CHROMIUM: uvcvideo: Handle status_start while status_stop is in progress.
[cascardo/linux.git] / mm / page-writeback.c
1 /*
2  * mm/page-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
6  *
7  * Contains functions related to writing back dirty pages at the
8  * address_space level.
9  *
10  * 10Apr2002    Andrew Morton
11  *              Initial version
12  */
13
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/spinlock.h>
17 #include <linux/fs.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h> /* __set_page_dirty_buffers */
36 #include <linux/pagevec.h>
37 #include <trace/events/writeback.h>
38
39 /*
40  * Sleep at most 200ms at a time in balance_dirty_pages().
41  */
42 #define MAX_PAUSE               max(HZ/5, 1)
43
44 /*
45  * Try to keep balance_dirty_pages() call intervals higher than this many pages
46  * by raising pause time to max_pause when falls below it.
47  */
48 #define DIRTY_POLL_THRESH       (128 >> (PAGE_SHIFT - 10))
49
50 /*
51  * Estimate write bandwidth at 200ms intervals.
52  */
53 #define BANDWIDTH_INTERVAL      max(HZ/5, 1)
54
55 #define RATELIMIT_CALC_SHIFT    10
56
57 /*
58  * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
59  * will look to see if it needs to force writeback or throttling.
60  */
61 static long ratelimit_pages = 32;
62
63 /* The following parameters are exported via /proc/sys/vm */
64
65 /*
66  * Start background writeback (via writeback threads) at this percentage
67  */
68 int dirty_background_ratio = 10;
69
70 /*
71  * dirty_background_bytes starts at 0 (disabled) so that it is a function of
72  * dirty_background_ratio * the amount of dirtyable memory
73  */
74 unsigned long dirty_background_bytes;
75
76 /*
77  * free highmem will not be subtracted from the total free memory
78  * for calculating free ratios if vm_highmem_is_dirtyable is true
79  */
80 int vm_highmem_is_dirtyable;
81
82 /*
83  * The generator of dirty data starts writeback at this percentage
84  */
85 int vm_dirty_ratio = 20;
86
87 /*
88  * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
89  * vm_dirty_ratio * the amount of dirtyable memory
90  */
91 unsigned long vm_dirty_bytes;
92
93 /*
94  * The interval between `kupdate'-style writebacks
95  */
96 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
97
98 EXPORT_SYMBOL_GPL(dirty_writeback_interval);
99
100 /*
101  * The longest time for which data is allowed to remain dirty
102  */
103 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
104
105 /*
106  * Flag that makes the machine dump writes/reads and block dirtyings.
107  */
108 int block_dump;
109
110 /*
111  * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
112  * a full sync is triggered after this time elapses without any disk activity.
113  */
114 int laptop_mode;
115
116 EXPORT_SYMBOL(laptop_mode);
117
118 /* End of sysctl-exported parameters */
119
120 unsigned long global_dirty_limit;
121
122 /*
123  * Scale the writeback cache size proportional to the relative writeout speeds.
124  *
125  * We do this by keeping a floating proportion between BDIs, based on page
126  * writeback completions [end_page_writeback()]. Those devices that write out
127  * pages fastest will get the larger share, while the slower will get a smaller
128  * share.
129  *
130  * We use page writeout completions because we are interested in getting rid of
131  * dirty pages. Having them written out is the primary goal.
132  *
133  * We introduce a concept of time, a period over which we measure these events,
134  * because demand can/will vary over time. The length of this period itself is
135  * measured in page writeback completions.
136  *
137  */
138 static struct prop_descriptor vm_completions;
139
140 /*
141  * Work out the current dirty-memory clamping and background writeout
142  * thresholds.
143  *
144  * The main aim here is to lower them aggressively if there is a lot of mapped
145  * memory around.  To avoid stressing page reclaim with lots of unreclaimable
146  * pages.  It is better to clamp down on writers than to start swapping, and
147  * performing lots of scanning.
148  *
149  * We only allow 1/2 of the currently-unmapped memory to be dirtied.
150  *
151  * We don't permit the clamping level to fall below 5% - that is getting rather
152  * excessive.
153  *
154  * We make sure that the background writeout level is below the adjusted
155  * clamping level.
156  */
157
158 /*
159  * In a memory zone, there is a certain amount of pages we consider
160  * available for the page cache, which is essentially the number of
161  * free and reclaimable pages, minus some zone reserves to protect
162  * lowmem and the ability to uphold the zone's watermarks without
163  * requiring writeback.
164  *
165  * This number of dirtyable pages is the base value of which the
166  * user-configurable dirty ratio is the effictive number of pages that
167  * are allowed to be actually dirtied.  Per individual zone, or
168  * globally by using the sum of dirtyable pages over all zones.
169  *
170  * Because the user is allowed to specify the dirty limit globally as
171  * absolute number of bytes, calculating the per-zone dirty limit can
172  * require translating the configured limit into a percentage of
173  * global dirtyable memory first.
174  */
175
176 static unsigned long highmem_dirtyable_memory(unsigned long total)
177 {
178 #ifdef CONFIG_HIGHMEM
179         int node;
180         unsigned long x = 0;
181
182         for_each_node_state(node, N_HIGH_MEMORY) {
183                 unsigned long nr_pages;
184                 struct zone *z =
185                         &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
186
187                 nr_pages = zone_page_state(z, NR_FREE_PAGES) +
188                   zone_reclaimable_pages(z);
189                 /*
190                  * make sure that the number of pages for this node
191                  * is never "negative".
192                  */
193                 nr_pages -= min(nr_pages, z->dirty_balance_reserve);
194                 x += nr_pages;
195         }
196         /*
197          * Make sure that the number of highmem pages is never larger
198          * than the number of the total dirtyable memory. This can only
199          * occur in very strange VM situations but we want to make sure
200          * that this does not occur.
201          */
202         return min(x, total);
203 #else
204         return 0;
205 #endif
206 }
207
208 /**
209  * global_dirtyable_memory - number of globally dirtyable pages
210  *
211  * Returns the global number of pages potentially available for dirty
212  * page cache.  This is the base value for the global dirty limits.
213  */
214 unsigned long global_dirtyable_memory(void)
215 {
216         unsigned long x;
217
218         x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages();
219         x -= min(x, dirty_balance_reserve);
220
221         if (!vm_highmem_is_dirtyable)
222                 x -= min(x, highmem_dirtyable_memory(x));
223
224         return x + 1;   /* Ensure that we never return 0 */
225 }
226
227 /*
228  * global_dirty_limits - background-writeback and dirty-throttling thresholds
229  *
230  * Calculate the dirty thresholds based on sysctl parameters
231  * - vm.dirty_background_ratio  or  vm.dirty_background_bytes
232  * - vm.dirty_ratio             or  vm.dirty_bytes
233  * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
234  * real-time tasks.
235  */
236 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
237 {
238         unsigned long background;
239         unsigned long dirty;
240         unsigned long uninitialized_var(available_memory);
241         struct task_struct *tsk;
242
243         if (!vm_dirty_bytes || !dirty_background_bytes)
244                 available_memory = global_dirtyable_memory();
245
246         if (vm_dirty_bytes)
247                 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
248         else
249                 dirty = (vm_dirty_ratio * available_memory) / 100;
250
251         if (dirty_background_bytes)
252                 background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
253         else
254                 background = (dirty_background_ratio * available_memory) / 100;
255
256         if (background >= dirty)
257                 background = dirty / 2;
258         tsk = current;
259         if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
260                 background += background / 4;
261                 dirty += dirty / 4;
262         }
263         *pbackground = background;
264         *pdirty = dirty;
265         trace_global_dirty_state(background, dirty);
266 }
267
268 /**
269  * zone_dirtyable_memory - number of dirtyable pages in a zone
270  * @zone: the zone
271  *
272  * Returns the zone's number of pages potentially available for dirty
273  * page cache.  This is the base value for the per-zone dirty limits.
274  */
275 static unsigned long zone_dirtyable_memory(struct zone *zone)
276 {
277         /*
278          * The effective global number of dirtyable pages may exclude
279          * highmem as a big-picture measure to keep the ratio between
280          * dirty memory and lowmem reasonable.
281          *
282          * But this function is purely about the individual zone and a
283          * highmem zone can hold its share of dirty pages, so we don't
284          * care about vm_highmem_is_dirtyable here.
285          */
286         return zone_page_state(zone, NR_FREE_PAGES) +
287                zone_reclaimable_pages(zone) -
288                zone->dirty_balance_reserve;
289 }
290
291 /**
292  * zone_dirty_limit - maximum number of dirty pages allowed in a zone
293  * @zone: the zone
294  *
295  * Returns the maximum number of dirty pages allowed in a zone, based
296  * on the zone's dirtyable memory.
297  */
298 static unsigned long zone_dirty_limit(struct zone *zone)
299 {
300         unsigned long zone_memory = zone_dirtyable_memory(zone);
301         struct task_struct *tsk = current;
302         unsigned long dirty;
303
304         if (vm_dirty_bytes)
305                 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
306                         zone_memory / global_dirtyable_memory();
307         else
308                 dirty = vm_dirty_ratio * zone_memory / 100;
309
310         if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
311                 dirty += dirty / 4;
312
313         return dirty;
314 }
315
316 /**
317  * zone_dirty_ok - tells whether a zone is within its dirty limits
318  * @zone: the zone to check
319  *
320  * Returns %true when the dirty pages in @zone are within the zone's
321  * dirty limit, %false if the limit is exceeded.
322  */
323 bool zone_dirty_ok(struct zone *zone)
324 {
325         unsigned long limit = zone_dirty_limit(zone);
326
327         return zone_page_state(zone, NR_FILE_DIRTY) +
328                zone_page_state(zone, NR_UNSTABLE_NFS) +
329                zone_page_state(zone, NR_WRITEBACK) <= limit;
330 }
331
332 /*
333  * couple the period to the dirty_ratio:
334  *
335  *   period/2 ~ roundup_pow_of_two(dirty limit)
336  */
337 static int calc_period_shift(void)
338 {
339         unsigned long dirty_total;
340
341         if (vm_dirty_bytes)
342                 dirty_total = vm_dirty_bytes / PAGE_SIZE;
343         else
344                 dirty_total = (vm_dirty_ratio * global_dirtyable_memory()) /
345                                 100;
346         return 2 + ilog2(dirty_total - 1);
347 }
348
349 /*
350  * update the period when the dirty threshold changes.
