mmap: avoid merging cloned VMAs
[cascardo/linux.git] / mm / mmap.c
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code        <alan@lxorguk.ukuu.org.uk>
7  */
8
9 #include <linux/slab.h>
10 #include <linux/backing-dev.h>
11 #include <linux/mm.h>
12 #include <linux/shm.h>
13 #include <linux/mman.h>
14 #include <linux/pagemap.h>
15 #include <linux/swap.h>
16 #include <linux/syscalls.h>
17 #include <linux/capability.h>
18 #include <linux/init.h>
19 #include <linux/file.h>
20 #include <linux/fs.h>
21 #include <linux/personality.h>
22 #include <linux/security.h>
23 #include <linux/hugetlb.h>
24 #include <linux/profile.h>
25 #include <linux/module.h>
26 #include <linux/mount.h>
27 #include <linux/mempolicy.h>
28 #include <linux/rmap.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/perf_event.h>
31 #include <linux/audit.h>
32 #include <linux/khugepaged.h>
33
34 #include <asm/uaccess.h>
35 #include <asm/cacheflush.h>
36 #include <asm/tlb.h>
37 #include <asm/mmu_context.h>
38
39 #include "internal.h"
40
41 #ifndef arch_mmap_check
42 #define arch_mmap_check(addr, len, flags)       (0)
43 #endif
44
45 #ifndef arch_rebalance_pgtables
46 #define arch_rebalance_pgtables(addr, len)              (addr)
47 #endif
48
49 static void unmap_region(struct mm_struct *mm,
50                 struct vm_area_struct *vma, struct vm_area_struct *prev,
51                 unsigned long start, unsigned long end);
52
53 /*
54  * WARNING: the debugging will use recursive algorithms so never enable this
55  * unless you know what you are doing.
56  */
57 #undef DEBUG_MM_RB
58
59 /* description of effects of mapping type and prot in current implementation.
60  * this is due to the limited x86 page protection hardware.  The expected
61  * behavior is in parens:
62  *
63  * map_type     prot
64  *              PROT_NONE       PROT_READ       PROT_WRITE      PROT_EXEC
65  * MAP_SHARED   r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
66  *              w: (no) no      w: (no) no      w: (yes) yes    w: (no) no
67  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
68  *              
69  * MAP_PRIVATE  r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
70  *              w: (no) no      w: (no) no      w: (copy) copy  w: (no) no
71  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
72  *
73  */
74 pgprot_t protection_map[16] = {
75         __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
76         __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
77 };
78
79 pgprot_t vm_get_page_prot(unsigned long vm_flags)
80 {
81         return __pgprot(pgprot_val(protection_map[vm_flags &
82                                 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
83                         pgprot_val(arch_vm_get_page_prot(vm_flags)));
84 }
85 EXPORT_SYMBOL(vm_get_page_prot);
86
87 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;  /* heuristic overcommit */
88 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
89 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
90 /*
91  * Make sure vm_committed_as in one cacheline and not cacheline shared with
92  * other variables. It can be updated by several CPUs frequently.
93  */
94 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
95
96 /*
97  * Check that a process has enough memory to allocate a new virtual
98  * mapping. 0 means there is enough memory for the allocation to
99  * succeed and -ENOMEM implies there is not.
100  *
101  * We currently support three overcommit policies, which are set via the
102  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
103  *
104  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
105  * Additional code 2002 Jul 20 by Robert Love.
106  *
107  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
108  *
109  * Note this is a helper function intended to be used by LSMs which
110  * wish to use this logic.
111  */
112 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
113 {
114         unsigned long free, allowed;
115
116         vm_acct_memory(pages);
117
118         /*
119          * Sometimes we want to use more memory than we have
120          */
121         if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
122                 return 0;
123
124         if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
125                 unsigned long n;
126
127                 free = global_page_state(NR_FILE_PAGES);
128                 free += nr_swap_pages;
129
130                 /*
131                  * Any slabs which are created with the
132                  * SLAB_RECLAIM_ACCOUNT flag claim to have contents
133                  * which are reclaimable, under pressure.  The dentry
134                  * cache and most inode caches should fall into this
135                  */
136                 free += global_page_state(NR_SLAB_RECLAIMABLE);
137
138                 /*
139                  * Leave the last 3% for root
140                  */
141                 if (!cap_sys_admin)
142                         free -= free / 32;
143
144                 if (free > pages)
145                         return 0;
146
147                 /*
148                  * nr_free_pages() is very expensive on large systems,
149                  * only call if we're about to fail.
150                  */
151                 n = nr_free_pages();
152
153                 /*
154                  * Leave reserved pages. The pages are not for anonymous pages.
155                  */
156                 if (n <= totalreserve_pages)
157                         goto error;
158                 else
159                         n -= totalreserve_pages;
160
161                 /*
162                  * Leave the last 3% for root
163                  */
164                 if (!cap_sys_admin)
165                         n -= n / 32;
166                 free += n;
167
168                 if (free > pages)
169                         return 0;
170
171                 goto error;
172         }
173
174         allowed = (totalram_pages - hugetlb_total_pages())
175                 * sysctl_overcommit_ratio / 100;
176         /*
177          * Leave the last 3% for root
178          */
179         if (!cap_sys_admin)
180                 allowed -= allowed / 32;
181         allowed += total_swap_pages;
182
183         /* Don't let a single process grow too big:
184            leave 3% of the size of this process for other processes */
185         if (mm)
186                 allowed -= mm->total_vm / 32;
187
188         if (percpu_counter_read_positive(&vm_committed_as) < allowed)
189                 return 0;
190 error:
191         vm_unacct_memory(pages);
192
193         return -ENOMEM;
194 }
195
196 /*
197  * Requires inode->i_mapping->i_mmap_lock
198  */
199 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
200                 struct file *file, struct address_space *mapping)
201 {
202         if (vma->vm_flags & VM_DENYWRITE)
203                 atomic_inc(&file->f_path.dentry->d_inode->i_writecount);
204         if (vma->vm_flags & VM_SHARED)
205                 mapping->i_mmap_writable--;
206
207         flush_dcache_mmap_lock(mapping);
208         if (unlikely(vma->vm_flags & VM_NONLINEAR))
209                 list_del_init(&vma->shared.vm_set.list);
210         else
211                 vma_prio_tree_remove(vma, &mapping->i_mmap);
212         flush_dcache_mmap_unlock(mapping);
213 }
214
215 /*
216  * Unlink a file-based vm structure from its prio_tree, to hide
217  * vma from rmap and vmtruncate before freeing its page tables.
218  */
219 void unlink_file_vma(struct vm_area_struct *vma)
220 {
221         struct file *file = vma->vm_file;
222
223         if (file) {
224                 struct address_space *mapping = file->f_mapping;
225                 spin_lock(&mapping->i_mmap_lock);
226                 __remove_shared_vm_struct(vma, file, mapping);
227                 spin_unlock(&mapping->i_mmap_lock);
228         }
229 }
230
231 /*
232  * Close a vm structure and free it, returning the next.
233  */
234 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
235 {
236         struct vm_area_struct *next = vma->vm_next;
237
238         might_sleep();
239         if (vma->vm_ops && vma->vm_ops->close)
240                 vma->vm_ops->close(vma);
241         if (vma->vm_file) {
242                 fput(vma->vm_file);
243                 if (vma->vm_flags & VM_EXECUTABLE)
244                         removed_exe_file_vma(vma->vm_mm);
245         }
246         mpol_put(vma_policy(vma));
247         kmem_cache_free(vm_area_cachep, vma);
248         return next;
249 }
250
251 SYSCALL_DEFINE1(brk, unsigned long, brk)
252 {
253         unsigned long rlim, retval;
254         unsigned long newbrk, oldbrk;
255         struct mm_struct *mm = current->mm;
256         unsigned long min_brk;
257
258         down_write(&mm->mmap_sem);
259
260 #ifdef CONFIG_COMPAT_BRK
261         /*
262          * CONFIG_COMPAT_BRK can still be overridden by setting
263          * randomize_va_space to 2, which will still cause mm->start_brk
264          * to be arbitrarily shifted
265          */
266         if (current->brk_randomized)
267                 min_brk = mm->start_brk;
268         else
269                 min_brk = mm->end_data;
270 #else
271         min_brk = mm->start_brk;
272 #endif
273         if (brk < min_brk)
274                 goto out;
275
276         /*
277          * Check against rlimit here. If this check is done later after the test
278          * of oldbrk with newbrk then it can escape the test and let the data
279          * segment grow beyond its set limit the in case where the limit is
280          * not page aligned -Ram Gupta
281          */
282         rlim = rlimit(RLIMIT_DATA);
283         if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
284                         (mm->end_data - mm->start_data) > rlim)
285                 goto out;
286
287         newbrk = PAGE_ALIGN(brk);
288         oldbrk = PAGE_ALIGN(mm->brk);
289         if (oldbrk == newbrk)
290                 goto set_brk;
291
292         /* Always allow shrinking brk. */
293         if (brk <= mm->brk) {
294                 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
295                         goto set_brk;
296                 goto out;
297         }
298
299         /* Check against existing mmap mappings. */
300         if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
301                 goto out;
302
303         /* Ok, looks good - let it rip. */
304         if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
305                 goto out;
306 set_brk:
307         mm->brk = brk;
308 out:
309         retval = mm->brk;
310         up_write(&mm->mmap_sem);
311         return retval;
312 }
313
314 #ifdef DEBUG_MM_RB
315 static int browse_rb(struct rb_root *root)
316 {
317         int i = 0, j;
318         struct rb_node *nd, *pn = NULL;
319         unsigned long prev = 0, pend = 0;
320
321         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
322                 struct vm_area_struct *vma;
323                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
324                 if (vma->vm_start < prev)
325                         printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
326                 if (vma->vm_start < pend)
327                         printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
328                 if (vma->vm_start > vma->vm_end)
329                         printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
330                 i++;
331                 pn = nd;
332                 prev = vma->vm_start;
333                 pend = vma->vm_end;
334         }
335         j = 0;
336         for (nd = pn; nd; nd = rb_prev(nd)) {
337                 j++;
338         }
339         if (i != j)
340                 printk("backwards %d, forwards %d\n", j, i), i = 0;
341         return i;
342 }
343
344 void validate_mm(struct mm_struct *mm)
345 {
346         int bug = 0;
347         int i = 0;
348         struct vm_area_struct *tmp = mm->mmap;
349         while (tmp) {
350                 tmp = tmp->vm_next;
351                 i++;
352         }
353         if (i != mm->map_count)
354                 printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
355         i = browse_rb(&mm->mm_rb);
356         if (i != mm->map_count)
357                 printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
358         BUG_ON(bug);
359 }
360 #else
361 #define validate_mm(mm) do { } while (0)
362 #endif
363
364 static struct vm_area_struct *
365 find_vma_prepare(struct mm_struct *mm, unsigned long addr,
366                 struct vm_area_struct **pprev, struct rb_node ***rb_link,
367                 struct rb_node ** rb_parent)
368 {
369         struct vm_area_struct * vma;
370         struct rb_node ** __rb_link, * __rb_parent, * rb_prev;
371
372         __rb_link = &mm->mm_rb.rb_node;
373         rb_prev = __rb_parent = NULL;
374         vma = NULL;
375
376         while (*__rb_link) {
377                 struct vm_area_struct *vma_tmp;
378
379                 __rb_parent = *__rb_link;
