UPSTREAM: USB: option: blacklist net interface on ZTE devices
[cascardo/linux.git] / mm / mmap.c
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code        <alan@lxorguk.ukuu.org.uk>
7  */
8
9 #include <linux/slab.h>
10 #include <linux/backing-dev.h>
11 #include <linux/mm.h>
12 #include <linux/shm.h>
13 #include <linux/mman.h>
14 #include <linux/pagemap.h>
15 #include <linux/swap.h>
16 #include <linux/syscalls.h>
17 #include <linux/capability.h>
18 #include <linux/init.h>
19 #include <linux/file.h>
20 #include <linux/fs.h>
21 #include <linux/personality.h>
22 #include <linux/security.h>
23 #include <linux/hugetlb.h>
24 #include <linux/profile.h>
25 #include <linux/export.h>
26 #include <linux/mount.h>
27 #include <linux/mempolicy.h>
28 #include <linux/rmap.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/perf_event.h>
31 #include <linux/audit.h>
32 #include <linux/khugepaged.h>
33
34 #include <asm/uaccess.h>
35 #include <asm/cacheflush.h>
36 #include <asm/tlb.h>
37 #include <asm/mmu_context.h>
38
39 #include "internal.h"
40
41 #ifndef arch_mmap_check
42 #define arch_mmap_check(addr, len, flags)       (0)
43 #endif
44
45 #ifndef arch_rebalance_pgtables
46 #define arch_rebalance_pgtables(addr, len)              (addr)
47 #endif
48
49 static void unmap_region(struct mm_struct *mm,
50                 struct vm_area_struct *vma, struct vm_area_struct *prev,
51                 unsigned long start, unsigned long end);
52
53 /*
54  * WARNING: the debugging will use recursive algorithms so never enable this
55  * unless you know what you are doing.
56  */
57 #undef DEBUG_MM_RB
58
59 /* description of effects of mapping type and prot in current implementation.
60  * this is due to the limited x86 page protection hardware.  The expected
61  * behavior is in parens:
62  *
63  * map_type     prot
64  *              PROT_NONE       PROT_READ       PROT_WRITE      PROT_EXEC
65  * MAP_SHARED   r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
66  *              w: (no) no      w: (no) no      w: (yes) yes    w: (no) no
67  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
68  *              
69  * MAP_PRIVATE  r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
70  *              w: (no) no      w: (no) no      w: (copy) copy  w: (no) no
71  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
72  *
73  */
74 pgprot_t protection_map[16] = {
75         __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
76         __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
77 };
78
79 pgprot_t vm_get_page_prot(unsigned long vm_flags)
80 {
81         return __pgprot(pgprot_val(protection_map[vm_flags &
82                                 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
83                         pgprot_val(arch_vm_get_page_prot(vm_flags)));
84 }
85 EXPORT_SYMBOL(vm_get_page_prot);
86
87 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;  /* heuristic overcommit */
88 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
89 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
90 int sysctl_mmap_noexec_taint __read_mostly = CONFIG_MMAP_NOEXEC_TAINT;
91 /*
92  * Make sure vm_committed_as in one cacheline and not cacheline shared with
93  * other variables. It can be updated by several CPUs frequently.
94  */
95 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
96
97 /*
98  * Check that a process has enough memory to allocate a new virtual
99  * mapping. 0 means there is enough memory for the allocation to
100  * succeed and -ENOMEM implies there is not.
101  *
102  * We currently support three overcommit policies, which are set via the
103  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
104  *
105  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
106  * Additional code 2002 Jul 20 by Robert Love.
107  *
108  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
109  *
110  * Note this is a helper function intended to be used by LSMs which
111  * wish to use this logic.
112  */
113 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
114 {
115         unsigned long free, allowed;
116
117         vm_acct_memory(pages);
118
119         /*
120          * Sometimes we want to use more memory than we have
121          */
122         if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
123                 return 0;
124
125         if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
126                 free = global_page_state(NR_FREE_PAGES);
127                 free += global_page_state(NR_FILE_PAGES);
128
129                 /*
130                  * shmem pages shouldn't be counted as free in this
131                  * case, they can't be purged, only swapped out, and
132                  * that won't affect the overall amount of available
133                  * memory in the system.
134                  */
135                 free -= global_page_state(NR_SHMEM);
136
137                 free += nr_swap_pages;
138
139                 /*
140                  * Any slabs which are created with the
141                  * SLAB_RECLAIM_ACCOUNT flag claim to have contents
142                  * which are reclaimable, under pressure.  The dentry
143                  * cache and most inode caches should fall into this
144                  */
145                 free += global_page_state(NR_SLAB_RECLAIMABLE);
146
147                 /*
148                  * Leave reserved pages. The pages are not for anonymous pages.
149                  */
150                 if (free <= totalreserve_pages)
151                         goto error;
152                 else
153                         free -= totalreserve_pages;
154
155                 /*
156                  * Leave the last 3% for root
157                  */
158                 if (!cap_sys_admin)
159                         free -= free / 32;
160
161                 if (free > pages)
162                         return 0;
163
164                 goto error;
165         }
166
167         allowed = (totalram_pages - hugetlb_total_pages())
168                 * sysctl_overcommit_ratio / 100;
169         /*
170          * Leave the last 3% for root
171          */
172         if (!cap_sys_admin)
173                 allowed -= allowed / 32;
174         allowed += total_swap_pages;
175
176         /* Don't let a single process grow too big:
177            leave 3% of the size of this process for other processes */
178         if (mm)
179                 allowed -= mm->total_vm / 32;
180
181         if (percpu_counter_read_positive(&vm_committed_as) < allowed)
182                 return 0;
183 error:
184         vm_unacct_memory(pages);
185
186         return -ENOMEM;
187 }
188
189 /*
190  * Requires inode->i_mapping->i_mmap_mutex
191  */
192 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
193                 struct file *file, struct address_space *mapping)
194 {
195         if (vma->vm_flags & VM_DENYWRITE)
196                 atomic_inc(&file->f_path.dentry->d_inode->i_writecount);
197         if (vma->vm_flags & VM_SHARED)
198                 mapping->i_mmap_writable--;
199
200         flush_dcache_mmap_lock(mapping);
201         if (unlikely(vma->vm_flags & VM_NONLINEAR))
202                 list_del_init(&vma->shared.vm_set.list);
203         else
204                 vma_prio_tree_remove(vma, &mapping->i_mmap);
205         flush_dcache_mmap_unlock(mapping);
206 }
207
208 /*
209  * Unlink a file-based vm structure from its prio_tree, to hide
210  * vma from rmap and vmtruncate before freeing its page tables.
211  */
212 void unlink_file_vma(struct vm_area_struct *vma)
213 {
214         struct file *file = vma->vm_file;
215
216         if (file) {
217                 struct address_space *mapping = file->f_mapping;
218                 mutex_lock(&mapping->i_mmap_mutex);
219                 __remove_shared_vm_struct(vma, file, mapping);
220                 mutex_unlock(&mapping->i_mmap_mutex);
221         }
222 }
223
224 /*
225  * Close a vm structure and free it, returning the next.
226  */
227 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
228 {
229         struct vm_area_struct *next = vma->vm_next;
230
231         might_sleep();
232         if (vma->vm_ops && vma->vm_ops->close)
233                 vma->vm_ops->close(vma);
234         if (vma->vm_file) {
235                 fput(vma->vm_file);
236                 if (vma->vm_flags & VM_EXECUTABLE)
237                         removed_exe_file_vma(vma->vm_mm);
238         }
239         mpol_put(vma_policy(vma));
240         kmem_cache_free(vm_area_cachep, vma);
241         return next;
242 }
243
244 static unsigned long do_brk(unsigned long addr, unsigned long len);
245
246 SYSCALL_DEFINE1(brk, unsigned long, brk)
247 {
248         unsigned long rlim, retval;
249         unsigned long newbrk, oldbrk;
250         struct mm_struct *mm = current->mm;
251         unsigned long min_brk;
252
253         down_write(&mm->mmap_sem);
254
255 #ifdef CONFIG_COMPAT_BRK
256         /*
257          * CONFIG_COMPAT_BRK can still be overridden by setting
258          * randomize_va_space to 2, which will still cause mm->start_brk
259          * to be arbitrarily shifted
260          */
261         if (current->brk_randomized)
262                 min_brk = mm->start_brk;
263         else
264                 min_brk = mm->end_data;
265 #else
266         min_brk = mm->start_brk;
267 #endif
268         if (brk < min_brk)
269                 goto out;
270
271         /*
272          * Check against rlimit here. If this check is done later after the test
273          * of oldbrk with newbrk then it can escape the test and let the data
274          * segment grow beyond its set limit the in case where the limit is
275          * not page aligned -Ram Gupta
276          */
277         rlim = rlimit(RLIMIT_DATA);
278         if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
279                         (mm->end_data - mm->start_data) > rlim)
280                 goto out;
281
282         newbrk = PAGE_ALIGN(brk);
283         oldbrk = PAGE_ALIGN(mm->brk);
284         if (oldbrk == newbrk)
285                 goto set_brk;
286
287         /* Always allow shrinking brk. */
288         if (brk <= mm->brk) {
289                 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
290                         goto set_brk;
291                 goto out;
292         }
293
294         /* Check against existing mmap mappings. */
295         if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
296                 goto out;
297
298         /* Ok, looks good - let it rip. */
299         if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
300                 goto out;
301 set_brk:
302         mm->brk = brk;
303 out:
304         retval = mm->brk;
305         up_write(&mm->mmap_sem);
306         return retval;
307 }
308
309 #ifdef DEBUG_MM_RB
310 static int browse_rb(struct rb_root *root)
311 {
312         int i = 0, j;
313         struct rb_node *nd, *pn = NULL;
314         unsigned long prev = 0, pend = 0;
315
316         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
317                 struct vm_area_struct *vma;
318                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
319                 if (vma->vm_start < prev)
320                         printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
321                 if (vma->vm_start < pend)
322                         printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
323                 if (vma->vm_start > vma->vm_end)
324                         printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
325                 i++;
326                 pn = nd;
327                 prev = vma->vm_start;
328                 pend = vma->vm_end;
329         }
330         j = 0;
331         for (nd = pn; nd; nd = rb_prev(nd)) {
332                 j++;
333         }
334         if (i != j)
335                 printk("backwards %d, forwards %d\n", j, i), i = 0;
336         return i;
337 }
338
339 void validate_mm(struct mm_struct *mm)
340 {
341         int bug = 0;
342         int i = 0;
343         struct vm_area_struct *tmp = mm->mmap;
344         while (tmp) {
345                 tmp = tmp->vm_next;
346                 i++;
347         }
348         if (i != mm->map_count)
349                 printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
350         i = browse_rb(&mm->mm_rb);
351         if (i != mm->map_count)
352                 printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
353         BUG_ON(bug);
354 }
355 #else
356 #define validate_mm(mm) do { } while (0)
357 #endif
358
359 static struct vm_area_struct *
360 find_vma_prepare(struct mm_struct *mm, unsigned long addr,
361                 struct vm_area_struct **pprev, struct rb_node ***rb_link,
362                 struct rb_node ** rb_parent)
363 {
364         struct vm_area_struct * vma;
365         struct rb_node ** __rb_link, * __rb_parent, * rb_prev;
366
367         __rb_link = &mm->mm_rb.rb_node;
368         rb_prev = __rb_parent = NULL;
369         vma = NULL;
370
371         while (*__rb_link) {
372                 struct vm_area_struct *vma_tmp;
373
374                 __rb_parent = *__rb_link;
375                 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
376
377                 if (vma_tmp->vm_end > addr) {
378                         vma = vma_tmp;
379                         if (vma_tmp->vm_start <= addr)
380                                 break;
381                         __rb_link = &__rb_parent->rb_left;
382                 } else {
383                         rb_prev = __rb_parent;
384                         __rb_link = &__rb_parent->rb_right;
385                 }
386         }
387
388         *pprev = NULL;
389         if (rb_prev)
390                 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
391         *rb_link = __rb_link;
392         *rb_parent = __rb_parent;
393         return vma;
394 }
395
396 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
397                 struct rb_node **rb_link, struct rb_node *rb_parent)
398 {
399         rb_link_node(&vma->vm_rb, rb_parent, rb_link);
400         rb_insert_color(&vma->vm_rb, &mm->mm_rb);
401 }
402
403 static void __vma_link_file(struct vm_area_struct *vma)
404 {
405         struct file *file;
406
407         file = vma->vm_file;
408         if (file) {
409                 struct address_space *mapping = file->f_mapping;
410
411                 if (vma->vm_flags & VM_DENYWRITE)
412                         atomic_dec(&file->f_path.dentry->d_inode->i_writecount);
413                 if (vma->vm_flags & VM_SHARED)
414                         mapping->i_mmap_writable++;
415
416                 flush_dcache_mmap_lock(mapping);
417                 if (unlikely(vma->vm_flags & VM_NONLINEAR))
418                         vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
419                 else
420                         vma_prio_tree_insert(vma, &mapping->i_mmap);
421                 flush_dcache_mmap_unlock(mapping);
422         }
423 }
424
425 static void
426 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
427         struct vm_area_struct *prev, struct rb_node **rb_link,
428         struct rb_node *rb_parent)
429 {
430         __vma_link_list(mm, vma, prev, rb_parent);
431         __vma_link_rb(mm, vma, rb_link, rb_parent);
432 }
433
434 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
435                         struct vm_area_struct *prev, struct rb_node **rb_link,
436                         struct rb_node *rb_parent)
437 {
438         struct address_space *mapping = NULL;
439
440         if (vma->vm_file)
441                 mapping = vma->vm_file->f_mapping;
442
443         if (mapping)
444                 mutex_lock(&mapping->i_mmap_mutex);
445
446         __vma_link(mm, vma, prev, rb_link, rb_parent);
447         __vma_link_file(vma);
448
449         if (mapping)
450                 mutex_unlock(&mapping->i_mmap_mutex);
451
452         mm->map_count++;
453         validate_mm(mm);
454 }
455
456 /*
457  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
458  * mm's list and rbtree.  It has already been inserted into the prio_tree.