351  */
352 static void update_completion_period(void)
353 {
354         int shift = calc_period_shift();
355         prop_change_shift(&vm_completions, shift);
356
357         writeback_set_ratelimit();
358 }
359
360 int dirty_background_ratio_handler(struct ctl_table *table, int write,
361                 void __user *buffer, size_t *lenp,
362                 loff_t *ppos)
363 {
364         int ret;
365
366         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
367         if (ret == 0 && write)
368                 dirty_background_bytes = 0;
369         return ret;
370 }
371
372 int dirty_background_bytes_handler(struct ctl_table *table, int write,
373                 void __user *buffer, size_t *lenp,
374                 loff_t *ppos)
375 {
376         int ret;
377
378         ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
379         if (ret == 0 && write)
380                 dirty_background_ratio = 0;
381         return ret;
382 }
383
384 int dirty_ratio_handler(struct ctl_table *table, int write,
385                 void __user *buffer, size_t *lenp,
386                 loff_t *ppos)
387 {
388         int old_ratio = vm_dirty_ratio;
389         int ret;
390
391         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
392         if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
393                 update_completion_period();
394                 vm_dirty_bytes = 0;
395         }
396         return ret;
397 }
398
399 int dirty_bytes_handler(struct ctl_table *table, int write,
400                 void __user *buffer, size_t *lenp,
401                 loff_t *ppos)
402 {
403         unsigned long old_bytes = vm_dirty_bytes;
404         int ret;
405
406         ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
407         if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
408                 update_completion_period();
409                 vm_dirty_ratio = 0;
410         }
411         return ret;
412 }
413
414 /*
415  * Increment the BDI's writeout completion count and the global writeout
416  * completion count. Called from test_clear_page_writeback().
417  */
418 static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
419 {
420         __inc_bdi_stat(bdi, BDI_WRITTEN);
421         __prop_inc_percpu_max(&vm_completions, &bdi->completions,
422                               bdi->max_prop_frac);
423 }
424
425 void bdi_writeout_inc(struct backing_dev_info *bdi)
426 {
427         unsigned long flags;
428
429         local_irq_save(flags);
430         __bdi_writeout_inc(bdi);
431         local_irq_restore(flags);
432 }
433 EXPORT_SYMBOL_GPL(bdi_writeout_inc);
434
435 /*
436  * Obtain an accurate fraction of the BDI's portion.
437  */
438 static void bdi_writeout_fraction(struct backing_dev_info *bdi,
439                 long *numerator, long *denominator)
440 {
441         prop_fraction_percpu(&vm_completions, &bdi->completions,
442                                 numerator, denominator);
443 }
444
445 /*
446  * bdi_min_ratio keeps the sum of the minimum dirty shares of all
447  * registered backing devices, which, for obvious reasons, can not
448  * exceed 100%.
449  */
450 static unsigned int bdi_min_ratio;
451
452 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
453 {
454         int ret = 0;
455
456         spin_lock_bh(&bdi_lock);
457         if (min_ratio > bdi->max_ratio) {
458                 ret = -EINVAL;
459         } else {
460                 min_ratio -= bdi->min_ratio;
461                 if (bdi_min_ratio + min_ratio < 100) {
462                         bdi_min_ratio += min_ratio;
463                         bdi->min_ratio += min_ratio;
464                 } else {
465                         ret = -EINVAL;
466                 }
467         }
468         spin_unlock_bh(&bdi_lock);
469
470         return ret;
471 }
472
473 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
474 {
475         int ret = 0;
476
477         if (max_ratio > 100)
478                 return -EINVAL;
479
480         spin_lock_bh(&bdi_lock);
481         if (bdi->min_ratio > max_ratio) {
482                 ret = -EINVAL;
483         } else {
484                 bdi->max_ratio = max_ratio;
485                 bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
486         }
487         spin_unlock_bh(&bdi_lock);
488
489         return ret;
490 }
491 EXPORT_SYMBOL(bdi_set_max_ratio);
492
493 static unsigned long dirty_freerun_ceiling(unsigned long thresh,
494                                            unsigned long bg_thresh)
495 {
496         return (thresh + bg_thresh) / 2;
497 }
498
499 static unsigned long hard_dirty_limit(unsigned long thresh)
500 {
501         return max(thresh, global_dirty_limit);
502 }
503
504 /**
505  * bdi_dirty_limit - @bdi's share of dirty throttling threshold
506  * @bdi: the backing_dev_info to query
507  * @dirty: global dirty limit in pages
508  *
509  * Returns @bdi's dirty limit in pages. The term "dirty" in the context of
510  * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
511  *
512  * Note that balance_dirty_pages() will only seriously take it as a hard limit
513  * when sleeping max_pause per page is not enough to keep the dirty pages under
514  * control. For example, when the device is completely stalled due to some error
515  * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
516  * In the other normal situations, it acts more gently by throttling the tasks
517  * more (rather than completely block them) when the bdi dirty pages go high.
518  *
519  * It allocates high/low dirty limits to fast/slow devices, in order to prevent
520  * - starving fast devices
521  * - piling up dirty pages (that will take long time to sync) on slow devices
522  *
523  * The bdi's share of dirty limit will be adapting to its throughput and
524  * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
525  */
526 unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
527 {
528         u64 bdi_dirty;
529         long numerator, denominator;
530
531         /*
532          * Calculate this BDI's share of the dirty ratio.
533          */
534         bdi_writeout_fraction(bdi, &numerator, &denominator);
535
536         bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
537         bdi_dirty *= numerator;
538         do_div(bdi_dirty, denominator);
539
540         bdi_dirty += (dirty * bdi->min_ratio) / 100;
541         if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
542                 bdi_dirty = dirty * bdi->max_ratio / 100;
543
544         return bdi_dirty;
545 }
546
547 /*
548  * Dirty position control.
549  *
550  * (o) global/bdi setpoints
551  *
552  * We want the dirty pages be balanced around the global/bdi setpoints.
553  * When the number of dirty pages is higher/lower than the setpoint, the
554  * dirty position control ratio (and hence task dirty ratelimit) will be
555  * decreased/increased to bring the dirty pages back to the setpoint.
556  *
557  *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
558  *
559  *     if (dirty < setpoint) scale up   pos_ratio
560  *     if (dirty > setpoint) scale down pos_ratio
561  *
562  *     if (bdi_dirty < bdi_setpoint) scale up   pos_ratio
563  *     if (bdi_dirty > bdi_setpoint) scale down pos_ratio
564  *
565  *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
566  *
567  * (o) global control line
568  *
569  *     ^ pos_ratio
570  *     |
571  *     |            |<===== global dirty control scope ======>|
572  * 2.0 .............*
573  *     |            .*
574  *     |            . *
575  *     |            .   *
576  *     |            .     *
577  *     |            .        *
578  *     |            .            *
579  * 1.0 ................................*
580  *     |            .                  .     *
581  *     |            .                  .          *
582  *     |            .                  .              *
583  *     |            .                  .                 *
584  *     |            .                  .                    *
585  *   0 +------------.------------------.----------------------*------------->
586  *           freerun^          setpoint^                 limit^   dirty pages
587  *
588  * (o) bdi control line
589  *
590  *     ^ pos_ratio
591  *     |
592  *     |            *
593  *     |              *
594  *     |                *
595  *     |                  *
596  *     |                    * |<=========== span ============>|
597  * 1.0 .......................*
598  *     |                      . *
599  *     |                      .   *
600  *     |                      .     *
601  *     |                      .       *
602  *     |                      .         *
603  *     |                      .           *
604  *     |                      .             *
605  *     |                      .               *
606  *     |                      .                 *
607  *     |                      .                   *
608  *     |                      .                     *
609  * 1/4 ...............................................* * * * * * * * * * * *
610  *     |                      .                         .
611  *     |                      .                           .
612  *     |                      .                             .
613  *   0 +----------------------.-------------------------------.------------->
614  *                bdi_setpoint^                    x_intercept^
615  *
616  * The bdi control line won't drop below pos_ratio=1/4, so that bdi_dirty can
617  * be smoothly throttled down to normal if it starts high in situations like
618  * - start writing to a slow SD card and a fast disk at the same time. The SD
619  *   card's bdi_dirty may rush to many times higher than bdi_setpoint.
620  * - the bdi dirty thresh drops quickly due to change of JBOD workload
621  */
622 static unsigned long bdi_position_ratio(struct backing_dev_info *bdi,
623                                         unsigned long thresh,
624                                         unsigned long bg_thresh,
625                                         unsigned long dirty,
626                                         unsigned long bdi_thresh,
627                                         unsigned long bdi_dirty)
628 {
629         unsigned long write_bw = bdi->avg_write_bandwidth;
630         unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
631         unsigned long limit = hard_dirty_limit(thresh);
632         unsigned long x_intercept;
633         unsigned long setpoint;         /* dirty pages' target balance point */
634         unsigned long bdi_setpoint;
635         unsigned long span;
636         long long pos_ratio;            /* for scaling up/down the rate limit */
637         long x;
638
639         if (unlikely(dirty >= limit))
640                 return 0;
641
642         /*
643          * global setpoint
644          *
645          *                           setpoint - dirty 3
646          *        f(dirty) := 1.0 + (----------------)
647          *                           limit - setpoint
648          *
649          * it's a 3rd order polynomial that subjects to
650          *
651          * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
652          * (2) f(setpoint) = 1.0 => the balance point
653          * (3) f(limit)    = 0   => the hard limit
654          * (4) df/dx      <= 0   => negative feedback control
655          * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
656          *     => fast response on large errors; small oscillation near setpoint
657          */
658         setpoint = (freerun + limit) / 2;
659         x = div_s64((setpoint - dirty) << RATELIMIT_CALC_SHIFT,
660                     limit - setpoint + 1);
661         pos_ratio = x;
662         pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
663         pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
664         pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
665
666         /*
667          * We have computed basic pos_ratio above based on global situation. If
668          * the bdi is over/under its share of dirty pages, we want to scale
669          * pos_ratio further down/up. That is done by the following mechanism.
