cfg80211: handle failed skb allocation
[cascardo/linux.git] / mm / mmap.c
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code        <alan@lxorguk.ukuu.org.uk>
7  */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
14 #include <linux/mm.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/profile.h>
29 #include <linux/export.h>
30 #include <linux/mount.h>
31 #include <linux/mempolicy.h>
32 #include <linux/rmap.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/mmdebug.h>
35 #include <linux/perf_event.h>
36 #include <linux/audit.h>
37 #include <linux/khugepaged.h>
38 #include <linux/uprobes.h>
39 #include <linux/rbtree_augmented.h>
40 #include <linux/notifier.h>
41 #include <linux/memory.h>
42 #include <linux/printk.h>
43 #include <linux/userfaultfd_k.h>
44 #include <linux/moduleparam.h>
45 #include <linux/pkeys.h>
46
47 #include <asm/uaccess.h>
48 #include <asm/cacheflush.h>
49 #include <asm/tlb.h>
50 #include <asm/mmu_context.h>
51
52 #include "internal.h"
53
54 #ifndef arch_mmap_check
55 #define arch_mmap_check(addr, len, flags)       (0)
56 #endif
57
58 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
59 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
60 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
61 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
62 #endif
63 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
64 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
65 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
66 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
67 #endif
68
69 static bool ignore_rlimit_data;
70 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
71
72 static void unmap_region(struct mm_struct *mm,
73                 struct vm_area_struct *vma, struct vm_area_struct *prev,
74                 unsigned long start, unsigned long end);
75
76 /* description of effects of mapping type and prot in current implementation.
77  * this is due to the limited x86 page protection hardware.  The expected
78  * behavior is in parens:
79  *
80  * map_type     prot
81  *              PROT_NONE       PROT_READ       PROT_WRITE      PROT_EXEC
82  * MAP_SHARED   r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
83  *              w: (no) no      w: (no) no      w: (yes) yes    w: (no) no
84  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
85  *
86  * MAP_PRIVATE  r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
87  *              w: (no) no      w: (no) no      w: (copy) copy  w: (no) no
88  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
89  *
90  */
91 pgprot_t protection_map[16] = {
92         __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
93         __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
94 };
95
96 pgprot_t vm_get_page_prot(unsigned long vm_flags)
97 {
98         return __pgprot(pgprot_val(protection_map[vm_flags &
99                                 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
100                         pgprot_val(arch_vm_get_page_prot(vm_flags)));
101 }
102 EXPORT_SYMBOL(vm_get_page_prot);
103
104 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
105 {
106         return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
107 }
108
109 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
110 void vma_set_page_prot(struct vm_area_struct *vma)
111 {
112         unsigned long vm_flags = vma->vm_flags;
113
114         vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
115         if (vma_wants_writenotify(vma)) {
116                 vm_flags &= ~VM_SHARED;
117                 vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot,
118                                                      vm_flags);
119         }
120 }
121
122 /*
123  * Requires inode->i_mapping->i_mmap_rwsem
124  */
125 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
126                 struct file *file, struct address_space *mapping)
127 {
128         if (vma->vm_flags & VM_DENYWRITE)
129                 atomic_inc(&file_inode(file)->i_writecount);
130         if (vma->vm_flags & VM_SHARED)
131                 mapping_unmap_writable(mapping);
132
133         flush_dcache_mmap_lock(mapping);
134         vma_interval_tree_remove(vma, &mapping->i_mmap);
135         flush_dcache_mmap_unlock(mapping);
136 }
137
138 /*
139  * Unlink a file-based vm structure from its interval tree, to hide
140  * vma from rmap and vmtruncate before freeing its page tables.
141  */
142 void unlink_file_vma(struct vm_area_struct *vma)
143 {
144         struct file *file = vma->vm_file;
145
146         if (file) {
147                 struct address_space *mapping = file->f_mapping;
148                 i_mmap_lock_write(mapping);
149                 __remove_shared_vm_struct(vma, file, mapping);
150                 i_mmap_unlock_write(mapping);
151         }
152 }
153
154 /*
155  * Close a vm structure and free it, returning the next.
156  */
157 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
158 {
159         struct vm_area_struct *next = vma->vm_next;
160
161         might_sleep();
162         if (vma->vm_ops && vma->vm_ops->close)
163                 vma->vm_ops->close(vma);
164         if (vma->vm_file)
165                 fput(vma->vm_file);
166         mpol_put(vma_policy(vma));
167         kmem_cache_free(vm_area_cachep, vma);
168         return next;
169 }
170
171 static unsigned long do_brk(unsigned long addr, unsigned long len);
172
173 SYSCALL_DEFINE1(brk, unsigned long, brk)
174 {
175         unsigned long retval;
176         unsigned long newbrk, oldbrk;
177         struct mm_struct *mm = current->mm;
178         unsigned long min_brk;
179         bool populate;
180
181         down_write(&mm->mmap_sem);
182
183 #ifdef CONFIG_COMPAT_BRK
184         /*
185          * CONFIG_COMPAT_BRK can still be overridden by setting
186          * randomize_va_space to 2, which will still cause mm->start_brk
187          * to be arbitrarily shifted
188          */
189         if (current->brk_randomized)
190                 min_brk = mm->start_brk;
191         else
192                 min_brk = mm->end_data;
193 #else
194         min_brk = mm->start_brk;
195 #endif
196         if (brk < min_brk)
197                 goto out;
198
199         /*
200          * Check against rlimit here. If this check is done later after the test
201          * of oldbrk with newbrk then it can escape the test and let the data
202          * segment grow beyond its set limit the in case where the limit is
203          * not page aligned -Ram Gupta
204          */
205         if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
206                               mm->end_data, mm->start_data))
207                 goto out;
208
209         newbrk = PAGE_ALIGN(brk);
210         oldbrk = PAGE_ALIGN(mm->brk);
211         if (oldbrk == newbrk)
212                 goto set_brk;
213
214         /* Always allow shrinking brk. */
215         if (brk <= mm->brk) {
216                 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
217                         goto set_brk;
218                 goto out;
219         }
220
221         /* Check against existing mmap mappings. */
222         if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
223                 goto out;
224
225         /* Ok, looks good - let it rip. */
226         if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
227                 goto out;
228
229 set_brk:
230         mm->brk = brk;
231         populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
232         up_write(&mm->mmap_sem);
233         if (populate)
234                 mm_populate(oldbrk, newbrk - oldbrk);
235         return brk;
236
237 out:
238         retval = mm->brk;
239         up_write(&mm->mmap_sem);
240         return retval;
241 }
242
243 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
244 {
245         unsigned long max, subtree_gap;
246         max = vma->vm_start;
247         if (vma->vm_prev)
248                 max -= vma->vm_prev->vm_end;
249         if (vma->vm_rb.rb_left) {
250                 subtree_gap = rb_entry(vma->vm_rb.rb_left,
251                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
252                 if (subtree_gap > max)
253                         max = subtree_gap;
254         }
255         if (vma->vm_rb.rb_right) {
256                 subtree_gap = rb_entry(vma->vm_rb.rb_right,
257                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
258                 if (subtree_gap > max)
259                         max = subtree_gap;
260         }
261         return max;
262 }
263
264 #ifdef CONFIG_DEBUG_VM_RB
265 static int browse_rb(struct mm_struct *mm)
266 {
267         struct rb_root *root = &mm->mm_rb;
268         int i = 0, j, bug = 0;
269         struct rb_node *nd, *pn = NULL;
270         unsigned long prev = 0, pend = 0;
271
272         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
273                 struct vm_area_struct *vma;
274                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
275                 if (vma->vm_start < prev) {
276                         pr_emerg("vm_start %lx < prev %lx\n",
277                                   vma->vm_start, prev);
278                         bug = 1;
279                 }
280                 if (vma->vm_start < pend) {
281                         pr_emerg("vm_start %lx < pend %lx\n",
282                                   vma->vm_start, pend);
283                         bug = 1;
284                 }
285                 if (vma->vm_start > vma->vm_end) {
286                         pr_emerg("vm_start %lx > vm_end %lx\n",
287                                   vma->vm_start, vma->vm_end);
288                         bug = 1;
289                 }
290                 spin_lock(&mm->page_table_lock);
291                 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
292                         pr_emerg("free gap %lx, correct %lx\n",
293                                vma->rb_subtree_gap,
294                                vma_compute_subtree_gap(vma));
295                         bug = 1;
296                 }
297                 spin_unlock(&mm->page_table_lock);
298                 i++;
299                 pn = nd;
300                 prev = vma->vm_start;
301                 pend = vma->vm_end;
302         }
303         j = 0;
304         for (nd = pn; nd; nd = rb_prev(nd))
305                 j++;
306         if (i != j) {
307                 pr_emerg("backwards %d, forwards %d\n", j, i);
308                 bug = 1;
309         }
310         return bug ? -1 : i;
311 }
312
313 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
314 {
315         struct rb_node *nd;
316
317         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
318                 struct vm_area_struct *vma;
319                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
320                 VM_BUG_ON_VMA(vma != ignore &&
321                         vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
322                         vma);
323         }
324 }
325
326 static void validate_mm(struct mm_struct *mm)
327 {
328         int bug = 0;
329         int i = 0;
330         unsigned long highest_address = 0;
331         struct vm_area_struct *vma = mm->mmap;
332
333         while (vma) {
334                 struct anon_vma *anon_vma = vma->anon_vma;
335                 struct anon_vma_chain *avc;
336
337                 if (anon_vma) {
338                         anon_vma_lock_read(anon_vma);
339                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
340                                 anon_vma_interval_tree_verify(avc);
341                         anon_vma_unlock_read(anon_vma);
342                 }
343
344                 highest_address = vma->vm_end;
345                 vma = vma->vm_next;
346                 i++;
347         }
348         if (i != mm->map_count) {
349                 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
350                 bug = 1;
351         }
352         if (highest_address != mm->highest_vm_end) {
353                 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
354                           mm->highest_vm_end, highest_address);
355                 bug = 1;
356         }
357         i = browse_rb(mm);
358         if (i != mm->map_count) {
359                 if (i != -1)
360                         pr_emerg("map_count %d rb %d\n", mm->map_count, i);
361                 bug = 1;
362         }
363         VM_BUG_ON_MM(bug, mm);
364 }
365 #else
366 #define validate_mm_rb(root, ignore) do { } while (0)
367 #define validate_mm(mm) do { } while (0)
368 #endif
369
370 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
371                      unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
372
373 /*
374  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
375  * vma->vm_prev->vm_end values changed, without modifying the vma's position
376  * in the rbtree.
377  */
378 static void vma_gap_update(struct vm_area_struct *vma)
379 {
380         /*
381          * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
382          * function that does exacltly what we want.
383          */
384         vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
385 }
386
387 static inline void vma_rb_insert(struct vm_area_struct *vma,
388                                  struct rb_root *root)
389 {
390         /* All rb_subtree_gap values must be consistent prior to insertion */
391         validate_mm_rb(root, NULL);
392
393         rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
394 }
395
396 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
397 {
398         /*
399          * All rb_subtree_gap values must be consistent prior to erase,
400          * with the possible exception of the vma being erased.
401          */
402         validate_mm_rb(root, vma);
403
404         /*
405          * Note rb_erase_augmented is a fairly large inline function,
406          * so make sure we instantiate it only once with our desired
407          * augmented rbtree callbacks.
408          */
409         rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
410 }
411
412 /*
413  * vma has some anon_vma assigned, and is already inserted on that
414  * anon_vma's interval trees.
415  *
416  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
417  * vma must be removed from the anon_vma's interval trees using
418  * anon_vma_interval_tree_pre_update_vma().
419  *
420  * After the update, the vma will be reinserted using
421  * anon_vma_interval_tree_post_update_vma().
422  *
423  * The entire update must be protected by exclusive mmap_sem and by
424  * the root anon_vma's mutex.
425  */
426 static inline void
427 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
428 {
429         struct anon_vma_chain *avc;
430
431         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
432                 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
433 }
434
435 static inline void
436 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
437 {
438         struct anon_vma_chain *avc;
439
440         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
441                 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
442 }
443
444 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
445                 unsigned long end, struct vm_area_struct **pprev,
446                 struct rb_node ***rb_link, struct rb_node **rb_parent)
447 {
448         struct rb_node **__rb_link, *__rb_parent, *rb_prev;
449
450         __rb_link = &mm->mm_rb.rb_node;
451         rb_prev = __rb_parent = NULL;
452
453         while (*__rb_link) {
454                 struct vm_area_struct *vma_tmp;
455
456                 __rb_parent = *__rb_link;
457                 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
458
459                 if (vma_tmp->vm_end > addr) {
460                         /* Fail if an existing vma overlaps the area */
461                         if (vma_tmp->vm_start < end)
462                                 return -ENOMEM;
463                         __rb_link = &__rb_parent->rb_left;
464                 } else {
465                         rb_prev = __rb_parent;
466                         __rb_link = &__rb_parent->rb_right;
467                 }
468         }
469
470         *pprev = NULL;
471         if (rb_prev)
472                 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
473         *rb_link = __rb_link;
474         *rb_parent = __rb_parent;
475         return 0;
476 }
477
478 static unsigned long count_vma_pages_range(struct mm_struct *mm,
479                 unsigned long addr, unsigned long end)
480 {
481         unsigned long nr_pages = 0;
482         struct vm_area_struct *vma;
483
484         /* Find first overlaping mapping */
485         vma = find_vma_intersection(mm, addr, end);
486         if (!vma)
487                 return 0;
488
489         nr_pages = (min(end, vma->vm_end) -
490                 max(addr, vma->vm_start)) >> PAGE_SHIFT;
491
492         /* Iterate over the rest of the overlaps */
493         for (vma = vma->vm_next; vma; vma = vma->vm_next) {
494                 unsigned long overlap_len;
495
496                 if (vma->vm_start > end)
497                         break;
498
499                 overlap_len = min(end, vma->vm_end) - vma->vm_start;
500                 nr_pages += overlap_len >> PAGE_SHIFT;
501         }
502
503         return nr_pages;
504 }
505
506 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
507                 struct rb_node **rb_link, struct rb_node *rb_parent)
508 {
509         /* Update tracking information for the gap following the new vma. */
510         if (vma->vm_next)
511                 vma_gap_update(vma->vm_next);
512         else
513                 mm->highest_vm_end = vma->vm_end;
514
515         /*
516          * vma->vm_prev wasn't known when we followed the rbtree to find the
517          * correct insertion point for that vma. As a result, we could not
518          * update the vma vm_rb parents rb_subtree_gap values on the way down.
