Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/sage/ceph...
[cascardo/linux.git] / mm / mmap.c
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code        <alan@lxorguk.ukuu.org.uk>
7  */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
14 #include <linux/mm.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/profile.h>
29 #include <linux/export.h>
30 #include <linux/mount.h>
31 #include <linux/mempolicy.h>
32 #include <linux/rmap.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/mmdebug.h>
35 #include <linux/perf_event.h>
36 #include <linux/audit.h>
37 #include <linux/khugepaged.h>
38 #include <linux/uprobes.h>
39 #include <linux/rbtree_augmented.h>
40 #include <linux/sched/sysctl.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46
47 #include <asm/uaccess.h>
48 #include <asm/cacheflush.h>
49 #include <asm/tlb.h>
50 #include <asm/mmu_context.h>
51
52 #include "internal.h"
53
54 #ifndef arch_mmap_check
55 #define arch_mmap_check(addr, len, flags)       (0)
56 #endif
57
58 #ifndef arch_rebalance_pgtables
59 #define arch_rebalance_pgtables(addr, len)              (addr)
60 #endif
61
62 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
63 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
64 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
65 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
66 #endif
67 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
68 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
69 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
70 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
71 #endif
72
73 static bool ignore_rlimit_data = true;
74 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
75
76 static void unmap_region(struct mm_struct *mm,
77                 struct vm_area_struct *vma, struct vm_area_struct *prev,
78                 unsigned long start, unsigned long end);
79
80 /* description of effects of mapping type and prot in current implementation.
81  * this is due to the limited x86 page protection hardware.  The expected
82  * behavior is in parens:
83  *
84  * map_type     prot
85  *              PROT_NONE       PROT_READ       PROT_WRITE      PROT_EXEC
86  * MAP_SHARED   r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
87  *              w: (no) no      w: (no) no      w: (yes) yes    w: (no) no
88  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
89  *
90  * MAP_PRIVATE  r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
91  *              w: (no) no      w: (no) no      w: (copy) copy  w: (no) no
92  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
93  *
94  */
95 pgprot_t protection_map[16] = {
96         __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
97         __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
98 };
99
100 pgprot_t vm_get_page_prot(unsigned long vm_flags)
101 {
102         return __pgprot(pgprot_val(protection_map[vm_flags &
103                                 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
104                         pgprot_val(arch_vm_get_page_prot(vm_flags)));
105 }
106 EXPORT_SYMBOL(vm_get_page_prot);
107
108 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
109 {
110         return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
111 }
112
113 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
114 void vma_set_page_prot(struct vm_area_struct *vma)
115 {
116         unsigned long vm_flags = vma->vm_flags;
117
118         vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
119         if (vma_wants_writenotify(vma)) {
120                 vm_flags &= ~VM_SHARED;
121                 vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot,
122                                                      vm_flags);
123         }
124 }
125
126
127 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;  /* heuristic overcommit */
128 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
129 unsigned long sysctl_overcommit_kbytes __read_mostly;
130 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
131 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
132 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
133 /*
134  * Make sure vm_committed_as in one cacheline and not cacheline shared with
135  * other variables. It can be updated by several CPUs frequently.
136  */
137 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
138
139 /*
140  * The global memory commitment made in the system can be a metric
141  * that can be used to drive ballooning decisions when Linux is hosted
142  * as a guest. On Hyper-V, the host implements a policy engine for dynamically
143  * balancing memory across competing virtual machines that are hosted.
144  * Several metrics drive this policy engine including the guest reported
145  * memory commitment.
146  */
147 unsigned long vm_memory_committed(void)
148 {
149         return percpu_counter_read_positive(&vm_committed_as);
150 }
151 EXPORT_SYMBOL_GPL(vm_memory_committed);
152
153 /*
154  * Check that a process has enough memory to allocate a new virtual
155  * mapping. 0 means there is enough memory for the allocation to
156  * succeed and -ENOMEM implies there is not.
157  *
158  * We currently support three overcommit policies, which are set via the
159  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
160  *
161  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
162  * Additional code 2002 Jul 20 by Robert Love.
163  *
164  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
165  *
166  * Note this is a helper function intended to be used by LSMs which
167  * wish to use this logic.
168  */
169 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
170 {
171         long free, allowed, reserve;
172
173         VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) <
174                         -(s64)vm_committed_as_batch * num_online_cpus(),
175                         "memory commitment underflow");
176
177         vm_acct_memory(pages);
178
179         /*
180          * Sometimes we want to use more memory than we have
181          */
182         if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
183                 return 0;
184
185         if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
186                 free = global_page_state(NR_FREE_PAGES);
187                 free += global_page_state(NR_FILE_PAGES);
188
189                 /*
190                  * shmem pages shouldn't be counted as free in this
191                  * case, they can't be purged, only swapped out, and
192                  * that won't affect the overall amount of available
193                  * memory in the system.
194                  */
195                 free -= global_page_state(NR_SHMEM);
196
197                 free += get_nr_swap_pages();
198
199                 /*
200                  * Any slabs which are created with the
201                  * SLAB_RECLAIM_ACCOUNT flag claim to have contents
202                  * which are reclaimable, under pressure.  The dentry
203                  * cache and most inode caches should fall into this
204                  */
205                 free += global_page_state(NR_SLAB_RECLAIMABLE);
206
207                 /*
208                  * Leave reserved pages. The pages are not for anonymous pages.
209                  */
210                 if (free <= totalreserve_pages)
211                         goto error;
212                 else
213                         free -= totalreserve_pages;
214
215                 /*
216                  * Reserve some for root
217                  */
218                 if (!cap_sys_admin)
219                         free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
220
221                 if (free > pages)
222                         return 0;
223
224                 goto error;
225         }
226
227         allowed = vm_commit_limit();
228         /*
229          * Reserve some for root
230          */
231         if (!cap_sys_admin)
232                 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
233
234         /*
235          * Don't let a single process grow so big a user can't recover
236          */
237         if (mm) {
238                 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
239                 allowed -= min_t(long, mm->total_vm / 32, reserve);
240         }
241
242         if (percpu_counter_read_positive(&vm_committed_as) < allowed)
243                 return 0;
244 error:
245         vm_unacct_memory(pages);
246
247         return -ENOMEM;
248 }
249
250 /*
251  * Requires inode->i_mapping->i_mmap_rwsem
252  */
253 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
254                 struct file *file, struct address_space *mapping)
255 {
256         if (vma->vm_flags & VM_DENYWRITE)
257                 atomic_inc(&file_inode(file)->i_writecount);
258         if (vma->vm_flags & VM_SHARED)
259                 mapping_unmap_writable(mapping);
260
261         flush_dcache_mmap_lock(mapping);
262         vma_interval_tree_remove(vma, &mapping->i_mmap);
263         flush_dcache_mmap_unlock(mapping);
264 }
265
266 /*
267  * Unlink a file-based vm structure from its interval tree, to hide
268  * vma from rmap and vmtruncate before freeing its page tables.
269  */
270 void unlink_file_vma(struct vm_area_struct *vma)
271 {
272         struct file *file = vma->vm_file;
273
274         if (file) {
275                 struct address_space *mapping = file->f_mapping;
276                 i_mmap_lock_write(mapping);
277                 __remove_shared_vm_struct(vma, file, mapping);
278                 i_mmap_unlock_write(mapping);
279         }
280 }
281
282 /*
283  * Close a vm structure and free it, returning the next.
284  */
285 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
286 {
287         struct vm_area_struct *next = vma->vm_next;
288
289         might_sleep();
290         if (vma->vm_ops && vma->vm_ops->close)
291                 vma->vm_ops->close(vma);
292         if (vma->vm_file)
293                 fput(vma->vm_file);
294         mpol_put(vma_policy(vma));
295         kmem_cache_free(vm_area_cachep, vma);
296         return next;
297 }
298
299 static unsigned long do_brk(unsigned long addr, unsigned long len);
300
301 SYSCALL_DEFINE1(brk, unsigned long, brk)
302 {
303         unsigned long retval;
304         unsigned long newbrk, oldbrk;
305         struct mm_struct *mm = current->mm;
306         unsigned long min_brk;
307         bool populate;
308
309         down_write(&mm->mmap_sem);
310
311 #ifdef CONFIG_COMPAT_BRK
312         /*
313          * CONFIG_COMPAT_BRK can still be overridden by setting
314          * randomize_va_space to 2, which will still cause mm->start_brk
315          * to be arbitrarily shifted
316          */
317         if (current->brk_randomized)
318                 min_brk = mm->start_brk;
319         else
320                 min_brk = mm->end_data;
321 #else
322         min_brk = mm->start_brk;
323 #endif
324         if (brk < min_brk)
325                 goto out;
326
327         /*
328          * Check against rlimit here. If this check is done later after the test
329          * of oldbrk with newbrk then it can escape the test and let the data
330          * segment grow beyond its set limit the in case where the limit is
331          * not page aligned -Ram Gupta
332          */
333         if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
334                               mm->end_data, mm->start_data))
335                 goto out;
336
337         newbrk = PAGE_ALIGN(brk);
338         oldbrk = PAGE_ALIGN(mm->brk);
339         if (oldbrk == newbrk)
340                 goto set_brk;
341
342         /* Always allow shrinking brk. */
343         if (brk <= mm->brk) {
344                 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
345                         goto set_brk;
346                 goto out;
347         }
348
349         /* Check against existing mmap mappings. */
350         if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
351                 goto out;
352
353         /* Ok, looks good - let it rip. */
354         if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
355                 goto out;
356
357 set_brk:
358         mm->brk = brk;
359         populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
360         up_write(&mm->mmap_sem);
361         if (populate)
362                 mm_populate(oldbrk, newbrk - oldbrk);
363         return brk;
364
365 out:
366         retval = mm->brk;
367         up_write(&mm->mmap_sem);
368         return retval;
369 }
370
371 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
372 {
373         unsigned long max, subtree_gap;
374         max = vma->vm_start;
375         if (vma->vm_prev)
376                 max -= vma->vm_prev->vm_end;
377         if (vma->vm_rb.rb_left) {
378                 subtree_gap = rb_entry(vma->vm_rb.rb_left,
379                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
380                 if (subtree_gap > max)
381                         max = subtree_gap;
382         }
383         if (vma->vm_rb.rb_right) {
384                 subtree_gap = rb_entry(vma->vm_rb.rb_right,
385                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
386                 if (subtree_gap > max)
387                         max = subtree_gap;
388         }
389         return max;
390 }
391
392 #ifdef CONFIG_DEBUG_VM_RB
393 static int browse_rb(struct rb_root *root)
394 {
395         int i = 0, j, bug = 0;
396         struct rb_node *nd, *pn = NULL;
397         unsigned long prev = 0, pend = 0;
398
399         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
400                 struct vm_area_struct *vma;
401                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
402                 if (vma->vm_start < prev) {
403                         pr_emerg("vm_start %lx < prev %lx\n",
404                                   vma->vm_start, prev);
405                         bug = 1;
406                 }
407                 if (vma->vm_start < pend) {
408                         pr_emerg("vm_start %lx < pend %lx\n",
409                                   vma->vm_start, pend);
410                         bug = 1;
411                 }
412                 if (vma->vm_start > vma->vm_end) {
413                         pr_emerg("vm_start %lx > vm_end %lx\n",
414                                   vma->vm_start, vma->vm_end);
415                         bug = 1;
416                 }
417                 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
418                         pr_emerg("free gap %lx, correct %lx\n",
419                                vma->rb_subtree_gap,
420                                vma_compute_subtree_gap(vma));
421                         bug = 1;
422                 }
423                 i++;
424                 pn = nd;
425                 prev = vma->vm_start;
426                 pend = vma->vm_end;
427         }
428         j = 0;
429         for (nd = pn; nd; nd = rb_prev(nd))
430                 j++;
431         if (i != j) {
432                 pr_emerg("backwards %d, forwards %d\n", j, i);
433                 bug = 1;
434         }
435         return bug ? -1 : i;
436 }
437
438 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
439 {
440         struct rb_node *nd;
441
442         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
443                 struct vm_area_struct *vma;
444                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
445                 VM_BUG_ON_VMA(vma != ignore &&
446                         vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
447                         vma);
448         }
449 }
450
451 static void validate_mm(struct mm_struct *mm)
452 {
453         int bug = 0;
454         int i = 0;
455         unsigned long highest_address = 0;
456         struct vm_area_struct *vma = mm->mmap;
457
458         while (vma) {
459                 struct anon_vma_chain *avc;
460
461                 vma_lock_anon_vma(vma);
462                 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
463                         anon_vma_interval_tree_verify(avc);
464                 vma_unlock_anon_vma(vma);
465                 highest_address = vma->vm_end;
466                 vma = vma->vm_next;
467                 i++;
468         }
469         if (i != mm->map_count) {
470                 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
471                 bug = 1;
472         }
473         if (highest_address != mm->highest_vm_end) {
474                 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
475                           mm->highest_vm_end, highest_address);
476                 bug = 1;
477         }
478         i = browse_rb(&mm->mm_rb);
479         if (i != mm->map_count) {
480                 if (i != -1)
481                         pr_emerg("map_count %d rb %d\n", mm->map_count, i);
482                 bug = 1;
483         }
484         VM_BUG_ON_MM(bug, mm);
485 }
486 #else
487 #define validate_mm_rb(root, ignore) do { } while (0)
488 #define validate_mm(mm) do { } while (0)
489 #endif
490
491 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
492                      unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
493
494 /*
495  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
496  * vma->vm_prev->vm_end values changed, without modifying the vma's position
497  * in the rbtree.