380                 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
381
382                 if (vma_tmp->vm_end > addr) {
383                         vma = vma_tmp;
384                         if (vma_tmp->vm_start <= addr)
385                                 break;
386                         __rb_link = &__rb_parent->rb_left;
387                 } else {
388                         rb_prev = __rb_parent;
389                         __rb_link = &__rb_parent->rb_right;
390                 }
391         }
392
393         *pprev = NULL;
394         if (rb_prev)
395                 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
396         *rb_link = __rb_link;
397         *rb_parent = __rb_parent;
398         return vma;
399 }
400
401 static inline void
402 __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
403                 struct vm_area_struct *prev, struct rb_node *rb_parent)
404 {
405         struct vm_area_struct *next;
406
407         vma->vm_prev = prev;
408         if (prev) {
409                 next = prev->vm_next;
410                 prev->vm_next = vma;
411         } else {
412                 mm->mmap = vma;
413                 if (rb_parent)
414                         next = rb_entry(rb_parent,
415                                         struct vm_area_struct, vm_rb);
416                 else
417                         next = NULL;
418         }
419         vma->vm_next = next;
420         if (next)
421                 next->vm_prev = vma;
422 }
423
424 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
425                 struct rb_node **rb_link, struct rb_node *rb_parent)
426 {
427         rb_link_node(&vma->vm_rb, rb_parent, rb_link);
428         rb_insert_color(&vma->vm_rb, &mm->mm_rb);
429 }
430
431 static void __vma_link_file(struct vm_area_struct *vma)
432 {
433         struct file *file;
434
435         file = vma->vm_file;
436         if (file) {
437                 struct address_space *mapping = file->f_mapping;
438
439                 if (vma->vm_flags & VM_DENYWRITE)
440                         atomic_dec(&file->f_path.dentry->d_inode->i_writecount);
441                 if (vma->vm_flags & VM_SHARED)
442                         mapping->i_mmap_writable++;
443
444                 flush_dcache_mmap_lock(mapping);
445                 if (unlikely(vma->vm_flags & VM_NONLINEAR))
446                         vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
447                 else
448                         vma_prio_tree_insert(vma, &mapping->i_mmap);
449                 flush_dcache_mmap_unlock(mapping);
450         }
451 }
452
453 static void
454 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
455         struct vm_area_struct *prev, struct rb_node **rb_link,
456         struct rb_node *rb_parent)
457 {
458         __vma_link_list(mm, vma, prev, rb_parent);
459         __vma_link_rb(mm, vma, rb_link, rb_parent);
460 }
461
462 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
463                         struct vm_area_struct *prev, struct rb_node **rb_link,
464                         struct rb_node *rb_parent)
465 {
466         struct address_space *mapping = NULL;
467
468         if (vma->vm_file)
469                 mapping = vma->vm_file->f_mapping;
470
471         if (mapping) {
472                 spin_lock(&mapping->i_mmap_lock);
473                 vma->vm_truncate_count = mapping->truncate_count;
474         }
475
476         __vma_link(mm, vma, prev, rb_link, rb_parent);
477         __vma_link_file(vma);
478
479         if (mapping)
480                 spin_unlock(&mapping->i_mmap_lock);
481
482         mm->map_count++;
483         validate_mm(mm);
484 }
485
486 /*
487  * Helper for vma_adjust in the split_vma insert case:
488  * insert vm structure into list and rbtree and anon_vma,
489  * but it has already been inserted into prio_tree earlier.
490  */
491 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
492 {
493         struct vm_area_struct *__vma, *prev;
494         struct rb_node **rb_link, *rb_parent;
495
496         __vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent);
497         BUG_ON(__vma && __vma->vm_start < vma->vm_end);
498         __vma_link(mm, vma, prev, rb_link, rb_parent);
499         mm->map_count++;
500 }
501
502 static inline void
503 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
504                 struct vm_area_struct *prev)
505 {
506         struct vm_area_struct *next = vma->vm_next;
507
508         prev->vm_next = next;
509         if (next)
510                 next->vm_prev = prev;
511         rb_erase(&vma->vm_rb, &mm->mm_rb);
512         if (mm->mmap_cache == vma)
513                 mm->mmap_cache = prev;
514 }
515
516 /*
517  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
518  * is already present in an i_mmap tree without adjusting the tree.
519  * The following helper function should be used when such adjustments
520  * are necessary.  The "insert" vma (if any) is to be inserted
521  * before we drop the necessary locks.
522  */
523 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
524         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
525 {
526         struct mm_struct *mm = vma->vm_mm;
527         struct vm_area_struct *next = vma->vm_next;
528         struct vm_area_struct *importer = NULL;
529         struct address_space *mapping = NULL;
530         struct prio_tree_root *root = NULL;
531         struct anon_vma *anon_vma = NULL;
532         struct file *file = vma->vm_file;
533         long adjust_next = 0;
534         int remove_next = 0;
535
536         if (next && !insert) {
537                 struct vm_area_struct *exporter = NULL;
538
539                 if (end >= next->vm_end) {
540                         /*
541                          * vma expands, overlapping all the next, and
542                          * perhaps the one after too (mprotect case 6).
543                          */
544 again:                  remove_next = 1 + (end > next->vm_end);
545                         end = next->vm_end;
546                         exporter = next;
547                         importer = vma;
548                 } else if (end > next->vm_start) {
549                         /*
550                          * vma expands, overlapping part of the next:
551                          * mprotect case 5 shifting the boundary up.
552                          */
553                         adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
554                         exporter = next;
555                         importer = vma;
556                 } else if (end < vma->vm_end) {
557                         /*
558                          * vma shrinks, and !insert tells it's not
559                          * split_vma inserting another: so it must be
560                          * mprotect case 4 shifting the boundary down.
561                          */
562                         adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
563                         exporter = vma;
564                         importer = next;
565                 }
566
567                 /*
568                  * Easily overlooked: when mprotect shifts the boundary,
569                  * make sure the expanding vma has anon_vma set if the
570                  * shrinking vma had, to cover any anon pages imported.
571                  */
572                 if (exporter && exporter->anon_vma && !importer->anon_vma) {
573                         if (anon_vma_clone(importer, exporter))
574                                 return -ENOMEM;
575                         importer->anon_vma = exporter->anon_vma;
576                 }
577         }
578
579         if (file) {
580                 mapping = file->f_mapping;
581                 if (!(vma->vm_flags & VM_NONLINEAR))
582                         root = &mapping->i_mmap;
583                 spin_lock(&mapping->i_mmap_lock);
584                 if (importer &&
585                     vma->vm_truncate_count != next->vm_truncate_count) {
586                         /*
587                          * unmap_mapping_range might be in progress:
588                          * ensure that the expanding vma is rescanned.
589                          */
590                         importer->vm_truncate_count = 0;
591                 }
592                 if (insert) {
593                         insert->vm_truncate_count = vma->vm_truncate_count;
594                         /*
595                          * Put into prio_tree now, so instantiated pages
596                          * are visible to arm/parisc __flush_dcache_page
597                          * throughout; but we cannot insert into address
598                          * space until vma start or end is updated.
599                          */
600                         __vma_link_file(insert);
601                 }
602         }
603
604         vma_adjust_trans_huge(vma, start, end, adjust_next);
605
606         /*
607          * When changing only vma->vm_end, we don't really need anon_vma
608          * lock. This is a fairly rare case by itself, but the anon_vma
609          * lock may be shared between many sibling processes.  Skipping
610          * the lock for brk adjustments makes a difference sometimes.
611          */
612         if (vma->anon_vma && (importer || start != vma->vm_start)) {
613                 anon_vma = vma->anon_vma;
614                 anon_vma_lock(anon_vma);
615         }
616
617         if (root) {
618                 flush_dcache_mmap_lock(mapping);
619                 vma_prio_tree_remove(vma, root);
620                 if (adjust_next)
621                         vma_prio_tree_remove(next, root);
622         }
623
624         vma->vm_start = start;
625         vma->vm_end = end;
626         vma->vm_pgoff = pgoff;
627         if (adjust_next) {
628                 next->vm_start += adjust_next << PAGE_SHIFT;
629                 next->vm_pgoff += adjust_next;
630         }
631
632         if (root) {
633                 if (adjust_next)
634                         vma_prio_tree_insert(next, root);
635                 vma_prio_tree_insert(vma, root);
636                 flush_dcache_mmap_unlock(mapping);
637         }
638
639         if (remove_next) {
640                 /*
641                  * vma_merge has merged next into vma, and needs
642                  * us to remove next before dropping the locks.
643                  */
644                 __vma_unlink(mm, next, vma);
645                 if (file)
646                         __remove_shared_vm_struct(next, file, mapping);
647         } else if (insert) {
648                 /*
649                  * split_vma has split insert from vma, and needs
650                  * us to insert it before dropping the locks
651                  * (it may either follow vma or precede it).
652                  */
653                 __insert_vm_struct(mm, insert);
654         }
655
656         if (anon_vma)
657                 anon_vma_unlock(anon_vma);
658         if (mapping)
659                 spin_unlock(&mapping->i_mmap_lock);
660
661         if (remove_next) {
662                 if (file) {
663                         fput(file);
664                         if (next->vm_flags & VM_EXECUTABLE)
665                                 removed_exe_file_vma(mm);
666                 }
667                 if (next->anon_vma)
668                         anon_vma_merge(vma, next);
669                 mm->map_count--;
670                 mpol_put(vma_policy(next));
671                 kmem_cache_free(vm_area_cachep, next);
672                 /*
673                  * In mprotect's case 6 (see comments on vma_merge),
674                  * we must remove another next too. It would clutter
675                  * up the code too much to do both in one go.
676                  */
677                 if (remove_next == 2) {
678                         next = vma->vm_next;
679                         goto again;
680                 }
681         }
682
683         validate_mm(mm);
684
685         return 0;
686 }
687
688 /*
689  * If the vma has a ->close operation then the driver probably needs to release
690  * per-vma resources, so we don't attempt to merge those.
691  */
692 static inline int is_mergeable_vma(struct vm_area_struct *vma,
693                         struct file *file, unsigned long vm_flags)
694 {
695         /* VM_CAN_NONLINEAR may get set later by f_op->mmap() */
696         if ((vma->vm_flags ^ vm_flags) & ~VM_CAN_NONLINEAR)
697                 return 0;
698         if (vma->vm_file != file)
699                 return 0;
700         if (vma->vm_ops && vma->vm_ops->close)
701                 return 0;
702         return 1;
703 }
704
705 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
706                                         struct anon_vma *anon_vma2,
707                                         struct vm_area_struct *vma)
708 {
709         /*
710          * The list_is_singular() test is to avoid merging VMA cloned from
711          * parents. This can improve scalability caused by anon_vma lock.
