shmem: get_unmapped_area align huge page
[cascardo/linux.git] / mm / shmem.c
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *               2000 Transmeta Corp.
6  *               2000-2001 Christoph Rohland
7  *               2000-2001 SAP AG
8  *               2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/uio.h>
35
36 static struct vfsmount *shm_mnt;
37
38 #ifdef CONFIG_SHMEM
39 /*
40  * This virtual memory filesystem is heavily based on the ramfs. It
41  * extends ramfs by the ability to use swap and honor resource limits
42  * which makes it a completely usable filesystem.
43  */
44
45 #include <linux/xattr.h>
46 #include <linux/exportfs.h>
47 #include <linux/posix_acl.h>
48 #include <linux/posix_acl_xattr.h>
49 #include <linux/mman.h>
50 #include <linux/string.h>
51 #include <linux/slab.h>
52 #include <linux/backing-dev.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/writeback.h>
55 #include <linux/blkdev.h>
56 #include <linux/pagevec.h>
57 #include <linux/percpu_counter.h>
58 #include <linux/falloc.h>
59 #include <linux/splice.h>
60 #include <linux/security.h>
61 #include <linux/swapops.h>
62 #include <linux/mempolicy.h>
63 #include <linux/namei.h>
64 #include <linux/ctype.h>
65 #include <linux/migrate.h>
66 #include <linux/highmem.h>
67 #include <linux/seq_file.h>
68 #include <linux/magic.h>
69 #include <linux/syscalls.h>
70 #include <linux/fcntl.h>
71 #include <uapi/linux/memfd.h>
72
73 #include <asm/uaccess.h>
74 #include <asm/pgtable.h>
75
76 #include "internal.h"
77
78 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
79 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
80
81 /* Pretend that each entry is of this size in directory's i_size */
82 #define BOGO_DIRENT_SIZE 20
83
84 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
85 #define SHORT_SYMLINK_LEN 128
86
87 /*
88  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
89  * inode->i_private (with i_mutex making sure that it has only one user at
90  * a time): we would prefer not to enlarge the shmem inode just for that.
91  */
92 struct shmem_falloc {
93         wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
94         pgoff_t start;          /* start of range currently being fallocated */
95         pgoff_t next;           /* the next page offset to be fallocated */
96         pgoff_t nr_falloced;    /* how many new pages have been fallocated */
97         pgoff_t nr_unswapped;   /* how often writepage refused to swap out */
98 };
99
100 /* Flag allocation requirements to shmem_getpage */
101 enum sgp_type {
102         SGP_READ,       /* don't exceed i_size, don't allocate page */
103         SGP_CACHE,      /* don't exceed i_size, may allocate page */
104         SGP_WRITE,      /* may exceed i_size, may allocate !Uptodate page */
105         SGP_FALLOC,     /* like SGP_WRITE, but make existing page Uptodate */
106 };
107
108 #ifdef CONFIG_TMPFS
109 static unsigned long shmem_default_max_blocks(void)
110 {
111         return totalram_pages / 2;
112 }
113
114 static unsigned long shmem_default_max_inodes(void)
115 {
116         return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
117 }
118 #endif
119
120 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
121 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
122                                 struct shmem_inode_info *info, pgoff_t index);
123 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
124                 struct page **pagep, enum sgp_type sgp,
125                 gfp_t gfp, struct mm_struct *fault_mm, int *fault_type);
126
127 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
128                 struct page **pagep, enum sgp_type sgp)
129 {
130         return shmem_getpage_gfp(inode, index, pagep, sgp,
131                 mapping_gfp_mask(inode->i_mapping), NULL, NULL);
132 }
133
134 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
135 {
136         return sb->s_fs_info;
137 }
138
139 /*
140  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
141  * for shared memory and for shared anonymous (/dev/zero) mappings
142  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
143  * consistent with the pre-accounting of private mappings ...
144  */
145 static inline int shmem_acct_size(unsigned long flags, loff_t size)
146 {
147         return (flags & VM_NORESERVE) ?
148                 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
149 }
150
151 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
152 {
153         if (!(flags & VM_NORESERVE))
154                 vm_unacct_memory(VM_ACCT(size));
155 }
156
157 static inline int shmem_reacct_size(unsigned long flags,
158                 loff_t oldsize, loff_t newsize)
159 {
160         if (!(flags & VM_NORESERVE)) {
161                 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
162                         return security_vm_enough_memory_mm(current->mm,
163                                         VM_ACCT(newsize) - VM_ACCT(oldsize));
164                 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
165                         vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
166         }
167         return 0;
168 }
169
170 /*
171  * ... whereas tmpfs objects are accounted incrementally as
172  * pages are allocated, in order to allow large sparse files.
173  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
174  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
175  */
176 static inline int shmem_acct_block(unsigned long flags)
177 {
178         return (flags & VM_NORESERVE) ?
179                 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_SIZE)) : 0;
180 }
181
182 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
183 {
184         if (flags & VM_NORESERVE)
185                 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
186 }
187
188 static const struct super_operations shmem_ops;
189 static const struct address_space_operations shmem_aops;
190 static const struct file_operations shmem_file_operations;
191 static const struct inode_operations shmem_inode_operations;
192 static const struct inode_operations shmem_dir_inode_operations;
193 static const struct inode_operations shmem_special_inode_operations;
194 static const struct vm_operations_struct shmem_vm_ops;
195
196 static LIST_HEAD(shmem_swaplist);
197 static DEFINE_MUTEX(shmem_swaplist_mutex);
198
199 static int shmem_reserve_inode(struct super_block *sb)
200 {
201         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
202         if (sbinfo->max_inodes) {
203                 spin_lock(&sbinfo->stat_lock);
204                 if (!sbinfo->free_inodes) {
205                         spin_unlock(&sbinfo->stat_lock);
206                         return -ENOSPC;
207                 }
208                 sbinfo->free_inodes--;
209                 spin_unlock(&sbinfo->stat_lock);
210         }
211         return 0;
212 }
213
214 static void shmem_free_inode(struct super_block *sb)
215 {
216         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
217         if (sbinfo->max_inodes) {
218                 spin_lock(&sbinfo->stat_lock);
219                 sbinfo->free_inodes++;
220                 spin_unlock(&sbinfo->stat_lock);
221         }
222 }
223
224 /**
225  * shmem_recalc_inode - recalculate the block usage of an inode
226  * @inode: inode to recalc
227  *
228  * We have to calculate the free blocks since the mm can drop
229  * undirtied hole pages behind our back.
230  *
231  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
232  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
233  *
234  * It has to be called with the spinlock held.
235  */
236 static void shmem_recalc_inode(struct inode *inode)
237 {
238         struct shmem_inode_info *info = SHMEM_I(inode);
239         long freed;
240
241         freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
242         if (freed > 0) {
243                 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
244                 if (sbinfo->max_blocks)
245                         percpu_counter_add(&sbinfo->used_blocks, -freed);
246                 info->alloced -= freed;
247                 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
248                 shmem_unacct_blocks(info->flags, freed);
249         }
250 }
251
252 /*
253  * Replace item expected in radix tree by a new item, while holding tree lock.
254  */
255 static int shmem_radix_tree_replace(struct address_space *mapping,
256                         pgoff_t index, void *expected, void *replacement)
257 {
258         void **pslot;
259         void *item;
260
261         VM_BUG_ON(!expected);
262         VM_BUG_ON(!replacement);
263         pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
264         if (!pslot)
265                 return -ENOENT;
266         item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
267         if (item != expected)
268                 return -ENOENT;
269         radix_tree_replace_slot(pslot, replacement);
270         return 0;
271 }
272
273 /*
274  * Sometimes, before we decide whether to proceed or to fail, we must check
275  * that an entry was not already brought back from swap by a racing thread.
276  *
277  * Checking page is not enough: by the time a SwapCache page is locked, it
278  * might be reused, and again be SwapCache, using the same swap as before.
279  */
280 static bool shmem_confirm_swap(struct address_space *mapping,
281                                pgoff_t index, swp_entry_t swap)
282 {
283         void *item;
284
285         rcu_read_lock();
286         item = radix_tree_lookup(&mapping->page_tree, index);
287         rcu_read_unlock();
288         return item == swp_to_radix_entry(swap);
289 }
290
291 /*
292  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
293  *
294  * SHMEM_HUGE_NEVER:
295  *      disables huge pages for the mount;
296  * SHMEM_HUGE_ALWAYS:
297  *      enables huge pages for the mount;
298  * SHMEM_HUGE_WITHIN_SIZE:
299  *      only allocate huge pages if the page will be fully within i_size,
300  *      also respect fadvise()/madvise() hints;
301  * SHMEM_HUGE_ADVISE:
302  *      only allocate huge pages if requested with fadvise()/madvise();
303  */
304
305 #define SHMEM_HUGE_NEVER        0
306 #define SHMEM_HUGE_ALWAYS       1
307 #define SHMEM_HUGE_WITHIN_SIZE  2
308 #define SHMEM_HUGE_ADVISE       3
309
310 /*
311  * Special values.
312  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
313  *
314  * SHMEM_HUGE_DENY:
315  *      disables huge on shm_mnt and all mounts, for emergency use;
316  * SHMEM_HUGE_FORCE:
317  *      enables huge on shm_mnt and all mounts, w/o needing option, for testing;
318  *
319  */
320 #define SHMEM_HUGE_DENY         (-1)
321 #define SHMEM_HUGE_FORCE        (-2)
322
323 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
324 /* ifdef here to avoid bloating shmem.o when not necessary */
325
326 int shmem_huge __read_mostly;
327
328 static int shmem_parse_huge(const char *str)
329 {
330         if (!strcmp(str, "never"))
331                 return SHMEM_HUGE_NEVER;
332         if (!strcmp(str, "always"))
333                 return SHMEM_HUGE_ALWAYS;
334         if (!strcmp(str, "within_size"))
335                 return SHMEM_HUGE_WITHIN_SIZE;
336         if (!strcmp(str, "advise"))
337                 return SHMEM_HUGE_ADVISE;
338         if (!strcmp(str, "deny"))
339                 return SHMEM_HUGE_DENY;
340         if (!strcmp(str, "force"))
341                 return SHMEM_HUGE_FORCE;
342         return -EINVAL;
343 }
344
345 static const char *shmem_format_huge(int huge)
346 {
347         switch (huge) {
348         case SHMEM_HUGE_NEVER:
349                 return "never";
350         case SHMEM_HUGE_ALWAYS:
351                 return "always";
352         case SHMEM_HUGE_WITHIN_SIZE:
353                 return "within_size";
354         case SHMEM_HUGE_ADVISE:
355                 return "advise";
356         case SHMEM_HUGE_DENY:
357                 return "deny";
358         case SHMEM_HUGE_FORCE:
359                 return "force";
360         default:
361                 VM_BUG_ON(1);
362                 return "bad_val";
363         }
364 }
365
366 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
367
368 #define shmem_huge SHMEM_HUGE_DENY
369
370 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
371
372 /*
373  * Like add_to_page_cache_locked, but error if expected item has gone.
374  */
375 static int shmem_add_to_page_cache(struct page *page,
376                                    struct address_space *mapping,
377                                    pgoff_t index, void *expected)
378 {
379         int error;
380
381         VM_BUG_ON_PAGE(!PageLocked(page), page);
382         VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
383
384         get_page(page);
385         page->mapping = mapping;
386         page->index = index;
387
388         spin_lock_irq(&mapping->tree_lock);
389         if (!expected)
390                 error = radix_tree_insert(&mapping->page_tree, index, page);
391         else
392                 error = shmem_radix_tree_replace(mapping, index, expected,
393                                                                  page);
394         if (!error) {
395                 mapping->nrpages++;
396                 __inc_zone_page_state(page, NR_FILE_PAGES);
397                 __inc_zone_page_state(page, NR_SHMEM);
398                 spin_unlock_irq(&mapping->tree_lock);
399         } else {
400                 page->mapping = NULL;
401                 spin_unlock_irq(&mapping->tree_lock);
402                 put_page(page);
403         }
404         return error;
405 }
406
407 /*
408  * Like delete_from_page_cache, but substitutes swap for page.
409  */
410 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
411 {
412         struct address_space *mapping = page->mapping;
413         int error;
414
415         spin_lock_irq(&mapping->tree_lock);
416         error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
417         page->mapping = NULL;
418         mapping->nrpages--;
419         __dec_zone_page_state(page, NR_FILE_PAGES);
420         __dec_zone_page_state(page, NR_SHMEM);
421         spin_unlock_irq(&mapping->tree_lock);
422         put_page(page);
423         BUG_ON(error);
424 }
425
426 /*
427  * Remove swap entry from radix tree, free the swap and its page cache.
428  */
429 static int shmem_free_swap(struct address_space *mapping,
430                            pgoff_t index, void *radswap)
431 {
432         void *old;
433
434         spin_lock_irq(&mapping->tree_lock);
435         old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
436         spin_unlock_irq(&mapping->tree_lock);
437         if (old != radswap)
438                 return -ENOENT;
439         free_swap_and_cache(radix_to_swp_entry(radswap));
440         return 0;
441 }
442
443 /*
444  * Determine (in bytes) how many of the shmem object's pages mapped by the
445  * given offsets are swapped out.
446  *
447  * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
448  * as long as the inode doesn't go away and racy results are not a problem.
449  */
450 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
451                                                 pgoff_t start, pgoff_t end)
452 {
453         struct radix_tree_iter iter;
454         void **slot;
455         struct page *page;
456         unsigned long swapped = 0;
457
458         rcu_read_lock();
459
460         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
461                 if (iter.index >= end)
462                         break;
463
464                 page = radix_tree_deref_slot(slot);
465
466                 if (radix_tree_deref_retry(page)) {
467                         slot = radix_tree_iter_retry(&iter);
468                         continue;
469                 }
470
471                 if (radix_tree_exceptional_entry(page))
472                         swapped++;
473
474                 if (need_resched()) {
475                         cond_resched_rcu();
476                         slot = radix_tree_iter_next(&iter);
477                 }
478         }
479
480         rcu_read_unlock();
481
482         return swapped << PAGE_SHIFT;
483 }
484
485 /*
486  * Determine (in bytes) how many of the shmem object's pages mapped by the
487  * given vma is swapped out.
488  *
489  * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
490  * as long as the inode doesn't go away and racy results are not a problem.
491  */
492 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
493 {
494         struct inode *inode = file_inode(vma->vm_file);
495         struct shmem_inode_info *info = SHMEM_I(inode);
496         struct address_space *mapping = inode->i_mapping;
497         unsigned long swapped;
498
499         /* Be careful as we don't hold info->lock */
500         swapped = READ_ONCE(info->swapped);
501
502         /*
503          * The easier cases are when the shmem object has nothing in swap, or
504          * the vma maps it whole. Then we can simply use the stats that we
505          * already track.
506          */
507         if (!swapped)
508                 return 0;
509
510         if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
511                 return swapped << PAGE_SHIFT;
512
513         /* Here comes the more involved part */
514         return shmem_partial_swap_usage(mapping,
515                         linear_page_index(vma, vma->vm_start),
516                         linear_page_index(vma, vma->vm_end));
517 }
518
519 /*
520  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
521  */
522 void shmem_unlock_mapping(struct address_space *mapping)
523 {
524         struct pagevec pvec;
525         pgoff_t indices[PAGEVEC_SIZE];
526         pgoff_t index = 0;
527
528         pagevec_init(&pvec, 0);
529         /*
530          * Minor point, but we might as well stop if someone else SHM_LOCKs it.
