CHROMIUM: chromeos_acpi: Enable USB wake from S3
[cascardo/linux.git] / mm / vmscan.c
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h>  /* for try_to_release_page(),
27                                         buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/backing-dev.h>
30 #include <linux/rmap.h>
31 #include <linux/topology.h>
32 #include <linux/cpu.h>
33 #include <linux/cpuset.h>
34 #include <linux/compaction.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/memcontrol.h>
41 #include <linux/delayacct.h>
42 #include <linux/sysctl.h>
43 #include <linux/oom.h>
44 #include <linux/prefetch.h>
45
46 #include <asm/tlbflush.h>
47 #include <asm/div64.h>
48
49 #include <linux/swapops.h>
50
51 #include "internal.h"
52
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/vmscan.h>
55
56 /*
57  * reclaim_mode determines how the inactive list is shrunk
58  * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
59  * RECLAIM_MODE_ASYNC:  Do not block
60  * RECLAIM_MODE_SYNC:   Allow blocking e.g. call wait_on_page_writeback
61  * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
62  *                      page from the LRU and reclaim all pages within a
63  *                      naturally aligned range
64  * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
65  *                      order-0 pages and then compact the zone
66  */
67 typedef unsigned __bitwise__ reclaim_mode_t;
68 #define RECLAIM_MODE_SINGLE             ((__force reclaim_mode_t)0x01u)
69 #define RECLAIM_MODE_ASYNC              ((__force reclaim_mode_t)0x02u)
70 #define RECLAIM_MODE_SYNC               ((__force reclaim_mode_t)0x04u)
71 #define RECLAIM_MODE_LUMPYRECLAIM       ((__force reclaim_mode_t)0x08u)
72 #define RECLAIM_MODE_COMPACTION         ((__force reclaim_mode_t)0x10u)
73
74 struct scan_control {
75         /* Incremented by the number of inactive pages that were scanned */
76         unsigned long nr_scanned;
77
78         /* Number of pages freed so far during a call to shrink_zones() */
79         unsigned long nr_reclaimed;
80
81         /* How many pages shrink_list() should reclaim */
82         unsigned long nr_to_reclaim;
83
84         unsigned long hibernation_mode;
85
86         /* This context's GFP mask */
87         gfp_t gfp_mask;
88
89         int may_writepage;
90
91         /* Can mapped pages be reclaimed? */
92         int may_unmap;
93
94         /* Can pages be swapped as part of reclaim? */
95         int may_swap;
96
97         int order;
98
99         /*
100          * Intend to reclaim enough continuous memory rather than reclaim
101          * enough amount of memory. i.e, mode for high order allocation.
102          */
103         reclaim_mode_t reclaim_mode;
104
105         /*
106          * The memory cgroup that hit its limit and as a result is the
107          * primary target of this reclaim invocation.
108          */
109         struct mem_cgroup *target_mem_cgroup;
110
111         /*
112          * Nodemask of nodes allowed by the caller. If NULL, all nodes
113          * are scanned.
114          */
115         nodemask_t      *nodemask;
116 };
117
118 struct mem_cgroup_zone {
119         struct mem_cgroup *mem_cgroup;
120         struct zone *zone;
121 };
122
123 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
124
125 #ifdef ARCH_HAS_PREFETCH
126 #define prefetch_prev_lru_page(_page, _base, _field)                    \
127         do {                                                            \
128                 if ((_page)->lru.prev != _base) {                       \
129                         struct page *prev;                              \
130                                                                         \
131                         prev = lru_to_page(&(_page->lru));              \
132                         prefetch(&prev->_field);                        \
133                 }                                                       \
134         } while (0)
135 #else
136 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
137 #endif
138
139 #ifdef ARCH_HAS_PREFETCHW
140 #define prefetchw_prev_lru_page(_page, _base, _field)                   \
141         do {                                                            \
142                 if ((_page)->lru.prev != _base) {                       \
143                         struct page *prev;                              \
144                                                                         \
145                         prev = lru_to_page(&(_page->lru));              \
146                         prefetchw(&prev->_field);                       \
147                 }                                                       \
148         } while (0)
149 #else
150 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
151 #endif
152
153 /*
154  * From 0 .. 100.  Higher means more swappy.
155  */
156 int vm_swappiness = 60;
157 long vm_total_pages;    /* The total number of pages which the VM controls */
158
159 /*
160  * Low watermark used to prevent fscache thrashing during low memory.
161  */
162 int min_filelist_kbytes;
163
164 static LIST_HEAD(shrinker_list);
165 static DECLARE_RWSEM(shrinker_rwsem);
166
167 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
168 static bool global_reclaim(struct scan_control *sc)
169 {
170         return !sc->target_mem_cgroup;
171 }
172
173 static bool scanning_global_lru(struct mem_cgroup_zone *mz)
174 {
175         return !mz->mem_cgroup;
176 }
177 #else
178 static bool global_reclaim(struct scan_control *sc)
179 {
180         return true;
181 }
182
183 static bool scanning_global_lru(struct mem_cgroup_zone *mz)
184 {
185         return true;
186 }
187 #endif
188
189 static struct zone_reclaim_stat *get_reclaim_stat(struct mem_cgroup_zone *mz)
190 {
191         if (!scanning_global_lru(mz))
192                 return mem_cgroup_get_reclaim_stat(mz->mem_cgroup, mz->zone);
193
194         return &mz->zone->reclaim_stat;
195 }
196
197 static unsigned long zone_nr_lru_pages(struct mem_cgroup_zone *mz,
198                                        enum lru_list lru)
199 {
200         if (!scanning_global_lru(mz))
201                 return mem_cgroup_zone_nr_lru_pages(mz->mem_cgroup,
202                                                     zone_to_nid(mz->zone),
203                                                     zone_idx(mz->zone),
204                                                     BIT(lru));
205
206         return zone_page_state(mz->zone, NR_LRU_BASE + lru);
207 }
208
209
210 /*
211  * Add a shrinker callback to be called from the vm
212  */
213 void register_shrinker(struct shrinker *shrinker)
214 {
215         atomic_long_set(&shrinker->nr_in_batch, 0);
216         down_write(&shrinker_rwsem);
217         list_add_tail(&shrinker->list, &shrinker_list);
218         up_write(&shrinker_rwsem);
219 }
220 EXPORT_SYMBOL(register_shrinker);
221
222 /*
223  * Remove one
224  */
225 void unregister_shrinker(struct shrinker *shrinker)
226 {
227         down_write(&shrinker_rwsem);
228         list_del(&shrinker->list);
229         up_write(&shrinker_rwsem);
230 }
231 EXPORT_SYMBOL(unregister_shrinker);
232
233 static inline int do_shrinker_shrink(struct shrinker *shrinker,
234                                      struct shrink_control *sc,
235                                      unsigned long nr_to_scan)
236 {
237         sc->nr_to_scan = nr_to_scan;
238         return (*shrinker->shrink)(shrinker, sc);
239 }
240
241 #define SHRINK_BATCH 128
242 /*
243  * Call the shrink functions to age shrinkable caches
244  *
245  * Here we assume it costs one seek to replace a lru page and that it also
246  * takes a seek to recreate a cache object.  With this in mind we age equal
247  * percentages of the lru and ageable caches.  This should balance the seeks
248  * generated by these structures.
249  *
250  * If the vm encountered mapped pages on the LRU it increase the pressure on
251  * slab to avoid swapping.
252  *
253  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
254  *
255  * `lru_pages' represents the number of on-LRU pages in all the zones which
256  * are eligible for the caller's allocation attempt.  It is used for balancing
257  * slab reclaim versus page reclaim.
258  *
259  * Returns the number of slab objects which we shrunk.