670          */
671
672         /*
673          * bdi setpoint
674          *
675          *        f(bdi_dirty) := 1.0 + k * (bdi_dirty - bdi_setpoint)
676          *
677          *                        x_intercept - bdi_dirty
678          *                     := --------------------------
679          *                        x_intercept - bdi_setpoint
680          *
681          * The main bdi control line is a linear function that subjects to
682          *
683          * (1) f(bdi_setpoint) = 1.0
684          * (2) k = - 1 / (8 * write_bw)  (in single bdi case)
685          *     or equally: x_intercept = bdi_setpoint + 8 * write_bw
686          *
687          * For single bdi case, the dirty pages are observed to fluctuate
688          * regularly within range
689          *        [bdi_setpoint - write_bw/2, bdi_setpoint + write_bw/2]
690          * for various filesystems, where (2) can yield in a reasonable 12.5%
691          * fluctuation range for pos_ratio.
692          *
693          * For JBOD case, bdi_thresh (not bdi_dirty!) could fluctuate up to its
694          * own size, so move the slope over accordingly and choose a slope that
695          * yields 100% pos_ratio fluctuation on suddenly doubled bdi_thresh.
696          */
697         if (unlikely(bdi_thresh > thresh))
698                 bdi_thresh = thresh;
699         /*
700          * It's very possible that bdi_thresh is close to 0 not because the
701          * device is slow, but that it has remained inactive for long time.
702          * Honour such devices a reasonable good (hopefully IO efficient)
703          * threshold, so that the occasional writes won't be blocked and active
704          * writes can rampup the threshold quickly.
705          */
706         bdi_thresh = max(bdi_thresh, (limit - dirty) / 8);
707         /*
708          * scale global setpoint to bdi's:
709          *      bdi_setpoint = setpoint * bdi_thresh / thresh
710          */
711         x = div_u64((u64)bdi_thresh << 16, thresh + 1);
712         bdi_setpoint = setpoint * (u64)x >> 16;
713         /*
714          * Use span=(8*write_bw) in single bdi case as indicated by
715          * (thresh - bdi_thresh ~= 0) and transit to bdi_thresh in JBOD case.
716          *
717          *        bdi_thresh                    thresh - bdi_thresh
718          * span = ---------- * (8 * write_bw) + ------------------- * bdi_thresh
719          *          thresh                            thresh
720          */
721         span = (thresh - bdi_thresh + 8 * write_bw) * (u64)x >> 16;
722         x_intercept = bdi_setpoint + span;
723
724         if (bdi_dirty < x_intercept - span / 4) {
725                 pos_ratio = div_u64(pos_ratio * (x_intercept - bdi_dirty),
726                                     x_intercept - bdi_setpoint + 1);
727         } else
728                 pos_ratio /= 4;
729
730         /*
731          * bdi reserve area, safeguard against dirty pool underrun and disk idle
732          * It may push the desired control point of global dirty pages higher
733          * than setpoint.
734          */
735         x_intercept = bdi_thresh / 2;
736         if (bdi_dirty < x_intercept) {
737                 if (bdi_dirty > x_intercept / 8)
738                         pos_ratio = div_u64(pos_ratio * x_intercept, bdi_dirty);
739                 else
740                         pos_ratio *= 8;
741         }
742
743         return pos_ratio;
744 }
745
746 static void bdi_update_write_bandwidth(struct backing_dev_info *bdi,
747                                        unsigned long elapsed,
748                                        unsigned long written)
749 {
750         const unsigned long period = roundup_pow_of_two(3 * HZ);
751         unsigned long avg = bdi->avg_write_bandwidth;
752         unsigned long old = bdi->write_bandwidth;
753         u64 bw;
754
755         /*
756          * bw = written * HZ / elapsed
757          *
758          *                   bw * elapsed + write_bandwidth * (period - elapsed)
759          * write_bandwidth = ---------------------------------------------------
760          *                                          period
761          */
762         bw = written - bdi->written_stamp;
763         bw *= HZ;
764         if (unlikely(elapsed > period)) {
765                 do_div(bw, elapsed);
766                 avg = bw;
767                 goto out;
768         }
769         bw += (u64)bdi->write_bandwidth * (period - elapsed);
770         bw >>= ilog2(period);
771
772         /*
773          * one more level of smoothing, for filtering out sudden spikes
774          */
775         if (avg > old && old >= (unsigned long)bw)
776                 avg -= (avg - old) >> 3;
777
778         if (avg < old && old <= (unsigned long)bw)
779                 avg += (old - avg) >> 3;
780
781 out:
782         bdi->write_bandwidth = bw;
783         bdi->avg_write_bandwidth = avg;
784 }
785
786 /*
787  * The global dirtyable memory and dirty threshold could be suddenly knocked
788  * down by a large amount (eg. on the startup of KVM in a swapless system).
789  * This may throw the system into deep dirty exceeded state and throttle
790  * heavy/light dirtiers alike. To retain good responsiveness, maintain
791  * global_dirty_limit for tracking slowly down to the knocked down dirty
792  * threshold.
793  */
794 static void update_dirty_limit(unsigned long thresh, unsigned long dirty)
795 {
796         unsigned long limit = global_dirty_limit;
797
798         /*
799          * Follow up in one step.
800          */
801         if (limit < thresh) {
802                 limit = thresh;
803                 goto update;
804         }
805
806         /*
807          * Follow down slowly. Use the higher one as the target, because thresh
808          * may drop below dirty. This is exactly the reason to introduce
809          * global_dirty_limit which is guaranteed to lie above the dirty pages.
810          */
811         thresh = max(thresh, dirty);
812         if (limit > thresh) {
813                 limit -= (limit - thresh) >> 5;
814                 goto update;
815         }
816         return;
817 update:
818         global_dirty_limit = limit;
819 }
820
821 static void global_update_bandwidth(unsigned long thresh,
822                                     unsigned long dirty,
823                                     unsigned long now)
824 {
825         static DEFINE_SPINLOCK(dirty_lock);
826         static unsigned long update_time;
827
828         /*
829          * check locklessly first to optimize away locking for the most time
830          */
831         if (time_before(now, update_time + BANDWIDTH_INTERVAL))
832                 return;
833
834         spin_lock(&dirty_lock);
835         if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) {
836                 update_dirty_limit(thresh, dirty);
837                 update_time = now;
838         }
839         spin_unlock(&dirty_lock);
840 }
841
842 /*
843  * Maintain bdi->dirty_ratelimit, the base dirty throttle rate.
844  *
845  * Normal bdi tasks will be curbed at or below it in long term.
846  * Obviously it should be around (write_bw / N) when there are N dd tasks.
847  */
848 static void bdi_update_dirty_ratelimit(struct backing_dev_info *bdi,
849                                        unsigned long thresh,
850                                        unsigned long bg_thresh,
851                                        unsigned long dirty,
852                                        unsigned long bdi_thresh,
853                                        unsigned long bdi_dirty,
854                                        unsigned long dirtied,
855                                        unsigned long elapsed)
856 {
857         unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
858         unsigned long limit = hard_dirty_limit(thresh);
859         unsigned long setpoint = (freerun + limit) / 2;
860         unsigned long write_bw = bdi->avg_write_bandwidth;
861         unsigned long dirty_ratelimit = bdi->dirty_ratelimit;
862         unsigned long dirty_rate;
863         unsigned long task_ratelimit;
864         unsigned long balanced_dirty_ratelimit;
865         unsigned long pos_ratio;
866         unsigned long step;
867         unsigned long x;
868
869         /*
870          * The dirty rate will match the writeout rate in long term, except
871          * when dirty pages are truncated by userspace or re-dirtied by FS.
872          */
873         dirty_rate = (dirtied - bdi->dirtied_stamp) * HZ / elapsed;
874
875         pos_ratio = bdi_position_ratio(bdi, thresh, bg_thresh, dirty,
876                                        bdi_thresh, bdi_dirty);
877         /*
878          * task_ratelimit reflects each dd's dirty rate for the past 200ms.
879          */
880         task_ratelimit = (u64)dirty_ratelimit *
881                                         pos_ratio >> RATELIMIT_CALC_SHIFT;
882         task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
883
884         /*
885          * A linear estimation of the "balanced" throttle rate. The theory is,
886          * if there are N dd tasks, each throttled at task_ratelimit, the bdi's
887          * dirty_rate will be measured to be (N * task_ratelimit). So the below
888          * formula will yield the balanced rate limit (write_bw / N).
889          *
890          * Note that the expanded form is not a pure rate feedback:
891          *      rate_(i+1) = rate_(i) * (write_bw / dirty_rate)              (1)
892          * but also takes pos_ratio into account:
893          *      rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
894          *
895          * (1) is not realistic because pos_ratio also takes part in balancing
896          * the dirty rate.  Consider the state
897          *      pos_ratio = 0.5                                              (3)
898          *      rate = 2 * (write_bw / N)                                    (4)
899          * If (1) is used, it will stuck in that state! Because each dd will
900          * be throttled at
901          *      task_ratelimit = pos_ratio * rate = (write_bw / N)           (5)
902          * yielding
903          *      dirty_rate = N * task_ratelimit = write_bw                   (6)
904          * put (6) into (1) we get
905          *      rate_(i+1) = rate_(i)                                        (7)
906          *
907          * So we end up using (2) to always keep
908          *      rate_(i+1) ~= (write_bw / N)                                 (8)
909          * regardless of the value of pos_ratio. As long as (8) is satisfied,
910          * pos_ratio is able to drive itself to 1.0, which is not only where
911          * the dirty count meet the setpoint, but also where the slope of
912          * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
913          */
914         balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
915                                            dirty_rate | 1);
916         /*
917          * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
918          */
919         if (unlikely(balanced_dirty_ratelimit > write_bw))
920                 balanced_dirty_ratelimit = write_bw;
921
922         /*
923          * We could safely do this and return immediately:
924          *
925          *      bdi->dirty_ratelimit = balanced_dirty_ratelimit;
926          *
927          * However to get a more stable dirty_ratelimit, the below elaborated
928          * code makes use of task_ratelimit to filter out sigular points and
929          * limit the step size.