519          * So, we first insert the vma with a zero rb_subtree_gap value
520          * (to be consistent with what we did on the way down), and then
521          * immediately update the gap to the correct value. Finally we
522          * rebalance the rbtree after all augmented values have been set.
523          */
524         rb_link_node(&vma->vm_rb, rb_parent, rb_link);
525         vma->rb_subtree_gap = 0;
526         vma_gap_update(vma);
527         vma_rb_insert(vma, &mm->mm_rb);
528 }
529
530 static void __vma_link_file(struct vm_area_struct *vma)
531 {
532         struct file *file;
533
534         file = vma->vm_file;
535         if (file) {
536                 struct address_space *mapping = file->f_mapping;
537
538                 if (vma->vm_flags & VM_DENYWRITE)
539                         atomic_dec(&file_inode(file)->i_writecount);
540                 if (vma->vm_flags & VM_SHARED)
541                         atomic_inc(&mapping->i_mmap_writable);
542
543                 flush_dcache_mmap_lock(mapping);
544                 vma_interval_tree_insert(vma, &mapping->i_mmap);
545                 flush_dcache_mmap_unlock(mapping);
546         }
547 }
548
549 static void
550 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
551         struct vm_area_struct *prev, struct rb_node **rb_link,
552         struct rb_node *rb_parent)
553 {
554         __vma_link_list(mm, vma, prev, rb_parent);
555         __vma_link_rb(mm, vma, rb_link, rb_parent);
556 }
557
558 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
559                         struct vm_area_struct *prev, struct rb_node **rb_link,
560                         struct rb_node *rb_parent)
561 {
562         struct address_space *mapping = NULL;
563
564         if (vma->vm_file) {
565                 mapping = vma->vm_file->f_mapping;
566                 i_mmap_lock_write(mapping);
567         }
568
569         __vma_link(mm, vma, prev, rb_link, rb_parent);
570         __vma_link_file(vma);
571
572         if (mapping)
573                 i_mmap_unlock_write(mapping);
574
575         mm->map_count++;
576         validate_mm(mm);
577 }
578
579 /*
580  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
581  * mm's list and rbtree.  It has already been inserted into the interval tree.
582  */
583 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
584 {
585         struct vm_area_struct *prev;
586         struct rb_node **rb_link, *rb_parent;
587
588         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
589                            &prev, &rb_link, &rb_parent))
590                 BUG();
591         __vma_link(mm, vma, prev, rb_link, rb_parent);
592         mm->map_count++;
593 }
594
595 static inline void
596 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
597                 struct vm_area_struct *prev)
598 {
599         struct vm_area_struct *next;
600
601         vma_rb_erase(vma, &mm->mm_rb);
602         prev->vm_next = next = vma->vm_next;
603         if (next)
604                 next->vm_prev = prev;
605
606         /* Kill the cache */
607         vmacache_invalidate(mm);
608 }
609
610 /*
611  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
612  * is already present in an i_mmap tree without adjusting the tree.
613  * The following helper function should be used when such adjustments
614  * are necessary.  The "insert" vma (if any) is to be inserted
615  * before we drop the necessary locks.
616  */
617 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
618         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
619 {
620         struct mm_struct *mm = vma->vm_mm;
621         struct vm_area_struct *next = vma->vm_next;
622         struct vm_area_struct *importer = NULL;
623         struct address_space *mapping = NULL;
624         struct rb_root *root = NULL;
625         struct anon_vma *anon_vma = NULL;
626         struct file *file = vma->vm_file;
627         bool start_changed = false, end_changed = false;
628         long adjust_next = 0;
629         int remove_next = 0;
630
631         if (next && !insert) {
632                 struct vm_area_struct *exporter = NULL;
633
634                 if (end >= next->vm_end) {
635                         /*
636                          * vma expands, overlapping all the next, and
637                          * perhaps the one after too (mprotect case 6).
638                          */
639 again:                  remove_next = 1 + (end > next->vm_end);
640                         end = next->vm_end;
641                         exporter = next;
642                         importer = vma;
643                 } else if (end > next->vm_start) {
644                         /*
645                          * vma expands, overlapping part of the next:
646                          * mprotect case 5 shifting the boundary up.
647                          */
648                         adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
649                         exporter = next;
650                         importer = vma;
651                 } else if (end < vma->vm_end) {
652                         /*
653                          * vma shrinks, and !insert tells it's not
654                          * split_vma inserting another: so it must be
655                          * mprotect case 4 shifting the boundary down.
656                          */
657                         adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
658                         exporter = vma;
659                         importer = next;
660                 }
661
662                 /*
663                  * Easily overlooked: when mprotect shifts the boundary,
664                  * make sure the expanding vma has anon_vma set if the
665                  * shrinking vma had, to cover any anon pages imported.
666                  */
667                 if (exporter && exporter->anon_vma && !importer->anon_vma) {
668                         int error;
669
670                         importer->anon_vma = exporter->anon_vma;
671                         error = anon_vma_clone(importer, exporter);
672                         if (error)
673                                 return error;
674                 }
675         }
676
677         if (file) {
678                 mapping = file->f_mapping;
679                 root = &mapping->i_mmap;
680                 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
681
682                 if (adjust_next)
683                         uprobe_munmap(next, next->vm_start, next->vm_end);
684
685                 i_mmap_lock_write(mapping);
686                 if (insert) {
687                         /*
688                          * Put into interval tree now, so instantiated pages
689                          * are visible to arm/parisc __flush_dcache_page
690                          * throughout; but we cannot insert into address
691                          * space until vma start or end is updated.
692                          */
693                         __vma_link_file(insert);
694                 }
695         }
696
697         vma_adjust_trans_huge(vma, start, end, adjust_next);
698
699         anon_vma = vma->anon_vma;
700         if (!anon_vma && adjust_next)
701                 anon_vma = next->anon_vma;
702         if (anon_vma) {
703                 VM_BUG_ON_VMA(adjust_next && next->anon_vma &&
704                           anon_vma != next->anon_vma, next);
705                 anon_vma_lock_write(anon_vma);
706                 anon_vma_interval_tree_pre_update_vma(vma);
707                 if (adjust_next)
708                         anon_vma_interval_tree_pre_update_vma(next);
709         }
710
711         if (root) {
712                 flush_dcache_mmap_lock(mapping);
713                 vma_interval_tree_remove(vma, root);
714                 if (adjust_next)
715                         vma_interval_tree_remove(next, root);
716         }
717
718         if (start != vma->vm_start) {
719                 vma->vm_start = start;
720                 start_changed = true;
721         }
722         if (end != vma->vm_end) {
723                 vma->vm_end = end;
724                 end_changed = true;
725         }
726         vma->vm_pgoff = pgoff;
727         if (adjust_next) {
728                 next->vm_start += adjust_next << PAGE_SHIFT;
729                 next->vm_pgoff += adjust_next;
730         }
731
732         if (root) {
733                 if (adjust_next)
734                         vma_interval_tree_insert(next, root);
735                 vma_interval_tree_insert(vma, root);
736                 flush_dcache_mmap_unlock(mapping);
737         }
738
739         if (remove_next) {
740                 /*
741                  * vma_merge has merged next into vma, and needs
742                  * us to remove next before dropping the locks.
743                  */
744                 __vma_unlink(mm, next, vma);
745                 if (file)
746                         __remove_shared_vm_struct(next, file, mapping);
747         } else if (insert) {
748                 /*
749                  * split_vma has split insert from vma, and needs
750                  * us to insert it before dropping the locks
751                  * (it may either follow vma or precede it).
752                  */
753                 __insert_vm_struct(mm, insert);
754         } else {
755                 if (start_changed)
756                         vma_gap_update(vma);
757                 if (end_changed) {
758                         if (!next)
759                                 mm->highest_vm_end = end;
760                         else if (!adjust_next)
761                                 vma_gap_update(next);
762                 }
763         }
764
765         if (anon_vma) {
766                 anon_vma_interval_tree_post_update_vma(vma);
767                 if (adjust_next)
768                         anon_vma_interval_tree_post_update_vma(next);
769                 anon_vma_unlock_write(anon_vma);
770         }
771         if (mapping)
772                 i_mmap_unlock_write(mapping);
773
774         if (root) {
775                 uprobe_mmap(vma);
776
777                 if (adjust_next)
778                         uprobe_mmap(next);
779         }
780
781         if (remove_next) {
782                 if (file) {
783                         uprobe_munmap(next, next->vm_start, next->vm_end);
784                         fput(file);
785                 }
786                 if (next->anon_vma)
787                         anon_vma_merge(vma, next);
788                 mm->map_count--;
789                 mpol_put(vma_policy(next));
790                 kmem_cache_free(vm_area_cachep, next);
791                 /*
792                  * In mprotect's case 6 (see comments on vma_merge),
793                  * we must remove another next too. It would clutter
794                  * up the code too much to do both in one go.
795                  */
796                 next = vma->vm_next;
797                 if (remove_next == 2)
798                         goto again;
799                 else if (next)
800                         vma_gap_update(next);
801                 else
802                         mm->highest_vm_end = end;
803         }
804         if (insert && file)
805                 uprobe_mmap(insert);
806
807         validate_mm(mm);
808
809         return 0;
810 }
811
812 /*
813  * If the vma has a ->close operation then the driver probably needs to release
814  * per-vma resources, so we don't attempt to merge those.
815  */
816 static inline int is_mergeable_vma(struct vm_area_struct *vma,
817                                 struct file *file, unsigned long vm_flags,
818                                 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
819 {
820         /*
821          * VM_SOFTDIRTY should not prevent from VMA merging, if we
822          * match the flags but dirty bit -- the caller should mark
823          * merged VMA as dirty. If dirty bit won't be excluded from
824          * comparison, we increase pressue on the memory system forcing
825          * the kernel to generate new VMAs when old one could be
826          * extended instead.
827          */
828         if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
829                 return 0;
830         if (vma->vm_file != file)
831                 return 0;
832         if (vma->vm_ops && vma->vm_ops->close)
833                 return 0;
834         if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
835                 return 0;
836         return 1;
837 }
838
839 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
840                                         struct anon_vma *anon_vma2,
841                                         struct vm_area_struct *vma)
842 {
843         /*
844          * The list_is_singular() test is to avoid merging VMA cloned from
845          * parents. This can improve scalability caused by anon_vma lock.
846          */
847         if ((!anon_vma1 || !anon_vma2) && (!vma ||
848                 list_is_singular(&vma->anon_vma_chain)))
849                 return 1;
850         return anon_vma1 == anon_vma2;
851 }
852
853 /*
854  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
855  * in front of (at a lower virtual address and file offset than) the vma.
856  *
857  * We cannot merge two vmas if they have differently assigned (non-NULL)
858  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
859  *
860  * We don't check here for the merged mmap wrapping around the end of pagecache
861  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
862  * wrap, nor mmaps which cover the final page at index -1UL.
863  */
864 static int
865 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
866                      struct anon_vma *anon_vma, struct file *file,
867                      pgoff_t vm_pgoff,
868                      struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
869 {
870         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
871             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
872                 if (vma->vm_pgoff == vm_pgoff)
873                         return 1;
874         }
875         return 0;
876 }
877
878 /*
879  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
880  * beyond (at a higher virtual address and file offset than) the vma.
881  *
882  * We cannot merge two vmas if they have differently assigned (non-NULL)
883  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
884  */
885 static int
886 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
887                     struct anon_vma *anon_vma, struct file *file,
888                     pgoff_t vm_pgoff,
889                     struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
890 {
891         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
892             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
893                 pgoff_t vm_pglen;
894                 vm_pglen = vma_pages(vma);
895                 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
896                         return 1;
897         }
898         return 0;
899 }
900
901 /*
902  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
903  * whether that can be merged with its predecessor or its successor.
904  * Or both (it neatly fills a hole).