498  */
499 static void vma_gap_update(struct vm_area_struct *vma)
500 {
501         /*
502          * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
503          * function that does exacltly what we want.
504          */
505         vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
506 }
507
508 static inline void vma_rb_insert(struct vm_area_struct *vma,
509                                  struct rb_root *root)
510 {
511         /* All rb_subtree_gap values must be consistent prior to insertion */
512         validate_mm_rb(root, NULL);
513
514         rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
515 }
516
517 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
518 {
519         /*
520          * All rb_subtree_gap values must be consistent prior to erase,
521          * with the possible exception of the vma being erased.
522          */
523         validate_mm_rb(root, vma);
524
525         /*
526          * Note rb_erase_augmented is a fairly large inline function,
527          * so make sure we instantiate it only once with our desired
528          * augmented rbtree callbacks.
529          */
530         rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
531 }
532
533 /*
534  * vma has some anon_vma assigned, and is already inserted on that
535  * anon_vma's interval trees.
536  *
537  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
538  * vma must be removed from the anon_vma's interval trees using
539  * anon_vma_interval_tree_pre_update_vma().
540  *
541  * After the update, the vma will be reinserted using
542  * anon_vma_interval_tree_post_update_vma().
543  *
544  * The entire update must be protected by exclusive mmap_sem and by
545  * the root anon_vma's mutex.
546  */
547 static inline void
548 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
549 {
550         struct anon_vma_chain *avc;
551
552         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
553                 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
554 }
555
556 static inline void
557 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
558 {
559         struct anon_vma_chain *avc;
560
561         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
562                 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
563 }
564
565 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
566                 unsigned long end, struct vm_area_struct **pprev,
567                 struct rb_node ***rb_link, struct rb_node **rb_parent)
568 {
569         struct rb_node **__rb_link, *__rb_parent, *rb_prev;
570
571         __rb_link = &mm->mm_rb.rb_node;
572         rb_prev = __rb_parent = NULL;
573
574         while (*__rb_link) {
575                 struct vm_area_struct *vma_tmp;
576
577                 __rb_parent = *__rb_link;
578                 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
579
580                 if (vma_tmp->vm_end > addr) {
581                         /* Fail if an existing vma overlaps the area */
582                         if (vma_tmp->vm_start < end)
583                                 return -ENOMEM;
584                         __rb_link = &__rb_parent->rb_left;
585                 } else {
586                         rb_prev = __rb_parent;
587                         __rb_link = &__rb_parent->rb_right;
588                 }
589         }
590
591         *pprev = NULL;
592         if (rb_prev)
593                 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
594         *rb_link = __rb_link;
595         *rb_parent = __rb_parent;
596         return 0;
597 }
598
599 static unsigned long count_vma_pages_range(struct mm_struct *mm,
600                 unsigned long addr, unsigned long end)
601 {
602         unsigned long nr_pages = 0;
603         struct vm_area_struct *vma;
604
605         /* Find first overlaping mapping */
606         vma = find_vma_intersection(mm, addr, end);
607         if (!vma)
608                 return 0;
609
610         nr_pages = (min(end, vma->vm_end) -
611                 max(addr, vma->vm_start)) >> PAGE_SHIFT;
612
613         /* Iterate over the rest of the overlaps */
614         for (vma = vma->vm_next; vma; vma = vma->vm_next) {
615                 unsigned long overlap_len;
616
617                 if (vma->vm_start > end)
618                         break;
619
620                 overlap_len = min(end, vma->vm_end) - vma->vm_start;
621                 nr_pages += overlap_len >> PAGE_SHIFT;
622         }
623
624         return nr_pages;
625 }
626
627 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
628                 struct rb_node **rb_link, struct rb_node *rb_parent)
629 {
630         /* Update tracking information for the gap following the new vma. */
631         if (vma->vm_next)
632                 vma_gap_update(vma->vm_next);
633         else
634                 mm->highest_vm_end = vma->vm_end;
635
636         /*
637          * vma->vm_prev wasn't known when we followed the rbtree to find the
638          * correct insertion point for that vma. As a result, we could not
639          * update the vma vm_rb parents rb_subtree_gap values on the way down.
640          * So, we first insert the vma with a zero rb_subtree_gap value
641          * (to be consistent with what we did on the way down), and then
642          * immediately update the gap to the correct value. Finally we
643          * rebalance the rbtree after all augmented values have been set.
644          */
645         rb_link_node(&vma->vm_rb, rb_parent, rb_link);
646         vma->rb_subtree_gap = 0;
647         vma_gap_update(vma);
648         vma_rb_insert(vma, &mm->mm_rb);
649 }
650
651 static void __vma_link_file(struct vm_area_struct *vma)
652 {
653         struct file *file;
654
655         file = vma->vm_file;
656         if (file) {
657                 struct address_space *mapping = file->f_mapping;
658
659                 if (vma->vm_flags & VM_DENYWRITE)
660                         atomic_dec(&file_inode(file)->i_writecount);
661                 if (vma->vm_flags & VM_SHARED)
662                         atomic_inc(&mapping->i_mmap_writable);
663
664                 flush_dcache_mmap_lock(mapping);
665                 vma_interval_tree_insert(vma, &mapping->i_mmap);
666                 flush_dcache_mmap_unlock(mapping);
667         }
668 }
669
670 static void
671 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
672         struct vm_area_struct *prev, struct rb_node **rb_link,
673         struct rb_node *rb_parent)
674 {
675         __vma_link_list(mm, vma, prev, rb_parent);
676         __vma_link_rb(mm, vma, rb_link, rb_parent);
677 }
678
679 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
680                         struct vm_area_struct *prev, struct rb_node **rb_link,
681                         struct rb_node *rb_parent)
682 {
683         struct address_space *mapping = NULL;
684
685         if (vma->vm_file) {
686                 mapping = vma->vm_file->f_mapping;
687                 i_mmap_lock_write(mapping);
688         }
689
690         __vma_link(mm, vma, prev, rb_link, rb_parent);
691         __vma_link_file(vma);
692
693         if (mapping)
694                 i_mmap_unlock_write(mapping);
695
696         mm->map_count++;
697         validate_mm(mm);
698 }
699
700 /*
701  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
702  * mm's list and rbtree.  It has already been inserted into the interval tree.
703  */
704 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
705 {
706         struct vm_area_struct *prev;
707         struct rb_node **rb_link, *rb_parent;
708
709         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
710                            &prev, &rb_link, &rb_parent))
711                 BUG();
712         __vma_link(mm, vma, prev, rb_link, rb_parent);
713         mm->map_count++;
714 }
715
716 static inline void
717 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
718                 struct vm_area_struct *prev)
719 {
720         struct vm_area_struct *next;
721
722         vma_rb_erase(vma, &mm->mm_rb);
723         prev->vm_next = next = vma->vm_next;
724         if (next)
725                 next->vm_prev = prev;
726
727         /* Kill the cache */
728         vmacache_invalidate(mm);
729 }
730
731 /*
732  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
733  * is already present in an i_mmap tree without adjusting the tree.
734  * The following helper function should be used when such adjustments
735  * are necessary.  The "insert" vma (if any) is to be inserted
736  * before we drop the necessary locks.
737  */
738 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
739         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
740 {
741         struct mm_struct *mm = vma->vm_mm;
742         struct vm_area_struct *next = vma->vm_next;
743         struct vm_area_struct *importer = NULL;
744         struct address_space *mapping = NULL;
745         struct rb_root *root = NULL;
746         struct anon_vma *anon_vma = NULL;
747         struct file *file = vma->vm_file;
748         bool start_changed = false, end_changed = false;
749         long adjust_next = 0;
750         int remove_next = 0;
751
752         if (next && !insert) {
753                 struct vm_area_struct *exporter = NULL;
754
755                 if (end >= next->vm_end) {
756                         /*
757                          * vma expands, overlapping all the next, and
758                          * perhaps the one after too (mprotect case 6).
759                          */
760 again:                  remove_next = 1 + (end > next->vm_end);
761                         end = next->vm_end;
762                         exporter = next;
763                         importer = vma;
764                 } else if (end > next->vm_start) {
765                         /*
766                          * vma expands, overlapping part of the next:
767                          * mprotect case 5 shifting the boundary up.
768                          */
769                         adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
770                         exporter = next;
771                         importer = vma;
772                 } else if (end < vma->vm_end) {
773                         /*
774                          * vma shrinks, and !insert tells it's not
775                          * split_vma inserting another: so it must be
776                          * mprotect case 4 shifting the boundary down.
777                          */
778                         adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
779                         exporter = vma;
780                         importer = next;
781                 }
782
783                 /*
784                  * Easily overlooked: when mprotect shifts the boundary,
785                  * make sure the expanding vma has anon_vma set if the
786                  * shrinking vma had, to cover any anon pages imported.
787                  */
788                 if (exporter && exporter->anon_vma && !importer->anon_vma) {
789                         int error;
790
791                         importer->anon_vma = exporter->anon_vma;
792                         error = anon_vma_clone(importer, exporter);
793                         if (error)
794                                 return error;
795                 }
796         }
797
798         if (file) {
799                 mapping = file->f_mapping;
800                 root = &mapping->i_mmap;
801                 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
802
803                 if (adjust_next)
804                         uprobe_munmap(next, next->vm_start, next->vm_end);
805
806                 i_mmap_lock_write(mapping);
807                 if (insert) {
808                         /*
809                          * Put into interval tree now, so instantiated pages
810                          * are visible to arm/parisc __flush_dcache_page
811                          * throughout; but we cannot insert into address
812                          * space until vma start or end is updated.
813                          */
814                         __vma_link_file(insert);
815                 }
816         }
817
818         vma_adjust_trans_huge(vma, start, end, adjust_next);
819
820         anon_vma = vma->anon_vma;
821         if (!anon_vma && adjust_next)
822                 anon_vma = next->anon_vma;
823         if (anon_vma) {
824                 VM_BUG_ON_VMA(adjust_next && next->anon_vma &&
825                           anon_vma != next->anon_vma, next);
826                 anon_vma_lock_write(anon_vma);
827                 anon_vma_interval_tree_pre_update_vma(vma);
828                 if (adjust_next)
829                         anon_vma_interval_tree_pre_update_vma(next);
830         }
831
832         if (root) {
833                 flush_dcache_mmap_lock(mapping);
834                 vma_interval_tree_remove(vma, root);
835                 if (adjust_next)
836                         vma_interval_tree_remove(next, root);
837         }
838
839         if (start != vma->vm_start) {
840                 vma->vm_start = start;
841                 start_changed = true;
842         }
843         if (end != vma->vm_end) {
844                 vma->vm_end = end;
845                 end_changed = true;
846         }
847         vma->vm_pgoff = pgoff;
848         if (adjust_next) {
849                 next->vm_start += adjust_next << PAGE_SHIFT;
850                 next->vm_pgoff += adjust_next;
851         }
852
853         if (root) {
854                 if (adjust_next)
855                         vma_interval_tree_insert(next, root);
856                 vma_interval_tree_insert(vma, root);
857                 flush_dcache_mmap_unlock(mapping);
858         }
859
860         if (remove_next) {
861                 /*
862                  * vma_merge has merged next into vma, and needs
863                  * us to remove next before dropping the locks.
864                  */
865                 __vma_unlink(mm, next, vma);
866                 if (file)
867                         __remove_shared_vm_struct(next, file, mapping);
868         } else if (insert) {
869                 /*
870                  * split_vma has split insert from vma, and needs
871                  * us to insert it before dropping the locks
872                  * (it may either follow vma or precede it).
873                  */
874                 __insert_vm_struct(mm, insert);
875         } else {
876                 if (start_changed)
877                         vma_gap_update(vma);
878                 if (end_changed) {
879                         if (!next)
880                                 mm->highest_vm_end = end;
881                         else if (!adjust_next)
882                                 vma_gap_update(next);
883                 }
884         }
885
886         if (anon_vma) {
887                 anon_vma_interval_tree_post_update_vma(vma);
888                 if (adjust_next)
889                         anon_vma_interval_tree_post_update_vma(next);
890                 anon_vma_unlock_write(anon_vma);
891         }
892         if (mapping)
893                 i_mmap_unlock_write(mapping);
894
895         if (root) {
896                 uprobe_mmap(vma);
897
898                 if (adjust_next)
899                         uprobe_mmap(next);
900         }
901
902         if (remove_next) {
903                 if (file) {
904                         uprobe_munmap(next, next->vm_start, next->vm_end);
905                         fput(file);
906                 }
907                 if (next->anon_vma)
908                         anon_vma_merge(vma, next);
909                 mm->map_count--;
910                 mpol_put(vma_policy(next));
911                 kmem_cache_free(vm_area_cachep, next);
912                 /*
913                  * In mprotect's case 6 (see comments on vma_merge),
914                  * we must remove another next too. It would clutter
915                  * up the code too much to do both in one go.
916                  */
917                 next = vma->vm_next;
918                 if (remove_next == 2)
919                         goto again;
920                 else if (next)
921                         vma_gap_update(next);
922                 else
923                         mm->highest_vm_end = end;
924         }
925         if (insert && file)
926                 uprobe_mmap(insert);
927
928         validate_mm(mm);
929
930         return 0;
931 }
932
933 /*
934  * If the vma has a ->close operation then the driver probably needs to release
935  * per-vma resources, so we don't attempt to merge those.
