Merge branch 'stable-4.6' of git://git.infradead.org/users/pcmoore/audit
[cascardo/linux.git] / mm / mmap.c
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code        <alan@lxorguk.ukuu.org.uk>
7  */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
14 #include <linux/mm.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/profile.h>
29 #include <linux/export.h>
30 #include <linux/mount.h>
31 #include <linux/mempolicy.h>
32 #include <linux/rmap.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/mmdebug.h>
35 #include <linux/perf_event.h>
36 #include <linux/audit.h>
37 #include <linux/khugepaged.h>
38 #include <linux/uprobes.h>
39 #include <linux/rbtree_augmented.h>
40 #include <linux/notifier.h>
41 #include <linux/memory.h>
42 #include <linux/printk.h>
43 #include <linux/userfaultfd_k.h>
44 #include <linux/moduleparam.h>
45
46 #include <asm/uaccess.h>
47 #include <asm/cacheflush.h>
48 #include <asm/tlb.h>
49 #include <asm/mmu_context.h>
50
51 #include "internal.h"
52
53 #ifndef arch_mmap_check
54 #define arch_mmap_check(addr, len, flags)       (0)
55 #endif
56
57 #ifndef arch_rebalance_pgtables
58 #define arch_rebalance_pgtables(addr, len)              (addr)
59 #endif
60
61 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
62 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
63 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
64 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
65 #endif
66 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
67 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
68 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
69 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
70 #endif
71
72 static bool ignore_rlimit_data = true;
73 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
74
75 static void unmap_region(struct mm_struct *mm,
76                 struct vm_area_struct *vma, struct vm_area_struct *prev,
77                 unsigned long start, unsigned long end);
78
79 /* description of effects of mapping type and prot in current implementation.
80  * this is due to the limited x86 page protection hardware.  The expected
81  * behavior is in parens:
82  *
83  * map_type     prot
84  *              PROT_NONE       PROT_READ       PROT_WRITE      PROT_EXEC
85  * MAP_SHARED   r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
86  *              w: (no) no      w: (no) no      w: (yes) yes    w: (no) no
87  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
88  *
89  * MAP_PRIVATE  r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
90  *              w: (no) no      w: (no) no      w: (copy) copy  w: (no) no
91  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
92  *
93  */
94 pgprot_t protection_map[16] = {
95         __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
96         __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
97 };
98
99 pgprot_t vm_get_page_prot(unsigned long vm_flags)
100 {
101         return __pgprot(pgprot_val(protection_map[vm_flags &
102                                 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
103                         pgprot_val(arch_vm_get_page_prot(vm_flags)));
104 }
105 EXPORT_SYMBOL(vm_get_page_prot);
106
107 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
108 {
109         return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
110 }
111
112 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
113 void vma_set_page_prot(struct vm_area_struct *vma)
114 {
115         unsigned long vm_flags = vma->vm_flags;
116
117         vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
118         if (vma_wants_writenotify(vma)) {
119                 vm_flags &= ~VM_SHARED;
120                 vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot,
121                                                      vm_flags);
122         }
123 }
124
125 /*
126  * Requires inode->i_mapping->i_mmap_rwsem
127  */
128 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
129                 struct file *file, struct address_space *mapping)
130 {
131         if (vma->vm_flags & VM_DENYWRITE)
132                 atomic_inc(&file_inode(file)->i_writecount);
133         if (vma->vm_flags & VM_SHARED)
134                 mapping_unmap_writable(mapping);
135
136         flush_dcache_mmap_lock(mapping);
137         vma_interval_tree_remove(vma, &mapping->i_mmap);
138         flush_dcache_mmap_unlock(mapping);
139 }
140
141 /*
142  * Unlink a file-based vm structure from its interval tree, to hide
143  * vma from rmap and vmtruncate before freeing its page tables.
144  */
145 void unlink_file_vma(struct vm_area_struct *vma)
146 {
147         struct file *file = vma->vm_file;
148
149         if (file) {
150                 struct address_space *mapping = file->f_mapping;
151                 i_mmap_lock_write(mapping);
152                 __remove_shared_vm_struct(vma, file, mapping);
153                 i_mmap_unlock_write(mapping);
154         }
155 }
156
157 /*
158  * Close a vm structure and free it, returning the next.
159  */
160 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
161 {
162         struct vm_area_struct *next = vma->vm_next;
163
164         might_sleep();
165         if (vma->vm_ops && vma->vm_ops->close)
166                 vma->vm_ops->close(vma);
167         if (vma->vm_file)
168                 fput(vma->vm_file);
169         mpol_put(vma_policy(vma));
170         kmem_cache_free(vm_area_cachep, vma);
171         return next;
172 }
173
174 static unsigned long do_brk(unsigned long addr, unsigned long len);
175
176 SYSCALL_DEFINE1(brk, unsigned long, brk)
177 {
178         unsigned long retval;
179         unsigned long newbrk, oldbrk;
180         struct mm_struct *mm = current->mm;
181         unsigned long min_brk;
182         bool populate;
183
184         down_write(&mm->mmap_sem);
185
186 #ifdef CONFIG_COMPAT_BRK
187         /*
188          * CONFIG_COMPAT_BRK can still be overridden by setting
189          * randomize_va_space to 2, which will still cause mm->start_brk
190          * to be arbitrarily shifted
191          */
192         if (current->brk_randomized)
193                 min_brk = mm->start_brk;
194         else
195                 min_brk = mm->end_data;
196 #else
197         min_brk = mm->start_brk;
198 #endif
199         if (brk < min_brk)
200                 goto out;
201
202         /*
203          * Check against rlimit here. If this check is done later after the test
204          * of oldbrk with newbrk then it can escape the test and let the data
205          * segment grow beyond its set limit the in case where the limit is
206          * not page aligned -Ram Gupta
207          */
208         if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
209                               mm->end_data, mm->start_data))
210                 goto out;
211
212         newbrk = PAGE_ALIGN(brk);
213         oldbrk = PAGE_ALIGN(mm->brk);
214         if (oldbrk == newbrk)
215                 goto set_brk;
216
217         /* Always allow shrinking brk. */
218         if (brk <= mm->brk) {
219                 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
220                         goto set_brk;
221                 goto out;
222         }
223
224         /* Check against existing mmap mappings. */
225         if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
226                 goto out;
227
228         /* Ok, looks good - let it rip. */
229         if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
230                 goto out;
231
232 set_brk:
233         mm->brk = brk;
234         populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
235         up_write(&mm->mmap_sem);
236         if (populate)
237                 mm_populate(oldbrk, newbrk - oldbrk);
238         return brk;
239
240 out:
241         retval = mm->brk;
242         up_write(&mm->mmap_sem);
243         return retval;
244 }
245
246 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
247 {
248         unsigned long max, subtree_gap;
249         max = vma->vm_start;
250         if (vma->vm_prev)
251                 max -= vma->vm_prev->vm_end;
252         if (vma->vm_rb.rb_left) {
253                 subtree_gap = rb_entry(vma->vm_rb.rb_left,
254                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
255                 if (subtree_gap > max)
256                         max = subtree_gap;
257         }
258         if (vma->vm_rb.rb_right) {
259                 subtree_gap = rb_entry(vma->vm_rb.rb_right,
260                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
261                 if (subtree_gap > max)
262                         max = subtree_gap;
263         }
264         return max;
265 }
266
267 #ifdef CONFIG_DEBUG_VM_RB
268 static int browse_rb(struct mm_struct *mm)
269 {
270         struct rb_root *root = &mm->mm_rb;
271         int i = 0, j, bug = 0;
272         struct rb_node *nd, *pn = NULL;
273         unsigned long prev = 0, pend = 0;
274
275         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
276                 struct vm_area_struct *vma;
277                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
278                 if (vma->vm_start < prev) {
279                         pr_emerg("vm_start %lx < prev %lx\n",
280                                   vma->vm_start, prev);
281                         bug = 1;
282                 }
283                 if (vma->vm_start < pend) {
284                         pr_emerg("vm_start %lx < pend %lx\n",
285                                   vma->vm_start, pend);
286                         bug = 1;
287                 }
288                 if (vma->vm_start > vma->vm_end) {
289                         pr_emerg("vm_start %lx > vm_end %lx\n",
290                                   vma->vm_start, vma->vm_end);
291                         bug = 1;
292                 }
293                 spin_lock(&mm->page_table_lock);
294                 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
295                         pr_emerg("free gap %lx, correct %lx\n",
296                                vma->rb_subtree_gap,
297                                vma_compute_subtree_gap(vma));
298                         bug = 1;
299                 }
300                 spin_unlock(&mm->page_table_lock);
301                 i++;
302                 pn = nd;
303                 prev = vma->vm_start;
304                 pend = vma->vm_end;
305         }
306         j = 0;
307         for (nd = pn; nd; nd = rb_prev(nd))
308                 j++;
309         if (i != j) {
310                 pr_emerg("backwards %d, forwards %d\n", j, i);
311                 bug = 1;
312         }
313         return bug ? -1 : i;
314 }
315
316 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
317 {
318         struct rb_node *nd;
319
320         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
321                 struct vm_area_struct *vma;
322                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
323                 VM_BUG_ON_VMA(vma != ignore &&
324                         vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
325                         vma);
326         }
327 }
328
329 static void validate_mm(struct mm_struct *mm)
330 {
331         int bug = 0;
332         int i = 0;
333         unsigned long highest_address = 0;
334         struct vm_area_struct *vma = mm->mmap;
335
336         while (vma) {
337                 struct anon_vma *anon_vma = vma->anon_vma;
338                 struct anon_vma_chain *avc;
339
340                 if (anon_vma) {
341                         anon_vma_lock_read(anon_vma);
342                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
343                                 anon_vma_interval_tree_verify(avc);
344                         anon_vma_unlock_read(anon_vma);
345                 }
346
347                 highest_address = vma->vm_end;
348                 vma = vma->vm_next;
349                 i++;
350         }
351         if (i != mm->map_count) {
352                 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
353                 bug = 1;
354         }
355         if (highest_address != mm->highest_vm_end) {
356                 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
357                           mm->highest_vm_end, highest_address);
358                 bug = 1;
359         }
360         i = browse_rb(mm);
361         if (i != mm->map_count) {
362                 if (i != -1)
363                         pr_emerg("map_count %d rb %d\n", mm->map_count, i);
364                 bug = 1;
365         }
366         VM_BUG_ON_MM(bug, mm);
367 }
368 #else
369 #define validate_mm_rb(root, ignore) do { } while (0)
370 #define validate_mm(mm) do { } while (0)
371 #endif
372
373 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
374                      unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
375
376 /*
377  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
378  * vma->vm_prev->vm_end values changed, without modifying the vma's position
379  * in the rbtree.
380  */
381 static void vma_gap_update(struct vm_area_struct *vma)
382 {
383         /*
384          * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
385          * function that does exacltly what we want.
386          */
387         vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
388 }
389
390 static inline void vma_rb_insert(struct vm_area_struct *vma,
391                                  struct rb_root *root)
392 {
393         /* All rb_subtree_gap values must be consistent prior to insertion */
394         validate_mm_rb(root, NULL);
395
396         rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
397 }
398
399 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
400 {
401         /*
402          * All rb_subtree_gap values must be consistent prior to erase,
403          * with the possible exception of the vma being erased.
404          */
405         validate_mm_rb(root, vma);
406
407         /*
408          * Note rb_erase_augmented is a fairly large inline function,
409          * so make sure we instantiate it only once with our desired
410          * augmented rbtree callbacks.
411          */
412         rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
413 }
414
415 /*
416  * vma has some anon_vma assigned, and is already inserted on that
417  * anon_vma's interval trees.
418  *
419  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
420  * vma must be removed from the anon_vma's interval trees using
421  * anon_vma_interval_tree_pre_update_vma().
422  *
423  * After the update, the vma will be reinserted using
424  * anon_vma_interval_tree_post_update_vma().
425  *
426  * The entire update must be protected by exclusive mmap_sem and by
427  * the root anon_vma's mutex.
