mm: hugetlbfs: move the put/get_page slab and hugetlbfs optimization in a faster...
[cascardo/linux.git] / mm / swap.c
1 /*
2  *  linux/mm/swap.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * This file contains the default values for the operation of the
9  * Linux VM subsystem. Fine-tuning documentation can be found in
10  * Documentation/sysctl/vm.txt.
11  * Started 18.12.91
12  * Swap aging added 23.2.95, Stephen Tweedie.
13  * Buffermem limits added 12.3.98, Rik van Riel.
14  */
15
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/swap.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/pagevec.h>
23 #include <linux/init.h>
24 #include <linux/export.h>
25 #include <linux/mm_inline.h>
26 #include <linux/percpu_counter.h>
27 #include <linux/percpu.h>
28 #include <linux/cpu.h>
29 #include <linux/notifier.h>
30 #include <linux/backing-dev.h>
31 #include <linux/memcontrol.h>
32 #include <linux/gfp.h>
33 #include <linux/uio.h>
34 #include <linux/hugetlb.h>
35
36 #include "internal.h"
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/pagemap.h>
40
41 /* How many pages do we try to swap or page in/out together? */
42 int page_cluster;
43
44 static DEFINE_PER_CPU(struct pagevec, lru_add_pvec);
45 static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
46 static DEFINE_PER_CPU(struct pagevec, lru_deactivate_pvecs);
47
48 /*
49  * This path almost never happens for VM activity - pages are normally
50  * freed via pagevecs.  But it gets used by networking.
51  */
52 static void __page_cache_release(struct page *page)
53 {
54         if (PageLRU(page)) {
55                 struct zone *zone = page_zone(page);
56                 struct lruvec *lruvec;
57                 unsigned long flags;
58
59                 spin_lock_irqsave(&zone->lru_lock, flags);
60                 lruvec = mem_cgroup_page_lruvec(page, zone);
61                 VM_BUG_ON(!PageLRU(page));
62                 __ClearPageLRU(page);
63                 del_page_from_lru_list(page, lruvec, page_off_lru(page));
64                 spin_unlock_irqrestore(&zone->lru_lock, flags);
65         }
66 }
67
68 static void __put_single_page(struct page *page)
69 {
70         __page_cache_release(page);
71         free_hot_cold_page(page, 0);
72 }
73
74 static void __put_compound_page(struct page *page)
75 {
76         compound_page_dtor *dtor;
77
78         __page_cache_release(page);
79         dtor = get_compound_page_dtor(page);
80         (*dtor)(page);
81 }
82
83 static void put_compound_page(struct page *page)
84 {
85         if (unlikely(PageTail(page))) {
86                 /* __split_huge_page_refcount can run under us */
87                 struct page *page_head = compound_trans_head(page);
88
89                 /*
90                  * THP can not break up slab pages so avoid taking
91                  * compound_lock(). Slab performs non-atomic bit ops
92                  * on page->flags for better performance. In
93                  * particular slab_unlock() in slub used to be a hot
94                  * path. It is still hot on arches that do not support
95                  * this_cpu_cmpxchg_double().
96                  *
97                  * If "page" is part of a slab or hugetlbfs page it
98                  * cannot be splitted and the head page cannot change
99                  * from under us. And if "page" is part of a THP page
100                  * under splitting, if the head page pointed by the
101                  * THP tail isn't a THP head anymore, we'll find
102                  * PageTail clear after smp_rmb() and we'll treat it
103                  * as a single page.
104                  */
105                 if (PageSlab(page_head) || PageHeadHuge(page_head)) {
106                         /*
107                          * If "page" is a THP tail, we must read the tail page
108                          * flags after the head page flags. The
109                          * split_huge_page side enforces write memory
110                          * barriers between clearing PageTail and before the
111                          * head page can be freed and reallocated.
112                          */
113                         smp_rmb();
114                         if (likely(PageTail(page))) {
115                                 /*
116                                  * __split_huge_page_refcount
117                                  * cannot race here.