936  */
937 static inline int is_mergeable_vma(struct vm_area_struct *vma,
938                                 struct file *file, unsigned long vm_flags,
939                                 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
940 {
941         /*
942          * VM_SOFTDIRTY should not prevent from VMA merging, if we
943          * match the flags but dirty bit -- the caller should mark
944          * merged VMA as dirty. If dirty bit won't be excluded from
945          * comparison, we increase pressue on the memory system forcing
946          * the kernel to generate new VMAs when old one could be
947          * extended instead.
948          */
949         if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
950                 return 0;
951         if (vma->vm_file != file)
952                 return 0;
953         if (vma->vm_ops && vma->vm_ops->close)
954                 return 0;
955         if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
956                 return 0;
957         return 1;
958 }
959
960 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
961                                         struct anon_vma *anon_vma2,
962                                         struct vm_area_struct *vma)
963 {
964         /*
965          * The list_is_singular() test is to avoid merging VMA cloned from
966          * parents. This can improve scalability caused by anon_vma lock.
967          */
968         if ((!anon_vma1 || !anon_vma2) && (!vma ||
969                 list_is_singular(&vma->anon_vma_chain)))
970                 return 1;
971         return anon_vma1 == anon_vma2;
972 }
973
974 /*
975  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
976  * in front of (at a lower virtual address and file offset than) the vma.
977  *
978  * We cannot merge two vmas if they have differently assigned (non-NULL)
979  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
980  *
981  * We don't check here for the merged mmap wrapping around the end of pagecache
982  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
983  * wrap, nor mmaps which cover the final page at index -1UL.
984  */
985 static int
986 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
987                      struct anon_vma *anon_vma, struct file *file,
988                      pgoff_t vm_pgoff,
989                      struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
990 {
991         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
992             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
993                 if (vma->vm_pgoff == vm_pgoff)
994                         return 1;
995         }
996         return 0;
997 }
998
999 /*
1000  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1001  * beyond (at a higher virtual address and file offset than) the vma.
1002  *
1003  * We cannot merge two vmas if they have differently assigned (non-NULL)
1004  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1005  */
1006 static int
1007 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1008                     struct anon_vma *anon_vma, struct file *file,
1009                     pgoff_t vm_pgoff,
1010                     struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1011 {
1012         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1013             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1014                 pgoff_t vm_pglen;
1015                 vm_pglen = vma_pages(vma);
1016                 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1017                         return 1;
1018         }
1019         return 0;
1020 }
1021
1022 /*
1023  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1024  * whether that can be merged with its predecessor or its successor.
1025  * Or both (it neatly fills a hole).
1026  *
1027  * In most cases - when called for mmap, brk or mremap - [addr,end) is
1028  * certain not to be mapped by the time vma_merge is called; but when
1029  * called for mprotect, it is certain to be already mapped (either at
1030  * an offset within prev, or at the start of next), and the flags of
1031  * this area are about to be changed to vm_flags - and the no-change
1032  * case has already been eliminated.
1033  *
1034  * The following mprotect cases have to be considered, where AAAA is
1035  * the area passed down from mprotect_fixup, never extending beyond one
1036  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1037  *
1038  *     AAAA             AAAA                AAAA          AAAA
1039  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
1040  *    cannot merge    might become    might become    might become
1041  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
1042  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
1043  *    mremap move:                                    PPPPNNNNNNNN 8
1044  *        AAAA
1045  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
1046  *    might become    case 1 below    case 2 below    case 3 below
1047  *
1048  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
1049  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
1050  */
1051 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1052                         struct vm_area_struct *prev, unsigned long addr,
1053                         unsigned long end, unsigned long vm_flags,
1054                         struct anon_vma *anon_vma, struct file *file,
1055                         pgoff_t pgoff, struct mempolicy *policy,
1056                         struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1057 {
1058         pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1059         struct vm_area_struct *area, *next;
1060         int err;
1061
1062         /*
1063          * We later require that vma->vm_flags == vm_flags,
1064          * so this tests vma->vm_flags & VM_SPECIAL, too.
1065          */
1066         if (vm_flags & VM_SPECIAL)
1067                 return NULL;
1068
1069         if (prev)
1070                 next = prev->vm_next;
1071         else
1072                 next = mm->mmap;
1073         area = next;
1074         if (next && next->vm_end == end)                /* cases 6, 7, 8 */
1075                 next = next->vm_next;
1076
1077         /*
1078          * Can it merge with the predecessor?
1079          */
1080         if (prev && prev->vm_end == addr &&
1081                         mpol_equal(vma_policy(prev), policy) &&
1082                         can_vma_merge_after(prev, vm_flags,
1083                                             anon_vma, file, pgoff,
1084                                             vm_userfaultfd_ctx)) {
1085                 /*
1086                  * OK, it can.  Can we now merge in the successor as well?
1087                  */
1088                 if (next && end == next->vm_start &&
1089                                 mpol_equal(policy, vma_policy(next)) &&
1090                                 can_vma_merge_before(next, vm_flags,
1091                                                      anon_vma, file,
1092                                                      pgoff+pglen,
1093                                                      vm_userfaultfd_ctx) &&
1094                                 is_mergeable_anon_vma(prev->anon_vma,
1095                                                       next->anon_vma, NULL)) {
1096                                                         /* cases 1, 6 */
1097                         err = vma_adjust(prev, prev->vm_start,
1098                                 next->vm_end, prev->vm_pgoff, NULL);
1099                 } else                                  /* cases 2, 5, 7 */
1100                         err = vma_adjust(prev, prev->vm_start,
1101                                 end, prev->vm_pgoff, NULL);
1102                 if (err)
1103                         return NULL;
1104                 khugepaged_enter_vma_merge(prev, vm_flags);
1105                 return prev;
1106         }
1107
1108         /*
1109          * Can this new request be merged in front of next?
1110          */
1111         if (next && end == next->vm_start &&
1112                         mpol_equal(policy, vma_policy(next)) &&
1113                         can_vma_merge_before(next, vm_flags,
1114                                              anon_vma, file, pgoff+pglen,
1115                                              vm_userfaultfd_ctx)) {
1116                 if (prev && addr < prev->vm_end)        /* case 4 */
1117                         err = vma_adjust(prev, prev->vm_start,
1118                                 addr, prev->vm_pgoff, NULL);
1119                 else                                    /* cases 3, 8 */
1120                         err = vma_adjust(area, addr, next->vm_end,
1121                                 next->vm_pgoff - pglen, NULL);
1122                 if (err)
1123                         return NULL;
1124                 khugepaged_enter_vma_merge(area, vm_flags);
1125                 return area;
1126         }
1127
1128         return NULL;
1129 }
1130
1131 /*
1132  * Rough compatbility check to quickly see if it's even worth looking
1133  * at sharing an anon_vma.
1134  *
1135  * They need to have the same vm_file, and the flags can only differ
1136  * in things that mprotect may change.
1137  *
1138  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1139  * we can merge the two vma's. For example, we refuse to merge a vma if
1140  * there is a vm_ops->close() function, because that indicates that the
1141  * driver is doing some kind of reference counting. But that doesn't
1142  * really matter for the anon_vma sharing case.
1143  */
1144 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1145 {
1146         return a->vm_end == b->vm_start &&
1147                 mpol_equal(vma_policy(a), vma_policy(b)) &&
1148                 a->vm_file == b->vm_file &&
1149                 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1150                 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1151 }
1152
1153 /*
1154  * Do some basic sanity checking to see if we can re-use the anon_vma
1155  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1156  * the same as 'old', the other will be the new one that is trying
1157  * to share the anon_vma.
1158  *
1159  * NOTE! This runs with mm_sem held for reading, so it is possible that
1160  * the anon_vma of 'old' is concurrently in the process of being set up
1161  * by another page fault trying to merge _that_. But that's ok: if it
1162  * is being set up, that automatically means that it will be a singleton
1163  * acceptable for merging, so we can do all of this optimistically. But
1164  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1165  *
1166  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1167  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1168  * is to return an anon_vma that is "complex" due to having gone through
1169  * a fork).
1170  *
1171  * We also make sure that the two vma's are compatible (adjacent,
1172  * and with the same memory policies). That's all stable, even with just
1173  * a read lock on the mm_sem.
1174  */
1175 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1176 {
1177         if (anon_vma_compatible(a, b)) {
1178                 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1179
1180                 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1181                         return anon_vma;
1182         }
1183         return NULL;
1184 }
1185
1186 /*
1187  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1188  * neighbouring vmas for a suitable anon_vma, before it goes off
1189  * to allocate a new anon_vma.  It checks because a repetitive
1190  * sequence of mprotects and faults may otherwise lead to distinct
1191  * anon_vmas being allocated, preventing vma merge in subsequent
1192  * mprotect.
1193  */
1194 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1195 {
1196         struct anon_vma *anon_vma;
1197         struct vm_area_struct *near;
1198
1199         near = vma->vm_next;
1200         if (!near)
1201                 goto try_prev;
1202
1203         anon_vma = reusable_anon_vma(near, vma, near);
1204         if (anon_vma)
1205                 return anon_vma;
1206 try_prev:
1207         near = vma->vm_prev;
1208         if (!near)
1209                 goto none;
1210
1211         anon_vma = reusable_anon_vma(near, near, vma);
1212         if (anon_vma)
1213                 return anon_vma;
1214 none:
1215         /*
1216          * There's no absolute need to look only at touching neighbours:
1217          * we could search further afield for "compatible" anon_vmas.
1218          * But it would probably just be a waste of time searching,
1219          * or lead to too many vmas hanging off the same anon_vma.
1220          * We're trying to allow mprotect remerging later on,
1221          * not trying to minimize memory used for anon_vmas.
1222          */
1223         return NULL;
1224 }
1225
1226 /*
1227  * If a hint addr is less than mmap_min_addr change hint to be as
1228  * low as possible but still greater than mmap_min_addr
1229  */
1230 static inline unsigned long round_hint_to_min(unsigned long hint)
1231 {
1232         hint &= PAGE_MASK;
1233         if (((void *)hint != NULL) &&
1234             (hint < mmap_min_addr))
1235                 return PAGE_ALIGN(mmap_min_addr);
1236         return hint;
1237 }
1238
1239 static inline int mlock_future_check(struct mm_struct *mm,
1240                                      unsigned long flags,
1241                                      unsigned long len)
1242 {
1243         unsigned long locked, lock_limit;
1244
1245         /*  mlock MCL_FUTURE? */
1246         if (flags & VM_LOCKED) {
1247                 locked = len >> PAGE_SHIFT;
1248                 locked += mm->locked_vm;
1249                 lock_limit = rlimit(RLIMIT_MEMLOCK);
1250                 lock_limit >>= PAGE_SHIFT;
1251                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1252                         return -EAGAIN;
1253         }
1254         return 0;
1255 }
1256
1257 /*
1258  * The caller must hold down_write(&current->mm->mmap_sem).
1259  */
1260 unsigned long do_mmap(struct file *file, unsigned long addr,
1261                         unsigned long len, unsigned long prot,
1262                         unsigned long flags, vm_flags_t vm_flags,
1263                         unsigned long pgoff, unsigned long *populate)
1264 {
1265         struct mm_struct *mm = current->mm;
1266
1267         *populate = 0;
1268
1269         if (!len)
1270                 return -EINVAL;
1271
1272         /*
1273          * Does the application expect PROT_READ to imply PROT_EXEC?
1274          *
1275          * (the exception is when the underlying filesystem is noexec
1276          *  mounted, in which case we dont add PROT_EXEC.)
1277          */
1278         if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1279                 if (!(file && path_noexec(&file->f_path)))
1280                         prot |= PROT_EXEC;
1281
1282         if (!(flags & MAP_FIXED))
1283                 addr = round_hint_to_min(addr);
1284
1285         /* Careful about overflows.. */
1286         len = PAGE_ALIGN(len);
1287         if (!len)
1288                 return -ENOMEM;
1289
1290         /* offset overflow? */
1291         if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1292                 return -EOVERFLOW;
1293
1294         /* Too many mappings? */
1295         if (mm->map_count > sysctl_max_map_count)
1296                 return -ENOMEM;
1297
1298         /* Obtain the address to map to. we verify (or select) it and ensure
1299          * that it represents a valid section of the address space.
1300          */
1301         addr = get_unmapped_area(file, addr, len, pgoff, flags);
1302         if (offset_in_page(addr))
1303                 return addr;
1304
1305         /* Do simple checking here so the lower-level routines won't have
1306          * to. we assume access permissions have been handled by the open
1307          * of the memory object, so we don't do any here.
1308          */
1309         vm_flags |= calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1310                         mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1311
1312         if (flags & MAP_LOCKED)
1313                 if (!can_do_mlock())
1314                         return -EPERM;
1315
1316         if (mlock_future_check(mm, vm_flags, len))
1317                 return -EAGAIN;
1318
1319         if (file) {
1320                 struct inode *inode = file_inode(file);
1321
1322                 switch (flags & MAP_TYPE) {
1323                 case MAP_SHARED:
1324                         if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1325                                 return -EACCES;
1326
1327                         /*
1328                          * Make sure we don't allow writing to an append-only
1329                          * file..
1330                          */
1331                         if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1332                                 return -EACCES;
1333
1334                         /*
1335                          * Make sure there are no mandatory locks on the file.