260  */
261 unsigned long shrink_slab(struct shrink_control *shrink,
262                           unsigned long nr_pages_scanned,
263                           unsigned long lru_pages)
264 {
265         struct shrinker *shrinker;
266         unsigned long ret = 0;
267
268         if (nr_pages_scanned == 0)
269                 nr_pages_scanned = SWAP_CLUSTER_MAX;
270
271         if (!down_read_trylock(&shrinker_rwsem)) {
272                 /* Assume we'll be able to shrink next time */
273                 ret = 1;
274                 goto out;
275         }
276
277         list_for_each_entry(shrinker, &shrinker_list, list) {
278                 unsigned long long delta;
279                 long total_scan;
280                 long max_pass;
281                 int shrink_ret = 0;
282                 long nr;
283                 long new_nr;
284                 long batch_size = shrinker->batch ? shrinker->batch
285                                                   : SHRINK_BATCH;
286
287                 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
288                 if (max_pass <= 0)
289                         continue;
290
291                 /*
292                  * copy the current shrinker scan count into a local variable
293                  * and zero it so that other concurrent shrinker invocations
294                  * don't also do this scanning work.
295                  */
296                 nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
297
298                 total_scan = nr;
299                 delta = (4 * nr_pages_scanned) / shrinker->seeks;
300                 delta *= max_pass;
301                 do_div(delta, lru_pages + 1);
302                 total_scan += delta;
303                 if (total_scan < 0) {
304                         printk(KERN_ERR "shrink_slab: %pF negative objects to "
305                                "delete nr=%ld\n",
306                                shrinker->shrink, total_scan);
307                         total_scan = max_pass;
308                 }
309
310                 /*
311                  * We need to avoid excessive windup on filesystem shrinkers
312                  * due to large numbers of GFP_NOFS allocations causing the
313                  * shrinkers to return -1 all the time. This results in a large
314                  * nr being built up so when a shrink that can do some work
315                  * comes along it empties the entire cache due to nr >>>
316                  * max_pass.  This is bad for sustaining a working set in
317                  * memory.
318                  *
319                  * Hence only allow the shrinker to scan the entire cache when
320                  * a large delta change is calculated directly.
321                  */
322                 if (delta < max_pass / 4)
323                         total_scan = min(total_scan, max_pass / 2);
324
325                 /*
326                  * Avoid risking looping forever due to too large nr value:
327                  * never try to free more than twice the estimate number of
328                  * freeable entries.
329                  */
330                 if (total_scan > max_pass * 2)
331                         total_scan = max_pass * 2;
332
333                 trace_mm_shrink_slab_start(shrinker, shrink, nr,
334                                         nr_pages_scanned, lru_pages,
335                                         max_pass, delta, total_scan);
336
337                 while (total_scan >= batch_size) {
338                         int nr_before;
339
340                         nr_before = do_shrinker_shrink(shrinker, shrink, 0);
341                         shrink_ret = do_shrinker_shrink(shrinker, shrink,
342                                                         batch_size);
343                         if (shrink_ret == -1)
344                                 break;
345                         if (shrink_ret < nr_before)
346                                 ret += nr_before - shrink_ret;
347                         count_vm_events(SLABS_SCANNED, batch_size);
348                         total_scan -= batch_size;
349
350                         cond_resched();
351                 }
352
353                 /*
354                  * move the unused scan count back into the shrinker in a
355                  * manner that handles concurrent updates. If we exhausted the
356                  * scan, there is no need to do an update.
357                  */
358                 if (total_scan > 0)
359                         new_nr = atomic_long_add_return(total_scan,
360                                         &shrinker->nr_in_batch);
361                 else
362                         new_nr = atomic_long_read(&shrinker->nr_in_batch);
363
364                 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
365         }
366         up_read(&shrinker_rwsem);
367 out:
368         cond_resched();
369         return ret;
370 }
371
372 static void set_reclaim_mode(int priority, struct scan_control *sc,
373                                    bool sync)
374 {
375         reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
376
377         /*
378          * Initially assume we are entering either lumpy reclaim or
379          * reclaim/compaction.Depending on the order, we will either set the
380          * sync mode or just reclaim order-0 pages later.
381          */
382         if (COMPACTION_BUILD)
383                 sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
384         else
385                 sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
386
387         /*
388          * Avoid using lumpy reclaim or reclaim/compaction if possible by
389          * restricting when its set to either costly allocations or when
390          * under memory pressure
391          */
392         if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
393                 sc->reclaim_mode |= syncmode;
394         else if (sc->order && priority < DEF_PRIORITY - 2)
395                 sc->reclaim_mode |= syncmode;
396         else
397                 sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
398 }
399
400 static void reset_reclaim_mode(struct scan_control *sc)
401 {
402         sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
403 }
404
405 static inline int is_page_cache_freeable(struct page *page)
406 {
407         /*
408          * A freeable page cache page is referenced only by the caller
409          * that isolated the page, the page cache radix tree and
410          * optional buffer heads at page->private.
411          */
412         return page_count(page) - page_has_private(page) == 2;
413 }
414
415 static int may_write_to_queue(struct backing_dev_info *bdi,
416                               struct scan_control *sc)
417 {
418         if (current->flags & PF_SWAPWRITE)
419                 return 1;
420         if (!bdi_write_congested(bdi))
421                 return 1;
422         if (bdi == current->backing_dev_info)
423                 return 1;
424
425         /* lumpy reclaim for hugepage often need a lot of write */
426         if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
427                 return 1;
428         return 0;
429 }
430
431 /*
432  * We detected a synchronous write error writing a page out.  Probably
433  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
434  * fsync(), msync() or close().
435  *
436  * The tricky part is that after writepage we cannot touch the mapping: nothing
437  * prevents it from being freed up.  But we have a ref on the page and once
438  * that page is locked, the mapping is pinned.
439  *
440  * We're allowed to run sleeping lock_page() here because we know the caller has
441  * __GFP_FS.
442  */
443 static void handle_write_error(struct address_space *mapping,
444                                 struct page *page, int error)
445 {
446         lock_page(page);
447         if (page_mapping(page) == mapping)
448                 mapping_set_error(mapping, error);
449         unlock_page(page);
450 }
451
452 /* possible outcome of pageout() */
453 typedef enum {
454         /* failed to write page out, page is locked */
455         PAGE_KEEP,
456         /* move page to the active list, page is locked */
457         PAGE_ACTIVATE,
458         /* page has been sent to the disk successfully, page is unlocked */
459         PAGE_SUCCESS,
460         /* page is clean and locked */
461         PAGE_CLEAN,
462 } pageout_t;
463
464 /*
465  * pageout is called by shrink_page_list() for each dirty page.
466  * Calls ->writepage().
467  */
468 static pageout_t pageout(struct page *page, struct address_space *mapping,
469                          struct scan_control *sc)
470 {
471         /*
472          * If the page is dirty, only perform writeback if that write
473          * will be non-blocking.  To prevent this allocation from being
474          * stalled by pagecache activity.  But note that there may be
475          * stalls if we need to run get_block().  We could test
476          * PagePrivate for that.
477          *
478          * If this process is currently in __generic_file_aio_write() against
479          * this page's queue, we can perform writeback even if that
480          * will block.
481          *
482          * If the page is swapcache, write it back even if that would
483          * block, for some throttling. This happens by accident, because
484          * swap_backing_dev_info is bust: it doesn't reflect the
485          * congestion state of the swapdevs.  Easy to fix, if needed.
486          */
487         if (!is_page_cache_freeable(page))
488                 return PAGE_KEEP;
489         if (!mapping) {
490                 /*
491                  * Some data journaling orphaned pages can have
492                  * page->mapping == NULL while being dirty with clean buffers.