428  */
429 static inline void
430 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
431 {
432         struct anon_vma_chain *avc;
433
434         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
435                 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
436 }
437
438 static inline void
439 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
440 {
441         struct anon_vma_chain *avc;
442
443         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
444                 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
445 }
446
447 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
448                 unsigned long end, struct vm_area_struct **pprev,
449                 struct rb_node ***rb_link, struct rb_node **rb_parent)
450 {
451         struct rb_node **__rb_link, *__rb_parent, *rb_prev;
452
453         __rb_link = &mm->mm_rb.rb_node;
454         rb_prev = __rb_parent = NULL;
455
456         while (*__rb_link) {
457                 struct vm_area_struct *vma_tmp;
458
459                 __rb_parent = *__rb_link;
460                 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
461
462                 if (vma_tmp->vm_end > addr) {
463                         /* Fail if an existing vma overlaps the area */
464                         if (vma_tmp->vm_start < end)
465                                 return -ENOMEM;
466                         __rb_link = &__rb_parent->rb_left;
467                 } else {
468                         rb_prev = __rb_parent;
469                         __rb_link = &__rb_parent->rb_right;
470                 }
471         }
472
473         *pprev = NULL;
474         if (rb_prev)
475                 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
476         *rb_link = __rb_link;
477         *rb_parent = __rb_parent;
478         return 0;
479 }
480
481 static unsigned long count_vma_pages_range(struct mm_struct *mm,
482                 unsigned long addr, unsigned long end)
483 {
484         unsigned long nr_pages = 0;
485         struct vm_area_struct *vma;
486
487         /* Find first overlaping mapping */
488         vma = find_vma_intersection(mm, addr, end);
489         if (!vma)
490                 return 0;
491
492         nr_pages = (min(end, vma->vm_end) -
493                 max(addr, vma->vm_start)) >> PAGE_SHIFT;
494
495         /* Iterate over the rest of the overlaps */
496         for (vma = vma->vm_next; vma; vma = vma->vm_next) {
497                 unsigned long overlap_len;
498
499                 if (vma->vm_start > end)
500                         break;
501
502                 overlap_len = min(end, vma->vm_end) - vma->vm_start;
503                 nr_pages += overlap_len >> PAGE_SHIFT;
504         }
505
506         return nr_pages;
507 }
508
509 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
510                 struct rb_node **rb_link, struct rb_node *rb_parent)
511 {
512         /* Update tracking information for the gap following the new vma. */
513         if (vma->vm_next)
514                 vma_gap_update(vma->vm_next);
515         else
516                 mm->highest_vm_end = vma->vm_end;
517
518         /*
519          * vma->vm_prev wasn't known when we followed the rbtree to find the
520          * correct insertion point for that vma. As a result, we could not
521          * update the vma vm_rb parents rb_subtree_gap values on the way down.
522          * So, we first insert the vma with a zero rb_subtree_gap value
523          * (to be consistent with what we did on the way down), and then
524          * immediately update the gap to the correct value. Finally we
525          * rebalance the rbtree after all augmented values have been set.
526          */
527         rb_link_node(&vma->vm_rb, rb_parent, rb_link);
528         vma->rb_subtree_gap = 0;
529         vma_gap_update(vma);
530         vma_rb_insert(vma, &mm->mm_rb);
531 }
532
533 static void __vma_link_file(struct vm_area_struct *vma)
534 {
535         struct file *file;
536
537         file = vma->vm_file;
538         if (file) {
539                 struct address_space *mapping = file->f_mapping;
540
541                 if (vma->vm_flags & VM_DENYWRITE)
542                         atomic_dec(&file_inode(file)->i_writecount);
543                 if (vma->vm_flags & VM_SHARED)
544                         atomic_inc(&mapping->i_mmap_writable);
545
546                 flush_dcache_mmap_lock(mapping);
547                 vma_interval_tree_insert(vma, &mapping->i_mmap);
548                 flush_dcache_mmap_unlock(mapping);
549         }
550 }
551
552 static void
553 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
554         struct vm_area_struct *prev, struct rb_node **rb_link,
555         struct rb_node *rb_parent)
556 {
557         __vma_link_list(mm, vma, prev, rb_parent);
558         __vma_link_rb(mm, vma, rb_link, rb_parent);
559 }
560
561 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
562                         struct vm_area_struct *prev, struct rb_node **rb_link,
563                         struct rb_node *rb_parent)
564 {
565         struct address_space *mapping = NULL;
566
567         if (vma->vm_file) {
568                 mapping = vma->vm_file->f_mapping;
569                 i_mmap_lock_write(mapping);
570         }
571
572         __vma_link(mm, vma, prev, rb_link, rb_parent);
573         __vma_link_file(vma);
574
575         if (mapping)
576                 i_mmap_unlock_write(mapping);
577
578         mm->map_count++;
579         validate_mm(mm);
580 }
581
582 /*
583  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
584  * mm's list and rbtree.  It has already been inserted into the interval tree.
585  */
586 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
587 {
588         struct vm_area_struct *prev;
589         struct rb_node **rb_link, *rb_parent;
590
591         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
592                            &prev, &rb_link, &rb_parent))
593                 BUG();
594         __vma_link(mm, vma, prev, rb_link, rb_parent);
595         mm->map_count++;
596 }
597
598 static inline void
599 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
600                 struct vm_area_struct *prev)
601 {
602         struct vm_area_struct *next;
603
604         vma_rb_erase(vma, &mm->mm_rb);
605         prev->vm_next = next = vma->vm_next;
606         if (next)
607                 next->vm_prev = prev;
608
609         /* Kill the cache */
610         vmacache_invalidate(mm);
611 }
612
613 /*
614  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
615  * is already present in an i_mmap tree without adjusting the tree.
616  * The following helper function should be used when such adjustments
617  * are necessary.  The "insert" vma (if any) is to be inserted
618  * before we drop the necessary locks.
619  */
620 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
621         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
622 {
623         struct mm_struct *mm = vma->vm_mm;
624         struct vm_area_struct *next = vma->vm_next;
625         struct vm_area_struct *importer = NULL;
626         struct address_space *mapping = NULL;
627         struct rb_root *root = NULL;
628         struct anon_vma *anon_vma = NULL;
629         struct file *file = vma->vm_file;
630         bool start_changed = false, end_changed = false;
631         long adjust_next = 0;
632         int remove_next = 0;
633
634         if (next && !insert) {
635                 struct vm_area_struct *exporter = NULL;
636
637                 if (end >= next->vm_end) {
638                         /*
639                          * vma expands, overlapping all the next, and
640                          * perhaps the one after too (mprotect case 6).
641                          */
642 again:                  remove_next = 1 + (end > next->vm_end);
643                         end = next->vm_end;
644                         exporter = next;
645                         importer = vma;
646                 } else if (end > next->vm_start) {
647                         /*
648                          * vma expands, overlapping part of the next:
649                          * mprotect case 5 shifting the boundary up.
650                          */
651                         adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
652                         exporter = next;
653                         importer = vma;
654                 } else if (end < vma->vm_end) {
655                         /*
656                          * vma shrinks, and !insert tells it's not
657                          * split_vma inserting another: so it must be
658                          * mprotect case 4 shifting the boundary down.
659                          */
660                         adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
661                         exporter = vma;
662                         importer = next;
663                 }
664
665                 /*
666                  * Easily overlooked: when mprotect shifts the boundary,
667                  * make sure the expanding vma has anon_vma set if the
668                  * shrinking vma had, to cover any anon pages imported.
669                  */
670                 if (exporter && exporter->anon_vma && !importer->anon_vma) {
671                         int error;
672
673                         importer->anon_vma = exporter->anon_vma;
674                         error = anon_vma_clone(importer, exporter);
675                         if (error)
676                                 return error;
677                 }
678         }
679
680         if (file) {
681                 mapping = file->f_mapping;
682                 root = &mapping->i_mmap;
683                 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
684
685                 if (adjust_next)
686                         uprobe_munmap(next, next->vm_start, next->vm_end);
687
688                 i_mmap_lock_write(mapping);
689                 if (insert) {
690                         /*
691                          * Put into interval tree now, so instantiated pages
692                          * are visible to arm/parisc __flush_dcache_page
693                          * throughout; but we cannot insert into address
694                          * space until vma start or end is updated.
695                          */
696                         __vma_link_file(insert);
697                 }
698         }
699
700         vma_adjust_trans_huge(vma, start, end, adjust_next);
701
702         anon_vma = vma->anon_vma;
703         if (!anon_vma && adjust_next)
704                 anon_vma = next->anon_vma;
705         if (anon_vma) {
706                 VM_BUG_ON_VMA(adjust_next && next->anon_vma &&
707                           anon_vma != next->anon_vma, next);
708                 anon_vma_lock_write(anon_vma);
709                 anon_vma_interval_tree_pre_update_vma(vma);
710                 if (adjust_next)
711                         anon_vma_interval_tree_pre_update_vma(next);
712         }
713
714         if (root) {
715                 flush_dcache_mmap_lock(mapping);
716                 vma_interval_tree_remove(vma, root);
717                 if (adjust_next)
718                         vma_interval_tree_remove(next, root);
719         }
720
721         if (start != vma->vm_start) {
722                 vma->vm_start = start;
723                 start_changed = true;
724         }
725         if (end != vma->vm_end) {
726                 vma->vm_end = end;
727                 end_changed = true;
728         }
729         vma->vm_pgoff = pgoff;
730         if (adjust_next) {
731                 next->vm_start += adjust_next << PAGE_SHIFT;
732                 next->vm_pgoff += adjust_next;
733         }
734
735         if (root) {
736                 if (adjust_next)
737                         vma_interval_tree_insert(next, root);
738                 vma_interval_tree_insert(vma, root);
739                 flush_dcache_mmap_unlock(mapping);
740         }
741
742         if (remove_next) {
743                 /*
744                  * vma_merge has merged next into vma, and needs
745                  * us to remove next before dropping the locks.
746                  */
747                 __vma_unlink(mm, next, vma);
748                 if (file)
749                         __remove_shared_vm_struct(next, file, mapping);
750         } else if (insert) {
751                 /*
752                  * split_vma has split insert from vma, and needs
753                  * us to insert it before dropping the locks
754                  * (it may either follow vma or precede it).
755                  */
756                 __insert_vm_struct(mm, insert);
757         } else {
758                 if (start_changed)
759                         vma_gap_update(vma);
760                 if (end_changed) {
761                         if (!next)
762                                 mm->highest_vm_end = end;
763                         else if (!adjust_next)
764                                 vma_gap_update(next);
765                 }
766         }
767
768         if (anon_vma) {
769                 anon_vma_interval_tree_post_update_vma(vma);
770                 if (adjust_next)
771                         anon_vma_interval_tree_post_update_vma(next);
772                 anon_vma_unlock_write(anon_vma);
773         }
774         if (mapping)
775                 i_mmap_unlock_write(mapping);
776
777         if (root) {
778                 uprobe_mmap(vma);
779
780                 if (adjust_next)
781                         uprobe_mmap(next);
782         }
783
784         if (remove_next) {
785                 if (file) {
786                         uprobe_munmap(next, next->vm_start, next->vm_end);
787                         fput(file);
788                 }
789                 if (next->anon_vma)
790                         anon_vma_merge(vma, next);
791                 mm->map_count--;
792                 mpol_put(vma_policy(next));
793                 kmem_cache_free(vm_area_cachep, next);
794                 /*
795                  * In mprotect's case 6 (see comments on vma_merge),
796                  * we must remove another next too. It would clutter
797                  * up the code too much to do both in one go.
798                  */
799                 next = vma->vm_next;
800                 if (remove_next == 2)
801                         goto again;
802                 else if (next)
803                         vma_gap_update(next);
804                 else
805                         mm->highest_vm_end = end;
806         }
807         if (insert && file)
808                 uprobe_mmap(insert);
809
810         validate_mm(mm);
811
812         return 0;
813 }
814
815 /*
816  * If the vma has a ->close operation then the driver probably needs to release
817  * per-vma resources, so we don't attempt to merge those.
818  */
819 static inline int is_mergeable_vma(struct vm_area_struct *vma,
820                                 struct file *file, unsigned long vm_flags,
821                                 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
822 {
823         /*
824          * VM_SOFTDIRTY should not prevent from VMA merging, if we
825          * match the flags but dirty bit -- the caller should mark
826          * merged VMA as dirty. If dirty bit won't be excluded from
827          * comparison, we increase pressue on the memory system forcing
828          * the kernel to generate new VMAs when old one could be
829          * extended instead.
830          */
831         if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
832                 return 0;
833         if (vma->vm_file != file)
834                 return 0;
835         if (vma->vm_ops && vma->vm_ops->close)
836                 return 0;
837         if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
838                 return 0;
839         return 1;
840 }
841
842 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
843                                         struct anon_vma *anon_vma2,
844                                         struct vm_area_struct *vma)
845 {
846         /*
847          * The list_is_singular() test is to avoid merging VMA cloned from
848          * parents. This can improve scalability caused by anon_vma lock.
849          */
850         if ((!anon_vma1 || !anon_vma2) && (!vma ||
851                 list_is_singular(&vma->anon_vma_chain)))
852                 return 1;
853         return anon_vma1 == anon_vma2;
854 }
855
856 /*
857  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
858  * in front of (at a lower virtual address and file offset than) the vma.
859  *
860  * We cannot merge two vmas if they have differently assigned (non-NULL)
861  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
862  *
863  * We don't check here for the merged mmap wrapping around the end of pagecache
864  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
865  * wrap, nor mmaps which cover the final page at index -1UL.
866  */
867 static int
868 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
869                      struct anon_vma *anon_vma, struct file *file,
870                      pgoff_t vm_pgoff,
871                      struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
872 {
873         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
874             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
875                 if (vma->vm_pgoff == vm_pgoff)
876                         return 1;
877         }
878         return 0;
879 }
880
881 /*
882  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
883  * beyond (at a higher virtual address and file offset than) the vma.
884  *
885  * We cannot merge two vmas if they have differently assigned (non-NULL)
886  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
887  */
888 static int
889 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
890                     struct anon_vma *anon_vma, struct file *file,
891                     pgoff_t vm_pgoff,
892                     struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
893 {
894         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
895             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
896                 pgoff_t vm_pglen;
897                 vm_pglen = vma_pages(vma);
898                 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
899                         return 1;
900         }
901         return 0;
902 }
903
904 /*
905  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
906  * whether that can be merged with its predecessor or its successor.
