1686  * remap_pfn_range - remap kernel memory to userspace
1687  * @vma: user vma to map to
1688  * @addr: target user address to start at
1689  * @pfn: physical address of kernel memory
1690  * @size: size of map area
1691  * @prot: page protection flags for this mapping
1692  *
1693  *  Note: this is only safe if the mm semaphore is held when called.
1694  */
1695 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1696                     unsigned long pfn, unsigned long size, pgprot_t prot)
1697 {
1698         pgd_t *pgd;
1699         unsigned long next;
1700         unsigned long end = addr + PAGE_ALIGN(size);
1701         struct mm_struct *mm = vma->vm_mm;
1702         int err;
1703
1704         /*
1705          * Physically remapped pages are special. Tell the
1706          * rest of the world about it:
1707          *   VM_IO tells people not to look at these pages
1708          *      (accesses can have side effects).
1709          *   VM_PFNMAP tells the core MM that the base pages are just
1710          *      raw PFN mappings, and do not have a "struct page" associated
1711          *      with them.
1712          *   VM_DONTEXPAND
1713          *      Disable vma merging and expanding with mremap().
1714          *   VM_DONTDUMP
1715          *      Omit vma from core dump, even when VM_IO turned off.
1716          *
1717          * There's a horrible special case to handle copy-on-write
1718          * behaviour that some programs depend on. We mark the "original"
1719          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1720          * See vm_normal_page() for details.
1721          */
1722         if (is_cow_mapping(vma->vm_flags)) {
1723                 if (addr != vma->vm_start || end != vma->vm_end)
1724                         return -EINVAL;
1725                 vma->vm_pgoff = pfn;
1726         }
1727
1728         err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
1729         if (err)
1730                 return -EINVAL;
1731
1732         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1733
1734         BUG_ON(addr >= end);
1735         pfn -= addr >> PAGE_SHIFT;
1736         pgd = pgd_offset(mm, addr);
1737         flush_cache_range(vma, addr, end);
1738         do {
1739                 next = pgd_addr_end(addr, end);
1740                 err = remap_pud_range(mm, pgd, addr, next,
1741                                 pfn + (addr >> PAGE_SHIFT), prot);
1742                 if (err)
1743                         break;
1744         } while (pgd++, addr = next, addr != end);
1745
1746         if (err)
1747                 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
1748
1749         return err;
1750 }
1751 EXPORT_SYMBOL(remap_pfn_range);
1752
1753 /**
1754  * vm_iomap_memory - remap memory to userspace
1755  * @vma: user vma to map to
1756  * @start: start of area
1757  * @len: size of area
1758  *
1759  * This is a simplified io_remap_pfn_range() for common driver use. The
1760  * driver just needs to give us the physical memory range to be mapped,
1761  * we'll figure out the rest from the vma information.
1762  *
1763  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1764  * whatever write-combining details or similar.
1765  */
1766 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1767 {
1768         unsigned long vm_len, pfn, pages;
1769
1770         /* Check that the physical memory area passed in looks valid */
1771         if (start + len < start)
1772                 return -EINVAL;
1773         /*
1774          * You *really* shouldn't map things that aren't page-aligned,
1775          * but we've historically allowed it because IO memory might
1776          * just have smaller alignment.
1777          */
1778         len += start & ~PAGE_MASK;
1779         pfn = start >> PAGE_SHIFT;
1780         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1781         if (pfn + pages < pfn)
1782                 return -EINVAL;
1783
1784         /* We start the mapping 'vm_pgoff' pages into the area */
1785         if (vma->vm_pgoff > pages)
1786                 return -EINVAL;
1787         pfn += vma->vm_pgoff;
1788         pages -= vma->vm_pgoff;
1789
1790         /* Can we fit all of the mapping? */
1791         vm_len = vma->vm_end - vma->vm_start;
1792         if (vm_len >> PAGE_SHIFT > pages)
1793                 return -EINVAL;
1794
1795         /* Ok, let it rip */
1796         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1797 }
1798 EXPORT_SYMBOL(vm_iomap_memory);
1799
1800 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1801                                      unsigned long addr, unsigned long end,
1802                                      pte_fn_t fn, void *data)
1803 {
1804         pte_t *pte;
1805         int err;
1806         pgtable_t token;
1807         spinlock_t *uninitialized_var(ptl);
1808
1809         pte = (mm == &init_mm) ?
1810                 pte_alloc_kernel(pmd, addr) :
1811                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1812         if (!pte)
1813                 return -ENOMEM;
1814
1815         BUG_ON(pmd_huge(*pmd));
1816
1817         arch_enter_lazy_mmu_mode();
1818
1819         token = pmd_pgtable(*pmd);
1820
1821         do {
1822                 err = fn(pte++, token, addr, data);
1823                 if (err)
1824                         break;
1825         } while (addr += PAGE_SIZE, addr != end);
1826
1827         arch_leave_lazy_mmu_mode();
1828
1829         if (mm != &init_mm)
1830                 pte_unmap_unlock(pte-1, ptl);
1831         return err;
1832 }
1833
1834 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1835                                      unsigned long addr, unsigned long end,
1836                                      pte_fn_t fn, void *data)
1837 {
1838         pmd_t *pmd;
1839         unsigned long next;
1840         int err;
1841
1842         BUG_ON(pud_huge(*pud));
1843
1844         pmd = pmd_alloc(mm, pud, addr);
1845         if (!pmd)
1846                 return -ENOMEM;
1847         do {
1848                 next = pmd_addr_end(addr, end);
1849                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1850                 if (err)
1851                         break;
1852         } while (pmd++, addr = next, addr != end);
1853         return err;
1854 }
1855
1856 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1857                                      unsigned long addr, unsigned long end,
1858                                      pte_fn_t fn, void *data)
1859 {
1860         pud_t *pud;
1861         unsigned long next;
1862         int err;
1863
1864         pud = pud_alloc(mm, pgd, addr);
1865         if (!pud)
1866                 return -ENOMEM;
1867         do {
1868                 next = pud_addr_end(addr, end);
1869                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1870                 if (err)
1871                         break;
1872         } while (pud++, addr = next, addr != end);
1873         return err;
1874 }
1875
1876 /*
1877  * Scan a region of virtual memory, filling in page tables as necessary
1878  * and calling a provided function on each leaf page table.
1879  */
1880 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1881                         unsigned long size, pte_fn_t fn, void *data)
1882 {
1883         pgd_t *pgd;
1884         unsigned long next;
1885         unsigned long end = addr + size;
1886         int err;
1887
1888         BUG_ON(addr >= end);
1889         pgd = pgd_offset(mm, addr);
1890         do {
1891                 next = pgd_addr_end(addr, end);
1892                 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1893                 if (err)
1894                         break;
1895         } while (pgd++, addr = next, addr != end);
1896
1897         return err;
1898 }
1899 EXPORT_SYMBOL_GPL(apply_to_page_range);
1900
1901 /*
1902  * handle_pte_fault chooses page fault handler according to an entry
1903  * which was read non-atomically.  Before making any commitment, on
1904  * those architectures or configurations (e.g. i386 with PAE) which
1905  * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
1906  * must check under lock before unmapping the pte and proceeding
1907  * (but do_wp_page is only called after already making such a check;
1908  * and do_anonymous_page can safely check later on).
1909  */
1910 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1911                                 pte_t *page_table, pte_t orig_pte)
1912 {
1913         int same = 1;
1914 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1915         if (sizeof(pte_t) > sizeof(unsigned long)) {
1916                 spinlock_t *ptl = pte_lockptr(mm, pmd);
1917                 spin_lock(ptl);
1918                 same = pte_same(*page_table, orig_pte);
1919                 spin_unlock(ptl);
1920         }
1921 #endif
1922         pte_unmap(page_table);
1923         return same;
1924 }
1925
1926 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1927 {
1928         debug_dma_assert_idle(src);
1929
1930         /*
1931          * If the source page was a PFN mapping, we don't have
1932          * a "struct page" for it. We do a best-effort copy by
1933          * just copying from the original user address. If that
1934          * fails, we just zero-fill it. Live with it.
1935          */
1936         if (unlikely(!src)) {
1937                 void *kaddr = kmap_atomic(dst);
1938                 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1939
1940                 /*
1941                  * This really shouldn't fail, because the page is there
1942                  * in the page tables. But it might just be unreadable,
1943                  * in which case we just give up and fill the result with
1944                  * zeroes.
1945                  */
1946                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1947                         clear_page(kaddr);
1948                 kunmap_atomic(kaddr);
1949                 flush_dcache_page(dst);
1950         } else
1951                 copy_user_highpage(dst, src, va, vma);
1952 }
1953
1954 /*
1955  * Notify the address space that the page is about to become writable so that
1956  * it can prohibit this or wait for the page to get into an appropriate state.
1957  *
1958  * We do this without the lock held, so that it can sleep if it needs to.