531          */
532         while (!mapping_unevictable(mapping)) {
533                 /*
534                  * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
535                  * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
536                  */
537                 pvec.nr = find_get_entries(mapping, index,
538                                            PAGEVEC_SIZE, pvec.pages, indices);
539                 if (!pvec.nr)
540                         break;
541                 index = indices[pvec.nr - 1] + 1;
542                 pagevec_remove_exceptionals(&pvec);
543                 check_move_unevictable_pages(pvec.pages, pvec.nr);
544                 pagevec_release(&pvec);
545                 cond_resched();
546         }
547 }
548
549 /*
550  * Remove range of pages and swap entries from radix tree, and free them.
551  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
552  */
553 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
554                                                                  bool unfalloc)
555 {
556         struct address_space *mapping = inode->i_mapping;
557         struct shmem_inode_info *info = SHMEM_I(inode);
558         pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
559         pgoff_t end = (lend + 1) >> PAGE_SHIFT;
560         unsigned int partial_start = lstart & (PAGE_SIZE - 1);
561         unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
562         struct pagevec pvec;
563         pgoff_t indices[PAGEVEC_SIZE];
564         long nr_swaps_freed = 0;
565         pgoff_t index;
566         int i;
567
568         if (lend == -1)
569                 end = -1;       /* unsigned, so actually very big */
570
571         pagevec_init(&pvec, 0);
572         index = start;
573         while (index < end) {
574                 pvec.nr = find_get_entries(mapping, index,
575                         min(end - index, (pgoff_t)PAGEVEC_SIZE),
576                         pvec.pages, indices);
577                 if (!pvec.nr)
578                         break;
579                 for (i = 0; i < pagevec_count(&pvec); i++) {
580                         struct page *page = pvec.pages[i];
581
582                         index = indices[i];
583                         if (index >= end)
584                                 break;
585
586                         if (radix_tree_exceptional_entry(page)) {
587                                 if (unfalloc)
588                                         continue;
589                                 nr_swaps_freed += !shmem_free_swap(mapping,
590                                                                 index, page);
591                                 continue;
592                         }
593
594                         if (!trylock_page(page))
595                                 continue;
596                         if (!unfalloc || !PageUptodate(page)) {
597                                 if (page->mapping == mapping) {
598                                         VM_BUG_ON_PAGE(PageWriteback(page), page);
599                                         truncate_inode_page(mapping, page);
600                                 }
601                         }
602                         unlock_page(page);
603                 }
604                 pagevec_remove_exceptionals(&pvec);
605                 pagevec_release(&pvec);
606                 cond_resched();
607                 index++;
608         }
609
610         if (partial_start) {
611                 struct page *page = NULL;
612                 shmem_getpage(inode, start - 1, &page, SGP_READ);
613                 if (page) {
614                         unsigned int top = PAGE_SIZE;
615                         if (start > end) {
616                                 top = partial_end;
617                                 partial_end = 0;
618                         }
619                         zero_user_segment(page, partial_start, top);
620                         set_page_dirty(page);
621                         unlock_page(page);
622                         put_page(page);
623                 }
624         }
625         if (partial_end) {
626                 struct page *page = NULL;
627                 shmem_getpage(inode, end, &page, SGP_READ);
628                 if (page) {
629                         zero_user_segment(page, 0, partial_end);
630                         set_page_dirty(page);
631                         unlock_page(page);
632                         put_page(page);
633                 }
634         }
635         if (start >= end)
636                 return;
637
638         index = start;
639         while (index < end) {
640                 cond_resched();
641
642                 pvec.nr = find_get_entries(mapping, index,
643                                 min(end - index, (pgoff_t)PAGEVEC_SIZE),
644                                 pvec.pages, indices);
645                 if (!pvec.nr) {
646                         /* If all gone or hole-punch or unfalloc, we're done */
647                         if (index == start || end != -1)
648                                 break;
649                         /* But if truncating, restart to make sure all gone */
650                         index = start;
651                         continue;
652                 }
653                 for (i = 0; i < pagevec_count(&pvec); i++) {
654                         struct page *page = pvec.pages[i];
655
656                         index = indices[i];
657                         if (index >= end)
658                                 break;
659
660                         if (radix_tree_exceptional_entry(page)) {
661                                 if (unfalloc)
662                                         continue;
663                                 if (shmem_free_swap(mapping, index, page)) {
664                                         /* Swap was replaced by page: retry */
665                                         index--;
666                                         break;
667                                 }
668                                 nr_swaps_freed++;
669                                 continue;
670                         }
671
672                         lock_page(page);
673                         if (!unfalloc || !PageUptodate(page)) {
674                                 if (page->mapping == mapping) {
675                                         VM_BUG_ON_PAGE(PageWriteback(page), page);
676                                         truncate_inode_page(mapping, page);
677                                 } else {
678                                         /* Page was replaced by swap: retry */
679                                         unlock_page(page);
680                                         index--;
681                                         break;
682                                 }
683                         }
684                         unlock_page(page);
685                 }
686                 pagevec_remove_exceptionals(&pvec);
687                 pagevec_release(&pvec);
688                 index++;
689         }
690
691         spin_lock(&info->lock);
692         info->swapped -= nr_swaps_freed;
693         shmem_recalc_inode(inode);
694         spin_unlock(&info->lock);
695 }
696
697 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
698 {
699         shmem_undo_range(inode, lstart, lend, false);
700         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
701 }
702 EXPORT_SYMBOL_GPL(shmem_truncate_range);
703
704 static int shmem_getattr(struct vfsmount *mnt, struct dentry *dentry,
705                          struct kstat *stat)
706 {
707         struct inode *inode = dentry->d_inode;
708         struct shmem_inode_info *info = SHMEM_I(inode);
709
710         if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
711                 spin_lock(&info->lock);
712                 shmem_recalc_inode(inode);
713                 spin_unlock(&info->lock);
714         }
715         generic_fillattr(inode, stat);
716         return 0;
717 }
718
719 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
720 {
721         struct inode *inode = d_inode(dentry);
722         struct shmem_inode_info *info = SHMEM_I(inode);
723         int error;
724
725         error = inode_change_ok(inode, attr);
726         if (error)
727                 return error;
728
729         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
730                 loff_t oldsize = inode->i_size;
731                 loff_t newsize = attr->ia_size;
732
733                 /* protected by i_mutex */
734                 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
735                     (newsize > oldsize && (info->seals & F_SEAL_GROW)))
736                         return -EPERM;
737
738                 if (newsize != oldsize) {
739                         error = shmem_reacct_size(SHMEM_I(inode)->flags,
740                                         oldsize, newsize);
741                         if (error)
742                                 return error;
743                         i_size_write(inode, newsize);
744                         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
745                 }
746                 if (newsize <= oldsize) {
747                         loff_t holebegin = round_up(newsize, PAGE_SIZE);
748                         if (oldsize > holebegin)
749                                 unmap_mapping_range(inode->i_mapping,
750                                                         holebegin, 0, 1);
751                         if (info->alloced)
752                                 shmem_truncate_range(inode,
753                                                         newsize, (loff_t)-1);
754                         /* unmap again to remove racily COWed private pages */
755                         if (oldsize > holebegin)
756                                 unmap_mapping_range(inode->i_mapping,
757                                                         holebegin, 0, 1);
758                 }
759         }
760
761         setattr_copy(inode, attr);
762         if (attr->ia_valid & ATTR_MODE)
763                 error = posix_acl_chmod(inode, inode->i_mode);
764         return error;
765 }
766
767 static void shmem_evict_inode(struct inode *inode)
768 {
769         struct shmem_inode_info *info = SHMEM_I(inode);
770
771         if (inode->i_mapping->a_ops == &shmem_aops) {
772                 shmem_unacct_size(info->flags, inode->i_size);
773                 inode->i_size = 0;
774                 shmem_truncate_range(inode, 0, (loff_t)-1);
775                 if (!list_empty(&info->swaplist)) {
776                         mutex_lock(&shmem_swaplist_mutex);
777                         list_del_init(&info->swaplist);
778                         mutex_unlock(&shmem_swaplist_mutex);
779                 }
780         }
781
782         simple_xattrs_free(&info->xattrs);
783         WARN_ON(inode->i_blocks);
784         shmem_free_inode(inode->i_sb);
785         clear_inode(inode);
786 }
787
788 /*
789  * If swap found in inode, free it and move page from swapcache to filecache.
790  */
791 static int shmem_unuse_inode(struct shmem_inode_info *info,
792                              swp_entry_t swap, struct page **pagep)
793 {
794         struct address_space *mapping = info->vfs_inode.i_mapping;
795         void *radswap;
796         pgoff_t index;
797         gfp_t gfp;
798         int error = 0;
799
800         radswap = swp_to_radix_entry(swap);
801         index = radix_tree_locate_item(&mapping->page_tree, radswap);
802         if (index == -1)
803                 return -EAGAIN; /* tell shmem_unuse we found nothing */
804
805         /*
806          * Move _head_ to start search for next from here.
807          * But be careful: shmem_evict_inode checks list_empty without taking
808          * mutex, and there's an instant in list_move_tail when info->swaplist
809          * would appear empty, if it were the only one on shmem_swaplist.
810          */
811         if (shmem_swaplist.next != &info->swaplist)
812                 list_move_tail(&shmem_swaplist, &info->swaplist);
813
814         gfp = mapping_gfp_mask(mapping);
815         if (shmem_should_replace_page(*pagep, gfp)) {
816                 mutex_unlock(&shmem_swaplist_mutex);
817                 error = shmem_replace_page(pagep, gfp, info, index);
818                 mutex_lock(&shmem_swaplist_mutex);
819                 /*
820                  * We needed to drop mutex to make that restrictive page
821                  * allocation, but the inode might have been freed while we
822                  * dropped it: although a racing shmem_evict_inode() cannot
823                  * complete without emptying the radix_tree, our page lock
824                  * on this swapcache page is not enough to prevent that -
825                  * free_swap_and_cache() of our swap entry will only
826                  * trylock_page(), removing swap from radix_tree whatever.
827                  *
828                  * We must not proceed to shmem_add_to_page_cache() if the
829                  * inode has been freed, but of course we cannot rely on
830                  * inode or mapping or info to check that.  However, we can
831                  * safely check if our swap entry is still in use (and here
832                  * it can't have got reused for another page): if it's still
833                  * in use, then the inode cannot have been freed yet, and we
834                  * can safely proceed (if it's no longer in use, that tells
835                  * nothing about the inode, but we don't need to unuse swap).
836                  */
837                 if (!page_swapcount(*pagep))
838                         error = -ENOENT;
839         }
840
841         /*
842          * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
843          * but also to hold up shmem_evict_inode(): so inode cannot be freed
844          * beneath us (pagelock doesn't help until the page is in pagecache).
845          */
846         if (!error)
847                 error = shmem_add_to_page_cache(*pagep, mapping, index,
848                                                 radswap);
849         if (error != -ENOMEM) {
850                 /*
851                  * Truncation and eviction use free_swap_and_cache(), which
852                  * only does trylock page: if we raced, best clean up here.
853                  */
854                 delete_from_swap_cache(*pagep);
855                 set_page_dirty(*pagep);
856                 if (!error) {
857                         spin_lock(&info->lock);
858                         info->swapped--;
859                         spin_unlock(&info->lock);
860                         swap_free(swap);
861                 }
862         }
863         return error;
864 }
865
866 /*
867  * Search through swapped inodes to find and replace swap by page.
868  */
869 int shmem_unuse(swp_entry_t swap, struct page *page)
870 {
871         struct list_head *this, *next;
872         struct shmem_inode_info *info;
873         struct mem_cgroup *memcg;
874         int error = 0;
875
876         /*
877          * There's a faint possibility that swap page was replaced before
878          * caller locked it: caller will come back later with the right page.
879          */
880         if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
881                 goto out;
882
883         /*
884          * Charge page using GFP_KERNEL while we can wait, before taking
885          * the shmem_swaplist_mutex which might hold up shmem_writepage().
886          * Charged back to the user (not to caller) when swap account is used.
887          */
888         error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg,
889                         false);
890         if (error)
891                 goto out;
892         /* No radix_tree_preload: swap entry keeps a place for page in tree */
893         error = -EAGAIN;
894
895         mutex_lock(&shmem_swaplist_mutex);
896         list_for_each_safe(this, next, &shmem_swaplist) {
897                 info = list_entry(this, struct shmem_inode_info, swaplist);
898                 if (info->swapped)
899                         error = shmem_unuse_inode(info, swap, &page);
900                 else
901                         list_del_init(&info->swaplist);
902                 cond_resched();
903                 if (error != -EAGAIN)
904                         break;
905                 /* found nothing in this: move on to search the next */
906         }
907         mutex_unlock(&shmem_swaplist_mutex);
908
909         if (error) {
910                 if (error != -ENOMEM)
911                         error = 0;
912                 mem_cgroup_cancel_charge(page, memcg, false);
913         } else
914                 mem_cgroup_commit_charge(page, memcg, true, false);
915 out:
916         unlock_page(page);
917         put_page(page);
918         return error;
919 }
920
921 /*
922  * Move the page from the page cache to the swap cache.
923  */
924 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
925 {
926         struct shmem_inode_info *info;
927         struct address_space *mapping;
928         struct inode *inode;
929         swp_entry_t swap;
930         pgoff_t index;
931
932         BUG_ON(!PageLocked(page));
933         mapping = page->mapping;
934         index = page->index;
935         inode = mapping->host;
936         info = SHMEM_I(inode);
937         if (info->flags & VM_LOCKED)
938                 goto redirty;
939         if (!total_swap_pages)
940                 goto redirty;
941
942         /*
943          * Our capabilities prevent regular writeback or sync from ever calling
944          * shmem_writepage; but a stacking filesystem might use ->writepage of
945          * its underlying filesystem, in which case tmpfs should write out to
946          * swap only in response to memory pressure, and not for the writeback
947          * threads or sync.
948          */
949         if (!wbc->for_reclaim) {
950                 WARN_ON_ONCE(1);        /* Still happens? Tell us about it! */
951                 goto redirty;
952         }
953
954         /*
955          * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
956          * value into swapfile.c, the only way we can correctly account for a
957          * fallocated page arriving here is now to initialize it and write it.
958          *
959          * That's okay for a page already fallocated earlier, but if we have
960          * not yet completed the fallocation, then (a) we want to keep track
961          * of this page in case we have to undo it, and (b) it may not be a
962          * good idea to continue anyway, once we're pushing into swap.  So
963          * reactivate the page, and let shmem_fallocate() quit when too many.