1336                          */
1337                         if (locks_verify_locked(file))
1338                                 return -EAGAIN;
1339
1340                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1341                         if (!(file->f_mode & FMODE_WRITE))
1342                                 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1343
1344                         /* fall through */
1345                 case MAP_PRIVATE:
1346                         if (!(file->f_mode & FMODE_READ))
1347                                 return -EACCES;
1348                         if (path_noexec(&file->f_path)) {
1349                                 if (vm_flags & VM_EXEC)
1350                                         return -EPERM;
1351                                 vm_flags &= ~VM_MAYEXEC;
1352                         }
1353
1354                         if (!file->f_op->mmap)
1355                                 return -ENODEV;
1356                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1357                                 return -EINVAL;
1358                         break;
1359
1360                 default:
1361                         return -EINVAL;
1362                 }
1363         } else {
1364                 switch (flags & MAP_TYPE) {
1365                 case MAP_SHARED:
1366                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1367                                 return -EINVAL;
1368                         /*
1369                          * Ignore pgoff.
1370                          */
1371                         pgoff = 0;
1372                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1373                         break;
1374                 case MAP_PRIVATE:
1375                         /*
1376                          * Set pgoff according to addr for anon_vma.
1377                          */
1378                         pgoff = addr >> PAGE_SHIFT;
1379                         break;
1380                 default:
1381                         return -EINVAL;
1382                 }
1383         }
1384
1385         /*
1386          * Set 'VM_NORESERVE' if we should not account for the
1387          * memory use of this mapping.
1388          */
1389         if (flags & MAP_NORESERVE) {
1390                 /* We honor MAP_NORESERVE if allowed to overcommit */
1391                 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1392                         vm_flags |= VM_NORESERVE;
1393
1394                 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1395                 if (file && is_file_hugepages(file))
1396                         vm_flags |= VM_NORESERVE;
1397         }
1398
1399         addr = mmap_region(file, addr, len, vm_flags, pgoff);
1400         if (!IS_ERR_VALUE(addr) &&
1401             ((vm_flags & VM_LOCKED) ||
1402              (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1403                 *populate = len;
1404         return addr;
1405 }
1406
1407 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1408                 unsigned long, prot, unsigned long, flags,
1409                 unsigned long, fd, unsigned long, pgoff)
1410 {
1411         struct file *file = NULL;
1412         unsigned long retval;
1413
1414         if (!(flags & MAP_ANONYMOUS)) {
1415                 audit_mmap_fd(fd, flags);
1416                 file = fget(fd);
1417                 if (!file)
1418                         return -EBADF;
1419                 if (is_file_hugepages(file))
1420                         len = ALIGN(len, huge_page_size(hstate_file(file)));
1421                 retval = -EINVAL;
1422                 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1423                         goto out_fput;
1424         } else if (flags & MAP_HUGETLB) {
1425                 struct user_struct *user = NULL;
1426                 struct hstate *hs;
1427
1428                 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
1429                 if (!hs)
1430                         return -EINVAL;
1431
1432                 len = ALIGN(len, huge_page_size(hs));
1433                 /*
1434                  * VM_NORESERVE is used because the reservations will be
1435                  * taken when vm_ops->mmap() is called
1436                  * A dummy user value is used because we are not locking
1437                  * memory so no accounting is necessary
1438                  */
1439                 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1440                                 VM_NORESERVE,
1441                                 &user, HUGETLB_ANONHUGE_INODE,
1442                                 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1443                 if (IS_ERR(file))
1444                         return PTR_ERR(file);
1445         }
1446
1447         flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1448
1449         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1450 out_fput:
1451         if (file)
1452                 fput(file);
1453         return retval;
1454 }
1455
1456 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1457 struct mmap_arg_struct {
1458         unsigned long addr;
1459         unsigned long len;
1460         unsigned long prot;
1461         unsigned long flags;
1462         unsigned long fd;
1463         unsigned long offset;
1464 };
1465
1466 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1467 {
1468         struct mmap_arg_struct a;
1469
1470         if (copy_from_user(&a, arg, sizeof(a)))
1471                 return -EFAULT;
1472         if (offset_in_page(a.offset))
1473                 return -EINVAL;
1474
1475         return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1476                               a.offset >> PAGE_SHIFT);
1477 }
1478 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1479
1480 /*
1481  * Some shared mappigns will want the pages marked read-only
1482  * to track write events. If so, we'll downgrade vm_page_prot
1483  * to the private version (using protection_map[] without the
1484  * VM_SHARED bit).
1485  */
1486 int vma_wants_writenotify(struct vm_area_struct *vma)
1487 {
1488         vm_flags_t vm_flags = vma->vm_flags;
1489         const struct vm_operations_struct *vm_ops = vma->vm_ops;
1490
1491         /* If it was private or non-writable, the write bit is already clear */
1492         if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1493                 return 0;
1494
1495         /* The backer wishes to know when pages are first written to? */
1496         if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1497                 return 1;
1498
1499         /* The open routine did something to the protections that pgprot_modify
1500          * won't preserve? */
1501         if (pgprot_val(vma->vm_page_prot) !=
1502             pgprot_val(vm_pgprot_modify(vma->vm_page_prot, vm_flags)))
1503                 return 0;
1504
1505         /* Do we need to track softdirty? */
1506         if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1507                 return 1;
1508
1509         /* Specialty mapping? */
1510         if (vm_flags & VM_PFNMAP)
1511                 return 0;
1512
1513         /* Can the mapping track the dirty pages? */
1514         return vma->vm_file && vma->vm_file->f_mapping &&
1515                 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1516 }
1517
1518 /*
1519  * We account for memory if it's a private writeable mapping,
1520  * not hugepages and VM_NORESERVE wasn't set.
1521  */
1522 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1523 {
1524         /*
1525          * hugetlb has its own accounting separate from the core VM
1526          * VM_HUGETLB may not be set yet so we cannot check for that flag.
1527          */
1528         if (file && is_file_hugepages(file))
1529                 return 0;
1530
1531         return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1532 }
1533
1534 unsigned long mmap_region(struct file *file, unsigned long addr,
1535                 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1536 {
1537         struct mm_struct *mm = current->mm;
1538         struct vm_area_struct *vma, *prev;
1539         int error;
1540         struct rb_node **rb_link, *rb_parent;
1541         unsigned long charged = 0;
1542
1543         /* Check against address space limit. */
1544         if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1545                 unsigned long nr_pages;
1546
1547                 /*
1548                  * MAP_FIXED may remove pages of mappings that intersects with
1549                  * requested mapping. Account for the pages it would unmap.
1550                  */
1551                 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1552
1553                 if (!may_expand_vm(mm, vm_flags,
1554                                         (len >> PAGE_SHIFT) - nr_pages))
1555                         return -ENOMEM;
1556         }
1557
1558         /* Clear old maps */
1559         while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1560                               &rb_parent)) {
1561                 if (do_munmap(mm, addr, len))
1562                         return -ENOMEM;
1563         }
1564
1565         /*
1566          * Private writable mapping: check memory availability
1567          */
1568         if (accountable_mapping(file, vm_flags)) {
1569                 charged = len >> PAGE_SHIFT;
1570                 if (security_vm_enough_memory_mm(mm, charged))
1571                         return -ENOMEM;
1572                 vm_flags |= VM_ACCOUNT;
1573         }
1574
1575         /*
1576          * Can we just expand an old mapping?
1577          */
1578         vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1579                         NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1580         if (vma)
1581                 goto out;
1582
1583         /*
1584          * Determine the object being mapped and call the appropriate
1585          * specific mapper. the address has already been validated, but
1586          * not unmapped, but the maps are removed from the list.
1587          */
1588         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1589         if (!vma) {
1590                 error = -ENOMEM;
1591                 goto unacct_error;
1592         }
1593
1594         vma->vm_mm = mm;
1595         vma->vm_start = addr;
1596         vma->vm_end = addr + len;
1597         vma->vm_flags = vm_flags;
1598         vma->vm_page_prot = vm_get_page_prot(vm_flags);
1599         vma->vm_pgoff = pgoff;
1600         INIT_LIST_HEAD(&vma->anon_vma_chain);
1601
1602         if (file) {
1603                 if (vm_flags & VM_DENYWRITE) {
1604                         error = deny_write_access(file);
1605                         if (error)
1606                                 goto free_vma;
1607                 }
1608                 if (vm_flags & VM_SHARED) {
1609                         error = mapping_map_writable(file->f_mapping);
1610                         if (error)
1611                                 goto allow_write_and_free_vma;
1612                 }
1613
1614                 /* ->mmap() can change vma->vm_file, but must guarantee that
1615                  * vma_link() below can deny write-access if VM_DENYWRITE is set
1616                  * and map writably if VM_SHARED is set. This usually means the
1617                  * new file must not have been exposed to user-space, yet.
1618                  */
1619                 vma->vm_file = get_file(file);
1620                 error = file->f_op->mmap(file, vma);
1621                 if (error)
1622                         goto unmap_and_free_vma;
1623
1624                 /* Can addr have changed??
1625                  *
1626                  * Answer: Yes, several device drivers can do it in their
1627                  *         f_op->mmap method. -DaveM
1628                  * Bug: If addr is changed, prev, rb_link, rb_parent should
1629                  *      be updated for vma_link()
1630                  */
1631                 WARN_ON_ONCE(addr != vma->vm_start);
1632
1633                 addr = vma->vm_start;
1634                 vm_flags = vma->vm_flags;
1635         } else if (vm_flags & VM_SHARED) {
1636                 error = shmem_zero_setup(vma);
1637                 if (error)
1638                         goto free_vma;
1639         }
1640
1641         vma_link(mm, vma, prev, rb_link, rb_parent);
1642         /* Once vma denies write, undo our temporary denial count */
1643         if (file) {
1644                 if (vm_flags & VM_SHARED)
1645                         mapping_unmap_writable(file->f_mapping);
1646                 if (vm_flags & VM_DENYWRITE)
1647                         allow_write_access(file);
1648         }
1649         file = vma->vm_file;
1650 out:
1651         perf_event_mmap(vma);
1652
1653         vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1654         if (vm_flags & VM_LOCKED) {
1655                 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1656                                         vma == get_gate_vma(current->mm)))
1657                         mm->locked_vm += (len >> PAGE_SHIFT);
1658                 else
1659                         vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1660         }
1661
1662         if (file)
1663                 uprobe_mmap(vma);
1664
1665         /*
1666          * New (or expanded) vma always get soft dirty status.
1667          * Otherwise user-space soft-dirty page tracker won't
1668          * be able to distinguish situation when vma area unmapped,
1669          * then new mapped in-place (which must be aimed as
1670          * a completely new data area).
1671          */
1672         vma->vm_flags |= VM_SOFTDIRTY;
1673
1674         vma_set_page_prot(vma);
1675
1676         return addr;
1677
1678 unmap_and_free_vma:
1679         vma->vm_file = NULL;
1680         fput(file);
1681
1682         /* Undo any partial mapping done by a device driver. */
1683         unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1684         charged = 0;
1685         if (vm_flags & VM_SHARED)
1686                 mapping_unmap_writable(file->f_mapping);
1687 allow_write_and_free_vma:
1688         if (vm_flags & VM_DENYWRITE)
1689                 allow_write_access(file);
1690 free_vma:
1691         kmem_cache_free(vm_area_cachep, vma);
1692 unacct_error:
1693         if (charged)
1694                 vm_unacct_memory(charged);
1695         return error;
1696 }
1697
1698 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1699 {
1700         /*
1701          * We implement the search by looking for an rbtree node that
1702          * immediately follows a suitable gap. That is,
1703          * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1704          * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1705          * - gap_end - gap_start >= length
1706          */
1707
1708         struct mm_struct *mm = current->mm;
1709         struct vm_area_struct *vma;
1710         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1711
1712         /* Adjust search length to account for worst case alignment overhead */
1713         length = info->length + info->align_mask;
1714         if (length < info->length)
1715                 return -ENOMEM;
1716
1717         /* Adjust search limits by the desired length */
1718         if (info->high_limit < length)
1719                 return -ENOMEM;
1720         high_limit = info->high_limit - length;
1721
1722         if (info->low_limit > high_limit)
1723                 return -ENOMEM;
1724         low_limit = info->low_limit + length;
1725
1726         /* Check if rbtree root looks promising */
1727         if (RB_EMPTY_ROOT(&mm->mm_rb))
1728                 goto check_highest;
1729         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1730         if (vma->rb_subtree_gap < length)
1731                 goto check_highest;
1732
1733         while (true) {
1734                 /* Visit left subtree if it looks promising */
1735                 gap_end = vma->vm_start;
1736                 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1737                         struct vm_area_struct *left =
1738                                 rb_entry(vma->vm_rb.rb_left,
1739                                          struct vm_area_struct, vm_rb);
1740                         if (left->rb_subtree_gap >= length) {
1741                                 vma = left;
1742                                 continue;
1743                         }
1744                 }
1745
1746                 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1747 check_current:
1748                 /* Check if current node has a suitable gap */
1749                 if (gap_start > high_limit)
1750                         return -ENOMEM;
1751                 if (gap_end >= low_limit && gap_end - gap_start >= length)
1752                         goto found;
1753
1754                 /* Visit right subtree if it looks promising */
1755                 if (vma->vm_rb.rb_right) {
1756                         struct vm_area_struct *right =
1757                                 rb_entry(vma->vm_rb.rb_right,
1758                                          struct vm_area_struct, vm_rb);
1759                         if (right->rb_subtree_gap >= length) {
1760                                 vma = right;
1761                                 continue;
1762                         }
1763                 }
1764
1765                 /* Go back up the rbtree to find next candidate node */
1766                 while (true) {
1767                         struct rb_node *prev = &vma->vm_rb;
1768                         if (!rb_parent(prev))
1769                                 goto check_highest;
1770                         vma = rb_entry(rb_parent(prev),
1771                                        struct vm_area_struct, vm_rb);
1772                         if (prev == vma->vm_rb.rb_left) {
1773                                 gap_start = vma->vm_prev->vm_end;
1774                                 gap_end = vma->vm_start;
1775                                 goto check_current;
1776                         }
1777                 }
1778         }
1779
1780 check_highest:
1781         /* Check highest gap, which does not precede any rbtree node */
1782         gap_start = mm->highest_vm_end;
1783         gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1784         if (gap_start > high_limit)
1785                 return -ENOMEM;
1786
1787 found:
1788         /* We found a suitable gap. Clip it with the original low_limit. */
1789         if (gap_start < info->low_limit)
1790                 gap_start = info->low_limit;
1791
1792         /* Adjust gap address to the desired alignment */
1793         gap_start += (info->align_offset - gap_start) & info->align_mask;
1794
1795         VM_BUG_ON(gap_start + info->length > info->high_limit);
1796         VM_BUG_ON(gap_start + info->length > gap_end);
1797         return gap_start;
1798 }
1799
1800 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1801 {
1802         struct mm_struct *mm = current->mm;
1803         struct vm_area_struct *vma;
1804         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1805
1806         /* Adjust search length to account for worst case alignment overhead */
1807         length = info->length + info->align_mask;
1808         if (length < info->length)
1809                 return -ENOMEM;
1810
1811         /*
1812          * Adjust search limits by the desired length.