118                                  */
119                                 VM_BUG_ON(!PageHead(page_head));
120                                 VM_BUG_ON(page_mapcount(page) <= 0);
121                                 atomic_dec(&page->_mapcount);
122                                 if (put_page_testzero(page_head))
123                                         __put_compound_page(page_head);
124                                 return;
125                         } else
126                                 /*
127                                  * __split_huge_page_refcount
128                                  * run before us, "page" was a
129                                  * THP tail. The split
130                                  * page_head has been freed
131                                  * and reallocated as slab or
132                                  * hugetlbfs page of smaller
133                                  * order (only possible if
134                                  * reallocated as slab on
135                                  * x86).
136                                  */
137                                 goto out_put_single;
138                 }
139
140                 if (likely(page != page_head &&
141                            get_page_unless_zero(page_head))) {
142                         unsigned long flags;
143
144                         /*
145                          * page_head wasn't a dangling pointer but it
146                          * may not be a head page anymore by the time
147                          * we obtain the lock. That is ok as long as it
148                          * can't be freed from under us.
149                          */
150                         flags = compound_lock_irqsave(page_head);
151                         if (unlikely(!PageTail(page))) {
152                                 /* __split_huge_page_refcount run before us */
153                                 compound_unlock_irqrestore(page_head, flags);
154                                 if (put_page_testzero(page_head)) {
155                                         /*
156                                          * The head page may have been
157                                          * freed and reallocated as a
158                                          * compound page of smaller
159                                          * order and then freed again.
160                                          * All we know is that it
161                                          * cannot have become: a THP
162                                          * page, a compound page of
163                                          * higher order, a tail page.
164                                          * That is because we still
165                                          * hold the refcount of the
166                                          * split THP tail and
167                                          * page_head was the THP head
168                                          * before the split.
169                                          */
170                                         if (PageHead(page_head))
171                                                 __put_compound_page(page_head);
172                                         else
173                                                 __put_single_page(page_head);
174                                 }
175 out_put_single:
176                                 if (put_page_testzero(page))
177                                         __put_single_page(page);
178                                 return;
179                         }
180                         VM_BUG_ON(page_head != page->first_page);
181                         /*
182                          * We can release the refcount taken by
183                          * get_page_unless_zero() now that
184                          * __split_huge_page_refcount() is blocked on
185                          * the compound_lock.
186                          */
187                         if (put_page_testzero(page_head))
188                                 VM_BUG_ON(1);
189                         /* __split_huge_page_refcount will wait now */
190                         VM_BUG_ON(page_mapcount(page) <= 0);
191                         atomic_dec(&page->_mapcount);
192                         VM_BUG_ON(atomic_read(&page_head->_count) <= 0);
193                         VM_BUG_ON(atomic_read(&page->_count) != 0);
194                         compound_unlock_irqrestore(page_head, flags);
195
196                         if (put_page_testzero(page_head)) {
197                                 if (PageHead(page_head))
198                                         __put_compound_page(page_head);
199                                 else
200                                         __put_single_page(page_head);
201                         }
202                 } else {
203                         /* page_head is a dangling pointer */
204                         VM_BUG_ON(PageTail(page));
205                         goto out_put_single;
206                 }
207         } else if (put_page_testzero(page)) {
208                 if (PageHead(page))
209                         __put_compound_page(page);
210                 else
211                         __put_single_page(page);
212         }
213 }
214
215 void put_page(struct page *page)
216 {
217         if (unlikely(PageCompound(page)))
218                 put_compound_page(page);
219         else if (put_page_testzero(page))
220                 __put_single_page(page);
221 }
222 EXPORT_SYMBOL(put_page);
223
224 /*
225  * This function is exported but must not be called by anything other
226  * than get_page(). It implements the slow path of get_page().
227  */
228 bool __get_page_tail(struct page *page)
229 {
230         /*
231          * This takes care of get_page() if run on a tail page
232          * returned by one of the get_user_pages/follow_page variants.
233          * get_user_pages/follow_page itself doesn't need the compound
234          * lock because it runs __get_page_tail_foll() under the
235          * proper PT lock that already serializes against
236          * split_huge_page().
237          */
238         unsigned long flags;
239         bool got;
240         struct page *page_head = compound_trans_head(page);
241
242         /* Ref to put_compound_page() comment. */
243         if (PageSlab(page_head) || PageHeadHuge(page_head)) {
244                 smp_rmb();
245                 if (likely(PageTail(page))) {
246                         /*
247                          * This is a hugetlbfs page or a slab
248                          * page. __split_huge_page_refcount
249                          * cannot race here.