964          */
965         if (!PageUptodate(page)) {
966                 if (inode->i_private) {
967                         struct shmem_falloc *shmem_falloc;
968                         spin_lock(&inode->i_lock);
969                         shmem_falloc = inode->i_private;
970                         if (shmem_falloc &&
971                             !shmem_falloc->waitq &&
972                             index >= shmem_falloc->start &&
973                             index < shmem_falloc->next)
974                                 shmem_falloc->nr_unswapped++;
975                         else
976                                 shmem_falloc = NULL;
977                         spin_unlock(&inode->i_lock);
978                         if (shmem_falloc)
979                                 goto redirty;
980                 }
981                 clear_highpage(page);
982                 flush_dcache_page(page);
983                 SetPageUptodate(page);
984         }
985
986         swap = get_swap_page();
987         if (!swap.val)
988                 goto redirty;
989
990         if (mem_cgroup_try_charge_swap(page, swap))
991                 goto free_swap;
992
993         /*
994          * Add inode to shmem_unuse()'s list of swapped-out inodes,
995          * if it's not already there.  Do it now before the page is
996          * moved to swap cache, when its pagelock no longer protects
997          * the inode from eviction.  But don't unlock the mutex until
998          * we've incremented swapped, because shmem_unuse_inode() will
999          * prune a !swapped inode from the swaplist under this mutex.
1000          */
1001         mutex_lock(&shmem_swaplist_mutex);
1002         if (list_empty(&info->swaplist))
1003                 list_add_tail(&info->swaplist, &shmem_swaplist);
1004
1005         if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1006                 spin_lock(&info->lock);
1007                 shmem_recalc_inode(inode);
1008                 info->swapped++;
1009                 spin_unlock(&info->lock);
1010
1011                 swap_shmem_alloc(swap);
1012                 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1013
1014                 mutex_unlock(&shmem_swaplist_mutex);
1015                 BUG_ON(page_mapped(page));
1016                 swap_writepage(page, wbc);
1017                 return 0;
1018         }
1019
1020         mutex_unlock(&shmem_swaplist_mutex);
1021 free_swap:
1022         swapcache_free(swap);
1023 redirty:
1024         set_page_dirty(page);
1025         if (wbc->for_reclaim)
1026                 return AOP_WRITEPAGE_ACTIVATE;  /* Return with page locked */
1027         unlock_page(page);
1028         return 0;
1029 }
1030
1031 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1032 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1033 {
1034         char buffer[64];
1035
1036         if (!mpol || mpol->mode == MPOL_DEFAULT)
1037                 return;         /* show nothing */
1038
1039         mpol_to_str(buffer, sizeof(buffer), mpol);
1040
1041         seq_printf(seq, ",mpol=%s", buffer);
1042 }
1043
1044 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1045 {
1046         struct mempolicy *mpol = NULL;
1047         if (sbinfo->mpol) {
1048                 spin_lock(&sbinfo->stat_lock);  /* prevent replace/use races */
1049                 mpol = sbinfo->mpol;
1050                 mpol_get(mpol);
1051                 spin_unlock(&sbinfo->stat_lock);
1052         }
1053         return mpol;
1054 }
1055 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1056 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1057 {
1058 }
1059 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1060 {
1061         return NULL;
1062 }
1063 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1064 #ifndef CONFIG_NUMA
1065 #define vm_policy vm_private_data
1066 #endif
1067
1068 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1069                         struct shmem_inode_info *info, pgoff_t index)
1070 {
1071         struct vm_area_struct pvma;
1072         struct page *page;
1073
1074         /* Create a pseudo vma that just contains the policy */
1075         pvma.vm_start = 0;
1076         /* Bias interleave by inode number to distribute better across nodes */
1077         pvma.vm_pgoff = index + info->vfs_inode.i_ino;
1078         pvma.vm_ops = NULL;
1079         pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1080
1081         page = swapin_readahead(swap, gfp, &pvma, 0);
1082
1083         /* Drop reference taken by mpol_shared_policy_lookup() */
1084         mpol_cond_put(pvma.vm_policy);
1085
1086         return page;
1087 }
1088
1089 static struct page *shmem_alloc_page(gfp_t gfp,
1090                         struct shmem_inode_info *info, pgoff_t index)
1091 {
1092         struct vm_area_struct pvma;
1093         struct page *page;
1094
1095         /* Create a pseudo vma that just contains the policy */
1096         pvma.vm_start = 0;
1097         /* Bias interleave by inode number to distribute better across nodes */
1098         pvma.vm_pgoff = index + info->vfs_inode.i_ino;
1099         pvma.vm_ops = NULL;
1100         pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1101
1102         page = alloc_pages_vma(gfp, 0, &pvma, 0, numa_node_id(), false);
1103         if (page) {
1104                 __SetPageLocked(page);
1105                 __SetPageSwapBacked(page);
1106         }
1107
1108         /* Drop reference taken by mpol_shared_policy_lookup() */
1109         mpol_cond_put(pvma.vm_policy);
1110
1111         return page;
1112 }
1113
1114 /*
1115  * When a page is moved from swapcache to shmem filecache (either by the
1116  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1117  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1118  * ignorance of the mapping it belongs to.  If that mapping has special
1119  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1120  * we may need to copy to a suitable page before moving to filecache.
1121  *
1122  * In a future release, this may well be extended to respect cpuset and
1123  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1124  * but for now it is a simple matter of zone.
1125  */
1126 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1127 {
1128         return page_zonenum(page) > gfp_zone(gfp);
1129 }
1130
1131 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1132                                 struct shmem_inode_info *info, pgoff_t index)
1133 {
1134         struct page *oldpage, *newpage;
1135         struct address_space *swap_mapping;
1136         pgoff_t swap_index;
1137         int error;
1138
1139         oldpage = *pagep;
1140         swap_index = page_private(oldpage);
1141         swap_mapping = page_mapping(oldpage);
1142
1143         /*
1144          * We have arrived here because our zones are constrained, so don't
1145          * limit chance of success by further cpuset and node constraints.
1146          */
1147         gfp &= ~GFP_CONSTRAINT_MASK;
1148         newpage = shmem_alloc_page(gfp, info, index);
1149         if (!newpage)
1150                 return -ENOMEM;
1151
1152         get_page(newpage);
1153         copy_highpage(newpage, oldpage);
1154         flush_dcache_page(newpage);
1155
1156         SetPageUptodate(newpage);
1157         set_page_private(newpage, swap_index);
1158         SetPageSwapCache(newpage);
1159
1160         /*
1161          * Our caller will very soon move newpage out of swapcache, but it's
1162          * a nice clean interface for us to replace oldpage by newpage there.
1163          */
1164         spin_lock_irq(&swap_mapping->tree_lock);
1165         error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1166                                                                    newpage);
1167         if (!error) {
1168                 __inc_zone_page_state(newpage, NR_FILE_PAGES);
1169                 __dec_zone_page_state(oldpage, NR_FILE_PAGES);
1170         }
1171         spin_unlock_irq(&swap_mapping->tree_lock);
1172
1173         if (unlikely(error)) {
1174                 /*
1175                  * Is this possible?  I think not, now that our callers check
1176                  * both PageSwapCache and page_private after getting page lock;
1177                  * but be defensive.  Reverse old to newpage for clear and free.
1178                  */
1179                 oldpage = newpage;
1180         } else {
1181                 mem_cgroup_migrate(oldpage, newpage);
1182                 lru_cache_add_anon(newpage);
1183                 *pagep = newpage;
1184         }
1185
1186         ClearPageSwapCache(oldpage);
1187         set_page_private(oldpage, 0);
1188
1189         unlock_page(oldpage);
1190         put_page(oldpage);
1191         put_page(oldpage);
1192         return error;
1193 }
1194
1195 /*
1196  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1197  *
1198  * If we allocate a new one we do not mark it dirty. That's up to the
1199  * vm. If we swap it in we mark it dirty since we also free the swap
1200  * entry since a page cannot live in both the swap and page cache.
1201  *
1202  * fault_mm and fault_type are only supplied by shmem_fault:
1203  * otherwise they are NULL.
1204  */
1205 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1206         struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1207         struct mm_struct *fault_mm, int *fault_type)
1208 {
1209         struct address_space *mapping = inode->i_mapping;
1210         struct shmem_inode_info *info;
1211         struct shmem_sb_info *sbinfo;
1212         struct mm_struct *charge_mm;
1213         struct mem_cgroup *memcg;
1214         struct page *page;
1215         swp_entry_t swap;
1216         int error;
1217         int once = 0;
1218         int alloced = 0;
1219
1220         if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1221                 return -EFBIG;
1222 repeat:
1223         swap.val = 0;
1224         page = find_lock_entry(mapping, index);
1225         if (radix_tree_exceptional_entry(page)) {
1226                 swap = radix_to_swp_entry(page);
1227                 page = NULL;
1228         }
1229
1230         if (sgp <= SGP_CACHE &&
1231             ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1232                 error = -EINVAL;
1233                 goto unlock;
1234         }
1235
1236         if (page && sgp == SGP_WRITE)
1237                 mark_page_accessed(page);
1238
1239         /* fallocated page? */
1240         if (page && !PageUptodate(page)) {
1241                 if (sgp != SGP_READ)
1242                         goto clear;
1243                 unlock_page(page);
1244                 put_page(page);
1245                 page = NULL;
1246         }
1247         if (page || (sgp == SGP_READ && !swap.val)) {
1248                 *pagep = page;
1249                 return 0;
1250         }
1251
1252         /*
1253          * Fast cache lookup did not find it:
1254          * bring it back from swap or allocate.
1255          */
1256         info = SHMEM_I(inode);
1257         sbinfo = SHMEM_SB(inode->i_sb);
1258         charge_mm = fault_mm ? : current->mm;
1259
1260         if (swap.val) {
1261                 /* Look it up and read it in.. */
1262                 page = lookup_swap_cache(swap);
1263                 if (!page) {
1264                         /* Or update major stats only when swapin succeeds?? */
1265                         if (fault_type) {
1266                                 *fault_type |= VM_FAULT_MAJOR;
1267                                 count_vm_event(PGMAJFAULT);
1268                                 mem_cgroup_count_vm_event(fault_mm, PGMAJFAULT);
1269                         }
1270                         /* Here we actually start the io */
1271                         page = shmem_swapin(swap, gfp, info, index);
1272                         if (!page) {
1273                                 error = -ENOMEM;
1274                                 goto failed;
1275                         }
1276                 }
1277
1278                 /* We have to do this with page locked to prevent races */
1279                 lock_page(page);
1280                 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1281                     !shmem_confirm_swap(mapping, index, swap)) {
1282                         error = -EEXIST;        /* try again */
1283                         goto unlock;
1284                 }
1285                 if (!PageUptodate(page)) {
1286                         error = -EIO;
1287                         goto failed;
1288                 }
1289                 wait_on_page_writeback(page);
1290
1291                 if (shmem_should_replace_page(page, gfp)) {
1292                         error = shmem_replace_page(&page, gfp, info, index);
1293                         if (error)
1294                                 goto failed;
1295                 }
1296
1297                 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1298                                 false);
1299                 if (!error) {
1300                         error = shmem_add_to_page_cache(page, mapping, index,
1301                                                 swp_to_radix_entry(swap));
1302                         /*
1303                          * We already confirmed swap under page lock, and make
1304                          * no memory allocation here, so usually no possibility
1305                          * of error; but free_swap_and_cache() only trylocks a
1306                          * page, so it is just possible that the entry has been
1307                          * truncated or holepunched since swap was confirmed.
1308                          * shmem_undo_range() will have done some of the
1309                          * unaccounting, now delete_from_swap_cache() will do
1310                          * the rest.
1311                          * Reset swap.val? No, leave it so "failed" goes back to
1312                          * "repeat": reading a hole and writing should succeed.
1313                          */
1314                         if (error) {
1315                                 mem_cgroup_cancel_charge(page, memcg, false);
1316                                 delete_from_swap_cache(page);
1317                         }
1318                 }
1319                 if (error)
1320                         goto failed;
1321
1322                 mem_cgroup_commit_charge(page, memcg, true, false);
1323
1324                 spin_lock(&info->lock);
1325                 info->swapped--;
1326                 shmem_recalc_inode(inode);
1327                 spin_unlock(&info->lock);
1328
1329                 if (sgp == SGP_WRITE)
1330                         mark_page_accessed(page);
1331
1332                 delete_from_swap_cache(page);
1333                 set_page_dirty(page);
1334                 swap_free(swap);
1335
1336         } else {
1337                 if (shmem_acct_block(info->flags)) {
1338                         error = -ENOSPC;
1339                         goto failed;
1340                 }
1341                 if (sbinfo->max_blocks) {
1342                         if (percpu_counter_compare(&sbinfo->used_blocks,
1343                                                 sbinfo->max_blocks) >= 0) {
1344                                 error = -ENOSPC;
1345                                 goto unacct;
1346                         }
1347                         percpu_counter_inc(&sbinfo->used_blocks);
1348                 }
1349
1350                 page = shmem_alloc_page(gfp, info, index);
1351                 if (!page) {
1352                         error = -ENOMEM;
1353                         goto decused;
1354                 }
1355                 if (sgp == SGP_WRITE)
1356                         __SetPageReferenced(page);
1357
1358                 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1359                                 false);
1360                 if (error)
1361                         goto decused;
1362                 error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
1363                 if (!error) {
1364                         error = shmem_add_to_page_cache(page, mapping, index,
1365                                                         NULL);
1366                         radix_tree_preload_end();
1367                 }
1368                 if (error) {
1369                         mem_cgroup_cancel_charge(page, memcg, false);
1370                         goto decused;
1371                 }
1372                 mem_cgroup_commit_charge(page, memcg, false, false);
1373                 lru_cache_add_anon(page);
1374
1375                 spin_lock(&info->lock);
1376                 info->alloced++;
1377                 inode->i_blocks += BLOCKS_PER_PAGE;
1378                 shmem_recalc_inode(inode);
1379                 spin_unlock(&info->lock);
1380                 alloced = true;
1381
1382                 /*
1383                  * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1384                  */
1385                 if (sgp == SGP_FALLOC)
1386                         sgp = SGP_WRITE;
1387 clear:
1388                 /*
1389                  * Let SGP_WRITE caller clear ends if write does not fill page;
1390                  * but SGP_FALLOC on a page fallocated earlier must initialize
1391                  * it now, lest undo on failure cancel our earlier guarantee.
1392                  */
1393                 if (sgp != SGP_WRITE) {
1394                         clear_highpage(page);
1395                         flush_dcache_page(page);
1396                         SetPageUptodate(page);
1397                 }
1398         }
1399
1400         /* Perhaps the file has been truncated since we checked */
1401         if (sgp <= SGP_CACHE &&
1402             ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1403                 if (alloced) {
1404                         ClearPageDirty(page);
1405                         delete_from_page_cache(page);
1406                         spin_lock(&info->lock);
1407                         shmem_recalc_inode(inode);
1408                         spin_unlock(&info->lock);
1409                 }
1410                 error = -EINVAL;
1411                 goto unlock;
1412         }
1413         *pagep = page;
1414         return 0;
1415
1416         /*
1417          * Error recovery.
1418          */
1419 decused:
1420         if (sbinfo->max_blocks)
1421                 percpu_counter_add(&sbinfo->used_blocks, -1);
1422 unacct:
1423         shmem_unacct_blocks(info->flags, 1);
1424 failed:
1425         if (swap.val && !shmem_confirm_swap(mapping, index, swap))
1426                 error = -EEXIST;
1427 unlock:
1428         if (page) {
1429                 unlock_page(page);
1430                 put_page(page);
1431         }
1432         if (error == -ENOSPC && !once++) {
1433                 info = SHMEM_I(inode);
1434                 spin_lock(&info->lock);
1435                 shmem_recalc_inode(inode);
1436                 spin_unlock(&info->lock);
1437                 goto repeat;
1438         }
1439         if (error == -EEXIST)   /* from above or from radix_tree_insert */
1440                 goto repeat;
1441         return error;
1442 }
1443
1444 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1445 {
1446         struct inode *inode = file_inode(vma->vm_file);
1447         gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1448         int error;
1449         int ret = VM_FAULT_LOCKED;
1450
1451         /*
1452          * Trinity finds that probing a hole which tmpfs is punching can
1453          * prevent the hole-punch from ever completing: which in turn
1454          * locks writers out with its hold on i_mutex.  So refrain from
1455          * faulting pages into the hole while it's being punched.  Although
1456          * shmem_undo_range() does remove the additions, it may be unable to
1457          * keep up, as each new page needs its own unmap_mapping_range() call,
1458          * and the i_mmap tree grows ever slower to scan if new vmas are added.