930          *
931          * The below code essentially only uses the relative value of
932          *
933          *      task_ratelimit - dirty_ratelimit
934          *      = (pos_ratio - 1) * dirty_ratelimit
935          *
936          * which reflects the direction and size of dirty position error.
937          */
938
939         /*
940          * dirty_ratelimit will follow balanced_dirty_ratelimit iff
941          * task_ratelimit is on the same side of dirty_ratelimit, too.
942          * For example, when
943          * - dirty_ratelimit > balanced_dirty_ratelimit
944          * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
945          * lowering dirty_ratelimit will help meet both the position and rate
946          * control targets. Otherwise, don't update dirty_ratelimit if it will
947          * only help meet the rate target. After all, what the users ultimately
948          * feel and care are stable dirty rate and small position error.
949          *
950          * |task_ratelimit - dirty_ratelimit| is used to limit the step size
951          * and filter out the sigular points of balanced_dirty_ratelimit. Which
952          * keeps jumping around randomly and can even leap far away at times
953          * due to the small 200ms estimation period of dirty_rate (we want to
954          * keep that period small to reduce time lags).
955          */
956         step = 0;
957         if (dirty < setpoint) {
958                 x = min(bdi->balanced_dirty_ratelimit,
959                          min(balanced_dirty_ratelimit, task_ratelimit));
960                 if (dirty_ratelimit < x)
961                         step = x - dirty_ratelimit;
962         } else {
963                 x = max(bdi->balanced_dirty_ratelimit,
964                          max(balanced_dirty_ratelimit, task_ratelimit));
965                 if (dirty_ratelimit > x)
966                         step = dirty_ratelimit - x;
967         }
968
969         /*
970          * Don't pursue 100% rate matching. It's impossible since the balanced
971          * rate itself is constantly fluctuating. So decrease the track speed
972          * when it gets close to the target. Helps eliminate pointless tremors.
973          */
974         step >>= dirty_ratelimit / (2 * step + 1);
975         /*
976          * Limit the tracking speed to avoid overshooting.
977          */
978         step = (step + 7) / 8;
979
980         if (dirty_ratelimit < balanced_dirty_ratelimit)
981                 dirty_ratelimit += step;
982         else
983                 dirty_ratelimit -= step;
984
985         bdi->dirty_ratelimit = max(dirty_ratelimit, 1UL);
986         bdi->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
987
988         trace_bdi_dirty_ratelimit(bdi, dirty_rate, task_ratelimit);
989 }
990
991 void __bdi_update_bandwidth(struct backing_dev_info *bdi,
992                             unsigned long thresh,
993                             unsigned long bg_thresh,
994                             unsigned long dirty,
995                             unsigned long bdi_thresh,
996                             unsigned long bdi_dirty,
997                             unsigned long start_time)
998 {
999         unsigned long now = jiffies;
1000         unsigned long elapsed = now - bdi->bw_time_stamp;
1001         unsigned long dirtied;
1002         unsigned long written;
1003
1004         /*
1005          * rate-limit, only update once every 200ms.
1006          */
1007         if (elapsed < BANDWIDTH_INTERVAL)
1008                 return;
1009
1010         dirtied = percpu_counter_read(&bdi->bdi_stat[BDI_DIRTIED]);
1011         written = percpu_counter_read(&bdi->bdi_stat[BDI_WRITTEN]);
1012
1013         /*
1014          * Skip quiet periods when disk bandwidth is under-utilized.
1015          * (at least 1s idle time between two flusher runs)
1016          */
1017         if (elapsed > HZ && time_before(bdi->bw_time_stamp, start_time))
1018                 goto snapshot;
1019
1020         if (thresh) {
1021                 global_update_bandwidth(thresh, dirty, now);
1022                 bdi_update_dirty_ratelimit(bdi, thresh, bg_thresh, dirty,
1023                                            bdi_thresh, bdi_dirty,
1024                                            dirtied, elapsed);
1025         }
1026         bdi_update_write_bandwidth(bdi, elapsed, written);
1027
1028 snapshot:
1029         bdi->dirtied_stamp = dirtied;
1030         bdi->written_stamp = written;
1031         bdi->bw_time_stamp = now;
1032 }
1033
1034 static void bdi_update_bandwidth(struct backing_dev_info *bdi,
1035                                  unsigned long thresh,
1036                                  unsigned long bg_thresh,
1037                                  unsigned long dirty,
1038                                  unsigned long bdi_thresh,
1039                                  unsigned long bdi_dirty,
1040                                  unsigned long start_time)
1041 {
1042         if (time_is_after_eq_jiffies(bdi->bw_time_stamp + BANDWIDTH_INTERVAL))
1043                 return;
1044         spin_lock(&bdi->wb.list_lock);
1045         __bdi_update_bandwidth(bdi, thresh, bg_thresh, dirty,
1046                                bdi_thresh, bdi_dirty, start_time);
1047         spin_unlock(&bdi->wb.list_lock);
1048 }
1049
1050 /*
1051  * After a task dirtied this many pages, balance_dirty_pages_ratelimited_nr()
1052  * will look to see if it needs to start dirty throttling.
1053  *
1054  * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1055  * global_page_state() too often. So scale it near-sqrt to the safety margin
1056  * (the number of pages we may dirty without exceeding the dirty limits).
1057  */
1058 static unsigned long dirty_poll_interval(unsigned long dirty,
1059                                          unsigned long thresh)
1060 {
1061         if (thresh > dirty)
1062                 return 1UL << (ilog2(thresh - dirty) >> 1);
1063
1064         return 1;
1065 }
1066
1067 static long bdi_max_pause(struct backing_dev_info *bdi,
1068                           unsigned long bdi_dirty)
1069 {
1070         long bw = bdi->avg_write_bandwidth;
1071         long t;
1072
1073         /*
1074          * Limit pause time for small memory systems. If sleeping for too long
1075          * time, a small pool of dirty/writeback pages may go empty and disk go
1076          * idle.
1077          *
1078          * 8 serves as the safety ratio.
1079          */
1080         t = bdi_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1081         t++;
1082
1083         return min_t(long, t, MAX_PAUSE);
1084 }
1085
1086 static long bdi_min_pause(struct backing_dev_info *bdi,
1087                           long max_pause,
1088                           unsigned long task_ratelimit,
1089                           unsigned long dirty_ratelimit,
1090                           int *nr_dirtied_pause)
1091 {
1092         long hi = ilog2(bdi->avg_write_bandwidth);
1093         long lo = ilog2(bdi->dirty_ratelimit);
1094         long t;         /* target pause */
1095         long pause;     /* estimated next pause */
1096         int pages;      /* target nr_dirtied_pause */
1097
1098         /* target for 10ms pause on 1-dd case */
1099         t = max(1, HZ / 100);
1100
1101         /*
1102          * Scale up pause time for concurrent dirtiers in order to reduce CPU
1103          * overheads.
1104          *
1105          * (N * 10ms) on 2^N concurrent tasks.
1106          */
1107         if (hi > lo)
1108                 t += (hi - lo) * (10 * HZ) / 1024;
1109
1110         /*
1111          * This is a bit convoluted. We try to base the next nr_dirtied_pause
1112          * on the much more stable dirty_ratelimit. However the next pause time
1113          * will be computed based on task_ratelimit and the two rate limits may
1114          * depart considerably at some time. Especially if task_ratelimit goes
1115          * below dirty_ratelimit/2 and the target pause is max_pause, the next
1116          * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a
1117          * result task_ratelimit won't be executed faithfully, which could
1118          * eventually bring down dirty_ratelimit.
1119          *
1120          * We apply two rules to fix it up:
1121          * 1) try to estimate the next pause time and if necessary, use a lower
1122          *    nr_dirtied_pause so as not to exceed max_pause. When this happens,
1123          *    nr_dirtied_pause will be "dancing" with task_ratelimit.
1124          * 2) limit the target pause time to max_pause/2, so that the normal
1125          *    small fluctuations of task_ratelimit won't trigger rule (1) and
1126          *    nr_dirtied_pause will remain as stable as dirty_ratelimit.
1127          */
1128         t = min(t, 1 + max_pause / 2);
1129         pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1130
1131         /*
1132          * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1133          * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1134          * When the 16 consecutive reads are often interrupted by some dirty
1135          * throttling pause during the async writes, cfq will go into idles
1136          * (deadline is fine). So push nr_dirtied_pause as high as possible
1137          * until reaches DIRTY_POLL_THRESH=32 pages.
1138          */
1139         if (pages < DIRTY_POLL_THRESH) {
1140                 t = max_pause;
1141                 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1142                 if (pages > DIRTY_POLL_THRESH) {
1143                         pages = DIRTY_POLL_THRESH;
1144                         t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1145                 }
1146         }
1147
1148         pause = HZ * pages / (task_ratelimit + 1);
1149         if (pause > max_pause) {
1150                 t = max_pause;
1151                 pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1152         }
1153
1154         *nr_dirtied_pause = pages;
1155         /*
1156          * The minimal pause time will normally be half the target pause time.
1157          */
1158         return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1159 }
1160
1161 /*
1162  * balance_dirty_pages() must be called by processes which are generating dirty
1163  * data.  It looks at the number of dirty pages in the machine and will force
1164  * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1165  * If we're over `background_thresh' then the writeback threads are woken to
1166  * perform some writeout.