1959  */
1960 static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
1961                unsigned long address)
1962 {
1963         struct vm_fault vmf;
1964         int ret;
1965
1966         vmf.virtual_address = (void __user *)(address & PAGE_MASK);
1967         vmf.pgoff = page->index;
1968         vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
1969         vmf.page = page;
1970
1971         ret = vma->vm_ops->page_mkwrite(vma, &vmf);
1972         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
1973                 return ret;
1974         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
1975                 lock_page(page);
1976                 if (!page->mapping) {
1977                         unlock_page(page);
1978                         return 0; /* retry */
1979                 }
1980                 ret |= VM_FAULT_LOCKED;
1981         } else
1982                 VM_BUG_ON_PAGE(!PageLocked(page), page);
1983         return ret;
1984 }
1985
1986 /*
1987  * This routine handles present pages, when users try to write
1988  * to a shared page. It is done by copying the page to a new address
1989  * and decrementing the shared-page counter for the old page.
1990  *
1991  * Note that this routine assumes that the protection checks have been
1992  * done by the caller (the low-level page fault routine in most cases).
1993  * Thus we can safely just mark it writable once we've done any necessary
1994  * COW.
1995  *
1996  * We also mark the page dirty at this point even though the page will
1997  * change only once the write actually happens. This avoids a few races,
1998  * and potentially makes it more efficient.
1999  *
2000  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2001  * but allow concurrent faults), with pte both mapped and locked.
2002  * We return with mmap_sem still held, but pte unmapped and unlocked.
2003  */
2004 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2005                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2006                 spinlock_t *ptl, pte_t orig_pte)
2007         __releases(ptl)
2008 {
2009         struct page *old_page, *new_page = NULL;
2010         pte_t entry;
2011         int ret = 0;
2012         int page_mkwrite = 0;
2013         struct page *dirty_page = NULL;
2014         unsigned long mmun_start = 0;   /* For mmu_notifiers */
2015         unsigned long mmun_end = 0;     /* For mmu_notifiers */
2016         struct mem_cgroup *memcg;
2017
2018         old_page = vm_normal_page(vma, address, orig_pte);
2019         if (!old_page) {
2020                 /*
2021                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2022                  * VM_PFNMAP VMA.
2023                  *
2024                  * We should not cow pages in a shared writeable mapping.
2025                  * Just mark the pages writable as we can't do any dirty
2026                  * accounting on raw pfn maps.
2027                  */
2028                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2029                                      (VM_WRITE|VM_SHARED))
2030                         goto reuse;
2031                 goto gotten;
2032         }
2033
2034         /*
2035          * Take out anonymous pages first, anonymous shared vmas are
2036          * not dirty accountable.
2037          */
2038         if (PageAnon(old_page) && !PageKsm(old_page)) {
2039                 if (!trylock_page(old_page)) {
2040                         page_cache_get(old_page);
2041                         pte_unmap_unlock(page_table, ptl);
2042                         lock_page(old_page);
2043                         page_table = pte_offset_map_lock(mm, pmd, address,
2044                                                          &ptl);
2045                         if (!pte_same(*page_table, orig_pte)) {
2046                                 unlock_page(old_page);
2047                                 goto unlock;
2048                         }
2049                         page_cache_release(old_page);
2050                 }
2051                 if (reuse_swap_page(old_page)) {
2052                         /*
2053                          * The page is all ours.  Move it to our anon_vma so
2054                          * the rmap code will not search our parent or siblings.
2055                          * Protected against the rmap code by the page lock.
2056                          */
2057                         page_move_anon_rmap(old_page, vma, address);
2058                         unlock_page(old_page);
2059                         goto reuse;
2060                 }
2061                 unlock_page(old_page);
2062         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2063                                         (VM_WRITE|VM_SHARED))) {
2064                 /*
2065                  * Only catch write-faults on shared writable pages,
2066                  * read-only shared pages can get COWed by
2067                  * get_user_pages(.write=1, .force=1).
2068                  */
2069                 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2070                         int tmp;
2071                         page_cache_get(old_page);
2072                         pte_unmap_unlock(page_table, ptl);
2073                         tmp = do_page_mkwrite(vma, old_page, address);
2074                         if (unlikely(!tmp || (tmp &
2075                                         (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2076                                 page_cache_release(old_page);
2077                                 return tmp;
2078                         }
2079                         /*
2080                          * Since we dropped the lock we need to revalidate
2081                          * the PTE as someone else may have changed it.  If
2082                          * they did, we just return, as we can count on the
2083                          * MMU to tell us if they didn't also make it writable.
2084                          */
2085                         page_table = pte_offset_map_lock(mm, pmd, address,
2086                                                          &ptl);
2087                         if (!pte_same(*page_table, orig_pte)) {
2088                                 unlock_page(old_page);
2089                                 goto unlock;
2090                         }
2091
2092                         page_mkwrite = 1;
2093                 }
2094                 dirty_page = old_page;
2095                 get_page(dirty_page);
2096
2097 reuse:
2098                 /*
2099                  * Clear the pages cpupid information as the existing
2100                  * information potentially belongs to a now completely
2101                  * unrelated process.
2102                  */
2103                 if (old_page)
2104                         page_cpupid_xchg_last(old_page, (1 << LAST_CPUPID_SHIFT) - 1);
2105
2106                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2107                 entry = pte_mkyoung(orig_pte);
2108                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2109                 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2110                         update_mmu_cache(vma, address, page_table);
2111                 pte_unmap_unlock(page_table, ptl);
2112                 ret |= VM_FAULT_WRITE;
2113
2114                 if (!dirty_page)
2115                         return ret;
2116
2117                 if (!page_mkwrite) {
2118                         struct address_space *mapping;
2119                         int dirtied;
2120
2121                         lock_page(dirty_page);
2122                         dirtied = set_page_dirty(dirty_page);
2123                         VM_BUG_ON_PAGE(PageAnon(dirty_page), dirty_page);
2124                         mapping = dirty_page->mapping;
2125                         unlock_page(dirty_page);
2126
2127                         if (dirtied && mapping) {
2128                                 /*
2129                                  * Some device drivers do not set page.mapping
2130                                  * but still dirty their pages
2131                                  */
2132                                 balance_dirty_pages_ratelimited(mapping);
2133                         }
2134
2135                         /* file_update_time outside page_lock */
2136                         if (vma->vm_file)
2137                                 file_update_time(vma->vm_file);
2138                 }
2139                 put_page(dirty_page);
2140                 if (page_mkwrite) {
2141                         struct address_space *mapping = dirty_page->mapping;
2142
2143                         set_page_dirty(dirty_page);
2144                         unlock_page(dirty_page);
2145                         page_cache_release(dirty_page);
2146                         if (mapping)    {
2147                                 /*
2148                                  * Some device drivers do not set page.mapping
2149                                  * but still dirty their pages
2150                                  */
2151                                 balance_dirty_pages_ratelimited(mapping);
2152                         }
2153                 }
2154
2155                 return ret;
2156         }
2157
2158         /*
2159          * Ok, we need to copy. Oh, well..
2160          */
2161         page_cache_get(old_page);
2162 gotten:
2163         pte_unmap_unlock(page_table, ptl);
2164
2165         if (unlikely(anon_vma_prepare(vma)))
2166                 goto oom;
2167
2168         if (is_zero_pfn(pte_pfn(orig_pte))) {
2169                 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2170                 if (!new_page)
2171                         goto oom;
2172         } else {
2173                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2174                 if (!new_page)
2175                         goto oom;
2176                 cow_user_page(new_page, old_page, address, vma);
2177         }
2178         __SetPageUptodate(new_page);
2179
2180         if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg))
2181                 goto oom_free_new;
2182
2183         mmun_start  = address & PAGE_MASK;
2184         mmun_end    = mmun_start + PAGE_SIZE;
2185         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2186
2187         /*
2188          * Re-check the pte - we dropped the lock
2189          */
2190         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2191         if (likely(pte_same(*page_table, orig_pte))) {
2192                 if (old_page) {
2193                         if (!PageAnon(old_page)) {
2194                                 dec_mm_counter_fast(mm, MM_FILEPAGES);
2195                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2196                         }
2197                 } else
2198                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2199                 flush_cache_page(vma, address, pte_pfn(orig_pte));
2200                 entry = mk_pte(new_page, vma->vm_page_prot);
2201                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2202                 /*
2203                  * Clear the pte entry and flush it first, before updating the
2204                  * pte with the new entry. This will avoid a race condition
2205                  * seen in the presence of one thread doing SMC and another
2206                  * thread doing COW.