1813          * See implementation comment at top of unmapped_area().
1814          */
1815         gap_end = info->high_limit;
1816         if (gap_end < length)
1817                 return -ENOMEM;
1818         high_limit = gap_end - length;
1819
1820         if (info->low_limit > high_limit)
1821                 return -ENOMEM;
1822         low_limit = info->low_limit + length;
1823
1824         /* Check highest gap, which does not precede any rbtree node */
1825         gap_start = mm->highest_vm_end;
1826         if (gap_start <= high_limit)
1827                 goto found_highest;
1828
1829         /* Check if rbtree root looks promising */
1830         if (RB_EMPTY_ROOT(&mm->mm_rb))
1831                 return -ENOMEM;
1832         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1833         if (vma->rb_subtree_gap < length)
1834                 return -ENOMEM;
1835
1836         while (true) {
1837                 /* Visit right subtree if it looks promising */
1838                 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1839                 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1840                         struct vm_area_struct *right =
1841                                 rb_entry(vma->vm_rb.rb_right,
1842                                          struct vm_area_struct, vm_rb);
1843                         if (right->rb_subtree_gap >= length) {
1844                                 vma = right;
1845                                 continue;
1846                         }
1847                 }
1848
1849 check_current:
1850                 /* Check if current node has a suitable gap */
1851                 gap_end = vma->vm_start;
1852                 if (gap_end < low_limit)
1853                         return -ENOMEM;
1854                 if (gap_start <= high_limit && gap_end - gap_start >= length)
1855                         goto found;
1856
1857                 /* Visit left subtree if it looks promising */
1858                 if (vma->vm_rb.rb_left) {
1859                         struct vm_area_struct *left =
1860                                 rb_entry(vma->vm_rb.rb_left,
1861                                          struct vm_area_struct, vm_rb);
1862                         if (left->rb_subtree_gap >= length) {
1863                                 vma = left;
1864                                 continue;
1865                         }
1866                 }
1867
1868                 /* Go back up the rbtree to find next candidate node */
1869                 while (true) {
1870                         struct rb_node *prev = &vma->vm_rb;
1871                         if (!rb_parent(prev))
1872                                 return -ENOMEM;
1873                         vma = rb_entry(rb_parent(prev),
1874                                        struct vm_area_struct, vm_rb);
1875                         if (prev == vma->vm_rb.rb_right) {
1876                                 gap_start = vma->vm_prev ?
1877                                         vma->vm_prev->vm_end : 0;
1878                                 goto check_current;
1879                         }
1880                 }
1881         }
1882
1883 found:
1884         /* We found a suitable gap. Clip it with the original high_limit. */
1885         if (gap_end > info->high_limit)
1886                 gap_end = info->high_limit;
1887
1888 found_highest:
1889         /* Compute highest gap address at the desired alignment */
1890         gap_end -= info->length;
1891         gap_end -= (gap_end - info->align_offset) & info->align_mask;
1892
1893         VM_BUG_ON(gap_end < info->low_limit);
1894         VM_BUG_ON(gap_end < gap_start);
1895         return gap_end;
1896 }
1897
1898 /* Get an address range which is currently unmapped.
1899  * For shmat() with addr=0.
1900  *
1901  * Ugly calling convention alert:
1902  * Return value with the low bits set means error value,
1903  * ie
1904  *      if (ret & ~PAGE_MASK)
1905  *              error = ret;
1906  *
1907  * This function "knows" that -ENOMEM has the bits set.
1908  */
1909 #ifndef HAVE_ARCH_UNMAPPED_AREA
1910 unsigned long
1911 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1912                 unsigned long len, unsigned long pgoff, unsigned long flags)
1913 {
1914         struct mm_struct *mm = current->mm;
1915         struct vm_area_struct *vma;
1916         struct vm_unmapped_area_info info;
1917
1918         if (len > TASK_SIZE - mmap_min_addr)
1919                 return -ENOMEM;
1920
1921         if (flags & MAP_FIXED)
1922                 return addr;
1923
1924         if (addr) {
1925                 addr = PAGE_ALIGN(addr);
1926                 vma = find_vma(mm, addr);
1927                 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1928                     (!vma || addr + len <= vma->vm_start))
1929                         return addr;
1930         }
1931
1932         info.flags = 0;
1933         info.length = len;
1934         info.low_limit = mm->mmap_base;
1935         info.high_limit = TASK_SIZE;
1936         info.align_mask = 0;
1937         return vm_unmapped_area(&info);
1938 }
1939 #endif
1940
1941 /*
1942  * This mmap-allocator allocates new areas top-down from below the
1943  * stack's low limit (the base):
1944  */
1945 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1946 unsigned long
1947 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1948                           const unsigned long len, const unsigned long pgoff,
1949                           const unsigned long flags)
1950 {
1951         struct vm_area_struct *vma;
1952         struct mm_struct *mm = current->mm;
1953         unsigned long addr = addr0;
1954         struct vm_unmapped_area_info info;
1955
1956         /* requested length too big for entire address space */
1957         if (len > TASK_SIZE - mmap_min_addr)
1958                 return -ENOMEM;
1959
1960         if (flags & MAP_FIXED)
1961                 return addr;
1962
1963         /* requesting a specific address */
1964         if (addr) {
1965                 addr = PAGE_ALIGN(addr);
1966                 vma = find_vma(mm, addr);
1967                 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1968                                 (!vma || addr + len <= vma->vm_start))
1969                         return addr;
1970         }
1971
1972         info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1973         info.length = len;
1974         info.low_limit = max(PAGE_SIZE, mmap_min_addr);
1975         info.high_limit = mm->mmap_base;
1976         info.align_mask = 0;
1977         addr = vm_unmapped_area(&info);
1978
1979         /*
1980          * A failed mmap() very likely causes application failure,
1981          * so fall back to the bottom-up function here. This scenario
1982          * can happen with large stack limits and large mmap()
1983          * allocations.
1984          */
1985         if (offset_in_page(addr)) {
1986                 VM_BUG_ON(addr != -ENOMEM);
1987                 info.flags = 0;
1988                 info.low_limit = TASK_UNMAPPED_BASE;
1989                 info.high_limit = TASK_SIZE;
1990                 addr = vm_unmapped_area(&info);
1991         }
1992
1993         return addr;
1994 }
1995 #endif
1996
1997 unsigned long
1998 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1999                 unsigned long pgoff, unsigned long flags)
2000 {
2001         unsigned long (*get_area)(struct file *, unsigned long,
2002                                   unsigned long, unsigned long, unsigned long);
2003
2004         unsigned long error = arch_mmap_check(addr, len, flags);
2005         if (error)
2006                 return error;
2007
2008         /* Careful about overflows.. */
2009         if (len > TASK_SIZE)
2010                 return -ENOMEM;
2011
2012         get_area = current->mm->get_unmapped_area;
2013         if (file && file->f_op->get_unmapped_area)
2014                 get_area = file->f_op->get_unmapped_area;
2015         addr = get_area(file, addr, len, pgoff, flags);
2016         if (IS_ERR_VALUE(addr))
2017                 return addr;
2018
2019         if (addr > TASK_SIZE - len)
2020                 return -ENOMEM;
2021         if (offset_in_page(addr))
2022                 return -EINVAL;
2023
2024         addr = arch_rebalance_pgtables(addr, len);
2025         error = security_mmap_addr(addr);
2026         return error ? error : addr;
2027 }
2028
2029 EXPORT_SYMBOL(get_unmapped_area);
2030
2031 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2032 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2033 {
2034         struct rb_node *rb_node;
2035         struct vm_area_struct *vma;
2036
2037         /* Check the cache first. */
2038         vma = vmacache_find(mm, addr);
2039         if (likely(vma))
2040                 return vma;
2041
2042         rb_node = mm->mm_rb.rb_node;
2043
2044         while (rb_node) {
2045                 struct vm_area_struct *tmp;
2046
2047                 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2048
2049                 if (tmp->vm_end > addr) {
2050                         vma = tmp;
2051                         if (tmp->vm_start <= addr)
2052                                 break;
2053                         rb_node = rb_node->rb_left;
2054                 } else
2055                         rb_node = rb_node->rb_right;
2056         }
2057
2058         if (vma)
2059                 vmacache_update(addr, vma);
2060         return vma;
2061 }
2062
2063 EXPORT_SYMBOL(find_vma);
2064
2065 /*
2066  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2067  */
2068 struct vm_area_struct *
2069 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2070                         struct vm_area_struct **pprev)
2071 {
2072         struct vm_area_struct *vma;
2073
2074         vma = find_vma(mm, addr);
2075         if (vma) {
2076                 *pprev = vma->vm_prev;
2077         } else {
2078                 struct rb_node *rb_node = mm->mm_rb.rb_node;
2079                 *pprev = NULL;
2080                 while (rb_node) {
2081                         *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2082                         rb_node = rb_node->rb_right;
2083                 }
2084         }
2085         return vma;
2086 }
2087
2088 /*
2089  * Verify that the stack growth is acceptable and
2090  * update accounting. This is shared with both the
2091  * grow-up and grow-down cases.
2092  */
2093 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
2094 {
2095         struct mm_struct *mm = vma->vm_mm;
2096         struct rlimit *rlim = current->signal->rlim;
2097         unsigned long new_start, actual_size;
2098
2099         /* address space limit tests */
2100         if (!may_expand_vm(mm, vma->vm_flags, grow))
2101                 return -ENOMEM;
2102
2103         /* Stack limit test */
2104         actual_size = size;
2105         if (size && (vma->vm_flags & (VM_GROWSUP | VM_GROWSDOWN)))
2106                 actual_size -= PAGE_SIZE;
2107         if (actual_size > READ_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2108                 return -ENOMEM;
2109
2110         /* mlock limit tests */
2111         if (vma->vm_flags & VM_LOCKED) {
2112                 unsigned long locked;
2113                 unsigned long limit;
2114                 locked = mm->locked_vm + grow;
2115                 limit = READ_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2116                 limit >>= PAGE_SHIFT;
2117                 if (locked > limit && !capable(CAP_IPC_LOCK))
2118                         return -ENOMEM;
2119         }
2120
2121         /* Check to ensure the stack will not grow into a hugetlb-only region */
2122         new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2123                         vma->vm_end - size;
2124         if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2125                 return -EFAULT;
2126
2127         /*
2128          * Overcommit..  This must be the final test, as it will
2129          * update security statistics.
2130          */
2131         if (security_vm_enough_memory_mm(mm, grow))
2132                 return -ENOMEM;
2133
2134         return 0;
2135 }
2136
2137 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2138 /*
2139  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2140  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2141  */
2142 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2143 {
2144         struct mm_struct *mm = vma->vm_mm;
2145         int error;
2146
2147         if (!(vma->vm_flags & VM_GROWSUP))
2148                 return -EFAULT;
2149
2150         /*
2151          * We must make sure the anon_vma is allocated
2152          * so that the anon_vma locking is not a noop.
2153          */
2154         if (unlikely(anon_vma_prepare(vma)))
2155                 return -ENOMEM;
2156         vma_lock_anon_vma(vma);
2157
2158         /*
2159          * vma->vm_start/vm_end cannot change under us because the caller
2160          * is required to hold the mmap_sem in read mode.  We need the
2161          * anon_vma lock to serialize against concurrent expand_stacks.
2162          * Also guard against wrapping around to address 0.
2163          */
2164         if (address < PAGE_ALIGN(address+4))
2165                 address = PAGE_ALIGN(address+4);
2166         else {
2167                 vma_unlock_anon_vma(vma);
2168                 return -ENOMEM;
2169         }
2170         error = 0;
2171
2172         /* Somebody else might have raced and expanded it already */
2173         if (address > vma->vm_end) {
2174                 unsigned long size, grow;
2175
2176                 size = address - vma->vm_start;
2177                 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2178
2179                 error = -ENOMEM;
2180                 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2181                         error = acct_stack_growth(vma, size, grow);
2182                         if (!error) {
2183                                 /*
2184                                  * vma_gap_update() doesn't support concurrent
2185                                  * updates, but we only hold a shared mmap_sem
2186                                  * lock here, so we need to protect against
2187                                  * concurrent vma expansions.