907  * Or both (it neatly fills a hole).
908  *
909  * In most cases - when called for mmap, brk or mremap - [addr,end) is
910  * certain not to be mapped by the time vma_merge is called; but when
911  * called for mprotect, it is certain to be already mapped (either at
912  * an offset within prev, or at the start of next), and the flags of
913  * this area are about to be changed to vm_flags - and the no-change
914  * case has already been eliminated.
915  *
916  * The following mprotect cases have to be considered, where AAAA is
917  * the area passed down from mprotect_fixup, never extending beyond one
918  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
919  *
920  *     AAAA             AAAA                AAAA          AAAA
921  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
922  *    cannot merge    might become    might become    might become
923  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
924  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
925  *    mremap move:                                    PPPPNNNNNNNN 8
926  *        AAAA
927  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
928  *    might become    case 1 below    case 2 below    case 3 below
929  *
930  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
931  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
932  */
933 struct vm_area_struct *vma_merge(struct mm_struct *mm,
934                         struct vm_area_struct *prev, unsigned long addr,
935                         unsigned long end, unsigned long vm_flags,
936                         struct anon_vma *anon_vma, struct file *file,
937                         pgoff_t pgoff, struct mempolicy *policy,
938                         struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
939 {
940         pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
941         struct vm_area_struct *area, *next;
942         int err;
943
944         /*
945          * We later require that vma->vm_flags == vm_flags,
946          * so this tests vma->vm_flags & VM_SPECIAL, too.
947          */
948         if (vm_flags & VM_SPECIAL)
949                 return NULL;
950
951         if (prev)
952                 next = prev->vm_next;
953         else
954                 next = mm->mmap;
955         area = next;
956         if (next && next->vm_end == end)                /* cases 6, 7, 8 */
957                 next = next->vm_next;
958
959         /*
960          * Can it merge with the predecessor?
961          */
962         if (prev && prev->vm_end == addr &&
963                         mpol_equal(vma_policy(prev), policy) &&
964                         can_vma_merge_after(prev, vm_flags,
965                                             anon_vma, file, pgoff,
966                                             vm_userfaultfd_ctx)) {
967                 /*
968                  * OK, it can.  Can we now merge in the successor as well?
969                  */
970                 if (next && end == next->vm_start &&
971                                 mpol_equal(policy, vma_policy(next)) &&
972                                 can_vma_merge_before(next, vm_flags,
973                                                      anon_vma, file,
974                                                      pgoff+pglen,
975                                                      vm_userfaultfd_ctx) &&
976                                 is_mergeable_anon_vma(prev->anon_vma,
977                                                       next->anon_vma, NULL)) {
978                                                         /* cases 1, 6 */
979                         err = vma_adjust(prev, prev->vm_start,
980                                 next->vm_end, prev->vm_pgoff, NULL);
981                 } else                                  /* cases 2, 5, 7 */
982                         err = vma_adjust(prev, prev->vm_start,
983                                 end, prev->vm_pgoff, NULL);
984                 if (err)
985                         return NULL;
986                 khugepaged_enter_vma_merge(prev, vm_flags);
987                 return prev;
988         }
989
990         /*
991          * Can this new request be merged in front of next?
992          */
993         if (next && end == next->vm_start &&
994                         mpol_equal(policy, vma_policy(next)) &&
995                         can_vma_merge_before(next, vm_flags,
996                                              anon_vma, file, pgoff+pglen,
997                                              vm_userfaultfd_ctx)) {
998                 if (prev && addr < prev->vm_end)        /* case 4 */
999                         err = vma_adjust(prev, prev->vm_start,
1000                                 addr, prev->vm_pgoff, NULL);
1001                 else                                    /* cases 3, 8 */
1002                         err = vma_adjust(area, addr, next->vm_end,
1003                                 next->vm_pgoff - pglen, NULL);
1004                 if (err)
1005                         return NULL;
1006                 khugepaged_enter_vma_merge(area, vm_flags);
1007                 return area;
1008         }
1009
1010         return NULL;
1011 }
1012
1013 /*
1014  * Rough compatbility check to quickly see if it's even worth looking
1015  * at sharing an anon_vma.
1016  *
1017  * They need to have the same vm_file, and the flags can only differ
1018  * in things that mprotect may change.
1019  *
1020  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1021  * we can merge the two vma's. For example, we refuse to merge a vma if
1022  * there is a vm_ops->close() function, because that indicates that the
1023  * driver is doing some kind of reference counting. But that doesn't
1024  * really matter for the anon_vma sharing case.
1025  */
1026 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1027 {
1028         return a->vm_end == b->vm_start &&
1029                 mpol_equal(vma_policy(a), vma_policy(b)) &&
1030                 a->vm_file == b->vm_file &&
1031                 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1032                 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1033 }
1034
1035 /*
1036  * Do some basic sanity checking to see if we can re-use the anon_vma
1037  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1038  * the same as 'old', the other will be the new one that is trying
1039  * to share the anon_vma.
1040  *
1041  * NOTE! This runs with mm_sem held for reading, so it is possible that
1042  * the anon_vma of 'old' is concurrently in the process of being set up
1043  * by another page fault trying to merge _that_. But that's ok: if it
1044  * is being set up, that automatically means that it will be a singleton
1045  * acceptable for merging, so we can do all of this optimistically. But
1046  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1047  *
1048  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1049  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1050  * is to return an anon_vma that is "complex" due to having gone through
1051  * a fork).
1052  *
1053  * We also make sure that the two vma's are compatible (adjacent,
1054  * and with the same memory policies). That's all stable, even with just
1055  * a read lock on the mm_sem.
1056  */
1057 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1058 {
1059         if (anon_vma_compatible(a, b)) {
1060                 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1061
1062                 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1063                         return anon_vma;
1064         }
1065         return NULL;
1066 }
1067
1068 /*
1069  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1070  * neighbouring vmas for a suitable anon_vma, before it goes off
1071  * to allocate a new anon_vma.  It checks because a repetitive
1072  * sequence of mprotects and faults may otherwise lead to distinct
1073  * anon_vmas being allocated, preventing vma merge in subsequent
1074  * mprotect.
1075  */
1076 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1077 {
1078         struct anon_vma *anon_vma;
1079         struct vm_area_struct *near;
1080
1081         near = vma->vm_next;
1082         if (!near)
1083                 goto try_prev;
1084
1085         anon_vma = reusable_anon_vma(near, vma, near);
1086         if (anon_vma)
1087                 return anon_vma;
1088 try_prev:
1089         near = vma->vm_prev;
1090         if (!near)
1091                 goto none;
1092
1093         anon_vma = reusable_anon_vma(near, near, vma);
1094         if (anon_vma)
1095                 return anon_vma;
1096 none:
1097         /*
1098          * There's no absolute need to look only at touching neighbours:
1099          * we could search further afield for "compatible" anon_vmas.
1100          * But it would probably just be a waste of time searching,
1101          * or lead to too many vmas hanging off the same anon_vma.
1102          * We're trying to allow mprotect remerging later on,
1103          * not trying to minimize memory used for anon_vmas.
1104          */
1105         return NULL;
1106 }
1107
1108 /*
1109  * If a hint addr is less than mmap_min_addr change hint to be as
1110  * low as possible but still greater than mmap_min_addr
1111  */
1112 static inline unsigned long round_hint_to_min(unsigned long hint)
1113 {
1114         hint &= PAGE_MASK;
1115         if (((void *)hint != NULL) &&
1116             (hint < mmap_min_addr))
1117                 return PAGE_ALIGN(mmap_min_addr);
1118         return hint;
1119 }
1120
1121 static inline int mlock_future_check(struct mm_struct *mm,
1122                                      unsigned long flags,
1123                                      unsigned long len)
1124 {
1125         unsigned long locked, lock_limit;
1126
1127         /*  mlock MCL_FUTURE? */
1128         if (flags & VM_LOCKED) {
1129                 locked = len >> PAGE_SHIFT;
1130                 locked += mm->locked_vm;
1131                 lock_limit = rlimit(RLIMIT_MEMLOCK);
1132                 lock_limit >>= PAGE_SHIFT;
1133                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1134                         return -EAGAIN;
1135         }
1136         return 0;
1137 }
1138
1139 /*
1140  * The caller must hold down_write(&current->mm->mmap_sem).
1141  */
1142 unsigned long do_mmap(struct file *file, unsigned long addr,
1143                         unsigned long len, unsigned long prot,
1144                         unsigned long flags, vm_flags_t vm_flags,
1145                         unsigned long pgoff, unsigned long *populate)
1146 {
1147         struct mm_struct *mm = current->mm;
1148
1149         *populate = 0;
1150
1151         if (!len)
1152                 return -EINVAL;
1153
1154         /*
1155          * Does the application expect PROT_READ to imply PROT_EXEC?
1156          *
1157          * (the exception is when the underlying filesystem is noexec
1158          *  mounted, in which case we dont add PROT_EXEC.)
1159          */
1160         if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1161                 if (!(file && path_noexec(&file->f_path)))
1162                         prot |= PROT_EXEC;
1163
1164         if (!(flags & MAP_FIXED))
1165                 addr = round_hint_to_min(addr);
1166
1167         /* Careful about overflows.. */
1168         len = PAGE_ALIGN(len);
1169         if (!len)
1170                 return -ENOMEM;
1171
1172         /* offset overflow? */
1173         if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1174                 return -EOVERFLOW;
1175
1176         /* Too many mappings? */
1177         if (mm->map_count > sysctl_max_map_count)
1178                 return -ENOMEM;
1179
1180         /* Obtain the address to map to. we verify (or select) it and ensure
1181          * that it represents a valid section of the address space.
1182          */
1183         addr = get_unmapped_area(file, addr, len, pgoff, flags);
1184         if (offset_in_page(addr))
1185                 return addr;
1186
1187         /* Do simple checking here so the lower-level routines won't have
1188          * to. we assume access permissions have been handled by the open
1189          * of the memory object, so we don't do any here.
1190          */
1191         vm_flags |= calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1192                         mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1193
1194         if (flags & MAP_LOCKED)
1195                 if (!can_do_mlock())
1196                         return -EPERM;
1197
1198         if (mlock_future_check(mm, vm_flags, len))
1199                 return -EAGAIN;
1200
1201         if (file) {
1202                 struct inode *inode = file_inode(file);
1203
1204                 switch (flags & MAP_TYPE) {
1205                 case MAP_SHARED:
1206                         if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1207                                 return -EACCES;
1208
1209                         /*
1210                          * Make sure we don't allow writing to an append-only
1211                          * file..
1212                          */
1213                         if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1214                                 return -EACCES;
1215
1216                         /*
1217                          * Make sure there are no mandatory locks on the file.
1218                          */
1219                         if (locks_verify_locked(file))
1220                                 return -EAGAIN;
1221
1222                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1223                         if (!(file->f_mode & FMODE_WRITE))
1224                                 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1225
1226                         /* fall through */
1227                 case MAP_PRIVATE:
1228                         if (!(file->f_mode & FMODE_READ))
1229                                 return -EACCES;
1230                         if (path_noexec(&file->f_path)) {
1231                                 if (vm_flags & VM_EXEC)
1232                                         return -EPERM;
1233                                 vm_flags &= ~VM_MAYEXEC;
1234                         }
1235
1236                         if (!file->f_op->mmap)
1237                                 return -ENODEV;
1238                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1239                                 return -EINVAL;
1240                         break;
1241
1242                 default:
1243                         return -EINVAL;
1244                 }
1245         } else {
1246                 switch (flags & MAP_TYPE) {
1247                 case MAP_SHARED:
1248                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1249                                 return -EINVAL;
1250                         /*
1251                          * Ignore pgoff.
1252                          */
1253                         pgoff = 0;
1254                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1255                         break;
1256                 case MAP_PRIVATE:
1257                         /*
1258                          * Set pgoff according to addr for anon_vma.
1259                          */
1260                         pgoff = addr >> PAGE_SHIFT;
1261                         break;
1262                 default:
1263                         return -EINVAL;
1264                 }
1265         }
1266
1267         /*
1268          * Set 'VM_NORESERVE' if we should not account for the
1269          * memory use of this mapping.