459  */
460 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
461 {
462         struct vm_area_struct *__vma, *prev;
463         struct rb_node **rb_link, *rb_parent;
464
465         __vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent);
466         BUG_ON(__vma && __vma->vm_start < vma->vm_end);
467         __vma_link(mm, vma, prev, rb_link, rb_parent);
468         mm->map_count++;
469 }
470
471 static inline void
472 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
473                 struct vm_area_struct *prev)
474 {
475         struct vm_area_struct *next = vma->vm_next;
476
477         prev->vm_next = next;
478         if (next)
479                 next->vm_prev = prev;
480         rb_erase(&vma->vm_rb, &mm->mm_rb);
481         if (mm->mmap_cache == vma)
482                 mm->mmap_cache = prev;
483 }
484
485 /*
486  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
487  * is already present in an i_mmap tree without adjusting the tree.
488  * The following helper function should be used when such adjustments
489  * are necessary.  The "insert" vma (if any) is to be inserted
490  * before we drop the necessary locks.
491  */
492 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
493         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
494 {
495         struct mm_struct *mm = vma->vm_mm;
496         struct vm_area_struct *next = vma->vm_next;
497         struct vm_area_struct *importer = NULL;
498         struct address_space *mapping = NULL;
499         struct prio_tree_root *root = NULL;
500         struct anon_vma *anon_vma = NULL;
501         struct file *file = vma->vm_file;
502         long adjust_next = 0;
503         int remove_next = 0;
504
505         if (next && !insert) {
506                 struct vm_area_struct *exporter = NULL;
507
508                 if (end >= next->vm_end) {
509                         /*
510                          * vma expands, overlapping all the next, and
511                          * perhaps the one after too (mprotect case 6).
512                          */
513 again:                  remove_next = 1 + (end > next->vm_end);
514                         end = next->vm_end;
515                         exporter = next;
516                         importer = vma;
517                 } else if (end > next->vm_start) {
518                         /*
519                          * vma expands, overlapping part of the next:
520                          * mprotect case 5 shifting the boundary up.
521                          */
522                         adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
523                         exporter = next;
524                         importer = vma;
525                 } else if (end < vma->vm_end) {
526                         /*
527                          * vma shrinks, and !insert tells it's not
528                          * split_vma inserting another: so it must be
529                          * mprotect case 4 shifting the boundary down.
530                          */
531                         adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
532                         exporter = vma;
533                         importer = next;
534                 }
535
536                 /*
537                  * Easily overlooked: when mprotect shifts the boundary,
538                  * make sure the expanding vma has anon_vma set if the
539                  * shrinking vma had, to cover any anon pages imported.
540                  */
541                 if (exporter && exporter->anon_vma && !importer->anon_vma) {
542                         if (anon_vma_clone(importer, exporter))
543                                 return -ENOMEM;
544                         importer->anon_vma = exporter->anon_vma;
545                 }
546         }
547
548         if (file) {
549                 mapping = file->f_mapping;
550                 if (!(vma->vm_flags & VM_NONLINEAR))
551                         root = &mapping->i_mmap;
552                 mutex_lock(&mapping->i_mmap_mutex);
553                 if (insert) {
554                         /*
555                          * Put into prio_tree now, so instantiated pages
556                          * are visible to arm/parisc __flush_dcache_page
557                          * throughout; but we cannot insert into address
558                          * space until vma start or end is updated.
559                          */
560                         __vma_link_file(insert);
561                 }
562         }
563
564         vma_adjust_trans_huge(vma, start, end, adjust_next);
565
566         /*
567          * When changing only vma->vm_end, we don't really need anon_vma
568          * lock. This is a fairly rare case by itself, but the anon_vma
569          * lock may be shared between many sibling processes.  Skipping
570          * the lock for brk adjustments makes a difference sometimes.
571          */
572         if (vma->anon_vma && (importer || start != vma->vm_start)) {
573                 anon_vma = vma->anon_vma;
574                 anon_vma_lock(anon_vma);
575         }
576
577         if (root) {
578                 flush_dcache_mmap_lock(mapping);
579                 vma_prio_tree_remove(vma, root);
580                 if (adjust_next)
581                         vma_prio_tree_remove(next, root);
582         }
583
584         vma->vm_start = start;
585         vma->vm_end = end;
586         vma->vm_pgoff = pgoff;
587         if (adjust_next) {
588                 next->vm_start += adjust_next << PAGE_SHIFT;
589                 next->vm_pgoff += adjust_next;
590         }
591
592         if (root) {
593                 if (adjust_next)
594                         vma_prio_tree_insert(next, root);
595                 vma_prio_tree_insert(vma, root);
596                 flush_dcache_mmap_unlock(mapping);
597         }
598
599         if (remove_next) {
600                 /*
601                  * vma_merge has merged next into vma, and needs
602                  * us to remove next before dropping the locks.
603                  */
604                 __vma_unlink(mm, next, vma);
605                 if (file)
606                         __remove_shared_vm_struct(next, file, mapping);
607         } else if (insert) {
608                 /*
609                  * split_vma has split insert from vma, and needs
610                  * us to insert it before dropping the locks
611                  * (it may either follow vma or precede it).
612                  */
613                 __insert_vm_struct(mm, insert);
614         }
615
616         if (anon_vma)
617                 anon_vma_unlock(anon_vma);
618         if (mapping)
619                 mutex_unlock(&mapping->i_mmap_mutex);
620
621         if (remove_next) {
622                 if (file) {
623                         fput(file);
624                         if (next->vm_flags & VM_EXECUTABLE)
625                                 removed_exe_file_vma(mm);
626                 }
627                 if (next->anon_vma)
628                         anon_vma_merge(vma, next);
629                 mm->map_count--;
630                 mpol_put(vma_policy(next));
631                 kmem_cache_free(vm_area_cachep, next);
632                 /*
633                  * In mprotect's case 6 (see comments on vma_merge),
634                  * we must remove another next too. It would clutter
635                  * up the code too much to do both in one go.
636                  */
637                 if (remove_next == 2) {
638                         next = vma->vm_next;
639                         goto again;
640                 }
641         }
642
643         validate_mm(mm);
644
645         return 0;
646 }
647
648 /*
649  * If the vma has a ->close operation then the driver probably needs to release
650  * per-vma resources, so we don't attempt to merge those.
651  */
652 static inline int is_mergeable_vma(struct vm_area_struct *vma,
653                         struct file *file, unsigned long vm_flags)
654 {
655         /* VM_CAN_NONLINEAR may get set later by f_op->mmap() */
656         if ((vma->vm_flags ^ vm_flags) & ~VM_CAN_NONLINEAR)
657                 return 0;
658         if (vma->vm_file != file)
659                 return 0;
660         if (vma->vm_ops && vma->vm_ops->close)
661                 return 0;
662         return 1;
663 }
664
665 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
666                                         struct anon_vma *anon_vma2,
667                                         struct vm_area_struct *vma)
668 {
669         /*
670          * The list_is_singular() test is to avoid merging VMA cloned from
671          * parents. This can improve scalability caused by anon_vma lock.
672          */
673         if ((!anon_vma1 || !anon_vma2) && (!vma ||
674                 list_is_singular(&vma->anon_vma_chain)))
675                 return 1;
676         return anon_vma1 == anon_vma2;
677 }
678
679 /*
680  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
681  * in front of (at a lower virtual address and file offset than) the vma.
682  *
683  * We cannot merge two vmas if they have differently assigned (non-NULL)
684  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
685  *
686  * We don't check here for the merged mmap wrapping around the end of pagecache
687  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
688  * wrap, nor mmaps which cover the final page at index -1UL.
689  */
690 static int
691 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
692         struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
693 {
694         if (is_mergeable_vma(vma, file, vm_flags) &&
695             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
696                 if (vma->vm_pgoff == vm_pgoff)
697                         return 1;
698         }
699         return 0;
700 }
701
702 /*
703  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
704  * beyond (at a higher virtual address and file offset than) the vma.