1459          *
1460          * It does not matter if we sometimes reach this check just before the
1461          * hole-punch begins, so that one fault then races with the punch:
1462          * we just need to make racing faults a rare case.
1463          *
1464          * The implementation below would be much simpler if we just used a
1465          * standard mutex or completion: but we cannot take i_mutex in fault,
1466          * and bloating every shmem inode for this unlikely case would be sad.
1467          */
1468         if (unlikely(inode->i_private)) {
1469                 struct shmem_falloc *shmem_falloc;
1470
1471                 spin_lock(&inode->i_lock);
1472                 shmem_falloc = inode->i_private;
1473                 if (shmem_falloc &&
1474                     shmem_falloc->waitq &&
1475                     vmf->pgoff >= shmem_falloc->start &&
1476                     vmf->pgoff < shmem_falloc->next) {
1477                         wait_queue_head_t *shmem_falloc_waitq;
1478                         DEFINE_WAIT(shmem_fault_wait);
1479
1480                         ret = VM_FAULT_NOPAGE;
1481                         if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1482                            !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1483                                 /* It's polite to up mmap_sem if we can */
1484                                 up_read(&vma->vm_mm->mmap_sem);
1485                                 ret = VM_FAULT_RETRY;
1486                         }
1487
1488                         shmem_falloc_waitq = shmem_falloc->waitq;
1489                         prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1490                                         TASK_UNINTERRUPTIBLE);
1491                         spin_unlock(&inode->i_lock);
1492                         schedule();
1493
1494                         /*
1495                          * shmem_falloc_waitq points into the shmem_fallocate()
1496                          * stack of the hole-punching task: shmem_falloc_waitq
1497                          * is usually invalid by the time we reach here, but
1498                          * finish_wait() does not dereference it in that case;
1499                          * though i_lock needed lest racing with wake_up_all().
1500                          */
1501                         spin_lock(&inode->i_lock);
1502                         finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1503                         spin_unlock(&inode->i_lock);
1504                         return ret;
1505                 }
1506                 spin_unlock(&inode->i_lock);
1507         }
1508
1509         error = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, SGP_CACHE,
1510                                   gfp, vma->vm_mm, &ret);
1511         if (error)
1512                 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1513         return ret;
1514 }
1515
1516 unsigned long shmem_get_unmapped_area(struct file *file,
1517                                       unsigned long uaddr, unsigned long len,
1518                                       unsigned long pgoff, unsigned long flags)
1519 {
1520         unsigned long (*get_area)(struct file *,
1521                 unsigned long, unsigned long, unsigned long, unsigned long);
1522         unsigned long addr;
1523         unsigned long offset;
1524         unsigned long inflated_len;
1525         unsigned long inflated_addr;
1526         unsigned long inflated_offset;
1527
1528         if (len > TASK_SIZE)
1529                 return -ENOMEM;
1530
1531         get_area = current->mm->get_unmapped_area;
1532         addr = get_area(file, uaddr, len, pgoff, flags);
1533
1534         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1535                 return addr;
1536         if (IS_ERR_VALUE(addr))
1537                 return addr;
1538         if (addr & ~PAGE_MASK)
1539                 return addr;
1540         if (addr > TASK_SIZE - len)
1541                 return addr;
1542
1543         if (shmem_huge == SHMEM_HUGE_DENY)
1544                 return addr;
1545         if (len < HPAGE_PMD_SIZE)
1546                 return addr;
1547         if (flags & MAP_FIXED)
1548                 return addr;
1549         /*
1550          * Our priority is to support MAP_SHARED mapped hugely;
1551          * and support MAP_PRIVATE mapped hugely too, until it is COWed.
1552          * But if caller specified an address hint, respect that as before.
1553          */
1554         if (uaddr)
1555                 return addr;
1556
1557         if (shmem_huge != SHMEM_HUGE_FORCE) {
1558                 struct super_block *sb;
1559
1560                 if (file) {
1561                         VM_BUG_ON(file->f_op != &shmem_file_operations);
1562                         sb = file_inode(file)->i_sb;
1563                 } else {
1564                         /*
1565                          * Called directly from mm/mmap.c, or drivers/char/mem.c
1566                          * for "/dev/zero", to create a shared anonymous object.
1567                          */
1568                         if (IS_ERR(shm_mnt))
1569                                 return addr;
1570                         sb = shm_mnt->mnt_sb;
1571                 }
1572                 if (SHMEM_SB(sb)->huge != SHMEM_HUGE_NEVER)
1573                         return addr;
1574         }
1575
1576         offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
1577         if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
1578                 return addr;
1579         if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
1580                 return addr;
1581
1582         inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
1583         if (inflated_len > TASK_SIZE)
1584                 return addr;
1585         if (inflated_len < len)
1586                 return addr;
1587
1588         inflated_addr = get_area(NULL, 0, inflated_len, 0, flags);
1589         if (IS_ERR_VALUE(inflated_addr))
1590                 return addr;
1591         if (inflated_addr & ~PAGE_MASK)
1592                 return addr;
1593
1594         inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
1595         inflated_addr += offset - inflated_offset;
1596         if (inflated_offset > offset)
1597                 inflated_addr += HPAGE_PMD_SIZE;
1598
1599         if (inflated_addr > TASK_SIZE - len)
1600                 return addr;
1601         return inflated_addr;
1602 }
1603
1604 #ifdef CONFIG_NUMA
1605 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1606 {
1607         struct inode *inode = file_inode(vma->vm_file);
1608         return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1609 }
1610
1611 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1612                                           unsigned long addr)
1613 {
1614         struct inode *inode = file_inode(vma->vm_file);
1615         pgoff_t index;
1616
1617         index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1618         return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1619 }
1620 #endif
1621
1622 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1623 {
1624         struct inode *inode = file_inode(file);
1625         struct shmem_inode_info *info = SHMEM_I(inode);
1626         int retval = -ENOMEM;
1627
1628         spin_lock(&info->lock);
1629         if (lock && !(info->flags & VM_LOCKED)) {
1630                 if (!user_shm_lock(inode->i_size, user))
1631                         goto out_nomem;
1632                 info->flags |= VM_LOCKED;
1633                 mapping_set_unevictable(file->f_mapping);
1634         }
1635         if (!lock && (info->flags & VM_LOCKED) && user) {
1636                 user_shm_unlock(inode->i_size, user);
1637                 info->flags &= ~VM_LOCKED;
1638                 mapping_clear_unevictable(file->f_mapping);
1639         }
1640         retval = 0;
1641
1642 out_nomem:
1643         spin_unlock(&info->lock);
1644         return retval;
1645 }
1646
1647 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1648 {
1649         file_accessed(file);
1650         vma->vm_ops = &shmem_vm_ops;
1651         return 0;
1652 }
1653
1654 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1655                                      umode_t mode, dev_t dev, unsigned long flags)
1656 {
1657         struct inode *inode;
1658         struct shmem_inode_info *info;
1659         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1660
1661         if (shmem_reserve_inode(sb))
1662                 return NULL;
1663
1664         inode = new_inode(sb);
1665         if (inode) {
1666                 inode->i_ino = get_next_ino();
1667                 inode_init_owner(inode, dir, mode);
1668                 inode->i_blocks = 0;
1669                 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1670                 inode->i_generation = get_seconds();
1671                 info = SHMEM_I(inode);
1672                 memset(info, 0, (char *)inode - (char *)info);
1673                 spin_lock_init(&info->lock);
1674                 info->seals = F_SEAL_SEAL;
1675                 info->flags = flags & VM_NORESERVE;
1676                 INIT_LIST_HEAD(&info->swaplist);
1677                 simple_xattrs_init(&info->xattrs);
1678                 cache_no_acl(inode);
1679
1680                 switch (mode & S_IFMT) {
1681                 default:
1682                         inode->i_op = &shmem_special_inode_operations;
1683                         init_special_inode(inode, mode, dev);
1684                         break;
1685                 case S_IFREG:
1686                         inode->i_mapping->a_ops = &shmem_aops;
1687                         inode->i_op = &shmem_inode_operations;
1688                         inode->i_fop = &shmem_file_operations;
1689                         mpol_shared_policy_init(&info->policy,
1690                                                  shmem_get_sbmpol(sbinfo));
1691                         break;
1692                 case S_IFDIR:
1693                         inc_nlink(inode);
1694                         /* Some things misbehave if size == 0 on a directory */
1695                         inode->i_size = 2 * BOGO_DIRENT_SIZE;
1696                         inode->i_op = &shmem_dir_inode_operations;
1697                         inode->i_fop = &simple_dir_operations;
1698                         break;
1699                 case S_IFLNK:
1700                         /*
1701                          * Must not load anything in the rbtree,
1702                          * mpol_free_shared_policy will not be called.
1703                          */
1704                         mpol_shared_policy_init(&info->policy, NULL);
1705                         break;
1706                 }
1707         } else
1708                 shmem_free_inode(sb);
1709         return inode;
1710 }
1711
1712 bool shmem_mapping(struct address_space *mapping)
1713 {
1714         if (!mapping->host)
1715                 return false;
1716
1717         return mapping->host->i_sb->s_op == &shmem_ops;
1718 }
1719
1720 #ifdef CONFIG_TMPFS
1721 static const struct inode_operations shmem_symlink_inode_operations;
1722 static const struct inode_operations shmem_short_symlink_operations;
1723
1724 #ifdef CONFIG_TMPFS_XATTR
1725 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1726 #else
1727 #define shmem_initxattrs NULL
1728 #endif
1729
1730 static int
1731 shmem_write_begin(struct file *file, struct address_space *mapping,
1732                         loff_t pos, unsigned len, unsigned flags,
1733                         struct page **pagep, void **fsdata)
1734 {
1735         struct inode *inode = mapping->host;
1736         struct shmem_inode_info *info = SHMEM_I(inode);
1737         pgoff_t index = pos >> PAGE_SHIFT;
1738
1739         /* i_mutex is held by caller */
1740         if (unlikely(info->seals)) {
1741                 if (info->seals & F_SEAL_WRITE)
1742                         return -EPERM;
1743                 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
1744                         return -EPERM;
1745         }
1746
1747         return shmem_getpage(inode, index, pagep, SGP_WRITE);
1748 }
1749
1750 static int
1751 shmem_write_end(struct file *file, struct address_space *mapping,
1752                         loff_t pos, unsigned len, unsigned copied,
1753                         struct page *page, void *fsdata)
1754 {
1755         struct inode *inode = mapping->host;
1756
1757         if (pos + copied > inode->i_size)
1758                 i_size_write(inode, pos + copied);
1759
1760         if (!PageUptodate(page)) {
1761                 if (copied < PAGE_SIZE) {
1762                         unsigned from = pos & (PAGE_SIZE - 1);
1763                         zero_user_segments(page, 0, from,
1764                                         from + copied, PAGE_SIZE);
1765                 }
1766                 SetPageUptodate(page);
1767         }
1768         set_page_dirty(page);
1769         unlock_page(page);
1770         put_page(page);
1771
1772         return copied;
1773 }
1774
1775 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1776 {
1777         struct file *file = iocb->ki_filp;
1778         struct inode *inode = file_inode(file);
1779         struct address_space *mapping = inode->i_mapping;
1780         pgoff_t index;
1781         unsigned long offset;
1782         enum sgp_type sgp = SGP_READ;
1783         int error = 0;
1784         ssize_t retval = 0;
1785         loff_t *ppos = &iocb->ki_pos;
1786
1787         /*
1788          * Might this read be for a stacking filesystem?  Then when reading
1789          * holes of a sparse file, we actually need to allocate those pages,
1790          * and even mark them dirty, so it cannot exceed the max_blocks limit.
1791          */
1792         if (!iter_is_iovec(to))
1793                 sgp = SGP_CACHE;
1794
1795         index = *ppos >> PAGE_SHIFT;
1796         offset = *ppos & ~PAGE_MASK;
1797
1798         for (;;) {
1799                 struct page *page = NULL;
1800                 pgoff_t end_index;
1801                 unsigned long nr, ret;
1802                 loff_t i_size = i_size_read(inode);
1803
1804                 end_index = i_size >> PAGE_SHIFT;
1805                 if (index > end_index)
1806                         break;
1807                 if (index == end_index) {
1808                         nr = i_size & ~PAGE_MASK;
1809                         if (nr <= offset)
1810                                 break;
1811                 }
1812
1813                 error = shmem_getpage(inode, index, &page, sgp);
1814                 if (error) {
1815                         if (error == -EINVAL)
1816                                 error = 0;
1817                         break;
1818                 }
1819                 if (page) {
1820                         if (sgp == SGP_CACHE)
1821                                 set_page_dirty(page);
1822                         unlock_page(page);
1823                 }
1824
1825                 /*
1826                  * We must evaluate after, since reads (unlike writes)
1827                  * are called without i_mutex protection against truncate
1828                  */
1829                 nr = PAGE_SIZE;
1830                 i_size = i_size_read(inode);
1831                 end_index = i_size >> PAGE_SHIFT;
1832                 if (index == end_index) {
1833                         nr = i_size & ~PAGE_MASK;
1834                         if (nr <= offset) {
1835                                 if (page)
1836                                         put_page(page);
1837                                 break;
1838                         }
1839                 }
1840                 nr -= offset;
1841
1842                 if (page) {
1843                         /*
1844                          * If users can be writing to this page using arbitrary
1845                          * virtual addresses, take care about potential aliasing
1846                          * before reading the page on the kernel side.
1847                          */
1848                         if (mapping_writably_mapped(mapping))
1849                                 flush_dcache_page(page);
1850                         /*
1851                          * Mark the page accessed if we read the beginning.
1852                          */
1853                         if (!offset)
1854                                 mark_page_accessed(page);
1855                 } else {
1856                         page = ZERO_PAGE(0);
1857                         get_page(page);
1858                 }
1859
1860                 /*
1861                  * Ok, we have the page, and it's up-to-date, so
1862                  * now we can copy it to user space...