1270          */
1271         if (flags & MAP_NORESERVE) {
1272                 /* We honor MAP_NORESERVE if allowed to overcommit */
1273                 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1274                         vm_flags |= VM_NORESERVE;
1275
1276                 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1277                 if (file && is_file_hugepages(file))
1278                         vm_flags |= VM_NORESERVE;
1279         }
1280
1281         addr = mmap_region(file, addr, len, vm_flags, pgoff);
1282         if (!IS_ERR_VALUE(addr) &&
1283             ((vm_flags & VM_LOCKED) ||
1284              (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1285                 *populate = len;
1286         return addr;
1287 }
1288
1289 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1290                 unsigned long, prot, unsigned long, flags,
1291                 unsigned long, fd, unsigned long, pgoff)
1292 {
1293         struct file *file = NULL;
1294         unsigned long retval;
1295
1296         if (!(flags & MAP_ANONYMOUS)) {
1297                 audit_mmap_fd(fd, flags);
1298                 file = fget(fd);
1299                 if (!file)
1300                         return -EBADF;
1301                 if (is_file_hugepages(file))
1302                         len = ALIGN(len, huge_page_size(hstate_file(file)));
1303                 retval = -EINVAL;
1304                 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1305                         goto out_fput;
1306         } else if (flags & MAP_HUGETLB) {
1307                 struct user_struct *user = NULL;
1308                 struct hstate *hs;
1309
1310                 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
1311                 if (!hs)
1312                         return -EINVAL;
1313
1314                 len = ALIGN(len, huge_page_size(hs));
1315                 /*
1316                  * VM_NORESERVE is used because the reservations will be
1317                  * taken when vm_ops->mmap() is called
1318                  * A dummy user value is used because we are not locking
1319                  * memory so no accounting is necessary
1320                  */
1321                 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1322                                 VM_NORESERVE,
1323                                 &user, HUGETLB_ANONHUGE_INODE,
1324                                 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1325                 if (IS_ERR(file))
1326                         return PTR_ERR(file);
1327         }
1328
1329         flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1330
1331         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1332 out_fput:
1333         if (file)
1334                 fput(file);
1335         return retval;
1336 }
1337
1338 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1339 struct mmap_arg_struct {
1340         unsigned long addr;
1341         unsigned long len;
1342         unsigned long prot;
1343         unsigned long flags;
1344         unsigned long fd;
1345         unsigned long offset;
1346 };
1347
1348 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1349 {
1350         struct mmap_arg_struct a;
1351
1352         if (copy_from_user(&a, arg, sizeof(a)))
1353                 return -EFAULT;
1354         if (offset_in_page(a.offset))
1355                 return -EINVAL;
1356
1357         return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1358                               a.offset >> PAGE_SHIFT);
1359 }
1360 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1361
1362 /*
1363  * Some shared mappigns will want the pages marked read-only
1364  * to track write events. If so, we'll downgrade vm_page_prot
1365  * to the private version (using protection_map[] without the
1366  * VM_SHARED bit).
1367  */
1368 int vma_wants_writenotify(struct vm_area_struct *vma)
1369 {
1370         vm_flags_t vm_flags = vma->vm_flags;
1371         const struct vm_operations_struct *vm_ops = vma->vm_ops;
1372
1373         /* If it was private or non-writable, the write bit is already clear */
1374         if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1375                 return 0;
1376
1377         /* The backer wishes to know when pages are first written to? */
1378         if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1379                 return 1;
1380
1381         /* The open routine did something to the protections that pgprot_modify
1382          * won't preserve? */
1383         if (pgprot_val(vma->vm_page_prot) !=
1384             pgprot_val(vm_pgprot_modify(vma->vm_page_prot, vm_flags)))
1385                 return 0;
1386
1387         /* Do we need to track softdirty? */
1388         if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1389                 return 1;
1390
1391         /* Specialty mapping? */
1392         if (vm_flags & VM_PFNMAP)
1393                 return 0;
1394
1395         /* Can the mapping track the dirty pages? */
1396         return vma->vm_file && vma->vm_file->f_mapping &&
1397                 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1398 }
1399
1400 /*
1401  * We account for memory if it's a private writeable mapping,
1402  * not hugepages and VM_NORESERVE wasn't set.
1403  */
1404 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1405 {
1406         /*
1407          * hugetlb has its own accounting separate from the core VM
1408          * VM_HUGETLB may not be set yet so we cannot check for that flag.
1409          */
1410         if (file && is_file_hugepages(file))
1411                 return 0;
1412
1413         return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1414 }
1415
1416 unsigned long mmap_region(struct file *file, unsigned long addr,
1417                 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1418 {
1419         struct mm_struct *mm = current->mm;
1420         struct vm_area_struct *vma, *prev;
1421         int error;
1422         struct rb_node **rb_link, *rb_parent;
1423         unsigned long charged = 0;
1424
1425         /* Check against address space limit. */
1426         if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1427                 unsigned long nr_pages;
1428
1429                 /*
1430                  * MAP_FIXED may remove pages of mappings that intersects with
1431                  * requested mapping. Account for the pages it would unmap.
1432                  */
1433                 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1434
1435                 if (!may_expand_vm(mm, vm_flags,
1436                                         (len >> PAGE_SHIFT) - nr_pages))
1437                         return -ENOMEM;
1438         }
1439
1440         /* Clear old maps */
1441         while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1442                               &rb_parent)) {
1443                 if (do_munmap(mm, addr, len))
1444                         return -ENOMEM;
1445         }
1446
1447         /*
1448          * Private writable mapping: check memory availability
1449          */
1450         if (accountable_mapping(file, vm_flags)) {
1451                 charged = len >> PAGE_SHIFT;
1452                 if (security_vm_enough_memory_mm(mm, charged))
1453                         return -ENOMEM;
1454                 vm_flags |= VM_ACCOUNT;
1455         }
1456
1457         /*
1458          * Can we just expand an old mapping?
1459          */
1460         vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1461                         NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1462         if (vma)
1463                 goto out;
1464
1465         /*
1466          * Determine the object being mapped and call the appropriate
1467          * specific mapper. the address has already been validated, but
1468          * not unmapped, but the maps are removed from the list.
1469          */
1470         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1471         if (!vma) {
1472                 error = -ENOMEM;
1473                 goto unacct_error;
1474         }
1475
1476         vma->vm_mm = mm;
1477         vma->vm_start = addr;
1478         vma->vm_end = addr + len;
1479         vma->vm_flags = vm_flags;
1480         vma->vm_page_prot = vm_get_page_prot(vm_flags);
1481         vma->vm_pgoff = pgoff;
1482         INIT_LIST_HEAD(&vma->anon_vma_chain);
1483
1484         if (file) {
1485                 if (vm_flags & VM_DENYWRITE) {
1486                         error = deny_write_access(file);
1487                         if (error)
1488                                 goto free_vma;
1489                 }
1490                 if (vm_flags & VM_SHARED) {
1491                         error = mapping_map_writable(file->f_mapping);
1492                         if (error)
1493                                 goto allow_write_and_free_vma;
1494                 }
1495
1496                 /* ->mmap() can change vma->vm_file, but must guarantee that
1497                  * vma_link() below can deny write-access if VM_DENYWRITE is set
1498                  * and map writably if VM_SHARED is set. This usually means the
1499                  * new file must not have been exposed to user-space, yet.
1500                  */
1501                 vma->vm_file = get_file(file);
1502                 error = file->f_op->mmap(file, vma);
1503                 if (error)
1504                         goto unmap_and_free_vma;
1505
1506                 /* Can addr have changed??
1507                  *
1508                  * Answer: Yes, several device drivers can do it in their
1509                  *         f_op->mmap method. -DaveM
1510                  * Bug: If addr is changed, prev, rb_link, rb_parent should
1511                  *      be updated for vma_link()
1512                  */
1513                 WARN_ON_ONCE(addr != vma->vm_start);
1514
1515                 addr = vma->vm_start;
1516                 vm_flags = vma->vm_flags;
1517         } else if (vm_flags & VM_SHARED) {
1518                 error = shmem_zero_setup(vma);
1519                 if (error)
1520                         goto free_vma;
1521         }
1522
1523         vma_link(mm, vma, prev, rb_link, rb_parent);
1524         /* Once vma denies write, undo our temporary denial count */
1525         if (file) {
1526                 if (vm_flags & VM_SHARED)
1527                         mapping_unmap_writable(file->f_mapping);
1528                 if (vm_flags & VM_DENYWRITE)
1529                         allow_write_access(file);
1530         }
1531         file = vma->vm_file;
1532 out:
1533         perf_event_mmap(vma);
1534
1535         vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1536         if (vm_flags & VM_LOCKED) {
1537                 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1538                                         vma == get_gate_vma(current->mm)))
1539                         mm->locked_vm += (len >> PAGE_SHIFT);
1540                 else
1541                         vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1542         }
1543
1544         if (file)
1545                 uprobe_mmap(vma);
1546
1547         /*
1548          * New (or expanded) vma always get soft dirty status.
1549          * Otherwise user-space soft-dirty page tracker won't
1550          * be able to distinguish situation when vma area unmapped,
1551          * then new mapped in-place (which must be aimed as
1552          * a completely new data area).
1553          */
1554         vma->vm_flags |= VM_SOFTDIRTY;
1555
1556         vma_set_page_prot(vma);
1557
1558         return addr;
1559
1560 unmap_and_free_vma:
1561         vma->vm_file = NULL;
1562         fput(file);
1563
1564         /* Undo any partial mapping done by a device driver. */
1565         unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1566         charged = 0;
1567         if (vm_flags & VM_SHARED)
1568                 mapping_unmap_writable(file->f_mapping);
1569 allow_write_and_free_vma:
1570         if (vm_flags & VM_DENYWRITE)
1571                 allow_write_access(file);
1572 free_vma:
1573         kmem_cache_free(vm_area_cachep, vma);
1574 unacct_error:
1575         if (charged)
1576                 vm_unacct_memory(charged);
1577         return error;
1578 }
1579
1580 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1581 {
1582         /*
1583          * We implement the search by looking for an rbtree node that
1584          * immediately follows a suitable gap. That is,
1585          * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1586          * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1587          * - gap_end - gap_start >= length
1588          */
1589
1590         struct mm_struct *mm = current->mm;
1591         struct vm_area_struct *vma;
1592         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1593
1594         /* Adjust search length to account for worst case alignment overhead */
1595         length = info->length + info->align_mask;
1596         if (length < info->length)
1597                 return -ENOMEM;
1598
1599         /* Adjust search limits by the desired length */
1600         if (info->high_limit < length)
1601                 return -ENOMEM;
1602         high_limit = info->high_limit - length;
1603
1604         if (info->low_limit > high_limit)
1605                 return -ENOMEM;
1606         low_limit = info->low_limit + length;
1607
1608         /* Check if rbtree root looks promising */
1609         if (RB_EMPTY_ROOT(&mm->mm_rb))
1610                 goto check_highest;
1611         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1612         if (vma->rb_subtree_gap < length)
1613                 goto check_highest;
1614
1615         while (true) {
1616                 /* Visit left subtree if it looks promising */
1617                 gap_end = vma->vm_start;
1618                 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1619                         struct vm_area_struct *left =
1620                                 rb_entry(vma->vm_rb.rb_left,
1621                                          struct vm_area_struct, vm_rb);
1622                         if (left->rb_subtree_gap >= length) {
1623                                 vma = left;
1624                                 continue;
1625                         }
1626                 }
1627
1628                 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1629 check_current:
1630                 /* Check if current node has a suitable gap */
1631                 if (gap_start > high_limit)
1632                         return -ENOMEM;
1633                 if (gap_end >= low_limit && gap_end - gap_start >= length)
1634                         goto found;
1635
1636                 /* Visit right subtree if it looks promising */
1637                 if (vma->vm_rb.rb_right) {
1638                         struct vm_area_struct *right =
1639                                 rb_entry(vma->vm_rb.rb_right,
1640                                          struct vm_area_struct, vm_rb);
1641                         if (right->rb_subtree_gap >= length) {
1642                                 vma = right;
1643                                 continue;
1644                         }
1645                 }
1646
1647                 /* Go back up the rbtree to find next candidate node */
1648                 while (true) {
1649                         struct rb_node *prev = &vma->vm_rb;
1650                         if (!rb_parent(prev))
1651                                 goto check_highest;
1652                         vma = rb_entry(rb_parent(prev),
1653                                        struct vm_area_struct, vm_rb);
1654                         if (prev == vma->vm_rb.rb_left) {
1655                                 gap_start = vma->vm_prev->vm_end;
1656                                 gap_end = vma->vm_start;
1657                                 goto check_current;
1658                         }
1659                 }
1660         }
1661
1662 check_highest:
1663         /* Check highest gap, which does not precede any rbtree node */
1664         gap_start = mm->highest_vm_end;
1665         gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1666         if (gap_start > high_limit)
1667                 return -ENOMEM;
1668
1669 found:
1670         /* We found a suitable gap. Clip it with the original low_limit. */
1671         if (gap_start < info->low_limit)
1672                 gap_start = info->low_limit;
1673
1674         /* Adjust gap address to the desired alignment */
1675         gap_start += (info->align_offset - gap_start) & info->align_mask;
1676
1677         VM_BUG_ON(gap_start + info->length > info->high_limit);
1678         VM_BUG_ON(gap_start + info->length > gap_end);
1679         return gap_start;
1680 }
1681
1682 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1683 {
1684         struct mm_struct *mm = current->mm;
1685         struct vm_area_struct *vma;
1686         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1687
1688         /* Adjust search length to account for worst case alignment overhead */
1689         length = info->length + info->align_mask;
1690         if (length < info->length)
1691                 return -ENOMEM;
1692
1693         /*
1694          * Adjust search limits by the desired length.
1695          * See implementation comment at top of unmapped_area().