705  *
706  * We cannot merge two vmas if they have differently assigned (non-NULL)
707  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
708  */
709 static int
710 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
711         struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
712 {
713         if (is_mergeable_vma(vma, file, vm_flags) &&
714             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
715                 pgoff_t vm_pglen;
716                 vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
717                 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
718                         return 1;
719         }
720         return 0;
721 }
722
723 /*
724  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
725  * whether that can be merged with its predecessor or its successor.
726  * Or both (it neatly fills a hole).
727  *
728  * In most cases - when called for mmap, brk or mremap - [addr,end) is
729  * certain not to be mapped by the time vma_merge is called; but when
730  * called for mprotect, it is certain to be already mapped (either at
731  * an offset within prev, or at the start of next), and the flags of
732  * this area are about to be changed to vm_flags - and the no-change
733  * case has already been eliminated.
734  *
735  * The following mprotect cases have to be considered, where AAAA is
736  * the area passed down from mprotect_fixup, never extending beyond one
737  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
738  *
739  *     AAAA             AAAA                AAAA          AAAA
740  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
741  *    cannot merge    might become    might become    might become
742  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
743  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
744  *    mremap move:                                    PPPPNNNNNNNN 8
745  *        AAAA
746  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
747  *    might become    case 1 below    case 2 below    case 3 below
748  *
749  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
750  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
751  */
752 struct vm_area_struct *vma_merge(struct mm_struct *mm,
753                         struct vm_area_struct *prev, unsigned long addr,
754                         unsigned long end, unsigned long vm_flags,
755                         struct anon_vma *anon_vma, struct file *file,
756                         pgoff_t pgoff, struct mempolicy *policy)
757 {
758         pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
759         struct vm_area_struct *area, *next;
760         int err;
761
762         /*
763          * We later require that vma->vm_flags == vm_flags,
764          * so this tests vma->vm_flags & VM_SPECIAL, too.
765          */
766         if (vm_flags & VM_SPECIAL)
767                 return NULL;
768
769         if (prev)
770                 next = prev->vm_next;
771         else
772                 next = mm->mmap;
773         area = next;
774         if (next && next->vm_end == end)                /* cases 6, 7, 8 */
775                 next = next->vm_next;
776
777         /*
778          * Can it merge with the predecessor?
779          */
780         if (prev && prev->vm_end == addr &&
781                         mpol_equal(vma_policy(prev), policy) &&
782                         can_vma_merge_after(prev, vm_flags,
783                                                 anon_vma, file, pgoff)) {
784                 /*
785                  * OK, it can.  Can we now merge in the successor as well?
786                  */
787                 if (next && end == next->vm_start &&
788                                 mpol_equal(policy, vma_policy(next)) &&
789                                 can_vma_merge_before(next, vm_flags,
790                                         anon_vma, file, pgoff+pglen) &&
791                                 is_mergeable_anon_vma(prev->anon_vma,
792                                                       next->anon_vma, NULL)) {
793                                                         /* cases 1, 6 */
794                         err = vma_adjust(prev, prev->vm_start,
795                                 next->vm_end, prev->vm_pgoff, NULL);
796                 } else                                  /* cases 2, 5, 7 */
797                         err = vma_adjust(prev, prev->vm_start,
798                                 end, prev->vm_pgoff, NULL);
799                 if (err)
800                         return NULL;
801                 khugepaged_enter_vma_merge(prev);
802                 return prev;
803         }
804
805         /*
806          * Can this new request be merged in front of next?
807          */
808         if (next && end == next->vm_start &&
809                         mpol_equal(policy, vma_policy(next)) &&
810                         can_vma_merge_before(next, vm_flags,
811                                         anon_vma, file, pgoff+pglen)) {
812                 if (prev && addr < prev->vm_end)        /* case 4 */
813                         err = vma_adjust(prev, prev->vm_start,
814                                 addr, prev->vm_pgoff, NULL);
815                 else                                    /* cases 3, 8 */
816                         err = vma_adjust(area, addr, next->vm_end,
817                                 next->vm_pgoff - pglen, NULL);
818                 if (err)
819                         return NULL;
820                 khugepaged_enter_vma_merge(area);
821                 return area;
822         }
823
824         return NULL;
825 }
826
827 /*
828  * Rough compatbility check to quickly see if it's even worth looking
829  * at sharing an anon_vma.
830  *
831  * They need to have the same vm_file, and the flags can only differ
832  * in things that mprotect may change.
833  *
834  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
835  * we can merge the two vma's. For example, we refuse to merge a vma if
836  * there is a vm_ops->close() function, because that indicates that the
837  * driver is doing some kind of reference counting. But that doesn't
838  * really matter for the anon_vma sharing case.
839  */
840 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
841 {
842         return a->vm_end == b->vm_start &&
843                 mpol_equal(vma_policy(a), vma_policy(b)) &&
844                 a->vm_file == b->vm_file &&
845                 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) &&
846                 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
847 }
848
849 /*
850  * Do some basic sanity checking to see if we can re-use the anon_vma
851  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
852  * the same as 'old', the other will be the new one that is trying
853  * to share the anon_vma.
854  *
855  * NOTE! This runs with mm_sem held for reading, so it is possible that
856  * the anon_vma of 'old' is concurrently in the process of being set up
857  * by another page fault trying to merge _that_. But that's ok: if it
858  * is being set up, that automatically means that it will be a singleton
859  * acceptable for merging, so we can do all of this optimistically. But
860  * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
861  *
862  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
863  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
864  * is to return an anon_vma that is "complex" due to having gone through
865  * a fork).
866  *
867  * We also make sure that the two vma's are compatible (adjacent,
868  * and with the same memory policies). That's all stable, even with just
869  * a read lock on the mm_sem.
870  */
871 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
872 {
873         if (anon_vma_compatible(a, b)) {
874                 struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
875
876                 if (anon_vma && list_is_singular(&old->anon_vma_chain))
877                         return anon_vma;
878         }
879         return NULL;
880 }
881
882 /*
883  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
884  * neighbouring vmas for a suitable anon_vma, before it goes off
885  * to allocate a new anon_vma.  It checks because a repetitive
886  * sequence of mprotects and faults may otherwise lead to distinct
887  * anon_vmas being allocated, preventing vma merge in subsequent
888  * mprotect.
889  */
890 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
891 {
892         struct anon_vma *anon_vma;
893         struct vm_area_struct *near;
894
895         near = vma->vm_next;
896         if (!near)
897                 goto try_prev;
898
899         anon_vma = reusable_anon_vma(near, vma, near);
900         if (anon_vma)
901                 return anon_vma;
902 try_prev:
903         near = vma->vm_prev;
904         if (!near)
905                 goto none;
906
907         anon_vma = reusable_anon_vma(near, near, vma);
908         if (anon_vma)
909                 return anon_vma;
910 none:
911         /*
912          * There's no absolute need to look only at touching neighbours:
913          * we could search further afield for "compatible" anon_vmas.
914          * But it would probably just be a waste of time searching,
915          * or lead to too many vmas hanging off the same anon_vma.
916          * We're trying to allow mprotect remerging later on,
917          * not trying to minimize memory used for anon_vmas.
918          */
919         return NULL;
920 }
921
922 #ifdef CONFIG_PROC_FS
923 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
924                                                 struct file *file, long pages)
925 {
926         const unsigned long stack_flags
927                 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
928
929         if (file) {
930                 mm->shared_vm += pages;
931                 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
932                         mm->exec_vm += pages;
933         } else if (flags & stack_flags)
934                 mm->stack_vm += pages;
935         if (flags & (VM_RESERVED|VM_IO))
936                 mm->reserved_vm += pages;
937 }
938 #endif /* CONFIG_PROC_FS */
939
940 /*
941  * If a hint addr is less than mmap_min_addr change hint to be as
942  * low as possible but still greater than mmap_min_addr
943  */
944 static inline unsigned long round_hint_to_min(unsigned long hint)
945 {
946         hint &= PAGE_MASK;
947         if (((void *)hint != NULL) &&
948             (hint < mmap_min_addr))
949                 return PAGE_ALIGN(mmap_min_addr);
950         return hint;
951 }
952
953 /*
954  * The caller must hold down_write(&current->mm->mmap_sem).
955  */
956
957 static unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
958                         unsigned long len, unsigned long prot,
959                         unsigned long flags, unsigned long pgoff)
960 {
961         struct mm_struct * mm = current->mm;
962         struct inode *inode;
963         vm_flags_t vm_flags;
964         int error;
965         unsigned long reqprot = prot;
966
967         /*
968          * Does the application expect PROT_READ to imply PROT_EXEC?
969          *
970          * (the exception is when the underlying filesystem is noexec
971          *  mounted, in which case we dont add PROT_EXEC.)
972          */
973         if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
974                 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
975                         prot |= PROT_EXEC;
976
977         if (!len)
978                 return -EINVAL;
979
980         if (!(flags & MAP_FIXED))
981                 addr = round_hint_to_min(addr);
982
983         /* Careful about overflows.. */
984         len = PAGE_ALIGN(len);
985         if (!len)
986                 return -ENOMEM;
987
988         /* offset overflow? */
989         if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
990                return -EOVERFLOW;
991
992         /* Too many mappings? */
993         if (mm->map_count > sysctl_max_map_count)
994                 return -ENOMEM;
995
996         /* Obtain the address to map to. we verify (or select) it and ensure
997          * that it represents a valid section of the address space.
998          */
999         addr = get_unmapped_area(file, addr, len, pgoff, flags);
1000         if (addr & ~PAGE_MASK)
1001                 return addr;
1002
1003         /* Do simple checking here so the lower-level routines won't have
1004          * to. we assume access permissions have been handled by the open
1005          * of the memory object, so we don't do any here.
1006          */
1007         vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1008                         mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1009
1010         if (flags & MAP_LOCKED)
1011                 if (!can_do_mlock())
1012                         return -EPERM;
1013
1014         /* mlock MCL_FUTURE? */
1015         if (vm_flags & VM_LOCKED) {
1016                 unsigned long locked, lock_limit;
1017                 locked = len >> PAGE_SHIFT;
1018                 locked += mm->locked_vm;
1019                 lock_limit = rlimit(RLIMIT_MEMLOCK);
1020                 lock_limit >>= PAGE_SHIFT;
1021                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1022                         return -EAGAIN;
1023         }
1024
1025         inode = file ? file->f_path.dentry->d_inode : NULL;
1026
1027         if (file) {
1028                 switch (flags & MAP_TYPE) {
1029                 case MAP_SHARED:
1030                         if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1031                                 return -EACCES;
1032
1033                         /*
1034                          * Make sure we don't allow writing to an append-only
1035                          * file..
1036                          */
1037                         if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1038                                 return -EACCES;
1039
1040                         /*
1041                          * Make sure there are no mandatory locks on the file.