493                  */
494                 if (page_has_private(page)) {
495                         if (try_to_free_buffers(page)) {
496                                 ClearPageDirty(page);
497                                 printk("%s: orphaned page\n", __func__);
498                                 return PAGE_CLEAN;
499                         }
500                 }
501                 return PAGE_KEEP;
502         }
503         if (mapping->a_ops->writepage == NULL)
504                 return PAGE_ACTIVATE;
505         if (!may_write_to_queue(mapping->backing_dev_info, sc))
506                 return PAGE_KEEP;
507
508         if (clear_page_dirty_for_io(page)) {
509                 int res;
510                 struct writeback_control wbc = {
511                         .sync_mode = WB_SYNC_NONE,
512                         .nr_to_write = SWAP_CLUSTER_MAX,
513                         .range_start = 0,
514                         .range_end = LLONG_MAX,
515                         .for_reclaim = 1,
516                 };
517
518                 SetPageReclaim(page);
519                 res = mapping->a_ops->writepage(page, &wbc);
520                 if (res < 0)
521                         handle_write_error(mapping, page, res);
522                 if (res == AOP_WRITEPAGE_ACTIVATE) {
523                         ClearPageReclaim(page);
524                         return PAGE_ACTIVATE;
525                 }
526
527                 if (!PageWriteback(page)) {
528                         /* synchronous write or broken a_ops? */
529                         ClearPageReclaim(page);
530                 }
531                 trace_mm_vmscan_writepage(page,
532                         trace_reclaim_flags(page, sc->reclaim_mode));
533                 inc_zone_page_state(page, NR_VMSCAN_WRITE);
534                 return PAGE_SUCCESS;
535         }
536
537         return PAGE_CLEAN;
538 }
539
540 /*
541  * Same as remove_mapping, but if the page is removed from the mapping, it
542  * gets returned with a refcount of 0.
543  */
544 static int __remove_mapping(struct address_space *mapping, struct page *page)
545 {
546         BUG_ON(!PageLocked(page));
547         BUG_ON(mapping != page_mapping(page));
548
549         spin_lock_irq(&mapping->tree_lock);
550         /*
551          * The non racy check for a busy page.
552          *
553          * Must be careful with the order of the tests. When someone has
554          * a ref to the page, it may be possible that they dirty it then
555          * drop the reference. So if PageDirty is tested before page_count
556          * here, then the following race may occur:
557          *
558          * get_user_pages(&page);
559          * [user mapping goes away]
560          * write_to(page);
561          *                              !PageDirty(page)    [good]
562          * SetPageDirty(page);
563          * put_page(page);
564          *                              !page_count(page)   [good, discard it]
565          *
566          * [oops, our write_to data is lost]
567          *
568          * Reversing the order of the tests ensures such a situation cannot
569          * escape unnoticed. The smp_rmb is needed to ensure the page->flags
570          * load is not satisfied before that of page->_count.
571          *
572          * Note that if SetPageDirty is always performed via set_page_dirty,
573          * and thus under tree_lock, then this ordering is not required.
574          */
575         if (!page_freeze_refs(page, 2))
576                 goto cannot_free;
577         /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
578         if (unlikely(PageDirty(page))) {
579                 page_unfreeze_refs(page, 2);
580                 goto cannot_free;
581         }
582
583         if (PageSwapCache(page)) {
584                 swp_entry_t swap = { .val = page_private(page) };
585                 __delete_from_swap_cache(page);
586                 spin_unlock_irq(&mapping->tree_lock);
587                 swapcache_free(swap, page);
588         } else {
589                 void (*freepage)(struct page *);
590
591                 freepage = mapping->a_ops->freepage;
592
593                 __delete_from_page_cache(page);
594                 spin_unlock_irq(&mapping->tree_lock);
595                 mem_cgroup_uncharge_cache_page(page);
596
597                 if (freepage != NULL)
598                         freepage(page);
599         }
600
601         return 1;
602
603 cannot_free:
604         spin_unlock_irq(&mapping->tree_lock);
605         return 0;
606 }
607
608 /*
609  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
610  * someone else has a ref on the page, abort and return 0.  If it was
611  * successfully detached, return 1.  Assumes the caller has a single ref on
612  * this page.
613  */
614 int remove_mapping(struct address_space *mapping, struct page *page)
615 {
616         if (__remove_mapping(mapping, page)) {
617                 /*
618                  * Unfreezing the refcount with 1 rather than 2 effectively
619                  * drops the pagecache ref for us without requiring another
620                  * atomic operation.
621                  */
622                 page_unfreeze_refs(page, 1);
623                 return 1;
624         }
625         return 0;
626 }
627
628 /**
629  * putback_lru_page - put previously isolated page onto appropriate LRU list
630  * @page: page to be put back to appropriate lru list
631  *
632  * Add previously isolated @page to appropriate LRU list.
633  * Page may still be unevictable for other reasons.
634  *
635  * lru_lock must not be held, interrupts must be enabled.
636  */
637 void putback_lru_page(struct page *page)
638 {
639         int lru;
640         int active = !!TestClearPageActive(page);
641         int was_unevictable = PageUnevictable(page);
642
643         VM_BUG_ON(PageLRU(page));
644
645 redo:
646         ClearPageUnevictable(page);
647
648         if (page_evictable(page, NULL)) {
649                 /*
650                  * For evictable pages, we can use the cache.
651                  * In event of a race, worst case is we end up with an
652                  * unevictable page on [in]active list.
653                  * We know how to handle that.
654                  */
655                 lru = active + page_lru_base_type(page);
656                 lru_cache_add_lru(page, lru);
657         } else {
658                 /*
659                  * Put unevictable pages directly on zone's unevictable
660                  * list.
661                  */
662                 lru = LRU_UNEVICTABLE;
663                 add_page_to_unevictable_list(page);
664                 /*
665                  * When racing with an mlock or AS_UNEVICTABLE clearing
666                  * (page is unlocked) make sure that if the other thread
667                  * does not observe our setting of PG_lru and fails
668                  * isolation/check_move_unevictable_pages,
669                  * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
670                  * the page back to the evictable list.
671                  *
672                  * The other side is TestClearPageMlocked() or shmem_lock().
673                  */
674                 smp_mb();
675         }
676
677         /*
678          * page's status can change while we move it among lru. If an evictable
679          * page is on unevictable list, it never be freed. To avoid that,
680          * check after we added it to the list, again.
681          */
682         if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
683                 if (!isolate_lru_page(page)) {
684                         put_page(page);
685                         goto redo;
686                 }
687                 /* This means someone else dropped this page from LRU
688                  * So, it will be freed or putback to LRU again. There is
689                  * nothing to do here.
690                  */
691         }
692
693         if (was_unevictable && lru != LRU_UNEVICTABLE)
694                 count_vm_event(UNEVICTABLE_PGRESCUED);
695         else if (!was_unevictable && lru == LRU_UNEVICTABLE)
696                 count_vm_event(UNEVICTABLE_PGCULLED);
697
698         put_page(page);         /* drop ref from isolate */
699 }
700
701 enum page_references {
702         PAGEREF_RECLAIM,
703         PAGEREF_RECLAIM_CLEAN,
704         PAGEREF_KEEP,
705         PAGEREF_ACTIVATE,
706 };
707
708 static enum page_references page_check_references(struct page *page,
709                                                   struct mem_cgroup_zone *mz,
710                                                   struct scan_control *sc)
711 {
712         int referenced_ptes, referenced_page;
713         unsigned long vm_flags;
714
715         referenced_ptes = page_referenced(page, 1, mz->mem_cgroup, &vm_flags);
716         referenced_page = TestClearPageReferenced(page);
717
718         /* Lumpy reclaim - ignore references */
719         if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
720                 return PAGEREF_RECLAIM;
721
722         /*
723          * Mlock lost the isolation race with us.  Let try_to_unmap()
724          * move the page to the unevictable list.
725          */
726         if (vm_flags & VM_LOCKED)
727                 return PAGEREF_RECLAIM;
728
729         if (referenced_ptes) {
730                 if (PageAnon(page))
731                         return PAGEREF_ACTIVATE;
732                 /*
733                  * All mapped pages start out with page table
734                  * references from the instantiating fault, so we need
735                  * to look twice if a mapped file page is used more
736                  * than once.
737                  *
738                  * Mark it and spare it for another trip around the
739                  * inactive list.  Another page table reference will
740                  * lead to its activation.
741                  *
742                  * Note: the mark is set for activated pages as well
743                  * so that recently deactivated but used pages are
744                  * quickly recovered.