905  *
906  * In most cases - when called for mmap, brk or mremap - [addr,end) is
907  * certain not to be mapped by the time vma_merge is called; but when
908  * called for mprotect, it is certain to be already mapped (either at
909  * an offset within prev, or at the start of next), and the flags of
910  * this area are about to be changed to vm_flags - and the no-change
911  * case has already been eliminated.
912  *
913  * The following mprotect cases have to be considered, where AAAA is
914  * the area passed down from mprotect_fixup, never extending beyond one
915  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
916  *
917  *     AAAA             AAAA                AAAA          AAAA
918  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
919  *    cannot merge    might become    might become    might become
920  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
921  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
922  *    mremap move:                                    PPPPNNNNNNNN 8
923  *        AAAA
924  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
925  *    might become    case 1 below    case 2 below    case 3 below
926  *
927  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
928  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
929  */
930 struct vm_area_struct *vma_merge(struct mm_struct *mm,
931                         struct vm_area_struct *prev, unsigned long addr,
932                         unsigned long end, unsigned long vm_flags,
933                         struct anon_vma *anon_vma, struct file *file,
934                         pgoff_t pgoff, struct mempolicy *policy,
935                         struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
936 {
937         pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
938         struct vm_area_struct *area, *next;
939         int err;
940
941         /*
942          * We later require that vma->vm_flags == vm_flags,
943          * so this tests vma->vm_flags & VM_SPECIAL, too.
944          */
945         if (vm_flags & VM_SPECIAL)
946                 return NULL;
947
948         if (prev)
949                 next = prev->vm_next;
950         else
951                 next = mm->mmap;
952         area = next;
953         if (next && next->vm_end == end)                /* cases 6, 7, 8 */
954                 next = next->vm_next;
955
956         /*
957          * Can it merge with the predecessor?
958          */
959         if (prev && prev->vm_end == addr &&
960                         mpol_equal(vma_policy(prev), policy) &&
961                         can_vma_merge_after(prev, vm_flags,
962                                             anon_vma, file, pgoff,
963                                             vm_userfaultfd_ctx)) {
964                 /*
965                  * OK, it can.  Can we now merge in the successor as well?
966                  */
967                 if (next && end == next->vm_start &&
968                                 mpol_equal(policy, vma_policy(next)) &&
969                                 can_vma_merge_before(next, vm_flags,
970                                                      anon_vma, file,
971                                                      pgoff+pglen,
972                                                      vm_userfaultfd_ctx) &&
973                                 is_mergeable_anon_vma(prev->anon_vma,
974                                                       next->anon_vma, NULL)) {
975                                                         /* cases 1, 6 */
976                         err = vma_adjust(prev, prev->vm_start,
977                                 next->vm_end, prev->vm_pgoff, NULL);
978                 } else                                  /* cases 2, 5, 7 */
979                         err = vma_adjust(prev, prev->vm_start,
980                                 end, prev->vm_pgoff, NULL);
981                 if (err)
982                         return NULL;
983                 khugepaged_enter_vma_merge(prev, vm_flags);
984                 return prev;
985         }
986
987         /*
988          * Can this new request be merged in front of next?
989          */
990         if (next && end == next->vm_start &&
991                         mpol_equal(policy, vma_policy(next)) &&
992                         can_vma_merge_before(next, vm_flags,
993                                              anon_vma, file, pgoff+pglen,
994                                              vm_userfaultfd_ctx)) {
995                 if (prev && addr < prev->vm_end)        /* case 4 */
996                         err = vma_adjust(prev, prev->vm_start,
997                                 addr, prev->vm_pgoff, NULL);
998                 else                                    /* cases 3, 8 */
999                         err = vma_adjust(area, addr, next->vm_end,
1000                                 next->vm_pgoff - pglen, NULL);
1001                 if (err)
1002                         return NULL;
1003                 khugepaged_enter_vma_merge(area, vm_flags);
1004                 return area;
1005         }
1006
1007         return NULL;
1008 }
1009
1010 /*
1011  * Rough compatbility check to quickly see if it's even worth looking
1012  * at sharing an anon_vma.
1013  *
1014  * They need to have the same vm_file, and the flags can only differ
1015  * in things that mprotect may change.
1016  *
1017  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1018  * we can merge the two vma's. For example, we refuse to merge a vma if
1019  * there is a vm_ops->close() function, because that indicates that the
1020  * driver is doing some kind of reference counting. But that doesn't
1021  * really matter for the anon_vma sharing case.
1022  */
1023 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1024 {
1025         return a->vm_end == b->vm_start &&
1026                 mpol_equal(vma_policy(a), vma_policy(b)) &&
1027                 a->vm_file == b->vm_file &&
1028                 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1029                 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1030 }
1031
1032 /*
1033  * Do some basic sanity checking to see if we can re-use the anon_vma
1034  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1035  * the same as 'old', the other will be the new one that is trying
1036  * to share the anon_vma.
1037  *
1038  * NOTE! This runs with mm_sem held for reading, so it is possible that
1039  * the anon_vma of 'old' is concurrently in the process of being set up
1040  * by another page fault trying to merge _that_. But that's ok: if it
1041  * is being set up, that automatically means that it will be a singleton
1042  * acceptable for merging, so we can do all of this optimistically. But
1043  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1044  *
1045  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1046  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1047  * is to return an anon_vma that is "complex" due to having gone through
1048  * a fork).
1049  *
1050  * We also make sure that the two vma's are compatible (adjacent,
1051  * and with the same memory policies). That's all stable, even with just
1052  * a read lock on the mm_sem.
1053  */
1054 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1055 {
1056         if (anon_vma_compatible(a, b)) {
1057                 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1058
1059                 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1060                         return anon_vma;
1061         }
1062         return NULL;
1063 }
1064
1065 /*
1066  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1067  * neighbouring vmas for a suitable anon_vma, before it goes off
1068  * to allocate a new anon_vma.  It checks because a repetitive
1069  * sequence of mprotects and faults may otherwise lead to distinct
1070  * anon_vmas being allocated, preventing vma merge in subsequent
1071  * mprotect.
1072  */
1073 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1074 {
1075         struct anon_vma *anon_vma;
1076         struct vm_area_struct *near;
1077
1078         near = vma->vm_next;
1079         if (!near)
1080                 goto try_prev;
1081
1082         anon_vma = reusable_anon_vma(near, vma, near);
1083         if (anon_vma)
1084                 return anon_vma;
1085 try_prev:
1086         near = vma->vm_prev;
1087         if (!near)
1088                 goto none;
1089
1090         anon_vma = reusable_anon_vma(near, near, vma);
1091         if (anon_vma)
1092                 return anon_vma;
1093 none:
1094         /*
1095          * There's no absolute need to look only at touching neighbours:
1096          * we could search further afield for "compatible" anon_vmas.
1097          * But it would probably just be a waste of time searching,
1098          * or lead to too many vmas hanging off the same anon_vma.
1099          * We're trying to allow mprotect remerging later on,
1100          * not trying to minimize memory used for anon_vmas.
1101          */
1102         return NULL;
1103 }
1104
1105 /*
1106  * If a hint addr is less than mmap_min_addr change hint to be as
1107  * low as possible but still greater than mmap_min_addr
1108  */
1109 static inline unsigned long round_hint_to_min(unsigned long hint)
1110 {
1111         hint &= PAGE_MASK;
1112         if (((void *)hint != NULL) &&
1113             (hint < mmap_min_addr))
1114                 return PAGE_ALIGN(mmap_min_addr);
1115         return hint;
1116 }
1117
1118 static inline int mlock_future_check(struct mm_struct *mm,
1119                                      unsigned long flags,
1120                                      unsigned long len)
1121 {
1122         unsigned long locked, lock_limit;
1123
1124         /*  mlock MCL_FUTURE? */
1125         if (flags & VM_LOCKED) {
1126                 locked = len >> PAGE_SHIFT;
1127                 locked += mm->locked_vm;
1128                 lock_limit = rlimit(RLIMIT_MEMLOCK);
1129                 lock_limit >>= PAGE_SHIFT;
1130                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1131                         return -EAGAIN;
1132         }
1133         return 0;
1134 }
1135
1136 /*
1137  * The caller must hold down_write(&current->mm->mmap_sem).
1138  */
1139 unsigned long do_mmap(struct file *file, unsigned long addr,
1140                         unsigned long len, unsigned long prot,
1141                         unsigned long flags, vm_flags_t vm_flags,
1142                         unsigned long pgoff, unsigned long *populate)
1143 {
1144         struct mm_struct *mm = current->mm;
1145         int pkey = 0;
1146
1147         *populate = 0;
1148
1149         if (!len)
1150                 return -EINVAL;
1151
1152         /*
1153          * Does the application expect PROT_READ to imply PROT_EXEC?
1154          *
1155          * (the exception is when the underlying filesystem is noexec
1156          *  mounted, in which case we dont add PROT_EXEC.)
1157          */
1158         if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1159                 if (!(file && path_noexec(&file->f_path)))
1160                         prot |= PROT_EXEC;
1161
1162         if (!(flags & MAP_FIXED))
1163                 addr = round_hint_to_min(addr);
1164
1165         /* Careful about overflows.. */
1166         len = PAGE_ALIGN(len);
1167         if (!len)
1168                 return -ENOMEM;
1169
1170         /* offset overflow? */
1171         if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1172                 return -EOVERFLOW;
1173
1174         /* Too many mappings? */
1175         if (mm->map_count > sysctl_max_map_count)
1176                 return -ENOMEM;
1177
1178         /* Obtain the address to map to. we verify (or select) it and ensure
1179          * that it represents a valid section of the address space.
1180          */
1181         addr = get_unmapped_area(file, addr, len, pgoff, flags);
1182         if (offset_in_page(addr))
1183                 return addr;
1184
1185         if (prot == PROT_EXEC) {
1186                 pkey = execute_only_pkey(mm);
1187                 if (pkey < 0)
1188                         pkey = 0;
1189         }
1190
1191         /* Do simple checking here so the lower-level routines won't have
1192          * to. we assume access permissions have been handled by the open
1193          * of the memory object, so we don't do any here.
1194          */
1195         vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1196                         mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1197
1198         if (flags & MAP_LOCKED)
1199                 if (!can_do_mlock())
1200                         return -EPERM;
1201
1202         if (mlock_future_check(mm, vm_flags, len))
1203                 return -EAGAIN;
1204
1205         if (file) {
1206                 struct inode *inode = file_inode(file);
1207
1208                 switch (flags & MAP_TYPE) {
1209                 case MAP_SHARED:
1210                         if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1211                                 return -EACCES;
1212
1213                         /*
1214                          * Make sure we don't allow writing to an append-only
1215                          * file..
1216                          */
1217                         if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1218                                 return -EACCES;
1219
1220                         /*
1221                          * Make sure there are no mandatory locks on the file.
1222                          */
1223                         if (locks_verify_locked(file))
1224                                 return -EAGAIN;
1225
1226                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1227                         if (!(file->f_mode & FMODE_WRITE))
1228                                 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1229
1230                         /* fall through */
1231                 case MAP_PRIVATE:
1232                         if (!(file->f_mode & FMODE_READ))
1233                                 return -EACCES;
1234                         if (path_noexec(&file->f_path)) {
1235                                 if (vm_flags & VM_EXEC)
1236                                         return -EPERM;
1237                                 vm_flags &= ~VM_MAYEXEC;
1238                         }
1239
1240                         if (!file->f_op->mmap)
1241                                 return -ENODEV;
1242                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1243                                 return -EINVAL;
1244                         break;
1245
1246                 default:
1247                         return -EINVAL;
1248                 }
1249         } else {
1250                 switch (flags & MAP_TYPE) {
1251                 case MAP_SHARED:
1252                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1253                                 return -EINVAL;
1254                         /*
1255                          * Ignore pgoff.
1256                          */
1257                         pgoff = 0;
1258                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1259                         break;
1260                 case MAP_PRIVATE:
1261                         /*
1262                          * Set pgoff according to addr for anon_vma.
1263                          */
1264                         pgoff = addr >> PAGE_SHIFT;
1265                         break;
1266                 default:
1267                         return -EINVAL;
1268                 }
1269         }
1270
1271         /*
1272          * Set 'VM_NORESERVE' if we should not account for the
1273          * memory use of this mapping.