1042                          */
1043                         if (locks_verify_locked(inode))
1044                                 return -EAGAIN;
1045
1046                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1047                         if (!(file->f_mode & FMODE_WRITE))
1048                                 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1049
1050                         /* fall through */
1051                 case MAP_PRIVATE:
1052                         if (!(file->f_mode & FMODE_READ))
1053                                 return -EACCES;
1054                         if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1055                                 if (vm_flags & VM_EXEC)
1056                                         return -EPERM;
1057                                 if (sysctl_mmap_noexec_taint)
1058                                         vm_flags &= ~VM_MAYEXEC;
1059                         }
1060
1061                         if (!file->f_op || !file->f_op->mmap)
1062                                 return -ENODEV;
1063                         break;
1064
1065                 default:
1066                         return -EINVAL;
1067                 }
1068         } else {
1069                 switch (flags & MAP_TYPE) {
1070                 case MAP_SHARED:
1071                         /*
1072                          * Ignore pgoff.
1073                          */
1074                         pgoff = 0;
1075                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1076                         break;
1077                 case MAP_PRIVATE:
1078                         /*
1079                          * Set pgoff according to addr for anon_vma.
1080                          */
1081                         pgoff = addr >> PAGE_SHIFT;
1082                         break;
1083                 default:
1084                         return -EINVAL;
1085                 }
1086         }
1087
1088         error = security_file_mmap(file, reqprot, prot, flags, addr, 0);
1089         if (error)
1090                 return error;
1091
1092         return mmap_region(file, addr, len, flags, vm_flags, pgoff);
1093 }
1094
1095 unsigned long do_mmap(struct file *file, unsigned long addr,
1096         unsigned long len, unsigned long prot,
1097         unsigned long flag, unsigned long offset)
1098 {
1099         if (unlikely(offset + PAGE_ALIGN(len) < offset))
1100                 return -EINVAL;
1101         if (unlikely(offset & ~PAGE_MASK))
1102                 return -EINVAL;
1103         return do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
1104 }
1105 EXPORT_SYMBOL(do_mmap);
1106
1107 unsigned long vm_mmap(struct file *file, unsigned long addr,
1108         unsigned long len, unsigned long prot,
1109         unsigned long flag, unsigned long offset)
1110 {
1111         unsigned long ret;
1112         struct mm_struct *mm = current->mm;
1113
1114         down_write(&mm->mmap_sem);
1115         ret = do_mmap(file, addr, len, prot, flag, offset);
1116         up_write(&mm->mmap_sem);
1117         return ret;
1118 }
1119 EXPORT_SYMBOL(vm_mmap);
1120
1121 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1122                 unsigned long, prot, unsigned long, flags,
1123                 unsigned long, fd, unsigned long, pgoff)
1124 {
1125         struct file *file = NULL;
1126         unsigned long retval = -EBADF;
1127
1128         if (!(flags & MAP_ANONYMOUS)) {
1129                 audit_mmap_fd(fd, flags);
1130                 if (unlikely(flags & MAP_HUGETLB))
1131                         return -EINVAL;
1132                 file = fget(fd);
1133                 if (!file)
1134                         goto out;
1135         } else if (flags & MAP_HUGETLB) {
1136                 struct user_struct *user = NULL;
1137                 /*
1138                  * VM_NORESERVE is used because the reservations will be
1139                  * taken when vm_ops->mmap() is called
1140                  * A dummy user value is used because we are not locking
1141                  * memory so no accounting is necessary
1142                  */
1143                 file = hugetlb_file_setup(HUGETLB_ANON_FILE, addr, len,
1144                                                 VM_NORESERVE, &user,
1145                                                 HUGETLB_ANONHUGE_INODE);
1146                 if (IS_ERR(file))
1147                         return PTR_ERR(file);
1148         }
1149
1150         flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1151
1152         down_write(&current->mm->mmap_sem);
1153         retval = do_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1154         up_write(&current->mm->mmap_sem);
1155
1156         if (file)
1157                 fput(file);
1158 out:
1159         return retval;
1160 }
1161
1162 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1163 struct mmap_arg_struct {
1164         unsigned long addr;
1165         unsigned long len;
1166         unsigned long prot;
1167         unsigned long flags;
1168         unsigned long fd;
1169         unsigned long offset;
1170 };
1171
1172 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1173 {
1174         struct mmap_arg_struct a;
1175
1176         if (copy_from_user(&a, arg, sizeof(a)))
1177                 return -EFAULT;
1178         if (a.offset & ~PAGE_MASK)
1179                 return -EINVAL;
1180
1181         return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1182                               a.offset >> PAGE_SHIFT);
1183 }
1184 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1185
1186 /*
1187  * Some shared mappigns will want the pages marked read-only
1188  * to track write events. If so, we'll downgrade vm_page_prot
1189  * to the private version (using protection_map[] without the
1190  * VM_SHARED bit).
1191  */
1192 int vma_wants_writenotify(struct vm_area_struct *vma)
1193 {
1194         vm_flags_t vm_flags = vma->vm_flags;
1195
1196         /* If it was private or non-writable, the write bit is already clear */
1197         if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1198                 return 0;
1199
1200         /* The backer wishes to know when pages are first written to? */
1201         if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1202                 return 1;
1203
1204         /* The open routine did something to the protections already? */
1205         if (pgprot_val(vma->vm_page_prot) !=
1206             pgprot_val(vm_get_page_prot(vm_flags)))
1207                 return 0;
1208
1209         /* Specialty mapping? */
1210         if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE))
1211                 return 0;
1212
1213         /* Can the mapping track the dirty pages? */
1214         return vma->vm_file && vma->vm_file->f_mapping &&
1215                 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1216 }
1217
1218 /*
1219  * We account for memory if it's a private writeable mapping,
1220  * not hugepages and VM_NORESERVE wasn't set.
1221  */
1222 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1223 {
1224         /*
1225          * hugetlb has its own accounting separate from the core VM
1226          * VM_HUGETLB may not be set yet so we cannot check for that flag.
1227          */
1228         if (file && is_file_hugepages(file))
1229                 return 0;
1230
1231         return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1232 }
1233
1234 unsigned long mmap_region(struct file *file, unsigned long addr,
1235                           unsigned long len, unsigned long flags,
1236                           vm_flags_t vm_flags, unsigned long pgoff)
1237 {
1238         struct mm_struct *mm = current->mm;
1239         struct vm_area_struct *vma, *prev;
1240         int correct_wcount = 0;
1241         int error;
1242         struct rb_node **rb_link, *rb_parent;
1243         unsigned long charged = 0;
1244         struct inode *inode =  file ? file->f_path.dentry->d_inode : NULL;
1245
1246         /* Clear old maps */
1247         error = -ENOMEM;
1248 munmap_back:
1249         vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1250         if (vma && vma->vm_start < addr + len) {
1251                 if (do_munmap(mm, addr, len))
1252                         return -ENOMEM;
1253                 goto munmap_back;
1254         }
1255
1256         /* Check against address space limit. */
1257         if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1258                 return -ENOMEM;
1259
1260         /*
1261          * Set 'VM_NORESERVE' if we should not account for the
1262          * memory use of this mapping.
1263          */
1264         if ((flags & MAP_NORESERVE)) {
1265                 /* We honor MAP_NORESERVE if allowed to overcommit */
1266                 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1267                         vm_flags |= VM_NORESERVE;
1268
1269                 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1270                 if (file && is_file_hugepages(file))
1271                         vm_flags |= VM_NORESERVE;
1272         }
1273
1274         /*
1275          * Private writable mapping: check memory availability
1276          */
1277         if (accountable_mapping(file, vm_flags)) {
1278                 charged = len >> PAGE_SHIFT;
1279                 if (security_vm_enough_memory_mm(mm, charged))
1280                         return -ENOMEM;
1281                 vm_flags |= VM_ACCOUNT;
1282         }
1283
1284         /*
1285          * Can we just expand an old mapping?
1286          */
1287         vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1288         if (vma)
1289                 goto out;
1290
1291         /*
1292          * Determine the object being mapped and call the appropriate
1293          * specific mapper. the address has already been validated, but
1294          * not unmapped, but the maps are removed from the list.
1295          */
1296         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1297         if (!vma) {
1298                 error = -ENOMEM;
1299                 goto unacct_error;
1300         }
1301
1302         vma->vm_mm = mm;
1303         vma->vm_start = addr;
1304         vma->vm_end = addr + len;
1305         vma->vm_flags = vm_flags;
1306         vma->vm_page_prot = vm_get_page_prot(vm_flags);
1307         vma->vm_pgoff = pgoff;
1308         INIT_LIST_HEAD(&vma->anon_vma_chain);
1309
1310         error = -EINVAL;        /* when rejecting VM_GROWSDOWN|VM_GROWSUP */
1311
1312         if (file) {
1313                 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1314                         goto free_vma;
1315                 if (vm_flags & VM_DENYWRITE) {
1316                         error = deny_write_access(file);
1317                         if (error)
1318                                 goto free_vma;
1319                         correct_wcount = 1;
1320                 }
1321                 vma->vm_file = file;
1322                 get_file(file);
1323                 error = file->f_op->mmap(file, vma);
1324                 if (error)
1325                         goto unmap_and_free_vma;
1326                 if (vm_flags & VM_EXECUTABLE)
1327                         added_exe_file_vma(mm);
1328
1329                 /* Can addr have changed??
1330                  *
1331                  * Answer: Yes, several device drivers can do it in their
1332                  *         f_op->mmap method. -DaveM
1333                  */
1334                 addr = vma->vm_start;
1335                 pgoff = vma->vm_pgoff;
1336                 vm_flags = vma->vm_flags;
1337         } else if (vm_flags & VM_SHARED) {
1338                 if (unlikely(vm_flags & (VM_GROWSDOWN|VM_GROWSUP)))
1339                         goto free_vma;
1340                 error = shmem_zero_setup(vma);
1341                 if (error)
1342                         goto free_vma;
1343         }
1344
1345         if (vma_wants_writenotify(vma)) {
1346                 pgprot_t pprot = vma->vm_page_prot;
1347
1348                 /* Can vma->vm_page_prot have changed??
1349                  *
1350                  * Answer: Yes, drivers may have changed it in their
1351                  *         f_op->mmap method.
1352                  *
1353                  * Ensures that vmas marked as uncached stay that way.
1354                  */
1355                 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1356                 if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1357                         vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1358         }
1359
1360         vma_link(mm, vma, prev, rb_link, rb_parent);
1361         file = vma->vm_file;
1362
1363         /* Once vma denies write, undo our temporary denial count */
1364         if (correct_wcount)
1365                 atomic_inc(&inode->i_writecount);
1366 out:
1367         perf_event_mmap(vma);
1368
1369         mm->total_vm += len >> PAGE_SHIFT;
1370         vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1371         if (vm_flags & VM_LOCKED) {
1372                 if (!mlock_vma_pages_range(vma, addr, addr + len))
1373                         mm->locked_vm += (len >> PAGE_SHIFT);
1374         } else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK))
1375                 make_pages_present(addr, addr + len);
1376         return addr;
1377
1378 unmap_and_free_vma:
1379         if (correct_wcount)
1380                 atomic_inc(&inode->i_writecount);
1381         vma->vm_file = NULL;
1382         fput(file);
1383
1384         /* Undo any partial mapping done by a device driver. */
1385         unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1386         charged = 0;
1387 free_vma:
1388         kmem_cache_free(vm_area_cachep, vma);
1389 unacct_error:
1390         if (charged)
1391                 vm_unacct_memory(charged);
1392         return error;
1393 }
1394
1395 /* Get an address range which is currently unmapped.