745                  */
746                 SetPageReferenced(page);
747
748                 if (referenced_page || referenced_ptes > 1)
749                         return PAGEREF_ACTIVATE;
750
751                 /*
752                  * Activate file-backed executable pages after first usage.
753                  */
754                 if (vm_flags & VM_EXEC)
755                         return PAGEREF_ACTIVATE;
756
757                 return PAGEREF_KEEP;
758         }
759
760         /* Reclaim if clean, defer dirty pages to writeback */
761         if (referenced_page && !PageSwapBacked(page))
762                 return PAGEREF_RECLAIM_CLEAN;
763
764         return PAGEREF_RECLAIM;
765 }
766
767 /*
768  * shrink_page_list() returns the number of reclaimed pages
769  */
770 static unsigned long shrink_page_list(struct list_head *page_list,
771                                       struct mem_cgroup_zone *mz,
772                                       struct scan_control *sc,
773                                       int priority,
774                                       unsigned long *ret_nr_dirty,
775                                       unsigned long *ret_nr_writeback)
776 {
777         LIST_HEAD(ret_pages);
778         LIST_HEAD(free_pages);
779         int pgactivate = 0;
780         unsigned long nr_dirty = 0;
781         unsigned long nr_congested = 0;
782         unsigned long nr_reclaimed = 0;
783         unsigned long nr_writeback = 0;
784
785         cond_resched();
786
787         while (!list_empty(page_list)) {
788                 enum page_references references;
789                 struct address_space *mapping;
790                 struct page *page;
791                 int may_enter_fs;
792
793                 cond_resched();
794
795                 page = lru_to_page(page_list);
796                 list_del(&page->lru);
797
798                 if (!trylock_page(page))
799                         goto keep;
800
801                 VM_BUG_ON(PageActive(page));
802                 VM_BUG_ON(page_zone(page) != mz->zone);
803
804                 sc->nr_scanned++;
805
806                 if (unlikely(!page_evictable(page, NULL)))
807                         goto cull_mlocked;
808
809                 if (!sc->may_unmap && page_mapped(page))
810                         goto keep_locked;
811
812                 /* Double the slab pressure for mapped and swapcache pages */
813                 if (page_mapped(page) || PageSwapCache(page))
814                         sc->nr_scanned++;
815
816                 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
817                         (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
818
819                 if (PageWriteback(page)) {
820                         nr_writeback++;
821                         /*
822                          * Synchronous reclaim cannot queue pages for
823                          * writeback due to the possibility of stack overflow
824                          * but if it encounters a page under writeback, wait
825                          * for the IO to complete.
826                          */
827                         if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
828                             may_enter_fs)
829                                 wait_on_page_writeback(page);
830                         else {
831                                 unlock_page(page);
832                                 goto keep_lumpy;
833                         }
834                 }
835
836                 references = page_check_references(page, mz, sc);
837                 switch (references) {
838                 case PAGEREF_ACTIVATE:
839                         goto activate_locked;
840                 case PAGEREF_KEEP:
841                         goto keep_locked;
842                 case PAGEREF_RECLAIM:
843                 case PAGEREF_RECLAIM_CLEAN:
844                         ; /* try to reclaim the page below */
845                 }
846
847                 /*
848                  * Anonymous process memory has backing store?
849                  * Try to allocate it some swap space here.
850                  */
851                 if (PageAnon(page) && !PageSwapCache(page)) {
852                         if (!(sc->gfp_mask & __GFP_IO))
853                                 goto keep_locked;
854                         if (!add_to_swap(page))
855                                 goto activate_locked;
856                         may_enter_fs = 1;
857                 }
858
859                 mapping = page_mapping(page);
860
861                 /*
862                  * The page is mapped into the page tables of one or more
863                  * processes. Try to unmap it here.
864                  */
865                 if (page_mapped(page) && mapping) {
866                         switch (try_to_unmap(page, TTU_UNMAP)) {
867                         case SWAP_FAIL:
868                                 goto activate_locked;
869                         case SWAP_AGAIN:
870                                 goto keep_locked;
871                         case SWAP_MLOCK:
872                                 goto cull_mlocked;
873                         case SWAP_SUCCESS:
874                                 ; /* try to free the page below */
875                         }
876                 }
877
878                 if (PageDirty(page)) {
879                         nr_dirty++;
880
881                         /*
882                          * Only kswapd can writeback filesystem pages to
883                          * avoid risk of stack overflow but do not writeback
884                          * unless under significant pressure.
885                          */
886                         if (page_is_file_cache(page) &&
887                                         (!current_is_kswapd() || priority >= DEF_PRIORITY - 2)) {
888                                 /*
889                                  * Immediately reclaim when written back.
890                                  * Similar in principal to deactivate_page()
891                                  * except we already have the page isolated
892                                  * and know it's dirty
893                                  */
894                                 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
895                                 SetPageReclaim(page);
896
897                                 goto keep_locked;
898                         }
899
900                         if (references == PAGEREF_RECLAIM_CLEAN)
901                                 goto keep_locked;
902                         if (!may_enter_fs)
903                                 goto keep_locked;
904                         if (!sc->may_writepage)
905                                 goto keep_locked;
906
907                         /* Page is dirty, try to write it out here */
908                         switch (pageout(page, mapping, sc)) {
909                         case PAGE_KEEP:
910                                 nr_congested++;
911                                 goto keep_locked;
912                         case PAGE_ACTIVATE:
913                                 goto activate_locked;
914                         case PAGE_SUCCESS:
915                                 if (PageWriteback(page))
916                                         goto keep_lumpy;
917                                 if (PageDirty(page))
918                                         goto keep;
919
920                                 /*
921                                  * A synchronous write - probably a ramdisk.  Go
922                                  * ahead and try to reclaim the page.
923                                  */
924                                 if (!trylock_page(page))
925                                         goto keep;
926                                 if (PageDirty(page) || PageWriteback(page))
927                                         goto keep_locked;
928                                 mapping = page_mapping(page);
929                         case PAGE_CLEAN:
930                                 ; /* try to free the page below */
931                         }
932                 }
933
934                 /*
935                  * If the page has buffers, try to free the buffer mappings
936                  * associated with this page. If we succeed we try to free
937                  * the page as well.
938                  *
939                  * We do this even if the page is PageDirty().
940                  * try_to_release_page() does not perform I/O, but it is
941                  * possible for a page to have PageDirty set, but it is actually
942                  * clean (all its buffers are clean).  This happens if the
943                  * buffers were written out directly, with submit_bh(). ext3
944                  * will do this, as well as the blockdev mapping.
945                  * try_to_release_page() will discover that cleanness and will
946                  * drop the buffers and mark the page clean - it can be freed.
947                  *
948                  * Rarely, pages can have buffers and no ->mapping.  These are
949                  * the pages which were not successfully invalidated in
950                  * truncate_complete_page().  We try to drop those buffers here
951                  * and if that worked, and the page is no longer mapped into
952                  * process address space (page_count == 1) it can be freed.
953                  * Otherwise, leave the page on the LRU so it is swappable.
954                  */
955                 if (page_has_private(page)) {
956                         if (!try_to_release_page(page, sc->gfp_mask))
957                                 goto activate_locked;
958                         if (!mapping && page_count(page) == 1) {
959                                 unlock_page(page);
960                                 if (put_page_testzero(page))
961                                         goto free_it;
962                                 else {
963                                         /*
964                                          * rare race with speculative reference.
965                                          * the speculative reference will free
966                                          * this page shortly, so we may
967                                          * increment nr_reclaimed here (and
968                                          * leave it off the LRU).
969                                          */
970                                         nr_reclaimed++;
971                                         continue;
972                                 }
973                         }
974                 }
975
976                 if (!mapping || !__remove_mapping(mapping, page))
977                         goto keep_locked;
978
979                 /*
980                  * At this point, we have no other references and there is
981                  * no way to pick any more up (removed from LRU, removed
982                  * from pagecache). Can use non-atomic bitops now (and
983                  * we obviously don't have to worry about waking up a process
984                  * waiting on the page lock, because there are no references.