1863                  */
1864                 ret = copy_page_to_iter(page, offset, nr, to);
1865                 retval += ret;
1866                 offset += ret;
1867                 index += offset >> PAGE_SHIFT;
1868                 offset &= ~PAGE_MASK;
1869
1870                 put_page(page);
1871                 if (!iov_iter_count(to))
1872                         break;
1873                 if (ret < nr) {
1874                         error = -EFAULT;
1875                         break;
1876                 }
1877                 cond_resched();
1878         }
1879
1880         *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
1881         file_accessed(file);
1882         return retval ? retval : error;
1883 }
1884
1885 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1886                                 struct pipe_inode_info *pipe, size_t len,
1887                                 unsigned int flags)
1888 {
1889         struct address_space *mapping = in->f_mapping;
1890         struct inode *inode = mapping->host;
1891         unsigned int loff, nr_pages, req_pages;
1892         struct page *pages[PIPE_DEF_BUFFERS];
1893         struct partial_page partial[PIPE_DEF_BUFFERS];
1894         struct page *page;
1895         pgoff_t index, end_index;
1896         loff_t isize, left;
1897         int error, page_nr;
1898         struct splice_pipe_desc spd = {
1899                 .pages = pages,
1900                 .partial = partial,
1901                 .nr_pages_max = PIPE_DEF_BUFFERS,
1902                 .flags = flags,
1903                 .ops = &page_cache_pipe_buf_ops,
1904                 .spd_release = spd_release_page,
1905         };
1906
1907         isize = i_size_read(inode);
1908         if (unlikely(*ppos >= isize))
1909                 return 0;
1910
1911         left = isize - *ppos;
1912         if (unlikely(left < len))
1913                 len = left;
1914
1915         if (splice_grow_spd(pipe, &spd))
1916                 return -ENOMEM;
1917
1918         index = *ppos >> PAGE_SHIFT;
1919         loff = *ppos & ~PAGE_MASK;
1920         req_pages = (len + loff + PAGE_SIZE - 1) >> PAGE_SHIFT;
1921         nr_pages = min(req_pages, spd.nr_pages_max);
1922
1923         spd.nr_pages = find_get_pages_contig(mapping, index,
1924                                                 nr_pages, spd.pages);
1925         index += spd.nr_pages;
1926         error = 0;
1927
1928         while (spd.nr_pages < nr_pages) {
1929                 error = shmem_getpage(inode, index, &page, SGP_CACHE);
1930                 if (error)
1931                         break;
1932                 unlock_page(page);
1933                 spd.pages[spd.nr_pages++] = page;
1934                 index++;
1935         }
1936
1937         index = *ppos >> PAGE_SHIFT;
1938         nr_pages = spd.nr_pages;
1939         spd.nr_pages = 0;
1940
1941         for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1942                 unsigned int this_len;
1943
1944                 if (!len)
1945                         break;
1946
1947                 this_len = min_t(unsigned long, len, PAGE_SIZE - loff);
1948                 page = spd.pages[page_nr];
1949
1950                 if (!PageUptodate(page) || page->mapping != mapping) {
1951                         error = shmem_getpage(inode, index, &page, SGP_CACHE);
1952                         if (error)
1953                                 break;
1954                         unlock_page(page);
1955                         put_page(spd.pages[page_nr]);
1956                         spd.pages[page_nr] = page;
1957                 }
1958
1959                 isize = i_size_read(inode);
1960                 end_index = (isize - 1) >> PAGE_SHIFT;
1961                 if (unlikely(!isize || index > end_index))
1962                         break;
1963
1964                 if (end_index == index) {
1965                         unsigned int plen;
1966
1967                         plen = ((isize - 1) & ~PAGE_MASK) + 1;
1968                         if (plen <= loff)
1969                                 break;
1970
1971                         this_len = min(this_len, plen - loff);
1972                         len = this_len;
1973                 }
1974
1975                 spd.partial[page_nr].offset = loff;
1976                 spd.partial[page_nr].len = this_len;
1977                 len -= this_len;
1978                 loff = 0;
1979                 spd.nr_pages++;
1980                 index++;
1981         }
1982
1983         while (page_nr < nr_pages)
1984                 put_page(spd.pages[page_nr++]);
1985
1986         if (spd.nr_pages)
1987                 error = splice_to_pipe(pipe, &spd);
1988
1989         splice_shrink_spd(&spd);
1990
1991         if (error > 0) {
1992                 *ppos += error;
1993                 file_accessed(in);
1994         }
1995         return error;
1996 }
1997
1998 /*
1999  * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
2000  */
2001 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2002                                     pgoff_t index, pgoff_t end, int whence)
2003 {
2004         struct page *page;
2005         struct pagevec pvec;
2006         pgoff_t indices[PAGEVEC_SIZE];
2007         bool done = false;
2008         int i;
2009
2010         pagevec_init(&pvec, 0);
2011         pvec.nr = 1;            /* start small: we may be there already */
2012         while (!done) {
2013                 pvec.nr = find_get_entries(mapping, index,
2014                                         pvec.nr, pvec.pages, indices);
2015                 if (!pvec.nr) {
2016                         if (whence == SEEK_DATA)
2017                                 index = end;
2018                         break;
2019                 }
2020                 for (i = 0; i < pvec.nr; i++, index++) {
2021                         if (index < indices[i]) {
2022                                 if (whence == SEEK_HOLE) {
2023                                         done = true;
2024                                         break;
2025                                 }
2026                                 index = indices[i];
2027                         }
2028                         page = pvec.pages[i];
2029                         if (page && !radix_tree_exceptional_entry(page)) {
2030                                 if (!PageUptodate(page))
2031                                         page = NULL;
2032                         }
2033                         if (index >= end ||
2034                             (page && whence == SEEK_DATA) ||
2035                             (!page && whence == SEEK_HOLE)) {
2036                                 done = true;
2037                                 break;
2038                         }
2039                 }
2040                 pagevec_remove_exceptionals(&pvec);
2041                 pagevec_release(&pvec);
2042                 pvec.nr = PAGEVEC_SIZE;
2043                 cond_resched();
2044         }
2045         return index;
2046 }
2047
2048 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2049 {
2050         struct address_space *mapping = file->f_mapping;
2051         struct inode *inode = mapping->host;
2052         pgoff_t start, end;
2053         loff_t new_offset;
2054
2055         if (whence != SEEK_DATA && whence != SEEK_HOLE)
2056                 return generic_file_llseek_size(file, offset, whence,
2057                                         MAX_LFS_FILESIZE, i_size_read(inode));
2058         inode_lock(inode);
2059         /* We're holding i_mutex so we can access i_size directly */
2060
2061         if (offset < 0)
2062                 offset = -EINVAL;
2063         else if (offset >= inode->i_size)
2064                 offset = -ENXIO;
2065         else {
2066                 start = offset >> PAGE_SHIFT;
2067                 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2068                 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2069                 new_offset <<= PAGE_SHIFT;
2070                 if (new_offset > offset) {
2071                         if (new_offset < inode->i_size)
2072                                 offset = new_offset;
2073                         else if (whence == SEEK_DATA)
2074                                 offset = -ENXIO;
2075                         else
2076                                 offset = inode->i_size;
2077                 }
2078         }
2079
2080         if (offset >= 0)
2081                 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2082         inode_unlock(inode);
2083         return offset;
2084 }
2085
2086 /*
2087  * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
2088  * so reuse a tag which we firmly believe is never set or cleared on shmem.
2089  */
2090 #define SHMEM_TAG_PINNED        PAGECACHE_TAG_TOWRITE
2091 #define LAST_SCAN               4       /* about 150ms max */
2092
2093 static void shmem_tag_pins(struct address_space *mapping)
2094 {
2095         struct radix_tree_iter iter;
2096         void **slot;
2097         pgoff_t start;
2098         struct page *page;
2099
2100         lru_add_drain();
2101         start = 0;
2102         rcu_read_lock();
2103
2104         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
2105                 page = radix_tree_deref_slot(slot);
2106                 if (!page || radix_tree_exception(page)) {
2107                         if (radix_tree_deref_retry(page)) {
2108                                 slot = radix_tree_iter_retry(&iter);
2109                                 continue;
2110                         }
2111                 } else if (page_count(page) - page_mapcount(page) > 1) {
2112                         spin_lock_irq(&mapping->tree_lock);
2113                         radix_tree_tag_set(&mapping->page_tree, iter.index,
2114                                            SHMEM_TAG_PINNED);
2115                         spin_unlock_irq(&mapping->tree_lock);
2116                 }
2117
2118                 if (need_resched()) {
2119                         cond_resched_rcu();
2120                         slot = radix_tree_iter_next(&iter);
2121                 }
2122         }
2123         rcu_read_unlock();
2124 }
2125
2126 /*
2127  * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
2128  * via get_user_pages(), drivers might have some pending I/O without any active
2129  * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
2130  * and see whether it has an elevated ref-count. If so, we tag them and wait for
2131  * them to be dropped.
2132  * The caller must guarantee that no new user will acquire writable references
2133  * to those pages to avoid races.
2134  */
2135 static int shmem_wait_for_pins(struct address_space *mapping)
2136 {
2137         struct radix_tree_iter iter;
2138         void **slot;
2139         pgoff_t start;
2140         struct page *page;
2141         int error, scan;
2142
2143         shmem_tag_pins(mapping);
2144
2145         error = 0;
2146         for (scan = 0; scan <= LAST_SCAN; scan++) {
2147                 if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
2148                         break;
2149
2150                 if (!scan)
2151                         lru_add_drain_all();
2152                 else if (schedule_timeout_killable((HZ << scan) / 200))
2153                         scan = LAST_SCAN;
2154
2155                 start = 0;
2156                 rcu_read_lock();
2157                 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
2158                                            start, SHMEM_TAG_PINNED) {
2159
2160                         page = radix_tree_deref_slot(slot);
2161                         if (radix_tree_exception(page)) {
2162                                 if (radix_tree_deref_retry(page)) {
2163                                         slot = radix_tree_iter_retry(&iter);
2164                                         continue;
2165                                 }
2166
2167                                 page = NULL;
2168                         }
2169
2170                         if (page &&
2171                             page_count(page) - page_mapcount(page) != 1) {
2172                                 if (scan < LAST_SCAN)
2173                                         goto continue_resched;
2174
2175                                 /*
2176                                  * On the last scan, we clean up all those tags
2177                                  * we inserted; but make a note that we still
2178                                  * found pages pinned.
2179                                  */
2180                                 error = -EBUSY;
2181                         }
2182
2183                         spin_lock_irq(&mapping->tree_lock);
2184                         radix_tree_tag_clear(&mapping->page_tree,
2185                                              iter.index, SHMEM_TAG_PINNED);
2186                         spin_unlock_irq(&mapping->tree_lock);
2187 continue_resched:
2188                         if (need_resched()) {
2189                                 cond_resched_rcu();
2190                                 slot = radix_tree_iter_next(&iter);
2191                         }
2192                 }
2193                 rcu_read_unlock();
2194         }
2195
2196         return error;
2197 }
2198
2199 #define F_ALL_SEALS (F_SEAL_SEAL | \
2200                      F_SEAL_SHRINK | \
2201                      F_SEAL_GROW | \
2202                      F_SEAL_WRITE)
2203
2204 int shmem_add_seals(struct file *file, unsigned int seals)
2205 {
2206         struct inode *inode = file_inode(file);
2207         struct shmem_inode_info *info = SHMEM_I(inode);
2208         int error;
2209
2210         /*
2211          * SEALING
2212          * Sealing allows multiple parties to share a shmem-file but restrict
2213          * access to a specific subset of file operations. Seals can only be
2214          * added, but never removed. This way, mutually untrusted parties can
2215          * share common memory regions with a well-defined policy. A malicious
2216          * peer can thus never perform unwanted operations on a shared object.
2217          *
2218          * Seals are only supported on special shmem-files and always affect
2219          * the whole underlying inode. Once a seal is set, it may prevent some
2220          * kinds of access to the file. Currently, the following seals are
2221          * defined:
2222          *   SEAL_SEAL: Prevent further seals from being set on this file
2223          *   SEAL_SHRINK: Prevent the file from shrinking
2224          *   SEAL_GROW: Prevent the file from growing
2225          *   SEAL_WRITE: Prevent write access to the file
2226          *
2227          * As we don't require any trust relationship between two parties, we
2228          * must prevent seals from being removed. Therefore, sealing a file
2229          * only adds a given set of seals to the file, it never touches
2230          * existing seals. Furthermore, the "setting seals"-operation can be
2231          * sealed itself, which basically prevents any further seal from being
2232          * added.
2233          *
2234          * Semantics of sealing are only defined on volatile files. Only
2235          * anonymous shmem files support sealing. More importantly, seals are
2236          * never written to disk. Therefore, there's no plan to support it on
2237          * other file types.
2238          */
2239
2240         if (file->f_op != &shmem_file_operations)
2241                 return -EINVAL;
2242         if (!(file->f_mode & FMODE_WRITE))
2243                 return -EPERM;
2244         if (seals & ~(unsigned int)F_ALL_SEALS)
2245                 return -EINVAL;
2246
2247         inode_lock(inode);
2248
2249         if (info->seals & F_SEAL_SEAL) {
2250                 error = -EPERM;
2251                 goto unlock;
2252         }
2253
2254         if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2255                 error = mapping_deny_writable(file->f_mapping);
2256                 if (error)
2257                         goto unlock;
2258
2259                 error = shmem_wait_for_pins(file->f_mapping);
2260                 if (error) {
2261                         mapping_allow_writable(file->f_mapping);
2262                         goto unlock;
2263                 }
2264         }
2265
2266         info->seals |= seals;
2267         error = 0;
2268
2269 unlock:
2270         inode_unlock(inode);
2271         return error;
2272 }
2273 EXPORT_SYMBOL_GPL(shmem_add_seals);
2274
2275 int shmem_get_seals(struct file *file)
2276 {
2277         if (file->f_op != &shmem_file_operations)
2278                 return -EINVAL;
2279
2280         return SHMEM_I(file_inode(file))->seals;
2281 }
2282 EXPORT_SYMBOL_GPL(shmem_get_seals);
2283
2284 long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2285 {
2286         long error;
2287
2288         switch (cmd) {
2289         case F_ADD_SEALS:
2290                 /* disallow upper 32bit */
2291                 if (arg > UINT_MAX)
2292                         return -EINVAL;
2293
2294                 error = shmem_add_seals(file, arg);
2295                 break;
2296         case F_GET_SEALS:
2297                 error = shmem_get_seals(file);
2298                 break;
2299         default:
2300                 error = -EINVAL;
2301                 break;
2302         }
2303
2304         return error;
2305 }
2306
2307 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2308                                                          loff_t len)
2309 {
2310         struct inode *inode = file_inode(file);
2311         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2312         struct shmem_inode_info *info = SHMEM_I(inode);
2313         struct shmem_falloc shmem_falloc;
2314         pgoff_t start, index, end;
2315         int error;
2316
2317         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2318                 return -EOPNOTSUPP;
2319
2320         inode_lock(inode);
2321
2322         if (mode & FALLOC_FL_PUNCH_HOLE) {
2323                 struct address_space *mapping = file->f_mapping;
2324                 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2325                 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2326                 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2327
2328                 /* protected by i_mutex */
2329                 if (info->seals & F_SEAL_WRITE) {
2330                         error = -EPERM;
2331                         goto out;
2332                 }
2333
2334                 shmem_falloc.waitq = &shmem_falloc_waitq;
2335                 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2336                 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2337                 spin_lock(&inode->i_lock);
2338                 inode->i_private = &shmem_falloc;
2339                 spin_unlock(&inode->i_lock);
2340
2341                 if ((u64)unmap_end > (u64)unmap_start)
2342                         unmap_mapping_range(mapping, unmap_start,
2343                                             1 + unmap_end - unmap_start, 0);
2344                 shmem_truncate_range(inode, offset, offset + len - 1);
2345                 /* No need to unmap again: hole-punching leaves COWed pages */
2346
2347                 spin_lock(&inode->i_lock);
2348                 inode->i_private = NULL;
2349                 wake_up_all(&shmem_falloc_waitq);
2350                 spin_unlock(&inode->i_lock);
2351                 error = 0;
2352                 goto out;
2353         }
2354
2355         /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2356         error = inode_newsize_ok(inode, offset + len);
2357         if (error)
2358                 goto out;
2359
2360         if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2361                 error = -EPERM;
2362                 goto out;
2363         }
2364
2365         start = offset >> PAGE_SHIFT;
2366         end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2367         /* Try to avoid a swapstorm if len is impossible to satisfy */
2368         if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2369                 error = -ENOSPC;
2370                 goto out;
2371         }
2372
2373         shmem_falloc.waitq = NULL;
2374         shmem_falloc.start = start;
2375         shmem_falloc.next  = start;
2376         shmem_falloc.nr_falloced = 0;
2377         shmem_falloc.nr_unswapped = 0;
2378         spin_lock(&inode->i_lock);
2379         inode->i_private = &shmem_falloc;
2380         spin_unlock(&inode->i_lock);
2381
2382         for (index = start; index < end; index++) {
2383                 struct page *page;
2384
2385                 /*
2386                  * Good, the fallocate(2) manpage permits EINTR: we may have
2387                  * been interrupted because we are using up too much memory.