1274          */
1275         if (flags & MAP_NORESERVE) {
1276                 /* We honor MAP_NORESERVE if allowed to overcommit */
1277                 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1278                         vm_flags |= VM_NORESERVE;
1279
1280                 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1281                 if (file && is_file_hugepages(file))
1282                         vm_flags |= VM_NORESERVE;
1283         }
1284
1285         addr = mmap_region(file, addr, len, vm_flags, pgoff);
1286         if (!IS_ERR_VALUE(addr) &&
1287             ((vm_flags & VM_LOCKED) ||
1288              (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1289                 *populate = len;
1290         return addr;
1291 }
1292
1293 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1294                 unsigned long, prot, unsigned long, flags,
1295                 unsigned long, fd, unsigned long, pgoff)
1296 {
1297         struct file *file = NULL;
1298         unsigned long retval;
1299
1300         if (!(flags & MAP_ANONYMOUS)) {
1301                 audit_mmap_fd(fd, flags);
1302                 file = fget(fd);
1303                 if (!file)
1304                         return -EBADF;
1305                 if (is_file_hugepages(file))
1306                         len = ALIGN(len, huge_page_size(hstate_file(file)));
1307                 retval = -EINVAL;
1308                 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1309                         goto out_fput;
1310         } else if (flags & MAP_HUGETLB) {
1311                 struct user_struct *user = NULL;
1312                 struct hstate *hs;
1313
1314                 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
1315                 if (!hs)
1316                         return -EINVAL;
1317
1318                 len = ALIGN(len, huge_page_size(hs));
1319                 /*
1320                  * VM_NORESERVE is used because the reservations will be
1321                  * taken when vm_ops->mmap() is called
1322                  * A dummy user value is used because we are not locking
1323                  * memory so no accounting is necessary
1324                  */
1325                 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1326                                 VM_NORESERVE,
1327                                 &user, HUGETLB_ANONHUGE_INODE,
1328                                 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1329                 if (IS_ERR(file))
1330                         return PTR_ERR(file);
1331         }
1332
1333         flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1334
1335         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1336 out_fput:
1337         if (file)
1338                 fput(file);
1339         return retval;
1340 }
1341
1342 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1343 struct mmap_arg_struct {
1344         unsigned long addr;
1345         unsigned long len;
1346         unsigned long prot;
1347         unsigned long flags;
1348         unsigned long fd;
1349         unsigned long offset;
1350 };
1351
1352 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1353 {
1354         struct mmap_arg_struct a;
1355
1356         if (copy_from_user(&a, arg, sizeof(a)))
1357                 return -EFAULT;
1358         if (offset_in_page(a.offset))
1359                 return -EINVAL;
1360
1361         return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1362                               a.offset >> PAGE_SHIFT);
1363 }
1364 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1365
1366 /*
1367  * Some shared mappigns will want the pages marked read-only
1368  * to track write events. If so, we'll downgrade vm_page_prot
1369  * to the private version (using protection_map[] without the
1370  * VM_SHARED bit).
1371  */
1372 int vma_wants_writenotify(struct vm_area_struct *vma)
1373 {
1374         vm_flags_t vm_flags = vma->vm_flags;
1375         const struct vm_operations_struct *vm_ops = vma->vm_ops;
1376
1377         /* If it was private or non-writable, the write bit is already clear */
1378         if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1379                 return 0;
1380
1381         /* The backer wishes to know when pages are first written to? */
1382         if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1383                 return 1;
1384
1385         /* The open routine did something to the protections that pgprot_modify
1386          * won't preserve? */
1387         if (pgprot_val(vma->vm_page_prot) !=
1388             pgprot_val(vm_pgprot_modify(vma->vm_page_prot, vm_flags)))
1389                 return 0;
1390
1391         /* Do we need to track softdirty? */
1392         if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1393                 return 1;
1394
1395         /* Specialty mapping? */
1396         if (vm_flags & VM_PFNMAP)
1397                 return 0;
1398
1399         /* Can the mapping track the dirty pages? */
1400         return vma->vm_file && vma->vm_file->f_mapping &&
1401                 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1402 }
1403
1404 /*
1405  * We account for memory if it's a private writeable mapping,
1406  * not hugepages and VM_NORESERVE wasn't set.
1407  */
1408 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1409 {
1410         /*
1411          * hugetlb has its own accounting separate from the core VM
1412          * VM_HUGETLB may not be set yet so we cannot check for that flag.
1413          */
1414         if (file && is_file_hugepages(file))
1415                 return 0;
1416
1417         return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1418 }
1419
1420 unsigned long mmap_region(struct file *file, unsigned long addr,
1421                 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1422 {
1423         struct mm_struct *mm = current->mm;
1424         struct vm_area_struct *vma, *prev;
1425         int error;
1426         struct rb_node **rb_link, *rb_parent;
1427         unsigned long charged = 0;
1428
1429         /* Check against address space limit. */
1430         if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1431                 unsigned long nr_pages;
1432
1433                 /*
1434                  * MAP_FIXED may remove pages of mappings that intersects with
1435                  * requested mapping. Account for the pages it would unmap.
1436                  */
1437                 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1438
1439                 if (!may_expand_vm(mm, vm_flags,
1440                                         (len >> PAGE_SHIFT) - nr_pages))
1441                         return -ENOMEM;
1442         }
1443
1444         /* Clear old maps */
1445         while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1446                               &rb_parent)) {
1447                 if (do_munmap(mm, addr, len))
1448                         return -ENOMEM;
1449         }
1450
1451         /*
1452          * Private writable mapping: check memory availability
1453          */
1454         if (accountable_mapping(file, vm_flags)) {
1455                 charged = len >> PAGE_SHIFT;
1456                 if (security_vm_enough_memory_mm(mm, charged))
1457                         return -ENOMEM;
1458                 vm_flags |= VM_ACCOUNT;
1459         }
1460
1461         /*
1462          * Can we just expand an old mapping?
1463          */
1464         vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1465                         NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1466         if (vma)
1467                 goto out;
1468
1469         /*
1470          * Determine the object being mapped and call the appropriate
1471          * specific mapper. the address has already been validated, but
1472          * not unmapped, but the maps are removed from the list.
1473          */
1474         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1475         if (!vma) {
1476                 error = -ENOMEM;
1477                 goto unacct_error;
1478         }
1479
1480         vma->vm_mm = mm;
1481         vma->vm_start = addr;
1482         vma->vm_end = addr + len;
1483         vma->vm_flags = vm_flags;
1484         vma->vm_page_prot = vm_get_page_prot(vm_flags);
1485         vma->vm_pgoff = pgoff;
1486         INIT_LIST_HEAD(&vma->anon_vma_chain);
1487
1488         if (file) {
1489                 if (vm_flags & VM_DENYWRITE) {
1490                         error = deny_write_access(file);
1491                         if (error)
1492                                 goto free_vma;
1493                 }
1494                 if (vm_flags & VM_SHARED) {
1495                         error = mapping_map_writable(file->f_mapping);
1496                         if (error)
1497                                 goto allow_write_and_free_vma;
1498                 }
1499
1500                 /* ->mmap() can change vma->vm_file, but must guarantee that
1501                  * vma_link() below can deny write-access if VM_DENYWRITE is set
1502                  * and map writably if VM_SHARED is set. This usually means the
1503                  * new file must not have been exposed to user-space, yet.
1504                  */
1505                 vma->vm_file = get_file(file);
1506                 error = file->f_op->mmap(file, vma);
1507                 if (error)
1508                         goto unmap_and_free_vma;
1509
1510                 /* Can addr have changed??
1511                  *
1512                  * Answer: Yes, several device drivers can do it in their
1513                  *         f_op->mmap method. -DaveM
1514                  * Bug: If addr is changed, prev, rb_link, rb_parent should
1515                  *      be updated for vma_link()
1516                  */
1517                 WARN_ON_ONCE(addr != vma->vm_start);
1518
1519                 addr = vma->vm_start;
1520                 vm_flags = vma->vm_flags;
1521         } else if (vm_flags & VM_SHARED) {
1522                 error = shmem_zero_setup(vma);
1523                 if (error)
1524                         goto free_vma;
1525         }
1526
1527         vma_link(mm, vma, prev, rb_link, rb_parent);
1528         /* Once vma denies write, undo our temporary denial count */
1529         if (file) {
1530                 if (vm_flags & VM_SHARED)
1531                         mapping_unmap_writable(file->f_mapping);
1532                 if (vm_flags & VM_DENYWRITE)
1533                         allow_write_access(file);
1534         }
1535         file = vma->vm_file;
1536 out:
1537         perf_event_mmap(vma);
1538
1539         vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1540         if (vm_flags & VM_LOCKED) {
1541                 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1542                                         vma == get_gate_vma(current->mm)))
1543                         mm->locked_vm += (len >> PAGE_SHIFT);
1544                 else
1545                         vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1546         }
1547
1548         if (file)
1549                 uprobe_mmap(vma);
1550
1551         /*
1552          * New (or expanded) vma always get soft dirty status.
1553          * Otherwise user-space soft-dirty page tracker won't
1554          * be able to distinguish situation when vma area unmapped,
1555          * then new mapped in-place (which must be aimed as
1556          * a completely new data area).
1557          */
1558         vma->vm_flags |= VM_SOFTDIRTY;
1559
1560         vma_set_page_prot(vma);
1561
1562         return addr;
1563
1564 unmap_and_free_vma:
1565         vma->vm_file = NULL;
1566         fput(file);
1567
1568         /* Undo any partial mapping done by a device driver. */
1569         unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1570         charged = 0;
1571         if (vm_flags & VM_SHARED)
1572                 mapping_unmap_writable(file->f_mapping);
1573 allow_write_and_free_vma:
1574         if (vm_flags & VM_DENYWRITE)
1575                 allow_write_access(file);
1576 free_vma:
1577         kmem_cache_free(vm_area_cachep, vma);
1578 unacct_error:
1579         if (charged)
1580                 vm_unacct_memory(charged);
1581         return error;
1582 }
1583
1584 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1585 {
1586         /*
1587          * We implement the search by looking for an rbtree node that
1588          * immediately follows a suitable gap. That is,
1589          * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1590          * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1591          * - gap_end - gap_start >= length
1592          */
1593
1594         struct mm_struct *mm = current->mm;
1595         struct vm_area_struct *vma;
1596         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1597
1598         /* Adjust search length to account for worst case alignment overhead */
1599         length = info->length + info->align_mask;
1600         if (length < info->length)
1601                 return -ENOMEM;
1602
1603         /* Adjust search limits by the desired length */
1604         if (info->high_limit < length)
1605                 return -ENOMEM;
1606         high_limit = info->high_limit - length;
1607
1608         if (info->low_limit > high_limit)
1609                 return -ENOMEM;
1610         low_limit = info->low_limit + length;
1611
1612         /* Check if rbtree root looks promising */
1613         if (RB_EMPTY_ROOT(&mm->mm_rb))
1614                 goto check_highest;
1615         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1616         if (vma->rb_subtree_gap < length)
1617                 goto check_highest;
1618
1619         while (true) {
1620                 /* Visit left subtree if it looks promising */
1621                 gap_end = vma->vm_start;
1622                 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1623                         struct vm_area_struct *left =
1624                                 rb_entry(vma->vm_rb.rb_left,
1625                                          struct vm_area_struct, vm_rb);
1626                         if (left->rb_subtree_gap >= length) {
1627                                 vma = left;
1628                                 continue;
1629                         }
1630                 }
1631
1632                 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1633 check_current:
1634                 /* Check if current node has a suitable gap */
1635                 if (gap_start > high_limit)
1636                         return -ENOMEM;
1637                 if (gap_end >= low_limit && gap_end - gap_start >= length)
1638                         goto found;
1639
1640                 /* Visit right subtree if it looks promising */
1641                 if (vma->vm_rb.rb_right) {
1642                         struct vm_area_struct *right =
1643                                 rb_entry(vma->vm_rb.rb_right,
1644                                          struct vm_area_struct, vm_rb);
1645                         if (right->rb_subtree_gap >= length) {
1646                                 vma = right;
1647                                 continue;
1648                         }
1649                 }
1650
1651                 /* Go back up the rbtree to find next candidate node */
1652                 while (true) {
1653                         struct rb_node *prev = &vma->vm_rb;
1654                         if (!rb_parent(prev))
1655                                 goto check_highest;
1656                         vma = rb_entry(rb_parent(prev),
1657                                        struct vm_area_struct, vm_rb);
1658                         if (prev == vma->vm_rb.rb_left) {
1659                                 gap_start = vma->vm_prev->vm_end;
1660                                 gap_end = vma->vm_start;
1661                                 goto check_current;
1662                         }
1663                 }
1664         }
1665
1666 check_highest:
1667         /* Check highest gap, which does not precede any rbtree node */
1668         gap_start = mm->highest_vm_end;
1669         gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1670         if (gap_start > high_limit)
1671                 return -ENOMEM;
1672
1673 found:
1674         /* We found a suitable gap. Clip it with the original low_limit. */
1675         if (gap_start < info->low_limit)
1676                 gap_start = info->low_limit;
1677
1678         /* Adjust gap address to the desired alignment */
1679         gap_start += (info->align_offset - gap_start) & info->align_mask;
1680
1681         VM_BUG_ON(gap_start + info->length > info->high_limit);
1682         VM_BUG_ON(gap_start + info->length > gap_end);
1683         return gap_start;
1684 }
1685
1686 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1687 {
1688         struct mm_struct *mm = current->mm;
1689         struct vm_area_struct *vma;
1690         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1691
1692         /* Adjust search length to account for worst case alignment overhead */
1693         length = info->length + info->align_mask;
1694         if (length < info->length)
1695                 return -ENOMEM;
1696
1697         /*
1698          * Adjust search limits by the desired length.
1699          * See implementation comment at top of unmapped_area().