250                          */
251                         VM_BUG_ON(!PageHead(page_head));
252                         __get_page_tail_foll(page, true);
253                         return true;
254                 } else {
255                         /*
256                          * __split_huge_page_refcount run
257                          * before us, "page" was a THP
258                          * tail. The split page_head has been
259                          * freed and reallocated as slab or
260                          * hugetlbfs page of smaller order
261                          * (only possible if reallocated as
262                          * slab on x86).
263                          */
264                         return false;
265                 }
266         }
267
268         got = false;
269         if (likely(page != page_head && get_page_unless_zero(page_head))) {
270                 /*
271                  * page_head wasn't a dangling pointer but it
272                  * may not be a head page anymore by the time
273                  * we obtain the lock. That is ok as long as it
274                  * can't be freed from under us.
275                  */
276                 flags = compound_lock_irqsave(page_head);
277                 /* here __split_huge_page_refcount won't run anymore */
278                 if (likely(PageTail(page))) {
279                         __get_page_tail_foll(page, false);
280                         got = true;
281                 }
282                 compound_unlock_irqrestore(page_head, flags);
283                 if (unlikely(!got))
284                         put_page(page_head);
285         }
286         return got;
287 }
288 EXPORT_SYMBOL(__get_page_tail);
289
290 /**
291  * put_pages_list() - release a list of pages
292  * @pages: list of pages threaded on page->lru
293  *
294  * Release a list of pages which are strung together on page.lru.  Currently
295  * used by read_cache_pages() and related error recovery code.
296  */
297 void put_pages_list(struct list_head *pages)
298 {
299         while (!list_empty(pages)) {
300                 struct page *victim;
301
302                 victim = list_entry(pages->prev, struct page, lru);
303                 list_del(&victim->lru);
304                 page_cache_release(victim);
305         }
306 }
307 EXPORT_SYMBOL(put_pages_list);
308
309 /*
310  * get_kernel_pages() - pin kernel pages in memory
311  * @kiov:       An array of struct kvec structures
312  * @nr_segs:    number of segments to pin
313  * @write:      pinning for read/write, currently ignored
314  * @pages:      array that receives pointers to the pages pinned.
315  *              Should be at least nr_segs long.
316  *
317  * Returns number of pages pinned. This may be fewer than the number
318  * requested. If nr_pages is 0 or negative, returns 0. If no pages
319  * were pinned, returns -errno. Each page returned must be released
320  * with a put_page() call when it is finished with.
321  */
322 int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
323                 struct page **pages)
324 {
325         int seg;
326
327         for (seg = 0; seg < nr_segs; seg++) {
328                 if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
329                         return seg;
330
331                 pages[seg] = kmap_to_page(kiov[seg].iov_base);
332                 page_cache_get(pages[seg]);
333         }
334
335         return seg;
336 }
337 EXPORT_SYMBOL_GPL(get_kernel_pages);
338
339 /*
340  * get_kernel_page() - pin a kernel page in memory
341  * @start:      starting kernel address
342  * @write:      pinning for read/write, currently ignored
343  * @pages:      array that receives pointer to the page pinned.
344  *              Must be at least nr_segs long.
345  *
346  * Returns 1 if page is pinned. If the page was not pinned, returns
347  * -errno. The page returned must be released with a put_page() call
348  * when it is finished with.