1167  */
1168 static void balance_dirty_pages(struct address_space *mapping,
1169                                 unsigned long pages_dirtied)
1170 {
1171         unsigned long nr_reclaimable;   /* = file_dirty + unstable_nfs */
1172         unsigned long bdi_reclaimable;
1173         unsigned long nr_dirty;  /* = file_dirty + writeback + unstable_nfs */
1174         unsigned long bdi_dirty;
1175         unsigned long freerun;
1176         unsigned long background_thresh;
1177         unsigned long dirty_thresh;
1178         unsigned long bdi_thresh;
1179         long period;
1180         long pause;
1181         long max_pause;
1182         long min_pause;
1183         int nr_dirtied_pause;
1184         bool dirty_exceeded = false;
1185         unsigned long task_ratelimit;
1186         unsigned long dirty_ratelimit;
1187         unsigned long pos_ratio;
1188         struct backing_dev_info *bdi = mapping->backing_dev_info;
1189         unsigned long start_time = jiffies;
1190
1191         for (;;) {
1192                 unsigned long now = jiffies;
1193
1194                 /*
1195                  * Unstable writes are a feature of certain networked
1196                  * filesystems (i.e. NFS) in which data may have been
1197                  * written to the server's write cache, but has not yet
1198                  * been flushed to permanent storage.
1199                  */
1200                 nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
1201                                         global_page_state(NR_UNSTABLE_NFS);
1202                 nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
1203
1204                 global_dirty_limits(&background_thresh, &dirty_thresh);
1205
1206                 /*
1207                  * Throttle it only when the background writeback cannot
1208                  * catch-up. This avoids (excessively) small writeouts
1209                  * when the bdi limits are ramping up.
1210                  */
1211                 freerun = dirty_freerun_ceiling(dirty_thresh,
1212                                                 background_thresh);
1213                 if (nr_dirty <= freerun) {
1214                         current->dirty_paused_when = now;
1215                         current->nr_dirtied = 0;
1216                         current->nr_dirtied_pause =
1217                                 dirty_poll_interval(nr_dirty, dirty_thresh);
1218                         break;
1219                 }
1220
1221                 if (unlikely(!writeback_in_progress(bdi)))
1222                         bdi_start_background_writeback(bdi);
1223
1224                 /*
1225                  * bdi_thresh is not treated as some limiting factor as
1226                  * dirty_thresh, due to reasons
1227                  * - in JBOD setup, bdi_thresh can fluctuate a lot
1228                  * - in a system with HDD and USB key, the USB key may somehow
1229                  *   go into state (bdi_dirty >> bdi_thresh) either because
1230                  *   bdi_dirty starts high, or because bdi_thresh drops low.
1231                  *   In this case we don't want to hard throttle the USB key
1232                  *   dirtiers for 100 seconds until bdi_dirty drops under
1233                  *   bdi_thresh. Instead the auxiliary bdi control line in
1234                  *   bdi_position_ratio() will let the dirtier task progress
1235                  *   at some rate <= (write_bw / 2) for bringing down bdi_dirty.
1236                  */
1237                 bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh);
1238
1239                 /*
1240                  * In order to avoid the stacked BDI deadlock we need
1241                  * to ensure we accurately count the 'dirty' pages when
1242                  * the threshold is low.
1243                  *
1244                  * Otherwise it would be possible to get thresh+n pages
1245                  * reported dirty, even though there are thresh-m pages
1246                  * actually dirty; with m+n sitting in the percpu
1247                  * deltas.
1248                  */
1249                 if (bdi_thresh < 2 * bdi_stat_error(bdi)) {
1250                         bdi_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
1251                         bdi_dirty = bdi_reclaimable +
1252                                     bdi_stat_sum(bdi, BDI_WRITEBACK);
1253                 } else {
1254                         bdi_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
1255                         bdi_dirty = bdi_reclaimable +
1256                                     bdi_stat(bdi, BDI_WRITEBACK);
1257                 }
1258
1259                 dirty_exceeded = (bdi_dirty > bdi_thresh) &&
1260                                   (nr_dirty > dirty_thresh);
1261                 if (dirty_exceeded && !bdi->dirty_exceeded)
1262                         bdi->dirty_exceeded = 1;
1263
1264                 bdi_update_bandwidth(bdi, dirty_thresh, background_thresh,
1265                                      nr_dirty, bdi_thresh, bdi_dirty,
1266                                      start_time);
1267
1268                 dirty_ratelimit = bdi->dirty_ratelimit;
1269                 pos_ratio = bdi_position_ratio(bdi, dirty_thresh,
1270                                                background_thresh, nr_dirty,
1271                                                bdi_thresh, bdi_dirty);
1272                 task_ratelimit = ((u64)dirty_ratelimit * pos_ratio) >>
1273                                                         RATELIMIT_CALC_SHIFT;
1274                 max_pause = bdi_max_pause(bdi, bdi_dirty);
1275                 min_pause = bdi_min_pause(bdi, max_pause,
1276                                           task_ratelimit, dirty_ratelimit,
1277                                           &nr_dirtied_pause);
1278
1279                 if (unlikely(task_ratelimit == 0)) {
1280                         period = max_pause;
1281                         pause = max_pause;
1282                         goto pause;
1283                 }
1284                 period = HZ * pages_dirtied / task_ratelimit;
1285                 pause = period;
1286                 if (current->dirty_paused_when)
1287                         pause -= now - current->dirty_paused_when;
1288                 /*
1289                  * For less than 1s think time (ext3/4 may block the dirtier
1290                  * for up to 800ms from time to time on 1-HDD; so does xfs,
1291                  * however at much less frequency), try to compensate it in
1292                  * future periods by updating the virtual time; otherwise just
1293                  * do a reset, as it may be a light dirtier.
1294                  */
1295                 if (pause < min_pause) {
1296                         trace_balance_dirty_pages(bdi,
1297                                                   dirty_thresh,
1298                                                   background_thresh,
1299                                                   nr_dirty,
1300                                                   bdi_thresh,
1301                                                   bdi_dirty,
1302                                                   dirty_ratelimit,
1303                                                   task_ratelimit,
1304                                                   pages_dirtied,
1305                                                   period,
1306                                                   min(pause, 0L),
1307                                                   start_time);
1308                         if (pause < -HZ) {
1309                                 current->dirty_paused_when = now;
1310                                 current->nr_dirtied = 0;
1311                         } else if (period) {
1312                                 current->dirty_paused_when += period;
1313                                 current->nr_dirtied = 0;
1314                         } else if (current->nr_dirtied_pause <= pages_dirtied)
1315                                 current->nr_dirtied_pause += pages_dirtied;
1316                         break;
1317                 }
1318                 if (unlikely(pause > max_pause)) {
1319                         /* for occasional dropped task_ratelimit */
1320                         now += min(pause - max_pause, max_pause);
1321                         pause = max_pause;
1322                 }
1323
1324 pause:
1325                 trace_balance_dirty_pages(bdi,
1326                                           dirty_thresh,
1327                                           background_thresh,
1328                                           nr_dirty,
1329                                           bdi_thresh,
1330                                           bdi_dirty,
1331                                           dirty_ratelimit,
1332                                           task_ratelimit,
1333                                           pages_dirtied,
1334                                           period,
1335                                           pause,
1336                                           start_time);
1337                 __set_current_state(TASK_KILLABLE);
1338                 io_schedule_timeout(pause);
1339
1340                 current->dirty_paused_when = now + pause;
1341                 current->nr_dirtied = 0;
1342                 current->nr_dirtied_pause = nr_dirtied_pause;
1343
1344                 /*
1345                  * This is typically equal to (nr_dirty < dirty_thresh) and can
1346                  * also keep "1000+ dd on a slow USB stick" under control.
1347                  */
1348                 if (task_ratelimit)
1349                         break;
1350
1351                 /*
1352                  * In the case of an unresponding NFS server and the NFS dirty
1353                  * pages exceeds dirty_thresh, give the other good bdi's a pipe
1354                  * to go through, so that tasks on them still remain responsive.
1355                  *
1356                  * In theory 1 page is enough to keep the comsumer-producer
1357                  * pipe going: the flusher cleans 1 page => the task dirties 1
1358                  * more page. However bdi_dirty has accounting errors.  So use
1359                  * the larger and more IO friendly bdi_stat_error.
1360                  */
1361                 if (bdi_dirty <= bdi_stat_error(bdi))
1362                         break;
1363
1364                 if (fatal_signal_pending(current))
1365                         break;
1366         }
1367
1368         if (!dirty_exceeded && bdi->dirty_exceeded)
1369                 bdi->dirty_exceeded = 0;
1370
1371         if (writeback_in_progress(bdi))
1372                 return;
1373
1374         /*
1375          * In laptop mode, we wait until hitting the higher threshold before
1376          * starting background writeout, and then write out all the way down
1377          * to the lower threshold.  So slow writers cause minimal disk activity.
1378          *
1379          * In normal mode, we start background writeout at the lower
1380          * background_thresh, to keep the amount of dirty memory low.
1381          */
1382         if (laptop_mode)
1383                 return;
1384
1385         if (nr_reclaimable > background_thresh)
1386                 bdi_start_background_writeback(bdi);
1387 }
1388
1389 void set_page_dirty_balance(struct page *page, int page_mkwrite)
1390 {
1391         if (set_page_dirty(page) || page_mkwrite) {
1392                 struct address_space *mapping = page_mapping(page);
1393
1394                 if (mapping)
1395                         balance_dirty_pages_ratelimited(mapping);
1396         }
1397 }
1398
1399 static DEFINE_PER_CPU(int, bdp_ratelimits);
1400
1401 /*
1402  * Normal tasks are throttled by
1403  *      loop {
1404  *              dirty tsk->nr_dirtied_pause pages;
1405  *              take a snap in balance_dirty_pages();
1406  *      }
1407  * However there is a worst case. If every task exit immediately when dirtied
1408  * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1409  * called to throttle the page dirties. The solution is to save the not yet
1410  * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1411  * randomly into the running tasks. This works well for the above worst case,
1412  * as the new task will pick up and accumulate the old task's leaked dirty
1413  * count and eventually get throttled.