1696          */
1697         gap_end = info->high_limit;
1698         if (gap_end < length)
1699                 return -ENOMEM;
1700         high_limit = gap_end - length;
1701
1702         if (info->low_limit > high_limit)
1703                 return -ENOMEM;
1704         low_limit = info->low_limit + length;
1705
1706         /* Check highest gap, which does not precede any rbtree node */
1707         gap_start = mm->highest_vm_end;
1708         if (gap_start <= high_limit)
1709                 goto found_highest;
1710
1711         /* Check if rbtree root looks promising */
1712         if (RB_EMPTY_ROOT(&mm->mm_rb))
1713                 return -ENOMEM;
1714         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1715         if (vma->rb_subtree_gap < length)
1716                 return -ENOMEM;
1717
1718         while (true) {
1719                 /* Visit right subtree if it looks promising */
1720                 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1721                 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1722                         struct vm_area_struct *right =
1723                                 rb_entry(vma->vm_rb.rb_right,
1724                                          struct vm_area_struct, vm_rb);
1725                         if (right->rb_subtree_gap >= length) {
1726                                 vma = right;
1727                                 continue;
1728                         }
1729                 }
1730
1731 check_current:
1732                 /* Check if current node has a suitable gap */
1733                 gap_end = vma->vm_start;
1734                 if (gap_end < low_limit)
1735                         return -ENOMEM;
1736                 if (gap_start <= high_limit && gap_end - gap_start >= length)
1737                         goto found;
1738
1739                 /* Visit left subtree if it looks promising */
1740                 if (vma->vm_rb.rb_left) {
1741                         struct vm_area_struct *left =
1742                                 rb_entry(vma->vm_rb.rb_left,
1743                                          struct vm_area_struct, vm_rb);
1744                         if (left->rb_subtree_gap >= length) {
1745                                 vma = left;
1746                                 continue;
1747                         }
1748                 }
1749
1750                 /* Go back up the rbtree to find next candidate node */
1751                 while (true) {
1752                         struct rb_node *prev = &vma->vm_rb;
1753                         if (!rb_parent(prev))
1754                                 return -ENOMEM;
1755                         vma = rb_entry(rb_parent(prev),
1756                                        struct vm_area_struct, vm_rb);
1757                         if (prev == vma->vm_rb.rb_right) {
1758                                 gap_start = vma->vm_prev ?
1759                                         vma->vm_prev->vm_end : 0;
1760                                 goto check_current;
1761                         }
1762                 }
1763         }
1764
1765 found:
1766         /* We found a suitable gap. Clip it with the original high_limit. */
1767         if (gap_end > info->high_limit)
1768                 gap_end = info->high_limit;
1769
1770 found_highest:
1771         /* Compute highest gap address at the desired alignment */
1772         gap_end -= info->length;
1773         gap_end -= (gap_end - info->align_offset) & info->align_mask;
1774
1775         VM_BUG_ON(gap_end < info->low_limit);
1776         VM_BUG_ON(gap_end < gap_start);
1777         return gap_end;
1778 }
1779
1780 /* Get an address range which is currently unmapped.
1781  * For shmat() with addr=0.
1782  *
1783  * Ugly calling convention alert:
1784  * Return value with the low bits set means error value,
1785  * ie
1786  *      if (ret & ~PAGE_MASK)
1787  *              error = ret;
1788  *
1789  * This function "knows" that -ENOMEM has the bits set.
1790  */
1791 #ifndef HAVE_ARCH_UNMAPPED_AREA
1792 unsigned long
1793 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1794                 unsigned long len, unsigned long pgoff, unsigned long flags)
1795 {
1796         struct mm_struct *mm = current->mm;
1797         struct vm_area_struct *vma;
1798         struct vm_unmapped_area_info info;
1799
1800         if (len > TASK_SIZE - mmap_min_addr)
1801                 return -ENOMEM;
1802
1803         if (flags & MAP_FIXED)
1804                 return addr;
1805
1806         if (addr) {
1807                 addr = PAGE_ALIGN(addr);
1808                 vma = find_vma(mm, addr);
1809                 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1810                     (!vma || addr + len <= vma->vm_start))
1811                         return addr;
1812         }
1813
1814         info.flags = 0;
1815         info.length = len;
1816         info.low_limit = mm->mmap_base;
1817         info.high_limit = TASK_SIZE;
1818         info.align_mask = 0;
1819         return vm_unmapped_area(&info);
1820 }
1821 #endif
1822
1823 /*
1824  * This mmap-allocator allocates new areas top-down from below the
1825  * stack's low limit (the base):
1826  */
1827 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1828 unsigned long
1829 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1830                           const unsigned long len, const unsigned long pgoff,
1831                           const unsigned long flags)
1832 {
1833         struct vm_area_struct *vma;
1834         struct mm_struct *mm = current->mm;
1835         unsigned long addr = addr0;
1836         struct vm_unmapped_area_info info;
1837
1838         /* requested length too big for entire address space */
1839         if (len > TASK_SIZE - mmap_min_addr)
1840                 return -ENOMEM;
1841
1842         if (flags & MAP_FIXED)
1843                 return addr;
1844
1845         /* requesting a specific address */
1846         if (addr) {
1847                 addr = PAGE_ALIGN(addr);
1848                 vma = find_vma(mm, addr);
1849                 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1850                                 (!vma || addr + len <= vma->vm_start))
1851                         return addr;
1852         }
1853
1854         info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1855         info.length = len;
1856         info.low_limit = max(PAGE_SIZE, mmap_min_addr);
1857         info.high_limit = mm->mmap_base;
1858         info.align_mask = 0;
1859         addr = vm_unmapped_area(&info);
1860
1861         /*
1862          * A failed mmap() very likely causes application failure,
1863          * so fall back to the bottom-up function here. This scenario
1864          * can happen with large stack limits and large mmap()
1865          * allocations.
1866          */
1867         if (offset_in_page(addr)) {
1868                 VM_BUG_ON(addr != -ENOMEM);
1869                 info.flags = 0;
1870                 info.low_limit = TASK_UNMAPPED_BASE;
1871                 info.high_limit = TASK_SIZE;
1872                 addr = vm_unmapped_area(&info);
1873         }
1874
1875         return addr;
1876 }
1877 #endif
1878
1879 unsigned long
1880 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1881                 unsigned long pgoff, unsigned long flags)
1882 {
1883         unsigned long (*get_area)(struct file *, unsigned long,
1884                                   unsigned long, unsigned long, unsigned long);
1885
1886         unsigned long error = arch_mmap_check(addr, len, flags);
1887         if (error)
1888                 return error;
1889
1890         /* Careful about overflows.. */
1891         if (len > TASK_SIZE)
1892                 return -ENOMEM;
1893
1894         get_area = current->mm->get_unmapped_area;
1895         if (file && file->f_op->get_unmapped_area)
1896                 get_area = file->f_op->get_unmapped_area;
1897         addr = get_area(file, addr, len, pgoff, flags);
1898         if (IS_ERR_VALUE(addr))
1899                 return addr;
1900
1901         if (addr > TASK_SIZE - len)
1902                 return -ENOMEM;
1903         if (offset_in_page(addr))
1904                 return -EINVAL;
1905
1906         addr = arch_rebalance_pgtables(addr, len);
1907         error = security_mmap_addr(addr);
1908         return error ? error : addr;
1909 }
1910
1911 EXPORT_SYMBOL(get_unmapped_area);
1912
1913 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1914 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1915 {
1916         struct rb_node *rb_node;
1917         struct vm_area_struct *vma;
1918
1919         /* Check the cache first. */
1920         vma = vmacache_find(mm, addr);
1921         if (likely(vma))
1922                 return vma;
1923
1924         rb_node = mm->mm_rb.rb_node;
1925
1926         while (rb_node) {
1927                 struct vm_area_struct *tmp;
1928
1929                 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1930
1931                 if (tmp->vm_end > addr) {
1932                         vma = tmp;
1933                         if (tmp->vm_start <= addr)
1934                                 break;
1935                         rb_node = rb_node->rb_left;
1936                 } else
1937                         rb_node = rb_node->rb_right;
1938         }
1939
1940         if (vma)
1941                 vmacache_update(addr, vma);
1942         return vma;
1943 }
1944
1945 EXPORT_SYMBOL(find_vma);
1946
1947 /*
1948  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
1949  */
1950 struct vm_area_struct *
1951 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1952                         struct vm_area_struct **pprev)
1953 {
1954         struct vm_area_struct *vma;
1955
1956         vma = find_vma(mm, addr);
1957         if (vma) {
1958                 *pprev = vma->vm_prev;
1959         } else {
1960                 struct rb_node *rb_node = mm->mm_rb.rb_node;
1961                 *pprev = NULL;
1962                 while (rb_node) {
1963                         *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1964                         rb_node = rb_node->rb_right;
1965                 }
1966         }
1967         return vma;
1968 }
1969
1970 /*
1971  * Verify that the stack growth is acceptable and
1972  * update accounting. This is shared with both the
1973  * grow-up and grow-down cases.
1974  */
1975 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
1976 {
1977         struct mm_struct *mm = vma->vm_mm;
1978         struct rlimit *rlim = current->signal->rlim;
1979         unsigned long new_start, actual_size;
1980
1981         /* address space limit tests */
1982         if (!may_expand_vm(mm, vma->vm_flags, grow))
1983                 return -ENOMEM;
1984
1985         /* Stack limit test */
1986         actual_size = size;
1987         if (size && (vma->vm_flags & (VM_GROWSUP | VM_GROWSDOWN)))
1988                 actual_size -= PAGE_SIZE;
1989         if (actual_size > READ_ONCE(rlim[RLIMIT_STACK].rlim_cur))
1990                 return -ENOMEM;
1991
1992         /* mlock limit tests */
1993         if (vma->vm_flags & VM_LOCKED) {
1994                 unsigned long locked;
1995                 unsigned long limit;
1996                 locked = mm->locked_vm + grow;
1997                 limit = READ_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
1998                 limit >>= PAGE_SHIFT;
1999                 if (locked > limit && !capable(CAP_IPC_LOCK))
2000                         return -ENOMEM;
2001         }
2002
2003         /* Check to ensure the stack will not grow into a hugetlb-only region */
2004         new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2005                         vma->vm_end - size;
2006         if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2007                 return -EFAULT;
2008
2009         /*
2010          * Overcommit..  This must be the final test, as it will
2011          * update security statistics.
2012          */
2013         if (security_vm_enough_memory_mm(mm, grow))
2014                 return -ENOMEM;
2015
2016         return 0;
2017 }
2018
2019 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2020 /*
2021  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2022  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2023  */
2024 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2025 {
2026         struct mm_struct *mm = vma->vm_mm;
2027         int error = 0;
2028
2029         if (!(vma->vm_flags & VM_GROWSUP))
2030                 return -EFAULT;
2031
2032         /* Guard against wrapping around to address 0. */
2033         if (address < PAGE_ALIGN(address+4))
2034                 address = PAGE_ALIGN(address+4);
2035         else
2036                 return -ENOMEM;
2037
2038         /* We must make sure the anon_vma is allocated. */
2039         if (unlikely(anon_vma_prepare(vma)))
2040                 return -ENOMEM;
2041
2042         /*
2043          * vma->vm_start/vm_end cannot change under us because the caller
2044          * is required to hold the mmap_sem in read mode.  We need the
2045          * anon_vma lock to serialize against concurrent expand_stacks.
2046          */
2047         anon_vma_lock_write(vma->anon_vma);
2048
2049         /* Somebody else might have raced and expanded it already */
2050         if (address > vma->vm_end) {
2051                 unsigned long size, grow;
2052
2053                 size = address - vma->vm_start;
2054                 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2055
2056                 error = -ENOMEM;
2057                 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2058                         error = acct_stack_growth(vma, size, grow);
2059                         if (!error) {
2060                                 /*
2061                                  * vma_gap_update() doesn't support concurrent
2062                                  * updates, but we only hold a shared mmap_sem
2063                                  * lock here, so we need to protect against
2064                                  * concurrent vma expansions.
2065                                  * anon_vma_lock_write() doesn't help here, as
2066                                  * we don't guarantee that all growable vmas
2067                                  * in a mm share the same root anon vma.
2068                                  * So, we reuse mm->page_table_lock to guard
2069                                  * against concurrent vma expansions.
2070                                  */
2071                                 spin_lock(&mm->page_table_lock);
2072                                 if (vma->vm_flags & VM_LOCKED)
2073                                         mm->locked_vm += grow;
2074                                 vm_stat_account(mm, vma->vm_flags, grow);
2075                                 anon_vma_interval_tree_pre_update_vma(vma);
2076                                 vma->vm_end = address;
2077                                 anon_vma_interval_tree_post_update_vma(vma);
2078                                 if (vma->vm_next)
2079                                         vma_gap_update(vma->vm_next);
2080                                 else
2081                                         mm->highest_vm_end = address;
2082                                 spin_unlock(&mm->page_table_lock);
2083
2084                                 perf_event_mmap(vma);
2085                         }
2086                 }
2087         }
2088         anon_vma_unlock_write(vma->anon_vma);
2089         khugepaged_enter_vma_merge(vma, vma->vm_flags);
2090         validate_mm(mm);
2091         return error;
2092 }
2093 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2094
2095 /*
2096  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2097  */
2098 int expand_downwards(struct vm_area_struct *vma,
2099                                    unsigned long address)
2100 {
2101         struct mm_struct *mm = vma->vm_mm;
2102         int error;
2103
2104         address &= PAGE_MASK;
2105         error = security_mmap_addr(address);
2106         if (error)
2107                 return error;
2108
2109         /* We must make sure the anon_vma is allocated. */
2110         if (unlikely(anon_vma_prepare(vma)))
2111                 return -ENOMEM;
2112
2113         /*
2114          * vma->vm_start/vm_end cannot change under us because the caller
2115          * is required to hold the mmap_sem in read mode.  We need the
2116          * anon_vma lock to serialize against concurrent expand_stacks.