1396  * For shmat() with addr=0.
1397  *
1398  * Ugly calling convention alert:
1399  * Return value with the low bits set means error value,
1400  * ie
1401  *      if (ret & ~PAGE_MASK)
1402  *              error = ret;
1403  *
1404  * This function "knows" that -ENOMEM has the bits set.
1405  */
1406 #ifndef HAVE_ARCH_UNMAPPED_AREA
1407 unsigned long
1408 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1409                 unsigned long len, unsigned long pgoff, unsigned long flags)
1410 {
1411         struct mm_struct *mm = current->mm;
1412         struct vm_area_struct *vma;
1413         unsigned long start_addr;
1414
1415         if (len > TASK_SIZE)
1416                 return -ENOMEM;
1417
1418         if (flags & MAP_FIXED)
1419                 return addr;
1420
1421         if (addr) {
1422                 addr = PAGE_ALIGN(addr);
1423                 vma = find_vma(mm, addr);
1424                 if (TASK_SIZE - len >= addr &&
1425                     (!vma || addr + len <= vma->vm_start))
1426                         return addr;
1427         }
1428         if (len > mm->cached_hole_size) {
1429                 start_addr = addr = mm->free_area_cache;
1430         } else {
1431                 start_addr = addr = TASK_UNMAPPED_BASE;
1432                 mm->cached_hole_size = 0;
1433         }
1434
1435 full_search:
1436         for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1437                 /* At this point:  (!vma || addr < vma->vm_end). */
1438                 if (TASK_SIZE - len < addr) {
1439                         /*
1440                          * Start a new search - just in case we missed
1441                          * some holes.
1442                          */
1443                         if (start_addr != TASK_UNMAPPED_BASE) {
1444                                 addr = TASK_UNMAPPED_BASE;
1445                                 start_addr = addr;
1446                                 mm->cached_hole_size = 0;
1447                                 goto full_search;
1448                         }
1449                         return -ENOMEM;
1450                 }
1451                 if (!vma || addr + len <= vma->vm_start) {
1452                         /*
1453                          * Remember the place where we stopped the search:
1454                          */
1455                         mm->free_area_cache = addr + len;
1456                         return addr;
1457                 }
1458                 if (addr + mm->cached_hole_size < vma->vm_start)
1459                         mm->cached_hole_size = vma->vm_start - addr;
1460                 addr = vma->vm_end;
1461         }
1462 }
1463 #endif  
1464
1465 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1466 {
1467         /*
1468          * Is this a new hole at the lowest possible address?
1469          */
1470         if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache)
1471                 mm->free_area_cache = addr;
1472 }
1473
1474 /*
1475  * This mmap-allocator allocates new areas top-down from below the
1476  * stack's low limit (the base):
1477  */
1478 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1479 unsigned long
1480 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1481                           const unsigned long len, const unsigned long pgoff,
1482                           const unsigned long flags)
1483 {
1484         struct vm_area_struct *vma;
1485         struct mm_struct *mm = current->mm;
1486         unsigned long addr = addr0, start_addr;
1487
1488         /* requested length too big for entire address space */
1489         if (len > TASK_SIZE)
1490                 return -ENOMEM;
1491
1492         if (flags & MAP_FIXED)
1493                 return addr;
1494
1495         /* requesting a specific address */
1496         if (addr) {
1497                 addr = PAGE_ALIGN(addr);
1498                 vma = find_vma(mm, addr);
1499                 if (TASK_SIZE - len >= addr &&
1500                                 (!vma || addr + len <= vma->vm_start))
1501                         return addr;
1502         }
1503
1504         /* check if free_area_cache is useful for us */
1505         if (len <= mm->cached_hole_size) {
1506                 mm->cached_hole_size = 0;
1507                 mm->free_area_cache = mm->mmap_base;
1508         }
1509
1510 try_again:
1511         /* either no address requested or can't fit in requested address hole */
1512         start_addr = addr = mm->free_area_cache;
1513
1514         if (addr < len)
1515                 goto fail;
1516
1517         addr -= len;
1518         do {
1519                 /*
1520                  * Lookup failure means no vma is above this address,
1521                  * else if new region fits below vma->vm_start,
1522                  * return with success:
1523                  */
1524                 vma = find_vma(mm, addr);
1525                 if (!vma || addr+len <= vma->vm_start)
1526                         /* remember the address as a hint for next time */
1527                         return (mm->free_area_cache = addr);
1528
1529                 /* remember the largest hole we saw so far */
1530                 if (addr + mm->cached_hole_size < vma->vm_start)
1531                         mm->cached_hole_size = vma->vm_start - addr;
1532
1533                 /* try just below the current vma->vm_start */
1534                 addr = vma->vm_start-len;
1535         } while (len < vma->vm_start);
1536
1537 fail:
1538         /*
1539          * if hint left us with no space for the requested
1540          * mapping then try again:
1541          *
1542          * Note: this is different with the case of bottomup
1543          * which does the fully line-search, but we use find_vma
1544          * here that causes some holes skipped.
1545          */
1546         if (start_addr != mm->mmap_base) {
1547                 mm->free_area_cache = mm->mmap_base;
1548                 mm->cached_hole_size = 0;
1549                 goto try_again;
1550         }
1551
1552         /*
1553          * A failed mmap() very likely causes application failure,
1554          * so fall back to the bottom-up function here. This scenario
1555          * can happen with large stack limits and large mmap()
1556          * allocations.
1557          */
1558         mm->cached_hole_size = ~0UL;
1559         mm->free_area_cache = TASK_UNMAPPED_BASE;
1560         addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1561         /*
1562          * Restore the topdown base:
1563          */
1564         mm->free_area_cache = mm->mmap_base;
1565         mm->cached_hole_size = ~0UL;
1566
1567         return addr;
1568 }
1569 #endif
1570
1571 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1572 {
1573         /*
1574          * Is this a new hole at the highest possible address?
1575          */
1576         if (addr > mm->free_area_cache)
1577                 mm->free_area_cache = addr;
1578
1579         /* dont allow allocations above current base */
1580         if (mm->free_area_cache > mm->mmap_base)
1581                 mm->free_area_cache = mm->mmap_base;
1582 }
1583
1584 unsigned long
1585 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1586                 unsigned long pgoff, unsigned long flags)
1587 {
1588         unsigned long (*get_area)(struct file *, unsigned long,
1589                                   unsigned long, unsigned long, unsigned long);
1590
1591         unsigned long error = arch_mmap_check(addr, len, flags);
1592         if (error)
1593                 return error;
1594
1595         /* Careful about overflows.. */
1596         if (len > TASK_SIZE)
1597                 return -ENOMEM;
1598
1599         get_area = current->mm->get_unmapped_area;
1600         if (file && file->f_op && file->f_op->get_unmapped_area)
1601                 get_area = file->f_op->get_unmapped_area;
1602         addr = get_area(file, addr, len, pgoff, flags);
1603         if (IS_ERR_VALUE(addr))
1604                 return addr;
1605
1606         if (addr > TASK_SIZE - len)
1607                 return -ENOMEM;
1608         if (addr & ~PAGE_MASK)
1609                 return -EINVAL;
1610
1611         return arch_rebalance_pgtables(addr, len);
1612 }
1613
1614 EXPORT_SYMBOL(get_unmapped_area);
1615
1616 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1617 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1618 {
1619         struct vm_area_struct *vma = NULL;
1620
1621         if (mm) {
1622                 /* Check the cache first. */
1623                 /* (Cache hit rate is typically around 35%.) */
1624                 vma = mm->mmap_cache;
1625                 if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1626                         struct rb_node * rb_node;
1627
1628                         rb_node = mm->mm_rb.rb_node;
1629                         vma = NULL;
1630
1631                         while (rb_node) {
1632                                 struct vm_area_struct * vma_tmp;
1633
1634                                 vma_tmp = rb_entry(rb_node,
1635                                                 struct vm_area_struct, vm_rb);
1636
1637                                 if (vma_tmp->vm_end > addr) {
1638                                         vma = vma_tmp;
1639                                         if (vma_tmp->vm_start <= addr)
1640                                                 break;
1641                                         rb_node = rb_node->rb_left;
1642                                 } else
1643                                         rb_node = rb_node->rb_right;
1644                         }
1645                         if (vma)
1646                                 mm->mmap_cache = vma;
1647                 }
1648         }
1649         return vma;
1650 }
1651
1652 EXPORT_SYMBOL(find_vma);
1653
1654 /*
1655  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
1656  */
1657 struct vm_area_struct *
1658 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1659                         struct vm_area_struct **pprev)
1660 {
1661         struct vm_area_struct *vma;
1662
1663         vma = find_vma(mm, addr);
1664         if (vma) {
1665                 *pprev = vma->vm_prev;
1666         } else {
1667                 struct rb_node *rb_node = mm->mm_rb.rb_node;
1668                 *pprev = NULL;
1669                 while (rb_node) {
1670                         *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1671                         rb_node = rb_node->rb_right;
1672                 }
1673         }
1674         return vma;
1675 }
1676
1677 /*
1678  * Verify that the stack growth is acceptable and
1679  * update accounting. This is shared with both the
1680  * grow-up and grow-down cases.
1681  */
1682 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
1683 {
1684         struct mm_struct *mm = vma->vm_mm;
1685         struct rlimit *rlim = current->signal->rlim;
1686         unsigned long new_start;
1687
1688         /* address space limit tests */
1689         if (!may_expand_vm(mm, grow))
1690                 return -ENOMEM;
1691
1692         /* Stack limit test */
1693         if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
1694                 return -ENOMEM;
1695
1696         /* mlock limit tests */
1697         if (vma->vm_flags & VM_LOCKED) {
1698                 unsigned long locked;
1699                 unsigned long limit;
1700                 locked = mm->locked_vm + grow;
1701                 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
1702                 limit >>= PAGE_SHIFT;
1703                 if (locked > limit && !capable(CAP_IPC_LOCK))
1704                         return -ENOMEM;
1705         }
1706
1707         /* Check to ensure the stack will not grow into a hugetlb-only region */
1708         new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1709                         vma->vm_end - size;
1710         if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1711                 return -EFAULT;
1712
1713         /*
1714          * Overcommit..  This must be the final test, as it will
1715          * update security statistics.
1716          */
1717         if (security_vm_enough_memory_mm(mm, grow))
1718                 return -ENOMEM;
1719
1720         /* Ok, everything looks good - let it rip */
1721         mm->total_vm += grow;
1722         if (vma->vm_flags & VM_LOCKED)
1723                 mm->locked_vm += grow;
1724         vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1725         return 0;
1726 }
1727
1728 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1729 /*
1730  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1731  * vma is the last one with address > vma->vm_end.  Have to extend vma.
