net/mlx4_core: Adjust port number in qp_attach wrapper when detaching
[cascardo/linux.git] / mm / slab.h
1 #ifndef MM_SLAB_H
2 #define MM_SLAB_H
3 /*
4  * Internal slab definitions
5  */
6
7 /*
8  * State of the slab allocator.
9  *
10  * This is used to describe the states of the allocator during bootup.
11  * Allocators use this to gradually bootstrap themselves. Most allocators
12  * have the problem that the structures used for managing slab caches are
13  * allocated from slab caches themselves.
14  */
15 enum slab_state {
16         DOWN,                   /* No slab functionality yet */
17         PARTIAL,                /* SLUB: kmem_cache_node available */
18         PARTIAL_ARRAYCACHE,     /* SLAB: kmalloc size for arraycache available */
19         PARTIAL_NODE,           /* SLAB: kmalloc size for node struct available */
20         UP,                     /* Slab caches usable but not all extras yet */
21         FULL                    /* Everything is working */
22 };
23
24 extern enum slab_state slab_state;
25
26 /* The slab cache mutex protects the management structures during changes */
27 extern struct mutex slab_mutex;
28
29 /* The list of all slab caches on the system */
30 extern struct list_head slab_caches;
31
32 /* The slab cache that manages slab cache information */
33 extern struct kmem_cache *kmem_cache;
34
35 unsigned long calculate_alignment(unsigned long flags,
36                 unsigned long align, unsigned long size);
37
38 #ifndef CONFIG_SLOB
39 /* Kmalloc array related functions */
40 void create_kmalloc_caches(unsigned long);
41
42 /* Find the kmalloc slab corresponding for a certain size */
43 struct kmem_cache *kmalloc_slab(size_t, gfp_t);
44 #endif
45
46
47 /* Functions provided by the slab allocators */
48 extern int __kmem_cache_create(struct kmem_cache *, unsigned long flags);
49
50 extern struct kmem_cache *create_kmalloc_cache(const char *name, size_t size,
51                         unsigned long flags);
52 extern void create_boot_cache(struct kmem_cache *, const char *name,
53                         size_t size, unsigned long flags);
54
55 struct mem_cgroup;
56 #ifdef CONFIG_SLUB
57 struct kmem_cache *
58 __kmem_cache_alias(const char *name, size_t size, size_t align,
59                    unsigned long flags, void (*ctor)(void *));
60 #else
61 static inline struct kmem_cache *
62 __kmem_cache_alias(const char *name, size_t size, size_t align,
63                    unsigned long flags, void (*ctor)(void *))
64 { return NULL; }
65 #endif
66
67
68 /* Legal flag mask for kmem_cache_create(), for various configurations */
69 #define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | SLAB_PANIC | \
70                          SLAB_DESTROY_BY_RCU | SLAB_DEBUG_OBJECTS )
71
72 #if defined(CONFIG_DEBUG_SLAB)
73 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
74 #elif defined(CONFIG_SLUB_DEBUG)
75 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
76                           SLAB_TRACE | SLAB_DEBUG_FREE)
77 #else
78 #define SLAB_DEBUG_FLAGS (0)
79 #endif
80
81 #if defined(CONFIG_SLAB)
82 #define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
83                           SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | SLAB_NOTRACK)
84 #elif defined(CONFIG_SLUB)
85 #define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
86                           SLAB_TEMPORARY | SLAB_NOTRACK)
87 #else
88 #define SLAB_CACHE_FLAGS (0)
89 #endif
90
91 #define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
92
93 int __kmem_cache_shutdown(struct kmem_cache *);
94
95 struct seq_file;
96 struct file;
97
98 struct slabinfo {
99         unsigned long active_objs;
100         unsigned long num_objs;
101         unsigned long active_slabs;
102         unsigned long num_slabs;
103         unsigned long shared_avail;
104         unsigned int limit;
105         unsigned int batchcount;
106         unsigned int shared;
107         unsigned int objects_per_slab;
108         unsigned int cache_order;
109 };
110
111 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
112 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
113 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
114                        size_t count, loff_t *ppos);
115
116 #ifdef CONFIG_MEMCG_KMEM
117 static inline bool is_root_cache(struct kmem_cache *s)
118 {
119         return !s->memcg_params || s->memcg_params->is_root_cache;
120 }
121
122 static inline void memcg_bind_pages(struct kmem_cache *s, int order)
123 {
124         if (!is_root_cache(s))
125                 atomic_add(1 << order, &s->memcg_params->nr_pages);
126 }
127
128 static inline void memcg_release_pages(struct kmem_cache *s, int order)
129 {
130         if (is_root_cache(s))
131                 return;
132
133         if (atomic_sub_and_test((1 << order), &s->memcg_params->nr_pages))
134                 mem_cgroup_destroy_cache(s);
135 }
136
137 static inline bool slab_equal_or_root(struct kmem_cache *s,
138                                         struct kmem_cache *p)
139 {
140         return (p == s) ||
141                 (s->memcg_params && (p == s->memcg_params->root_cache));
142 }
143
144 /*
145  * We use suffixes to the name in memcg because we can't have caches
146  * created in the system with the same name. But when we print them
147  * locally, better refer to them with the base name
148  */
149 static inline const char *cache_name(struct kmem_cache *s)
150 {
151         if (!is_root_cache(s))
152                 return s->memcg_params->root_cache->name;
153         return s->name;
154 }
155
156 /*
157  * Note, we protect with RCU only the memcg_caches array, not per-memcg caches.