2117          */
2118         anon_vma_lock_write(vma->anon_vma);
2119
2120         /* Somebody else might have raced and expanded it already */
2121         if (address < vma->vm_start) {
2122                 unsigned long size, grow;
2123
2124                 size = vma->vm_end - address;
2125                 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2126
2127                 error = -ENOMEM;
2128                 if (grow <= vma->vm_pgoff) {
2129                         error = acct_stack_growth(vma, size, grow);
2130                         if (!error) {
2131                                 /*
2132                                  * vma_gap_update() doesn't support concurrent
2133                                  * updates, but we only hold a shared mmap_sem
2134                                  * lock here, so we need to protect against
2135                                  * concurrent vma expansions.
2136                                  * anon_vma_lock_write() doesn't help here, as
2137                                  * we don't guarantee that all growable vmas
2138                                  * in a mm share the same root anon vma.
2139                                  * So, we reuse mm->page_table_lock to guard
2140                                  * against concurrent vma expansions.
2141                                  */
2142                                 spin_lock(&mm->page_table_lock);
2143                                 if (vma->vm_flags & VM_LOCKED)
2144                                         mm->locked_vm += grow;
2145                                 vm_stat_account(mm, vma->vm_flags, grow);
2146                                 anon_vma_interval_tree_pre_update_vma(vma);
2147                                 vma->vm_start = address;
2148                                 vma->vm_pgoff -= grow;
2149                                 anon_vma_interval_tree_post_update_vma(vma);
2150                                 vma_gap_update(vma);
2151                                 spin_unlock(&mm->page_table_lock);
2152
2153                                 perf_event_mmap(vma);
2154                         }
2155                 }
2156         }
2157         anon_vma_unlock_write(vma->anon_vma);
2158         khugepaged_enter_vma_merge(vma, vma->vm_flags);
2159         validate_mm(mm);
2160         return error;
2161 }
2162
2163 /*
2164  * Note how expand_stack() refuses to expand the stack all the way to
2165  * abut the next virtual mapping, *unless* that mapping itself is also
2166  * a stack mapping. We want to leave room for a guard page, after all
2167  * (the guard page itself is not added here, that is done by the
2168  * actual page faulting logic)
2169  *
2170  * This matches the behavior of the guard page logic (see mm/memory.c:
2171  * check_stack_guard_page()), which only allows the guard page to be
2172  * removed under these circumstances.
2173  */
2174 #ifdef CONFIG_STACK_GROWSUP
2175 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2176 {
2177         struct vm_area_struct *next;
2178
2179         address &= PAGE_MASK;
2180         next = vma->vm_next;
2181         if (next && next->vm_start == address + PAGE_SIZE) {
2182                 if (!(next->vm_flags & VM_GROWSUP))
2183                         return -ENOMEM;
2184         }
2185         return expand_upwards(vma, address);
2186 }
2187
2188 struct vm_area_struct *
2189 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2190 {
2191         struct vm_area_struct *vma, *prev;
2192
2193         addr &= PAGE_MASK;
2194         vma = find_vma_prev(mm, addr, &prev);
2195         if (vma && (vma->vm_start <= addr))
2196                 return vma;
2197         if (!prev || expand_stack(prev, addr))
2198                 return NULL;
2199         if (prev->vm_flags & VM_LOCKED)
2200                 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2201         return prev;
2202 }
2203 #else
2204 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2205 {
2206         struct vm_area_struct *prev;
2207
2208         address &= PAGE_MASK;
2209         prev = vma->vm_prev;
2210         if (prev && prev->vm_end == address) {
2211                 if (!(prev->vm_flags & VM_GROWSDOWN))
2212                         return -ENOMEM;
2213         }
2214         return expand_downwards(vma, address);
2215 }
2216
2217 struct vm_area_struct *
2218 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2219 {
2220         struct vm_area_struct *vma;
2221         unsigned long start;
2222
2223         addr &= PAGE_MASK;
2224         vma = find_vma(mm, addr);
2225         if (!vma)
2226                 return NULL;
2227         if (vma->vm_start <= addr)
2228                 return vma;
2229         if (!(vma->vm_flags & VM_GROWSDOWN))
2230                 return NULL;
2231         start = vma->vm_start;
2232         if (expand_stack(vma, addr))
2233                 return NULL;
2234         if (vma->vm_flags & VM_LOCKED)
2235                 populate_vma_page_range(vma, addr, start, NULL);
2236         return vma;
2237 }
2238 #endif
2239
2240 EXPORT_SYMBOL_GPL(find_extend_vma);
2241
2242 /*
2243  * Ok - we have the memory areas we should free on the vma list,
2244  * so release them, and do the vma updates.
2245  *
2246  * Called with the mm semaphore held.
2247  */
2248 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2249 {
2250         unsigned long nr_accounted = 0;
2251
2252         /* Update high watermark before we lower total_vm */
2253         update_hiwater_vm(mm);
2254         do {
2255                 long nrpages = vma_pages(vma);
2256
2257                 if (vma->vm_flags & VM_ACCOUNT)
2258                         nr_accounted += nrpages;
2259                 vm_stat_account(mm, vma->vm_flags, -nrpages);
2260                 vma = remove_vma(vma);
2261         } while (vma);
2262         vm_unacct_memory(nr_accounted);
2263         validate_mm(mm);
2264 }
2265
2266 /*
2267  * Get rid of page table information in the indicated region.
2268  *
2269  * Called with the mm semaphore held.
2270  */
2271 static void unmap_region(struct mm_struct *mm,
2272                 struct vm_area_struct *vma, struct vm_area_struct *prev,
2273                 unsigned long start, unsigned long end)
2274 {
2275         struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2276         struct mmu_gather tlb;
2277
2278         lru_add_drain();
2279         tlb_gather_mmu(&tlb, mm, start, end);
2280         update_hiwater_rss(mm);
2281         unmap_vmas(&tlb, vma, start, end);
2282         free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2283                                  next ? next->vm_start : USER_PGTABLES_CEILING);
2284         tlb_finish_mmu(&tlb, start, end);
2285 }
2286
2287 /*
2288  * Create a list of vma's touched by the unmap, removing them from the mm's
2289  * vma list as we go..
2290  */
2291 static void
2292 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2293         struct vm_area_struct *prev, unsigned long end)
2294 {
2295         struct vm_area_struct **insertion_point;
2296         struct vm_area_struct *tail_vma = NULL;
2297
2298         insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2299         vma->vm_prev = NULL;
2300         do {
2301                 vma_rb_erase(vma, &mm->mm_rb);
2302                 mm->map_count--;
2303                 tail_vma = vma;
2304                 vma = vma->vm_next;
2305         } while (vma && vma->vm_start < end);
2306         *insertion_point = vma;
2307         if (vma) {
2308                 vma->vm_prev = prev;
2309                 vma_gap_update(vma);
2310         } else
2311                 mm->highest_vm_end = prev ? prev->vm_end : 0;
2312         tail_vma->vm_next = NULL;
2313
2314         /* Kill the cache */
2315         vmacache_invalidate(mm);
2316 }
2317
2318 /*
2319  * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
2320  * munmap path where it doesn't make sense to fail.
2321  */
2322 static int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2323               unsigned long addr, int new_below)
2324 {
2325         struct vm_area_struct *new;
2326         int err;
2327
2328         if (is_vm_hugetlb_page(vma) && (addr &
2329                                         ~(huge_page_mask(hstate_vma(vma)))))
2330                 return -EINVAL;
2331
2332         new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2333         if (!new)
2334                 return -ENOMEM;
2335
2336         /* most fields are the same, copy all, and then fixup */
2337         *new = *vma;
2338
2339         INIT_LIST_HEAD(&new->anon_vma_chain);
2340
2341         if (new_below)
2342                 new->vm_end = addr;
2343         else {
2344                 new->vm_start = addr;
2345                 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2346         }
2347
2348         err = vma_dup_policy(vma, new);
2349         if (err)
2350                 goto out_free_vma;
2351
2352         err = anon_vma_clone(new, vma);
2353         if (err)
2354                 goto out_free_mpol;
2355
2356         if (new->vm_file)
2357                 get_file(new->vm_file);
2358
2359         if (new->vm_ops && new->vm_ops->open)
2360                 new->vm_ops->open(new);
2361
2362         if (new_below)
2363                 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2364                         ((addr - new->vm_start) >> PAGE_SHIFT), new);
2365         else
2366                 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2367
2368         /* Success. */
2369         if (!err)
2370                 return 0;
2371
2372         /* Clean everything up if vma_adjust failed. */
2373         if (new->vm_ops && new->vm_ops->close)
2374                 new->vm_ops->close(new);
2375         if (new->vm_file)
2376                 fput(new->vm_file);
2377         unlink_anon_vmas(new);
2378  out_free_mpol:
2379         mpol_put(vma_policy(new));
2380  out_free_vma:
2381         kmem_cache_free(vm_area_cachep, new);
2382         return err;
2383 }
2384
2385 /*
2386  * Split a vma into two pieces at address 'addr', a new vma is allocated
2387  * either for the first part or the tail.
2388  */
2389 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2390               unsigned long addr, int new_below)
2391 {
2392         if (mm->map_count >= sysctl_max_map_count)
2393                 return -ENOMEM;
2394
2395         return __split_vma(mm, vma, addr, new_below);
2396 }
2397
2398 /* Munmap is split into 2 main parts -- this part which finds
2399  * what needs doing, and the areas themselves, which do the
2400  * work.  This now handles partial unmappings.
2401  * Jeremy Fitzhardinge <jeremy@goop.org>
2402  */
2403 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2404 {
2405         unsigned long end;
2406         struct vm_area_struct *vma, *prev, *last;
2407
2408         if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2409                 return -EINVAL;
2410
2411         len = PAGE_ALIGN(len);
2412         if (len == 0)
2413                 return -EINVAL;
2414
2415         /* Find the first overlapping VMA */
2416         vma = find_vma(mm, start);
2417         if (!vma)
2418                 return 0;
2419         prev = vma->vm_prev;
2420         /* we have  start < vma->vm_end  */
2421
2422         /* if it doesn't overlap, we have nothing.. */
2423         end = start + len;
2424         if (vma->vm_start >= end)
2425                 return 0;
2426
2427         /*
2428          * If we need to split any vma, do it now to save pain later.
2429          *
2430          * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2431          * unmapped vm_area_struct will remain in use: so lower split_vma
2432          * places tmp vma above, and higher split_vma places tmp vma below.
2433          */
2434         if (start > vma->vm_start) {
2435                 int error;
2436
2437                 /*
2438                  * Make sure that map_count on return from munmap() will
2439                  * not exceed its limit; but let map_count go just above
2440                  * its limit temporarily, to help free resources as expected.
2441                  */
2442                 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2443                         return -ENOMEM;
2444
2445                 error = __split_vma(mm, vma, start, 0);
2446                 if (error)
2447                         return error;
2448                 prev = vma;
2449         }
2450
2451         /* Does it split the last one? */
2452         last = find_vma(mm, end);
2453         if (last && end > last->vm_start) {
2454                 int error = __split_vma(mm, last, end, 1);
2455                 if (error)
2456                         return error;
2457         }
2458         vma = prev ? prev->vm_next : mm->mmap;
2459
2460         /*
2461          * unlock any mlock()ed ranges before detaching vmas
2462          */
2463         if (mm->locked_vm) {
2464                 struct vm_area_struct *tmp = vma;
2465                 while (tmp && tmp->vm_start < end) {
2466                         if (tmp->vm_flags & VM_LOCKED) {
2467                                 mm->locked_vm -= vma_pages(tmp);
2468                                 munlock_vma_pages_all(tmp);
2469                         }
2470                         tmp = tmp->vm_next;
2471                 }
2472         }
2473
2474         /*
2475          * Remove the vma's, and unmap the actual pages
2476          */
2477         detach_vmas_to_be_unmapped(mm, vma, prev, end);
2478         unmap_region(mm, vma, prev, start, end);
2479
2480         arch_unmap(mm, vma, start, end);
2481
2482         /* Fix up all other VM information */
2483         remove_vma_list(mm, vma);
2484
2485         return 0;
2486 }
2487
2488 int vm_munmap(unsigned long start, size_t len)
2489 {
2490         int ret;
2491         struct mm_struct *mm = current->mm;
2492
2493         down_write(&mm->mmap_sem);
2494         ret = do_munmap(mm, start, len);
2495         up_write(&mm->mmap_sem);
2496         return ret;
2497 }
2498 EXPORT_SYMBOL(vm_munmap);
2499
2500 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2501 {
2502         profile_munmap(addr);
2503         return vm_munmap(addr, len);
2504 }
2505
2506
2507 /*
2508  * Emulation of deprecated remap_file_pages() syscall.