2188                                  * vma_lock_anon_vma() doesn't help here, as
2189                                  * we don't guarantee that all growable vmas
2190                                  * in a mm share the same root anon vma.
2191                                  * So, we reuse mm->page_table_lock to guard
2192                                  * against concurrent vma expansions.
2193                                  */
2194                                 spin_lock(&mm->page_table_lock);
2195                                 if (vma->vm_flags & VM_LOCKED)
2196                                         mm->locked_vm += grow;
2197                                 vm_stat_account(mm, vma->vm_flags, grow);
2198                                 anon_vma_interval_tree_pre_update_vma(vma);
2199                                 vma->vm_end = address;
2200                                 anon_vma_interval_tree_post_update_vma(vma);
2201                                 if (vma->vm_next)
2202                                         vma_gap_update(vma->vm_next);
2203                                 else
2204                                         mm->highest_vm_end = address;
2205                                 spin_unlock(&mm->page_table_lock);
2206
2207                                 perf_event_mmap(vma);
2208                         }
2209                 }
2210         }
2211         vma_unlock_anon_vma(vma);
2212         khugepaged_enter_vma_merge(vma, vma->vm_flags);
2213         validate_mm(mm);
2214         return error;
2215 }
2216 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2217
2218 /*
2219  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2220  */
2221 int expand_downwards(struct vm_area_struct *vma,
2222                                    unsigned long address)
2223 {
2224         struct mm_struct *mm = vma->vm_mm;
2225         int error;
2226
2227         /*
2228          * We must make sure the anon_vma is allocated
2229          * so that the anon_vma locking is not a noop.
2230          */
2231         if (unlikely(anon_vma_prepare(vma)))
2232                 return -ENOMEM;
2233
2234         address &= PAGE_MASK;
2235         error = security_mmap_addr(address);
2236         if (error)
2237                 return error;
2238
2239         vma_lock_anon_vma(vma);
2240
2241         /*
2242          * vma->vm_start/vm_end cannot change under us because the caller
2243          * is required to hold the mmap_sem in read mode.  We need the
2244          * anon_vma lock to serialize against concurrent expand_stacks.
2245          */
2246
2247         /* Somebody else might have raced and expanded it already */
2248         if (address < vma->vm_start) {
2249                 unsigned long size, grow;
2250
2251                 size = vma->vm_end - address;
2252                 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2253
2254                 error = -ENOMEM;
2255                 if (grow <= vma->vm_pgoff) {
2256                         error = acct_stack_growth(vma, size, grow);
2257                         if (!error) {
2258                                 /*
2259                                  * vma_gap_update() doesn't support concurrent
2260                                  * updates, but we only hold a shared mmap_sem
2261                                  * lock here, so we need to protect against
2262                                  * concurrent vma expansions.
2263                                  * vma_lock_anon_vma() doesn't help here, as
2264                                  * we don't guarantee that all growable vmas
2265                                  * in a mm share the same root anon vma.
2266                                  * So, we reuse mm->page_table_lock to guard
2267                                  * against concurrent vma expansions.
2268                                  */
2269                                 spin_lock(&mm->page_table_lock);
2270                                 if (vma->vm_flags & VM_LOCKED)
2271                                         mm->locked_vm += grow;
2272                                 vm_stat_account(mm, vma->vm_flags, grow);
2273                                 anon_vma_interval_tree_pre_update_vma(vma);
2274                                 vma->vm_start = address;
2275                                 vma->vm_pgoff -= grow;
2276                                 anon_vma_interval_tree_post_update_vma(vma);
2277                                 vma_gap_update(vma);
2278                                 spin_unlock(&mm->page_table_lock);
2279
2280                                 perf_event_mmap(vma);
2281                         }
2282                 }
2283         }
2284         vma_unlock_anon_vma(vma);
2285         khugepaged_enter_vma_merge(vma, vma->vm_flags);
2286         validate_mm(mm);
2287         return error;
2288 }
2289
2290 /*
2291  * Note how expand_stack() refuses to expand the stack all the way to
2292  * abut the next virtual mapping, *unless* that mapping itself is also
2293  * a stack mapping. We want to leave room for a guard page, after all
2294  * (the guard page itself is not added here, that is done by the
2295  * actual page faulting logic)
2296  *
2297  * This matches the behavior of the guard page logic (see mm/memory.c:
2298  * check_stack_guard_page()), which only allows the guard page to be
2299  * removed under these circumstances.
2300  */
2301 #ifdef CONFIG_STACK_GROWSUP
2302 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2303 {
2304         struct vm_area_struct *next;
2305
2306         address &= PAGE_MASK;
2307         next = vma->vm_next;
2308         if (next && next->vm_start == address + PAGE_SIZE) {
2309                 if (!(next->vm_flags & VM_GROWSUP))
2310                         return -ENOMEM;
2311         }
2312         return expand_upwards(vma, address);
2313 }
2314
2315 struct vm_area_struct *
2316 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2317 {
2318         struct vm_area_struct *vma, *prev;
2319
2320         addr &= PAGE_MASK;
2321         vma = find_vma_prev(mm, addr, &prev);
2322         if (vma && (vma->vm_start <= addr))
2323                 return vma;
2324         if (!prev || expand_stack(prev, addr))
2325                 return NULL;
2326         if (prev->vm_flags & VM_LOCKED)
2327                 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2328         return prev;
2329 }
2330 #else
2331 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2332 {
2333         struct vm_area_struct *prev;
2334
2335         address &= PAGE_MASK;
2336         prev = vma->vm_prev;
2337         if (prev && prev->vm_end == address) {
2338                 if (!(prev->vm_flags & VM_GROWSDOWN))
2339                         return -ENOMEM;
2340         }
2341         return expand_downwards(vma, address);
2342 }
2343
2344 struct vm_area_struct *
2345 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2346 {
2347         struct vm_area_struct *vma;
2348         unsigned long start;
2349
2350         addr &= PAGE_MASK;
2351         vma = find_vma(mm, addr);
2352         if (!vma)
2353                 return NULL;
2354         if (vma->vm_start <= addr)
2355                 return vma;
2356         if (!(vma->vm_flags & VM_GROWSDOWN))
2357                 return NULL;
2358         start = vma->vm_start;
2359         if (expand_stack(vma, addr))
2360                 return NULL;
2361         if (vma->vm_flags & VM_LOCKED)
2362                 populate_vma_page_range(vma, addr, start, NULL);
2363         return vma;
2364 }
2365 #endif
2366
2367 EXPORT_SYMBOL_GPL(find_extend_vma);
2368
2369 /*
2370  * Ok - we have the memory areas we should free on the vma list,
2371  * so release them, and do the vma updates.
2372  *
2373  * Called with the mm semaphore held.
2374  */
2375 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2376 {
2377         unsigned long nr_accounted = 0;
2378
2379         /* Update high watermark before we lower total_vm */
2380         update_hiwater_vm(mm);
2381         do {
2382                 long nrpages = vma_pages(vma);
2383
2384                 if (vma->vm_flags & VM_ACCOUNT)
2385                         nr_accounted += nrpages;
2386                 vm_stat_account(mm, vma->vm_flags, -nrpages);
2387                 vma = remove_vma(vma);
2388         } while (vma);
2389         vm_unacct_memory(nr_accounted);
2390         validate_mm(mm);
2391 }
2392
2393 /*
2394  * Get rid of page table information in the indicated region.
2395  *
2396  * Called with the mm semaphore held.
2397  */
2398 static void unmap_region(struct mm_struct *mm,
2399                 struct vm_area_struct *vma, struct vm_area_struct *prev,
2400                 unsigned long start, unsigned long end)
2401 {
2402         struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2403         struct mmu_gather tlb;
2404
2405         lru_add_drain();
2406         tlb_gather_mmu(&tlb, mm, start, end);
2407         update_hiwater_rss(mm);
2408         unmap_vmas(&tlb, vma, start, end);
2409         free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2410                                  next ? next->vm_start : USER_PGTABLES_CEILING);
2411         tlb_finish_mmu(&tlb, start, end);
2412 }
2413
2414 /*
2415  * Create a list of vma's touched by the unmap, removing them from the mm's
2416  * vma list as we go..
2417  */
2418 static void
2419 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2420         struct vm_area_struct *prev, unsigned long end)
2421 {
2422         struct vm_area_struct **insertion_point;
2423         struct vm_area_struct *tail_vma = NULL;
2424
2425         insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2426         vma->vm_prev = NULL;
2427         do {
2428                 vma_rb_erase(vma, &mm->mm_rb);
2429                 mm->map_count--;
2430                 tail_vma = vma;
2431                 vma = vma->vm_next;
2432         } while (vma && vma->vm_start < end);
2433         *insertion_point = vma;
2434         if (vma) {
2435                 vma->vm_prev = prev;
2436                 vma_gap_update(vma);
2437         } else
2438                 mm->highest_vm_end = prev ? prev->vm_end : 0;
2439         tail_vma->vm_next = NULL;
2440
2441         /* Kill the cache */
2442         vmacache_invalidate(mm);
2443 }
2444
2445 /*
2446  * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
2447  * munmap path where it doesn't make sense to fail.
2448  */
2449 static int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2450               unsigned long addr, int new_below)
2451 {
2452         struct vm_area_struct *new;
2453         int err;
2454
2455         if (is_vm_hugetlb_page(vma) && (addr &
2456                                         ~(huge_page_mask(hstate_vma(vma)))))
2457                 return -EINVAL;
2458
2459         new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2460         if (!new)
2461                 return -ENOMEM;
2462
2463         /* most fields are the same, copy all, and then fixup */
2464         *new = *vma;
2465
2466         INIT_LIST_HEAD(&new->anon_vma_chain);
2467
2468         if (new_below)
2469                 new->vm_end = addr;
2470         else {
2471                 new->vm_start = addr;
2472                 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2473         }
2474
2475         err = vma_dup_policy(vma, new);
2476         if (err)
2477                 goto out_free_vma;
2478
2479         err = anon_vma_clone(new, vma);
2480         if (err)
2481                 goto out_free_mpol;
2482
2483         if (new->vm_file)
2484                 get_file(new->vm_file);
2485
2486         if (new->vm_ops && new->vm_ops->open)
2487                 new->vm_ops->open(new);
2488
2489         if (new_below)
2490                 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2491                         ((addr - new->vm_start) >> PAGE_SHIFT), new);
2492         else
2493                 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2494
2495         /* Success. */
2496         if (!err)
2497                 return 0;
2498
2499         /* Clean everything up if vma_adjust failed. */
2500         if (new->vm_ops && new->vm_ops->close)
2501                 new->vm_ops->close(new);
2502         if (new->vm_file)
2503                 fput(new->vm_file);
2504         unlink_anon_vmas(new);
2505  out_free_mpol:
2506         mpol_put(vma_policy(new));
2507  out_free_vma:
2508         kmem_cache_free(vm_area_cachep, new);
2509         return err;
2510 }
2511
2512 /*
2513  * Split a vma into two pieces at address 'addr', a new vma is allocated
2514  * either for the first part or the tail.
2515  */
2516 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2517               unsigned long addr, int new_below)
2518 {
2519         if (mm->map_count >= sysctl_max_map_count)
2520                 return -ENOMEM;
2521
2522         return __split_vma(mm, vma, addr, new_below);
2523 }
2524
2525 /* Munmap is split into 2 main parts -- this part which finds
2526  * what needs doing, and the areas themselves, which do the
2527  * work.  This now handles partial unmappings.
2528  * Jeremy Fitzhardinge <jeremy@goop.org>
2529  */
2530 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2531 {
2532         unsigned long end;
2533         struct vm_area_struct *vma, *prev, *last;
2534
2535         if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2536                 return -EINVAL;
2537
2538         len = PAGE_ALIGN(len);
2539         if (len == 0)
2540                 return -EINVAL;
2541
2542         /* Find the first overlapping VMA */
2543         vma = find_vma(mm, start);
2544         if (!vma)
2545                 return 0;
2546         prev = vma->vm_prev;
2547         /* we have  start < vma->vm_end  */
2548
2549         /* if it doesn't overlap, we have nothing.. */
2550         end = start + len;
2551         if (vma->vm_start >= end)
2552                 return 0;
2553
2554         /*
2555          * If we need to split any vma, do it now to save pain later.
2556          *
2557          * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2558          * unmapped vm_area_struct will remain in use: so lower split_vma
2559          * places tmp vma above, and higher split_vma places tmp vma below.
2560          */
2561         if (start > vma->vm_start) {
2562                 int error;
2563
2564                 /*
2565                  * Make sure that map_count on return from munmap() will
2566                  * not exceed its limit; but let map_count go just above
2567                  * its limit temporarily, to help free resources as expected.