2207                  */
2208                 ptep_clear_flush_notify(vma, address, page_table);
2209                 page_add_new_anon_rmap(new_page, vma, address);
2210                 mem_cgroup_commit_charge(new_page, memcg, false);
2211                 lru_cache_add_active_or_unevictable(new_page, vma);
2212                 /*
2213                  * We call the notify macro here because, when using secondary
2214                  * mmu page tables (such as kvm shadow page tables), we want the
2215                  * new page to be mapped directly into the secondary page table.
2216                  */
2217                 set_pte_at_notify(mm, address, page_table, entry);
2218                 update_mmu_cache(vma, address, page_table);
2219                 if (old_page) {
2220                         /*
2221                          * Only after switching the pte to the new page may
2222                          * we remove the mapcount here. Otherwise another
2223                          * process may come and find the rmap count decremented
2224                          * before the pte is switched to the new page, and
2225                          * "reuse" the old page writing into it while our pte
2226                          * here still points into it and can be read by other
2227                          * threads.
2228                          *
2229                          * The critical issue is to order this
2230                          * page_remove_rmap with the ptp_clear_flush above.
2231                          * Those stores are ordered by (if nothing else,)
2232                          * the barrier present in the atomic_add_negative
2233                          * in page_remove_rmap.
2234                          *
2235                          * Then the TLB flush in ptep_clear_flush ensures that
2236                          * no process can access the old page before the
2237                          * decremented mapcount is visible. And the old page
2238                          * cannot be reused until after the decremented
2239                          * mapcount is visible. So transitively, TLBs to
2240                          * old page will be flushed before it can be reused.
2241                          */
2242                         page_remove_rmap(old_page);
2243                 }
2244
2245                 /* Free the old page.. */
2246                 new_page = old_page;
2247                 ret |= VM_FAULT_WRITE;
2248         } else
2249                 mem_cgroup_cancel_charge(new_page, memcg);
2250
2251         if (new_page)
2252                 page_cache_release(new_page);
2253 unlock:
2254         pte_unmap_unlock(page_table, ptl);
2255         if (mmun_end > mmun_start)
2256                 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2257         if (old_page) {
2258                 /*
2259                  * Don't let another task, with possibly unlocked vma,
2260                  * keep the mlocked page.
2261                  */
2262                 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2263                         lock_page(old_page);    /* LRU manipulation */
2264                         munlock_vma_page(old_page);
2265                         unlock_page(old_page);
2266                 }
2267                 page_cache_release(old_page);
2268         }
2269         return ret;
2270 oom_free_new:
2271         page_cache_release(new_page);
2272 oom:
2273         if (old_page)
2274                 page_cache_release(old_page);
2275         return VM_FAULT_OOM;
2276 }
2277
2278 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2279                 unsigned long start_addr, unsigned long end_addr,
2280                 struct zap_details *details)
2281 {
2282         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2283 }
2284
2285 static inline void unmap_mapping_range_tree(struct rb_root *root,
2286                                             struct zap_details *details)
2287 {
2288         struct vm_area_struct *vma;
2289         pgoff_t vba, vea, zba, zea;
2290
2291         vma_interval_tree_foreach(vma, root,
2292                         details->first_index, details->last_index) {
2293
2294                 vba = vma->vm_pgoff;
2295                 vea = vba + vma_pages(vma) - 1;
2296                 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2297                 zba = details->first_index;
2298                 if (zba < vba)
2299                         zba = vba;
2300                 zea = details->last_index;
2301                 if (zea > vea)
2302                         zea = vea;
2303
2304                 unmap_mapping_range_vma(vma,
2305                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2306                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2307                                 details);
2308         }
2309 }
2310
2311 /**
2312  * unmap_mapping_range - unmap the portion of all mmaps in the specified
2313  * address_space corresponding to the specified page range in the underlying
2314  * file.
2315  *
2316  * @mapping: the address space containing mmaps to be unmapped.
2317  * @holebegin: byte in first page to unmap, relative to the start of
2318  * the underlying file.  This will be rounded down to a PAGE_SIZE
2319  * boundary.  Note that this is different from truncate_pagecache(), which
2320  * must keep the partial page.  In contrast, we must get rid of
2321  * partial pages.
2322  * @holelen: size of prospective hole in bytes.  This will be rounded
2323  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2324  * end of the file.
2325  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2326  * but 0 when invalidating pagecache, don't throw away private data.
2327  */
2328 void unmap_mapping_range(struct address_space *mapping,
2329                 loff_t const holebegin, loff_t const holelen, int even_cows)
2330 {
2331         struct zap_details details;
2332         pgoff_t hba = holebegin >> PAGE_SHIFT;
2333         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2334
2335         /* Check for overflow. */
2336         if (sizeof(holelen) > sizeof(hlen)) {
2337                 long long holeend =
2338                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2339                 if (holeend & ~(long long)ULONG_MAX)
2340                         hlen = ULONG_MAX - hba + 1;
2341         }
2342
2343         details.check_mapping = even_cows? NULL: mapping;
2344         details.first_index = hba;
2345         details.last_index = hba + hlen - 1;
2346         if (details.last_index < details.first_index)
2347                 details.last_index = ULONG_MAX;
2348
2349
2350         i_mmap_lock_write(mapping);
2351         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2352                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2353         i_mmap_unlock_write(mapping);
2354 }
2355 EXPORT_SYMBOL(unmap_mapping_range);
2356
2357 /*
2358  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2359  * but allow concurrent faults), and pte mapped but not yet locked.
2360  * We return with pte unmapped and unlocked.
2361  *
2362  * We return with the mmap_sem locked or unlocked in the same cases
2363  * as does filemap_fault().
2364  */
2365 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2366                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2367                 unsigned int flags, pte_t orig_pte)
2368 {
2369         spinlock_t *ptl;
2370         struct page *page, *swapcache;
2371         struct mem_cgroup *memcg;
2372         swp_entry_t entry;
2373         pte_t pte;
2374         int locked;
2375         int exclusive = 0;
2376         int ret = 0;
2377
2378         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2379                 goto out;
2380
2381         entry = pte_to_swp_entry(orig_pte);
2382         if (unlikely(non_swap_entry(entry))) {
2383                 if (is_migration_entry(entry)) {
2384                         migration_entry_wait(mm, pmd, address);
2385                 } else if (is_hwpoison_entry(entry)) {
2386                         ret = VM_FAULT_HWPOISON;
2387                 } else {
2388                         print_bad_pte(vma, address, orig_pte, NULL);
2389                         ret = VM_FAULT_SIGBUS;
2390                 }
2391                 goto out;
2392         }
2393         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2394         page = lookup_swap_cache(entry);
2395         if (!page) {
2396                 page = swapin_readahead(entry,
2397                                         GFP_HIGHUSER_MOVABLE, vma, address);
2398                 if (!page) {
2399                         /*
2400                          * Back out if somebody else faulted in this pte
2401                          * while we released the pte lock.
2402                          */
2403                         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2404                         if (likely(pte_same(*page_table, orig_pte)))
2405                                 ret = VM_FAULT_OOM;
2406                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2407                         goto unlock;
2408                 }
2409
2410                 /* Had to read the page from swap area: Major fault */
2411                 ret = VM_FAULT_MAJOR;
2412                 count_vm_event(PGMAJFAULT);
2413                 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2414         } else if (PageHWPoison(page)) {
2415                 /*
2416                  * hwpoisoned dirty swapcache pages are kept for killing
2417                  * owner processes (which may be unknown at hwpoison time)
2418                  */
2419                 ret = VM_FAULT_HWPOISON;
2420                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2421                 swapcache = page;
2422                 goto out_release;
2423         }
2424
2425         swapcache = page;
2426         locked = lock_page_or_retry(page, mm, flags);
2427
2428         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2429         if (!locked) {
2430                 ret |= VM_FAULT_RETRY;
2431                 goto out_release;
2432         }
2433
2434         /*
2435          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2436          * release the swapcache from under us.  The page pin, and pte_same
2437          * test below, are not enough to exclude that.  Even if it is still
2438          * swapcache, we need to check that the page's swap has not changed.
2439          */
2440         if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2441                 goto out_page;
2442
2443         page = ksm_might_need_to_copy(page, vma, address);
2444         if (unlikely(!page)) {
2445                 ret = VM_FAULT_OOM;
2446                 page = swapcache;
2447                 goto out_page;
2448         }
2449
2450         if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg)) {
2451                 ret = VM_FAULT_OOM;
2452                 goto out_page;
2453         }
2454
2455         /*
2456          * Back out if somebody else already faulted in this pte.
2457          */
2458         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2459         if (unlikely(!pte_same(*page_table, orig_pte)))
2460                 goto out_nomap;
2461
2462         if (unlikely(!PageUptodate(page))) {
2463                 ret = VM_FAULT_SIGBUS;
2464                 goto out_nomap;
2465         }
2466
2467         /*
2468          * The page isn't present yet, go ahead with the fault.
2469          *
2470          * Be careful about the sequence of operations here.