2388                  */
2389                 if (signal_pending(current))
2390                         error = -EINTR;
2391                 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2392                         error = -ENOMEM;
2393                 else
2394                         error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2395                 if (error) {
2396                         /* Remove the !PageUptodate pages we added */
2397                         if (index > start) {
2398                                 shmem_undo_range(inode,
2399                                     (loff_t)start << PAGE_SHIFT,
2400                                     ((loff_t)index << PAGE_SHIFT) - 1, true);
2401                         }
2402                         goto undone;
2403                 }
2404
2405                 /*
2406                  * Inform shmem_writepage() how far we have reached.
2407                  * No need for lock or barrier: we have the page lock.
2408                  */
2409                 shmem_falloc.next++;
2410                 if (!PageUptodate(page))
2411                         shmem_falloc.nr_falloced++;
2412
2413                 /*
2414                  * If !PageUptodate, leave it that way so that freeable pages
2415                  * can be recognized if we need to rollback on error later.
2416                  * But set_page_dirty so that memory pressure will swap rather
2417                  * than free the pages we are allocating (and SGP_CACHE pages
2418                  * might still be clean: we now need to mark those dirty too).
2419                  */
2420                 set_page_dirty(page);
2421                 unlock_page(page);
2422                 put_page(page);
2423                 cond_resched();
2424         }
2425
2426         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2427                 i_size_write(inode, offset + len);
2428         inode->i_ctime = CURRENT_TIME;
2429 undone:
2430         spin_lock(&inode->i_lock);
2431         inode->i_private = NULL;
2432         spin_unlock(&inode->i_lock);
2433 out:
2434         inode_unlock(inode);
2435         return error;
2436 }
2437
2438 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2439 {
2440         struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2441
2442         buf->f_type = TMPFS_MAGIC;
2443         buf->f_bsize = PAGE_SIZE;
2444         buf->f_namelen = NAME_MAX;
2445         if (sbinfo->max_blocks) {
2446                 buf->f_blocks = sbinfo->max_blocks;
2447                 buf->f_bavail =
2448                 buf->f_bfree  = sbinfo->max_blocks -
2449                                 percpu_counter_sum(&sbinfo->used_blocks);
2450         }
2451         if (sbinfo->max_inodes) {
2452                 buf->f_files = sbinfo->max_inodes;
2453                 buf->f_ffree = sbinfo->free_inodes;
2454         }
2455         /* else leave those fields 0 like simple_statfs */
2456         return 0;
2457 }
2458
2459 /*
2460  * File creation. Allocate an inode, and we're done..
2461  */
2462 static int
2463 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2464 {
2465         struct inode *inode;
2466         int error = -ENOSPC;
2467
2468         inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2469         if (inode) {
2470                 error = simple_acl_create(dir, inode);
2471                 if (error)
2472                         goto out_iput;
2473                 error = security_inode_init_security(inode, dir,
2474                                                      &dentry->d_name,
2475                                                      shmem_initxattrs, NULL);
2476                 if (error && error != -EOPNOTSUPP)
2477                         goto out_iput;
2478
2479                 error = 0;
2480                 dir->i_size += BOGO_DIRENT_SIZE;
2481                 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2482                 d_instantiate(dentry, inode);
2483                 dget(dentry); /* Extra count - pin the dentry in core */
2484         }
2485         return error;
2486 out_iput:
2487         iput(inode);
2488         return error;
2489 }
2490
2491 static int
2492 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2493 {
2494         struct inode *inode;
2495         int error = -ENOSPC;
2496
2497         inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2498         if (inode) {
2499                 error = security_inode_init_security(inode, dir,
2500                                                      NULL,
2501                                                      shmem_initxattrs, NULL);
2502                 if (error && error != -EOPNOTSUPP)
2503                         goto out_iput;
2504                 error = simple_acl_create(dir, inode);
2505                 if (error)
2506                         goto out_iput;
2507                 d_tmpfile(dentry, inode);
2508         }
2509         return error;
2510 out_iput:
2511         iput(inode);
2512         return error;
2513 }
2514
2515 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2516 {
2517         int error;
2518
2519         if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2520                 return error;
2521         inc_nlink(dir);
2522         return 0;
2523 }
2524
2525 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2526                 bool excl)
2527 {
2528         return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2529 }
2530
2531 /*
2532  * Link a file..
2533  */
2534 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2535 {
2536         struct inode *inode = d_inode(old_dentry);
2537         int ret;
2538
2539         /*
2540          * No ordinary (disk based) filesystem counts links as inodes;
2541          * but each new link needs a new dentry, pinning lowmem, and
2542          * tmpfs dentries cannot be pruned until they are unlinked.
2543          */
2544         ret = shmem_reserve_inode(inode->i_sb);
2545         if (ret)
2546                 goto out;
2547
2548         dir->i_size += BOGO_DIRENT_SIZE;
2549         inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2550         inc_nlink(inode);
2551         ihold(inode);   /* New dentry reference */
2552         dget(dentry);           /* Extra pinning count for the created dentry */
2553         d_instantiate(dentry, inode);
2554 out:
2555         return ret;
2556 }
2557
2558 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2559 {
2560         struct inode *inode = d_inode(dentry);
2561
2562         if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2563                 shmem_free_inode(inode->i_sb);
2564
2565         dir->i_size -= BOGO_DIRENT_SIZE;
2566         inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2567         drop_nlink(inode);
2568         dput(dentry);   /* Undo the count from "create" - this does all the work */
2569         return 0;
2570 }
2571
2572 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2573 {
2574         if (!simple_empty(dentry))
2575                 return -ENOTEMPTY;
2576
2577         drop_nlink(d_inode(dentry));
2578         drop_nlink(dir);
2579         return shmem_unlink(dir, dentry);
2580 }
2581
2582 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2583 {
2584         bool old_is_dir = d_is_dir(old_dentry);
2585         bool new_is_dir = d_is_dir(new_dentry);
2586
2587         if (old_dir != new_dir && old_is_dir != new_is_dir) {
2588                 if (old_is_dir) {
2589                         drop_nlink(old_dir);
2590                         inc_nlink(new_dir);
2591                 } else {
2592                         drop_nlink(new_dir);
2593                         inc_nlink(old_dir);
2594                 }
2595         }
2596         old_dir->i_ctime = old_dir->i_mtime =
2597         new_dir->i_ctime = new_dir->i_mtime =
2598         d_inode(old_dentry)->i_ctime =
2599         d_inode(new_dentry)->i_ctime = CURRENT_TIME;
2600
2601         return 0;
2602 }
2603
2604 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
2605 {
2606         struct dentry *whiteout;
2607         int error;
2608
2609         whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2610         if (!whiteout)
2611                 return -ENOMEM;
2612
2613         error = shmem_mknod(old_dir, whiteout,
2614                             S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2615         dput(whiteout);
2616         if (error)
2617                 return error;
2618
2619         /*
2620          * Cheat and hash the whiteout while the old dentry is still in
2621          * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2622          *
2623          * d_lookup() will consistently find one of them at this point,
2624          * not sure which one, but that isn't even important.
2625          */
2626         d_rehash(whiteout);
2627         return 0;
2628 }
2629
2630 /*
2631  * The VFS layer already does all the dentry stuff for rename,
2632  * we just have to decrement the usage count for the target if
2633  * it exists so that the VFS layer correctly free's it when it
2634  * gets overwritten.
2635  */
2636 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
2637 {
2638         struct inode *inode = d_inode(old_dentry);
2639         int they_are_dirs = S_ISDIR(inode->i_mode);
2640
2641         if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
2642                 return -EINVAL;
2643
2644         if (flags & RENAME_EXCHANGE)
2645                 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
2646
2647         if (!simple_empty(new_dentry))
2648                 return -ENOTEMPTY;
2649
2650         if (flags & RENAME_WHITEOUT) {
2651                 int error;
2652
2653                 error = shmem_whiteout(old_dir, old_dentry);
2654                 if (error)
2655                         return error;
2656         }
2657
2658         if (d_really_is_positive(new_dentry)) {
2659                 (void) shmem_unlink(new_dir, new_dentry);
2660                 if (they_are_dirs) {
2661                         drop_nlink(d_inode(new_dentry));
2662                         drop_nlink(old_dir);
2663                 }
2664         } else if (they_are_dirs) {
2665                 drop_nlink(old_dir);
2666                 inc_nlink(new_dir);
2667         }
2668
2669         old_dir->i_size -= BOGO_DIRENT_SIZE;
2670         new_dir->i_size += BOGO_DIRENT_SIZE;
2671         old_dir->i_ctime = old_dir->i_mtime =
2672         new_dir->i_ctime = new_dir->i_mtime =
2673         inode->i_ctime = CURRENT_TIME;
2674         return 0;
2675 }
2676
2677 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2678 {
2679         int error;
2680         int len;
2681         struct inode *inode;
2682         struct page *page;
2683         struct shmem_inode_info *info;
2684
2685         len = strlen(symname) + 1;
2686         if (len > PAGE_SIZE)
2687                 return -ENAMETOOLONG;
2688
2689         inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2690         if (!inode)
2691                 return -ENOSPC;
2692
2693         error = security_inode_init_security(inode, dir, &dentry->d_name,
2694                                              shmem_initxattrs, NULL);
2695         if (error) {
2696                 if (error != -EOPNOTSUPP) {
2697                         iput(inode);
2698                         return error;
2699                 }
2700                 error = 0;
2701         }
2702
2703         info = SHMEM_I(inode);
2704         inode->i_size = len-1;
2705         if (len <= SHORT_SYMLINK_LEN) {
2706                 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
2707                 if (!inode->i_link) {
2708                         iput(inode);
2709                         return -ENOMEM;
2710                 }
2711                 inode->i_op = &shmem_short_symlink_operations;
2712         } else {
2713                 inode_nohighmem(inode);
2714                 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
2715                 if (error) {
2716                         iput(inode);
2717                         return error;
2718                 }
2719                 inode->i_mapping->a_ops = &shmem_aops;
2720                 inode->i_op = &shmem_symlink_inode_operations;
2721                 memcpy(page_address(page), symname, len);
2722                 SetPageUptodate(page);
2723                 set_page_dirty(page);
2724                 unlock_page(page);
2725                 put_page(page);
2726         }
2727         dir->i_size += BOGO_DIRENT_SIZE;
2728         dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2729         d_instantiate(dentry, inode);
2730         dget(dentry);
2731         return 0;
2732 }
2733
2734 static void shmem_put_link(void *arg)
2735 {
2736         mark_page_accessed(arg);
2737         put_page(arg);
2738 }
2739
2740 static const char *shmem_get_link(struct dentry *dentry,
2741                                   struct inode *inode,
2742                                   struct delayed_call *done)
2743 {
2744         struct page *page = NULL;
2745         int error;
2746         if (!dentry) {
2747                 page = find_get_page(inode->i_mapping, 0);
2748                 if (!page)
2749                         return ERR_PTR(-ECHILD);
2750                 if (!PageUptodate(page)) {
2751                         put_page(page);
2752                         return ERR_PTR(-ECHILD);
2753                 }
2754         } else {
2755                 error = shmem_getpage(inode, 0, &page, SGP_READ);
2756                 if (error)
2757                         return ERR_PTR(error);
2758                 unlock_page(page);
2759         }
2760         set_delayed_call(done, shmem_put_link, page);
2761         return page_address(page);
2762 }
2763
2764 #ifdef CONFIG_TMPFS_XATTR
2765 /*
2766  * Superblocks without xattr inode operations may get some security.* xattr
2767  * support from the LSM "for free". As soon as we have any other xattrs
2768  * like ACLs, we also need to implement the security.* handlers at
2769  * filesystem level, though.
2770  */
2771
2772 /*
2773  * Callback for security_inode_init_security() for acquiring xattrs.