2568                  */
2569                 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2570                         return -ENOMEM;
2571
2572                 error = __split_vma(mm, vma, start, 0);
2573                 if (error)
2574                         return error;
2575                 prev = vma;
2576         }
2577
2578         /* Does it split the last one? */
2579         last = find_vma(mm, end);
2580         if (last && end > last->vm_start) {
2581                 int error = __split_vma(mm, last, end, 1);
2582                 if (error)
2583                         return error;
2584         }
2585         vma = prev ? prev->vm_next : mm->mmap;
2586
2587         /*
2588          * unlock any mlock()ed ranges before detaching vmas
2589          */
2590         if (mm->locked_vm) {
2591                 struct vm_area_struct *tmp = vma;
2592                 while (tmp && tmp->vm_start < end) {
2593                         if (tmp->vm_flags & VM_LOCKED) {
2594                                 mm->locked_vm -= vma_pages(tmp);
2595                                 munlock_vma_pages_all(tmp);
2596                         }
2597                         tmp = tmp->vm_next;
2598                 }
2599         }
2600
2601         /*
2602          * Remove the vma's, and unmap the actual pages
2603          */
2604         detach_vmas_to_be_unmapped(mm, vma, prev, end);
2605         unmap_region(mm, vma, prev, start, end);
2606
2607         arch_unmap(mm, vma, start, end);
2608
2609         /* Fix up all other VM information */
2610         remove_vma_list(mm, vma);
2611
2612         return 0;
2613 }
2614
2615 int vm_munmap(unsigned long start, size_t len)
2616 {
2617         int ret;
2618         struct mm_struct *mm = current->mm;
2619
2620         down_write(&mm->mmap_sem);
2621         ret = do_munmap(mm, start, len);
2622         up_write(&mm->mmap_sem);
2623         return ret;
2624 }
2625 EXPORT_SYMBOL(vm_munmap);
2626
2627 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2628 {
2629         profile_munmap(addr);
2630         return vm_munmap(addr, len);
2631 }
2632
2633
2634 /*
2635  * Emulation of deprecated remap_file_pages() syscall.
2636  */
2637 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2638                 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2639 {
2640
2641         struct mm_struct *mm = current->mm;
2642         struct vm_area_struct *vma;
2643         unsigned long populate = 0;
2644         unsigned long ret = -EINVAL;
2645         struct file *file;
2646
2647         pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. "
2648                         "See Documentation/vm/remap_file_pages.txt.\n",
2649                         current->comm, current->pid);
2650
2651         if (prot)
2652                 return ret;
2653         start = start & PAGE_MASK;
2654         size = size & PAGE_MASK;
2655
2656         if (start + size <= start)
2657                 return ret;
2658
2659         /* Does pgoff wrap? */
2660         if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2661                 return ret;
2662
2663         down_write(&mm->mmap_sem);
2664         vma = find_vma(mm, start);
2665
2666         if (!vma || !(vma->vm_flags & VM_SHARED))
2667                 goto out;
2668
2669         if (start < vma->vm_start || start + size > vma->vm_end)
2670                 goto out;
2671
2672         if (pgoff == linear_page_index(vma, start)) {
2673                 ret = 0;
2674                 goto out;
2675         }
2676
2677         prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2678         prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2679         prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2680
2681         flags &= MAP_NONBLOCK;
2682         flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2683         if (vma->vm_flags & VM_LOCKED) {
2684                 flags |= MAP_LOCKED;
2685                 /* drop PG_Mlocked flag for over-mapped range */
2686                 munlock_vma_pages_range(vma, start, start + size);
2687         }
2688
2689         file = get_file(vma->vm_file);
2690         ret = do_mmap_pgoff(vma->vm_file, start, size,
2691                         prot, flags, pgoff, &populate);
2692         fput(file);
2693 out:
2694         up_write(&mm->mmap_sem);
2695         if (populate)
2696                 mm_populate(ret, populate);
2697         if (!IS_ERR_VALUE(ret))
2698                 ret = 0;
2699         return ret;
2700 }
2701
2702 static inline void verify_mm_writelocked(struct mm_struct *mm)
2703 {
2704 #ifdef CONFIG_DEBUG_VM
2705         if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2706                 WARN_ON(1);
2707                 up_read(&mm->mmap_sem);
2708         }
2709 #endif
2710 }
2711
2712 /*
2713  *  this is really a simplified "do_mmap".  it only handles
2714  *  anonymous maps.  eventually we may be able to do some
2715  *  brk-specific accounting here.
2716  */
2717 static unsigned long do_brk(unsigned long addr, unsigned long len)
2718 {
2719         struct mm_struct *mm = current->mm;
2720         struct vm_area_struct *vma, *prev;
2721         unsigned long flags;
2722         struct rb_node **rb_link, *rb_parent;
2723         pgoff_t pgoff = addr >> PAGE_SHIFT;
2724         int error;
2725
2726         len = PAGE_ALIGN(len);
2727         if (!len)
2728                 return addr;
2729
2730         flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2731
2732         error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2733         if (offset_in_page(error))
2734                 return error;
2735
2736         error = mlock_future_check(mm, mm->def_flags, len);
2737         if (error)
2738                 return error;
2739
2740         /*
2741          * mm->mmap_sem is required to protect against another thread
2742          * changing the mappings in case we sleep.
2743          */
2744         verify_mm_writelocked(mm);
2745
2746         /*
2747          * Clear old maps.  this also does some error checking for us
2748          */
2749         while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
2750                               &rb_parent)) {
2751                 if (do_munmap(mm, addr, len))
2752                         return -ENOMEM;
2753         }
2754
2755         /* Check against address space limits *after* clearing old maps... */
2756         if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
2757                 return -ENOMEM;
2758
2759         if (mm->map_count > sysctl_max_map_count)
2760                 return -ENOMEM;
2761
2762         if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2763                 return -ENOMEM;
2764
2765         /* Can we just expand an old private anonymous mapping? */
2766         vma = vma_merge(mm, prev, addr, addr + len, flags,
2767                         NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
2768         if (vma)
2769                 goto out;
2770
2771         /*
2772          * create a vma struct for an anonymous mapping
2773          */
2774         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2775         if (!vma) {
2776                 vm_unacct_memory(len >> PAGE_SHIFT);
2777                 return -ENOMEM;
2778         }
2779
2780         INIT_LIST_HEAD(&vma->anon_vma_chain);
2781         vma->vm_mm = mm;
2782         vma->vm_start = addr;
2783         vma->vm_end = addr + len;
2784         vma->vm_pgoff = pgoff;
2785         vma->vm_flags = flags;
2786         vma->vm_page_prot = vm_get_page_prot(flags);
2787         vma_link(mm, vma, prev, rb_link, rb_parent);
2788 out:
2789         perf_event_mmap(vma);
2790         mm->total_vm += len >> PAGE_SHIFT;
2791         mm->data_vm += len >> PAGE_SHIFT;
2792         if (flags & VM_LOCKED)
2793                 mm->locked_vm += (len >> PAGE_SHIFT);
2794         vma->vm_flags |= VM_SOFTDIRTY;
2795         return addr;
2796 }
2797
2798 unsigned long vm_brk(unsigned long addr, unsigned long len)
2799 {
2800         struct mm_struct *mm = current->mm;
2801         unsigned long ret;
2802         bool populate;
2803
2804         down_write(&mm->mmap_sem);
2805         ret = do_brk(addr, len);
2806         populate = ((mm->def_flags & VM_LOCKED) != 0);
2807         up_write(&mm->mmap_sem);
2808         if (populate)
2809                 mm_populate(addr, len);
2810         return ret;
2811 }
2812 EXPORT_SYMBOL(vm_brk);
2813
2814 /* Release all mmaps. */
2815 void exit_mmap(struct mm_struct *mm)
2816 {
2817         struct mmu_gather tlb;
2818         struct vm_area_struct *vma;
2819         unsigned long nr_accounted = 0;
2820
2821         /* mm's last user has gone, and its about to be pulled down */
2822         mmu_notifier_release(mm);
2823
2824         if (mm->locked_vm) {
2825                 vma = mm->mmap;
2826                 while (vma) {
2827                         if (vma->vm_flags & VM_LOCKED)
2828                                 munlock_vma_pages_all(vma);
2829                         vma = vma->vm_next;
2830                 }
2831         }
2832
2833         arch_exit_mmap(mm);
2834
2835         vma = mm->mmap;
2836         if (!vma)       /* Can happen if dup_mmap() received an OOM */
2837                 return;
2838
2839         lru_add_drain();
2840         flush_cache_mm(mm);
2841         tlb_gather_mmu(&tlb, mm, 0, -1);
2842         /* update_hiwater_rss(mm) here? but nobody should be looking */
2843         /* Use -1 here to ensure all VMAs in the mm are unmapped */
2844         unmap_vmas(&tlb, vma, 0, -1);
2845
2846         free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2847         tlb_finish_mmu(&tlb, 0, -1);
2848
2849         /*
2850          * Walk the list again, actually closing and freeing it,
2851          * with preemption enabled, without holding any MM locks.
2852          */
2853         while (vma) {
2854                 if (vma->vm_flags & VM_ACCOUNT)
2855                         nr_accounted += vma_pages(vma);
2856                 vma = remove_vma(vma);
2857         }
2858         vm_unacct_memory(nr_accounted);
2859 }
2860
2861 /* Insert vm structure into process list sorted by address
2862  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2863  * then i_mmap_rwsem is taken here.
2864  */
2865 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2866 {
2867         struct vm_area_struct *prev;
2868         struct rb_node **rb_link, *rb_parent;
2869
2870         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2871                            &prev, &rb_link, &rb_parent))
2872                 return -ENOMEM;
2873         if ((vma->vm_flags & VM_ACCOUNT) &&
2874              security_vm_enough_memory_mm(mm, vma_pages(vma)))
2875                 return -ENOMEM;
2876
2877         /*
2878          * The vm_pgoff of a purely anonymous vma should be irrelevant
2879          * until its first write fault, when page's anon_vma and index
2880          * are set.  But now set the vm_pgoff it will almost certainly
2881          * end up with (unless mremap moves it elsewhere before that
2882          * first wfault), so /proc/pid/maps tells a consistent story.
2883          *
2884          * By setting it to reflect the virtual start address of the
2885          * vma, merges and splits can happen in a seamless way, just
2886          * using the existing file pgoff checks and manipulations.
2887          * Similarly in do_mmap_pgoff and in do_brk.
2888          */
2889         if (vma_is_anonymous(vma)) {
2890                 BUG_ON(vma->anon_vma);
2891                 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2892         }
2893
2894         vma_link(mm, vma, prev, rb_link, rb_parent);
2895         return 0;
2896 }
2897
2898 /*
2899  * Copy the vma structure to a new location in the same mm,
2900  * prior to moving page table entries, to effect an mremap move.
2901  */
2902 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2903         unsigned long addr, unsigned long len, pgoff_t pgoff,
2904         bool *need_rmap_locks)
2905 {
2906         struct vm_area_struct *vma = *vmap;
2907         unsigned long vma_start = vma->vm_start;
2908         struct mm_struct *mm = vma->vm_mm;
2909         struct vm_area_struct *new_vma, *prev;
2910         struct rb_node **rb_link, *rb_parent;
2911         bool faulted_in_anon_vma = true;
2912
2913         /*
2914          * If anonymous vma has not yet been faulted, update new pgoff
2915          * to match new location, to increase its chance of merging.
2916          */
2917         if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
2918                 pgoff = addr >> PAGE_SHIFT;
2919                 faulted_in_anon_vma = false;
2920         }
2921
2922         if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2923                 return NULL;    /* should never get here */
2924         new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2925                             vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
2926                             vma->vm_userfaultfd_ctx);
2927         if (new_vma) {
2928                 /*
2929                  * Source vma may have been merged into new_vma
2930                  */
2931                 if (unlikely(vma_start >= new_vma->vm_start &&
2932                              vma_start < new_vma->vm_end)) {
2933                         /*
2934                          * The only way we can get a vma_merge with
2935                          * self during an mremap is if the vma hasn't
2936                          * been faulted in yet and we were allowed to
2937                          * reset the dst vma->vm_pgoff to the
2938                          * destination address of the mremap to allow
2939                          * the merge to happen. mremap must change the
2940                          * vm_pgoff linearity between src and dst vmas
2941                          * (in turn preventing a vma_merge) to be
2942                          * safe. It is only safe to keep the vm_pgoff
2943                          * linear if there are no pages mapped yet.
2944                          */
2945                         VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
2946                         *vmap = vma = new_vma;
2947                 }
2948                 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2949         } else {
2950                 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2951                 if (!new_vma)
2952                         goto out;
2953                 *new_vma = *vma;
2954                 new_vma->vm_start = addr;
2955                 new_vma->vm_end = addr + len;
2956                 new_vma->vm_pgoff = pgoff;
2957                 if (vma_dup_policy(vma, new_vma))
2958                         goto out_free_vma;
2959                 INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2960                 if (anon_vma_clone(new_vma, vma))
2961                         goto out_free_mempol;
2962                 if (new_vma->vm_file)
2963                         get_file(new_vma->vm_file);
2964                 if (new_vma->vm_ops && new_vma->vm_ops->open)
2965                         new_vma->vm_ops->open(new_vma);
2966                 vma_link(mm, new_vma, prev, rb_link, rb_parent);
2967                 *need_rmap_locks = false;
2968         }
2969         return new_vma;
2970
2971 out_free_mempol:
2972         mpol_put(vma_policy(new_vma));
2973 out_free_vma:
2974         kmem_cache_free(vm_area_cachep, new_vma);
2975 out:
2976         return NULL;
2977 }
2978
2979 /*
2980  * Return true if the calling process may expand its vm space by the passed
2981  * number of pages
2982  */
2983 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
2984 {
2985         if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
2986                 return false;
2987
2988         if (is_data_mapping(flags) &&
2989             mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
2990                 if (ignore_rlimit_data)
2991                         pr_warn_once("%s (%d): VmData %lu exceed data ulimit "
2992                                      "%lu. Will be forbidden soon.\n",
2993                                      current->comm, current->pid,
2994                                      (mm->data_vm + npages) << PAGE_SHIFT,
2995                                      rlimit(RLIMIT_DATA));
2996                 else
2997                         return false;
2998         }
2999
3000         return true;
3001 }
3002
3003 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3004 {
3005         mm->total_vm += npages;
3006
3007         if (is_exec_mapping(flags))
3008                 mm->exec_vm += npages;
3009         else if (is_stack_mapping(flags))
3010                 mm->stack_vm += npages;
3011         else if (is_data_mapping(flags))
3012                 mm->data_vm += npages;
3013 }
3014
3015 static int special_mapping_fault(struct vm_area_struct *vma,
3016                                  struct vm_fault *vmf);
3017
3018 /*
3019  * Having a close hook prevents vma merging regardless of flags.