1414  */
1415 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1416
1417 /**
1418  * balance_dirty_pages_ratelimited_nr - balance dirty memory state
1419  * @mapping: address_space which was dirtied
1420  * @nr_pages_dirtied: number of pages which the caller has just dirtied
1421  *
1422  * Processes which are dirtying memory should call in here once for each page
1423  * which was newly dirtied.  The function will periodically check the system's
1424  * dirty state and will initiate writeback if needed.
1425  *
1426  * On really big machines, get_writeback_state is expensive, so try to avoid
1427  * calling it too often (ratelimiting).  But once we're over the dirty memory
1428  * limit we decrease the ratelimiting by a lot, to prevent individual processes
1429  * from overshooting the limit by (ratelimit_pages) each.
1430  */
1431 void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
1432                                         unsigned long nr_pages_dirtied)
1433 {
1434         struct backing_dev_info *bdi = mapping->backing_dev_info;
1435         int ratelimit;
1436         int *p;
1437
1438         if (!bdi_cap_account_dirty(bdi))
1439                 return;
1440
1441         ratelimit = current->nr_dirtied_pause;
1442         if (bdi->dirty_exceeded)
1443                 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1444
1445         preempt_disable();
1446         /*
1447          * This prevents one CPU to accumulate too many dirtied pages without
1448          * calling into balance_dirty_pages(), which can happen when there are
1449          * 1000+ tasks, all of them start dirtying pages at exactly the same
1450          * time, hence all honoured too large initial task->nr_dirtied_pause.
1451          */
1452         p =  &__get_cpu_var(bdp_ratelimits);
1453         if (unlikely(current->nr_dirtied >= ratelimit))
1454                 *p = 0;
1455         else if (unlikely(*p >= ratelimit_pages)) {
1456                 *p = 0;
1457                 ratelimit = 0;
1458         }
1459         /*
1460          * Pick up the dirtied pages by the exited tasks. This avoids lots of
1461          * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1462          * the dirty throttling and livelock other long-run dirtiers.
1463          */
1464         p = &__get_cpu_var(dirty_throttle_leaks);
1465         if (*p > 0 && current->nr_dirtied < ratelimit) {
1466                 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1467                 *p -= nr_pages_dirtied;
1468                 current->nr_dirtied += nr_pages_dirtied;
1469         }
1470         preempt_enable();
1471
1472         if (unlikely(current->nr_dirtied >= ratelimit))
1473                 balance_dirty_pages(mapping, current->nr_dirtied);
1474 }
1475 EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
1476
1477 void throttle_vm_writeout(gfp_t gfp_mask)
1478 {
1479         unsigned long background_thresh;
1480         unsigned long dirty_thresh;
1481
1482         for ( ; ; ) {
1483                 global_dirty_limits(&background_thresh, &dirty_thresh);
1484                 dirty_thresh = hard_dirty_limit(dirty_thresh);
1485
1486                 /*
1487                  * Boost the allowable dirty threshold a bit for page
1488                  * allocators so they don't get DoS'ed by heavy writers
1489                  */
1490                 dirty_thresh += dirty_thresh / 10;      /* wheeee... */
1491
1492                 if (global_page_state(NR_UNSTABLE_NFS) +
1493                         global_page_state(NR_WRITEBACK) <= dirty_thresh)
1494                                 break;
1495                 congestion_wait(BLK_RW_ASYNC, HZ/10);
1496
1497                 /*
1498                  * The caller might hold locks which can prevent IO completion
1499                  * or progress in the filesystem.  So we cannot just sit here
1500                  * waiting for IO to complete.
1501                  */
1502                 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
1503                         break;
1504         }
1505 }
1506
1507 /*
1508  * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1509  */
1510 int dirty_writeback_centisecs_handler(ctl_table *table, int write,
1511         void __user *buffer, size_t *length, loff_t *ppos)
1512 {
1513         proc_dointvec(table, write, buffer, length, ppos);
1514         bdi_arm_supers_timer();
1515         return 0;
1516 }
1517
1518 #ifdef CONFIG_BLOCK
1519 void laptop_mode_timer_fn(unsigned long data)
1520 {
1521         struct request_queue *q = (struct request_queue *)data;
1522         int nr_pages = global_page_state(NR_FILE_DIRTY) +
1523                 global_page_state(NR_UNSTABLE_NFS);
1524
1525         /*
1526          * We want to write everything out, not just down to the dirty
1527          * threshold
1528          */
1529         if (bdi_has_dirty_io(&q->backing_dev_info))
1530                 bdi_start_writeback(&q->backing_dev_info, nr_pages,
1531                                         WB_REASON_LAPTOP_TIMER);
1532 }
1533
1534 /*
1535  * We've spun up the disk and we're in laptop mode: schedule writeback
1536  * of all dirty data a few seconds from now.  If the flush is already scheduled
1537  * then push it back - the user is still using the disk.
1538  */
1539 void laptop_io_completion(struct backing_dev_info *info)
1540 {
1541         mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
1542 }
1543
1544 /*
1545  * We're in laptop mode and we've just synced. The sync's writes will have
1546  * caused another writeback to be scheduled by laptop_io_completion.
1547  * Nothing needs to be written back anymore, so we unschedule the writeback.
1548  */
1549 void laptop_sync_completion(void)
1550 {
1551         struct backing_dev_info *bdi;
1552
1553         rcu_read_lock();
1554
1555         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
1556                 del_timer(&bdi->laptop_mode_wb_timer);
1557
1558         rcu_read_unlock();
1559 }
1560 #endif
1561
1562 /*
1563  * If ratelimit_pages is too high then we can get into dirty-data overload
1564  * if a large number of processes all perform writes at the same time.
1565  * If it is too low then SMP machines will call the (expensive)
1566  * get_writeback_state too often.
1567  *
1568  * Here we set ratelimit_pages to a level which ensures that when all CPUs are
1569  * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
1570  * thresholds.
1571  */
1572
1573 void writeback_set_ratelimit(void)
1574 {
1575         unsigned long background_thresh;
1576         unsigned long dirty_thresh;
1577         global_dirty_limits(&background_thresh, &dirty_thresh);
1578         ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
1579         if (ratelimit_pages < 16)
1580                 ratelimit_pages = 16;
1581 }
1582
1583 static int __cpuinit
1584 ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
1585 {
1586         writeback_set_ratelimit();
1587         return NOTIFY_DONE;
1588 }
1589
1590 static struct notifier_block __cpuinitdata ratelimit_nb = {
1591         .notifier_call  = ratelimit_handler,
1592         .next           = NULL,
1593 };
1594
1595 /*
1596  * Called early on to tune the page writeback dirty limits.
1597  *
1598  * We used to scale dirty pages according to how total memory
1599  * related to pages that could be allocated for buffers (by
1600  * comparing nr_free_buffer_pages() to vm_total_pages.
1601  *
1602  * However, that was when we used "dirty_ratio" to scale with
1603  * all memory, and we don't do that any more. "dirty_ratio"
1604  * is now applied to total non-HIGHPAGE memory (by subtracting
1605  * totalhigh_pages from vm_total_pages), and as such we can't
1606  * get into the old insane situation any more where we had
1607  * large amounts of dirty pages compared to a small amount of
1608  * non-HIGHMEM memory.
1609  *
1610  * But we might still want to scale the dirty_ratio by how
1611  * much memory the box has..
1612  */
1613 void __init page_writeback_init(void)
1614 {
1615         int shift;
1616
1617         writeback_set_ratelimit();
1618         register_cpu_notifier(&ratelimit_nb);
1619
1620         shift = calc_period_shift();
1621         prop_descriptor_init(&vm_completions, shift);
1622 }
1623
1624 /**
1625  * tag_pages_for_writeback - tag pages to be written by write_cache_pages
1626  * @mapping: address space structure to write
1627  * @start: starting page index
1628  * @end: ending page index (inclusive)
1629  *
1630  * This function scans the page range from @start to @end (inclusive) and tags
1631  * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
1632  * that write_cache_pages (or whoever calls this function) will then use
1633  * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
1634  * used to avoid livelocking of writeback by a process steadily creating new
1635  * dirty pages in the file (thus it is important for this function to be quick
1636  * so that it can tag pages faster than a dirtying process can create them).
1637  */
1638 /*
1639  * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
1640  */
1641 void tag_pages_for_writeback(struct address_space *mapping,
1642                              pgoff_t start, pgoff_t end)
1643 {
1644 #define WRITEBACK_TAG_BATCH 4096
1645         unsigned long tagged;
1646
1647         do {
1648                 spin_lock_irq(&mapping->tree_lock);
1649                 tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
1650                                 &start, end, WRITEBACK_TAG_BATCH,
1651                                 PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
1652                 spin_unlock_irq(&mapping->tree_lock);
1653                 WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
1654                 cond_resched();
1655                 /* We check 'start' to handle wrapping when end == ~0UL */
1656         } while (tagged >= WRITEBACK_TAG_BATCH && start);
1657 }
1658 EXPORT_SYMBOL(tag_pages_for_writeback);
1659
1660 /**
1661  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
1662  * @mapping: address space structure to write
1663  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1664  * @writepage: function called for each page
1665  * @data: data passed to writepage function
1666  *
1667  * If a page is already under I/O, write_cache_pages() skips it, even
1668  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
1669  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
1670  * and msync() need to guarantee that all the data which was dirty at the time
1671  * the call was made get new I/O started against them.  If wbc->sync_mode is
1672  * WB_SYNC_ALL then we were called for data integrity and we must wait for
1673  * existing IO to complete.
1674  *
1675  * To avoid livelocks (when other process dirties new pages), we first tag
1676  * pages which should be written back with TOWRITE tag and only then start
1677  * writing them. For data-integrity sync we have to be careful so that we do
1678  * not miss some pages (e.g., because some other process has cleared TOWRITE
1679  * tag we set). The rule we follow is that TOWRITE tag can be cleared only
1680  * by the process clearing the DIRTY tag (and submitting the page for IO).