1700          */
1701         gap_end = info->high_limit;
1702         if (gap_end < length)
1703                 return -ENOMEM;
1704         high_limit = gap_end - length;
1705
1706         if (info->low_limit > high_limit)
1707                 return -ENOMEM;
1708         low_limit = info->low_limit + length;
1709
1710         /* Check highest gap, which does not precede any rbtree node */
1711         gap_start = mm->highest_vm_end;
1712         if (gap_start <= high_limit)
1713                 goto found_highest;
1714
1715         /* Check if rbtree root looks promising */
1716         if (RB_EMPTY_ROOT(&mm->mm_rb))
1717                 return -ENOMEM;
1718         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1719         if (vma->rb_subtree_gap < length)
1720                 return -ENOMEM;
1721
1722         while (true) {
1723                 /* Visit right subtree if it looks promising */
1724                 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1725                 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1726                         struct vm_area_struct *right =
1727                                 rb_entry(vma->vm_rb.rb_right,
1728                                          struct vm_area_struct, vm_rb);
1729                         if (right->rb_subtree_gap >= length) {
1730                                 vma = right;
1731                                 continue;
1732                         }
1733                 }
1734
1735 check_current:
1736                 /* Check if current node has a suitable gap */
1737                 gap_end = vma->vm_start;
1738                 if (gap_end < low_limit)
1739                         return -ENOMEM;
1740                 if (gap_start <= high_limit && gap_end - gap_start >= length)
1741                         goto found;
1742
1743                 /* Visit left subtree if it looks promising */
1744                 if (vma->vm_rb.rb_left) {
1745                         struct vm_area_struct *left =
1746                                 rb_entry(vma->vm_rb.rb_left,
1747                                          struct vm_area_struct, vm_rb);
1748                         if (left->rb_subtree_gap >= length) {
1749                                 vma = left;
1750                                 continue;
1751                         }
1752                 }
1753
1754                 /* Go back up the rbtree to find next candidate node */
1755                 while (true) {
1756                         struct rb_node *prev = &vma->vm_rb;
1757                         if (!rb_parent(prev))
1758                                 return -ENOMEM;
1759                         vma = rb_entry(rb_parent(prev),
1760                                        struct vm_area_struct, vm_rb);
1761                         if (prev == vma->vm_rb.rb_right) {
1762                                 gap_start = vma->vm_prev ?
1763                                         vma->vm_prev->vm_end : 0;
1764                                 goto check_current;
1765                         }
1766                 }
1767         }
1768
1769 found:
1770         /* We found a suitable gap. Clip it with the original high_limit. */
1771         if (gap_end > info->high_limit)
1772                 gap_end = info->high_limit;
1773
1774 found_highest:
1775         /* Compute highest gap address at the desired alignment */
1776         gap_end -= info->length;
1777         gap_end -= (gap_end - info->align_offset) & info->align_mask;
1778
1779         VM_BUG_ON(gap_end < info->low_limit);
1780         VM_BUG_ON(gap_end < gap_start);
1781         return gap_end;
1782 }
1783
1784 /* Get an address range which is currently unmapped.
1785  * For shmat() with addr=0.
1786  *
1787  * Ugly calling convention alert:
1788  * Return value with the low bits set means error value,
1789  * ie
1790  *      if (ret & ~PAGE_MASK)
1791  *              error = ret;
1792  *
1793  * This function "knows" that -ENOMEM has the bits set.
1794  */
1795 #ifndef HAVE_ARCH_UNMAPPED_AREA
1796 unsigned long
1797 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1798                 unsigned long len, unsigned long pgoff, unsigned long flags)
1799 {
1800         struct mm_struct *mm = current->mm;
1801         struct vm_area_struct *vma;
1802         struct vm_unmapped_area_info info;
1803
1804         if (len > TASK_SIZE - mmap_min_addr)
1805                 return -ENOMEM;
1806
1807         if (flags & MAP_FIXED)
1808                 return addr;
1809
1810         if (addr) {
1811                 addr = PAGE_ALIGN(addr);
1812                 vma = find_vma(mm, addr);
1813                 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1814                     (!vma || addr + len <= vma->vm_start))
1815                         return addr;
1816         }
1817
1818         info.flags = 0;
1819         info.length = len;
1820         info.low_limit = mm->mmap_base;
1821         info.high_limit = TASK_SIZE;
1822         info.align_mask = 0;
1823         return vm_unmapped_area(&info);
1824 }
1825 #endif
1826
1827 /*
1828  * This mmap-allocator allocates new areas top-down from below the
1829  * stack's low limit (the base):
1830  */
1831 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1832 unsigned long
1833 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1834                           const unsigned long len, const unsigned long pgoff,
1835                           const unsigned long flags)
1836 {
1837         struct vm_area_struct *vma;
1838         struct mm_struct *mm = current->mm;
1839         unsigned long addr = addr0;
1840         struct vm_unmapped_area_info info;
1841
1842         /* requested length too big for entire address space */
1843         if (len > TASK_SIZE - mmap_min_addr)
1844                 return -ENOMEM;
1845
1846         if (flags & MAP_FIXED)
1847                 return addr;
1848
1849         /* requesting a specific address */
1850         if (addr) {
1851                 addr = PAGE_ALIGN(addr);
1852                 vma = find_vma(mm, addr);
1853                 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1854                                 (!vma || addr + len <= vma->vm_start))
1855                         return addr;
1856         }
1857
1858         info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1859         info.length = len;
1860         info.low_limit = max(PAGE_SIZE, mmap_min_addr);
1861         info.high_limit = mm->mmap_base;
1862         info.align_mask = 0;
1863         addr = vm_unmapped_area(&info);
1864
1865         /*
1866          * A failed mmap() very likely causes application failure,
1867          * so fall back to the bottom-up function here. This scenario
1868          * can happen with large stack limits and large mmap()
1869          * allocations.
1870          */
1871         if (offset_in_page(addr)) {
1872                 VM_BUG_ON(addr != -ENOMEM);
1873                 info.flags = 0;
1874                 info.low_limit = TASK_UNMAPPED_BASE;
1875                 info.high_limit = TASK_SIZE;
1876                 addr = vm_unmapped_area(&info);
1877         }
1878
1879         return addr;
1880 }
1881 #endif
1882
1883 unsigned long
1884 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1885                 unsigned long pgoff, unsigned long flags)
1886 {
1887         unsigned long (*get_area)(struct file *, unsigned long,
1888                                   unsigned long, unsigned long, unsigned long);
1889
1890         unsigned long error = arch_mmap_check(addr, len, flags);
1891         if (error)
1892                 return error;
1893
1894         /* Careful about overflows.. */
1895         if (len > TASK_SIZE)
1896                 return -ENOMEM;
1897
1898         get_area = current->mm->get_unmapped_area;
1899         if (file && file->f_op->get_unmapped_area)
1900                 get_area = file->f_op->get_unmapped_area;
1901         addr = get_area(file, addr, len, pgoff, flags);
1902         if (IS_ERR_VALUE(addr))
1903                 return addr;
1904
1905         if (addr > TASK_SIZE - len)
1906                 return -ENOMEM;
1907         if (offset_in_page(addr))
1908                 return -EINVAL;
1909
1910         error = security_mmap_addr(addr);
1911         return error ? error : addr;
1912 }
1913
1914 EXPORT_SYMBOL(get_unmapped_area);
1915
1916 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1917 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1918 {
1919         struct rb_node *rb_node;
1920         struct vm_area_struct *vma;
1921
1922         /* Check the cache first. */
1923         vma = vmacache_find(mm, addr);
1924         if (likely(vma))
1925                 return vma;
1926
1927         rb_node = mm->mm_rb.rb_node;
1928
1929         while (rb_node) {
1930                 struct vm_area_struct *tmp;
1931
1932                 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1933
1934                 if (tmp->vm_end > addr) {
1935                         vma = tmp;
1936                         if (tmp->vm_start <= addr)
1937                                 break;
1938                         rb_node = rb_node->rb_left;
1939                 } else
1940                         rb_node = rb_node->rb_right;
1941         }
1942
1943         if (vma)
1944                 vmacache_update(addr, vma);
1945         return vma;
1946 }
1947
1948 EXPORT_SYMBOL(find_vma);
1949
1950 /*
1951  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
1952  */
1953 struct vm_area_struct *
1954 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1955                         struct vm_area_struct **pprev)
1956 {
1957         struct vm_area_struct *vma;
1958
1959         vma = find_vma(mm, addr);
1960         if (vma) {
1961                 *pprev = vma->vm_prev;
1962         } else {
1963                 struct rb_node *rb_node = mm->mm_rb.rb_node;
1964                 *pprev = NULL;
1965                 while (rb_node) {
1966                         *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1967                         rb_node = rb_node->rb_right;
1968                 }
1969         }
1970         return vma;
1971 }
1972
1973 /*
1974  * Verify that the stack growth is acceptable and
1975  * update accounting. This is shared with both the
1976  * grow-up and grow-down cases.
1977  */
1978 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
1979 {
1980         struct mm_struct *mm = vma->vm_mm;
1981         struct rlimit *rlim = current->signal->rlim;
1982         unsigned long new_start, actual_size;
1983
1984         /* address space limit tests */
1985         if (!may_expand_vm(mm, vma->vm_flags, grow))
1986                 return -ENOMEM;
1987
1988         /* Stack limit test */
1989         actual_size = size;
1990         if (size && (vma->vm_flags & (VM_GROWSUP | VM_GROWSDOWN)))
1991                 actual_size -= PAGE_SIZE;
1992         if (actual_size > READ_ONCE(rlim[RLIMIT_STACK].rlim_cur))
1993                 return -ENOMEM;
1994
1995         /* mlock limit tests */
1996         if (vma->vm_flags & VM_LOCKED) {
1997                 unsigned long locked;
1998                 unsigned long limit;
1999                 locked = mm->locked_vm + grow;
2000                 limit = READ_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2001                 limit >>= PAGE_SHIFT;
2002                 if (locked > limit && !capable(CAP_IPC_LOCK))
2003                         return -ENOMEM;
2004         }
2005
2006         /* Check to ensure the stack will not grow into a hugetlb-only region */
2007         new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2008                         vma->vm_end - size;
2009         if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2010                 return -EFAULT;
2011
2012         /*
2013          * Overcommit..  This must be the final test, as it will
2014          * update security statistics.
2015          */
2016         if (security_vm_enough_memory_mm(mm, grow))
2017                 return -ENOMEM;
2018
2019         return 0;
2020 }
2021
2022 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2023 /*
2024  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2025  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2026  */
2027 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2028 {
2029         struct mm_struct *mm = vma->vm_mm;
2030         int error = 0;
2031
2032         if (!(vma->vm_flags & VM_GROWSUP))
2033                 return -EFAULT;
2034
2035         /* Guard against wrapping around to address 0. */
2036         if (address < PAGE_ALIGN(address+4))
2037                 address = PAGE_ALIGN(address+4);
2038         else
2039                 return -ENOMEM;
2040
2041         /* We must make sure the anon_vma is allocated. */
2042         if (unlikely(anon_vma_prepare(vma)))
2043                 return -ENOMEM;
2044
2045         /*
2046          * vma->vm_start/vm_end cannot change under us because the caller
2047          * is required to hold the mmap_sem in read mode.  We need the
2048          * anon_vma lock to serialize against concurrent expand_stacks.
2049          */
2050         anon_vma_lock_write(vma->anon_vma);
2051
2052         /* Somebody else might have raced and expanded it already */
2053         if (address > vma->vm_end) {
2054                 unsigned long size, grow;
2055
2056                 size = address - vma->vm_start;
2057                 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2058
2059                 error = -ENOMEM;
2060                 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2061                         error = acct_stack_growth(vma, size, grow);
2062                         if (!error) {
2063                                 /*
2064                                  * vma_gap_update() doesn't support concurrent
2065                                  * updates, but we only hold a shared mmap_sem
2066                                  * lock here, so we need to protect against
2067                                  * concurrent vma expansions.
2068                                  * anon_vma_lock_write() doesn't help here, as
2069                                  * we don't guarantee that all growable vmas
2070                                  * in a mm share the same root anon vma.
2071                                  * So, we reuse mm->page_table_lock to guard
2072                                  * against concurrent vma expansions.
2073                                  */
2074                                 spin_lock(&mm->page_table_lock);
2075                                 if (vma->vm_flags & VM_LOCKED)
2076                                         mm->locked_vm += grow;
2077                                 vm_stat_account(mm, vma->vm_flags, grow);
2078                                 anon_vma_interval_tree_pre_update_vma(vma);
2079                                 vma->vm_end = address;
2080                                 anon_vma_interval_tree_post_update_vma(vma);
2081                                 if (vma->vm_next)
2082                                         vma_gap_update(vma->vm_next);
2083                                 else
2084                                         mm->highest_vm_end = address;
2085                                 spin_unlock(&mm->page_table_lock);
2086
2087                                 perf_event_mmap(vma);
2088                         }
2089                 }
2090         }
2091         anon_vma_unlock_write(vma->anon_vma);
2092         khugepaged_enter_vma_merge(vma, vma->vm_flags);
2093         validate_mm(mm);
2094         return error;
2095 }
2096 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2097
2098 /*
2099  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2100  */
2101 int expand_downwards(struct vm_area_struct *vma,
2102                                    unsigned long address)
2103 {
2104         struct mm_struct *mm = vma->vm_mm;
2105         int error;
2106
2107         address &= PAGE_MASK;
2108         error = security_mmap_addr(address);
2109         if (error)
2110                 return error;
2111
2112         /* We must make sure the anon_vma is allocated. */
2113         if (unlikely(anon_vma_prepare(vma)))
2114                 return -ENOMEM;
2115
2116         /*
2117          * vma->vm_start/vm_end cannot change under us because the caller
2118          * is required to hold the mmap_sem in read mode.  We need the
2119          * anon_vma lock to serialize against concurrent expand_stacks.