349  */
350 int get_kernel_page(unsigned long start, int write, struct page **pages)
351 {
352         const struct kvec kiov = {
353                 .iov_base = (void *)start,
354                 .iov_len = PAGE_SIZE
355         };
356
357         return get_kernel_pages(&kiov, 1, write, pages);
358 }
359 EXPORT_SYMBOL_GPL(get_kernel_page);
360
361 static void pagevec_lru_move_fn(struct pagevec *pvec,
362         void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg),
363         void *arg)
364 {
365         int i;
366         struct zone *zone = NULL;
367         struct lruvec *lruvec;
368         unsigned long flags = 0;
369
370         for (i = 0; i < pagevec_count(pvec); i++) {
371                 struct page *page = pvec->pages[i];
372                 struct zone *pagezone = page_zone(page);
373
374                 if (pagezone != zone) {
375                         if (zone)
376                                 spin_unlock_irqrestore(&zone->lru_lock, flags);
377                         zone = pagezone;
378                         spin_lock_irqsave(&zone->lru_lock, flags);
379                 }
380
381                 lruvec = mem_cgroup_page_lruvec(page, zone);
382                 (*move_fn)(page, lruvec, arg);
383         }
384         if (zone)
385                 spin_unlock_irqrestore(&zone->lru_lock, flags);
386         release_pages(pvec->pages, pvec->nr, pvec->cold);
387         pagevec_reinit(pvec);
388 }
389
390 static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec,
391                                  void *arg)
392 {
393         int *pgmoved = arg;
394
395         if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
396                 enum lru_list lru = page_lru_base_type(page);
397                 list_move_tail(&page->lru, &lruvec->lists[lru]);
398                 (*pgmoved)++;
399         }
400 }
401
402 /*
403  * pagevec_move_tail() must be called with IRQ disabled.
404  * Otherwise this may cause nasty races.
405  */
406 static void pagevec_move_tail(struct pagevec *pvec)
407 {
408         int pgmoved = 0;
409
410         pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
411         __count_vm_events(PGROTATED, pgmoved);
412 }
413
414 /*
415  * Writeback is about to end against a page which has been marked for immediate
416  * reclaim.  If it still appears to be reclaimable, move it to the tail of the
417  * inactive list.
418  */
419 void rotate_reclaimable_page(struct page *page)
420 {
421         if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) &&
422             !PageUnevictable(page) && PageLRU(page)) {
423                 struct pagevec *pvec;
424                 unsigned long flags;
425
426                 page_cache_get(page);
427                 local_irq_save(flags);
428                 pvec = &__get_cpu_var(lru_rotate_pvecs);
429                 if (!pagevec_add(pvec, page))
430                         pagevec_move_tail(pvec);
431                 local_irq_restore(flags);
432         }
433 }
434
435 static void update_page_reclaim_stat(struct lruvec *lruvec,
436                                      int file, int rotated)
437 {
438         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
439
440         reclaim_stat->recent_scanned[file]++;
441         if (rotated)
442                 reclaim_stat->recent_rotated[file]++;
443 }
444
445 static void __activate_page(struct page *page, struct lruvec *lruvec,
446                             void *arg)
447 {
448         if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
449                 int file = page_is_file_cache(page);
450                 int lru = page_lru_base_type(page);
451
452                 del_page_from_lru_list(page, lruvec, lru);
453                 SetPageActive(page);
454                 lru += LRU_ACTIVE;
455                 add_page_to_lru_list(page, lruvec, lru);
456                 trace_mm_lru_activate(page, page_to_pfn(page));
457
458                 __count_vm_event(PGACTIVATE);
459                 update_page_reclaim_stat(lruvec, file, 1);
460         }
461 }
462
463 #ifdef CONFIG_SMP
464 static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs);
465
466 static void activate_page_drain(int cpu)
467 {
468         struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu);
469
470         if (pagevec_count(pvec))
471                 pagevec_lru_move_fn(pvec, __activate_page, NULL);
472 }
473
474 static bool need_activate_page_drain(int cpu)
475 {
476         return pagevec_count(&per_cpu(activate_page_pvecs, cpu)) != 0;
477 }
478
479 void activate_page(struct page *page)
480 {
481         if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
482                 struct pagevec *pvec = &get_cpu_var(activate_page_pvecs);
483
484                 page_cache_get(page);
485                 if (!pagevec_add(pvec, page))
486                         pagevec_lru_move_fn(pvec, __activate_page, NULL);
487                 put_cpu_var(activate_page_pvecs);
488         }
489 }
490
491 #else
492 static inline void activate_page_drain(int cpu)
493 {
494 }
495
496 static bool need_activate_page_drain(int cpu)
497 {
498         return false;
499 }
500
501 void activate_page(struct page *page)
502 {
503         struct zone *zone = page_zone(page);
504
505         spin_lock_irq(&zone->lru_lock);
506         __activate_page(page, mem_cgroup_page_lruvec(page, zone), NULL);
507         spin_unlock_irq(&zone->lru_lock);
508 }
509 #endif
510
511 static void __lru_cache_activate_page(struct page *page)
512 {
513         struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
514         int i;
515
516         /*
517          * Search backwards on the optimistic assumption that the page being
518          * activated has just been added to this pagevec. Note that only
519          * the local pagevec is examined as a !PageLRU page could be in the
520          * process of being released, reclaimed, migrated or on a remote
521          * pagevec that is currently being drained. Furthermore, marking
522          * a remote pagevec's page PageActive potentially hits a race where
523          * a page is marked PageActive just after it is added to the inactive
524          * list causing accounting errors and BUG_ON checks to trigger.