158  * That said the caller must assure the memcg's cache won't go away. Since once
159  * created a memcg's cache is destroyed only along with the root cache, it is
160  * true if we are going to allocate from the cache or hold a reference to the
161  * root cache by other means. Otherwise, we should hold either the slab_mutex
162  * or the memcg's slab_caches_mutex while calling this function and accessing
163  * the returned value.
164  */
165 static inline struct kmem_cache *
166 cache_from_memcg_idx(struct kmem_cache *s, int idx)
167 {
168         struct kmem_cache *cachep;
169         struct memcg_cache_params *params;
170
171         if (!s->memcg_params)
172                 return NULL;
173
174         rcu_read_lock();
175         params = rcu_dereference(s->memcg_params);
176         cachep = params->memcg_caches[idx];
177         rcu_read_unlock();
178
179         /*
180          * Make sure we will access the up-to-date value. The code updating
181          * memcg_caches issues a write barrier to match this (see
182          * memcg_register_cache()).
183          */
184         smp_read_barrier_depends();
185         return cachep;
186 }
187
188 static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
189 {
190         if (is_root_cache(s))
191                 return s;
192         return s->memcg_params->root_cache;
193 }
194 #else
195 static inline bool is_root_cache(struct kmem_cache *s)
196 {
197         return true;
198 }
199
200 static inline void memcg_bind_pages(struct kmem_cache *s, int order)
201 {
202 }
203
204 static inline void memcg_release_pages(struct kmem_cache *s, int order)
205 {
206 }
207
208 static inline bool slab_equal_or_root(struct kmem_cache *s,
209                                       struct kmem_cache *p)
210 {
211         return true;
212 }
213
214 static inline const char *cache_name(struct kmem_cache *s)
215 {
216         return s->name;
217 }
218
219 static inline struct kmem_cache *
220 cache_from_memcg_idx(struct kmem_cache *s, int idx)
221 {
222         return NULL;
223 }
224
225 static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
226 {
227         return s;
228 }
229 #endif
230
231 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
232 {
233         struct kmem_cache *cachep;
234         struct page *page;
235
236         /*
237          * When kmemcg is not being used, both assignments should return the
238          * same value. but we don't want to pay the assignment price in that
239          * case. If it is not compiled in, the compiler should be smart enough
240          * to not do even the assignment. In that case, slab_equal_or_root
241          * will also be a constant.
242          */
243         if (!memcg_kmem_enabled() && !unlikely(s->flags & SLAB_DEBUG_FREE))
244                 return s;
245
246         page = virt_to_head_page(x);
247         cachep = page->slab_cache;
248         if (slab_equal_or_root(cachep, s))
249                 return cachep;
250
251         pr_err("%s: Wrong slab cache. %s but object is from %s\n",
252                 __FUNCTION__, cachep->name, s->name);
253         WARN_ON_ONCE(1);
254         return s;
255 }
256 #endif
257
258
259 /*
260  * The slab lists for all objects.
261  */
262 struct kmem_cache_node {
263         spinlock_t list_lock;
264
265 #ifdef CONFIG_SLAB
266         struct list_head slabs_partial; /* partial list first, better asm code */
267         struct list_head slabs_full;
268         struct list_head slabs_free;
269         unsigned long free_objects;
270         unsigned int free_limit;
271         unsigned int colour_next;       /* Per-node cache coloring */
272         struct array_cache *shared;     /* shared per node */
273         struct array_cache **alien;     /* on other nodes */
274         unsigned long next_reap;        /* updated without locking */
275         int free_touched;               /* updated without locking */
276 #endif
277
278 #ifdef CONFIG_SLUB
279         unsigned long nr_partial;
280         struct list_head partial;
281 #ifdef CONFIG_SLUB_DEBUG
282         atomic_long_t nr_slabs;
283         atomic_long_t total_objects;
284         struct list_head full;
285 #endif
286 #endif
287
288 };
289
290 void *slab_next(struct seq_file *m, void *p, loff_t *pos);
291 void slab_stop(struct seq_file *m, void *p);