2120          */
2121         anon_vma_lock_write(vma->anon_vma);
2122
2123         /* Somebody else might have raced and expanded it already */
2124         if (address < vma->vm_start) {
2125                 unsigned long size, grow;
2126
2127                 size = vma->vm_end - address;
2128                 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2129
2130                 error = -ENOMEM;
2131                 if (grow <= vma->vm_pgoff) {
2132                         error = acct_stack_growth(vma, size, grow);
2133                         if (!error) {
2134                                 /*
2135                                  * vma_gap_update() doesn't support concurrent
2136                                  * updates, but we only hold a shared mmap_sem
2137                                  * lock here, so we need to protect against
2138                                  * concurrent vma expansions.
2139                                  * anon_vma_lock_write() doesn't help here, as
2140                                  * we don't guarantee that all growable vmas
2141                                  * in a mm share the same root anon vma.
2142                                  * So, we reuse mm->page_table_lock to guard
2143                                  * against concurrent vma expansions.
2144                                  */
2145                                 spin_lock(&mm->page_table_lock);
2146                                 if (vma->vm_flags & VM_LOCKED)
2147                                         mm->locked_vm += grow;
2148                                 vm_stat_account(mm, vma->vm_flags, grow);
2149                                 anon_vma_interval_tree_pre_update_vma(vma);
2150                                 vma->vm_start = address;
2151                                 vma->vm_pgoff -= grow;
2152                                 anon_vma_interval_tree_post_update_vma(vma);
2153                                 vma_gap_update(vma);
2154                                 spin_unlock(&mm->page_table_lock);
2155
2156                                 perf_event_mmap(vma);
2157                         }
2158                 }
2159         }
2160         anon_vma_unlock_write(vma->anon_vma);
2161         khugepaged_enter_vma_merge(vma, vma->vm_flags);
2162         validate_mm(mm);
2163         return error;
2164 }
2165
2166 /*
2167  * Note how expand_stack() refuses to expand the stack all the way to
2168  * abut the next virtual mapping, *unless* that mapping itself is also
2169  * a stack mapping. We want to leave room for a guard page, after all
2170  * (the guard page itself is not added here, that is done by the
2171  * actual page faulting logic)
2172  *
2173  * This matches the behavior of the guard page logic (see mm/memory.c:
2174  * check_stack_guard_page()), which only allows the guard page to be
2175  * removed under these circumstances.
2176  */
2177 #ifdef CONFIG_STACK_GROWSUP
2178 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2179 {
2180         struct vm_area_struct *next;
2181
2182         address &= PAGE_MASK;
2183         next = vma->vm_next;
2184         if (next && next->vm_start == address + PAGE_SIZE) {
2185                 if (!(next->vm_flags & VM_GROWSUP))
2186                         return -ENOMEM;
2187         }
2188         return expand_upwards(vma, address);
2189 }
2190
2191 struct vm_area_struct *
2192 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2193 {
2194         struct vm_area_struct *vma, *prev;
2195
2196         addr &= PAGE_MASK;
2197         vma = find_vma_prev(mm, addr, &prev);
2198         if (vma && (vma->vm_start <= addr))
2199                 return vma;
2200         if (!prev || expand_stack(prev, addr))
2201                 return NULL;
2202         if (prev->vm_flags & VM_LOCKED)
2203                 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2204         return prev;
2205 }
2206 #else
2207 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2208 {
2209         struct vm_area_struct *prev;
2210
2211         address &= PAGE_MASK;
2212         prev = vma->vm_prev;
2213         if (prev && prev->vm_end == address) {
2214                 if (!(prev->vm_flags & VM_GROWSDOWN))
2215                         return -ENOMEM;
2216         }
2217         return expand_downwards(vma, address);
2218 }
2219
2220 struct vm_area_struct *
2221 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2222 {
2223         struct vm_area_struct *vma;
2224         unsigned long start;
2225
2226         addr &= PAGE_MASK;
2227         vma = find_vma(mm, addr);
2228         if (!vma)
2229                 return NULL;
2230         if (vma->vm_start <= addr)
2231                 return vma;
2232         if (!(vma->vm_flags & VM_GROWSDOWN))
2233                 return NULL;
2234         start = vma->vm_start;
2235         if (expand_stack(vma, addr))
2236                 return NULL;
2237         if (vma->vm_flags & VM_LOCKED)
2238                 populate_vma_page_range(vma, addr, start, NULL);
2239         return vma;
2240 }
2241 #endif
2242
2243 EXPORT_SYMBOL_GPL(find_extend_vma);
2244
2245 /*
2246  * Ok - we have the memory areas we should free on the vma list,
2247  * so release them, and do the vma updates.
2248  *
2249  * Called with the mm semaphore held.
2250  */
2251 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2252 {
2253         unsigned long nr_accounted = 0;
2254
2255         /* Update high watermark before we lower total_vm */
2256         update_hiwater_vm(mm);
2257         do {
2258                 long nrpages = vma_pages(vma);
2259
2260                 if (vma->vm_flags & VM_ACCOUNT)
2261                         nr_accounted += nrpages;
2262                 vm_stat_account(mm, vma->vm_flags, -nrpages);
2263                 vma = remove_vma(vma);
2264         } while (vma);
2265         vm_unacct_memory(nr_accounted);
2266         validate_mm(mm);
2267 }
2268
2269 /*
2270  * Get rid of page table information in the indicated region.
2271  *
2272  * Called with the mm semaphore held.
2273  */
2274 static void unmap_region(struct mm_struct *mm,
2275                 struct vm_area_struct *vma, struct vm_area_struct *prev,
2276                 unsigned long start, unsigned long end)
2277 {
2278         struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2279         struct mmu_gather tlb;
2280
2281         lru_add_drain();
2282         tlb_gather_mmu(&tlb, mm, start, end);
2283         update_hiwater_rss(mm);
2284         unmap_vmas(&tlb, vma, start, end);
2285         free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2286                                  next ? next->vm_start : USER_PGTABLES_CEILING);
2287         tlb_finish_mmu(&tlb, start, end);
2288 }
2289
2290 /*
2291  * Create a list of vma's touched by the unmap, removing them from the mm's
2292  * vma list as we go..
2293  */
2294 static void
2295 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2296         struct vm_area_struct *prev, unsigned long end)
2297 {
2298         struct vm_area_struct **insertion_point;
2299         struct vm_area_struct *tail_vma = NULL;
2300
2301         insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2302         vma->vm_prev = NULL;
2303         do {
2304                 vma_rb_erase(vma, &mm->mm_rb);
2305                 mm->map_count--;
2306                 tail_vma = vma;
2307                 vma = vma->vm_next;
2308         } while (vma && vma->vm_start < end);
2309         *insertion_point = vma;
2310         if (vma) {
2311                 vma->vm_prev = prev;
2312                 vma_gap_update(vma);
2313         } else
2314                 mm->highest_vm_end = prev ? prev->vm_end : 0;
2315         tail_vma->vm_next = NULL;
2316
2317         /* Kill the cache */
2318         vmacache_invalidate(mm);
2319 }
2320
2321 /*
2322  * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
2323  * munmap path where it doesn't make sense to fail.
2324  */
2325 static int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2326               unsigned long addr, int new_below)
2327 {
2328         struct vm_area_struct *new;
2329         int err;
2330
2331         if (is_vm_hugetlb_page(vma) && (addr &
2332                                         ~(huge_page_mask(hstate_vma(vma)))))
2333                 return -EINVAL;
2334
2335         new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2336         if (!new)
2337                 return -ENOMEM;
2338
2339         /* most fields are the same, copy all, and then fixup */
2340         *new = *vma;
2341
2342         INIT_LIST_HEAD(&new->anon_vma_chain);
2343
2344         if (new_below)
2345                 new->vm_end = addr;
2346         else {
2347                 new->vm_start = addr;
2348                 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2349         }
2350
2351         err = vma_dup_policy(vma, new);
2352         if (err)
2353                 goto out_free_vma;
2354
2355         err = anon_vma_clone(new, vma);
2356         if (err)
2357                 goto out_free_mpol;
2358
2359         if (new->vm_file)
2360                 get_file(new->vm_file);
2361
2362         if (new->vm_ops && new->vm_ops->open)
2363                 new->vm_ops->open(new);
2364
2365         if (new_below)
2366                 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2367                         ((addr - new->vm_start) >> PAGE_SHIFT), new);
2368         else
2369                 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2370
2371         /* Success. */
2372         if (!err)
2373                 return 0;
2374
2375         /* Clean everything up if vma_adjust failed. */
2376         if (new->vm_ops && new->vm_ops->close)
2377                 new->vm_ops->close(new);
2378         if (new->vm_file)
2379                 fput(new->vm_file);
2380         unlink_anon_vmas(new);
2381  out_free_mpol:
2382         mpol_put(vma_policy(new));
2383  out_free_vma:
2384         kmem_cache_free(vm_area_cachep, new);
2385         return err;
2386 }
2387
2388 /*
2389  * Split a vma into two pieces at address 'addr', a new vma is allocated
2390  * either for the first part or the tail.
2391  */
2392 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2393               unsigned long addr, int new_below)
2394 {
2395         if (mm->map_count >= sysctl_max_map_count)
2396                 return -ENOMEM;
2397
2398         return __split_vma(mm, vma, addr, new_below);
2399 }
2400
2401 /* Munmap is split into 2 main parts -- this part which finds
2402  * what needs doing, and the areas themselves, which do the
2403  * work.  This now handles partial unmappings.
2404  * Jeremy Fitzhardinge <jeremy@goop.org>
2405  */
2406 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2407 {
2408         unsigned long end;
2409         struct vm_area_struct *vma, *prev, *last;
2410
2411         if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2412                 return -EINVAL;
2413
2414         len = PAGE_ALIGN(len);
2415         if (len == 0)
2416                 return -EINVAL;
2417
2418         /* Find the first overlapping VMA */
2419         vma = find_vma(mm, start);
2420         if (!vma)
2421                 return 0;
2422         prev = vma->vm_prev;
2423         /* we have  start < vma->vm_end  */
2424
2425         /* if it doesn't overlap, we have nothing.. */
2426         end = start + len;
2427         if (vma->vm_start >= end)
2428                 return 0;
2429
2430         /*
2431          * If we need to split any vma, do it now to save pain later.
2432          *
2433          * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2434          * unmapped vm_area_struct will remain in use: so lower split_vma
2435          * places tmp vma above, and higher split_vma places tmp vma below.
2436          */
2437         if (start > vma->vm_start) {
2438                 int error;
2439
2440                 /*
2441                  * Make sure that map_count on return from munmap() will
2442                  * not exceed its limit; but let map_count go just above
2443                  * its limit temporarily, to help free resources as expected.
2444                  */
2445                 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2446                         return -ENOMEM;
2447
2448                 error = __split_vma(mm, vma, start, 0);
2449                 if (error)
2450                         return error;
2451                 prev = vma;
2452         }
2453
2454         /* Does it split the last one? */
2455         last = find_vma(mm, end);
2456         if (last && end > last->vm_start) {
2457                 int error = __split_vma(mm, last, end, 1);
2458                 if (error)
2459                         return error;
2460         }
2461         vma = prev ? prev->vm_next : mm->mmap;
2462
2463         /*
2464          * unlock any mlock()ed ranges before detaching vmas
2465          */
2466         if (mm->locked_vm) {
2467                 struct vm_area_struct *tmp = vma;
2468                 while (tmp && tmp->vm_start < end) {
2469                         if (tmp->vm_flags & VM_LOCKED) {
2470                                 mm->locked_vm -= vma_pages(tmp);
2471                                 munlock_vma_pages_all(tmp);
2472                         }
2473                         tmp = tmp->vm_next;
2474                 }
2475         }
2476
2477         /*
2478          * Remove the vma's, and unmap the actual pages
2479          */
2480         detach_vmas_to_be_unmapped(mm, vma, prev, end);
2481         unmap_region(mm, vma, prev, start, end);
2482
2483         arch_unmap(mm, vma, start, end);
2484
2485         /* Fix up all other VM information */
2486         remove_vma_list(mm, vma);
2487
2488         return 0;
2489 }
2490
2491 int vm_munmap(unsigned long start, size_t len)
2492 {
2493         int ret;
2494         struct mm_struct *mm = current->mm;
2495
2496         down_write(&mm->mmap_sem);
2497         ret = do_munmap(mm, start, len);
2498         up_write(&mm->mmap_sem);
2499         return ret;
2500 }
2501 EXPORT_SYMBOL(vm_munmap);
2502
2503 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2504 {
2505         profile_munmap(addr);
2506         return vm_munmap(addr, len);
2507 }
2508
2509
2510 /*
2511  * Emulation of deprecated remap_file_pages() syscall.