712          */
713         if ((!anon_vma1 || !anon_vma2) && (!vma ||
714                 list_is_singular(&vma->anon_vma_chain)))
715                 return 1;
716         return anon_vma1 == anon_vma2;
717 }
718
719 /*
720  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
721  * in front of (at a lower virtual address and file offset than) the vma.
722  *
723  * We cannot merge two vmas if they have differently assigned (non-NULL)
724  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
725  *
726  * We don't check here for the merged mmap wrapping around the end of pagecache
727  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
728  * wrap, nor mmaps which cover the final page at index -1UL.
729  */
730 static int
731 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
732         struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
733 {
734         if (is_mergeable_vma(vma, file, vm_flags) &&
735             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
736                 if (vma->vm_pgoff == vm_pgoff)
737                         return 1;
738         }
739         return 0;
740 }
741
742 /*
743  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
744  * beyond (at a higher virtual address and file offset than) the vma.
745  *
746  * We cannot merge two vmas if they have differently assigned (non-NULL)
747  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
748  */
749 static int
750 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
751         struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
752 {
753         if (is_mergeable_vma(vma, file, vm_flags) &&
754             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
755                 pgoff_t vm_pglen;
756                 vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
757                 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
758                         return 1;
759         }
760         return 0;
761 }
762
763 /*
764  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
765  * whether that can be merged with its predecessor or its successor.
766  * Or both (it neatly fills a hole).
767  *
768  * In most cases - when called for mmap, brk or mremap - [addr,end) is
769  * certain not to be mapped by the time vma_merge is called; but when
770  * called for mprotect, it is certain to be already mapped (either at
771  * an offset within prev, or at the start of next), and the flags of
772  * this area are about to be changed to vm_flags - and the no-change
773  * case has already been eliminated.
774  *
775  * The following mprotect cases have to be considered, where AAAA is
776  * the area passed down from mprotect_fixup, never extending beyond one
777  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
778  *
779  *     AAAA             AAAA                AAAA          AAAA
780  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
781  *    cannot merge    might become    might become    might become
782  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
783  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
784  *    mremap move:                                    PPPPNNNNNNNN 8
785  *        AAAA
786  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
787  *    might become    case 1 below    case 2 below    case 3 below
788  *
789  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
790  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
791  */
792 struct vm_area_struct *vma_merge(struct mm_struct *mm,
793                         struct vm_area_struct *prev, unsigned long addr,
794                         unsigned long end, unsigned long vm_flags,
795                         struct anon_vma *anon_vma, struct file *file,
796                         pgoff_t pgoff, struct mempolicy *policy)
797 {
798         pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
799         struct vm_area_struct *area, *next;
800         int err;
801
802         /*
803          * We later require that vma->vm_flags == vm_flags,
804          * so this tests vma->vm_flags & VM_SPECIAL, too.
805          */
806         if (vm_flags & VM_SPECIAL)
807                 return NULL;
808
809         if (prev)
810                 next = prev->vm_next;
811         else
812                 next = mm->mmap;
813         area = next;
814         if (next && next->vm_end == end)                /* cases 6, 7, 8 */
815                 next = next->vm_next;
816
817         /*
818          * Can it merge with the predecessor?
819          */
820         if (prev && prev->vm_end == addr &&
821                         mpol_equal(vma_policy(prev), policy) &&
822                         can_vma_merge_after(prev, vm_flags,
823                                                 anon_vma, file, pgoff)) {
824                 /*
825                  * OK, it can.  Can we now merge in the successor as well?
826                  */
827                 if (next && end == next->vm_start &&
828                                 mpol_equal(policy, vma_policy(next)) &&
829                                 can_vma_merge_before(next, vm_flags,
830                                         anon_vma, file, pgoff+pglen) &&
831                                 is_mergeable_anon_vma(prev->anon_vma,
832                                                       next->anon_vma, NULL)) {
833                                                         /* cases 1, 6 */
834                         err = vma_adjust(prev, prev->vm_start,
835                                 next->vm_end, prev->vm_pgoff, NULL);
836                 } else                                  /* cases 2, 5, 7 */
837                         err = vma_adjust(prev, prev->vm_start,
838                                 end, prev->vm_pgoff, NULL);
839                 if (err)
840                         return NULL;
841                 khugepaged_enter_vma_merge(prev);
842                 return prev;
843         }
844
845         /*
846          * Can this new request be merged in front of next?
847          */
848         if (next && end == next->vm_start &&
849                         mpol_equal(policy, vma_policy(next)) &&
850                         can_vma_merge_before(next, vm_flags,
851                                         anon_vma, file, pgoff+pglen)) {
852                 if (prev && addr < prev->vm_end)        /* case 4 */
853                         err = vma_adjust(prev, prev->vm_start,
854                                 addr, prev->vm_pgoff, NULL);
855                 else                                    /* cases 3, 8 */
856                         err = vma_adjust(area, addr, next->vm_end,
857                                 next->vm_pgoff - pglen, NULL);
858                 if (err)
859                         return NULL;
860                 khugepaged_enter_vma_merge(area);
861                 return area;
862         }
863
864         return NULL;
865 }
866
867 /*
868  * Rough compatbility check to quickly see if it's even worth looking
869  * at sharing an anon_vma.
870  *
871  * They need to have the same vm_file, and the flags can only differ
872  * in things that mprotect may change.
873  *
874  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
875  * we can merge the two vma's. For example, we refuse to merge a vma if
876  * there is a vm_ops->close() function, because that indicates that the
877  * driver is doing some kind of reference counting. But that doesn't
878  * really matter for the anon_vma sharing case.
879  */
880 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
881 {
882         return a->vm_end == b->vm_start &&
883                 mpol_equal(vma_policy(a), vma_policy(b)) &&
884                 a->vm_file == b->vm_file &&
885                 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) &&
886                 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
887 }
888
889 /*
890  * Do some basic sanity checking to see if we can re-use the anon_vma
891  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
892  * the same as 'old', the other will be the new one that is trying
893  * to share the anon_vma.
894  *
895  * NOTE! This runs with mm_sem held for reading, so it is possible that
896  * the anon_vma of 'old' is concurrently in the process of being set up
897  * by another page fault trying to merge _that_. But that's ok: if it
898  * is being set up, that automatically means that it will be a singleton
899  * acceptable for merging, so we can do all of this optimistically. But
900  * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
901  *
902  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
903  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
904  * is to return an anon_vma that is "complex" due to having gone through
905  * a fork).
906  *
907  * We also make sure that the two vma's are compatible (adjacent,
908  * and with the same memory policies). That's all stable, even with just
909  * a read lock on the mm_sem.
910  */
911 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
912 {
913         if (anon_vma_compatible(a, b)) {
914                 struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
915
916                 if (anon_vma && list_is_singular(&old->anon_vma_chain))
917                         return anon_vma;
918         }
919         return NULL;
920 }
921
922 /*
923  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
924  * neighbouring vmas for a suitable anon_vma, before it goes off
925  * to allocate a new anon_vma.  It checks because a repetitive
926  * sequence of mprotects and faults may otherwise lead to distinct
927  * anon_vmas being allocated, preventing vma merge in subsequent
928  * mprotect.
929  */
930 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
931 {
932         struct anon_vma *anon_vma;
933         struct vm_area_struct *near;
934
935         near = vma->vm_next;
936         if (!near)
937                 goto try_prev;
938
939         anon_vma = reusable_anon_vma(near, vma, near);
940         if (anon_vma)
941                 return anon_vma;
942 try_prev:
943         /*
944          * It is potentially slow to have to call find_vma_prev here.
945          * But it's only on the first write fault on the vma, not
946          * every time, and we could devise a way to avoid it later
947          * (e.g. stash info in next's anon_vma_node when assigning
948          * an anon_vma, or when trying vma_merge).  Another time.
949          */
950         BUG_ON(find_vma_prev(vma->vm_mm, vma->vm_start, &near) != vma);
951         if (!near)
952                 goto none;
953
954         anon_vma = reusable_anon_vma(near, near, vma);
955         if (anon_vma)
956                 return anon_vma;
957 none:
958         /*
959          * There's no absolute need to look only at touching neighbours:
960          * we could search further afield for "compatible" anon_vmas.
961          * But it would probably just be a waste of time searching,
962          * or lead to too many vmas hanging off the same anon_vma.
963          * We're trying to allow mprotect remerging later on,
964          * not trying to minimize memory used for anon_vmas.
965          */
966         return NULL;
967 }
968
969 #ifdef CONFIG_PROC_FS
970 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
971                                                 struct file *file, long pages)
972 {
973         const unsigned long stack_flags
974                 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
975
976         if (file) {
977                 mm->shared_vm += pages;
978                 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
979                         mm->exec_vm += pages;
980         } else if (flags & stack_flags)
981                 mm->stack_vm += pages;
982         if (flags & (VM_RESERVED|VM_IO))
983                 mm->reserved_vm += pages;
984 }
985 #endif /* CONFIG_PROC_FS */
986
987 /*
988  * The caller must hold down_write(&current->mm->mmap_sem).
989  */
990
991 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
992                         unsigned long len, unsigned long prot,
993                         unsigned long flags, unsigned long pgoff)
994 {
995         struct mm_struct * mm = current->mm;
996         struct inode *inode;
997         unsigned int vm_flags;
998         int error;
999         unsigned long reqprot = prot;
1000
1001         /*
1002          * Does the application expect PROT_READ to imply PROT_EXEC?
1003          *
1004          * (the exception is when the underlying filesystem is noexec
1005          *  mounted, in which case we dont add PROT_EXEC.)
1006          */
1007         if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1008                 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
1009                         prot |= PROT_EXEC;
1010
1011         if (!len)
1012                 return -EINVAL;
1013
1014         if (!(flags & MAP_FIXED))
1015                 addr = round_hint_to_min(addr);
1016
1017         /* Careful about overflows.. */
1018         len = PAGE_ALIGN(len);
1019         if (!len)
1020                 return -ENOMEM;
1021
1022         /* offset overflow? */
1023         if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1024                return -EOVERFLOW;
1025
1026         /* Too many mappings? */
1027         if (mm->map_count > sysctl_max_map_count)
1028                 return -ENOMEM;
1029
1030         /* Obtain the address to map to. we verify (or select) it and ensure
1031          * that it represents a valid section of the address space.
1032          */
1033         addr = get_unmapped_area(file, addr, len, pgoff, flags);
1034         if (addr & ~PAGE_MASK)
1035                 return addr;
1036
1037         /* Do simple checking here so the lower-level routines won't have
1038          * to. we assume access permissions have been handled by the open
1039          * of the memory object, so we don't do any here.