525          */
526         for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
527                 struct page *pagevec_page = pvec->pages[i];
528
529                 if (pagevec_page == page) {
530                         SetPageActive(page);
531                         break;
532                 }
533         }
534
535         put_cpu_var(lru_add_pvec);
536 }
537
538 /*
539  * Mark a page as having seen activity.
540  *
541  * inactive,unreferenced        ->      inactive,referenced
542  * inactive,referenced          ->      active,unreferenced
543  * active,unreferenced          ->      active,referenced
544  */
545 void mark_page_accessed(struct page *page)
546 {
547         if (!PageActive(page) && !PageUnevictable(page) &&
548                         PageReferenced(page)) {
549
550                 /*
551                  * If the page is on the LRU, queue it for activation via
552                  * activate_page_pvecs. Otherwise, assume the page is on a
553                  * pagevec, mark it active and it'll be moved to the active
554                  * LRU on the next drain.
555                  */
556                 if (PageLRU(page))
557                         activate_page(page);
558                 else
559                         __lru_cache_activate_page(page);
560                 ClearPageReferenced(page);
561         } else if (!PageReferenced(page)) {
562                 SetPageReferenced(page);
563         }
564 }
565 EXPORT_SYMBOL(mark_page_accessed);
566
567 /*
568  * Queue the page for addition to the LRU via pagevec. The decision on whether
569  * to add the page to the [in]active [file|anon] list is deferred until the
570  * pagevec is drained. This gives a chance for the caller of __lru_cache_add()
571  * have the page added to the active list using mark_page_accessed().
572  */
573 void __lru_cache_add(struct page *page)
574 {
575         struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
576
577         page_cache_get(page);
578         if (!pagevec_space(pvec))
579                 __pagevec_lru_add(pvec);
580         pagevec_add(pvec, page);
581         put_cpu_var(lru_add_pvec);
582 }
583 EXPORT_SYMBOL(__lru_cache_add);
584
585 /**
586  * lru_cache_add - add a page to a page list
587  * @page: the page to be added to the LRU.
588  */
589 void lru_cache_add(struct page *page)
590 {
591         VM_BUG_ON(PageActive(page) && PageUnevictable(page));
592         VM_BUG_ON(PageLRU(page));
593         __lru_cache_add(page);
594 }
595
596 /**
597  * add_page_to_unevictable_list - add a page to the unevictable list
598  * @page:  the page to be added to the unevictable list
599  *
600  * Add page directly to its zone's unevictable list.  To avoid races with
601  * tasks that might be making the page evictable, through eg. munlock,
602  * munmap or exit, while it's not on the lru, we want to add the page
603  * while it's locked or otherwise "invisible" to other tasks.  This is
604  * difficult to do when using the pagevec cache, so bypass that.
605  */
606 void add_page_to_unevictable_list(struct page *page)
607 {
608         struct zone *zone = page_zone(page);
609         struct lruvec *lruvec;
610
611         spin_lock_irq(&zone->lru_lock);
612         lruvec = mem_cgroup_page_lruvec(page, zone);
613         ClearPageActive(page);
614         SetPageUnevictable(page);
615         SetPageLRU(page);
616         add_page_to_lru_list(page, lruvec, LRU_UNEVICTABLE);
617         spin_unlock_irq(&zone->lru_lock);
618 }
619
620 /*
621  * If the page can not be invalidated, it is moved to the
622  * inactive list to speed up its reclaim.  It is moved to the
623  * head of the list, rather than the tail, to give the flusher
624  * threads some time to write it out, as this is much more
625  * effective than the single-page writeout from reclaim.