985                  */
986                 __clear_page_locked(page);
987 free_it:
988                 nr_reclaimed++;
989
990                 /*
991                  * Is there need to periodically free_page_list? It would
992                  * appear not as the counts should be low
993                  */
994                 list_add(&page->lru, &free_pages);
995                 continue;
996
997 cull_mlocked:
998                 if (PageSwapCache(page))
999                         try_to_free_swap(page);
1000                 unlock_page(page);
1001                 putback_lru_page(page);
1002                 reset_reclaim_mode(sc);
1003                 continue;
1004
1005 activate_locked:
1006                 /* Not a candidate for swapping, so reclaim swap space. */
1007                 if (PageSwapCache(page) && vm_swap_full())
1008                         try_to_free_swap(page);
1009                 VM_BUG_ON(PageActive(page));
1010                 SetPageActive(page);
1011                 pgactivate++;
1012 keep_locked:
1013                 unlock_page(page);
1014 keep:
1015                 reset_reclaim_mode(sc);
1016 keep_lumpy:
1017                 list_add(&page->lru, &ret_pages);
1018                 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1019         }
1020
1021         /*
1022          * Tag a zone as congested if all the dirty pages encountered were
1023          * backed by a congested BDI. In this case, reclaimers should just
1024          * back off and wait for congestion to clear because further reclaim
1025          * will encounter the same problem
1026          */
1027         if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
1028                 zone_set_flag(mz->zone, ZONE_CONGESTED);
1029
1030         free_hot_cold_page_list(&free_pages, 1);
1031
1032         list_splice(&ret_pages, page_list);
1033         count_vm_events(PGACTIVATE, pgactivate);
1034         *ret_nr_dirty += nr_dirty;
1035         *ret_nr_writeback += nr_writeback;
1036         return nr_reclaimed;
1037 }
1038
1039 /*
1040  * Attempt to remove the specified page from its LRU.  Only take this page
1041  * if it is of the appropriate PageActive status.  Pages which are being
1042  * freed elsewhere are also ignored.
1043  *
1044  * page:        page to consider
1045  * mode:        one of the LRU isolation modes defined above
1046  *
1047  * returns 0 on success, -ve errno on failure.
1048  */
1049 int __isolate_lru_page(struct page *page, isolate_mode_t mode, int file)
1050 {
1051         bool all_lru_mode;
1052         int ret = -EINVAL;
1053
1054         /* Only take pages on the LRU. */
1055         if (!PageLRU(page))
1056                 return ret;
1057
1058         all_lru_mode = (mode & (ISOLATE_ACTIVE|ISOLATE_INACTIVE)) ==
1059                 (ISOLATE_ACTIVE|ISOLATE_INACTIVE);
1060
1061         /*
1062          * When checking the active state, we need to be sure we are
1063          * dealing with comparible boolean values.  Take the logical not
1064          * of each.
1065          */
1066         if (!all_lru_mode && !PageActive(page) != !(mode & ISOLATE_ACTIVE))
1067                 return ret;
1068
1069         if (!all_lru_mode && !!page_is_file_cache(page) != file)
1070                 return ret;
1071
1072         /*
1073          * When this function is being called for lumpy reclaim, we
1074          * initially look into all LRU pages, active, inactive and
1075          * unevictable; only give shrink_page_list evictable pages.
1076          */
1077         if (PageUnevictable(page))
1078                 return ret;
1079
1080         ret = -EBUSY;
1081
1082         /*
1083          * To minimise LRU disruption, the caller can indicate that it only
1084          * wants to isolate pages it will be able to operate on without
1085          * blocking - clean pages for the most part.
1086          *
1087          * ISOLATE_CLEAN means that only clean pages should be isolated. This
1088          * is used by reclaim when it is cannot write to backing storage
1089          *
1090          * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1091          * that it is possible to migrate without blocking
1092          */
1093         if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1094                 /* All the caller can do on PageWriteback is block */
1095                 if (PageWriteback(page))
1096                         return ret;
1097
1098                 if (PageDirty(page)) {
1099                         struct address_space *mapping;
1100
1101                         /* ISOLATE_CLEAN means only clean pages */
1102                         if (mode & ISOLATE_CLEAN)
1103                                 return ret;
1104
1105                         /*
1106                          * Only pages without mappings or that have a
1107                          * ->migratepage callback are possible to migrate
1108                          * without blocking
1109                          */
1110                         mapping = page_mapping(page);
1111                         if (mapping && !mapping->a_ops->migratepage)
1112                                 return ret;
1113                 }
1114         }
1115
1116         if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1117                 return ret;
1118
1119         if (likely(get_page_unless_zero(page))) {
1120                 /*
1121                  * Be careful not to clear PageLRU until after we're
1122                  * sure the page is not being freed elsewhere -- the
1123                  * page release code relies on it.
1124                  */
1125                 ClearPageLRU(page);
1126                 ret = 0;
1127         }
1128
1129         return ret;
1130 }
1131
1132 /*
1133  * zone->lru_lock is heavily contended.  Some of the functions that
1134  * shrink the lists perform better by taking out a batch of pages
1135  * and working on them outside the LRU lock.
1136  *
1137  * For pagecache intensive workloads, this function is the hottest
1138  * spot in the kernel (apart from copy_*_user functions).
1139  *
1140  * Appropriate locks must be held before calling this function.
1141  *
1142  * @nr_to_scan: The number of pages to look through on the list.
1143  * @mz:         The mem_cgroup_zone to pull pages from.
1144  * @dst:        The temp list to put pages on to.
1145  * @nr_scanned: The number of pages that were scanned.
1146  * @sc:         The scan_control struct for this reclaim session
1147  * @mode:       One of the LRU isolation modes
1148  * @active:     True [1] if isolating active pages
1149  * @file:       True [1] if isolating file [!anon] pages
1150  *
1151  * returns how many pages were moved onto *@dst.
1152  */
1153 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1154                 struct mem_cgroup_zone *mz, struct list_head *dst,
1155                 unsigned long *nr_scanned, struct scan_control *sc,
1156                 isolate_mode_t mode, int active, int file)
1157 {
1158         struct lruvec *lruvec;
1159         struct list_head *src;
1160         unsigned long nr_taken = 0;
1161         unsigned long nr_lumpy_taken = 0;
1162         unsigned long nr_lumpy_dirty = 0;
1163         unsigned long nr_lumpy_failed = 0;
1164         unsigned long scan;
1165         int lru = LRU_BASE;
1166
1167         lruvec = mem_cgroup_zone_lruvec(mz->zone, mz->mem_cgroup);
1168         if (active)
1169                 lru += LRU_ACTIVE;
1170         if (file)
1171                 lru += LRU_FILE;
1172         src = &lruvec->lists[lru];
1173
1174         for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1175                 struct page *page;
1176                 unsigned long pfn;
1177                 unsigned long end_pfn;
1178                 unsigned long page_pfn;
1179                 int zone_id;
1180
1181                 page = lru_to_page(src);
1182                 prefetchw_prev_lru_page(page, src, flags);
1183
1184                 VM_BUG_ON(!PageLRU(page));
1185
1186                 switch (__isolate_lru_page(page, mode, file)) {
1187                 case 0:
1188                         mem_cgroup_lru_del(page);
1189                         list_move(&page->lru, dst);
1190                         nr_taken += hpage_nr_pages(page);
1191                         break;
1192
1193                 case -EBUSY:
1194                         /* else it is being freed elsewhere */
1195                         list_move(&page->lru, src);
1196                         continue;
1197
1198                 default:
1199                         BUG();
1200                 }
1201
1202                 if (!sc->order || !(sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM))
1203                         continue;
1204
1205                 /*
1206                  * Attempt to take all pages in the order aligned region
1207                  * surrounding the tag page.  Only take those pages of
1208                  * the same active state as that tag page.  We may safely
1209                  * round the target page pfn down to the requested order
1210                  * as the mem_map is guaranteed valid out to MAX_ORDER,
1211                  * where that page is in a different zone we will detect
1212                  * it from its zone id and abort this block scan.