1681  */
1682 int write_cache_pages(struct address_space *mapping,
1683                       struct writeback_control *wbc, writepage_t writepage,
1684                       void *data)
1685 {
1686         int ret = 0;
1687         int done = 0;
1688         struct pagevec pvec;
1689         int nr_pages;
1690         pgoff_t uninitialized_var(writeback_index);
1691         pgoff_t index;
1692         pgoff_t end;            /* Inclusive */
1693         pgoff_t done_index;
1694         int cycled;
1695         int range_whole = 0;
1696         int tag;
1697
1698         pagevec_init(&pvec, 0);
1699         if (wbc->range_cyclic) {
1700                 writeback_index = mapping->writeback_index; /* prev offset */
1701                 index = writeback_index;
1702                 if (index == 0)
1703                         cycled = 1;
1704                 else
1705                         cycled = 0;
1706                 end = -1;
1707         } else {
1708                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
1709                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
1710                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1711                         range_whole = 1;
1712                 cycled = 1; /* ignore range_cyclic tests */
1713         }
1714         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1715                 tag = PAGECACHE_TAG_TOWRITE;
1716         else
1717                 tag = PAGECACHE_TAG_DIRTY;
1718 retry:
1719         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1720                 tag_pages_for_writeback(mapping, index, end);
1721         done_index = index;
1722         while (!done && (index <= end)) {
1723                 int i;
1724
1725                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1726                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1727                 if (nr_pages == 0)
1728                         break;
1729
1730                 for (i = 0; i < nr_pages; i++) {
1731                         struct page *page = pvec.pages[i];
1732
1733                         /*
1734                          * At this point, the page may be truncated or
1735                          * invalidated (changing page->mapping to NULL), or
1736                          * even swizzled back from swapper_space to tmpfs file
1737                          * mapping. However, page->index will not change
1738                          * because we have a reference on the page.
1739                          */
1740                         if (page->index > end) {
1741                                 /*
1742                                  * can't be range_cyclic (1st pass) because
1743                                  * end == -1 in that case.
1744                                  */
1745                                 done = 1;
1746                                 break;
1747                         }
1748
1749                         done_index = page->index;
1750
1751                         lock_page(page);
1752
1753                         /*
1754                          * Page truncated or invalidated. We can freely skip it
1755                          * then, even for data integrity operations: the page
1756                          * has disappeared concurrently, so there could be no
1757                          * real expectation of this data interity operation
1758                          * even if there is now a new, dirty page at the same
1759                          * pagecache address.
1760                          */
1761                         if (unlikely(page->mapping != mapping)) {
1762 continue_unlock:
1763                                 unlock_page(page);
1764                                 continue;
1765                         }
1766
1767                         if (!PageDirty(page)) {
1768                                 /* someone wrote it for us */
1769                                 goto continue_unlock;
1770                         }
1771
1772                         if (PageWriteback(page)) {
1773                                 if (wbc->sync_mode != WB_SYNC_NONE)
1774                                         wait_on_page_writeback(page);
1775                                 else
1776                                         goto continue_unlock;
1777                         }
1778
1779                         BUG_ON(PageWriteback(page));
1780                         if (!clear_page_dirty_for_io(page))
1781                                 goto continue_unlock;
1782
1783                         trace_wbc_writepage(wbc, mapping->backing_dev_info);
1784                         ret = (*writepage)(page, wbc, data);
1785                         if (unlikely(ret)) {
1786                                 if (ret == AOP_WRITEPAGE_ACTIVATE) {
1787                                         unlock_page(page);
1788                                         ret = 0;
1789                                 } else {
1790                                         /*
1791                                          * done_index is set past this page,
1792                                          * so media errors will not choke
1793                                          * background writeout for the entire
1794                                          * file. This has consequences for
1795                                          * range_cyclic semantics (ie. it may
1796                                          * not be suitable for data integrity
1797                                          * writeout).
1798                                          */
1799                                         done_index = page->index + 1;
1800                                         done = 1;
1801                                         break;
1802                                 }
1803                         }
1804
1805                         /*
1806                          * We stop writing back only if we are not doing
1807                          * integrity sync. In case of integrity sync we have to
1808                          * keep going until we have written all the pages
1809                          * we tagged for writeback prior to entering this loop.
1810                          */
1811                         if (--wbc->nr_to_write <= 0 &&
1812                             wbc->sync_mode == WB_SYNC_NONE) {
1813                                 done = 1;
1814                                 break;
1815                         }
1816                 }
1817                 pagevec_release(&pvec);
1818                 cond_resched();
1819         }
1820         if (!cycled && !done) {
1821                 /*
1822                  * range_cyclic:
1823                  * We hit the last page and there is more work to be done: wrap
1824                  * back to the start of the file
1825                  */
1826                 cycled = 1;
1827                 index = 0;
1828                 end = writeback_index - 1;
1829                 goto retry;
1830         }
1831         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1832                 mapping->writeback_index = done_index;
1833
1834         return ret;
1835 }
1836 EXPORT_SYMBOL(write_cache_pages);
1837
1838 /*
1839  * Function used by generic_writepages to call the real writepage
1840  * function and set the mapping flags on error
1841  */
1842 static int __writepage(struct page *page, struct writeback_control *wbc,
1843                        void *data)
1844 {
1845         struct address_space *mapping = data;
1846         int ret = mapping->a_ops->writepage(page, wbc);
1847         mapping_set_error(mapping, ret);
1848         return ret;
1849 }
1850
1851 /**
1852  * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
1853  * @mapping: address space structure to write
1854  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1855  *
1856  * This is a library function, which implements the writepages()
1857  * address_space_operation.
1858  */
1859 int generic_writepages(struct address_space *mapping,
1860                        struct writeback_control *wbc)
1861 {
1862         struct blk_plug plug;
1863         int ret;
1864
1865         /* deal with chardevs and other special file */
1866         if (!mapping->a_ops->writepage)
1867                 return 0;
1868
1869         blk_start_plug(&plug);
1870         ret = write_cache_pages(mapping, wbc, __writepage, mapping);
1871         blk_finish_plug(&plug);
1872         return ret;
1873 }
1874
1875 EXPORT_SYMBOL(generic_writepages);
1876
1877 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
1878 {
1879         int ret;
1880
1881         if (wbc->nr_to_write <= 0)
1882                 return 0;
1883         if (mapping->a_ops->writepages)
1884                 ret = mapping->a_ops->writepages(mapping, wbc);
1885         else
1886                 ret = generic_writepages(mapping, wbc);
1887         return ret;
1888 }
1889
1890 /**
1891  * write_one_page - write out a single page and optionally wait on I/O
1892  * @page: the page to write
1893  * @wait: if true, wait on writeout
1894  *
1895  * The page must be locked by the caller and will be unlocked upon return.
1896  *
1897  * write_one_page() returns a negative error code if I/O failed.
1898  */
1899 int write_one_page(struct page *page, int wait)
1900 {
1901         struct address_space *mapping = page->mapping;
1902         int ret = 0;
1903         struct writeback_control wbc = {
1904                 .sync_mode = WB_SYNC_ALL,
1905                 .nr_to_write = 1,
1906         };
1907
1908         BUG_ON(!PageLocked(page));
1909
1910         if (wait)
1911                 wait_on_page_writeback(page);
1912
1913         if (clear_page_dirty_for_io(page)) {
1914                 page_cache_get(page);
1915                 ret = mapping->a_ops->writepage(page, &wbc);
1916                 if (ret == 0 && wait) {
1917                         wait_on_page_writeback(page);
1918                         if (PageError(page))
1919                                 ret = -EIO;
1920                 }
1921                 page_cache_release(page);
1922         } else {
1923                 unlock_page(page);
1924         }
1925         return ret;
1926 }
1927 EXPORT_SYMBOL(write_one_page);
1928
1929 /*
1930  * For address_spaces which do not use buffers nor write back.
1931  */
1932 int __set_page_dirty_no_writeback(struct page *page)
1933 {
1934         if (!PageDirty(page))
1935                 return !TestSetPageDirty(page);
1936         return 0;
1937 }
1938
1939 /*
1940  * Helper function for set_page_dirty family.
1941  * NOTE: This relies on being atomic wrt interrupts.
1942  */
1943 void account_page_dirtied(struct page *page, struct address_space *mapping)
1944 {
1945         if (mapping_cap_account_dirty(mapping)) {
1946                 __inc_zone_page_state(page, NR_FILE_DIRTY);
1947                 __inc_zone_page_state(page, NR_DIRTIED);
1948                 __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
1949                 __inc_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
1950                 task_io_account_write(PAGE_CACHE_SIZE);
1951                 current->nr_dirtied++;
1952                 this_cpu_inc(bdp_ratelimits);
1953         }
1954 }
1955 EXPORT_SYMBOL(account_page_dirtied);
1956
1957 /*
1958  * Helper function for set_page_writeback family.
1959  * NOTE: Unlike account_page_dirtied this does not rely on being atomic
1960  * wrt interrupts.
1961  */
1962 void account_page_writeback(struct page *page)
1963 {
1964         inc_zone_page_state(page, NR_WRITEBACK);
1965 }
1966 EXPORT_SYMBOL(account_page_writeback);
1967
1968 /*
1969  * For address_spaces which do not use buffers.  Just tag the page as dirty in
1970  * its radix tree.
1971  *
1972  * This is also used when a single buffer is being dirtied: we want to set the
1973  * page dirty in that case, but not all the buffers.  This is a "bottom-up"
1974  * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
1975  *
1976  * Most callers have locked the page, which pins the address_space in memory.
1977  * But zap_pte_range() does not lock the page, however in that case the
1978  * mapping is pinned by the vma's ->vm_file reference.
1979  *
1980  * We take care to handle the case where the page was truncated from the
1981  * mapping by re-checking page_mapping() inside tree_lock.