626  *
627  * If the page isn't page_mapped and dirty/writeback, the page
628  * could reclaim asap using PG_reclaim.
629  *
630  * 1. active, mapped page -> none
631  * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
632  * 3. inactive, mapped page -> none
633  * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
634  * 5. inactive, clean -> inactive, tail
635  * 6. Others -> none
636  *
637  * In 4, why it moves inactive's head, the VM expects the page would
638  * be write it out by flusher threads as this is much more effective
639  * than the single-page writeout from reclaim.
640  */
641 static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec,
642                               void *arg)
643 {
644         int lru, file;
645         bool active;
646
647         if (!PageLRU(page))
648                 return;
649
650         if (PageUnevictable(page))
651                 return;
652
653         /* Some processes are using the page */
654         if (page_mapped(page))
655                 return;
656
657         active = PageActive(page);
658         file = page_is_file_cache(page);
659         lru = page_lru_base_type(page);
660
661         del_page_from_lru_list(page, lruvec, lru + active);
662         ClearPageActive(page);
663         ClearPageReferenced(page);
664         add_page_to_lru_list(page, lruvec, lru);
665
666         if (PageWriteback(page) || PageDirty(page)) {
667                 /*
668                  * PG_reclaim could be raced with end_page_writeback
669                  * It can make readahead confusing.  But race window
670                  * is _really_ small and  it's non-critical problem.
671                  */
672                 SetPageReclaim(page);
673         } else {
674                 /*
675                  * The page's writeback ends up during pagevec
676                  * We moves tha page into tail of inactive.
677                  */
678                 list_move_tail(&page->lru, &lruvec->lists[lru]);
679                 __count_vm_event(PGROTATED);
680         }
681
682         if (active)
683                 __count_vm_event(PGDEACTIVATE);
684         update_page_reclaim_stat(lruvec, file, 0);
685 }
686
687 /*
688  * Drain pages out of the cpu's pagevecs.
689  * Either "cpu" is the current CPU, and preemption has already been
690  * disabled; or "cpu" is being hot-unplugged, and is already dead.
691  */
692 void lru_add_drain_cpu(int cpu)
693 {
694         struct pagevec *pvec = &per_cpu(lru_add_pvec, cpu);
695
696         if (pagevec_count(pvec))
697                 __pagevec_lru_add(pvec);
698
699         pvec = &per_cpu(lru_rotate_pvecs, cpu);
700         if (pagevec_count(pvec)) {
701                 unsigned long flags;
702
703                 /* No harm done if a racing interrupt already did this */
704                 local_irq_save(flags);
705                 pagevec_move_tail(pvec);
706                 local_irq_restore(flags);
707         }
708
709         pvec = &per_cpu(lru_deactivate_pvecs, cpu);
710         if (pagevec_count(pvec))
711                 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
712
713         activate_page_drain(cpu);
714 }
715
716 /**
717  * deactivate_page - forcefully deactivate a page
718  * @page: page to deactivate
719  *
720  * This function hints the VM that @page is a good reclaim candidate,
721  * for example if its invalidation fails due to the page being dirty
722  * or under writeback.
723  */
724 void deactivate_page(struct page *page)
725 {
726         /*
727          * In a workload with many unevictable page such as mprotect, unevictable
728          * page deactivation for accelerating reclaim is pointless.