1213                  */
1214                 zone_id = page_zone_id(page);
1215                 page_pfn = page_to_pfn(page);
1216                 pfn = page_pfn & ~((1 << sc->order) - 1);
1217                 end_pfn = pfn + (1 << sc->order);
1218                 for (; pfn < end_pfn; pfn++) {
1219                         struct page *cursor_page;
1220
1221                         /* The target page is in the block, ignore it. */
1222                         if (unlikely(pfn == page_pfn))
1223                                 continue;
1224
1225                         /* Avoid holes within the zone. */
1226                         if (unlikely(!pfn_valid_within(pfn)))
1227                                 break;
1228
1229                         cursor_page = pfn_to_page(pfn);
1230
1231                         /* Check that we have not crossed a zone boundary. */
1232                         if (unlikely(page_zone_id(cursor_page) != zone_id))
1233                                 break;
1234
1235                         /*
1236                          * If we don't have enough swap space, reclaiming of
1237                          * anon page which don't already have a swap slot is
1238                          * pointless.
1239                          */
1240                         if (nr_swap_pages <= 0 && PageSwapBacked(cursor_page) &&
1241                             !PageSwapCache(cursor_page))
1242                                 break;
1243
1244                         if (__isolate_lru_page(cursor_page, mode, file) == 0) {
1245                                 unsigned int isolated_pages;
1246
1247                                 mem_cgroup_lru_del(cursor_page);
1248                                 list_move(&cursor_page->lru, dst);
1249                                 isolated_pages = hpage_nr_pages(cursor_page);
1250                                 nr_taken += isolated_pages;
1251                                 nr_lumpy_taken += isolated_pages;
1252                                 if (PageDirty(cursor_page))
1253                                         nr_lumpy_dirty += isolated_pages;
1254                                 scan++;
1255                                 pfn += isolated_pages - 1;
1256                         } else {
1257                                 /*
1258                                  * Check if the page is freed already.
1259                                  *
1260                                  * We can't use page_count() as that
1261                                  * requires compound_head and we don't
1262                                  * have a pin on the page here. If a
1263                                  * page is tail, we may or may not
1264                                  * have isolated the head, so assume
1265                                  * it's not free, it'd be tricky to
1266                                  * track the head status without a
1267                                  * page pin.
1268                                  */
1269                                 if (!PageTail(cursor_page) &&
1270                                     !atomic_read(&cursor_page->_count))
1271                                         continue;
1272                                 break;
1273                         }
1274                 }
1275
1276                 /* If we break out of the loop above, lumpy reclaim failed */
1277                 if (pfn < end_pfn)
1278                         nr_lumpy_failed++;
1279         }
1280
1281         *nr_scanned = scan;
1282
1283         trace_mm_vmscan_lru_isolate(sc->order,
1284                         nr_to_scan, scan,
1285                         nr_taken,
1286                         nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1287                         mode, file);
1288         return nr_taken;
1289 }
1290
1291 /**
1292  * isolate_lru_page - tries to isolate a page from its LRU list
1293  * @page: page to isolate from its LRU list
1294  *
1295  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1296  * vmstat statistic corresponding to whatever LRU list the page was on.
1297  *
1298  * Returns 0 if the page was removed from an LRU list.
1299  * Returns -EBUSY if the page was not on an LRU list.
1300  *
1301  * The returned page will have PageLRU() cleared.  If it was found on
1302  * the active list, it will have PageActive set.  If it was found on
1303  * the unevictable list, it will have the PageUnevictable bit set. That flag
1304  * may need to be cleared by the caller before letting the page go.
1305  *
1306  * The vmstat statistic corresponding to the list on which the page was
1307  * found will be decremented.
1308  *
1309  * Restrictions:
1310  * (1) Must be called with an elevated refcount on the page. This is a
1311  *     fundamentnal difference from isolate_lru_pages (which is called
1312  *     without a stable reference).
1313  * (2) the lru_lock must not be held.
1314  * (3) interrupts must be enabled.
1315  */
1316 int isolate_lru_page(struct page *page)
1317 {
1318         int ret = -EBUSY;
1319
1320         VM_BUG_ON(!page_count(page));
1321
1322         if (PageLRU(page)) {
1323                 struct zone *zone = page_zone(page);
1324
1325                 spin_lock_irq(&zone->lru_lock);
1326                 if (PageLRU(page)) {
1327                         int lru = page_lru(page);
1328                         ret = 0;
1329                         get_page(page);
1330                         ClearPageLRU(page);
1331
1332                         del_page_from_lru_list(zone, page, lru);
1333                 }
1334                 spin_unlock_irq(&zone->lru_lock);
1335         }
1336         return ret;
1337 }
1338
1339 /*
1340  * Are there way too many processes in the direct reclaim path already?
1341  */
1342 static int too_many_isolated(struct zone *zone, int file,
1343                 struct scan_control *sc)
1344 {
1345         unsigned long inactive, isolated;
1346
1347         if (current_is_kswapd())
1348                 return 0;
1349
1350         if (!global_reclaim(sc))
1351                 return 0;
1352
1353         if (file) {
1354                 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1355                 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1356         } else {
1357                 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1358                 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1359         }
1360
1361         return isolated > inactive;
1362 }
1363
1364 static noinline_for_stack void
1365 putback_inactive_pages(struct mem_cgroup_zone *mz,
1366                        struct list_head *page_list)
1367 {
1368         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1369         struct zone *zone = mz->zone;
1370         LIST_HEAD(pages_to_free);
1371
1372         /*
1373          * Put back any unfreeable pages.
1374          */
1375         while (!list_empty(page_list)) {
1376                 struct page *page = lru_to_page(page_list);
1377                 int lru;
1378
1379                 VM_BUG_ON(PageLRU(page));
1380                 list_del(&page->lru);
1381                 if (unlikely(!page_evictable(page, NULL))) {
1382                         spin_unlock_irq(&zone->lru_lock);
1383                         putback_lru_page(page);
1384                         spin_lock_irq(&zone->lru_lock);
1385                         continue;
1386                 }
1387                 SetPageLRU(page);
1388                 lru = page_lru(page);
1389                 add_page_to_lru_list(zone, page, lru);
1390                 if (is_active_lru(lru)) {
1391                         int file = is_file_lru(lru);
1392                         int numpages = hpage_nr_pages(page);
1393                         reclaim_stat->recent_rotated[file] += numpages;
1394                 }
1395                 if (put_page_testzero(page)) {
1396                         __ClearPageLRU(page);
1397                         __ClearPageActive(page);
1398                         del_page_from_lru_list(zone, page, lru);
1399
1400                         if (unlikely(PageCompound(page))) {
1401                                 spin_unlock_irq(&zone->lru_lock);
1402                                 (*get_compound_page_dtor(page))(page);
1403                                 spin_lock_irq(&zone->lru_lock);
1404                         } else
1405                                 list_add(&page->lru, &pages_to_free);
1406                 }
1407         }
1408
1409         /*
1410          * To save our caller's stack, now use input list for pages to free.
1411          */
1412         list_splice(&pages_to_free, page_list);
1413 }
1414
1415 static noinline_for_stack void
1416 update_isolated_counts(struct mem_cgroup_zone *mz,
1417                        struct list_head *page_list,
1418                        unsigned long *nr_anon,
1419                        unsigned long *nr_file)
1420 {
1421         struct zone *zone = mz->zone;
1422         unsigned int count[NR_LRU_LISTS] = { 0, };
1423         unsigned long nr_active = 0;
1424         struct page *page;
1425         int lru;
1426
1427         /*
1428          * Count pages and clear active flags
1429          */
1430         list_for_each_entry(page, page_list, lru) {
1431                 int numpages = hpage_nr_pages(page);
1432                 lru = page_lru_base_type(page);
1433                 if (PageActive(page)) {
1434                         lru += LRU_ACTIVE;
1435                         ClearPageActive(page);
1436                         nr_active += numpages;
1437                 }
1438                 count[lru] += numpages;
1439         }
1440
1441         preempt_disable();
1442         __count_vm_events(PGDEACTIVATE, nr_active);
1443
1444         __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1445                               -count[LRU_ACTIVE_FILE]);
1446         __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1447                               -count[LRU_INACTIVE_FILE]);
1448         __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1449                               -count[LRU_ACTIVE_ANON]);
1450         __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1451                               -count[LRU_INACTIVE_ANON]);
1452
1453         *nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1454         *nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1455
1456         __mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1457         __mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1458         preempt_enable();
1459 }
1460
1461 /*
1462  * Returns true if a direct reclaim should wait on pages under writeback.