1040          */
1041         vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1042                         mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1043
1044         if (flags & MAP_LOCKED)
1045                 if (!can_do_mlock())
1046                         return -EPERM;
1047
1048         /* mlock MCL_FUTURE? */
1049         if (vm_flags & VM_LOCKED) {
1050                 unsigned long locked, lock_limit;
1051                 locked = len >> PAGE_SHIFT;
1052                 locked += mm->locked_vm;
1053                 lock_limit = rlimit(RLIMIT_MEMLOCK);
1054                 lock_limit >>= PAGE_SHIFT;
1055                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1056                         return -EAGAIN;
1057         }
1058
1059         inode = file ? file->f_path.dentry->d_inode : NULL;
1060
1061         if (file) {
1062                 switch (flags & MAP_TYPE) {
1063                 case MAP_SHARED:
1064                         if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1065                                 return -EACCES;
1066
1067                         /*
1068                          * Make sure we don't allow writing to an append-only
1069                          * file..
1070                          */
1071                         if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1072                                 return -EACCES;
1073
1074                         /*
1075                          * Make sure there are no mandatory locks on the file.
1076                          */
1077                         if (locks_verify_locked(inode))
1078                                 return -EAGAIN;
1079
1080                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1081                         if (!(file->f_mode & FMODE_WRITE))
1082                                 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1083
1084                         /* fall through */
1085                 case MAP_PRIVATE:
1086                         if (!(file->f_mode & FMODE_READ))
1087                                 return -EACCES;
1088                         if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1089                                 if (vm_flags & VM_EXEC)
1090                                         return -EPERM;
1091                                 vm_flags &= ~VM_MAYEXEC;
1092                         }
1093
1094                         if (!file->f_op || !file->f_op->mmap)
1095                                 return -ENODEV;
1096                         break;
1097
1098                 default:
1099                         return -EINVAL;
1100                 }
1101         } else {
1102                 switch (flags & MAP_TYPE) {
1103                 case MAP_SHARED:
1104                         /*
1105                          * Ignore pgoff.
1106                          */
1107                         pgoff = 0;
1108                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1109                         break;
1110                 case MAP_PRIVATE:
1111                         /*
1112                          * Set pgoff according to addr for anon_vma.
1113                          */
1114                         pgoff = addr >> PAGE_SHIFT;
1115                         break;
1116                 default:
1117                         return -EINVAL;
1118                 }
1119         }
1120
1121         error = security_file_mmap(file, reqprot, prot, flags, addr, 0);
1122         if (error)
1123                 return error;
1124
1125         return mmap_region(file, addr, len, flags, vm_flags, pgoff);
1126 }
1127 EXPORT_SYMBOL(do_mmap_pgoff);
1128
1129 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1130                 unsigned long, prot, unsigned long, flags,
1131                 unsigned long, fd, unsigned long, pgoff)
1132 {
1133         struct file *file = NULL;
1134         unsigned long retval = -EBADF;
1135
1136         if (!(flags & MAP_ANONYMOUS)) {
1137                 audit_mmap_fd(fd, flags);
1138                 if (unlikely(flags & MAP_HUGETLB))
1139                         return -EINVAL;
1140                 file = fget(fd);
1141                 if (!file)
1142                         goto out;
1143         } else if (flags & MAP_HUGETLB) {
1144                 struct user_struct *user = NULL;
1145                 /*
1146                  * VM_NORESERVE is used because the reservations will be
1147                  * taken when vm_ops->mmap() is called
1148                  * A dummy user value is used because we are not locking
1149                  * memory so no accounting is necessary
1150                  */
1151                 len = ALIGN(len, huge_page_size(&default_hstate));
1152                 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, VM_NORESERVE,
1153                                                 &user, HUGETLB_ANONHUGE_INODE);
1154                 if (IS_ERR(file))
1155                         return PTR_ERR(file);
1156         }
1157
1158         flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1159
1160         down_write(&current->mm->mmap_sem);
1161         retval = do_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1162         up_write(&current->mm->mmap_sem);
1163
1164         if (file)
1165                 fput(file);
1166 out:
1167         return retval;
1168 }
1169
1170 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1171 struct mmap_arg_struct {
1172         unsigned long addr;
1173         unsigned long len;
1174         unsigned long prot;
1175         unsigned long flags;
1176         unsigned long fd;
1177         unsigned long offset;
1178 };
1179
1180 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1181 {
1182         struct mmap_arg_struct a;
1183
1184         if (copy_from_user(&a, arg, sizeof(a)))
1185                 return -EFAULT;
1186         if (a.offset & ~PAGE_MASK)
1187                 return -EINVAL;
1188
1189         return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1190                               a.offset >> PAGE_SHIFT);
1191 }
1192 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1193
1194 /*
1195  * Some shared mappigns will want the pages marked read-only
1196  * to track write events. If so, we'll downgrade vm_page_prot
1197  * to the private version (using protection_map[] without the
1198  * VM_SHARED bit).
1199  */
1200 int vma_wants_writenotify(struct vm_area_struct *vma)
1201 {
1202         unsigned int vm_flags = vma->vm_flags;
1203
1204         /* If it was private or non-writable, the write bit is already clear */
1205         if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1206                 return 0;
1207
1208         /* The backer wishes to know when pages are first written to? */
1209         if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1210                 return 1;
1211
1212         /* The open routine did something to the protections already? */
1213         if (pgprot_val(vma->vm_page_prot) !=
1214             pgprot_val(vm_get_page_prot(vm_flags)))
1215                 return 0;
1216
1217         /* Specialty mapping? */
1218         if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE))
1219                 return 0;
1220
1221         /* Can the mapping track the dirty pages? */
1222         return vma->vm_file && vma->vm_file->f_mapping &&
1223                 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1224 }
1225
1226 /*
1227  * We account for memory if it's a private writeable mapping,
1228  * not hugepages and VM_NORESERVE wasn't set.
1229  */
1230 static inline int accountable_mapping(struct file *file, unsigned int vm_flags)
1231 {
1232         /*
1233          * hugetlb has its own accounting separate from the core VM
1234          * VM_HUGETLB may not be set yet so we cannot check for that flag.
1235          */
1236         if (file && is_file_hugepages(file))
1237                 return 0;
1238
1239         return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1240 }
1241
1242 unsigned long mmap_region(struct file *file, unsigned long addr,
1243                           unsigned long len, unsigned long flags,
1244                           unsigned int vm_flags, unsigned long pgoff)
1245 {
1246         struct mm_struct *mm = current->mm;
1247         struct vm_area_struct *vma, *prev;
1248         int correct_wcount = 0;
1249         int error;
1250         struct rb_node **rb_link, *rb_parent;
1251         unsigned long charged = 0;
1252         struct inode *inode =  file ? file->f_path.dentry->d_inode : NULL;
1253
1254         /* Clear old maps */
1255         error = -ENOMEM;
1256 munmap_back:
1257         vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1258         if (vma && vma->vm_start < addr + len) {
1259                 if (do_munmap(mm, addr, len))
1260                         return -ENOMEM;
1261                 goto munmap_back;
1262         }
1263
1264         /* Check against address space limit. */
1265         if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1266                 return -ENOMEM;
1267
1268         /*
1269          * Set 'VM_NORESERVE' if we should not account for the
1270          * memory use of this mapping.
1271          */
1272         if ((flags & MAP_NORESERVE)) {
1273                 /* We honor MAP_NORESERVE if allowed to overcommit */
1274                 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1275                         vm_flags |= VM_NORESERVE;
1276
1277                 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1278                 if (file && is_file_hugepages(file))
1279                         vm_flags |= VM_NORESERVE;
1280         }
1281
1282         /*
1283          * Private writable mapping: check memory availability
1284          */
1285         if (accountable_mapping(file, vm_flags)) {
1286                 charged = len >> PAGE_SHIFT;
1287                 if (security_vm_enough_memory(charged))
1288                         return -ENOMEM;
1289                 vm_flags |= VM_ACCOUNT;
1290         }
1291
1292         /*
1293          * Can we just expand an old mapping?
1294          */
1295         vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1296         if (vma)
1297                 goto out;
1298
1299         /*
1300          * Determine the object being mapped and call the appropriate
1301          * specific mapper. the address has already been validated, but
1302          * not unmapped, but the maps are removed from the list.
1303          */
1304         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1305         if (!vma) {
1306                 error = -ENOMEM;
1307                 goto unacct_error;
1308         }
1309
1310         vma->vm_mm = mm;
1311         vma->vm_start = addr;
1312         vma->vm_end = addr + len;
1313         vma->vm_flags = vm_flags;
1314         vma->vm_page_prot = vm_get_page_prot(vm_flags);
1315         vma->vm_pgoff = pgoff;
1316         INIT_LIST_HEAD(&vma->anon_vma_chain);
1317
1318         if (file) {
1319                 error = -EINVAL;
1320                 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1321                         goto free_vma;
1322                 if (vm_flags & VM_DENYWRITE) {
1323                         error = deny_write_access(file);
1324                         if (error)
1325                                 goto free_vma;
1326                         correct_wcount = 1;
1327                 }
1328                 vma->vm_file = file;
1329                 get_file(file);
1330                 error = file->f_op->mmap(file, vma);
1331                 if (error)
1332                         goto unmap_and_free_vma;
1333                 if (vm_flags & VM_EXECUTABLE)
1334                         added_exe_file_vma(mm);
1335
1336                 /* Can addr have changed??
1337                  *
1338                  * Answer: Yes, several device drivers can do it in their
1339                  *         f_op->mmap method. -DaveM
1340                  */
1341                 addr = vma->vm_start;
1342                 pgoff = vma->vm_pgoff;
1343                 vm_flags = vma->vm_flags;
1344         } else if (vm_flags & VM_SHARED) {
1345                 error = shmem_zero_setup(vma);
1346                 if (error)
1347                         goto free_vma;
1348         }
1349
1350         if (vma_wants_writenotify(vma)) {
1351                 pgprot_t pprot = vma->vm_page_prot;
1352
1353                 /* Can vma->vm_page_prot have changed??
1354                  *
1355                  * Answer: Yes, drivers may have changed it in their
1356                  *         f_op->mmap method.
1357                  *
1358                  * Ensures that vmas marked as uncached stay that way.
1359                  */
1360                 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1361                 if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1362                         vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1363         }
1364
1365         vma_link(mm, vma, prev, rb_link, rb_parent);
1366         file = vma->vm_file;
1367
1368         /* Once vma denies write, undo our temporary denial count */
1369         if (correct_wcount)
1370                 atomic_inc(&inode->i_writecount);
1371 out:
1372         perf_event_mmap(vma);
1373
1374         mm->total_vm += len >> PAGE_SHIFT;
1375         vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1376         if (vm_flags & VM_LOCKED) {
1377                 if (!mlock_vma_pages_range(vma, addr, addr + len))
1378                         mm->locked_vm += (len >> PAGE_SHIFT);
1379         } else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK))
1380                 make_pages_present(addr, addr + len);
1381         return addr;
1382
1383 unmap_and_free_vma:
1384         if (correct_wcount)
1385                 atomic_inc(&inode->i_writecount);
1386         vma->vm_file = NULL;
1387         fput(file);
1388
1389         /* Undo any partial mapping done by a device driver. */
1390         unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1391         charged = 0;
1392 free_vma:
1393         kmem_cache_free(vm_area_cachep, vma);
1394 unacct_error:
1395         if (charged)
1396                 vm_unacct_memory(charged);
1397         return error;
1398 }
1399
1400 /* Get an address range which is currently unmapped.