2471          * To get its accounting right, reuse_swap_page() must be called
2472          * while the page is counted on swap but not yet in mapcount i.e.
2473          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2474          * must be called after the swap_free(), or it will never succeed.
2475          */
2476
2477         inc_mm_counter_fast(mm, MM_ANONPAGES);
2478         dec_mm_counter_fast(mm, MM_SWAPENTS);
2479         pte = mk_pte(page, vma->vm_page_prot);
2480         if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2481                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2482                 flags &= ~FAULT_FLAG_WRITE;
2483                 ret |= VM_FAULT_WRITE;
2484                 exclusive = 1;
2485         }
2486         flush_icache_page(vma, page);
2487         if (pte_swp_soft_dirty(orig_pte))
2488                 pte = pte_mksoft_dirty(pte);
2489         set_pte_at(mm, address, page_table, pte);
2490         if (page == swapcache) {
2491                 do_page_add_anon_rmap(page, vma, address, exclusive);
2492                 mem_cgroup_commit_charge(page, memcg, true);
2493         } else { /* ksm created a completely new copy */
2494                 page_add_new_anon_rmap(page, vma, address);
2495                 mem_cgroup_commit_charge(page, memcg, false);
2496                 lru_cache_add_active_or_unevictable(page, vma);
2497         }
2498
2499         swap_free(entry);
2500         if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2501                 try_to_free_swap(page);
2502         unlock_page(page);
2503         if (page != swapcache) {
2504                 /*
2505                  * Hold the lock to avoid the swap entry to be reused
2506                  * until we take the PT lock for the pte_same() check
2507                  * (to avoid false positives from pte_same). For
2508                  * further safety release the lock after the swap_free
2509                  * so that the swap count won't change under a
2510                  * parallel locked swapcache.
2511                  */
2512                 unlock_page(swapcache);
2513                 page_cache_release(swapcache);
2514         }
2515
2516         if (flags & FAULT_FLAG_WRITE) {
2517                 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2518                 if (ret & VM_FAULT_ERROR)
2519                         ret &= VM_FAULT_ERROR;
2520                 goto out;
2521         }
2522
2523         /* No need to invalidate - it was non-present before */
2524         update_mmu_cache(vma, address, page_table);
2525 unlock:
2526         pte_unmap_unlock(page_table, ptl);
2527 out:
2528         return ret;
2529 out_nomap:
2530         mem_cgroup_cancel_charge(page, memcg);
2531         pte_unmap_unlock(page_table, ptl);
2532 out_page:
2533         unlock_page(page);
2534 out_release:
2535         page_cache_release(page);
2536         if (page != swapcache) {
2537                 unlock_page(swapcache);
2538                 page_cache_release(swapcache);
2539         }
2540         return ret;
2541 }
2542
2543 /*
2544  * This is like a special single-page "expand_{down|up}wards()",
2545  * except we must first make sure that 'address{-|+}PAGE_SIZE'
2546  * doesn't hit another vma.
2547  */
2548 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2549 {
2550         address &= PAGE_MASK;
2551         if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
2552                 struct vm_area_struct *prev = vma->vm_prev;
2553
2554                 /*
2555                  * Is there a mapping abutting this one below?
2556                  *
2557                  * That's only ok if it's the same stack mapping
2558                  * that has gotten split..
2559                  */
2560                 if (prev && prev->vm_end == address)
2561                         return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
2562
2563                 return expand_downwards(vma, address - PAGE_SIZE);
2564         }
2565         if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2566                 struct vm_area_struct *next = vma->vm_next;
2567
2568                 /* As VM_GROWSDOWN but s/below/above/ */
2569                 if (next && next->vm_start == address + PAGE_SIZE)
2570                         return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
2571
2572                 return expand_upwards(vma, address + PAGE_SIZE);
2573         }
2574         return 0;
2575 }
2576
2577 /*
2578  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2579  * but allow concurrent faults), and pte mapped but not yet locked.
2580  * We return with mmap_sem still held, but pte unmapped and unlocked.
2581  */
2582 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2583                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2584                 unsigned int flags)
2585 {
2586         struct mem_cgroup *memcg;
2587         struct page *page;
2588         spinlock_t *ptl;
2589         pte_t entry;
2590
2591         pte_unmap(page_table);
2592
2593         /* Check if we need to add a guard page to the stack */
2594         if (check_stack_guard_page(vma, address) < 0)
2595                 return VM_FAULT_SIGSEGV;
2596
2597         /* Use the zero-page for reads */
2598         if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm)) {
2599                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2600                                                 vma->vm_page_prot));
2601                 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2602                 if (!pte_none(*page_table))
2603                         goto unlock;
2604                 goto setpte;
2605         }
2606
2607         /* Allocate our own private page. */
2608         if (unlikely(anon_vma_prepare(vma)))
2609                 goto oom;
2610         page = alloc_zeroed_user_highpage_movable(vma, address);
2611         if (!page)
2612                 goto oom;
2613         /*
2614          * The memory barrier inside __SetPageUptodate makes sure that
2615          * preceeding stores to the page contents become visible before
2616          * the set_pte_at() write.
2617          */
2618         __SetPageUptodate(page);
2619
2620         if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg))
2621                 goto oom_free_page;
2622
2623         entry = mk_pte(page, vma->vm_page_prot);
2624         if (vma->vm_flags & VM_WRITE)
2625                 entry = pte_mkwrite(pte_mkdirty(entry));
2626
2627         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2628         if (!pte_none(*page_table))
2629                 goto release;
2630
2631         inc_mm_counter_fast(mm, MM_ANONPAGES);
2632         page_add_new_anon_rmap(page, vma, address);
2633         mem_cgroup_commit_charge(page, memcg, false);
2634         lru_cache_add_active_or_unevictable(page, vma);
2635 setpte:
2636         set_pte_at(mm, address, page_table, entry);
2637
2638         /* No need to invalidate - it was non-present before */
2639         update_mmu_cache(vma, address, page_table);
2640 unlock:
2641         pte_unmap_unlock(page_table, ptl);
2642         return 0;
2643 release:
2644         mem_cgroup_cancel_charge(page, memcg);
2645         page_cache_release(page);
2646         goto unlock;
2647 oom_free_page:
2648         page_cache_release(page);
2649 oom:
2650         return VM_FAULT_OOM;
2651 }
2652
2653 /*
2654  * The mmap_sem must have been held on entry, and may have been
2655  * released depending on flags and vma->vm_ops->fault() return value.
2656  * See filemap_fault() and __lock_page_retry().
2657  */
2658 static int __do_fault(struct vm_area_struct *vma, unsigned long address,
2659                 pgoff_t pgoff, unsigned int flags, struct page **page)
2660 {
2661         struct vm_fault vmf;
2662         int ret;
2663
2664         vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2665         vmf.pgoff = pgoff;
2666         vmf.flags = flags;
2667         vmf.page = NULL;
2668
2669         ret = vma->vm_ops->fault(vma, &vmf);
2670         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2671                 return ret;
2672
2673         if (unlikely(PageHWPoison(vmf.page))) {
2674                 if (ret & VM_FAULT_LOCKED)
2675                         unlock_page(vmf.page);
2676                 page_cache_release(vmf.page);
2677                 return VM_FAULT_HWPOISON;
2678         }
2679
2680         if (unlikely(!(ret & VM_FAULT_LOCKED)))
2681                 lock_page(vmf.page);
2682         else
2683                 VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
2684
2685         *page = vmf.page;
2686         return ret;
2687 }
2688
2689 /**
2690  * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
2691  *
2692  * @vma: virtual memory area
2693  * @address: user virtual address
2694  * @page: page to map
2695  * @pte: pointer to target page table entry
2696  * @write: true, if new entry is writable
2697  * @anon: true, if it's anonymous page
2698  *
2699  * Caller must hold page table lock relevant for @pte.
2700  *
2701  * Target users are page handler itself and implementations of
2702  * vm_ops->map_pages.
2703  */
2704 void do_set_pte(struct vm_area_struct *vma, unsigned long address,
2705                 struct page *page, pte_t *pte, bool write, bool anon)
2706 {
2707         pte_t entry;
2708
2709         flush_icache_page(vma, page);
2710         entry = mk_pte(page, vma->vm_page_prot);
2711         if (write)
2712                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2713         else if (pte_file(*pte) && pte_file_soft_dirty(*pte))
2714                 entry = pte_mksoft_dirty(entry);
2715         if (anon) {
2716                 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2717                 page_add_new_anon_rmap(page, vma, address);
2718         } else {
2719                 inc_mm_counter_fast(vma->vm_mm, MM_FILEPAGES);
2720                 page_add_file_rmap(page);
2721         }
2722         set_pte_at(vma->vm_mm, address, pte, entry);
2723
2724         /* no need to invalidate: a not-present page won't be cached */
2725         update_mmu_cache(vma, address, pte);
2726 }
2727
2728 static unsigned long fault_around_bytes __read_mostly =
2729         rounddown_pow_of_two(65536);
2730
2731 #ifdef CONFIG_DEBUG_FS
2732 static int fault_around_bytes_get(void *data, u64 *val)
2733 {
2734         *val = fault_around_bytes;
2735         return 0;
2736 }
2737
2738 /*
2739  * fault_around_pages() and fault_around_mask() expects fault_around_bytes
2740  * rounded down to nearest page order. It's what do_fault_around() expects to
2741  * see.