2509  */
2510 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2511                 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2512 {
2513
2514         struct mm_struct *mm = current->mm;
2515         struct vm_area_struct *vma;
2516         unsigned long populate = 0;
2517         unsigned long ret = -EINVAL;
2518         struct file *file;
2519
2520         pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.txt.\n",
2521                      current->comm, current->pid);
2522
2523         if (prot)
2524                 return ret;
2525         start = start & PAGE_MASK;
2526         size = size & PAGE_MASK;
2527
2528         if (start + size <= start)
2529                 return ret;
2530
2531         /* Does pgoff wrap? */
2532         if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2533                 return ret;
2534
2535         down_write(&mm->mmap_sem);
2536         vma = find_vma(mm, start);
2537
2538         if (!vma || !(vma->vm_flags & VM_SHARED))
2539                 goto out;
2540
2541         if (start < vma->vm_start)
2542                 goto out;
2543
2544         if (start + size > vma->vm_end) {
2545                 struct vm_area_struct *next;
2546
2547                 for (next = vma->vm_next; next; next = next->vm_next) {
2548                         /* hole between vmas ? */
2549                         if (next->vm_start != next->vm_prev->vm_end)
2550                                 goto out;
2551
2552                         if (next->vm_file != vma->vm_file)
2553                                 goto out;
2554
2555                         if (next->vm_flags != vma->vm_flags)
2556                                 goto out;
2557
2558                         if (start + size <= next->vm_end)
2559                                 break;
2560                 }
2561
2562                 if (!next)
2563                         goto out;
2564         }
2565
2566         prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2567         prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2568         prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2569
2570         flags &= MAP_NONBLOCK;
2571         flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2572         if (vma->vm_flags & VM_LOCKED) {
2573                 struct vm_area_struct *tmp;
2574                 flags |= MAP_LOCKED;
2575
2576                 /* drop PG_Mlocked flag for over-mapped range */
2577                 for (tmp = vma; tmp->vm_start >= start + size;
2578                                 tmp = tmp->vm_next) {
2579                         munlock_vma_pages_range(tmp,
2580                                         max(tmp->vm_start, start),
2581                                         min(tmp->vm_end, start + size));
2582                 }
2583         }
2584
2585         file = get_file(vma->vm_file);
2586         ret = do_mmap_pgoff(vma->vm_file, start, size,
2587                         prot, flags, pgoff, &populate);
2588         fput(file);
2589 out:
2590         up_write(&mm->mmap_sem);
2591         if (populate)
2592                 mm_populate(ret, populate);
2593         if (!IS_ERR_VALUE(ret))
2594                 ret = 0;
2595         return ret;
2596 }
2597
2598 static inline void verify_mm_writelocked(struct mm_struct *mm)
2599 {
2600 #ifdef CONFIG_DEBUG_VM
2601         if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2602                 WARN_ON(1);
2603                 up_read(&mm->mmap_sem);
2604         }
2605 #endif
2606 }
2607
2608 /*
2609  *  this is really a simplified "do_mmap".  it only handles
2610  *  anonymous maps.  eventually we may be able to do some
2611  *  brk-specific accounting here.
2612  */
2613 static unsigned long do_brk(unsigned long addr, unsigned long len)
2614 {
2615         struct mm_struct *mm = current->mm;
2616         struct vm_area_struct *vma, *prev;
2617         unsigned long flags;
2618         struct rb_node **rb_link, *rb_parent;
2619         pgoff_t pgoff = addr >> PAGE_SHIFT;
2620         int error;
2621
2622         len = PAGE_ALIGN(len);
2623         if (!len)
2624                 return addr;
2625
2626         flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2627
2628         error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2629         if (offset_in_page(error))
2630                 return error;
2631
2632         error = mlock_future_check(mm, mm->def_flags, len);
2633         if (error)
2634                 return error;
2635
2636         /*
2637          * mm->mmap_sem is required to protect against another thread
2638          * changing the mappings in case we sleep.
2639          */
2640         verify_mm_writelocked(mm);
2641
2642         /*
2643          * Clear old maps.  this also does some error checking for us
2644          */
2645         while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
2646                               &rb_parent)) {
2647                 if (do_munmap(mm, addr, len))
2648                         return -ENOMEM;
2649         }
2650
2651         /* Check against address space limits *after* clearing old maps... */
2652         if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
2653                 return -ENOMEM;
2654
2655         if (mm->map_count > sysctl_max_map_count)
2656                 return -ENOMEM;
2657
2658         if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2659                 return -ENOMEM;
2660
2661         /* Can we just expand an old private anonymous mapping? */
2662         vma = vma_merge(mm, prev, addr, addr + len, flags,
2663                         NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
2664         if (vma)
2665                 goto out;
2666
2667         /*
2668          * create a vma struct for an anonymous mapping
2669          */
2670         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2671         if (!vma) {
2672                 vm_unacct_memory(len >> PAGE_SHIFT);
2673                 return -ENOMEM;
2674         }
2675
2676         INIT_LIST_HEAD(&vma->anon_vma_chain);
2677         vma->vm_mm = mm;
2678         vma->vm_start = addr;
2679         vma->vm_end = addr + len;
2680         vma->vm_pgoff = pgoff;
2681         vma->vm_flags = flags;
2682         vma->vm_page_prot = vm_get_page_prot(flags);
2683         vma_link(mm, vma, prev, rb_link, rb_parent);
2684 out:
2685         perf_event_mmap(vma);
2686         mm->total_vm += len >> PAGE_SHIFT;
2687         mm->data_vm += len >> PAGE_SHIFT;
2688         if (flags & VM_LOCKED)
2689                 mm->locked_vm += (len >> PAGE_SHIFT);
2690         vma->vm_flags |= VM_SOFTDIRTY;
2691         return addr;
2692 }
2693
2694 unsigned long vm_brk(unsigned long addr, unsigned long len)
2695 {
2696         struct mm_struct *mm = current->mm;
2697         unsigned long ret;
2698         bool populate;
2699
2700         down_write(&mm->mmap_sem);
2701         ret = do_brk(addr, len);
2702         populate = ((mm->def_flags & VM_LOCKED) != 0);
2703         up_write(&mm->mmap_sem);
2704         if (populate)
2705                 mm_populate(addr, len);
2706         return ret;
2707 }
2708 EXPORT_SYMBOL(vm_brk);
2709
2710 /* Release all mmaps. */
2711 void exit_mmap(struct mm_struct *mm)
2712 {
2713         struct mmu_gather tlb;
2714         struct vm_area_struct *vma;
2715         unsigned long nr_accounted = 0;
2716
2717         /* mm's last user has gone, and its about to be pulled down */
2718         mmu_notifier_release(mm);
2719
2720         if (mm->locked_vm) {
2721                 vma = mm->mmap;
2722                 while (vma) {
2723                         if (vma->vm_flags & VM_LOCKED)
2724                                 munlock_vma_pages_all(vma);
2725                         vma = vma->vm_next;
2726                 }
2727         }
2728
2729         arch_exit_mmap(mm);
2730
2731         vma = mm->mmap;
2732         if (!vma)       /* Can happen if dup_mmap() received an OOM */
2733                 return;
2734
2735         lru_add_drain();
2736         flush_cache_mm(mm);
2737         tlb_gather_mmu(&tlb, mm, 0, -1);
2738         /* update_hiwater_rss(mm) here? but nobody should be looking */
2739         /* Use -1 here to ensure all VMAs in the mm are unmapped */
2740         unmap_vmas(&tlb, vma, 0, -1);
2741
2742         free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2743         tlb_finish_mmu(&tlb, 0, -1);
2744
2745         /*
2746          * Walk the list again, actually closing and freeing it,
2747          * with preemption enabled, without holding any MM locks.
2748          */
2749         while (vma) {
2750                 if (vma->vm_flags & VM_ACCOUNT)
2751                         nr_accounted += vma_pages(vma);
2752                 vma = remove_vma(vma);
2753         }
2754         vm_unacct_memory(nr_accounted);
2755 }
2756
2757 /* Insert vm structure into process list sorted by address
2758  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2759  * then i_mmap_rwsem is taken here.
2760  */
2761 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2762 {
2763         struct vm_area_struct *prev;
2764         struct rb_node **rb_link, *rb_parent;
2765
2766         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2767                            &prev, &rb_link, &rb_parent))
2768                 return -ENOMEM;
2769         if ((vma->vm_flags & VM_ACCOUNT) &&
2770              security_vm_enough_memory_mm(mm, vma_pages(vma)))
2771                 return -ENOMEM;
2772
2773         /*
2774          * The vm_pgoff of a purely anonymous vma should be irrelevant
2775          * until its first write fault, when page's anon_vma and index
2776          * are set.  But now set the vm_pgoff it will almost certainly
2777          * end up with (unless mremap moves it elsewhere before that
2778          * first wfault), so /proc/pid/maps tells a consistent story.
2779          *
2780          * By setting it to reflect the virtual start address of the
2781          * vma, merges and splits can happen in a seamless way, just
2782          * using the existing file pgoff checks and manipulations.
2783          * Similarly in do_mmap_pgoff and in do_brk.
2784          */
2785         if (vma_is_anonymous(vma)) {
2786                 BUG_ON(vma->anon_vma);
2787                 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2788         }
2789
2790         vma_link(mm, vma, prev, rb_link, rb_parent);
2791         return 0;
2792 }
2793
2794 /*
2795  * Copy the vma structure to a new location in the same mm,
2796  * prior to moving page table entries, to effect an mremap move.
2797  */
2798 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2799         unsigned long addr, unsigned long len, pgoff_t pgoff,
2800         bool *need_rmap_locks)
2801 {
2802         struct vm_area_struct *vma = *vmap;
2803         unsigned long vma_start = vma->vm_start;
2804         struct mm_struct *mm = vma->vm_mm;
2805         struct vm_area_struct *new_vma, *prev;
2806         struct rb_node **rb_link, *rb_parent;
2807         bool faulted_in_anon_vma = true;
2808
2809         /*
2810          * If anonymous vma has not yet been faulted, update new pgoff
2811          * to match new location, to increase its chance of merging.
2812          */
2813         if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
2814                 pgoff = addr >> PAGE_SHIFT;
2815                 faulted_in_anon_vma = false;
2816         }
2817
2818         if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2819                 return NULL;    /* should never get here */
2820         new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2821                             vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
2822                             vma->vm_userfaultfd_ctx);
2823         if (new_vma) {
2824                 /*
2825                  * Source vma may have been merged into new_vma
2826                  */
2827                 if (unlikely(vma_start >= new_vma->vm_start &&
2828                              vma_start < new_vma->vm_end)) {
2829                         /*
2830                          * The only way we can get a vma_merge with
2831                          * self during an mremap is if the vma hasn't
2832                          * been faulted in yet and we were allowed to
2833                          * reset the dst vma->vm_pgoff to the
2834                          * destination address of the mremap to allow
2835                          * the merge to happen. mremap must change the
2836                          * vm_pgoff linearity between src and dst vmas
2837                          * (in turn preventing a vma_merge) to be
2838                          * safe. It is only safe to keep the vm_pgoff
2839                          * linear if there are no pages mapped yet.
2840                          */
2841                         VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
2842                         *vmap = vma = new_vma;
2843                 }
2844                 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2845         } else {
2846                 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2847                 if (!new_vma)
2848                         goto out;
2849                 *new_vma = *vma;
2850                 new_vma->vm_start = addr;
2851                 new_vma->vm_end = addr + len;
2852                 new_vma->vm_pgoff = pgoff;
2853                 if (vma_dup_policy(vma, new_vma))
2854                         goto out_free_vma;
2855                 INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2856                 if (anon_vma_clone(new_vma, vma))
2857                         goto out_free_mempol;
2858                 if (new_vma->vm_file)
2859                         get_file(new_vma->vm_file);
2860                 if (new_vma->vm_ops && new_vma->vm_ops->open)
2861                         new_vma->vm_ops->open(new_vma);
2862                 vma_link(mm, new_vma, prev, rb_link, rb_parent);
2863                 *need_rmap_locks = false;
2864         }
2865         return new_vma;
2866
2867 out_free_mempol:
2868         mpol_put(vma_policy(new_vma));
2869 out_free_vma:
2870         kmem_cache_free(vm_area_cachep, new_vma);
2871 out:
2872         return NULL;
2873 }
2874
2875 /*
2876  * Return true if the calling process may expand its vm space by the passed
2877  * number of pages
2878  */
2879 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
2880 {
2881         if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
2882                 return false;
2883
2884         if (is_data_mapping(flags) &&
2885             mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
2886                 if (ignore_rlimit_data)
2887                         pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Will be forbidden soon.\n",
2888                                      current->comm, current->pid,
2889                                      (mm->data_vm + npages) << PAGE_SHIFT,
2890                                      rlimit(RLIMIT_DATA));
2891                 else
2892                         return false;
2893         }
2894
2895         return true;
2896 }
2897
2898 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
2899 {
2900         mm->total_vm += npages;
2901
2902         if (is_exec_mapping(flags))
2903                 mm->exec_vm += npages;
2904         else if (is_stack_mapping(flags))
2905                 mm->stack_vm += npages;
2906         else if (is_data_mapping(flags))
2907                 mm->data_vm += npages;
2908 }
2909
2910 static int special_mapping_fault(struct vm_area_struct *vma,
2911                                  struct vm_fault *vmf);
2912
2913 /*
2914  * Having a close hook prevents vma merging regardless of flags.