1732  */
1733 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1734 {
1735         int error;
1736
1737         if (!(vma->vm_flags & VM_GROWSUP))
1738                 return -EFAULT;
1739
1740         /*
1741          * We must make sure the anon_vma is allocated
1742          * so that the anon_vma locking is not a noop.
1743          */
1744         if (unlikely(anon_vma_prepare(vma)))
1745                 return -ENOMEM;
1746         vma_lock_anon_vma(vma);
1747
1748         /*
1749          * vma->vm_start/vm_end cannot change under us because the caller
1750          * is required to hold the mmap_sem in read mode.  We need the
1751          * anon_vma lock to serialize against concurrent expand_stacks.
1752          * Also guard against wrapping around to address 0.
1753          */
1754         if (address < PAGE_ALIGN(address+4))
1755                 address = PAGE_ALIGN(address+4);
1756         else {
1757                 vma_unlock_anon_vma(vma);
1758                 return -ENOMEM;
1759         }
1760         error = 0;
1761
1762         /* Somebody else might have raced and expanded it already */
1763         if (address > vma->vm_end) {
1764                 unsigned long size, grow;
1765
1766                 size = address - vma->vm_start;
1767                 grow = (address - vma->vm_end) >> PAGE_SHIFT;
1768
1769                 error = -ENOMEM;
1770                 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
1771                         error = acct_stack_growth(vma, size, grow);
1772                         if (!error) {
1773                                 vma->vm_end = address;
1774                                 perf_event_mmap(vma);
1775                         }
1776                 }
1777         }
1778         vma_unlock_anon_vma(vma);
1779         khugepaged_enter_vma_merge(vma);
1780         return error;
1781 }
1782 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1783
1784 /*
1785  * vma is the first one with address < vma->vm_start.  Have to extend vma.
1786  */
1787 int expand_downwards(struct vm_area_struct *vma,
1788                                    unsigned long address)
1789 {
1790         int error;
1791
1792         /*
1793          * We must make sure the anon_vma is allocated
1794          * so that the anon_vma locking is not a noop.
1795          */
1796         if (unlikely(anon_vma_prepare(vma)))
1797                 return -ENOMEM;
1798
1799         address &= PAGE_MASK;
1800         error = security_file_mmap(NULL, 0, 0, 0, address, 1);
1801         if (error)
1802                 return error;
1803
1804         vma_lock_anon_vma(vma);
1805
1806         /*
1807          * vma->vm_start/vm_end cannot change under us because the caller
1808          * is required to hold the mmap_sem in read mode.  We need the
1809          * anon_vma lock to serialize against concurrent expand_stacks.
1810          */
1811
1812         /* Somebody else might have raced and expanded it already */
1813         if (address < vma->vm_start) {
1814                 unsigned long size, grow;
1815
1816                 size = vma->vm_end - address;
1817                 grow = (vma->vm_start - address) >> PAGE_SHIFT;
1818
1819                 error = -ENOMEM;
1820                 if (grow <= vma->vm_pgoff) {
1821                         error = acct_stack_growth(vma, size, grow);
1822                         if (!error) {
1823                                 vma->vm_start = address;
1824                                 vma->vm_pgoff -= grow;
1825                                 perf_event_mmap(vma);
1826                         }
1827                 }
1828         }
1829         vma_unlock_anon_vma(vma);
1830         khugepaged_enter_vma_merge(vma);
1831         return error;
1832 }
1833
1834 #ifdef CONFIG_STACK_GROWSUP
1835 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1836 {
1837         return expand_upwards(vma, address);
1838 }
1839
1840 struct vm_area_struct *
1841 find_extend_vma(struct mm_struct *mm, unsigned long addr)
1842 {
1843         struct vm_area_struct *vma, *prev;
1844
1845         addr &= PAGE_MASK;
1846         vma = find_vma_prev(mm, addr, &prev);
1847         if (vma && (vma->vm_start <= addr))
1848                 return vma;
1849         if (!prev || expand_stack(prev, addr))
1850                 return NULL;
1851         if (prev->vm_flags & VM_LOCKED) {
1852                 mlock_vma_pages_range(prev, addr, prev->vm_end);
1853         }
1854         return prev;
1855 }
1856 #else
1857 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1858 {
1859         return expand_downwards(vma, address);
1860 }
1861
1862 struct vm_area_struct *
1863 find_extend_vma(struct mm_struct * mm, unsigned long addr)
1864 {
1865         struct vm_area_struct * vma;
1866         unsigned long start;
1867
1868         addr &= PAGE_MASK;
1869         vma = find_vma(mm,addr);
1870         if (!vma)
1871                 return NULL;
1872         if (vma->vm_start <= addr)
1873                 return vma;
1874         if (!(vma->vm_flags & VM_GROWSDOWN))
1875                 return NULL;
1876         start = vma->vm_start;
1877         if (expand_stack(vma, addr))
1878                 return NULL;
1879         if (vma->vm_flags & VM_LOCKED) {
1880                 mlock_vma_pages_range(vma, addr, start);
1881         }
1882         return vma;
1883 }
1884 #endif
1885
1886 /*
1887  * Ok - we have the memory areas we should free on the vma list,
1888  * so release them, and do the vma updates.
1889  *
1890  * Called with the mm semaphore held.
1891  */
1892 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1893 {
1894         /* Update high watermark before we lower total_vm */
1895         update_hiwater_vm(mm);
1896         do {
1897                 long nrpages = vma_pages(vma);
1898
1899                 mm->total_vm -= nrpages;
1900                 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
1901                 vma = remove_vma(vma);
1902         } while (vma);
1903         validate_mm(mm);
1904 }
1905
1906 /*
1907  * Get rid of page table information in the indicated region.
1908  *
1909  * Called with the mm semaphore held.
1910  */
1911 static void unmap_region(struct mm_struct *mm,
1912                 struct vm_area_struct *vma, struct vm_area_struct *prev,
1913                 unsigned long start, unsigned long end)
1914 {
1915         struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
1916         struct mmu_gather tlb;
1917         unsigned long nr_accounted = 0;
1918
1919         lru_add_drain();
1920         tlb_gather_mmu(&tlb, mm, 0);
1921         update_hiwater_rss(mm);
1922         unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL);
1923         vm_unacct_memory(nr_accounted);
1924         free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
1925                                  next ? next->vm_start : 0);
1926         tlb_finish_mmu(&tlb, start, end);
1927 }
1928
1929 /*
1930  * Create a list of vma's touched by the unmap, removing them from the mm's
1931  * vma list as we go..
1932  */
1933 static void
1934 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
1935         struct vm_area_struct *prev, unsigned long end)
1936 {
1937         struct vm_area_struct **insertion_point;
1938         struct vm_area_struct *tail_vma = NULL;
1939         unsigned long addr;
1940
1941         insertion_point = (prev ? &prev->vm_next : &mm->mmap);
1942         vma->vm_prev = NULL;
1943         do {
1944                 rb_erase(&vma->vm_rb, &mm->mm_rb);
1945                 mm->map_count--;
1946                 tail_vma = vma;
1947                 vma = vma->vm_next;
1948         } while (vma && vma->vm_start < end);
1949         *insertion_point = vma;
1950         if (vma)
1951                 vma->vm_prev = prev;
1952         tail_vma->vm_next = NULL;
1953         if (mm->unmap_area == arch_unmap_area)
1954                 addr = prev ? prev->vm_end : mm->mmap_base;
1955         else
1956                 addr = vma ?  vma->vm_start : mm->mmap_base;
1957         mm->unmap_area(mm, addr);
1958         mm->mmap_cache = NULL;          /* Kill the cache. */
1959 }
1960
1961 /*
1962  * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
1963  * munmap path where it doesn't make sense to fail.
1964  */
1965 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1966               unsigned long addr, int new_below)
1967 {
1968         struct mempolicy *pol;
1969         struct vm_area_struct *new;
1970         int err = -ENOMEM;
1971
1972         if (is_vm_hugetlb_page(vma) && (addr &
1973                                         ~(huge_page_mask(hstate_vma(vma)))))
1974                 return -EINVAL;
1975
1976         new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1977         if (!new)
1978                 goto out_err;
1979
1980         /* most fields are the same, copy all, and then fixup */
1981         *new = *vma;
1982
1983         INIT_LIST_HEAD(&new->anon_vma_chain);
1984
1985         if (new_below)
1986                 new->vm_end = addr;
1987         else {
1988                 new->vm_start = addr;
1989                 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
1990         }
1991
1992         pol = mpol_dup(vma_policy(vma));
1993         if (IS_ERR(pol)) {
1994                 err = PTR_ERR(pol);
1995                 goto out_free_vma;
1996         }
1997         vma_set_policy(new, pol);
1998
1999         if (anon_vma_clone(new, vma))
2000                 goto out_free_mpol;
2001
2002         if (new->vm_file) {
2003                 get_file(new->vm_file);
2004                 if (vma->vm_flags & VM_EXECUTABLE)
2005                         added_exe_file_vma(mm);
2006         }
2007
2008         if (new->vm_ops && new->vm_ops->open)
2009                 new->vm_ops->open(new);
2010
2011         if (new_below)
2012                 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2013                         ((addr - new->vm_start) >> PAGE_SHIFT), new);
2014         else
2015                 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2016
2017         /* Success. */
2018         if (!err)
2019                 return 0;
2020
2021         /* Clean everything up if vma_adjust failed. */
2022         if (new->vm_ops && new->vm_ops->close)
2023                 new->vm_ops->close(new);
2024         if (new->vm_file) {
2025                 if (vma->vm_flags & VM_EXECUTABLE)
2026                         removed_exe_file_vma(mm);
2027                 fput(new->vm_file);
2028         }
2029         unlink_anon_vmas(new);
2030  out_free_mpol:
2031         mpol_put(pol);
2032  out_free_vma:
2033         kmem_cache_free(vm_area_cachep, new);
2034  out_err:
2035         return err;
2036 }
2037
2038 /*
2039  * Split a vma into two pieces at address 'addr', a new vma is allocated
2040  * either for the first part or the tail.
2041  */
2042 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2043               unsigned long addr, int new_below)
2044 {
2045         if (mm->map_count >= sysctl_max_map_count)
2046                 return -ENOMEM;
2047
2048         return __split_vma(mm, vma, addr, new_below);
2049 }
2050
2051 /* Munmap is split into 2 main parts -- this part which finds
2052  * what needs doing, and the areas themselves, which do the
2053  * work.  This now handles partial unmappings.
2054  * Jeremy Fitzhardinge <jeremy@goop.org>
2055  */
2056 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2057 {
2058         unsigned long end;
2059         struct vm_area_struct *vma, *prev, *last;
2060
2061         if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2062                 return -EINVAL;
2063
2064         if ((len = PAGE_ALIGN(len)) == 0)
2065                 return -EINVAL;
2066
2067         /* Find the first overlapping VMA */
2068         vma = find_vma(mm, start);
2069         if (!vma)
2070                 return 0;
2071         prev = vma->vm_prev;
2072         /* we have  start < vma->vm_end  */
2073
2074         /* if it doesn't overlap, we have nothing.. */
2075         end = start + len;
2076         if (vma->vm_start >= end)
2077                 return 0;
2078
2079         /*
2080          * If we need to split any vma, do it now to save pain later.