1401  * For shmat() with addr=0.
1402  *
1403  * Ugly calling convention alert:
1404  * Return value with the low bits set means error value,
1405  * ie
1406  *      if (ret & ~PAGE_MASK)
1407  *              error = ret;
1408  *
1409  * This function "knows" that -ENOMEM has the bits set.
1410  */
1411 #ifndef HAVE_ARCH_UNMAPPED_AREA
1412 unsigned long
1413 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1414                 unsigned long len, unsigned long pgoff, unsigned long flags)
1415 {
1416         struct mm_struct *mm = current->mm;
1417         struct vm_area_struct *vma;
1418         unsigned long start_addr;
1419
1420         if (len > TASK_SIZE)
1421                 return -ENOMEM;
1422
1423         if (flags & MAP_FIXED)
1424                 return addr;
1425
1426         if (addr) {
1427                 addr = PAGE_ALIGN(addr);
1428                 vma = find_vma(mm, addr);
1429                 if (TASK_SIZE - len >= addr &&
1430                     (!vma || addr + len <= vma->vm_start))
1431                         return addr;
1432         }
1433         if (len > mm->cached_hole_size) {
1434                 start_addr = addr = mm->free_area_cache;
1435         } else {
1436                 start_addr = addr = TASK_UNMAPPED_BASE;
1437                 mm->cached_hole_size = 0;
1438         }
1439
1440 full_search:
1441         for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1442                 /* At this point:  (!vma || addr < vma->vm_end). */
1443                 if (TASK_SIZE - len < addr) {
1444                         /*
1445                          * Start a new search - just in case we missed
1446                          * some holes.
1447                          */
1448                         if (start_addr != TASK_UNMAPPED_BASE) {
1449                                 addr = TASK_UNMAPPED_BASE;
1450                                 start_addr = addr;
1451                                 mm->cached_hole_size = 0;
1452                                 goto full_search;
1453                         }
1454                         return -ENOMEM;
1455                 }
1456                 if (!vma || addr + len <= vma->vm_start) {
1457                         /*
1458                          * Remember the place where we stopped the search:
1459                          */
1460                         mm->free_area_cache = addr + len;
1461                         return addr;
1462                 }
1463                 if (addr + mm->cached_hole_size < vma->vm_start)
1464                         mm->cached_hole_size = vma->vm_start - addr;
1465                 addr = vma->vm_end;
1466         }
1467 }
1468 #endif  
1469
1470 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1471 {
1472         /*
1473          * Is this a new hole at the lowest possible address?
1474          */
1475         if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) {
1476                 mm->free_area_cache = addr;
1477                 mm->cached_hole_size = ~0UL;
1478         }
1479 }
1480
1481 /*
1482  * This mmap-allocator allocates new areas top-down from below the
1483  * stack's low limit (the base):
1484  */
1485 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1486 unsigned long
1487 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1488                           const unsigned long len, const unsigned long pgoff,
1489                           const unsigned long flags)
1490 {
1491         struct vm_area_struct *vma;
1492         struct mm_struct *mm = current->mm;
1493         unsigned long addr = addr0;
1494
1495         /* requested length too big for entire address space */
1496         if (len > TASK_SIZE)
1497                 return -ENOMEM;
1498
1499         if (flags & MAP_FIXED)
1500                 return addr;
1501
1502         /* requesting a specific address */
1503         if (addr) {
1504                 addr = PAGE_ALIGN(addr);
1505                 vma = find_vma(mm, addr);
1506                 if (TASK_SIZE - len >= addr &&
1507                                 (!vma || addr + len <= vma->vm_start))
1508                         return addr;
1509         }
1510
1511         /* check if free_area_cache is useful for us */
1512         if (len <= mm->cached_hole_size) {
1513                 mm->cached_hole_size = 0;
1514                 mm->free_area_cache = mm->mmap_base;
1515         }
1516
1517         /* either no address requested or can't fit in requested address hole */
1518         addr = mm->free_area_cache;
1519
1520         /* make sure it can fit in the remaining address space */
1521         if (addr > len) {
1522                 vma = find_vma(mm, addr-len);
1523                 if (!vma || addr <= vma->vm_start)
1524                         /* remember the address as a hint for next time */
1525                         return (mm->free_area_cache = addr-len);
1526         }
1527
1528         if (mm->mmap_base < len)
1529                 goto bottomup;
1530
1531         addr = mm->mmap_base-len;
1532
1533         do {
1534                 /*
1535                  * Lookup failure means no vma is above this address,
1536                  * else if new region fits below vma->vm_start,
1537                  * return with success:
1538                  */
1539                 vma = find_vma(mm, addr);
1540                 if (!vma || addr+len <= vma->vm_start)
1541                         /* remember the address as a hint for next time */
1542                         return (mm->free_area_cache = addr);
1543
1544                 /* remember the largest hole we saw so far */
1545                 if (addr + mm->cached_hole_size < vma->vm_start)
1546                         mm->cached_hole_size = vma->vm_start - addr;
1547
1548                 /* try just below the current vma->vm_start */
1549                 addr = vma->vm_start-len;
1550         } while (len < vma->vm_start);
1551
1552 bottomup:
1553         /*
1554          * A failed mmap() very likely causes application failure,
1555          * so fall back to the bottom-up function here. This scenario
1556          * can happen with large stack limits and large mmap()
1557          * allocations.
1558          */
1559         mm->cached_hole_size = ~0UL;
1560         mm->free_area_cache = TASK_UNMAPPED_BASE;
1561         addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1562         /*
1563          * Restore the topdown base:
1564          */
1565         mm->free_area_cache = mm->mmap_base;
1566         mm->cached_hole_size = ~0UL;
1567
1568         return addr;
1569 }
1570 #endif
1571
1572 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1573 {
1574         /*
1575          * Is this a new hole at the highest possible address?
1576          */
1577         if (addr > mm->free_area_cache)
1578                 mm->free_area_cache = addr;
1579
1580         /* dont allow allocations above current base */
1581         if (mm->free_area_cache > mm->mmap_base)
1582                 mm->free_area_cache = mm->mmap_base;
1583 }
1584
1585 unsigned long
1586 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1587                 unsigned long pgoff, unsigned long flags)
1588 {
1589         unsigned long (*get_area)(struct file *, unsigned long,
1590                                   unsigned long, unsigned long, unsigned long);
1591
1592         unsigned long error = arch_mmap_check(addr, len, flags);
1593         if (error)
1594                 return error;
1595
1596         /* Careful about overflows.. */
1597         if (len > TASK_SIZE)
1598                 return -ENOMEM;
1599
1600         get_area = current->mm->get_unmapped_area;
1601         if (file && file->f_op && file->f_op->get_unmapped_area)
1602                 get_area = file->f_op->get_unmapped_area;
1603         addr = get_area(file, addr, len, pgoff, flags);
1604         if (IS_ERR_VALUE(addr))
1605                 return addr;
1606
1607         if (addr > TASK_SIZE - len)
1608                 return -ENOMEM;
1609         if (addr & ~PAGE_MASK)
1610                 return -EINVAL;
1611
1612         return arch_rebalance_pgtables(addr, len);
1613 }
1614
1615 EXPORT_SYMBOL(get_unmapped_area);
1616
1617 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1618 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1619 {
1620         struct vm_area_struct *vma = NULL;
1621
1622         if (mm) {
1623                 /* Check the cache first. */
1624                 /* (Cache hit rate is typically around 35%.) */
1625                 vma = mm->mmap_cache;
1626                 if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1627                         struct rb_node * rb_node;
1628
1629                         rb_node = mm->mm_rb.rb_node;
1630                         vma = NULL;
1631
1632                         while (rb_node) {
1633                                 struct vm_area_struct * vma_tmp;
1634
1635                                 vma_tmp = rb_entry(rb_node,
1636                                                 struct vm_area_struct, vm_rb);
1637
1638                                 if (vma_tmp->vm_end > addr) {
1639                                         vma = vma_tmp;
1640                                         if (vma_tmp->vm_start <= addr)
1641                                                 break;
1642                                         rb_node = rb_node->rb_left;
1643                                 } else
1644                                         rb_node = rb_node->rb_right;
1645                         }
1646                         if (vma)
1647                                 mm->mmap_cache = vma;
1648                 }
1649         }
1650         return vma;
1651 }
1652
1653 EXPORT_SYMBOL(find_vma);
1654
1655 /* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */
1656 struct vm_area_struct *
1657 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1658                         struct vm_area_struct **pprev)
1659 {
1660         struct vm_area_struct *vma = NULL, *prev = NULL;
1661         struct rb_node *rb_node;
1662         if (!mm)
1663                 goto out;
1664
1665         /* Guard against addr being lower than the first VMA */
1666         vma = mm->mmap;
1667
1668         /* Go through the RB tree quickly. */
1669         rb_node = mm->mm_rb.rb_node;
1670
1671         while (rb_node) {
1672                 struct vm_area_struct *vma_tmp;
1673                 vma_tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1674
1675                 if (addr < vma_tmp->vm_end) {
1676                         rb_node = rb_node->rb_left;
1677                 } else {
1678                         prev = vma_tmp;
1679                         if (!prev->vm_next || (addr < prev->vm_next->vm_end))
1680                                 break;
1681                         rb_node = rb_node->rb_right;
1682                 }
1683         }
1684
1685 out:
1686         *pprev = prev;
1687         return prev ? prev->vm_next : vma;
1688 }
1689
1690 /*
1691  * Verify that the stack growth is acceptable and
1692  * update accounting. This is shared with both the
1693  * grow-up and grow-down cases.
1694  */
1695 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
1696 {
1697         struct mm_struct *mm = vma->vm_mm;
1698         struct rlimit *rlim = current->signal->rlim;
1699         unsigned long new_start;
1700
1701         /* address space limit tests */
1702         if (!may_expand_vm(mm, grow))
1703                 return -ENOMEM;
1704
1705         /* Stack limit test */
1706         if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
1707                 return -ENOMEM;
1708
1709         /* mlock limit tests */
1710         if (vma->vm_flags & VM_LOCKED) {
1711                 unsigned long locked;
1712                 unsigned long limit;
1713                 locked = mm->locked_vm + grow;
1714                 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
1715                 limit >>= PAGE_SHIFT;
1716                 if (locked > limit && !capable(CAP_IPC_LOCK))
1717                         return -ENOMEM;
1718         }
1719
1720         /* Check to ensure the stack will not grow into a hugetlb-only region */
1721         new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1722                         vma->vm_end - size;
1723         if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1724                 return -EFAULT;
1725
1726         /*
1727          * Overcommit..  This must be the final test, as it will
1728          * update security statistics.