2774  */
2775 static int shmem_initxattrs(struct inode *inode,
2776                             const struct xattr *xattr_array,
2777                             void *fs_info)
2778 {
2779         struct shmem_inode_info *info = SHMEM_I(inode);
2780         const struct xattr *xattr;
2781         struct simple_xattr *new_xattr;
2782         size_t len;
2783
2784         for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2785                 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
2786                 if (!new_xattr)
2787                         return -ENOMEM;
2788
2789                 len = strlen(xattr->name) + 1;
2790                 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2791                                           GFP_KERNEL);
2792                 if (!new_xattr->name) {
2793                         kfree(new_xattr);
2794                         return -ENOMEM;
2795                 }
2796
2797                 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2798                        XATTR_SECURITY_PREFIX_LEN);
2799                 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2800                        xattr->name, len);
2801
2802                 simple_xattr_list_add(&info->xattrs, new_xattr);
2803         }
2804
2805         return 0;
2806 }
2807
2808 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
2809                                    struct dentry *unused, struct inode *inode,
2810                                    const char *name, void *buffer, size_t size)
2811 {
2812         struct shmem_inode_info *info = SHMEM_I(inode);
2813
2814         name = xattr_full_name(handler, name);
2815         return simple_xattr_get(&info->xattrs, name, buffer, size);
2816 }
2817
2818 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
2819                                    struct dentry *unused, struct inode *inode,
2820                                    const char *name, const void *value,
2821                                    size_t size, int flags)
2822 {
2823         struct shmem_inode_info *info = SHMEM_I(inode);
2824
2825         name = xattr_full_name(handler, name);
2826         return simple_xattr_set(&info->xattrs, name, value, size, flags);
2827 }
2828
2829 static const struct xattr_handler shmem_security_xattr_handler = {
2830         .prefix = XATTR_SECURITY_PREFIX,
2831         .get = shmem_xattr_handler_get,
2832         .set = shmem_xattr_handler_set,
2833 };
2834
2835 static const struct xattr_handler shmem_trusted_xattr_handler = {
2836         .prefix = XATTR_TRUSTED_PREFIX,
2837         .get = shmem_xattr_handler_get,
2838         .set = shmem_xattr_handler_set,
2839 };
2840
2841 static const struct xattr_handler *shmem_xattr_handlers[] = {
2842 #ifdef CONFIG_TMPFS_POSIX_ACL
2843         &posix_acl_access_xattr_handler,
2844         &posix_acl_default_xattr_handler,
2845 #endif
2846         &shmem_security_xattr_handler,
2847         &shmem_trusted_xattr_handler,
2848         NULL
2849 };
2850
2851 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2852 {
2853         struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
2854         return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
2855 }
2856 #endif /* CONFIG_TMPFS_XATTR */
2857
2858 static const struct inode_operations shmem_short_symlink_operations = {
2859         .readlink       = generic_readlink,
2860         .get_link       = simple_get_link,
2861 #ifdef CONFIG_TMPFS_XATTR
2862         .setxattr       = generic_setxattr,
2863         .getxattr       = generic_getxattr,
2864         .listxattr      = shmem_listxattr,
2865         .removexattr    = generic_removexattr,
2866 #endif
2867 };
2868
2869 static const struct inode_operations shmem_symlink_inode_operations = {
2870         .readlink       = generic_readlink,
2871         .get_link       = shmem_get_link,
2872 #ifdef CONFIG_TMPFS_XATTR
2873         .setxattr       = generic_setxattr,
2874         .getxattr       = generic_getxattr,
2875         .listxattr      = shmem_listxattr,
2876         .removexattr    = generic_removexattr,
2877 #endif
2878 };
2879
2880 static struct dentry *shmem_get_parent(struct dentry *child)
2881 {
2882         return ERR_PTR(-ESTALE);
2883 }
2884
2885 static int shmem_match(struct inode *ino, void *vfh)
2886 {
2887         __u32 *fh = vfh;
2888         __u64 inum = fh[2];
2889         inum = (inum << 32) | fh[1];
2890         return ino->i_ino == inum && fh[0] == ino->i_generation;
2891 }
2892
2893 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2894                 struct fid *fid, int fh_len, int fh_type)
2895 {
2896         struct inode *inode;
2897         struct dentry *dentry = NULL;
2898         u64 inum;
2899
2900         if (fh_len < 3)
2901                 return NULL;
2902
2903         inum = fid->raw[2];
2904         inum = (inum << 32) | fid->raw[1];
2905
2906         inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2907                         shmem_match, fid->raw);
2908         if (inode) {
2909                 dentry = d_find_alias(inode);
2910                 iput(inode);
2911         }
2912
2913         return dentry;
2914 }
2915
2916 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2917                                 struct inode *parent)
2918 {
2919         if (*len < 3) {
2920                 *len = 3;
2921                 return FILEID_INVALID;
2922         }
2923
2924         if (inode_unhashed(inode)) {
2925                 /* Unfortunately insert_inode_hash is not idempotent,
2926                  * so as we hash inodes here rather than at creation
2927                  * time, we need a lock to ensure we only try
2928                  * to do it once
2929                  */
2930                 static DEFINE_SPINLOCK(lock);
2931                 spin_lock(&lock);
2932                 if (inode_unhashed(inode))
2933                         __insert_inode_hash(inode,
2934                                             inode->i_ino + inode->i_generation);
2935                 spin_unlock(&lock);
2936         }
2937
2938         fh[0] = inode->i_generation;
2939         fh[1] = inode->i_ino;
2940         fh[2] = ((__u64)inode->i_ino) >> 32;
2941
2942         *len = 3;
2943         return 1;
2944 }
2945
2946 static const struct export_operations shmem_export_ops = {
2947         .get_parent     = shmem_get_parent,
2948         .encode_fh      = shmem_encode_fh,
2949         .fh_to_dentry   = shmem_fh_to_dentry,
2950 };
2951
2952 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2953                                bool remount)
2954 {
2955         char *this_char, *value, *rest;
2956         struct mempolicy *mpol = NULL;
2957         uid_t uid;
2958         gid_t gid;
2959
2960         while (options != NULL) {
2961                 this_char = options;
2962                 for (;;) {
2963                         /*
2964                          * NUL-terminate this option: unfortunately,
2965                          * mount options form a comma-separated list,
2966                          * but mpol's nodelist may also contain commas.
2967                          */
2968                         options = strchr(options, ',');
2969                         if (options == NULL)
2970                                 break;
2971                         options++;
2972                         if (!isdigit(*options)) {
2973                                 options[-1] = '\0';
2974                                 break;
2975                         }
2976                 }
2977                 if (!*this_char)
2978                         continue;
2979                 if ((value = strchr(this_char,'=')) != NULL) {
2980                         *value++ = 0;
2981                 } else {
2982                         pr_err("tmpfs: No value for mount option '%s'\n",
2983                                this_char);
2984                         goto error;
2985                 }
2986
2987                 if (!strcmp(this_char,"size")) {
2988                         unsigned long long size;
2989                         size = memparse(value,&rest);
2990                         if (*rest == '%') {
2991                                 size <<= PAGE_SHIFT;
2992                                 size *= totalram_pages;
2993                                 do_div(size, 100);
2994                                 rest++;
2995                         }
2996                         if (*rest)
2997                                 goto bad_val;
2998                         sbinfo->max_blocks =
2999                                 DIV_ROUND_UP(size, PAGE_SIZE);
3000                 } else if (!strcmp(this_char,"nr_blocks")) {
3001                         sbinfo->max_blocks = memparse(value, &rest);
3002                         if (*rest)
3003                                 goto bad_val;
3004                 } else if (!strcmp(this_char,"nr_inodes")) {
3005                         sbinfo->max_inodes = memparse(value, &rest);
3006                         if (*rest)
3007                                 goto bad_val;
3008                 } else if (!strcmp(this_char,"mode")) {
3009                         if (remount)
3010                                 continue;
3011                         sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
3012                         if (*rest)
3013                                 goto bad_val;
3014                 } else if (!strcmp(this_char,"uid")) {
3015                         if (remount)
3016                                 continue;
3017                         uid = simple_strtoul(value, &rest, 0);
3018                         if (*rest)
3019                                 goto bad_val;
3020                         sbinfo->uid = make_kuid(current_user_ns(), uid);
3021                         if (!uid_valid(sbinfo->uid))
3022                                 goto bad_val;
3023                 } else if (!strcmp(this_char,"gid")) {
3024                         if (remount)
3025                                 continue;
3026                         gid = simple_strtoul(value, &rest, 0);
3027                         if (*rest)
3028                                 goto bad_val;
3029                         sbinfo->gid = make_kgid(current_user_ns(), gid);
3030                         if (!gid_valid(sbinfo->gid))
3031                                 goto bad_val;
3032 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3033                 } else if (!strcmp(this_char, "huge")) {
3034                         int huge;
3035                         huge = shmem_parse_huge(value);
3036                         if (huge < 0)
3037                                 goto bad_val;
3038                         if (!has_transparent_hugepage() &&
3039                                         huge != SHMEM_HUGE_NEVER)
3040                                 goto bad_val;
3041                         sbinfo->huge = huge;
3042 #endif
3043 #ifdef CONFIG_NUMA
3044                 } else if (!strcmp(this_char,"mpol")) {
3045                         mpol_put(mpol);
3046                         mpol = NULL;
3047                         if (mpol_parse_str(value, &mpol))
3048                                 goto bad_val;
3049 #endif
3050                 } else {
3051                         pr_err("tmpfs: Bad mount option %s\n", this_char);
3052                         goto error;
3053                 }
3054         }
3055         sbinfo->mpol = mpol;
3056         return 0;
3057
3058 bad_val:
3059         pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
3060                value, this_char);
3061 error:
3062         mpol_put(mpol);
3063         return 1;
3064
3065 }
3066
3067 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
3068 {
3069         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3070         struct shmem_sb_info config = *sbinfo;
3071         unsigned long inodes;
3072         int error = -EINVAL;
3073
3074         config.mpol = NULL;
3075         if (shmem_parse_options(data, &config, true))
3076                 return error;
3077
3078         spin_lock(&sbinfo->stat_lock);
3079         inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3080         if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
3081                 goto out;
3082         if (config.max_inodes < inodes)
3083                 goto out;
3084         /*
3085          * Those tests disallow limited->unlimited while any are in use;
3086          * but we must separately disallow unlimited->limited, because
3087          * in that case we have no record of how much is already in use.
3088          */
3089         if (config.max_blocks && !sbinfo->max_blocks)
3090                 goto out;
3091         if (config.max_inodes && !sbinfo->max_inodes)
3092                 goto out;
3093
3094         error = 0;
3095         sbinfo->huge = config.huge;
3096         sbinfo->max_blocks  = config.max_blocks;
3097         sbinfo->max_inodes  = config.max_inodes;
3098         sbinfo->free_inodes = config.max_inodes - inodes;
3099
3100         /*
3101          * Preserve previous mempolicy unless mpol remount option was specified.
3102          */
3103         if (config.mpol) {
3104                 mpol_put(sbinfo->mpol);
3105                 sbinfo->mpol = config.mpol;     /* transfers initial ref */
3106         }
3107 out:
3108         spin_unlock(&sbinfo->stat_lock);
3109         return error;
3110 }
3111
3112 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3113 {
3114         struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3115
3116         if (sbinfo->max_blocks != shmem_default_max_blocks())
3117                 seq_printf(seq, ",size=%luk",
3118                         sbinfo->max_blocks << (PAGE_SHIFT - 10));
3119         if (sbinfo->max_inodes != shmem_default_max_inodes())
3120                 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3121         if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
3122                 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3123         if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3124                 seq_printf(seq, ",uid=%u",
3125                                 from_kuid_munged(&init_user_ns, sbinfo->uid));
3126         if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3127                 seq_printf(seq, ",gid=%u",
3128                                 from_kgid_munged(&init_user_ns, sbinfo->gid));
3129 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3130         /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3131         if (sbinfo->huge)
3132                 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3133 #endif
3134         shmem_show_mpol(seq, sbinfo->mpol);
3135         return 0;
3136 }
3137
3138 #define MFD_NAME_PREFIX "memfd:"
3139 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
3140 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
3141
3142 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
3143
3144 SYSCALL_DEFINE2(memfd_create,
3145                 const char __user *, uname,
3146                 unsigned int, flags)
3147 {
3148         struct shmem_inode_info *info;
3149         struct file *file;
3150         int fd, error;
3151         char *name;
3152         long len;
3153
3154         if (flags & ~(unsigned int)MFD_ALL_FLAGS)
3155                 return -EINVAL;
3156
3157         /* length includes terminating zero */
3158         len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
3159         if (len <= 0)
3160                 return -EFAULT;
3161         if (len > MFD_NAME_MAX_LEN + 1)
3162                 return -EINVAL;
3163
3164         name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY);
3165         if (!name)
3166                 return -ENOMEM;
3167
3168         strcpy(name, MFD_NAME_PREFIX);
3169         if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
3170                 error = -EFAULT;
3171                 goto err_name;
3172         }
3173
3174         /* terminating-zero may have changed after strnlen_user() returned */
3175         if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
3176                 error = -EFAULT;
3177                 goto err_name;
3178         }
3179
3180         fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
3181         if (fd < 0) {
3182                 error = fd;
3183                 goto err_name;
3184         }
3185
3186         file = shmem_file_setup(name, 0, VM_NORESERVE);
3187         if (IS_ERR(file)) {
3188                 error = PTR_ERR(file);
3189                 goto err_fd;
3190         }
3191         info = SHMEM_I(file_inode(file));
3192         file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
3193         file->f_flags |= O_RDWR | O_LARGEFILE;
3194         if (flags & MFD_ALLOW_SEALING)
3195                 info->seals &= ~F_SEAL_SEAL;
3196
3197         fd_install(fd, file);
3198         kfree(name);
3199         return fd;
3200
3201 err_fd:
3202         put_unused_fd(fd);
3203 err_name:
3204         kfree(name);
3205         return error;
3206 }
3207
3208 #endif /* CONFIG_TMPFS */
3209
3210 static void shmem_put_super(struct super_block *sb)
3211 {
3212         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3213
3214         percpu_counter_destroy(&sbinfo->used_blocks);
3215         mpol_put(sbinfo->mpol);
3216         kfree(sbinfo);
3217         sb->s_fs_info = NULL;
3218 }
3219
3220 int shmem_fill_super(struct super_block *sb, void *data, int silent)
3221 {
3222         struct inode *inode;
3223         struct shmem_sb_info *sbinfo;
3224         int err = -ENOMEM;
3225
3226         /* Round up to L1_CACHE_BYTES to resist false sharing */
3227         sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3228                                 L1_CACHE_BYTES), GFP_KERNEL);
3229         if (!sbinfo)
3230                 return -ENOMEM;
3231
3232         sbinfo->mode = S_IRWXUGO | S_ISVTX;
3233         sbinfo->uid = current_fsuid();
3234         sbinfo->gid = current_fsgid();
3235         sb->s_fs_info = sbinfo;
3236
3237 #ifdef CONFIG_TMPFS
3238         /*
3239          * Per default we only allow half of the physical ram per
3240          * tmpfs instance, limiting inodes to one per page of lowmem;
3241          * but the internal instance is left unlimited.