2081          *
2082          * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2083          * unmapped vm_area_struct will remain in use: so lower split_vma
2084          * places tmp vma above, and higher split_vma places tmp vma below.
2085          */
2086         if (start > vma->vm_start) {
2087                 int error;
2088
2089                 /*
2090                  * Make sure that map_count on return from munmap() will
2091                  * not exceed its limit; but let map_count go just above
2092                  * its limit temporarily, to help free resources as expected.
2093                  */
2094                 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2095                         return -ENOMEM;
2096
2097                 error = __split_vma(mm, vma, start, 0);
2098                 if (error)
2099                         return error;
2100                 prev = vma;
2101         }
2102
2103         /* Does it split the last one? */
2104         last = find_vma(mm, end);
2105         if (last && end > last->vm_start) {
2106                 int error = __split_vma(mm, last, end, 1);
2107                 if (error)
2108                         return error;
2109         }
2110         vma = prev? prev->vm_next: mm->mmap;
2111
2112         /*
2113          * unlock any mlock()ed ranges before detaching vmas
2114          */
2115         if (mm->locked_vm) {
2116                 struct vm_area_struct *tmp = vma;
2117                 while (tmp && tmp->vm_start < end) {
2118                         if (tmp->vm_flags & VM_LOCKED) {
2119                                 mm->locked_vm -= vma_pages(tmp);
2120                                 munlock_vma_pages_all(tmp);
2121                         }
2122                         tmp = tmp->vm_next;
2123                 }
2124         }
2125
2126         /*
2127          * Remove the vma's, and unmap the actual pages
2128          */
2129         detach_vmas_to_be_unmapped(mm, vma, prev, end);
2130         unmap_region(mm, vma, prev, start, end);
2131
2132         /* Fix up all other VM information */
2133         remove_vma_list(mm, vma);
2134
2135         return 0;
2136 }
2137 EXPORT_SYMBOL(do_munmap);
2138
2139 int vm_munmap(unsigned long start, size_t len)
2140 {
2141         int ret;
2142         struct mm_struct *mm = current->mm;
2143
2144         down_write(&mm->mmap_sem);
2145         ret = do_munmap(mm, start, len);
2146         up_write(&mm->mmap_sem);
2147         return ret;
2148 }
2149 EXPORT_SYMBOL(vm_munmap);
2150
2151 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2152 {
2153         profile_munmap(addr);
2154         return vm_munmap(addr, len);
2155 }
2156
2157 static inline void verify_mm_writelocked(struct mm_struct *mm)
2158 {
2159 #ifdef CONFIG_DEBUG_VM
2160         if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2161                 WARN_ON(1);
2162                 up_read(&mm->mmap_sem);
2163         }
2164 #endif
2165 }
2166
2167 /*
2168  *  this is really a simplified "do_mmap".  it only handles
2169  *  anonymous maps.  eventually we may be able to do some
2170  *  brk-specific accounting here.
2171  */
2172 static unsigned long do_brk(unsigned long addr, unsigned long len)
2173 {
2174         struct mm_struct * mm = current->mm;
2175         struct vm_area_struct * vma, * prev;
2176         unsigned long flags;
2177         struct rb_node ** rb_link, * rb_parent;
2178         pgoff_t pgoff = addr >> PAGE_SHIFT;
2179         int error;
2180
2181         len = PAGE_ALIGN(len);
2182         if (!len)
2183                 return addr;
2184
2185         error = security_file_mmap(NULL, 0, 0, 0, addr, 1);
2186         if (error)
2187                 return error;
2188
2189         flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2190
2191         error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2192         if (error & ~PAGE_MASK)
2193                 return error;
2194
2195         /*
2196          * mlock MCL_FUTURE?
2197          */
2198         if (mm->def_flags & VM_LOCKED) {
2199                 unsigned long locked, lock_limit;
2200                 locked = len >> PAGE_SHIFT;
2201                 locked += mm->locked_vm;
2202                 lock_limit = rlimit(RLIMIT_MEMLOCK);
2203                 lock_limit >>= PAGE_SHIFT;
2204                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2205                         return -EAGAIN;
2206         }
2207
2208         /*
2209          * mm->mmap_sem is required to protect against another thread
2210          * changing the mappings in case we sleep.
2211          */
2212         verify_mm_writelocked(mm);
2213
2214         /*
2215          * Clear old maps.  this also does some error checking for us
2216          */
2217  munmap_back:
2218         vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2219         if (vma && vma->vm_start < addr + len) {
2220                 if (do_munmap(mm, addr, len))
2221                         return -ENOMEM;
2222                 goto munmap_back;
2223         }
2224
2225         /* Check against address space limits *after* clearing old maps... */
2226         if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2227                 return -ENOMEM;
2228
2229         if (mm->map_count > sysctl_max_map_count)
2230                 return -ENOMEM;
2231
2232         if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2233                 return -ENOMEM;
2234
2235         /* Can we just expand an old private anonymous mapping? */
2236         vma = vma_merge(mm, prev, addr, addr + len, flags,
2237                                         NULL, NULL, pgoff, NULL);
2238         if (vma)
2239                 goto out;
2240
2241         /*
2242          * create a vma struct for an anonymous mapping
2243          */
2244         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2245         if (!vma) {
2246                 vm_unacct_memory(len >> PAGE_SHIFT);
2247                 return -ENOMEM;
2248         }
2249
2250         INIT_LIST_HEAD(&vma->anon_vma_chain);
2251         vma->vm_mm = mm;
2252         vma->vm_start = addr;
2253         vma->vm_end = addr + len;
2254         vma->vm_pgoff = pgoff;
2255         vma->vm_flags = flags;
2256         vma->vm_page_prot = vm_get_page_prot(flags);
2257         vma_link(mm, vma, prev, rb_link, rb_parent);
2258 out:
2259         perf_event_mmap(vma);
2260         mm->total_vm += len >> PAGE_SHIFT;
2261         if (flags & VM_LOCKED) {
2262                 if (!mlock_vma_pages_range(vma, addr, addr + len))
2263                         mm->locked_vm += (len >> PAGE_SHIFT);
2264         }
2265         return addr;
2266 }
2267
2268 unsigned long vm_brk(unsigned long addr, unsigned long len)
2269 {
2270         struct mm_struct *mm = current->mm;
2271         unsigned long ret;
2272
2273         down_write(&mm->mmap_sem);
2274         ret = do_brk(addr, len);
2275         up_write(&mm->mmap_sem);
2276         return ret;
2277 }
2278 EXPORT_SYMBOL(vm_brk);
2279
2280 /* Release all mmaps. */
2281 void exit_mmap(struct mm_struct *mm)
2282 {
2283         struct mmu_gather tlb;
2284         struct vm_area_struct *vma;
2285         unsigned long nr_accounted = 0;
2286
2287         /* mm's last user has gone, and its about to be pulled down */
2288         mmu_notifier_release(mm);
2289
2290         if (mm->locked_vm) {
2291                 vma = mm->mmap;
2292                 while (vma) {
2293                         if (vma->vm_flags & VM_LOCKED)
2294                                 munlock_vma_pages_all(vma);
2295                         vma = vma->vm_next;
2296                 }
2297         }
2298
2299         arch_exit_mmap(mm);
2300
2301         vma = mm->mmap;
2302         if (!vma)       /* Can happen if dup_mmap() received an OOM */
2303                 return;
2304
2305         lru_add_drain();
2306         flush_cache_mm(mm);
2307         tlb_gather_mmu(&tlb, mm, 1);
2308         /* update_hiwater_rss(mm) here? but nobody should be looking */
2309         /* Use -1 here to ensure all VMAs in the mm are unmapped */
2310         unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL);
2311         vm_unacct_memory(nr_accounted);
2312
2313         free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, 0);
2314         tlb_finish_mmu(&tlb, 0, -1);
2315
2316         /*
2317          * Walk the list again, actually closing and freeing it,
2318          * with preemption enabled, without holding any MM locks.
2319          */
2320         while (vma)
2321                 vma = remove_vma(vma);
2322
2323         BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2324 }
2325
2326 /* Insert vm structure into process list sorted by address
2327  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2328  * then i_mmap_mutex is taken here.
2329  */
2330 int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
2331 {
2332         struct vm_area_struct * __vma, * prev;
2333         struct rb_node ** rb_link, * rb_parent;
2334
2335         /*
2336          * The vm_pgoff of a purely anonymous vma should be irrelevant
2337          * until its first write fault, when page's anon_vma and index
2338          * are set.  But now set the vm_pgoff it will almost certainly
2339          * end up with (unless mremap moves it elsewhere before that
2340          * first wfault), so /proc/pid/maps tells a consistent story.
2341          *
2342          * By setting it to reflect the virtual start address of the
2343          * vma, merges and splits can happen in a seamless way, just
2344          * using the existing file pgoff checks and manipulations.
2345          * Similarly in do_mmap_pgoff and in do_brk.
2346          */
2347         if (!vma->vm_file) {
2348                 BUG_ON(vma->anon_vma);
2349                 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2350         }
2351         __vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent);
2352         if (__vma && __vma->vm_start < vma->vm_end)
2353                 return -ENOMEM;
2354         if ((vma->vm_flags & VM_ACCOUNT) &&
2355              security_vm_enough_memory_mm(mm, vma_pages(vma)))
2356                 return -ENOMEM;
2357         vma_link(mm, vma, prev, rb_link, rb_parent);
2358         return 0;
2359 }
2360
2361 /*
2362  * Copy the vma structure to a new location in the same mm,
2363  * prior to moving page table entries, to effect an mremap move.
2364  */
2365 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2366         unsigned long addr, unsigned long len, pgoff_t pgoff)
2367 {
2368         struct vm_area_struct *vma = *vmap;
2369         unsigned long vma_start = vma->vm_start;
2370         struct mm_struct *mm = vma->vm_mm;
2371         struct vm_area_struct *new_vma, *prev;
2372         struct rb_node **rb_link, *rb_parent;
2373         struct mempolicy *pol;
2374         bool faulted_in_anon_vma = true;
2375
2376         /*
2377          * If anonymous vma has not yet been faulted, update new pgoff
2378          * to match new location, to increase its chance of merging.
2379          */
2380         if (unlikely(!vma->vm_file && !vma->anon_vma)) {
2381                 pgoff = addr >> PAGE_SHIFT;
2382                 faulted_in_anon_vma = false;
2383         }
2384
2385         find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2386         new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2387                         vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2388         if (new_vma) {
2389                 /*
2390                  * Source vma may have been merged into new_vma
2391                  */
2392                 if (unlikely(vma_start >= new_vma->vm_start &&
2393                              vma_start < new_vma->vm_end)) {
2394                         /*
2395                          * The only way we can get a vma_merge with
2396                          * self during an mremap is if the vma hasn't
2397                          * been faulted in yet and we were allowed to
2398                          * reset the dst vma->vm_pgoff to the
2399                          * destination address of the mremap to allow
2400                          * the merge to happen. mremap must change the
2401                          * vm_pgoff linearity between src and dst vmas
2402                          * (in turn preventing a vma_merge) to be
2403                          * safe. It is only safe to keep the vm_pgoff
2404                          * linear if there are no pages mapped yet.