2512  */
2513 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2514                 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2515 {
2516
2517         struct mm_struct *mm = current->mm;
2518         struct vm_area_struct *vma;
2519         unsigned long populate = 0;
2520         unsigned long ret = -EINVAL;
2521         struct file *file;
2522
2523         pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.txt.\n",
2524                      current->comm, current->pid);
2525
2526         if (prot)
2527                 return ret;
2528         start = start & PAGE_MASK;
2529         size = size & PAGE_MASK;
2530
2531         if (start + size <= start)
2532                 return ret;
2533
2534         /* Does pgoff wrap? */
2535         if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2536                 return ret;
2537
2538         down_write(&mm->mmap_sem);
2539         vma = find_vma(mm, start);
2540
2541         if (!vma || !(vma->vm_flags & VM_SHARED))
2542                 goto out;
2543
2544         if (start < vma->vm_start)
2545                 goto out;
2546
2547         if (start + size > vma->vm_end) {
2548                 struct vm_area_struct *next;
2549
2550                 for (next = vma->vm_next; next; next = next->vm_next) {
2551                         /* hole between vmas ? */
2552                         if (next->vm_start != next->vm_prev->vm_end)
2553                                 goto out;
2554
2555                         if (next->vm_file != vma->vm_file)
2556                                 goto out;
2557
2558                         if (next->vm_flags != vma->vm_flags)
2559                                 goto out;
2560
2561                         if (start + size <= next->vm_end)
2562                                 break;
2563                 }
2564
2565                 if (!next)
2566                         goto out;
2567         }
2568
2569         prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2570         prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2571         prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2572
2573         flags &= MAP_NONBLOCK;
2574         flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2575         if (vma->vm_flags & VM_LOCKED) {
2576                 struct vm_area_struct *tmp;
2577                 flags |= MAP_LOCKED;
2578
2579                 /* drop PG_Mlocked flag for over-mapped range */
2580                 for (tmp = vma; tmp->vm_start >= start + size;
2581                                 tmp = tmp->vm_next) {
2582                         munlock_vma_pages_range(tmp,
2583                                         max(tmp->vm_start, start),
2584                                         min(tmp->vm_end, start + size));
2585                 }
2586         }
2587
2588         file = get_file(vma->vm_file);
2589         ret = do_mmap_pgoff(vma->vm_file, start, size,
2590                         prot, flags, pgoff, &populate);
2591         fput(file);
2592 out:
2593         up_write(&mm->mmap_sem);
2594         if (populate)
2595                 mm_populate(ret, populate);
2596         if (!IS_ERR_VALUE(ret))
2597                 ret = 0;
2598         return ret;
2599 }
2600
2601 static inline void verify_mm_writelocked(struct mm_struct *mm)
2602 {
2603 #ifdef CONFIG_DEBUG_VM
2604         if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2605                 WARN_ON(1);
2606                 up_read(&mm->mmap_sem);
2607         }
2608 #endif
2609 }
2610
2611 /*
2612  *  this is really a simplified "do_mmap".  it only handles
2613  *  anonymous maps.  eventually we may be able to do some
2614  *  brk-specific accounting here.
2615  */
2616 static unsigned long do_brk(unsigned long addr, unsigned long len)
2617 {
2618         struct mm_struct *mm = current->mm;
2619         struct vm_area_struct *vma, *prev;
2620         unsigned long flags;
2621         struct rb_node **rb_link, *rb_parent;
2622         pgoff_t pgoff = addr >> PAGE_SHIFT;
2623         int error;
2624
2625         len = PAGE_ALIGN(len);
2626         if (!len)
2627                 return addr;
2628
2629         flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2630
2631         error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2632         if (offset_in_page(error))
2633                 return error;
2634
2635         error = mlock_future_check(mm, mm->def_flags, len);
2636         if (error)
2637                 return error;
2638
2639         /*
2640          * mm->mmap_sem is required to protect against another thread
2641          * changing the mappings in case we sleep.
2642          */
2643         verify_mm_writelocked(mm);
2644
2645         /*
2646          * Clear old maps.  this also does some error checking for us
2647          */
2648         while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
2649                               &rb_parent)) {
2650                 if (do_munmap(mm, addr, len))
2651                         return -ENOMEM;
2652         }
2653
2654         /* Check against address space limits *after* clearing old maps... */
2655         if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
2656                 return -ENOMEM;
2657
2658         if (mm->map_count > sysctl_max_map_count)
2659                 return -ENOMEM;
2660
2661         if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2662                 return -ENOMEM;
2663
2664         /* Can we just expand an old private anonymous mapping? */
2665         vma = vma_merge(mm, prev, addr, addr + len, flags,
2666                         NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
2667         if (vma)
2668                 goto out;
2669
2670         /*
2671          * create a vma struct for an anonymous mapping
2672          */
2673         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2674         if (!vma) {
2675                 vm_unacct_memory(len >> PAGE_SHIFT);
2676                 return -ENOMEM;
2677         }
2678
2679         INIT_LIST_HEAD(&vma->anon_vma_chain);
2680         vma->vm_mm = mm;
2681         vma->vm_start = addr;
2682         vma->vm_end = addr + len;
2683         vma->vm_pgoff = pgoff;
2684         vma->vm_flags = flags;
2685         vma->vm_page_prot = vm_get_page_prot(flags);
2686         vma_link(mm, vma, prev, rb_link, rb_parent);
2687 out:
2688         perf_event_mmap(vma);
2689         mm->total_vm += len >> PAGE_SHIFT;
2690         mm->data_vm += len >> PAGE_SHIFT;
2691         if (flags & VM_LOCKED)
2692                 mm->locked_vm += (len >> PAGE_SHIFT);
2693         vma->vm_flags |= VM_SOFTDIRTY;
2694         return addr;
2695 }
2696
2697 unsigned long vm_brk(unsigned long addr, unsigned long len)
2698 {
2699         struct mm_struct *mm = current->mm;
2700         unsigned long ret;
2701         bool populate;
2702
2703         down_write(&mm->mmap_sem);
2704         ret = do_brk(addr, len);
2705         populate = ((mm->def_flags & VM_LOCKED) != 0);
2706         up_write(&mm->mmap_sem);
2707         if (populate)
2708                 mm_populate(addr, len);
2709         return ret;
2710 }
2711 EXPORT_SYMBOL(vm_brk);
2712
2713 /* Release all mmaps. */
2714 void exit_mmap(struct mm_struct *mm)
2715 {
2716         struct mmu_gather tlb;
2717         struct vm_area_struct *vma;
2718         unsigned long nr_accounted = 0;
2719
2720         /* mm's last user has gone, and its about to be pulled down */
2721         mmu_notifier_release(mm);
2722
2723         if (mm->locked_vm) {
2724                 vma = mm->mmap;
2725                 while (vma) {
2726                         if (vma->vm_flags & VM_LOCKED)
2727                                 munlock_vma_pages_all(vma);
2728                         vma = vma->vm_next;
2729                 }
2730         }
2731
2732         arch_exit_mmap(mm);
2733
2734         vma = mm->mmap;
2735         if (!vma)       /* Can happen if dup_mmap() received an OOM */
2736                 return;
2737
2738         lru_add_drain();
2739         flush_cache_mm(mm);
2740         tlb_gather_mmu(&tlb, mm, 0, -1);
2741         /* update_hiwater_rss(mm) here? but nobody should be looking */
2742         /* Use -1 here to ensure all VMAs in the mm are unmapped */
2743         unmap_vmas(&tlb, vma, 0, -1);
2744
2745         free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2746         tlb_finish_mmu(&tlb, 0, -1);
2747
2748         /*
2749          * Walk the list again, actually closing and freeing it,
2750          * with preemption enabled, without holding any MM locks.
2751          */
2752         while (vma) {
2753                 if (vma->vm_flags & VM_ACCOUNT)
2754                         nr_accounted += vma_pages(vma);
2755                 vma = remove_vma(vma);
2756         }
2757         vm_unacct_memory(nr_accounted);
2758 }
2759
2760 /* Insert vm structure into process list sorted by address
2761  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2762  * then i_mmap_rwsem is taken here.
2763  */
2764 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2765 {
2766         struct vm_area_struct *prev;
2767         struct rb_node **rb_link, *rb_parent;
2768
2769         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2770                            &prev, &rb_link, &rb_parent))
2771                 return -ENOMEM;
2772         if ((vma->vm_flags & VM_ACCOUNT) &&
2773              security_vm_enough_memory_mm(mm, vma_pages(vma)))
2774                 return -ENOMEM;
2775
2776         /*
2777          * The vm_pgoff of a purely anonymous vma should be irrelevant
2778          * until its first write fault, when page's anon_vma and index
2779          * are set.  But now set the vm_pgoff it will almost certainly
2780          * end up with (unless mremap moves it elsewhere before that
2781          * first wfault), so /proc/pid/maps tells a consistent story.
2782          *
2783          * By setting it to reflect the virtual start address of the
2784          * vma, merges and splits can happen in a seamless way, just
2785          * using the existing file pgoff checks and manipulations.
2786          * Similarly in do_mmap_pgoff and in do_brk.
2787          */
2788         if (vma_is_anonymous(vma)) {
2789                 BUG_ON(vma->anon_vma);
2790                 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2791         }
2792
2793         vma_link(mm, vma, prev, rb_link, rb_parent);
2794         return 0;
2795 }
2796
2797 /*
2798  * Copy the vma structure to a new location in the same mm,
2799  * prior to moving page table entries, to effect an mremap move.
2800  */
2801 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2802         unsigned long addr, unsigned long len, pgoff_t pgoff,
2803         bool *need_rmap_locks)
2804 {
2805         struct vm_area_struct *vma = *vmap;
2806         unsigned long vma_start = vma->vm_start;
2807         struct mm_struct *mm = vma->vm_mm;
2808         struct vm_area_struct *new_vma, *prev;
2809         struct rb_node **rb_link, *rb_parent;
2810         bool faulted_in_anon_vma = true;
2811
2812         /*
2813          * If anonymous vma has not yet been faulted, update new pgoff
2814          * to match new location, to increase its chance of merging.
2815          */
2816         if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
2817                 pgoff = addr >> PAGE_SHIFT;
2818                 faulted_in_anon_vma = false;
2819         }
2820
2821         if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2822                 return NULL;    /* should never get here */
2823         new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2824                             vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
2825                             vma->vm_userfaultfd_ctx);
2826         if (new_vma) {
2827                 /*
2828                  * Source vma may have been merged into new_vma
2829                  */
2830                 if (unlikely(vma_start >= new_vma->vm_start &&
2831                              vma_start < new_vma->vm_end)) {
2832                         /*
2833                          * The only way we can get a vma_merge with
2834                          * self during an mremap is if the vma hasn't
2835                          * been faulted in yet and we were allowed to
2836                          * reset the dst vma->vm_pgoff to the
2837                          * destination address of the mremap to allow
2838                          * the merge to happen. mremap must change the
2839                          * vm_pgoff linearity between src and dst vmas
2840                          * (in turn preventing a vma_merge) to be
2841                          * safe. It is only safe to keep the vm_pgoff
2842                          * linear if there are no pages mapped yet.
2843                          */
2844                         VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
2845                         *vmap = vma = new_vma;
2846                 }
2847                 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2848         } else {
2849                 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2850                 if (!new_vma)
2851                         goto out;
2852                 *new_vma = *vma;
2853                 new_vma->vm_start = addr;
2854                 new_vma->vm_end = addr + len;
2855                 new_vma->vm_pgoff = pgoff;
2856                 if (vma_dup_policy(vma, new_vma))
2857                         goto out_free_vma;
2858                 INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2859                 if (anon_vma_clone(new_vma, vma))
2860                         goto out_free_mempol;
2861                 if (new_vma->vm_file)
2862                         get_file(new_vma->vm_file);
2863                 if (new_vma->vm_ops && new_vma->vm_ops->open)
2864                         new_vma->vm_ops->open(new_vma);
2865                 vma_link(mm, new_vma, prev, rb_link, rb_parent);
2866                 *need_rmap_locks = false;
2867         }
2868         return new_vma;
2869
2870 out_free_mempol:
2871         mpol_put(vma_policy(new_vma));
2872 out_free_vma:
2873         kmem_cache_free(vm_area_cachep, new_vma);
2874 out:
2875         return NULL;
2876 }
2877
2878 /*
2879  * Return true if the calling process may expand its vm space by the passed
2880  * number of pages
2881  */
2882 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
2883 {
2884         if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
2885                 return false;
2886
2887         if (is_data_mapping(flags) &&
2888             mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
2889                 /* Workaround for Valgrind */
2890                 if (rlimit(RLIMIT_DATA) == 0 &&
2891                     mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
2892                         return true;
2893                 if (!ignore_rlimit_data) {
2894                         pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits or use boot option ignore_rlimit_data.\n",
2895                                      current->comm, current->pid,
2896                                      (mm->data_vm + npages) << PAGE_SHIFT,
2897                                      rlimit(RLIMIT_DATA));
2898                         return false;
2899                 }
2900         }
2901
2902         return true;
2903 }
2904
2905 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
2906 {
2907         mm->total_vm += npages;
2908
2909         if (is_exec_mapping(flags))
2910                 mm->exec_vm += npages;
2911         else if (is_stack_mapping(flags))
2912                 mm->stack_vm += npages;
2913         else if (is_data_mapping(flags))
2914                 mm->data_vm += npages;
2915 }
2916
2917 static int special_mapping_fault(struct vm_area_struct *vma,
2918                                  struct vm_fault *vmf);
2919
2920 /*
2921  * Having a close hook prevents vma merging regardless of flags.