729          */
730         if (PageUnevictable(page))
731                 return;
732
733         if (likely(get_page_unless_zero(page))) {
734                 struct pagevec *pvec = &get_cpu_var(lru_deactivate_pvecs);
735
736                 if (!pagevec_add(pvec, page))
737                         pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
738                 put_cpu_var(lru_deactivate_pvecs);
739         }
740 }
741
742 void lru_add_drain(void)
743 {
744         lru_add_drain_cpu(get_cpu());
745         put_cpu();
746 }
747
748 static void lru_add_drain_per_cpu(struct work_struct *dummy)
749 {
750         lru_add_drain();
751 }
752
753 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
754
755 void lru_add_drain_all(void)
756 {
757         static DEFINE_MUTEX(lock);
758         static struct cpumask has_work;
759         int cpu;
760
761         mutex_lock(&lock);
762         get_online_cpus();
763         cpumask_clear(&has_work);
764
765         for_each_online_cpu(cpu) {
766                 struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
767
768                 if (pagevec_count(&per_cpu(lru_add_pvec, cpu)) ||
769                     pagevec_count(&per_cpu(lru_rotate_pvecs, cpu)) ||
770                     pagevec_count(&per_cpu(lru_deactivate_pvecs, cpu)) ||
771                     need_activate_page_drain(cpu)) {
772                         INIT_WORK(work, lru_add_drain_per_cpu);
773                         schedule_work_on(cpu, work);
774                         cpumask_set_cpu(cpu, &has_work);
775                 }
776         }
777
778         for_each_cpu(cpu, &has_work)
779                 flush_work(&per_cpu(lru_add_drain_work, cpu));
780
781         put_online_cpus();
782         mutex_unlock(&lock);
783 }
784
785 /*
786  * Batched page_cache_release().  Decrement the reference count on all the
787  * passed pages.  If it fell to zero then remove the page from the LRU and
788  * free it.
789  *
790  * Avoid taking zone->lru_lock if possible, but if it is taken, retain it
791  * for the remainder of the operation.
792  *
793  * The locking in this function is against shrink_inactive_list(): we recheck
794  * the page count inside the lock to see whether shrink_inactive_list()
795  * grabbed the page via the LRU.  If it did, give up: shrink_inactive_list()
796  * will free it.
797  */
798 void release_pages(struct page **pages, int nr, int cold)
799 {
800         int i;
801         LIST_HEAD(pages_to_free);
802         struct zone *zone = NULL;
803         struct lruvec *lruvec;
804         unsigned long uninitialized_var(flags);
805
806         for (i = 0; i < nr; i++) {
807                 struct page *page = pages[i];
808
809                 if (unlikely(PageCompound(page))) {
810                         if (zone) {
811                                 spin_unlock_irqrestore(&zone->lru_lock, flags);
812                                 zone = NULL;
813                         }
814                         put_compound_page(page);
815                         continue;
816                 }
817
818                 if (!put_page_testzero(page))
819                         continue;
820
821                 if (PageLRU(page)) {
822                         struct zone *pagezone = page_zone(page);
823
824                         if (pagezone != zone) {
825                                 if (zone)
826                                         spin_unlock_irqrestore(&zone->lru_lock,
827                                                                         flags);
828                                 zone = pagezone;
829                                 spin_lock_irqsave(&zone->lru_lock, flags);
830                         }
831
832                         lruvec = mem_cgroup_page_lruvec(page, zone);
833                         VM_BUG_ON(!PageLRU(page));
834                         __ClearPageLRU(page);
835                         del_page_from_lru_list(page, lruvec, page_off_lru(page));
836                 }
837
838                 /* Clear Active bit in case of parallel mark_page_accessed */
839                 ClearPageActive(page);
840
841                 list_add(&page->lru, &pages_to_free);
842         }
843         if (zone)
844                 spin_unlock_irqrestore(&zone->lru_lock, flags);
845
846         free_hot_cold_page_list(&pages_to_free, cold);
847 }
848 EXPORT_SYMBOL(release_pages);
849
850 /*
851  * The pages which we're about to release may be in the deferred lru-addition
852  * queues.  That would prevent them from really being freed right now.  That's
853  * OK from a correctness point of view but is inefficient - those pages may be
854  * cache-warm and we want to give them back to the page allocator ASAP.
855  *
856  * So __pagevec_release() will drain those queues here.  __pagevec_lru_add()
857  * and __pagevec_lru_add_active() call release_pages() directly to avoid
858  * mutual recursion.