2742  */
2743 static int fault_around_bytes_set(void *data, u64 val)
2744 {
2745         if (val / PAGE_SIZE > PTRS_PER_PTE)
2746                 return -EINVAL;
2747         if (val > PAGE_SIZE)
2748                 fault_around_bytes = rounddown_pow_of_two(val);
2749         else
2750                 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
2751         return 0;
2752 }
2753 DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
2754                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
2755
2756 static int __init fault_around_debugfs(void)
2757 {
2758         void *ret;
2759
2760         ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
2761                         &fault_around_bytes_fops);
2762         if (!ret)
2763                 pr_warn("Failed to create fault_around_bytes in debugfs");
2764         return 0;
2765 }
2766 late_initcall(fault_around_debugfs);
2767 #endif
2768
2769 /*
2770  * do_fault_around() tries to map few pages around the fault address. The hope
2771  * is that the pages will be needed soon and this will lower the number of
2772  * faults to handle.
2773  *
2774  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
2775  * not ready to be mapped: not up-to-date, locked, etc.
2776  *
2777  * This function is called with the page table lock taken. In the split ptlock
2778  * case the page table lock only protects only those entries which belong to
2779  * the page table corresponding to the fault address.
2780  *
2781  * This function doesn't cross the VMA boundaries, in order to call map_pages()
2782  * only once.
2783  *
2784  * fault_around_pages() defines how many pages we'll try to map.
2785  * do_fault_around() expects it to return a power of two less than or equal to
2786  * PTRS_PER_PTE.
2787  *
2788  * The virtual address of the area that we map is naturally aligned to the
2789  * fault_around_pages() value (and therefore to page order).  This way it's
2790  * easier to guarantee that we don't cross page table boundaries.
2791  */
2792 static void do_fault_around(struct vm_area_struct *vma, unsigned long address,
2793                 pte_t *pte, pgoff_t pgoff, unsigned int flags)
2794 {
2795         unsigned long start_addr, nr_pages, mask;
2796         pgoff_t max_pgoff;
2797         struct vm_fault vmf;
2798         int off;
2799
2800         nr_pages = ACCESS_ONCE(fault_around_bytes) >> PAGE_SHIFT;
2801         mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
2802
2803         start_addr = max(address & mask, vma->vm_start);
2804         off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
2805         pte -= off;
2806         pgoff -= off;
2807
2808         /*
2809          *  max_pgoff is either end of page table or end of vma
2810          *  or fault_around_pages() from pgoff, depending what is nearest.
2811          */
2812         max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
2813                 PTRS_PER_PTE - 1;
2814         max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1,
2815                         pgoff + nr_pages - 1);
2816
2817         /* Check if it makes any sense to call ->map_pages */
2818         while (!pte_none(*pte)) {
2819                 if (++pgoff > max_pgoff)
2820                         return;
2821                 start_addr += PAGE_SIZE;
2822                 if (start_addr >= vma->vm_end)
2823                         return;
2824                 pte++;
2825         }
2826
2827         vmf.virtual_address = (void __user *) start_addr;
2828         vmf.pte = pte;
2829         vmf.pgoff = pgoff;
2830         vmf.max_pgoff = max_pgoff;
2831         vmf.flags = flags;
2832         vma->vm_ops->map_pages(vma, &vmf);
2833 }
2834
2835 static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2836                 unsigned long address, pmd_t *pmd,
2837                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2838 {
2839         struct page *fault_page;
2840         spinlock_t *ptl;
2841         pte_t *pte;
2842         int ret = 0;
2843
2844         /*
2845          * Let's call ->map_pages() first and use ->fault() as fallback
2846          * if page by the offset is not ready to be mapped (cold cache or
2847          * something).
2848          */
2849         if (vma->vm_ops->map_pages && !(flags & FAULT_FLAG_NONLINEAR) &&
2850             fault_around_bytes >> PAGE_SHIFT > 1) {
2851                 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2852                 do_fault_around(vma, address, pte, pgoff, flags);
2853                 if (!pte_same(*pte, orig_pte))
2854                         goto unlock_out;
2855                 pte_unmap_unlock(pte, ptl);
2856         }
2857
2858         ret = __do_fault(vma, address, pgoff, flags, &fault_page);
2859         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2860                 return ret;
2861
2862         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2863         if (unlikely(!pte_same(*pte, orig_pte))) {
2864                 pte_unmap_unlock(pte, ptl);
2865                 unlock_page(fault_page);
2866                 page_cache_release(fault_page);
2867                 return ret;
2868         }
2869         do_set_pte(vma, address, fault_page, pte, false, false);
2870         unlock_page(fault_page);
2871 unlock_out:
2872         pte_unmap_unlock(pte, ptl);
2873         return ret;
2874 }
2875
2876 static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2877                 unsigned long address, pmd_t *pmd,
2878                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2879 {
2880         struct page *fault_page, *new_page;
2881         struct mem_cgroup *memcg;
2882         spinlock_t *ptl;
2883         pte_t *pte;
2884         int ret;
2885
2886         if (unlikely(anon_vma_prepare(vma)))
2887                 return VM_FAULT_OOM;
2888
2889         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2890         if (!new_page)
2891                 return VM_FAULT_OOM;
2892
2893         if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg)) {
2894                 page_cache_release(new_page);
2895                 return VM_FAULT_OOM;
2896         }
2897
2898         ret = __do_fault(vma, address, pgoff, flags, &fault_page);
2899         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2900                 goto uncharge_out;
2901
2902         copy_user_highpage(new_page, fault_page, address, vma);
2903         __SetPageUptodate(new_page);
2904
2905         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2906         if (unlikely(!pte_same(*pte, orig_pte))) {
2907                 pte_unmap_unlock(pte, ptl);
2908                 unlock_page(fault_page);
2909                 page_cache_release(fault_page);
2910                 goto uncharge_out;
2911         }
2912         do_set_pte(vma, address, new_page, pte, true, true);
2913         mem_cgroup_commit_charge(new_page, memcg, false);
2914         lru_cache_add_active_or_unevictable(new_page, vma);
2915         pte_unmap_unlock(pte, ptl);
2916         unlock_page(fault_page);
2917         page_cache_release(fault_page);
2918         return ret;
2919 uncharge_out:
2920         mem_cgroup_cancel_charge(new_page, memcg);
2921         page_cache_release(new_page);
2922         return ret;
2923 }
2924
2925 static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2926                 unsigned long address, pmd_t *pmd,
2927                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2928 {
2929         struct page *fault_page;
2930         struct address_space *mapping;
2931         spinlock_t *ptl;
2932         pte_t *pte;
2933         int dirtied = 0;
2934         int ret, tmp;
2935
2936         ret = __do_fault(vma, address, pgoff, flags, &fault_page);
2937         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2938                 return ret;
2939
2940         /*
2941          * Check if the backing address space wants to know that the page is
2942          * about to become writable
2943          */
2944         if (vma->vm_ops->page_mkwrite) {
2945                 unlock_page(fault_page);
2946                 tmp = do_page_mkwrite(vma, fault_page, address);
2947                 if (unlikely(!tmp ||
2948                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2949                         page_cache_release(fault_page);
2950                         return tmp;
2951                 }
2952         }
2953
2954         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2955         if (unlikely(!pte_same(*pte, orig_pte))) {
2956                 pte_unmap_unlock(pte, ptl);
2957                 unlock_page(fault_page);
2958                 page_cache_release(fault_page);
2959                 return ret;
2960         }
2961         do_set_pte(vma, address, fault_page, pte, true, false);
2962         pte_unmap_unlock(pte, ptl);
2963
2964         if (set_page_dirty(fault_page))
2965                 dirtied = 1;
2966         /*
2967          * Take a local copy of the address_space - page.mapping may be zeroed
2968          * by truncate after unlock_page().   The address_space itself remains
2969          * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2970          * release semantics to prevent the compiler from undoing this copying.
2971          */
2972         mapping = fault_page->mapping;
2973         unlock_page(fault_page);
2974         if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
2975                 /*
2976                  * Some device drivers do not set page.mapping but still
2977                  * dirty their pages
2978                  */
2979                 balance_dirty_pages_ratelimited(mapping);
2980         }
2981
2982         /* file_update_time outside page_lock */
2983         if (vma->vm_file && !vma->vm_ops->page_mkwrite)
2984                 file_update_time(vma->vm_file);
2985
2986         return ret;
2987 }
2988
2989 /*
2990  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2991  * but allow concurrent faults).