2915  */
2916 static void special_mapping_close(struct vm_area_struct *vma)
2917 {
2918 }
2919
2920 static const char *special_mapping_name(struct vm_area_struct *vma)
2921 {
2922         return ((struct vm_special_mapping *)vma->vm_private_data)->name;
2923 }
2924
2925 static const struct vm_operations_struct special_mapping_vmops = {
2926         .close = special_mapping_close,
2927         .fault = special_mapping_fault,
2928         .name = special_mapping_name,
2929 };
2930
2931 static const struct vm_operations_struct legacy_special_mapping_vmops = {
2932         .close = special_mapping_close,
2933         .fault = special_mapping_fault,
2934 };
2935
2936 static int special_mapping_fault(struct vm_area_struct *vma,
2937                                 struct vm_fault *vmf)
2938 {
2939         pgoff_t pgoff;
2940         struct page **pages;
2941
2942         if (vma->vm_ops == &legacy_special_mapping_vmops) {
2943                 pages = vma->vm_private_data;
2944         } else {
2945                 struct vm_special_mapping *sm = vma->vm_private_data;
2946
2947                 if (sm->fault)
2948                         return sm->fault(sm, vma, vmf);
2949
2950                 pages = sm->pages;
2951         }
2952
2953         for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
2954                 pgoff--;
2955
2956         if (*pages) {
2957                 struct page *page = *pages;
2958                 get_page(page);
2959                 vmf->page = page;
2960                 return 0;
2961         }
2962
2963         return VM_FAULT_SIGBUS;
2964 }
2965
2966 static struct vm_area_struct *__install_special_mapping(
2967         struct mm_struct *mm,
2968         unsigned long addr, unsigned long len,
2969         unsigned long vm_flags, void *priv,
2970         const struct vm_operations_struct *ops)
2971 {
2972         int ret;
2973         struct vm_area_struct *vma;
2974
2975         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2976         if (unlikely(vma == NULL))
2977                 return ERR_PTR(-ENOMEM);
2978
2979         INIT_LIST_HEAD(&vma->anon_vma_chain);
2980         vma->vm_mm = mm;
2981         vma->vm_start = addr;
2982         vma->vm_end = addr + len;
2983
2984         vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
2985         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2986
2987         vma->vm_ops = ops;
2988         vma->vm_private_data = priv;
2989
2990         ret = insert_vm_struct(mm, vma);
2991         if (ret)
2992                 goto out;
2993
2994         vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
2995
2996         perf_event_mmap(vma);
2997
2998         return vma;
2999
3000 out:
3001         kmem_cache_free(vm_area_cachep, vma);
3002         return ERR_PTR(ret);
3003 }
3004
3005 /*
3006  * Called with mm->mmap_sem held for writing.
3007  * Insert a new vma covering the given region, with the given flags.
3008  * Its pages are supplied by the given array of struct page *.
3009  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3010  * The region past the last page supplied will always produce SIGBUS.
3011  * The array pointer and the pages it points to are assumed to stay alive
3012  * for as long as this mapping might exist.
3013  */
3014 struct vm_area_struct *_install_special_mapping(
3015         struct mm_struct *mm,
3016         unsigned long addr, unsigned long len,
3017         unsigned long vm_flags, const struct vm_special_mapping *spec)
3018 {
3019         return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3020                                         &special_mapping_vmops);
3021 }
3022
3023 int install_special_mapping(struct mm_struct *mm,
3024                             unsigned long addr, unsigned long len,
3025                             unsigned long vm_flags, struct page **pages)
3026 {
3027         struct vm_area_struct *vma = __install_special_mapping(
3028                 mm, addr, len, vm_flags, (void *)pages,
3029                 &legacy_special_mapping_vmops);
3030
3031         return PTR_ERR_OR_ZERO(vma);
3032 }
3033
3034 static DEFINE_MUTEX(mm_all_locks_mutex);
3035
3036 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3037 {
3038         if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3039                 /*
3040                  * The LSB of head.next can't change from under us
3041                  * because we hold the mm_all_locks_mutex.
3042                  */
3043                 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3044                 /*
3045                  * We can safely modify head.next after taking the
3046                  * anon_vma->root->rwsem. If some other vma in this mm shares
3047                  * the same anon_vma we won't take it again.
3048                  *
3049                  * No need of atomic instructions here, head.next
3050                  * can't change from under us thanks to the
3051                  * anon_vma->root->rwsem.
3052                  */
3053                 if (__test_and_set_bit(0, (unsigned long *)
3054                                        &anon_vma->root->rb_root.rb_node))
3055                         BUG();
3056         }
3057 }
3058
3059 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3060 {
3061         if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3062                 /*
3063                  * AS_MM_ALL_LOCKS can't change from under us because
3064                  * we hold the mm_all_locks_mutex.
3065                  *
3066                  * Operations on ->flags have to be atomic because
3067                  * even if AS_MM_ALL_LOCKS is stable thanks to the
3068                  * mm_all_locks_mutex, there may be other cpus
3069                  * changing other bitflags in parallel to us.
3070                  */
3071                 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3072                         BUG();
3073                 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3074         }
3075 }
3076
3077 /*
3078  * This operation locks against the VM for all pte/vma/mm related
3079  * operations that could ever happen on a certain mm. This includes
3080  * vmtruncate, try_to_unmap, and all page faults.
3081  *
3082  * The caller must take the mmap_sem in write mode before calling
3083  * mm_take_all_locks(). The caller isn't allowed to release the
3084  * mmap_sem until mm_drop_all_locks() returns.
3085  *
3086  * mmap_sem in write mode is required in order to block all operations
3087  * that could modify pagetables and free pages without need of
3088  * altering the vma layout. It's also needed in write mode to avoid new
3089  * anon_vmas to be associated with existing vmas.
3090  *
3091  * A single task can't take more than one mm_take_all_locks() in a row
3092  * or it would deadlock.
3093  *
3094  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3095  * mapping->flags avoid to take the same lock twice, if more than one
3096  * vma in this mm is backed by the same anon_vma or address_space.
3097  *
3098  * We take locks in following order, accordingly to comment at beginning
3099  * of mm/rmap.c:
3100  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3101  *     hugetlb mapping);
3102  *   - all i_mmap_rwsem locks;
3103  *   - all anon_vma->rwseml
3104  *
3105  * We can take all locks within these types randomly because the VM code
3106  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3107  * mm_all_locks_mutex.
3108  *
3109  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3110  * that may have to take thousand of locks.
3111  *
3112  * mm_take_all_locks() can fail if it's interrupted by signals.
3113  */
3114 int mm_take_all_locks(struct mm_struct *mm)
3115 {
3116         struct vm_area_struct *vma;
3117         struct anon_vma_chain *avc;
3118
3119         BUG_ON(down_read_trylock(&mm->mmap_sem));
3120
3121         mutex_lock(&mm_all_locks_mutex);
3122
3123         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3124                 if (signal_pending(current))
3125                         goto out_unlock;
3126                 if (vma->vm_file && vma->vm_file->f_mapping &&
3127                                 is_vm_hugetlb_page(vma))
3128                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3129         }
3130
3131         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3132                 if (signal_pending(current))
3133                         goto out_unlock;
3134                 if (vma->vm_file && vma->vm_file->f_mapping &&
3135                                 !is_vm_hugetlb_page(vma))
3136                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3137         }
3138
3139         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3140                 if (signal_pending(current))
3141                         goto out_unlock;
3142                 if (vma->anon_vma)
3143                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3144                                 vm_lock_anon_vma(mm, avc->anon_vma);
3145         }
3146
3147         return 0;
3148
3149 out_unlock:
3150         mm_drop_all_locks(mm);
3151         return -EINTR;
3152 }
3153
3154 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3155 {
3156         if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3157                 /*
3158                  * The LSB of head.next can't change to 0 from under
3159                  * us because we hold the mm_all_locks_mutex.
3160                  *
3161                  * We must however clear the bitflag before unlocking
3162                  * the vma so the users using the anon_vma->rb_root will
3163                  * never see our bitflag.
3164                  *
3165                  * No need of atomic instructions here, head.next
3166                  * can't change from under us until we release the
3167                  * anon_vma->root->rwsem.
3168                  */
3169                 if (!__test_and_clear_bit(0, (unsigned long *)
3170                                           &anon_vma->root->rb_root.rb_node))
3171                         BUG();
3172                 anon_vma_unlock_write(anon_vma);
3173         }
3174 }
3175
3176 static void vm_unlock_mapping(struct address_space *mapping)
3177 {
3178         if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3179                 /*
3180                  * AS_MM_ALL_LOCKS can't change to 0 from under us
3181                  * because we hold the mm_all_locks_mutex.
3182                  */
3183                 i_mmap_unlock_write(mapping);
3184                 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3185                                         &mapping->flags))
3186                         BUG();
3187         }
3188 }
3189
3190 /*
3191  * The mmap_sem cannot be released by the caller until
3192  * mm_drop_all_locks() returns.
3193  */
3194 void mm_drop_all_locks(struct mm_struct *mm)
3195 {
3196         struct vm_area_struct *vma;
3197         struct anon_vma_chain *avc;
3198
3199         BUG_ON(down_read_trylock(&mm->mmap_sem));
3200         BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3201
3202         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3203                 if (vma->anon_vma)
3204                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3205                                 vm_unlock_anon_vma(avc->anon_vma);
3206                 if (vma->vm_file && vma->vm_file->f_mapping)
3207                         vm_unlock_mapping(vma->vm_file->f_mapping);
3208         }
3209
3210         mutex_unlock(&mm_all_locks_mutex);
3211 }
3212
3213 /*
3214  * initialise the VMA slab
3215  */
3216 void __init mmap_init(void)
3217 {
3218         int ret;
3219
3220         ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3221         VM_BUG_ON(ret);
3222 }
3223
3224 /*
3225  * Initialise sysctl_user_reserve_kbytes.
3226  *
3227  * This is intended to prevent a user from starting a single memory hogging
3228  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3229  * mode.
3230  *
3231  * The default value is min(3% of free memory, 128MB)
3232  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3233  */
3234 static int init_user_reserve(void)
3235 {
3236         unsigned long free_kbytes;
3237
3238         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3239
3240         sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3241         return 0;
3242 }
3243 subsys_initcall(init_user_reserve);
3244
3245 /*
3246  * Initialise sysctl_admin_reserve_kbytes.
3247  *
3248  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3249  * to log in and kill a memory hogging process.
3250  *
3251  * Systems with more than 256MB will reserve 8MB, enough to recover
3252  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3253  * only reserve 3% of free pages by default.
3254  */
3255 static int init_admin_reserve(void)
3256 {
3257         unsigned long free_kbytes;
3258
3259         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3260
3261         sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3262         return 0;
3263 }
3264 subsys_initcall(init_admin_reserve);
3265
3266 /*
3267  * Reinititalise user and admin reserves if memory is added or removed.
3268  *
3269  * The default user reserve max is 128MB, and the default max for the
3270  * admin reserve is 8MB. These are usually, but not always, enough to
3271  * enable recovery from a memory hogging process using login/sshd, a shell,
3272  * and tools like top. It may make sense to increase or even disable the
3273  * reserve depending on the existence of swap or variations in the recovery
3274  * tools. So, the admin may have changed them.
3275  *
3276  * If memory is added and the reserves have been eliminated or increased above
3277  * the default max, then we'll trust the admin.
3278  *
3279  * If memory is removed and there isn't enough free memory, then we
3280  * need to reset the reserves.
3281  *
3282  * Otherwise keep the reserve set by the admin.
3283  */
3284 static int reserve_mem_notifier(struct notifier_block *nb,
3285                              unsigned long action, void *data)
3286 {
3287         unsigned long tmp, free_kbytes;
3288
3289         switch (action) {
3290         case MEM_ONLINE:
3291                 /* Default max is 128MB. Leave alone if modified by operator. */
3292                 tmp = sysctl_user_reserve_kbytes;
3293                 if (0 < tmp && tmp < (1UL << 17))
3294                         init_user_reserve();
3295
3296                 /* Default max is 8MB.  Leave alone if modified by operator. */
3297                 tmp = sysctl_admin_reserve_kbytes;
3298                 if (0 < tmp && tmp < (1UL << 13))
3299                         init_admin_reserve();
3300
3301                 break;
3302         case MEM_OFFLINE:
3303                 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3304
3305                 if (sysctl_user_reserve_kbytes > free_kbytes) {
3306                         init_user_reserve();
3307                         pr_info("vm.user_reserve_kbytes reset to %lu\n",
3308                                 sysctl_user_reserve_kbytes);
3309                 }
3310
3311                 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3312                         init_admin_reserve();
3313                         pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3314                                 sysctl_admin_reserve_kbytes);
3315                 }
3316                 break;
3317         default:
3318                 break;
3319         }
3320         return NOTIFY_OK;
3321 }
3322
3323 static struct notifier_block reserve_mem_nb = {
3324         .notifier_call = reserve_mem_notifier,
3325 };
3326
3327 static int __meminit init_reserve_notifier(void)
3328 {
3329         if (register_hotmemory_notifier(&reserve_mem_nb))
3330                 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3331
3332         return 0;
3333 }
3334 subsys_initcall(init_reserve_notifier);