1729          */
1730         if (security_vm_enough_memory_mm(mm, grow))
1731                 return -ENOMEM;
1732
1733         /* Ok, everything looks good - let it rip */
1734         mm->total_vm += grow;
1735         if (vma->vm_flags & VM_LOCKED)
1736                 mm->locked_vm += grow;
1737         vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1738         return 0;
1739 }
1740
1741 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1742 /*
1743  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1744  * vma is the last one with address > vma->vm_end.  Have to extend vma.
1745  */
1746 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1747 {
1748         int error;
1749
1750         if (!(vma->vm_flags & VM_GROWSUP))
1751                 return -EFAULT;
1752
1753         /*
1754          * We must make sure the anon_vma is allocated
1755          * so that the anon_vma locking is not a noop.
1756          */
1757         if (unlikely(anon_vma_prepare(vma)))
1758                 return -ENOMEM;
1759         vma_lock_anon_vma(vma);
1760
1761         /*
1762          * vma->vm_start/vm_end cannot change under us because the caller
1763          * is required to hold the mmap_sem in read mode.  We need the
1764          * anon_vma lock to serialize against concurrent expand_stacks.
1765          * Also guard against wrapping around to address 0.
1766          */
1767         if (address < PAGE_ALIGN(address+4))
1768                 address = PAGE_ALIGN(address+4);
1769         else {
1770                 vma_unlock_anon_vma(vma);
1771                 return -ENOMEM;
1772         }
1773         error = 0;
1774
1775         /* Somebody else might have raced and expanded it already */
1776         if (address > vma->vm_end) {
1777                 unsigned long size, grow;
1778
1779                 size = address - vma->vm_start;
1780                 grow = (address - vma->vm_end) >> PAGE_SHIFT;
1781
1782                 error = -ENOMEM;
1783                 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
1784                         error = acct_stack_growth(vma, size, grow);
1785                         if (!error) {
1786                                 vma->vm_end = address;
1787                                 perf_event_mmap(vma);
1788                         }
1789                 }
1790         }
1791         vma_unlock_anon_vma(vma);
1792         khugepaged_enter_vma_merge(vma);
1793         return error;
1794 }
1795 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1796
1797 /*
1798  * vma is the first one with address < vma->vm_start.  Have to extend vma.
1799  */
1800 static int expand_downwards(struct vm_area_struct *vma,
1801                                    unsigned long address)
1802 {
1803         int error;
1804
1805         /*
1806          * We must make sure the anon_vma is allocated
1807          * so that the anon_vma locking is not a noop.
1808          */
1809         if (unlikely(anon_vma_prepare(vma)))
1810                 return -ENOMEM;
1811
1812         address &= PAGE_MASK;
1813         error = security_file_mmap(NULL, 0, 0, 0, address, 1);
1814         if (error)
1815                 return error;
1816
1817         vma_lock_anon_vma(vma);
1818
1819         /*
1820          * vma->vm_start/vm_end cannot change under us because the caller
1821          * is required to hold the mmap_sem in read mode.  We need the
1822          * anon_vma lock to serialize against concurrent expand_stacks.
1823          */
1824
1825         /* Somebody else might have raced and expanded it already */
1826         if (address < vma->vm_start) {
1827                 unsigned long size, grow;
1828
1829                 size = vma->vm_end - address;
1830                 grow = (vma->vm_start - address) >> PAGE_SHIFT;
1831
1832                 error = -ENOMEM;
1833                 if (grow <= vma->vm_pgoff) {
1834                         error = acct_stack_growth(vma, size, grow);
1835                         if (!error) {
1836                                 vma->vm_start = address;
1837                                 vma->vm_pgoff -= grow;
1838                                 perf_event_mmap(vma);
1839                         }
1840                 }
1841         }
1842         vma_unlock_anon_vma(vma);
1843         khugepaged_enter_vma_merge(vma);
1844         return error;
1845 }
1846
1847 int expand_stack_downwards(struct vm_area_struct *vma, unsigned long address)
1848 {
1849         return expand_downwards(vma, address);
1850 }
1851
1852 #ifdef CONFIG_STACK_GROWSUP
1853 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1854 {
1855         return expand_upwards(vma, address);
1856 }
1857
1858 struct vm_area_struct *
1859 find_extend_vma(struct mm_struct *mm, unsigned long addr)
1860 {
1861         struct vm_area_struct *vma, *prev;
1862
1863         addr &= PAGE_MASK;
1864         vma = find_vma_prev(mm, addr, &prev);
1865         if (vma && (vma->vm_start <= addr))
1866                 return vma;
1867         if (!prev || expand_stack(prev, addr))
1868                 return NULL;
1869         if (prev->vm_flags & VM_LOCKED) {
1870                 mlock_vma_pages_range(prev, addr, prev->vm_end);
1871         }
1872         return prev;
1873 }
1874 #else
1875 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1876 {
1877         return expand_downwards(vma, address);
1878 }
1879
1880 struct vm_area_struct *
1881 find_extend_vma(struct mm_struct * mm, unsigned long addr)
1882 {
1883         struct vm_area_struct * vma;
1884         unsigned long start;
1885
1886         addr &= PAGE_MASK;
1887         vma = find_vma(mm,addr);
1888         if (!vma)
1889                 return NULL;
1890         if (vma->vm_start <= addr)
1891                 return vma;
1892         if (!(vma->vm_flags & VM_GROWSDOWN))
1893                 return NULL;
1894         start = vma->vm_start;
1895         if (expand_stack(vma, addr))
1896                 return NULL;
1897         if (vma->vm_flags & VM_LOCKED) {
1898                 mlock_vma_pages_range(vma, addr, start);
1899         }
1900         return vma;
1901 }
1902 #endif
1903
1904 /*
1905  * Ok - we have the memory areas we should free on the vma list,
1906  * so release them, and do the vma updates.
1907  *
1908  * Called with the mm semaphore held.
1909  */
1910 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1911 {
1912         /* Update high watermark before we lower total_vm */
1913         update_hiwater_vm(mm);
1914         do {
1915                 long nrpages = vma_pages(vma);
1916
1917                 mm->total_vm -= nrpages;
1918                 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
1919                 vma = remove_vma(vma);
1920         } while (vma);
1921         validate_mm(mm);
1922 }
1923
1924 /*
1925  * Get rid of page table information in the indicated region.
1926  *
1927  * Called with the mm semaphore held.
1928  */
1929 static void unmap_region(struct mm_struct *mm,
1930                 struct vm_area_struct *vma, struct vm_area_struct *prev,
1931                 unsigned long start, unsigned long end)
1932 {
1933         struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
1934         struct mmu_gather *tlb;
1935         unsigned long nr_accounted = 0;
1936
1937         lru_add_drain();
1938         tlb = tlb_gather_mmu(mm, 0);
1939         update_hiwater_rss(mm);
1940         unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL);
1941         vm_unacct_memory(nr_accounted);
1942         free_pgtables(tlb, vma, prev? prev->vm_end: FIRST_USER_ADDRESS,
1943                                  next? next->vm_start: 0);
1944         tlb_finish_mmu(tlb, start, end);
1945 }
1946
1947 /*
1948  * Create a list of vma's touched by the unmap, removing them from the mm's
1949  * vma list as we go..
1950  */
1951 static void
1952 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
1953         struct vm_area_struct *prev, unsigned long end)
1954 {
1955         struct vm_area_struct **insertion_point;
1956         struct vm_area_struct *tail_vma = NULL;
1957         unsigned long addr;
1958
1959         insertion_point = (prev ? &prev->vm_next : &mm->mmap);
1960         vma->vm_prev = NULL;
1961         do {
1962                 rb_erase(&vma->vm_rb, &mm->mm_rb);
1963                 mm->map_count--;
1964                 tail_vma = vma;
1965                 vma = vma->vm_next;
1966         } while (vma && vma->vm_start < end);
1967         *insertion_point = vma;
1968         if (vma)
1969                 vma->vm_prev = prev;
1970         tail_vma->vm_next = NULL;
1971         if (mm->unmap_area == arch_unmap_area)
1972                 addr = prev ? prev->vm_end : mm->mmap_base;
1973         else
1974                 addr = vma ?  vma->vm_start : mm->mmap_base;
1975         mm->unmap_area(mm, addr);
1976         mm->mmap_cache = NULL;          /* Kill the cache. */
1977 }
1978
1979 /*
1980  * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
1981  * munmap path where it doesn't make sense to fail.
1982  */
1983 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1984               unsigned long addr, int new_below)
1985 {
1986         struct mempolicy *pol;
1987         struct vm_area_struct *new;
1988         int err = -ENOMEM;
1989
1990         if (is_vm_hugetlb_page(vma) && (addr &
1991                                         ~(huge_page_mask(hstate_vma(vma)))))
1992                 return -EINVAL;
1993
1994         new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1995         if (!new)
1996                 goto out_err;
1997
1998         /* most fields are the same, copy all, and then fixup */
1999         *new = *vma;
2000
2001         INIT_LIST_HEAD(&new->anon_vma_chain);
2002
2003         if (new_below)
2004                 new->vm_end = addr;
2005         else {
2006                 new->vm_start = addr;
2007                 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2008         }
2009
2010         pol = mpol_dup(vma_policy(vma));
2011         if (IS_ERR(pol)) {
2012                 err = PTR_ERR(pol);
2013                 goto out_free_vma;
2014         }
2015         vma_set_policy(new, pol);
2016
2017         if (anon_vma_clone(new, vma))
2018                 goto out_free_mpol;
2019
2020         if (new->vm_file) {
2021                 get_file(new->vm_file);
2022                 if (vma->vm_flags & VM_EXECUTABLE)
2023                         added_exe_file_vma(mm);
2024         }
2025
2026         if (new->vm_ops && new->vm_ops->open)
2027                 new->vm_ops->open(new);
2028
2029         if (new_below)
2030                 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2031                         ((addr - new->vm_start) >> PAGE_SHIFT), new);
2032         else
2033                 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2034
2035         /* Success. */
2036         if (!err)
2037                 return 0;
2038
2039         /* Clean everything up if vma_adjust failed. */
2040         if (new->vm_ops && new->vm_ops->close)
2041                 new->vm_ops->close(new);
2042         if (new->vm_file) {
2043                 if (vma->vm_flags & VM_EXECUTABLE)
2044                         removed_exe_file_vma(mm);
2045                 fput(new->vm_file);
2046         }
2047         unlink_anon_vmas(new);
2048  out_free_mpol:
2049         mpol_put(pol);
2050  out_free_vma:
2051         kmem_cache_free(vm_area_cachep, new);
2052  out_err:
2053         return err;
2054 }
2055
2056 /*
2057  * Split a vma into two pieces at address 'addr', a new vma is allocated
2058  * either for the first part or the tail.