2992  * The mmap_sem may have been released depending on flags and our
2993  * return value.  See filemap_fault() and __lock_page_or_retry().
2994  */
2995 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2996                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2997                 unsigned int flags, pte_t orig_pte)
2998 {
2999         pgoff_t pgoff = (((address & PAGE_MASK)
3000                         - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3001
3002         pte_unmap(page_table);
3003         if (!(flags & FAULT_FLAG_WRITE))
3004                 return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3005                                 orig_pte);
3006         if (!(vma->vm_flags & VM_SHARED))
3007                 return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3008                                 orig_pte);
3009         return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3010 }
3011
3012 /*
3013  * Fault of a previously existing named mapping. Repopulate the pte
3014  * from the encoded file_pte if possible. This enables swappable
3015  * nonlinear vmas.
3016  *
3017  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3018  * but allow concurrent faults), and pte mapped but not yet locked.
3019  * We return with pte unmapped and unlocked.
3020  * The mmap_sem may have been released depending on flags and our
3021  * return value.  See filemap_fault() and __lock_page_or_retry().
3022  */
3023 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3024                 unsigned long address, pte_t *page_table, pmd_t *pmd,
3025                 unsigned int flags, pte_t orig_pte)
3026 {
3027         pgoff_t pgoff;
3028
3029         flags |= FAULT_FLAG_NONLINEAR;
3030
3031         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3032                 return 0;
3033
3034         if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3035                 /*
3036                  * Page table corrupted: show pte and kill process.
3037                  */
3038                 print_bad_pte(vma, address, orig_pte, NULL);
3039                 return VM_FAULT_SIGBUS;
3040         }
3041
3042         pgoff = pte_to_pgoff(orig_pte);
3043         if (!(flags & FAULT_FLAG_WRITE))
3044                 return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3045                                 orig_pte);
3046         if (!(vma->vm_flags & VM_SHARED))
3047                 return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3048                                 orig_pte);
3049         return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3050 }
3051
3052 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3053                                 unsigned long addr, int page_nid,
3054                                 int *flags)
3055 {
3056         get_page(page);
3057
3058         count_vm_numa_event(NUMA_HINT_FAULTS);
3059         if (page_nid == numa_node_id()) {
3060                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3061                 *flags |= TNF_FAULT_LOCAL;
3062         }
3063
3064         return mpol_misplaced(page, vma, addr);
3065 }
3066
3067 static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3068                    unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3069 {
3070         struct page *page = NULL;
3071         spinlock_t *ptl;
3072         int page_nid = -1;
3073         int last_cpupid;
3074         int target_nid;
3075         bool migrated = false;
3076         int flags = 0;
3077
3078         /*
3079         * The "pte" at this point cannot be used safely without
3080         * validation through pte_unmap_same(). It's of NUMA type but
3081         * the pfn may be screwed if the read is non atomic.
3082         *
3083         * ptep_modify_prot_start is not called as this is clearing
3084         * the _PAGE_NUMA bit and it is not really expected that there
3085         * would be concurrent hardware modifications to the PTE.
3086         */
3087         ptl = pte_lockptr(mm, pmd);
3088         spin_lock(ptl);
3089         if (unlikely(!pte_same(*ptep, pte))) {
3090                 pte_unmap_unlock(ptep, ptl);
3091                 goto out;
3092         }
3093
3094         pte = pte_mknonnuma(pte);
3095         set_pte_at(mm, addr, ptep, pte);
3096         update_mmu_cache(vma, addr, ptep);
3097
3098         page = vm_normal_page(vma, addr, pte);
3099         if (!page) {
3100                 pte_unmap_unlock(ptep, ptl);
3101                 return 0;
3102         }
3103         BUG_ON(is_zero_pfn(page_to_pfn(page)));
3104
3105         /*
3106          * Avoid grouping on DSO/COW pages in specific and RO pages
3107          * in general, RO pages shouldn't hurt as much anyway since
3108          * they can be in shared cache state.
3109          */
3110         if (!pte_write(pte))
3111                 flags |= TNF_NO_GROUP;
3112
3113         /*
3114          * Flag if the page is shared between multiple address spaces. This
3115          * is later used when determining whether to group tasks together
3116          */
3117         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3118                 flags |= TNF_SHARED;
3119
3120         last_cpupid = page_cpupid_last(page);
3121         page_nid = page_to_nid(page);
3122         target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
3123         pte_unmap_unlock(ptep, ptl);
3124         if (target_nid == -1) {
3125                 put_page(page);
3126                 goto out;
3127         }
3128
3129         /* Migrate to the requested node */
3130         migrated = migrate_misplaced_page(page, vma, target_nid);
3131         if (migrated) {
3132                 page_nid = target_nid;
3133                 flags |= TNF_MIGRATED;
3134         }
3135
3136 out:
3137         if (page_nid != -1)
3138                 task_numa_fault(last_cpupid, page_nid, 1, flags);
3139         return 0;
3140 }
3141
3142 /*
3143  * These routines also need to handle stuff like marking pages dirty
3144  * and/or accessed for architectures that don't do it in hardware (most
3145  * RISC architectures).  The early dirtying is also good on the i386.
3146  *
3147  * There is also a hook called "update_mmu_cache()" that architectures
3148  * with external mmu caches can use to update those (ie the Sparc or
3149  * PowerPC hashed page tables that act as extended TLBs).
3150  *
3151  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3152  * but allow concurrent faults), and pte mapped but not yet locked.
3153  * We return with pte unmapped and unlocked.
3154  *
3155  * The mmap_sem may have been released depending on flags and our
3156  * return value.  See filemap_fault() and __lock_page_or_retry().
3157  */
3158 static int handle_pte_fault(struct mm_struct *mm,
3159                      struct vm_area_struct *vma, unsigned long address,
3160                      pte_t *pte, pmd_t *pmd, unsigned int flags)
3161 {
3162         pte_t entry;
3163         spinlock_t *ptl;
3164
3165         /*
3166          * some architectures can have larger ptes than wordsize,
3167          * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and CONFIG_32BIT=y,
3168          * so READ_ONCE or ACCESS_ONCE cannot guarantee atomic accesses.
3169          * The code below just needs a consistent view for the ifs and
3170          * we later double check anyway with the ptl lock held. So here
3171          * a barrier will do.
3172          */
3173         entry = *pte;
3174         barrier();
3175         if (!pte_present(entry)) {
3176                 if (pte_none(entry)) {
3177                         if (vma->vm_ops) {
3178                                 if (likely(vma->vm_ops->fault))
3179                                         return do_linear_fault(mm, vma, address,
3180                                                 pte, pmd, flags, entry);
3181                         }
3182                         return do_anonymous_page(mm, vma, address,
3183                                                  pte, pmd, flags);
3184                 }
3185                 if (pte_file(entry))
3186                         return do_nonlinear_fault(mm, vma, address,
3187                                         pte, pmd, flags, entry);
3188                 return do_swap_page(mm, vma, address,
3189                                         pte, pmd, flags, entry);
3190         }
3191
3192         if (pte_numa(entry))
3193                 return do_numa_page(mm, vma, address, entry, pte, pmd);
3194
3195         ptl = pte_lockptr(mm, pmd);
3196         spin_lock(ptl);
3197         if (unlikely(!pte_same(*pte, entry)))
3198                 goto unlock;
3199         if (flags & FAULT_FLAG_WRITE) {
3200                 if (!pte_write(entry))
3201                         return do_wp_page(mm, vma, address,
3202                                         pte, pmd, ptl, entry);
3203                 entry = pte_mkdirty(entry);
3204         }
3205         entry = pte_mkyoung(entry);
3206         if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3207                 update_mmu_cache(vma, address, pte);
3208         } else {
3209                 /*
3210                  * This is needed only for protection faults but the arch code
3211                  * is not yet telling us if this is a protection fault or not.
3212                  * This still avoids useless tlb flushes for .text page faults
3213                  * with threads.
3214                  */
3215                 if (flags & FAULT_FLAG_WRITE)
3216                         flush_tlb_fix_spurious_fault(vma, address);
3217         }
3218 unlock:
3219         pte_unmap_unlock(pte, ptl);
3220         return 0;
3221 }
3222
3223 /*
3224  * By the time we get here, we already hold the mm semaphore
3225  *
3226  * The mmap_sem may have been released depending on flags and our
3227  * return value.  See filemap_fault() and __lock_page_or_retry().