1982  */
1983 int __set_page_dirty_nobuffers(struct page *page)
1984 {
1985         if (!TestSetPageDirty(page)) {
1986                 struct address_space *mapping = page_mapping(page);
1987                 struct address_space *mapping2;
1988
1989                 if (!mapping)
1990                         return 1;
1991
1992                 spin_lock_irq(&mapping->tree_lock);
1993                 mapping2 = page_mapping(page);
1994                 if (mapping2) { /* Race with truncate? */
1995                         BUG_ON(mapping2 != mapping);
1996                         WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
1997                         account_page_dirtied(page, mapping);
1998                         radix_tree_tag_set(&mapping->page_tree,
1999                                 page_index(page), PAGECACHE_TAG_DIRTY);
2000                 }
2001                 spin_unlock_irq(&mapping->tree_lock);
2002                 if (mapping->host) {
2003                         /* !PageAnon && !swapper_space */
2004                         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2005                 }
2006                 return 1;
2007         }
2008         return 0;
2009 }
2010 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2011
2012 /*
2013  * Call this whenever redirtying a page, to de-account the dirty counters
2014  * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
2015  * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
2016  * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2017  * control.
2018  */
2019 void account_page_redirty(struct page *page)
2020 {
2021         struct address_space *mapping = page->mapping;
2022         if (mapping && mapping_cap_account_dirty(mapping)) {
2023                 current->nr_dirtied--;
2024                 dec_zone_page_state(page, NR_DIRTIED);
2025                 dec_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
2026         }
2027 }
2028 EXPORT_SYMBOL(account_page_redirty);
2029
2030 /*
2031  * When a writepage implementation decides that it doesn't want to write this
2032  * page for some reason, it should redirty the locked page via
2033  * redirty_page_for_writepage() and it should then unlock the page and return 0
2034  */
2035 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2036 {
2037         wbc->pages_skipped++;
2038         account_page_redirty(page);
2039         return __set_page_dirty_nobuffers(page);
2040 }
2041 EXPORT_SYMBOL(redirty_page_for_writepage);
2042
2043 /*
2044  * Dirty a page.
2045  *
2046  * For pages with a mapping this should be done under the page lock
2047  * for the benefit of asynchronous memory errors who prefer a consistent
2048  * dirty state. This rule can be broken in some special cases,
2049  * but should be better not to.
2050  *
2051  * If the mapping doesn't provide a set_page_dirty a_op, then
2052  * just fall through and assume that it wants buffer_heads.
2053  */
2054 int set_page_dirty(struct page *page)
2055 {
2056         struct address_space *mapping = page_mapping(page);
2057
2058         if (likely(mapping)) {
2059                 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
2060                 /*
2061                  * readahead/lru_deactivate_page could remain
2062                  * PG_readahead/PG_reclaim due to race with end_page_writeback
2063                  * About readahead, if the page is written, the flags would be
2064                  * reset. So no problem.
2065                  * About lru_deactivate_page, if the page is redirty, the flag
2066                  * will be reset. So no problem. but if the page is used by readahead
2067                  * it will confuse readahead and make it restart the size rampup
2068                  * process. But it's a trivial problem.
2069                  */
2070                 ClearPageReclaim(page);
2071 #ifdef CONFIG_BLOCK
2072                 if (!spd)
2073                         spd = __set_page_dirty_buffers;
2074 #endif
2075                 return (*spd)(page);
2076         }
2077         if (!PageDirty(page)) {
2078                 if (!TestSetPageDirty(page))
2079                         return 1;
2080         }
2081         return 0;
2082 }
2083 EXPORT_SYMBOL(set_page_dirty);
2084
2085 /*
2086  * set_page_dirty() is racy if the caller has no reference against
2087  * page->mapping->host, and if the page is unlocked.  This is because another
2088  * CPU could truncate the page off the mapping and then free the mapping.
2089  *
2090  * Usually, the page _is_ locked, or the caller is a user-space process which
2091  * holds a reference on the inode by having an open file.
2092  *
2093  * In other cases, the page should be locked before running set_page_dirty().
2094  */
2095 int set_page_dirty_lock(struct page *page)
2096 {
2097         int ret;
2098
2099         lock_page(page);
2100         ret = set_page_dirty(page);
2101         unlock_page(page);
2102         return ret;
2103 }
2104 EXPORT_SYMBOL(set_page_dirty_lock);
2105
2106 /*
2107  * Clear a page's dirty flag, while caring for dirty memory accounting.
2108  * Returns true if the page was previously dirty.
2109  *
2110  * This is for preparing to put the page under writeout.  We leave the page
2111  * tagged as dirty in the radix tree so that a concurrent write-for-sync
2112  * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
2113  * implementation will run either set_page_writeback() or set_page_dirty(),
2114  * at which stage we bring the page's dirty flag and radix-tree dirty tag
2115  * back into sync.
2116  *
2117  * This incoherency between the page's dirty flag and radix-tree tag is
2118  * unfortunate, but it only exists while the page is locked.
2119  */
2120 int clear_page_dirty_for_io(struct page *page)
2121 {
2122         struct address_space *mapping = page_mapping(page);
2123
2124         BUG_ON(!PageLocked(page));
2125
2126         if (mapping && mapping_cap_account_dirty(mapping)) {
2127                 /*
2128                  * Yes, Virginia, this is indeed insane.
2129                  *
2130                  * We use this sequence to make sure that
2131                  *  (a) we account for dirty stats properly
2132                  *  (b) we tell the low-level filesystem to
2133                  *      mark the whole page dirty if it was
2134                  *      dirty in a pagetable. Only to then
2135                  *  (c) clean the page again and return 1 to
2136                  *      cause the writeback.
2137                  *
2138                  * This way we avoid all nasty races with the
2139                  * dirty bit in multiple places and clearing
2140                  * them concurrently from different threads.
2141                  *
2142                  * Note! Normally the "set_page_dirty(page)"
2143                  * has no effect on the actual dirty bit - since
2144                  * that will already usually be set. But we
2145                  * need the side effects, and it can help us
2146                  * avoid races.
2147                  *
2148                  * We basically use the page "master dirty bit"
2149                  * as a serialization point for all the different
2150                  * threads doing their things.
2151                  */
2152                 if (page_mkclean(page))
2153                         set_page_dirty(page);
2154                 /*
2155                  * We carefully synchronise fault handlers against
2156                  * installing a dirty pte and marking the page dirty
2157                  * at this point. We do this by having them hold the
2158                  * page lock at some point after installing their
2159                  * pte, but before marking the page dirty.
2160                  * Pages are always locked coming in here, so we get
2161                  * the desired exclusion. See mm/memory.c:do_wp_page()
2162                  * for more comments.
2163                  */
2164                 if (TestClearPageDirty(page)) {
2165                         dec_zone_page_state(page, NR_FILE_DIRTY);
2166                         dec_bdi_stat(mapping->backing_dev_info,
2167                                         BDI_RECLAIMABLE);
2168                         return 1;
2169                 }
2170                 return 0;
2171         }
2172         return TestClearPageDirty(page);
2173 }
2174 EXPORT_SYMBOL(clear_page_dirty_for_io);
2175
2176 int test_clear_page_writeback(struct page *page)
2177 {
2178         struct address_space *mapping = page_mapping(page);
2179         int ret;
2180
2181         if (mapping) {
2182                 struct backing_dev_info *bdi = mapping->backing_dev_info;
2183                 unsigned long flags;
2184
2185                 spin_lock_irqsave(&mapping->tree_lock, flags);
2186                 ret = TestClearPageWriteback(page);
2187                 if (ret) {
2188                         radix_tree_tag_clear(&mapping->page_tree,
2189                                                 page_index(page),
2190                                                 PAGECACHE_TAG_WRITEBACK);
2191                         if (bdi_cap_account_writeback(bdi)) {
2192                                 __dec_bdi_stat(bdi, BDI_WRITEBACK);
2193                                 __bdi_writeout_inc(bdi);
2194                         }
2195                 }
2196                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
2197         } else {
2198                 ret = TestClearPageWriteback(page);
2199         }
2200         if (ret) {
2201                 dec_zone_page_state(page, NR_WRITEBACK);
2202                 inc_zone_page_state(page, NR_WRITTEN);
2203         }
2204         return ret;
2205 }
2206
2207 int test_set_page_writeback(struct page *page)
2208 {
2209         struct address_space *mapping = page_mapping(page);
2210         int ret;
2211
2212         if (mapping) {
2213                 struct backing_dev_info *bdi = mapping->backing_dev_info;
2214                 unsigned long flags;
2215
2216                 spin_lock_irqsave(&mapping->tree_lock, flags);
2217                 ret = TestSetPageWriteback(page);
2218                 if (!ret) {
2219                         radix_tree_tag_set(&mapping->page_tree,
2220                                                 page_index(page),
2221                                                 PAGECACHE_TAG_WRITEBACK);
2222                         if (bdi_cap_account_writeback(bdi))
2223                                 __inc_bdi_stat(bdi, BDI_WRITEBACK);
2224                 }
2225                 if (!PageDirty(page))
2226                         radix_tree_tag_clear(&mapping->page_tree,
2227                                                 page_index(page),
2228                                                 PAGECACHE_TAG_DIRTY);
2229                 radix_tree_tag_clear(&mapping->page_tree,
2230                                      page_index(page),
2231                                      PAGECACHE_TAG_TOWRITE);
2232                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
2233         } else {
2234                 ret = TestSetPageWriteback(page);
2235         }
2236         if (!ret)
2237                 account_page_writeback(page);
2238         return ret;
2239
2240 }
2241 EXPORT_SYMBOL(test_set_page_writeback);
2242
2243 /*
2244  * Return true if any of the pages in the mapping are marked with the
2245  * passed tag.
2246  */
2247 int mapping_tagged(struct address_space *mapping, int tag)
2248 {
2249         return radix_tree_tagged(&mapping->page_tree, tag);
2250 }
2251 EXPORT_SYMBOL(mapping_tagged);