1463  *
1464  * If we are direct reclaiming for contiguous pages and we do not reclaim
1465  * everything in the list, try again and wait for writeback IO to complete.
1466  * This will stall high-order allocations noticeably. Only do that when really
1467  * need to free the pages under high memory pressure.
1468  */
1469 static inline bool should_reclaim_stall(unsigned long nr_taken,
1470                                         unsigned long nr_freed,
1471                                         int priority,
1472                                         struct scan_control *sc)
1473 {
1474         int lumpy_stall_priority;
1475
1476         /* kswapd should not stall on sync IO */
1477         if (current_is_kswapd())
1478                 return false;
1479
1480         /* Only stall on lumpy reclaim */
1481         if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
1482                 return false;
1483
1484         /* If we have reclaimed everything on the isolated list, no stall */
1485         if (nr_freed == nr_taken)
1486                 return false;
1487
1488         /*
1489          * For high-order allocations, there are two stall thresholds.
1490          * High-cost allocations stall immediately where as lower
1491          * order allocations such as stacks require the scanning
1492          * priority to be much higher before stalling.
1493          */
1494         if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1495                 lumpy_stall_priority = DEF_PRIORITY;
1496         else
1497                 lumpy_stall_priority = DEF_PRIORITY / 3;
1498
1499         return priority <= lumpy_stall_priority;
1500 }
1501
1502 /*
1503  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1504  * of reclaimed pages
1505  */
1506 static noinline_for_stack unsigned long
1507 shrink_inactive_list(unsigned long nr_to_scan, struct mem_cgroup_zone *mz,
1508                      struct scan_control *sc, int priority, int file)
1509 {
1510         LIST_HEAD(page_list);
1511         unsigned long nr_scanned;
1512         unsigned long nr_reclaimed = 0;
1513         unsigned long nr_taken;
1514         unsigned long nr_anon;
1515         unsigned long nr_file;
1516         unsigned long nr_dirty = 0;
1517         unsigned long nr_writeback = 0;
1518         isolate_mode_t isolate_mode = ISOLATE_INACTIVE;
1519         struct zone *zone = mz->zone;
1520         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1521
1522         while (unlikely(too_many_isolated(zone, file, sc))) {
1523                 congestion_wait(BLK_RW_ASYNC, HZ/10);
1524
1525                 /* We are about to die and free our memory. Return now. */
1526                 if (fatal_signal_pending(current))
1527                         return SWAP_CLUSTER_MAX;
1528         }
1529
1530         set_reclaim_mode(priority, sc, false);
1531         if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
1532                 isolate_mode |= ISOLATE_ACTIVE;
1533
1534         lru_add_drain();
1535
1536         if (!sc->may_unmap)
1537                 isolate_mode |= ISOLATE_UNMAPPED;
1538         if (!sc->may_writepage)
1539                 isolate_mode |= ISOLATE_CLEAN;
1540
1541         spin_lock_irq(&zone->lru_lock);
1542
1543         nr_taken = isolate_lru_pages(nr_to_scan, mz, &page_list, &nr_scanned,
1544                                      sc, isolate_mode, 0, file);
1545         if (global_reclaim(sc)) {
1546                 zone->pages_scanned += nr_scanned;
1547                 if (current_is_kswapd())
1548                         __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1549                                                nr_scanned);
1550                 else
1551                         __count_zone_vm_events(PGSCAN_DIRECT, zone,
1552                                                nr_scanned);
1553         }
1554         spin_unlock_irq(&zone->lru_lock);
1555
1556         if (nr_taken == 0)
1557                 return 0;
1558
1559         update_isolated_counts(mz, &page_list, &nr_anon, &nr_file);
1560
1561         nr_reclaimed = shrink_page_list(&page_list, mz, sc, priority,
1562                                                 &nr_dirty, &nr_writeback);
1563
1564         /* Check if we should syncronously wait for writeback */
1565         if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
1566                 set_reclaim_mode(priority, sc, true);
1567                 nr_reclaimed += shrink_page_list(&page_list, mz, sc,
1568                                         priority, &nr_dirty, &nr_writeback);
1569         }
1570
1571         spin_lock_irq(&zone->lru_lock);
1572
1573         reclaim_stat->recent_scanned[0] += nr_anon;
1574         reclaim_stat->recent_scanned[1] += nr_file;
1575
1576         if (global_reclaim(sc)) {
1577                 if (current_is_kswapd())
1578                         __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1579                                                nr_reclaimed);
1580                 else
1581                         __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1582                                                nr_reclaimed);
1583         }
1584
1585         putback_inactive_pages(mz, &page_list);
1586
1587         __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1588         __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1589
1590         spin_unlock_irq(&zone->lru_lock);
1591
1592         free_hot_cold_page_list(&page_list, 1);
1593
1594         /*
1595          * If reclaim is isolating dirty pages under writeback, it implies
1596          * that the long-lived page allocation rate is exceeding the page
1597          * laundering rate. Either the global limits are not being effective
1598          * at throttling processes due to the page distribution throughout
1599          * zones or there is heavy usage of a slow backing device. The
1600          * only option is to throttle from reclaim context which is not ideal
1601          * as there is no guarantee the dirtying process is throttled in the
1602          * same way balance_dirty_pages() manages.
1603          *
1604          * This scales the number of dirty pages that must be under writeback
1605          * before throttling depending on priority. It is a simple backoff
1606          * function that has the most effect in the range DEF_PRIORITY to
1607          * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1608          * in trouble and reclaim is considered to be in trouble.
1609          *
1610          * DEF_PRIORITY   100% isolated pages must be PageWriteback to throttle
1611          * DEF_PRIORITY-1  50% must be PageWriteback
1612          * DEF_PRIORITY-2  25% must be PageWriteback, kswapd in trouble
1613          * ...
1614          * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1615          *                     isolated page is PageWriteback
1616          */
1617         if (nr_writeback && nr_writeback >= (nr_taken >> (DEF_PRIORITY-priority)))
1618                 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1619
1620         trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1621                 zone_idx(zone),
1622                 nr_scanned, nr_reclaimed,
1623                 priority,
1624                 trace_shrink_flags(file, sc->reclaim_mode));
1625         return nr_reclaimed;
1626 }
1627
1628 /*
1629  * This moves pages from the active list to the inactive list.
1630  *
1631  * We move them the other way if the page is referenced by one or more
1632  * processes, from rmap.
1633  *
1634  * If the pages are mostly unmapped, the processing is fast and it is
1635  * appropriate to hold zone->lru_lock across the whole operation.  But if
1636  * the pages are mapped, the processing is slow (page_referenced()) so we
1637  * should drop zone->lru_lock around each page.  It's impossible to balance
1638  * this, so instead we remove the pages from the LRU while processing them.
1639  * It is safe to rely on PG_active against the non-LRU pages in here because
1640  * nobody will play with that bit on a non-LRU page.
1641  *
1642  * The downside is that we have to touch page->_count against each page.
1643  * But we had to alter page->flags anyway.