3228  */
3229 static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3230                              unsigned long address, unsigned int flags)
3231 {
3232         pgd_t *pgd;
3233         pud_t *pud;
3234         pmd_t *pmd;
3235         pte_t *pte;
3236
3237         if (unlikely(is_vm_hugetlb_page(vma)))
3238                 return hugetlb_fault(mm, vma, address, flags);
3239
3240         pgd = pgd_offset(mm, address);
3241         pud = pud_alloc(mm, pgd, address);
3242         if (!pud)
3243                 return VM_FAULT_OOM;
3244         pmd = pmd_alloc(mm, pud, address);
3245         if (!pmd)
3246                 return VM_FAULT_OOM;
3247         if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3248                 int ret = VM_FAULT_FALLBACK;
3249                 if (!vma->vm_ops)
3250                         ret = do_huge_pmd_anonymous_page(mm, vma, address,
3251                                         pmd, flags);
3252                 if (!(ret & VM_FAULT_FALLBACK))
3253                         return ret;
3254         } else {
3255                 pmd_t orig_pmd = *pmd;
3256                 int ret;
3257
3258                 barrier();
3259                 if (pmd_trans_huge(orig_pmd)) {
3260                         unsigned int dirty = flags & FAULT_FLAG_WRITE;
3261
3262                         /*
3263                          * If the pmd is splitting, return and retry the
3264                          * the fault.  Alternative: wait until the split
3265                          * is done, and goto retry.
3266                          */
3267                         if (pmd_trans_splitting(orig_pmd))
3268                                 return 0;
3269
3270                         if (pmd_numa(orig_pmd))
3271                                 return do_huge_pmd_numa_page(mm, vma, address,
3272                                                              orig_pmd, pmd);
3273
3274                         if (dirty && !pmd_write(orig_pmd)) {
3275                                 ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3276                                                           orig_pmd);
3277                                 if (!(ret & VM_FAULT_FALLBACK))
3278                                         return ret;
3279                         } else {
3280                                 huge_pmd_set_accessed(mm, vma, address, pmd,
3281                                                       orig_pmd, dirty);
3282                                 return 0;
3283                         }
3284                 }
3285         }
3286
3287         /*
3288          * Use __pte_alloc instead of pte_alloc_map, because we can't
3289          * run pte_offset_map on the pmd, if an huge pmd could
3290          * materialize from under us from a different thread.
3291          */
3292         if (unlikely(pmd_none(*pmd)) &&
3293             unlikely(__pte_alloc(mm, vma, pmd, address)))
3294                 return VM_FAULT_OOM;
3295         /* if an huge pmd materialized from under us just retry later */
3296         if (unlikely(pmd_trans_huge(*pmd)))
3297                 return 0;
3298         /*
3299          * A regular pmd is established and it can't morph into a huge pmd
3300          * from under us anymore at this point because we hold the mmap_sem
3301          * read mode and khugepaged takes it in write mode. So now it's
3302          * safe to run pte_offset_map().
3303          */
3304         pte = pte_offset_map(pmd, address);
3305
3306         return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3307 }
3308
3309 /*
3310  * By the time we get here, we already hold the mm semaphore
3311  *
3312  * The mmap_sem may have been released depending on flags and our
3313  * return value.  See filemap_fault() and __lock_page_or_retry().
3314  */
3315 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3316                     unsigned long address, unsigned int flags)
3317 {
3318         int ret;
3319
3320         __set_current_state(TASK_RUNNING);
3321
3322         count_vm_event(PGFAULT);
3323         mem_cgroup_count_vm_event(mm, PGFAULT);
3324
3325         /* do counter updates before entering really critical section. */
3326         check_sync_rss_stat(current);
3327
3328         /*
3329          * Enable the memcg OOM handling for faults triggered in user
3330          * space.  Kernel faults are handled more gracefully.
3331          */
3332         if (flags & FAULT_FLAG_USER)
3333                 mem_cgroup_oom_enable();
3334
3335         ret = __handle_mm_fault(mm, vma, address, flags);
3336
3337         if (flags & FAULT_FLAG_USER) {
3338                 mem_cgroup_oom_disable();
3339                 /*
3340                  * The task may have entered a memcg OOM situation but
3341                  * if the allocation error was handled gracefully (no
3342                  * VM_FAULT_OOM), there is no need to kill anything.
3343                  * Just clean up the OOM state peacefully.
3344                  */
3345                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3346                         mem_cgroup_oom_synchronize(false);
3347         }
3348
3349         return ret;
3350 }
3351 EXPORT_SYMBOL_GPL(handle_mm_fault);
3352
3353 #ifndef __PAGETABLE_PUD_FOLDED
3354 /*
3355  * Allocate page upper directory.
3356  * We've already handled the fast-path in-line.
3357  */
3358 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3359 {
3360         pud_t *new = pud_alloc_one(mm, address);
3361         if (!new)
3362                 return -ENOMEM;
3363
3364         smp_wmb(); /* See comment in __pte_alloc */
3365
3366         spin_lock(&mm->page_table_lock);
3367         if (pgd_present(*pgd))          /* Another has populated it */
3368                 pud_free(mm, new);
3369         else
3370                 pgd_populate(mm, pgd, new);
3371         spin_unlock(&mm->page_table_lock);
3372         return 0;
3373 }
3374 #endif /* __PAGETABLE_PUD_FOLDED */
3375
3376 #ifndef __PAGETABLE_PMD_FOLDED
3377 /*
3378  * Allocate page middle directory.
3379  * We've already handled the fast-path in-line.
3380  */
3381 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3382 {
3383         pmd_t *new = pmd_alloc_one(mm, address);
3384         if (!new)
3385                 return -ENOMEM;
3386
3387         smp_wmb(); /* See comment in __pte_alloc */
3388
3389         spin_lock(&mm->page_table_lock);
3390 #ifndef __ARCH_HAS_4LEVEL_HACK
3391         if (pud_present(*pud))          /* Another has populated it */
3392                 pmd_free(mm, new);
3393         else
3394                 pud_populate(mm, pud, new);
3395 #else
3396         if (pgd_present(*pud))          /* Another has populated it */
3397                 pmd_free(mm, new);
3398         else
3399                 pgd_populate(mm, pud, new);
3400 #endif /* __ARCH_HAS_4LEVEL_HACK */
3401         spin_unlock(&mm->page_table_lock);
3402         return 0;
3403 }
3404 #endif /* __PAGETABLE_PMD_FOLDED */
3405
3406 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3407                 pte_t **ptepp, spinlock_t **ptlp)
3408 {
3409         pgd_t *pgd;
3410         pud_t *pud;
3411         pmd_t *pmd;
3412         pte_t *ptep;
3413
3414         pgd = pgd_offset(mm, address);
3415         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3416                 goto out;
3417
3418         pud = pud_offset(pgd, address);
3419         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3420                 goto out;
3421
3422         pmd = pmd_offset(pud, address);
3423         VM_BUG_ON(pmd_trans_huge(*pmd));
3424         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3425                 goto out;
3426
3427         /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3428         if (pmd_huge(*pmd))
3429                 goto out;
3430
3431         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3432         if (!ptep)
3433                 goto out;
3434         if (!pte_present(*ptep))
3435                 goto unlock;
3436         *ptepp = ptep;
3437         return 0;
3438 unlock:
3439         pte_unmap_unlock(ptep, *ptlp);
3440 out:
3441         return -EINVAL;
3442 }
3443
3444 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3445                              pte_t **ptepp, spinlock_t **ptlp)
3446 {
3447         int res;
3448
3449         /* (void) is needed to make gcc happy */
3450         (void) __cond_lock(*ptlp,
3451                            !(res = __follow_pte(mm, address, ptepp, ptlp)));
3452         return res;
3453 }
3454
3455 /**
3456  * follow_pfn - look up PFN at a user virtual address
3457  * @vma: memory mapping
3458  * @address: user virtual address
3459  * @pfn: location to store found PFN
3460  *
3461  * Only IO mappings and raw PFN mappings are allowed.
3462  *
3463  * Returns zero and the pfn at @pfn on success, -ve otherwise.