3242          */
3243         if (!(sb->s_flags & MS_KERNMOUNT)) {
3244                 sbinfo->max_blocks = shmem_default_max_blocks();
3245                 sbinfo->max_inodes = shmem_default_max_inodes();
3246                 if (shmem_parse_options(data, sbinfo, false)) {
3247                         err = -EINVAL;
3248                         goto failed;
3249                 }
3250         } else {
3251                 sb->s_flags |= MS_NOUSER;
3252         }
3253         sb->s_export_op = &shmem_export_ops;
3254         sb->s_flags |= MS_NOSEC;
3255 #else
3256         sb->s_flags |= MS_NOUSER;
3257 #endif
3258
3259         spin_lock_init(&sbinfo->stat_lock);
3260         if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3261                 goto failed;
3262         sbinfo->free_inodes = sbinfo->max_inodes;
3263
3264         sb->s_maxbytes = MAX_LFS_FILESIZE;
3265         sb->s_blocksize = PAGE_SIZE;
3266         sb->s_blocksize_bits = PAGE_SHIFT;
3267         sb->s_magic = TMPFS_MAGIC;
3268         sb->s_op = &shmem_ops;
3269         sb->s_time_gran = 1;
3270 #ifdef CONFIG_TMPFS_XATTR
3271         sb->s_xattr = shmem_xattr_handlers;
3272 #endif
3273 #ifdef CONFIG_TMPFS_POSIX_ACL
3274         sb->s_flags |= MS_POSIXACL;
3275 #endif
3276
3277         inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3278         if (!inode)
3279                 goto failed;
3280         inode->i_uid = sbinfo->uid;
3281         inode->i_gid = sbinfo->gid;
3282         sb->s_root = d_make_root(inode);
3283         if (!sb->s_root)
3284                 goto failed;
3285         return 0;
3286
3287 failed:
3288         shmem_put_super(sb);
3289         return err;
3290 }
3291
3292 static struct kmem_cache *shmem_inode_cachep;
3293
3294 static struct inode *shmem_alloc_inode(struct super_block *sb)
3295 {
3296         struct shmem_inode_info *info;
3297         info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3298         if (!info)
3299                 return NULL;
3300         return &info->vfs_inode;
3301 }
3302
3303 static void shmem_destroy_callback(struct rcu_head *head)
3304 {
3305         struct inode *inode = container_of(head, struct inode, i_rcu);
3306         if (S_ISLNK(inode->i_mode))
3307                 kfree(inode->i_link);
3308         kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3309 }
3310
3311 static void shmem_destroy_inode(struct inode *inode)
3312 {
3313         if (S_ISREG(inode->i_mode))
3314                 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3315         call_rcu(&inode->i_rcu, shmem_destroy_callback);
3316 }
3317
3318 static void shmem_init_inode(void *foo)
3319 {
3320         struct shmem_inode_info *info = foo;
3321         inode_init_once(&info->vfs_inode);
3322 }
3323
3324 static int shmem_init_inodecache(void)
3325 {
3326         shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3327                                 sizeof(struct shmem_inode_info),
3328                                 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3329         return 0;
3330 }
3331
3332 static void shmem_destroy_inodecache(void)
3333 {
3334         kmem_cache_destroy(shmem_inode_cachep);
3335 }
3336
3337 static const struct address_space_operations shmem_aops = {
3338         .writepage      = shmem_writepage,
3339         .set_page_dirty = __set_page_dirty_no_writeback,
3340 #ifdef CONFIG_TMPFS
3341         .write_begin    = shmem_write_begin,
3342         .write_end      = shmem_write_end,
3343 #endif
3344 #ifdef CONFIG_MIGRATION
3345         .migratepage    = migrate_page,
3346 #endif
3347         .error_remove_page = generic_error_remove_page,
3348 };
3349
3350 static const struct file_operations shmem_file_operations = {
3351         .mmap           = shmem_mmap,
3352         .get_unmapped_area = shmem_get_unmapped_area,
3353 #ifdef CONFIG_TMPFS
3354         .llseek         = shmem_file_llseek,
3355         .read_iter      = shmem_file_read_iter,
3356         .write_iter     = generic_file_write_iter,
3357         .fsync          = noop_fsync,
3358         .splice_read    = shmem_file_splice_read,
3359         .splice_write   = iter_file_splice_write,
3360         .fallocate      = shmem_fallocate,
3361 #endif
3362 };
3363
3364 static const struct inode_operations shmem_inode_operations = {
3365         .getattr        = shmem_getattr,
3366         .setattr        = shmem_setattr,
3367 #ifdef CONFIG_TMPFS_XATTR
3368         .setxattr       = generic_setxattr,
3369         .getxattr       = generic_getxattr,
3370         .listxattr      = shmem_listxattr,
3371         .removexattr    = generic_removexattr,
3372         .set_acl        = simple_set_acl,
3373 #endif
3374 };
3375
3376 static const struct inode_operations shmem_dir_inode_operations = {
3377 #ifdef CONFIG_TMPFS
3378         .create         = shmem_create,
3379         .lookup         = simple_lookup,
3380         .link           = shmem_link,
3381         .unlink         = shmem_unlink,
3382         .symlink        = shmem_symlink,
3383         .mkdir          = shmem_mkdir,
3384         .rmdir          = shmem_rmdir,
3385         .mknod          = shmem_mknod,
3386         .rename2        = shmem_rename2,
3387         .tmpfile        = shmem_tmpfile,
3388 #endif
3389 #ifdef CONFIG_TMPFS_XATTR
3390         .setxattr       = generic_setxattr,
3391         .getxattr       = generic_getxattr,
3392         .listxattr      = shmem_listxattr,
3393         .removexattr    = generic_removexattr,
3394 #endif
3395 #ifdef CONFIG_TMPFS_POSIX_ACL
3396         .setattr        = shmem_setattr,
3397         .set_acl        = simple_set_acl,
3398 #endif
3399 };
3400
3401 static const struct inode_operations shmem_special_inode_operations = {
3402 #ifdef CONFIG_TMPFS_XATTR
3403         .setxattr       = generic_setxattr,
3404         .getxattr       = generic_getxattr,
3405         .listxattr      = shmem_listxattr,
3406         .removexattr    = generic_removexattr,
3407 #endif
3408 #ifdef CONFIG_TMPFS_POSIX_ACL
3409         .setattr        = shmem_setattr,
3410         .set_acl        = simple_set_acl,
3411 #endif
3412 };
3413
3414 static const struct super_operations shmem_ops = {
3415         .alloc_inode    = shmem_alloc_inode,
3416         .destroy_inode  = shmem_destroy_inode,
3417 #ifdef CONFIG_TMPFS
3418         .statfs         = shmem_statfs,
3419         .remount_fs     = shmem_remount_fs,
3420         .show_options   = shmem_show_options,
3421 #endif
3422         .evict_inode    = shmem_evict_inode,
3423         .drop_inode     = generic_delete_inode,
3424         .put_super      = shmem_put_super,
3425 };
3426
3427 static const struct vm_operations_struct shmem_vm_ops = {
3428         .fault          = shmem_fault,
3429         .map_pages      = filemap_map_pages,
3430 #ifdef CONFIG_NUMA
3431         .set_policy     = shmem_set_policy,
3432         .get_policy     = shmem_get_policy,
3433 #endif
3434 };
3435
3436 static struct dentry *shmem_mount(struct file_system_type *fs_type,
3437         int flags, const char *dev_name, void *data)
3438 {
3439         return mount_nodev(fs_type, flags, data, shmem_fill_super);
3440 }
3441
3442 static struct file_system_type shmem_fs_type = {
3443         .owner          = THIS_MODULE,
3444         .name           = "tmpfs",
3445         .mount          = shmem_mount,
3446         .kill_sb        = kill_litter_super,
3447         .fs_flags       = FS_USERNS_MOUNT,
3448 };
3449
3450 int __init shmem_init(void)
3451 {
3452         int error;
3453
3454         /* If rootfs called this, don't re-init */
3455         if (shmem_inode_cachep)
3456                 return 0;
3457
3458         error = shmem_init_inodecache();
3459         if (error)
3460                 goto out3;
3461
3462         error = register_filesystem(&shmem_fs_type);
3463         if (error) {
3464                 pr_err("Could not register tmpfs\n");
3465                 goto out2;
3466         }
3467
3468         shm_mnt = kern_mount(&shmem_fs_type);
3469         if (IS_ERR(shm_mnt)) {
3470                 error = PTR_ERR(shm_mnt);
3471                 pr_err("Could not kern_mount tmpfs\n");
3472                 goto out1;
3473         }
3474
3475 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3476         if (has_transparent_hugepage() && shmem_huge < SHMEM_HUGE_DENY)
3477                 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3478         else
3479                 shmem_huge = 0; /* just in case it was patched */
3480 #endif
3481         return 0;
3482
3483 out1:
3484         unregister_filesystem(&shmem_fs_type);
3485 out2:
3486         shmem_destroy_inodecache();
3487 out3:
3488         shm_mnt = ERR_PTR(error);
3489         return error;
3490 }
3491
3492 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
3493 static ssize_t shmem_enabled_show(struct kobject *kobj,
3494                 struct kobj_attribute *attr, char *buf)
3495 {
3496         int values[] = {
3497                 SHMEM_HUGE_ALWAYS,
3498                 SHMEM_HUGE_WITHIN_SIZE,
3499                 SHMEM_HUGE_ADVISE,
3500                 SHMEM_HUGE_NEVER,
3501                 SHMEM_HUGE_DENY,
3502                 SHMEM_HUGE_FORCE,
3503         };
3504         int i, count;
3505
3506         for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
3507                 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
3508
3509                 count += sprintf(buf + count, fmt,
3510                                 shmem_format_huge(values[i]));
3511         }
3512         buf[count - 1] = '\n';
3513         return count;
3514 }
3515
3516 static ssize_t shmem_enabled_store(struct kobject *kobj,
3517                 struct kobj_attribute *attr, const char *buf, size_t count)
3518 {
3519         char tmp[16];
3520         int huge;
3521
3522         if (count + 1 > sizeof(tmp))
3523                 return -EINVAL;
3524         memcpy(tmp, buf, count);
3525         tmp[count] = '\0';
3526         if (count && tmp[count - 1] == '\n')
3527                 tmp[count - 1] = '\0';
3528
3529         huge = shmem_parse_huge(tmp);
3530         if (huge == -EINVAL)
3531                 return -EINVAL;
3532         if (!has_transparent_hugepage() &&
3533                         huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3534                 return -EINVAL;
3535
3536         shmem_huge = huge;
3537         if (shmem_huge < SHMEM_HUGE_DENY)
3538                 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3539         return count;
3540 }
3541
3542 struct kobj_attribute shmem_enabled_attr =
3543         __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3544 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
3545
3546 #else /* !CONFIG_SHMEM */
3547
3548 /*
3549  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3550  *
3551  * This is intended for small system where the benefits of the full
3552  * shmem code (swap-backed and resource-limited) are outweighed by
3553  * their complexity. On systems without swap this code should be
3554  * effectively equivalent, but much lighter weight.
3555  */
3556
3557 static struct file_system_type shmem_fs_type = {
3558         .name           = "tmpfs",
3559         .mount          = ramfs_mount,
3560         .kill_sb        = kill_litter_super,
3561         .fs_flags       = FS_USERNS_MOUNT,
3562 };
3563
3564 int __init shmem_init(void)
3565 {
3566         BUG_ON(register_filesystem(&shmem_fs_type) != 0);
3567
3568         shm_mnt = kern_mount(&shmem_fs_type);
3569         BUG_ON(IS_ERR(shm_mnt));
3570
3571         return 0;
3572 }
3573
3574 int shmem_unuse(swp_entry_t swap, struct page *page)
3575 {
3576         return 0;
3577 }
3578
3579 int shmem_lock(struct file *file, int lock, struct user_struct *user)
3580 {
3581         return 0;
3582 }
3583
3584 void shmem_unlock_mapping(struct address_space *mapping)
3585 {
3586 }
3587
3588 #ifdef CONFIG_MMU
3589 unsigned long shmem_get_unmapped_area(struct file *file,
3590                                       unsigned long addr, unsigned long len,
3591                                       unsigned long pgoff, unsigned long flags)
3592 {
3593         return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
3594 }
3595 #endif
3596
3597 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
3598 {
3599         truncate_inode_pages_range(inode->i_mapping, lstart, lend);
3600 }
3601 EXPORT_SYMBOL_GPL(shmem_truncate_range);
3602
3603 #define shmem_vm_ops                            generic_file_vm_ops
3604 #define shmem_file_operations                   ramfs_file_operations
3605 #define shmem_get_inode(sb, dir, mode, dev, flags)      ramfs_get_inode(sb, dir, mode, dev)
3606 #define shmem_acct_size(flags, size)            0
3607 #define shmem_unacct_size(flags, size)          do {} while (0)
3608
3609 #endif /* CONFIG_SHMEM */
3610
3611 /* common code */
3612
3613 static struct dentry_operations anon_ops = {
3614         .d_dname = simple_dname
3615 };
3616
3617 static struct file *__shmem_file_setup(const char *name, loff_t size,
3618                                        unsigned long flags, unsigned int i_flags)
3619 {
3620         struct file *res;
3621         struct inode *inode;
3622         struct path path;
3623         struct super_block *sb;
3624         struct qstr this;
3625
3626         if (IS_ERR(shm_mnt))
3627                 return ERR_CAST(shm_mnt);
3628
3629         if (size < 0 || size > MAX_LFS_FILESIZE)
3630                 return ERR_PTR(-EINVAL);
3631
3632         if (shmem_acct_size(flags, size))
3633                 return ERR_PTR(-ENOMEM);
3634
3635         res = ERR_PTR(-ENOMEM);
3636         this.name = name;
3637         this.len = strlen(name);
3638         this.hash = 0; /* will go */
3639         sb = shm_mnt->mnt_sb;
3640         path.mnt = mntget(shm_mnt);
3641         path.dentry = d_alloc_pseudo(sb, &this);
3642         if (!path.dentry)
3643                 goto put_memory;
3644         d_set_d_op(path.dentry, &anon_ops);
3645
3646         res = ERR_PTR(-ENOSPC);
3647         inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
3648         if (!inode)
3649                 goto put_memory;
3650
3651         inode->i_flags |= i_flags;
3652         d_instantiate(path.dentry, inode);
3653         inode->i_size = size;
3654         clear_nlink(inode);     /* It is unlinked */
3655         res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
3656         if (IS_ERR(res))
3657                 goto put_path;
3658
3659         res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
3660                   &shmem_file_operations);
3661         if (IS_ERR(res))
3662                 goto put_path;
3663
3664         return res;
3665
3666 put_memory:
3667         shmem_unacct_size(flags, size);
3668 put_path:
3669         path_put(&path);
3670         return res;
3671 }
3672
3673 /**
3674  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
3675  *      kernel internal.  There will be NO LSM permission checks against the
3676  *      underlying inode.  So users of this interface must do LSM checks at a
3677  *      higher layer.  The users are the big_key and shm implementations.  LSM
3678  *      checks are provided at the key or shm level rather than the inode.
3679  * @name: name for dentry (to be seen in /proc/<pid>/maps
3680  * @size: size to be set for the file
3681  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3682  */
3683 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
3684 {
3685         return __shmem_file_setup(name, size, flags, S_PRIVATE);
3686 }
3687
3688 /**
3689  * shmem_file_setup - get an unlinked file living in tmpfs
3690  * @name: name for dentry (to be seen in /proc/<pid>/maps
3691  * @size: size to be set for the file
3692  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3693  */
3694 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
3695 {
3696         return __shmem_file_setup(name, size, flags, 0);
3697 }
3698 EXPORT_SYMBOL_GPL(shmem_file_setup);
3699
3700 /**
3701  * shmem_zero_setup - setup a shared anonymous mapping
3702  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3703  */
3704 int shmem_zero_setup(struct vm_area_struct *vma)
3705 {
3706         struct file *file;
3707         loff_t size = vma->vm_end - vma->vm_start;
3708
3709         /*
3710          * Cloning a new file under mmap_sem leads to a lock ordering conflict
3711          * between XFS directory reading and selinux: since this file is only
3712          * accessible to the user through its mapping, use S_PRIVATE flag to
3713          * bypass file security, in the same way as shmem_kernel_file_setup().
3714          */
3715         file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE);
3716         if (IS_ERR(file))
3717                 return PTR_ERR(file);
3718
3719         if (vma->vm_file)
3720                 fput(vma->vm_file);
3721         vma->vm_file = file;
3722         vma->vm_ops = &shmem_vm_ops;
3723         return 0;
3724 }
3725
3726 /**
3727  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3728  * @mapping:    the page's address_space
3729  * @index:      the page index
3730  * @gfp:        the page allocator flags to use if allocating
3731  *
3732  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3733  * with any new page allocations done using the specified allocation flags.
3734  * But read_cache_page_gfp() uses the ->readpage() method: which does not
3735  * suit tmpfs, since it may have pages in swapcache, and needs to find those
3736  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3737  *
3738  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3739  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3740  */
3741 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3742                                          pgoff_t index, gfp_t gfp)
3743 {
3744 #ifdef CONFIG_SHMEM
3745         struct inode *inode = mapping->host;
3746         struct page *page;
3747         int error;
3748
3749         BUG_ON(mapping->a_ops != &shmem_aops);
3750         error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
3751                                   gfp, NULL, NULL);
3752         if (error)
3753                 page = ERR_PTR(error);
3754         else
3755                 unlock_page(page);
3756         return page;
3757 #else
3758         /*
3759          * The tiny !SHMEM case uses ramfs without swap
3760          */
3761         return read_cache_page_gfp(mapping, index, gfp);
3762 #endif
3763 }
3764 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);