2059  */
2060 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2061               unsigned long addr, int new_below)
2062 {
2063         if (mm->map_count >= sysctl_max_map_count)
2064                 return -ENOMEM;
2065
2066         return __split_vma(mm, vma, addr, new_below);
2067 }
2068
2069 /* Munmap is split into 2 main parts -- this part which finds
2070  * what needs doing, and the areas themselves, which do the
2071  * work.  This now handles partial unmappings.
2072  * Jeremy Fitzhardinge <jeremy@goop.org>
2073  */
2074 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2075 {
2076         unsigned long end;
2077         struct vm_area_struct *vma, *prev, *last;
2078
2079         if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2080                 return -EINVAL;
2081
2082         if ((len = PAGE_ALIGN(len)) == 0)
2083                 return -EINVAL;
2084
2085         /* Find the first overlapping VMA */
2086         vma = find_vma_prev(mm, start, &prev);
2087         if (!vma)
2088                 return 0;
2089         /* we have  start < vma->vm_end  */
2090
2091         /* if it doesn't overlap, we have nothing.. */
2092         end = start + len;
2093         if (vma->vm_start >= end)
2094                 return 0;
2095
2096         /*
2097          * If we need to split any vma, do it now to save pain later.
2098          *
2099          * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2100          * unmapped vm_area_struct will remain in use: so lower split_vma
2101          * places tmp vma above, and higher split_vma places tmp vma below.
2102          */
2103         if (start > vma->vm_start) {
2104                 int error;
2105
2106                 /*
2107                  * Make sure that map_count on return from munmap() will
2108                  * not exceed its limit; but let map_count go just above
2109                  * its limit temporarily, to help free resources as expected.
2110                  */
2111                 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2112                         return -ENOMEM;
2113
2114                 error = __split_vma(mm, vma, start, 0);
2115                 if (error)
2116                         return error;
2117                 prev = vma;
2118         }
2119
2120         /* Does it split the last one? */
2121         last = find_vma(mm, end);
2122         if (last && end > last->vm_start) {
2123                 int error = __split_vma(mm, last, end, 1);
2124                 if (error)
2125                         return error;
2126         }
2127         vma = prev? prev->vm_next: mm->mmap;
2128
2129         /*
2130          * unlock any mlock()ed ranges before detaching vmas
2131          */
2132         if (mm->locked_vm) {
2133                 struct vm_area_struct *tmp = vma;
2134                 while (tmp && tmp->vm_start < end) {
2135                         if (tmp->vm_flags & VM_LOCKED) {
2136                                 mm->locked_vm -= vma_pages(tmp);
2137                                 munlock_vma_pages_all(tmp);
2138                         }
2139                         tmp = tmp->vm_next;
2140                 }
2141         }
2142
2143         /*
2144          * Remove the vma's, and unmap the actual pages
2145          */
2146         detach_vmas_to_be_unmapped(mm, vma, prev, end);
2147         unmap_region(mm, vma, prev, start, end);
2148
2149         /* Fix up all other VM information */
2150         remove_vma_list(mm, vma);
2151
2152         return 0;
2153 }
2154
2155 EXPORT_SYMBOL(do_munmap);
2156
2157 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2158 {
2159         int ret;
2160         struct mm_struct *mm = current->mm;
2161
2162         profile_munmap(addr);
2163
2164         down_write(&mm->mmap_sem);
2165         ret = do_munmap(mm, addr, len);
2166         up_write(&mm->mmap_sem);
2167         return ret;
2168 }
2169
2170 static inline void verify_mm_writelocked(struct mm_struct *mm)
2171 {
2172 #ifdef CONFIG_DEBUG_VM
2173         if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2174                 WARN_ON(1);
2175                 up_read(&mm->mmap_sem);
2176         }
2177 #endif
2178 }
2179
2180 /*
2181  *  this is really a simplified "do_mmap".  it only handles
2182  *  anonymous maps.  eventually we may be able to do some
2183  *  brk-specific accounting here.
2184  */
2185 unsigned long do_brk(unsigned long addr, unsigned long len)
2186 {
2187         struct mm_struct * mm = current->mm;
2188         struct vm_area_struct * vma, * prev;
2189         unsigned long flags;
2190         struct rb_node ** rb_link, * rb_parent;
2191         pgoff_t pgoff = addr >> PAGE_SHIFT;
2192         int error;
2193
2194         len = PAGE_ALIGN(len);
2195         if (!len)
2196                 return addr;
2197
2198         error = security_file_mmap(NULL, 0, 0, 0, addr, 1);
2199         if (error)
2200                 return error;
2201
2202         flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2203
2204         error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2205         if (error & ~PAGE_MASK)
2206                 return error;
2207
2208         /*
2209          * mlock MCL_FUTURE?
2210          */
2211         if (mm->def_flags & VM_LOCKED) {
2212                 unsigned long locked, lock_limit;
2213                 locked = len >> PAGE_SHIFT;
2214                 locked += mm->locked_vm;
2215                 lock_limit = rlimit(RLIMIT_MEMLOCK);
2216                 lock_limit >>= PAGE_SHIFT;
2217                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2218                         return -EAGAIN;
2219         }
2220
2221         /*
2222          * mm->mmap_sem is required to protect against another thread
2223          * changing the mappings in case we sleep.
2224          */
2225         verify_mm_writelocked(mm);
2226
2227         /*
2228          * Clear old maps.  this also does some error checking for us
2229          */
2230  munmap_back:
2231         vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2232         if (vma && vma->vm_start < addr + len) {
2233                 if (do_munmap(mm, addr, len))
2234                         return -ENOMEM;
2235                 goto munmap_back;
2236         }
2237
2238         /* Check against address space limits *after* clearing old maps... */
2239         if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2240                 return -ENOMEM;
2241
2242         if (mm->map_count > sysctl_max_map_count)
2243                 return -ENOMEM;
2244
2245         if (security_vm_enough_memory(len >> PAGE_SHIFT))
2246                 return -ENOMEM;
2247
2248         /* Can we just expand an old private anonymous mapping? */
2249         vma = vma_merge(mm, prev, addr, addr + len, flags,
2250                                         NULL, NULL, pgoff, NULL);
2251         if (vma)
2252                 goto out;
2253
2254         /*
2255          * create a vma struct for an anonymous mapping
2256          */
2257         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2258         if (!vma) {
2259                 vm_unacct_memory(len >> PAGE_SHIFT);
2260                 return -ENOMEM;
2261         }
2262
2263         INIT_LIST_HEAD(&vma->anon_vma_chain);
2264         vma->vm_mm = mm;
2265         vma->vm_start = addr;
2266         vma->vm_end = addr + len;
2267         vma->vm_pgoff = pgoff;
2268         vma->vm_flags = flags;
2269         vma->vm_page_prot = vm_get_page_prot(flags);
2270         vma_link(mm, vma, prev, rb_link, rb_parent);
2271 out:
2272         perf_event_mmap(vma);
2273         mm->total_vm += len >> PAGE_SHIFT;
2274         if (flags & VM_LOCKED) {
2275                 if (!mlock_vma_pages_range(vma, addr, addr + len))
2276                         mm->locked_vm += (len >> PAGE_SHIFT);
2277         }
2278         return addr;
2279 }
2280
2281 EXPORT_SYMBOL(do_brk);
2282
2283 /* Release all mmaps. */
2284 void exit_mmap(struct mm_struct *mm)
2285 {
2286         struct mmu_gather *tlb;
2287         struct vm_area_struct *vma;
2288         unsigned long nr_accounted = 0;
2289         unsigned long end;
2290
2291         /* mm's last user has gone, and its about to be pulled down */
2292         mmu_notifier_release(mm);
2293
2294         if (mm->locked_vm) {
2295                 vma = mm->mmap;
2296                 while (vma) {
2297                         if (vma->vm_flags & VM_LOCKED)
2298                                 munlock_vma_pages_all(vma);
2299                         vma = vma->vm_next;
2300                 }
2301         }
2302
2303         arch_exit_mmap(mm);
2304
2305         vma = mm->mmap;
2306         if (!vma)       /* Can happen if dup_mmap() received an OOM */
2307                 return;
2308
2309         lru_add_drain();
2310         flush_cache_mm(mm);
2311         tlb = tlb_gather_mmu(mm, 1);
2312         /* update_hiwater_rss(mm) here? but nobody should be looking */
2313         /* Use -1 here to ensure all VMAs in the mm are unmapped */
2314         end = unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL);
2315         vm_unacct_memory(nr_accounted);
2316
2317         free_pgtables(tlb, vma, FIRST_USER_ADDRESS, 0);
2318         tlb_finish_mmu(tlb, 0, end);
2319
2320         /*
2321          * Walk the list again, actually closing and freeing it,
2322          * with preemption enabled, without holding any MM locks.
2323          */
2324         while (vma)
2325                 vma = remove_vma(vma);
2326
2327         BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2328 }
2329
2330 /* Insert vm structure into process list sorted by address
2331  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2332  * then i_mmap_lock is taken here.
2333  */
2334 int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
2335 {
2336         struct vm_area_struct * __vma, * prev;
2337         struct rb_node ** rb_link, * rb_parent;
2338
2339         /*
2340          * The vm_pgoff of a purely anonymous vma should be irrelevant
2341          * until its first write fault, when page's anon_vma and index
2342          * are set.  But now set the vm_pgoff it will almost certainly
2343          * end up with (unless mremap moves it elsewhere before that
2344          * first wfault), so /proc/pid/maps tells a consistent story.
2345          *
2346          * By setting it to reflect the virtual start address of the
2347          * vma, merges and splits can happen in a seamless way, just
2348          * using the existing file pgoff checks and manipulations.
2349          * Similarly in do_mmap_pgoff and in do_brk.
2350          */
2351         if (!vma->vm_file) {
2352                 BUG_ON(vma->anon_vma);
2353                 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2354         }
2355         __vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent);
2356         if (__vma && __vma->vm_start < vma->vm_end)
2357                 return -ENOMEM;
2358         if ((vma->vm_flags & VM_ACCOUNT) &&
2359              security_vm_enough_memory_mm(mm, vma_pages(vma)))
2360                 return -ENOMEM;
2361         vma_link(mm, vma, prev, rb_link, rb_parent);
2362         return 0;
2363 }
2364
2365 /*
2366  * Copy the vma structure to a new location in the same mm,
2367  * prior to moving page table entries, to effect an mremap move.
2368  */
2369 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2370         unsigned long addr, unsigned long len, pgoff_t pgoff)
2371 {
2372         struct vm_area_struct *vma = *vmap;
2373         unsigned long vma_start = vma->vm_start;
2374         struct mm_struct *mm = vma->vm_mm;
2375         struct vm_area_struct *new_vma, *prev;
2376         struct rb_node **rb_link, *rb_parent;
2377         struct mempolicy *pol;
2378
2379         /*
2380          * If anonymous vma has not yet been faulted, update new pgoff
2381          * to match new location, to increase its chance of merging.