2922  */
2923 static void special_mapping_close(struct vm_area_struct *vma)
2924 {
2925 }
2926
2927 static const char *special_mapping_name(struct vm_area_struct *vma)
2928 {
2929         return ((struct vm_special_mapping *)vma->vm_private_data)->name;
2930 }
2931
2932 static const struct vm_operations_struct special_mapping_vmops = {
2933         .close = special_mapping_close,
2934         .fault = special_mapping_fault,
2935         .name = special_mapping_name,
2936 };
2937
2938 static const struct vm_operations_struct legacy_special_mapping_vmops = {
2939         .close = special_mapping_close,
2940         .fault = special_mapping_fault,
2941 };
2942
2943 static int special_mapping_fault(struct vm_area_struct *vma,
2944                                 struct vm_fault *vmf)
2945 {
2946         pgoff_t pgoff;
2947         struct page **pages;
2948
2949         if (vma->vm_ops == &legacy_special_mapping_vmops) {
2950                 pages = vma->vm_private_data;
2951         } else {
2952                 struct vm_special_mapping *sm = vma->vm_private_data;
2953
2954                 if (sm->fault)
2955                         return sm->fault(sm, vma, vmf);
2956
2957                 pages = sm->pages;
2958         }
2959
2960         for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
2961                 pgoff--;
2962
2963         if (*pages) {
2964                 struct page *page = *pages;
2965                 get_page(page);
2966                 vmf->page = page;
2967                 return 0;
2968         }
2969
2970         return VM_FAULT_SIGBUS;
2971 }
2972
2973 static struct vm_area_struct *__install_special_mapping(
2974         struct mm_struct *mm,
2975         unsigned long addr, unsigned long len,
2976         unsigned long vm_flags, void *priv,
2977         const struct vm_operations_struct *ops)
2978 {
2979         int ret;
2980         struct vm_area_struct *vma;
2981
2982         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2983         if (unlikely(vma == NULL))
2984                 return ERR_PTR(-ENOMEM);
2985
2986         INIT_LIST_HEAD(&vma->anon_vma_chain);
2987         vma->vm_mm = mm;
2988         vma->vm_start = addr;
2989         vma->vm_end = addr + len;
2990
2991         vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
2992         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2993
2994         vma->vm_ops = ops;
2995         vma->vm_private_data = priv;
2996
2997         ret = insert_vm_struct(mm, vma);
2998         if (ret)
2999                 goto out;
3000
3001         vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3002
3003         perf_event_mmap(vma);
3004
3005         return vma;
3006
3007 out:
3008         kmem_cache_free(vm_area_cachep, vma);
3009         return ERR_PTR(ret);
3010 }
3011
3012 /*
3013  * Called with mm->mmap_sem held for writing.
3014  * Insert a new vma covering the given region, with the given flags.
3015  * Its pages are supplied by the given array of struct page *.
3016  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3017  * The region past the last page supplied will always produce SIGBUS.
3018  * The array pointer and the pages it points to are assumed to stay alive
3019  * for as long as this mapping might exist.
3020  */
3021 struct vm_area_struct *_install_special_mapping(
3022         struct mm_struct *mm,
3023         unsigned long addr, unsigned long len,
3024         unsigned long vm_flags, const struct vm_special_mapping *spec)
3025 {
3026         return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3027                                         &special_mapping_vmops);
3028 }
3029
3030 int install_special_mapping(struct mm_struct *mm,
3031                             unsigned long addr, unsigned long len,
3032                             unsigned long vm_flags, struct page **pages)
3033 {
3034         struct vm_area_struct *vma = __install_special_mapping(
3035                 mm, addr, len, vm_flags, (void *)pages,
3036                 &legacy_special_mapping_vmops);
3037
3038         return PTR_ERR_OR_ZERO(vma);
3039 }
3040
3041 static DEFINE_MUTEX(mm_all_locks_mutex);
3042
3043 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3044 {
3045         if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3046                 /*
3047                  * The LSB of head.next can't change from under us
3048                  * because we hold the mm_all_locks_mutex.
3049                  */
3050                 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3051                 /*
3052                  * We can safely modify head.next after taking the
3053                  * anon_vma->root->rwsem. If some other vma in this mm shares
3054                  * the same anon_vma we won't take it again.
3055                  *
3056                  * No need of atomic instructions here, head.next
3057                  * can't change from under us thanks to the
3058                  * anon_vma->root->rwsem.
3059                  */
3060                 if (__test_and_set_bit(0, (unsigned long *)
3061                                        &anon_vma->root->rb_root.rb_node))
3062                         BUG();
3063         }
3064 }
3065
3066 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3067 {
3068         if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3069                 /*
3070                  * AS_MM_ALL_LOCKS can't change from under us because
3071                  * we hold the mm_all_locks_mutex.
3072                  *
3073                  * Operations on ->flags have to be atomic because
3074                  * even if AS_MM_ALL_LOCKS is stable thanks to the
3075                  * mm_all_locks_mutex, there may be other cpus
3076                  * changing other bitflags in parallel to us.
3077                  */
3078                 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3079                         BUG();
3080                 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3081         }
3082 }
3083
3084 /*
3085  * This operation locks against the VM for all pte/vma/mm related
3086  * operations that could ever happen on a certain mm. This includes
3087  * vmtruncate, try_to_unmap, and all page faults.
3088  *
3089  * The caller must take the mmap_sem in write mode before calling
3090  * mm_take_all_locks(). The caller isn't allowed to release the
3091  * mmap_sem until mm_drop_all_locks() returns.
3092  *
3093  * mmap_sem in write mode is required in order to block all operations
3094  * that could modify pagetables and free pages without need of
3095  * altering the vma layout. It's also needed in write mode to avoid new
3096  * anon_vmas to be associated with existing vmas.
3097  *
3098  * A single task can't take more than one mm_take_all_locks() in a row
3099  * or it would deadlock.
3100  *
3101  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3102  * mapping->flags avoid to take the same lock twice, if more than one
3103  * vma in this mm is backed by the same anon_vma or address_space.
3104  *
3105  * We take locks in following order, accordingly to comment at beginning
3106  * of mm/rmap.c:
3107  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3108  *     hugetlb mapping);
3109  *   - all i_mmap_rwsem locks;
3110  *   - all anon_vma->rwseml
3111  *
3112  * We can take all locks within these types randomly because the VM code
3113  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3114  * mm_all_locks_mutex.
3115  *
3116  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3117  * that may have to take thousand of locks.
3118  *
3119  * mm_take_all_locks() can fail if it's interrupted by signals.
3120  */
3121 int mm_take_all_locks(struct mm_struct *mm)
3122 {
3123         struct vm_area_struct *vma;
3124         struct anon_vma_chain *avc;
3125
3126         BUG_ON(down_read_trylock(&mm->mmap_sem));
3127
3128         mutex_lock(&mm_all_locks_mutex);
3129
3130         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3131                 if (signal_pending(current))
3132                         goto out_unlock;
3133                 if (vma->vm_file && vma->vm_file->f_mapping &&
3134                                 is_vm_hugetlb_page(vma))
3135                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3136         }
3137
3138         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3139                 if (signal_pending(current))
3140                         goto out_unlock;
3141                 if (vma->vm_file && vma->vm_file->f_mapping &&
3142                                 !is_vm_hugetlb_page(vma))
3143                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3144         }
3145
3146         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3147                 if (signal_pending(current))
3148                         goto out_unlock;
3149                 if (vma->anon_vma)
3150                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3151                                 vm_lock_anon_vma(mm, avc->anon_vma);
3152         }
3153
3154         return 0;
3155
3156 out_unlock:
3157         mm_drop_all_locks(mm);
3158         return -EINTR;
3159 }
3160
3161 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3162 {
3163         if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3164                 /*
3165                  * The LSB of head.next can't change to 0 from under
3166                  * us because we hold the mm_all_locks_mutex.
3167                  *
3168                  * We must however clear the bitflag before unlocking
3169                  * the vma so the users using the anon_vma->rb_root will
3170                  * never see our bitflag.
3171                  *
3172                  * No need of atomic instructions here, head.next
3173                  * can't change from under us until we release the
3174                  * anon_vma->root->rwsem.
3175                  */
3176                 if (!__test_and_clear_bit(0, (unsigned long *)
3177                                           &anon_vma->root->rb_root.rb_node))
3178                         BUG();
3179                 anon_vma_unlock_write(anon_vma);
3180         }
3181 }
3182
3183 static void vm_unlock_mapping(struct address_space *mapping)
3184 {
3185         if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3186                 /*
3187                  * AS_MM_ALL_LOCKS can't change to 0 from under us
3188                  * because we hold the mm_all_locks_mutex.
3189                  */
3190                 i_mmap_unlock_write(mapping);
3191                 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3192                                         &mapping->flags))
3193                         BUG();
3194         }
3195 }
3196
3197 /*
3198  * The mmap_sem cannot be released by the caller until
3199  * mm_drop_all_locks() returns.
3200  */
3201 void mm_drop_all_locks(struct mm_struct *mm)
3202 {
3203         struct vm_area_struct *vma;
3204         struct anon_vma_chain *avc;
3205
3206         BUG_ON(down_read_trylock(&mm->mmap_sem));
3207         BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3208
3209         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3210                 if (vma->anon_vma)
3211                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3212                                 vm_unlock_anon_vma(avc->anon_vma);
3213                 if (vma->vm_file && vma->vm_file->f_mapping)
3214                         vm_unlock_mapping(vma->vm_file->f_mapping);
3215         }
3216
3217         mutex_unlock(&mm_all_locks_mutex);
3218 }
3219
3220 /*
3221  * initialise the VMA slab
3222  */
3223 void __init mmap_init(void)
3224 {
3225         int ret;
3226
3227         ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3228         VM_BUG_ON(ret);
3229 }
3230
3231 /*
3232  * Initialise sysctl_user_reserve_kbytes.
3233  *
3234  * This is intended to prevent a user from starting a single memory hogging
3235  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3236  * mode.
3237  *
3238  * The default value is min(3% of free memory, 128MB)
3239  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3240  */
3241 static int init_user_reserve(void)
3242 {
3243         unsigned long free_kbytes;
3244
3245         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3246
3247         sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3248         return 0;
3249 }
3250 subsys_initcall(init_user_reserve);
3251
3252 /*
3253  * Initialise sysctl_admin_reserve_kbytes.
3254  *
3255  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3256  * to log in and kill a memory hogging process.
3257  *
3258  * Systems with more than 256MB will reserve 8MB, enough to recover
3259  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3260  * only reserve 3% of free pages by default.
3261  */
3262 static int init_admin_reserve(void)
3263 {
3264         unsigned long free_kbytes;
3265
3266         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3267
3268         sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3269         return 0;
3270 }
3271 subsys_initcall(init_admin_reserve);
3272
3273 /*
3274  * Reinititalise user and admin reserves if memory is added or removed.
3275  *
3276  * The default user reserve max is 128MB, and the default max for the
3277  * admin reserve is 8MB. These are usually, but not always, enough to
3278  * enable recovery from a memory hogging process using login/sshd, a shell,
3279  * and tools like top. It may make sense to increase or even disable the
3280  * reserve depending on the existence of swap or variations in the recovery
3281  * tools. So, the admin may have changed them.
3282  *
3283  * If memory is added and the reserves have been eliminated or increased above
3284  * the default max, then we'll trust the admin.
3285  *
3286  * If memory is removed and there isn't enough free memory, then we
3287  * need to reset the reserves.
3288  *
3289  * Otherwise keep the reserve set by the admin.
3290  */
3291 static int reserve_mem_notifier(struct notifier_block *nb,
3292                              unsigned long action, void *data)
3293 {
3294         unsigned long tmp, free_kbytes;
3295
3296         switch (action) {
3297         case MEM_ONLINE:
3298                 /* Default max is 128MB. Leave alone if modified by operator. */
3299                 tmp = sysctl_user_reserve_kbytes;
3300                 if (0 < tmp && tmp < (1UL << 17))
3301                         init_user_reserve();
3302
3303                 /* Default max is 8MB.  Leave alone if modified by operator. */
3304                 tmp = sysctl_admin_reserve_kbytes;
3305                 if (0 < tmp && tmp < (1UL << 13))
3306                         init_admin_reserve();
3307
3308                 break;
3309         case MEM_OFFLINE:
3310                 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3311
3312                 if (sysctl_user_reserve_kbytes > free_kbytes) {
3313                         init_user_reserve();
3314                         pr_info("vm.user_reserve_kbytes reset to %lu\n",
3315                                 sysctl_user_reserve_kbytes);
3316                 }
3317
3318                 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3319                         init_admin_reserve();
3320                         pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3321                                 sysctl_admin_reserve_kbytes);
3322                 }
3323                 break;
3324         default:
3325                 break;
3326         }
3327         return NOTIFY_OK;
3328 }
3329
3330 static struct notifier_block reserve_mem_nb = {
3331         .notifier_call = reserve_mem_notifier,
3332 };
3333
3334 static int __meminit init_reserve_notifier(void)
3335 {
3336         if (register_hotmemory_notifier(&reserve_mem_nb))
3337                 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3338
3339         return 0;
3340 }
3341 subsys_initcall(init_reserve_notifier);