3464  */
3465 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3466         unsigned long *pfn)
3467 {
3468         int ret = -EINVAL;
3469         spinlock_t *ptl;
3470         pte_t *ptep;
3471
3472         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3473                 return ret;
3474
3475         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3476         if (ret)
3477                 return ret;
3478         *pfn = pte_pfn(*ptep);
3479         pte_unmap_unlock(ptep, ptl);
3480         return 0;
3481 }
3482 EXPORT_SYMBOL(follow_pfn);
3483
3484 #ifdef CONFIG_HAVE_IOREMAP_PROT
3485 int follow_phys(struct vm_area_struct *vma,
3486                 unsigned long address, unsigned int flags,
3487                 unsigned long *prot, resource_size_t *phys)
3488 {
3489         int ret = -EINVAL;
3490         pte_t *ptep, pte;
3491         spinlock_t *ptl;
3492
3493         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3494                 goto out;
3495
3496         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3497                 goto out;
3498         pte = *ptep;
3499
3500         if ((flags & FOLL_WRITE) && !pte_write(pte))
3501                 goto unlock;
3502
3503         *prot = pgprot_val(pte_pgprot(pte));
3504         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3505
3506         ret = 0;
3507 unlock:
3508         pte_unmap_unlock(ptep, ptl);
3509 out:
3510         return ret;
3511 }
3512
3513 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3514                         void *buf, int len, int write)
3515 {
3516         resource_size_t phys_addr;
3517         unsigned long prot = 0;
3518         void __iomem *maddr;
3519         int offset = addr & (PAGE_SIZE-1);
3520
3521         if (follow_phys(vma, addr, write, &prot, &phys_addr))
3522                 return -EINVAL;
3523
3524         maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3525         if (write)
3526                 memcpy_toio(maddr + offset, buf, len);
3527         else
3528                 memcpy_fromio(buf, maddr + offset, len);
3529         iounmap(maddr);
3530
3531         return len;
3532 }
3533 EXPORT_SYMBOL_GPL(generic_access_phys);
3534 #endif
3535
3536 /*
3537  * Access another process' address space as given in mm.  If non-NULL, use the
3538  * given task for page fault accounting.
3539  */
3540 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3541                 unsigned long addr, void *buf, int len, int write)
3542 {
3543         struct vm_area_struct *vma;
3544         void *old_buf = buf;
3545
3546         down_read(&mm->mmap_sem);
3547         /* ignore errors, just check how much was successfully transferred */
3548         while (len) {
3549                 int bytes, ret, offset;
3550                 void *maddr;
3551                 struct page *page = NULL;
3552
3553                 ret = get_user_pages(tsk, mm, addr, 1,
3554                                 write, 1, &page, &vma);
3555                 if (ret <= 0) {
3556 #ifndef CONFIG_HAVE_IOREMAP_PROT
3557                         break;
3558 #else
3559                         /*
3560                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
3561                          * we can access using slightly different code.
3562                          */
3563                         vma = find_vma(mm, addr);
3564                         if (!vma || vma->vm_start > addr)
3565                                 break;
3566                         if (vma->vm_ops && vma->vm_ops->access)
3567                                 ret = vma->vm_ops->access(vma, addr, buf,
3568                                                           len, write);
3569                         if (ret <= 0)
3570                                 break;
3571                         bytes = ret;
3572 #endif
3573                 } else {
3574                         bytes = len;
3575                         offset = addr & (PAGE_SIZE-1);
3576                         if (bytes > PAGE_SIZE-offset)
3577                                 bytes = PAGE_SIZE-offset;
3578
3579                         maddr = kmap(page);
3580                         if (write) {
3581                                 copy_to_user_page(vma, page, addr,
3582                                                   maddr + offset, buf, bytes);
3583                                 set_page_dirty_lock(page);
3584                         } else {
3585                                 copy_from_user_page(vma, page, addr,
3586                                                     buf, maddr + offset, bytes);
3587                         }
3588                         kunmap(page);
3589                         page_cache_release(page);
3590                 }
3591                 len -= bytes;
3592                 buf += bytes;
3593                 addr += bytes;
3594         }
3595         up_read(&mm->mmap_sem);
3596
3597         return buf - old_buf;
3598 }
3599
3600 /**
3601  * access_remote_vm - access another process' address space
3602  * @mm:         the mm_struct of the target address space
3603  * @addr:       start address to access
3604  * @buf:        source or destination buffer
3605  * @len:        number of bytes to transfer
3606  * @write:      whether the access is a write
3607  *
3608  * The caller must hold a reference on @mm.
3609  */
3610 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3611                 void *buf, int len, int write)
3612 {
3613         return __access_remote_vm(NULL, mm, addr, buf, len, write);
3614 }
3615
3616 /*
3617  * Access another process' address space.
3618  * Source/target buffer must be kernel space,
3619  * Do not walk the page table directly, use get_user_pages
3620  */
3621 int access_process_vm(struct task_struct *tsk, unsigned long addr,
3622                 void *buf, int len, int write)
3623 {
3624         struct mm_struct *mm;
3625         int ret;
3626
3627         mm = get_task_mm(tsk);
3628         if (!mm)
3629                 return 0;
3630
3631         ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3632         mmput(mm);
3633
3634         return ret;
3635 }
3636
3637 /*
3638  * Print the name of a VMA.
3639  */
3640 void print_vma_addr(char *prefix, unsigned long ip)
3641 {
3642         struct mm_struct *mm = current->mm;
3643         struct vm_area_struct *vma;
3644
3645         /*
3646          * Do not print if we are in atomic
3647          * contexts (in exception stacks, etc.):
3648          */
3649         if (preempt_count())
3650                 return;
3651
3652         down_read(&mm->mmap_sem);
3653         vma = find_vma(mm, ip);
3654         if (vma && vma->vm_file) {
3655                 struct file *f = vma->vm_file;
3656                 char *buf = (char *)__get_free_page(GFP_KERNEL);
3657                 if (buf) {
3658                         char *p;
3659
3660                         p = d_path(&f->f_path, buf, PAGE_SIZE);
3661                         if (IS_ERR(p))
3662                                 p = "?";
3663                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
3664                                         vma->vm_start,
3665                                         vma->vm_end - vma->vm_start);
3666                         free_page((unsigned long)buf);
3667                 }
3668         }
3669         up_read(&mm->mmap_sem);
3670 }
3671
3672 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3673 void might_fault(void)
3674 {
3675         /*
3676          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3677          * holding the mmap_sem, this is safe because kernel memory doesn't
3678          * get paged out, therefore we'll never actually fault, and the
3679          * below annotations will generate false positives.
3680          */
3681         if (segment_eq(get_fs(), KERNEL_DS))
3682                 return;
3683
3684         /*
3685          * it would be nicer only to annotate paths which are not under
3686          * pagefault_disable, however that requires a larger audit and
3687          * providing helpers like get_user_atomic.
3688          */
3689         if (in_atomic())
3690                 return;
3691
3692         __might_sleep(__FILE__, __LINE__, 0);
3693
3694         if (current->mm)
3695                 might_lock_read(&current->mm->mmap_sem);
3696 }
3697 EXPORT_SYMBOL(might_fault);
3698 #endif
3699
3700 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3701 static void clear_gigantic_page(struct page *page,
3702                                 unsigned long addr,
3703                                 unsigned int pages_per_huge_page)
3704 {
3705         int i;
3706         struct page *p = page;
3707
3708         might_sleep();
3709         for (i = 0; i < pages_per_huge_page;
3710              i++, p = mem_map_next(p, page, i)) {
3711                 cond_resched();
3712                 clear_user_highpage(p, addr + i * PAGE_SIZE);
3713         }
3714 }
3715 void clear_huge_page(struct page *page,
3716                      unsigned long addr, unsigned int pages_per_huge_page)
3717 {
3718         int i;
3719
3720         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3721                 clear_gigantic_page(page, addr, pages_per_huge_page);
3722                 return;
3723         }
3724
3725         might_sleep();
3726         for (i = 0; i < pages_per_huge_page; i++) {
3727                 cond_resched();
3728                 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3729         }
3730 }
3731
3732 static void copy_user_gigantic_page(struct page *dst, struct page *src,
3733                                     unsigned long addr,
3734                                     struct vm_area_struct *vma,
3735                                     unsigned int pages_per_huge_page)
3736 {
3737         int i;
3738         struct page *dst_base = dst;
3739         struct page *src_base = src;
3740
3741         for (i = 0; i < pages_per_huge_page; ) {
3742                 cond_resched();
3743                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3744
3745                 i++;
3746                 dst = mem_map_next(dst, dst_base, i);
3747                 src = mem_map_next(src, src_base, i);
3748         }
3749 }
3750
3751 void copy_user_huge_page(struct page *dst, struct page *src,
3752                          unsigned long addr, struct vm_area_struct *vma,
3753                          unsigned int pages_per_huge_page)
3754 {
3755         int i;
3756
3757         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3758                 copy_user_gigantic_page(dst, src, addr, vma,
3759                                         pages_per_huge_page);
3760                 return;
3761         }
3762
3763         might_sleep();
3764         for (i = 0; i < pages_per_huge_page; i++) {
3765                 cond_resched();
3766                 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
3767         }
3768 }
3769 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3770
3771 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
3772
3773 static struct kmem_cache *page_ptl_cachep;
3774
3775 void __init ptlock_cache_init(void)
3776 {
3777         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
3778                         SLAB_PANIC, NULL);
3779 }
3780
3781 bool ptlock_alloc(struct page *page)
3782 {
3783         spinlock_t *ptl;
3784
3785         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
3786         if (!ptl)
3787                 return false;
3788         page->ptl = ptl;
3789         return true;
3790 }
3791
3792 void ptlock_free(struct page *page)
3793 {
3794         kmem_cache_free(page_ptl_cachep, page->ptl);
3795 }
3796 #endif