3020  */
3021 static void special_mapping_close(struct vm_area_struct *vma)
3022 {
3023 }
3024
3025 static const char *special_mapping_name(struct vm_area_struct *vma)
3026 {
3027         return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3028 }
3029
3030 static const struct vm_operations_struct special_mapping_vmops = {
3031         .close = special_mapping_close,
3032         .fault = special_mapping_fault,
3033         .name = special_mapping_name,
3034 };
3035
3036 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3037         .close = special_mapping_close,
3038         .fault = special_mapping_fault,
3039 };
3040
3041 static int special_mapping_fault(struct vm_area_struct *vma,
3042                                 struct vm_fault *vmf)
3043 {
3044         pgoff_t pgoff;
3045         struct page **pages;
3046
3047         if (vma->vm_ops == &legacy_special_mapping_vmops)
3048                 pages = vma->vm_private_data;
3049         else
3050                 pages = ((struct vm_special_mapping *)vma->vm_private_data)->
3051                         pages;
3052
3053         for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3054                 pgoff--;
3055
3056         if (*pages) {
3057                 struct page *page = *pages;
3058                 get_page(page);
3059                 vmf->page = page;
3060                 return 0;
3061         }
3062
3063         return VM_FAULT_SIGBUS;
3064 }
3065
3066 static struct vm_area_struct *__install_special_mapping(
3067         struct mm_struct *mm,
3068         unsigned long addr, unsigned long len,
3069         unsigned long vm_flags, void *priv,
3070         const struct vm_operations_struct *ops)
3071 {
3072         int ret;
3073         struct vm_area_struct *vma;
3074
3075         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
3076         if (unlikely(vma == NULL))
3077                 return ERR_PTR(-ENOMEM);
3078
3079         INIT_LIST_HEAD(&vma->anon_vma_chain);
3080         vma->vm_mm = mm;
3081         vma->vm_start = addr;
3082         vma->vm_end = addr + len;
3083
3084         vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3085         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3086
3087         vma->vm_ops = ops;
3088         vma->vm_private_data = priv;
3089
3090         ret = insert_vm_struct(mm, vma);
3091         if (ret)
3092                 goto out;
3093
3094         vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3095
3096         perf_event_mmap(vma);
3097
3098         return vma;
3099
3100 out:
3101         kmem_cache_free(vm_area_cachep, vma);
3102         return ERR_PTR(ret);
3103 }
3104
3105 /*
3106  * Called with mm->mmap_sem held for writing.
3107  * Insert a new vma covering the given region, with the given flags.
3108  * Its pages are supplied by the given array of struct page *.
3109  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3110  * The region past the last page supplied will always produce SIGBUS.
3111  * The array pointer and the pages it points to are assumed to stay alive
3112  * for as long as this mapping might exist.
3113  */
3114 struct vm_area_struct *_install_special_mapping(
3115         struct mm_struct *mm,
3116         unsigned long addr, unsigned long len,
3117         unsigned long vm_flags, const struct vm_special_mapping *spec)
3118 {
3119         return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3120                                         &special_mapping_vmops);
3121 }
3122
3123 int install_special_mapping(struct mm_struct *mm,
3124                             unsigned long addr, unsigned long len,
3125                             unsigned long vm_flags, struct page **pages)
3126 {
3127         struct vm_area_struct *vma = __install_special_mapping(
3128                 mm, addr, len, vm_flags, (void *)pages,
3129                 &legacy_special_mapping_vmops);
3130
3131         return PTR_ERR_OR_ZERO(vma);
3132 }
3133
3134 static DEFINE_MUTEX(mm_all_locks_mutex);
3135
3136 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3137 {
3138         if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3139                 /*
3140                  * The LSB of head.next can't change from under us
3141                  * because we hold the mm_all_locks_mutex.
3142                  */
3143                 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3144                 /*
3145                  * We can safely modify head.next after taking the
3146                  * anon_vma->root->rwsem. If some other vma in this mm shares
3147                  * the same anon_vma we won't take it again.
3148                  *
3149                  * No need of atomic instructions here, head.next
3150                  * can't change from under us thanks to the
3151                  * anon_vma->root->rwsem.
3152                  */
3153                 if (__test_and_set_bit(0, (unsigned long *)
3154                                        &anon_vma->root->rb_root.rb_node))
3155                         BUG();
3156         }
3157 }
3158
3159 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3160 {
3161         if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3162                 /*
3163                  * AS_MM_ALL_LOCKS can't change from under us because
3164                  * we hold the mm_all_locks_mutex.
3165                  *
3166                  * Operations on ->flags have to be atomic because
3167                  * even if AS_MM_ALL_LOCKS is stable thanks to the
3168                  * mm_all_locks_mutex, there may be other cpus
3169                  * changing other bitflags in parallel to us.
3170                  */
3171                 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3172                         BUG();
3173                 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3174         }
3175 }
3176
3177 /*
3178  * This operation locks against the VM for all pte/vma/mm related
3179  * operations that could ever happen on a certain mm. This includes
3180  * vmtruncate, try_to_unmap, and all page faults.
3181  *
3182  * The caller must take the mmap_sem in write mode before calling
3183  * mm_take_all_locks(). The caller isn't allowed to release the
3184  * mmap_sem until mm_drop_all_locks() returns.
3185  *
3186  * mmap_sem in write mode is required in order to block all operations
3187  * that could modify pagetables and free pages without need of
3188  * altering the vma layout. It's also needed in write mode to avoid new
3189  * anon_vmas to be associated with existing vmas.
3190  *
3191  * A single task can't take more than one mm_take_all_locks() in a row
3192  * or it would deadlock.
3193  *
3194  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3195  * mapping->flags avoid to take the same lock twice, if more than one
3196  * vma in this mm is backed by the same anon_vma or address_space.
3197  *
3198  * We take locks in following order, accordingly to comment at beginning
3199  * of mm/rmap.c:
3200  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3201  *     hugetlb mapping);
3202  *   - all i_mmap_rwsem locks;
3203  *   - all anon_vma->rwseml
3204  *
3205  * We can take all locks within these types randomly because the VM code
3206  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3207  * mm_all_locks_mutex.
3208  *
3209  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3210  * that may have to take thousand of locks.
3211  *
3212  * mm_take_all_locks() can fail if it's interrupted by signals.
3213  */
3214 int mm_take_all_locks(struct mm_struct *mm)
3215 {
3216         struct vm_area_struct *vma;
3217         struct anon_vma_chain *avc;
3218
3219         BUG_ON(down_read_trylock(&mm->mmap_sem));
3220
3221         mutex_lock(&mm_all_locks_mutex);
3222
3223         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3224                 if (signal_pending(current))
3225                         goto out_unlock;
3226                 if (vma->vm_file && vma->vm_file->f_mapping &&
3227                                 is_vm_hugetlb_page(vma))
3228                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3229         }
3230
3231         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3232                 if (signal_pending(current))
3233                         goto out_unlock;
3234                 if (vma->vm_file && vma->vm_file->f_mapping &&
3235                                 !is_vm_hugetlb_page(vma))
3236                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3237         }
3238
3239         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3240                 if (signal_pending(current))
3241                         goto out_unlock;
3242                 if (vma->anon_vma)
3243                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3244                                 vm_lock_anon_vma(mm, avc->anon_vma);
3245         }
3246
3247         return 0;
3248
3249 out_unlock:
3250         mm_drop_all_locks(mm);
3251         return -EINTR;
3252 }
3253
3254 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3255 {
3256         if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3257                 /*
3258                  * The LSB of head.next can't change to 0 from under
3259                  * us because we hold the mm_all_locks_mutex.
3260                  *
3261                  * We must however clear the bitflag before unlocking
3262                  * the vma so the users using the anon_vma->rb_root will
3263                  * never see our bitflag.
3264                  *
3265                  * No need of atomic instructions here, head.next
3266                  * can't change from under us until we release the
3267                  * anon_vma->root->rwsem.
3268                  */
3269                 if (!__test_and_clear_bit(0, (unsigned long *)
3270                                           &anon_vma->root->rb_root.rb_node))
3271                         BUG();
3272                 anon_vma_unlock_write(anon_vma);
3273         }
3274 }
3275
3276 static void vm_unlock_mapping(struct address_space *mapping)
3277 {
3278         if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3279                 /*
3280                  * AS_MM_ALL_LOCKS can't change to 0 from under us
3281                  * because we hold the mm_all_locks_mutex.
3282                  */
3283                 i_mmap_unlock_write(mapping);
3284                 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3285                                         &mapping->flags))
3286                         BUG();
3287         }
3288 }
3289
3290 /*
3291  * The mmap_sem cannot be released by the caller until
3292  * mm_drop_all_locks() returns.
3293  */
3294 void mm_drop_all_locks(struct mm_struct *mm)
3295 {
3296         struct vm_area_struct *vma;
3297         struct anon_vma_chain *avc;
3298
3299         BUG_ON(down_read_trylock(&mm->mmap_sem));
3300         BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3301
3302         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3303                 if (vma->anon_vma)
3304                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3305                                 vm_unlock_anon_vma(avc->anon_vma);
3306                 if (vma->vm_file && vma->vm_file->f_mapping)
3307                         vm_unlock_mapping(vma->vm_file->f_mapping);
3308         }
3309
3310         mutex_unlock(&mm_all_locks_mutex);
3311 }
3312
3313 /*
3314  * initialise the VMA slab
3315  */
3316 void __init mmap_init(void)
3317 {
3318         int ret;
3319
3320         ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3321         VM_BUG_ON(ret);
3322 }
3323
3324 /*
3325  * Initialise sysctl_user_reserve_kbytes.
3326  *
3327  * This is intended to prevent a user from starting a single memory hogging
3328  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3329  * mode.
3330  *
3331  * The default value is min(3% of free memory, 128MB)
3332  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3333  */
3334 static int init_user_reserve(void)
3335 {
3336         unsigned long free_kbytes;
3337
3338         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3339
3340         sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3341         return 0;
3342 }
3343 subsys_initcall(init_user_reserve);
3344
3345 /*
3346  * Initialise sysctl_admin_reserve_kbytes.
3347  *
3348  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3349  * to log in and kill a memory hogging process.
3350  *
3351  * Systems with more than 256MB will reserve 8MB, enough to recover
3352  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3353  * only reserve 3% of free pages by default.
3354  */
3355 static int init_admin_reserve(void)
3356 {
3357         unsigned long free_kbytes;
3358
3359         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3360
3361         sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3362         return 0;
3363 }
3364 subsys_initcall(init_admin_reserve);
3365
3366 /*
3367  * Reinititalise user and admin reserves if memory is added or removed.
3368  *
3369  * The default user reserve max is 128MB, and the default max for the
3370  * admin reserve is 8MB. These are usually, but not always, enough to
3371  * enable recovery from a memory hogging process using login/sshd, a shell,
3372  * and tools like top. It may make sense to increase or even disable the
3373  * reserve depending on the existence of swap or variations in the recovery
3374  * tools. So, the admin may have changed them.
3375  *
3376  * If memory is added and the reserves have been eliminated or increased above
3377  * the default max, then we'll trust the admin.
3378  *
3379  * If memory is removed and there isn't enough free memory, then we
3380  * need to reset the reserves.
3381  *
3382  * Otherwise keep the reserve set by the admin.
3383  */
3384 static int reserve_mem_notifier(struct notifier_block *nb,
3385                              unsigned long action, void *data)
3386 {
3387         unsigned long tmp, free_kbytes;
3388
3389         switch (action) {
3390         case MEM_ONLINE:
3391                 /* Default max is 128MB. Leave alone if modified by operator. */
3392                 tmp = sysctl_user_reserve_kbytes;
3393                 if (0 < tmp && tmp < (1UL << 17))
3394                         init_user_reserve();
3395
3396                 /* Default max is 8MB.  Leave alone if modified by operator. */
3397                 tmp = sysctl_admin_reserve_kbytes;
3398                 if (0 < tmp && tmp < (1UL << 13))
3399                         init_admin_reserve();
3400
3401                 break;
3402         case MEM_OFFLINE:
3403                 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3404
3405                 if (sysctl_user_reserve_kbytes > free_kbytes) {
3406                         init_user_reserve();
3407                         pr_info("vm.user_reserve_kbytes reset to %lu\n",
3408                                 sysctl_user_reserve_kbytes);
3409                 }
3410
3411                 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3412                         init_admin_reserve();
3413                         pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3414                                 sysctl_admin_reserve_kbytes);
3415                 }
3416                 break;
3417         default:
3418                 break;
3419         }
3420         return NOTIFY_OK;
3421 }
3422
3423 static struct notifier_block reserve_mem_nb = {
3424         .notifier_call = reserve_mem_notifier,
3425 };
3426
3427 static int __meminit init_reserve_notifier(void)
3428 {
3429         if (register_hotmemory_notifier(&reserve_mem_nb))
3430                 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3431
3432         return 0;
3433 }
3434 subsys_initcall(init_reserve_notifier);