2405                          */
2406                         VM_BUG_ON(faulted_in_anon_vma);
2407                         *vmap = new_vma;
2408                 } else
2409                         anon_vma_moveto_tail(new_vma);
2410         } else {
2411                 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2412                 if (new_vma) {
2413                         *new_vma = *vma;
2414                         pol = mpol_dup(vma_policy(vma));
2415                         if (IS_ERR(pol))
2416                                 goto out_free_vma;
2417                         INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2418                         if (anon_vma_clone(new_vma, vma))
2419                                 goto out_free_mempol;
2420                         vma_set_policy(new_vma, pol);
2421                         new_vma->vm_start = addr;
2422                         new_vma->vm_end = addr + len;
2423                         new_vma->vm_pgoff = pgoff;
2424                         if (new_vma->vm_file) {
2425                                 get_file(new_vma->vm_file);
2426                                 if (vma->vm_flags & VM_EXECUTABLE)
2427                                         added_exe_file_vma(mm);
2428                         }
2429                         if (new_vma->vm_ops && new_vma->vm_ops->open)
2430                                 new_vma->vm_ops->open(new_vma);
2431                         vma_link(mm, new_vma, prev, rb_link, rb_parent);
2432                 }
2433         }
2434         return new_vma;
2435
2436  out_free_mempol:
2437         mpol_put(pol);
2438  out_free_vma:
2439         kmem_cache_free(vm_area_cachep, new_vma);
2440         return NULL;
2441 }
2442
2443 /*
2444  * Return true if the calling process may expand its vm space by the passed
2445  * number of pages
2446  */
2447 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2448 {
2449         unsigned long cur = mm->total_vm;       /* pages */
2450         unsigned long lim;
2451
2452         lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2453
2454         if (cur + npages > lim)
2455                 return 0;
2456         return 1;
2457 }
2458
2459
2460 static int special_mapping_fault(struct vm_area_struct *vma,
2461                                 struct vm_fault *vmf)
2462 {
2463         pgoff_t pgoff;
2464         struct page **pages;
2465
2466         /*
2467          * special mappings have no vm_file, and in that case, the mm
2468          * uses vm_pgoff internally. So we have to subtract it from here.
2469          * We are allowed to do this because we are the mm; do not copy
2470          * this code into drivers!
2471          */
2472         pgoff = vmf->pgoff - vma->vm_pgoff;
2473
2474         for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2475                 pgoff--;
2476
2477         if (*pages) {
2478                 struct page *page = *pages;
2479                 get_page(page);
2480                 vmf->page = page;
2481                 return 0;
2482         }
2483
2484         return VM_FAULT_SIGBUS;
2485 }
2486
2487 /*
2488  * Having a close hook prevents vma merging regardless of flags.
2489  */
2490 static void special_mapping_close(struct vm_area_struct *vma)
2491 {
2492 }
2493
2494 static const struct vm_operations_struct special_mapping_vmops = {
2495         .close = special_mapping_close,
2496         .fault = special_mapping_fault,
2497 };
2498
2499 /*
2500  * Called with mm->mmap_sem held for writing.
2501  * Insert a new vma covering the given region, with the given flags.
2502  * Its pages are supplied by the given array of struct page *.
2503  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2504  * The region past the last page supplied will always produce SIGBUS.
2505  * The array pointer and the pages it points to are assumed to stay alive
2506  * for as long as this mapping might exist.
2507  */
2508 int install_special_mapping(struct mm_struct *mm,
2509                             unsigned long addr, unsigned long len,
2510                             unsigned long vm_flags, struct page **pages)
2511 {
2512         int ret;
2513         struct vm_area_struct *vma;
2514
2515         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2516         if (unlikely(vma == NULL))
2517                 return -ENOMEM;
2518
2519         INIT_LIST_HEAD(&vma->anon_vma_chain);
2520         vma->vm_mm = mm;
2521         vma->vm_start = addr;
2522         vma->vm_end = addr + len;
2523
2524         vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
2525         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2526
2527         vma->vm_ops = &special_mapping_vmops;
2528         vma->vm_private_data = pages;
2529
2530         ret = security_file_mmap(NULL, 0, 0, 0, vma->vm_start, 1);
2531         if (ret)
2532                 goto out;
2533
2534         ret = insert_vm_struct(mm, vma);
2535         if (ret)
2536                 goto out;
2537
2538         mm->total_vm += len >> PAGE_SHIFT;
2539
2540         perf_event_mmap(vma);
2541
2542         return 0;
2543
2544 out:
2545         kmem_cache_free(vm_area_cachep, vma);
2546         return ret;
2547 }
2548
2549 static DEFINE_MUTEX(mm_all_locks_mutex);
2550
2551 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2552 {
2553         if (!test_bit(0, (unsigned long *) &anon_vma->root->head.next)) {
2554                 /*
2555                  * The LSB of head.next can't change from under us
2556                  * because we hold the mm_all_locks_mutex.
2557                  */
2558                 mutex_lock_nest_lock(&anon_vma->root->mutex, &mm->mmap_sem);
2559                 /*
2560                  * We can safely modify head.next after taking the
2561                  * anon_vma->root->mutex. If some other vma in this mm shares
2562                  * the same anon_vma we won't take it again.
2563                  *
2564                  * No need of atomic instructions here, head.next
2565                  * can't change from under us thanks to the
2566                  * anon_vma->root->mutex.
2567                  */
2568                 if (__test_and_set_bit(0, (unsigned long *)
2569                                        &anon_vma->root->head.next))
2570                         BUG();
2571         }
2572 }
2573
2574 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2575 {
2576         if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2577                 /*
2578                  * AS_MM_ALL_LOCKS can't change from under us because
2579                  * we hold the mm_all_locks_mutex.
2580                  *
2581                  * Operations on ->flags have to be atomic because
2582                  * even if AS_MM_ALL_LOCKS is stable thanks to the
2583                  * mm_all_locks_mutex, there may be other cpus
2584                  * changing other bitflags in parallel to us.
2585                  */
2586                 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2587                         BUG();
2588                 mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
2589         }
2590 }
2591
2592 /*
2593  * This operation locks against the VM for all pte/vma/mm related
2594  * operations that could ever happen on a certain mm. This includes
2595  * vmtruncate, try_to_unmap, and all page faults.
2596  *
2597  * The caller must take the mmap_sem in write mode before calling
2598  * mm_take_all_locks(). The caller isn't allowed to release the
2599  * mmap_sem until mm_drop_all_locks() returns.
2600  *
2601  * mmap_sem in write mode is required in order to block all operations
2602  * that could modify pagetables and free pages without need of
2603  * altering the vma layout (for example populate_range() with
2604  * nonlinear vmas). It's also needed in write mode to avoid new
2605  * anon_vmas to be associated with existing vmas.
2606  *
2607  * A single task can't take more than one mm_take_all_locks() in a row
2608  * or it would deadlock.
2609  *
2610  * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in
2611  * mapping->flags avoid to take the same lock twice, if more than one
2612  * vma in this mm is backed by the same anon_vma or address_space.
2613  *
2614  * We can take all the locks in random order because the VM code
2615  * taking i_mmap_mutex or anon_vma->mutex outside the mmap_sem never
2616  * takes more than one of them in a row. Secondly we're protected
2617  * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
2618  *
2619  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2620  * that may have to take thousand of locks.
2621  *
2622  * mm_take_all_locks() can fail if it's interrupted by signals.
2623  */
2624 int mm_take_all_locks(struct mm_struct *mm)
2625 {
2626         struct vm_area_struct *vma;
2627         struct anon_vma_chain *avc;
2628
2629         BUG_ON(down_read_trylock(&mm->mmap_sem));
2630
2631         mutex_lock(&mm_all_locks_mutex);
2632
2633         for (vma = mm->mmap; vma; vma = vma->vm_next) {
2634                 if (signal_pending(current))
2635                         goto out_unlock;
2636                 if (vma->vm_file && vma->vm_file->f_mapping)
2637                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
2638         }
2639
2640         for (vma = mm->mmap; vma; vma = vma->vm_next) {
2641                 if (signal_pending(current))
2642                         goto out_unlock;
2643                 if (vma->anon_vma)
2644                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2645                                 vm_lock_anon_vma(mm, avc->anon_vma);
2646         }
2647
2648         return 0;
2649
2650 out_unlock:
2651         mm_drop_all_locks(mm);
2652         return -EINTR;
2653 }
2654
2655 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
2656 {
2657         if (test_bit(0, (unsigned long *) &anon_vma->root->head.next)) {
2658                 /*
2659                  * The LSB of head.next can't change to 0 from under
2660                  * us because we hold the mm_all_locks_mutex.
2661                  *
2662                  * We must however clear the bitflag before unlocking
2663                  * the vma so the users using the anon_vma->head will
2664                  * never see our bitflag.
2665                  *
2666                  * No need of atomic instructions here, head.next
2667                  * can't change from under us until we release the
2668                  * anon_vma->root->mutex.
2669                  */
2670                 if (!__test_and_clear_bit(0, (unsigned long *)
2671                                           &anon_vma->root->head.next))
2672                         BUG();
2673                 anon_vma_unlock(anon_vma);
2674         }
2675 }
2676
2677 static void vm_unlock_mapping(struct address_space *mapping)
2678 {
2679         if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2680                 /*
2681                  * AS_MM_ALL_LOCKS can't change to 0 from under us
2682                  * because we hold the mm_all_locks_mutex.
2683                  */
2684                 mutex_unlock(&mapping->i_mmap_mutex);
2685                 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
2686                                         &mapping->flags))
2687                         BUG();
2688         }
2689 }
2690
2691 /*
2692  * The mmap_sem cannot be released by the caller until
2693  * mm_drop_all_locks() returns.
2694  */
2695 void mm_drop_all_locks(struct mm_struct *mm)
2696 {
2697         struct vm_area_struct *vma;
2698         struct anon_vma_chain *avc;
2699
2700         BUG_ON(down_read_trylock(&mm->mmap_sem));
2701         BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
2702
2703         for (vma = mm->mmap; vma; vma = vma->vm_next) {
2704                 if (vma->anon_vma)
2705                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2706                                 vm_unlock_anon_vma(avc->anon_vma);
2707                 if (vma->vm_file && vma->vm_file->f_mapping)
2708                         vm_unlock_mapping(vma->vm_file->f_mapping);
2709         }
2710
2711         mutex_unlock(&mm_all_locks_mutex);
2712 }
2713
2714 /*
2715  * initialise the VMA slab
2716  */
2717 void __init mmap_init(void)
2718 {
2719         int ret;
2720
2721         ret = percpu_counter_init(&vm_committed_as, 0);
2722         VM_BUG_ON(ret);
2723 }