2382          */
2383         if (!vma->vm_file && !vma->anon_vma)
2384                 pgoff = addr >> PAGE_SHIFT;
2385
2386         find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2387         new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2388                         vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2389         if (new_vma) {
2390                 /*
2391                  * Source vma may have been merged into new_vma
2392                  */
2393                 if (vma_start >= new_vma->vm_start &&
2394                     vma_start < new_vma->vm_end)
2395                         *vmap = new_vma;
2396         } else {
2397                 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2398                 if (new_vma) {
2399                         *new_vma = *vma;
2400                         pol = mpol_dup(vma_policy(vma));
2401                         if (IS_ERR(pol))
2402                                 goto out_free_vma;
2403                         INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2404                         if (anon_vma_clone(new_vma, vma))
2405                                 goto out_free_mempol;
2406                         vma_set_policy(new_vma, pol);
2407                         new_vma->vm_start = addr;
2408                         new_vma->vm_end = addr + len;
2409                         new_vma->vm_pgoff = pgoff;
2410                         if (new_vma->vm_file) {
2411                                 get_file(new_vma->vm_file);
2412                                 if (vma->vm_flags & VM_EXECUTABLE)
2413                                         added_exe_file_vma(mm);
2414                         }
2415                         if (new_vma->vm_ops && new_vma->vm_ops->open)
2416                                 new_vma->vm_ops->open(new_vma);
2417                         vma_link(mm, new_vma, prev, rb_link, rb_parent);
2418                 }
2419         }
2420         return new_vma;
2421
2422  out_free_mempol:
2423         mpol_put(pol);
2424  out_free_vma:
2425         kmem_cache_free(vm_area_cachep, new_vma);
2426         return NULL;
2427 }
2428
2429 /*
2430  * Return true if the calling process may expand its vm space by the passed
2431  * number of pages
2432  */
2433 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2434 {
2435         unsigned long cur = mm->total_vm;       /* pages */
2436         unsigned long lim;
2437
2438         lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2439
2440         if (cur + npages > lim)
2441                 return 0;
2442         return 1;
2443 }
2444
2445
2446 static int special_mapping_fault(struct vm_area_struct *vma,
2447                                 struct vm_fault *vmf)
2448 {
2449         pgoff_t pgoff;
2450         struct page **pages;
2451
2452         /*
2453          * special mappings have no vm_file, and in that case, the mm
2454          * uses vm_pgoff internally. So we have to subtract it from here.
2455          * We are allowed to do this because we are the mm; do not copy
2456          * this code into drivers!
2457          */
2458         pgoff = vmf->pgoff - vma->vm_pgoff;
2459
2460         for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2461                 pgoff--;
2462
2463         if (*pages) {
2464                 struct page *page = *pages;
2465                 get_page(page);
2466                 vmf->page = page;
2467                 return 0;
2468         }
2469
2470         return VM_FAULT_SIGBUS;
2471 }
2472
2473 /*
2474  * Having a close hook prevents vma merging regardless of flags.
2475  */
2476 static void special_mapping_close(struct vm_area_struct *vma)
2477 {
2478 }
2479
2480 static const struct vm_operations_struct special_mapping_vmops = {
2481         .close = special_mapping_close,
2482         .fault = special_mapping_fault,
2483 };
2484
2485 /*
2486  * Called with mm->mmap_sem held for writing.
2487  * Insert a new vma covering the given region, with the given flags.
2488  * Its pages are supplied by the given array of struct page *.
2489  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2490  * The region past the last page supplied will always produce SIGBUS.
2491  * The array pointer and the pages it points to are assumed to stay alive
2492  * for as long as this mapping might exist.
2493  */
2494 int install_special_mapping(struct mm_struct *mm,
2495                             unsigned long addr, unsigned long len,
2496                             unsigned long vm_flags, struct page **pages)
2497 {
2498         int ret;
2499         struct vm_area_struct *vma;
2500
2501         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2502         if (unlikely(vma == NULL))
2503                 return -ENOMEM;
2504
2505         INIT_LIST_HEAD(&vma->anon_vma_chain);
2506         vma->vm_mm = mm;
2507         vma->vm_start = addr;
2508         vma->vm_end = addr + len;
2509
2510         vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
2511         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2512
2513         vma->vm_ops = &special_mapping_vmops;
2514         vma->vm_private_data = pages;
2515
2516         ret = security_file_mmap(NULL, 0, 0, 0, vma->vm_start, 1);
2517         if (ret)
2518                 goto out;
2519
2520         ret = insert_vm_struct(mm, vma);
2521         if (ret)
2522                 goto out;
2523
2524         mm->total_vm += len >> PAGE_SHIFT;
2525
2526         perf_event_mmap(vma);
2527
2528         return 0;
2529
2530 out:
2531         kmem_cache_free(vm_area_cachep, vma);
2532         return ret;
2533 }
2534
2535 static DEFINE_MUTEX(mm_all_locks_mutex);
2536
2537 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2538 {
2539         if (!test_bit(0, (unsigned long *) &anon_vma->root->head.next)) {
2540                 /*
2541                  * The LSB of head.next can't change from under us
2542                  * because we hold the mm_all_locks_mutex.
2543                  */
2544                 spin_lock_nest_lock(&anon_vma->root->lock, &mm->mmap_sem);
2545                 /*
2546                  * We can safely modify head.next after taking the
2547                  * anon_vma->root->lock. If some other vma in this mm shares
2548                  * the same anon_vma we won't take it again.
2549                  *
2550                  * No need of atomic instructions here, head.next
2551                  * can't change from under us thanks to the
2552                  * anon_vma->root->lock.
2553                  */
2554                 if (__test_and_set_bit(0, (unsigned long *)
2555                                        &anon_vma->root->head.next))
2556                         BUG();
2557         }
2558 }
2559
2560 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2561 {
2562         if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2563                 /*
2564                  * AS_MM_ALL_LOCKS can't change from under us because
2565                  * we hold the mm_all_locks_mutex.
2566                  *
2567                  * Operations on ->flags have to be atomic because
2568                  * even if AS_MM_ALL_LOCKS is stable thanks to the
2569                  * mm_all_locks_mutex, there may be other cpus
2570                  * changing other bitflags in parallel to us.
2571                  */
2572                 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2573                         BUG();
2574                 spin_lock_nest_lock(&mapping->i_mmap_lock, &mm->mmap_sem);
2575         }
2576 }
2577
2578 /*
2579  * This operation locks against the VM for all pte/vma/mm related
2580  * operations that could ever happen on a certain mm. This includes
2581  * vmtruncate, try_to_unmap, and all page faults.
2582  *
2583  * The caller must take the mmap_sem in write mode before calling
2584  * mm_take_all_locks(). The caller isn't allowed to release the
2585  * mmap_sem until mm_drop_all_locks() returns.
2586  *
2587  * mmap_sem in write mode is required in order to block all operations
2588  * that could modify pagetables and free pages without need of
2589  * altering the vma layout (for example populate_range() with
2590  * nonlinear vmas). It's also needed in write mode to avoid new
2591  * anon_vmas to be associated with existing vmas.
2592  *
2593  * A single task can't take more than one mm_take_all_locks() in a row
2594  * or it would deadlock.
2595  *
2596  * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in
2597  * mapping->flags avoid to take the same lock twice, if more than one
2598  * vma in this mm is backed by the same anon_vma or address_space.
2599  *
2600  * We can take all the locks in random order because the VM code
2601  * taking i_mmap_lock or anon_vma->lock outside the mmap_sem never
2602  * takes more than one of them in a row. Secondly we're protected
2603  * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
2604  *
2605  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2606  * that may have to take thousand of locks.
2607  *
2608  * mm_take_all_locks() can fail if it's interrupted by signals.
2609  */
2610 int mm_take_all_locks(struct mm_struct *mm)
2611 {
2612         struct vm_area_struct *vma;
2613         struct anon_vma_chain *avc;
2614         int ret = -EINTR;
2615
2616         BUG_ON(down_read_trylock(&mm->mmap_sem));
2617
2618         mutex_lock(&mm_all_locks_mutex);
2619
2620         for (vma = mm->mmap; vma; vma = vma->vm_next) {
2621                 if (signal_pending(current))
2622                         goto out_unlock;
2623                 if (vma->vm_file && vma->vm_file->f_mapping)
2624                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
2625         }
2626
2627         for (vma = mm->mmap; vma; vma = vma->vm_next) {
2628                 if (signal_pending(current))
2629                         goto out_unlock;
2630                 if (vma->anon_vma)
2631                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2632                                 vm_lock_anon_vma(mm, avc->anon_vma);
2633         }
2634
2635         ret = 0;
2636
2637 out_unlock:
2638         if (ret)
2639                 mm_drop_all_locks(mm);
2640
2641         return ret;
2642 }
2643
2644 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
2645 {
2646         if (test_bit(0, (unsigned long *) &anon_vma->root->head.next)) {
2647                 /*
2648                  * The LSB of head.next can't change to 0 from under
2649                  * us because we hold the mm_all_locks_mutex.
2650                  *
2651                  * We must however clear the bitflag before unlocking
2652                  * the vma so the users using the anon_vma->head will
2653                  * never see our bitflag.
2654                  *
2655                  * No need of atomic instructions here, head.next
2656                  * can't change from under us until we release the
2657                  * anon_vma->root->lock.
2658                  */
2659                 if (!__test_and_clear_bit(0, (unsigned long *)
2660                                           &anon_vma->root->head.next))
2661                         BUG();
2662                 anon_vma_unlock(anon_vma);
2663         }
2664 }
2665
2666 static void vm_unlock_mapping(struct address_space *mapping)
2667 {
2668         if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2669                 /*
2670                  * AS_MM_ALL_LOCKS can't change to 0 from under us
2671                  * because we hold the mm_all_locks_mutex.
2672                  */
2673                 spin_unlock(&mapping->i_mmap_lock);
2674                 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
2675                                         &mapping->flags))
2676                         BUG();
2677         }
2678 }
2679
2680 /*
2681  * The mmap_sem cannot be released by the caller until
2682  * mm_drop_all_locks() returns.
2683  */
2684 void mm_drop_all_locks(struct mm_struct *mm)
2685 {
2686         struct vm_area_struct *vma;
2687         struct anon_vma_chain *avc;
2688
2689         BUG_ON(down_read_trylock(&mm->mmap_sem));
2690         BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
2691
2692         for (vma = mm->mmap; vma; vma = vma->vm_next) {
2693                 if (vma->anon_vma)
2694                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2695                                 vm_unlock_anon_vma(avc->anon_vma);
2696                 if (vma->vm_file && vma->vm_file->f_mapping)
2697                         vm_unlock_mapping(vma->vm_file->f_mapping);
2698         }
2699
2700         mutex_unlock(&mm_all_locks_mutex);
2701 }
2702
2703 /*
2704  * initialise the VMA slab
2705  */
2706 void __init mmap_init(void)
2707 {
2708         int ret;
2709
2710         ret = percpu_counter_init(&vm_committed_as, 0);
2711         VM_BUG_ON(ret);
2712 }