859  */
860 void __pagevec_release(struct pagevec *pvec)
861 {
862         lru_add_drain();
863         release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
864         pagevec_reinit(pvec);
865 }
866 EXPORT_SYMBOL(__pagevec_release);
867
868 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
869 /* used by __split_huge_page_refcount() */
870 void lru_add_page_tail(struct page *page, struct page *page_tail,
871                        struct lruvec *lruvec, struct list_head *list)
872 {
873         const int file = 0;
874
875         VM_BUG_ON(!PageHead(page));
876         VM_BUG_ON(PageCompound(page_tail));
877         VM_BUG_ON(PageLRU(page_tail));
878         VM_BUG_ON(NR_CPUS != 1 &&
879                   !spin_is_locked(&lruvec_zone(lruvec)->lru_lock));
880
881         if (!list)
882                 SetPageLRU(page_tail);
883
884         if (likely(PageLRU(page)))
885                 list_add_tail(&page_tail->lru, &page->lru);
886         else if (list) {
887                 /* page reclaim is reclaiming a huge page */
888                 get_page(page_tail);
889                 list_add_tail(&page_tail->lru, list);
890         } else {
891                 struct list_head *list_head;
892                 /*
893                  * Head page has not yet been counted, as an hpage,
894                  * so we must account for each subpage individually.
895                  *
896                  * Use the standard add function to put page_tail on the list,
897                  * but then correct its position so they all end up in order.
898                  */
899                 add_page_to_lru_list(page_tail, lruvec, page_lru(page_tail));
900                 list_head = page_tail->lru.prev;
901                 list_move_tail(&page_tail->lru, list_head);
902         }
903
904         if (!PageUnevictable(page))
905                 update_page_reclaim_stat(lruvec, file, PageActive(page_tail));
906 }
907 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
908
909 static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec,
910                                  void *arg)
911 {
912         int file = page_is_file_cache(page);
913         int active = PageActive(page);
914         enum lru_list lru = page_lru(page);
915
916         VM_BUG_ON(PageLRU(page));
917
918         SetPageLRU(page);
919         add_page_to_lru_list(page, lruvec, lru);
920         update_page_reclaim_stat(lruvec, file, active);
921         trace_mm_lru_insertion(page, page_to_pfn(page), lru, trace_pagemap_flags(page));
922 }
923
924 /*
925  * Add the passed pages to the LRU, then drop the caller's refcount
926  * on them.  Reinitialises the caller's pagevec.
927  */
928 void __pagevec_lru_add(struct pagevec *pvec)
929 {
930         pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, NULL);
931 }
932 EXPORT_SYMBOL(__pagevec_lru_add);
933
934 /**
935  * pagevec_lookup - gang pagecache lookup
936  * @pvec:       Where the resulting pages are placed
937  * @mapping:    The address_space to search
938  * @start:      The starting page index
939  * @nr_pages:   The maximum number of pages
940  *
941  * pagevec_lookup() will search for and return a group of up to @nr_pages pages
942  * in the mapping.  The pages are placed in @pvec.  pagevec_lookup() takes a
943  * reference against the pages in @pvec.
944  *
945  * The search returns a group of mapping-contiguous pages with ascending
946  * indexes.  There may be holes in the indices due to not-present pages.
947  *
948  * pagevec_lookup() returns the number of pages which were found.
949  */
950 unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
951                 pgoff_t start, unsigned nr_pages)
952 {
953         pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
954         return pagevec_count(pvec);
955 }
956 EXPORT_SYMBOL(pagevec_lookup);
957
958 unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
959                 pgoff_t *index, int tag, unsigned nr_pages)
960 {
961         pvec->nr = find_get_pages_tag(mapping, index, tag,
962                                         nr_pages, pvec->pages);
963         return pagevec_count(pvec);
964 }
965 EXPORT_SYMBOL(pagevec_lookup_tag);
966
967 /*
968  * Perform any setup for the swap system
969  */
970 void __init swap_setup(void)
971 {
972         unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT);
973 #ifdef CONFIG_SWAP
974         int i;
975
976         if (bdi_init(swapper_spaces[0].backing_dev_info))
977                 panic("Failed to init swap bdi");
978         for (i = 0; i < MAX_SWAPFILES; i++) {
979                 spin_lock_init(&swapper_spaces[i].tree_lock);
980                 INIT_LIST_HEAD(&swapper_spaces[i].i_mmap_nonlinear);
981         }
982 #endif
983
984         /* Use a smaller cluster for small-memory machines */
985         if (megs < 16)
986                 page_cluster = 2;
987         else
988                 page_cluster = 3;
989         /*
990          * Right now other parts of the system means that we
991          * _really_ don't want to cluster much more
992          */
993 }