1644  */
1645
1646 static void move_active_pages_to_lru(struct zone *zone,
1647                                      struct list_head *list,
1648                                      struct list_head *pages_to_free,
1649                                      enum lru_list lru)
1650 {
1651         unsigned long pgmoved = 0;
1652         struct page *page;
1653
1654         while (!list_empty(list)) {
1655                 struct lruvec *lruvec;
1656
1657                 page = lru_to_page(list);
1658
1659                 VM_BUG_ON(PageLRU(page));
1660                 SetPageLRU(page);
1661
1662                 lruvec = mem_cgroup_lru_add_list(zone, page, lru);
1663                 list_move(&page->lru, &lruvec->lists[lru]);
1664                 pgmoved += hpage_nr_pages(page);
1665
1666                 if (put_page_testzero(page)) {
1667                         __ClearPageLRU(page);
1668                         __ClearPageActive(page);
1669                         del_page_from_lru_list(zone, page, lru);
1670
1671                         if (unlikely(PageCompound(page))) {
1672                                 spin_unlock_irq(&zone->lru_lock);
1673                                 (*get_compound_page_dtor(page))(page);
1674                                 spin_lock_irq(&zone->lru_lock);
1675                         } else
1676                                 list_add(&page->lru, pages_to_free);
1677                 }
1678         }
1679         __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1680         if (!is_active_lru(lru))
1681                 __count_vm_events(PGDEACTIVATE, pgmoved);
1682 }
1683
1684 static void shrink_active_list(unsigned long nr_to_scan,
1685                                struct mem_cgroup_zone *mz,
1686                                struct scan_control *sc,
1687                                int priority, int file)
1688 {
1689         unsigned long nr_taken;
1690         unsigned long nr_scanned;
1691         unsigned long vm_flags;
1692         LIST_HEAD(l_hold);      /* The pages which were snipped off */
1693         LIST_HEAD(l_active);
1694         LIST_HEAD(l_inactive);
1695         struct page *page;
1696         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1697         unsigned long nr_rotated = 0;
1698         isolate_mode_t isolate_mode = ISOLATE_ACTIVE;
1699         struct zone *zone = mz->zone;
1700
1701         lru_add_drain();
1702
1703         reset_reclaim_mode(sc);
1704
1705         if (!sc->may_unmap)
1706                 isolate_mode |= ISOLATE_UNMAPPED;
1707         if (!sc->may_writepage)
1708                 isolate_mode |= ISOLATE_CLEAN;
1709
1710         spin_lock_irq(&zone->lru_lock);
1711
1712         nr_taken = isolate_lru_pages(nr_to_scan, mz, &l_hold, &nr_scanned, sc,
1713                                      isolate_mode, 1, file);
1714         if (global_reclaim(sc))
1715                 zone->pages_scanned += nr_scanned;
1716
1717         reclaim_stat->recent_scanned[file] += nr_taken;
1718
1719         __count_zone_vm_events(PGREFILL, zone, nr_scanned);
1720         if (file)
1721                 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1722         else
1723                 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1724         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1725         spin_unlock_irq(&zone->lru_lock);
1726
1727         while (!list_empty(&l_hold)) {
1728                 cond_resched();
1729                 page = lru_to_page(&l_hold);
1730                 list_del(&page->lru);
1731
1732                 if (unlikely(!page_evictable(page, NULL))) {
1733                         putback_lru_page(page);
1734                         continue;
1735                 }
1736
1737                 if (unlikely(buffer_heads_over_limit)) {
1738                         if (page_has_private(page) && trylock_page(page)) {
1739                                 if (page_has_private(page))
1740                                         try_to_release_page(page, 0);
1741                                 unlock_page(page);
1742                         }
1743                 }
1744
1745                 if (page_referenced(page, 0, mz->mem_cgroup, &vm_flags)) {
1746                         nr_rotated += hpage_nr_pages(page);
1747                         /*
1748                          * Identify referenced, file-backed active pages and
1749                          * give them one more trip around the active list. So
1750                          * that executable code get better chances to stay in
1751                          * memory under moderate memory pressure.  Anon pages
1752                          * are not likely to be evicted by use-once streaming
1753                          * IO, plus JVM can create lots of anon VM_EXEC pages,
1754                          * so we ignore them here.
1755                          */
1756                         if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1757                                 list_add(&page->lru, &l_active);
1758                                 continue;
1759                         }
1760                 }
1761
1762                 ClearPageActive(page);  /* we are de-activating */
1763                 list_add(&page->lru, &l_inactive);
1764         }
1765
1766         /*
1767          * Move pages back to the lru list.
1768          */
1769         spin_lock_irq(&zone->lru_lock);
1770         /*
1771          * Count referenced pages from currently used mappings as rotated,
1772          * even though only some of them are actually re-activated.  This
1773          * helps balance scan pressure between file and anonymous pages in
1774          * get_scan_ratio.
1775          */
1776         reclaim_stat->recent_rotated[file] += nr_rotated;
1777
1778         move_active_pages_to_lru(zone, &l_active, &l_hold,
1779                                                 LRU_ACTIVE + file * LRU_FILE);
1780         move_active_pages_to_lru(zone, &l_inactive, &l_hold,
1781                                                 LRU_BASE   + file * LRU_FILE);
1782         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1783         spin_unlock_irq(&zone->lru_lock);
1784
1785         free_hot_cold_page_list(&l_hold, 1);
1786 }
1787
1788 #ifdef CONFIG_SWAP
1789 static int inactive_anon_is_low_global(struct zone *zone)
1790 {
1791         unsigned long active, inactive;
1792
1793         active = zone_page_state(zone, NR_ACTIVE_ANON);
1794         inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1795
1796         if (inactive * zone->inactive_ratio < active)
1797                 return 1;
1798
1799         return 0;
1800 }
1801
1802 /**
1803  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1804  * @zone: zone to check
1805  * @sc:   scan control of this context
1806  *
1807  * Returns true if the zone does not have enough inactive anon pages,
1808  * meaning some active anon pages need to be deactivated.
1809  */
1810 static int inactive_anon_is_low(struct mem_cgroup_zone *mz)
1811 {
1812         /*
1813          * If we don't have swap space, anonymous page deactivation
1814          * is pointless.
1815          */
1816         if (!total_swap_pages)
1817                 return 0;
1818
1819         if (!scanning_global_lru(mz))
1820                 return mem_cgroup_inactive_anon_is_low(mz->mem_cgroup,
1821                                                        mz->zone);
1822
1823         return inactive_anon_is_low_global(mz->zone);
1824 }
1825 #else
1826 static inline int inactive_anon_is_low(struct mem_cgroup_zone *mz)
1827 {
1828         return 0;
1829 }
1830 #endif
1831
1832 static int inactive_file_is_low_global(struct zone *zone)
1833 {
1834         unsigned long active, inactive;
1835
1836         active = zone_page_state(zone, NR_ACTIVE_FILE);
1837         inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1838
1839         return (active > inactive);
1840 }
1841
1842 /**
1843  * inactive_file_is_low - check if file pages need to be deactivated
1844  * @mz: memory cgroup and zone to check
1845  *
1846  * When the system is doing streaming IO, memory pressure here
1847  * ensures that active file pages get deactivated, until more
1848  * than half of the file pages are on the inactive list.
1849  *
1850  * Once we get to that situation, protect the system's working
1851  * set from being evicted by disabling active file page aging.
1852  *
1853  * This uses a different ratio than the anonymous pages, because
1854  * the page cache uses a use-once replacement algorithm.
1855  */
1856 static int inactive_file_is_low(struct mem_cgroup_zone *mz)
1857 {
1858         if (!scanning_global_lru(mz))
1859                 return mem_cgroup_inactive_file_is_low(mz->mem_cgroup,
1860                                                        mz->zone);
1861
1862         return inactive_file_is_low_global(mz->zone);
1863 }
1864
1865 static int inactive_list_is_low(struct mem_cgroup_zone *mz, int file)
1866 {
1867         if (file)
1868                 return inactive_file_is_low(mz);
1869         else
1870                 return inactive_anon_is_low(mz);
1871 }
1872
1873 /*
1874  * Check low watermark used to prevent fscache thrashing during low memory.
1875  */
1876 static int file_is_low(struct mem_cgroup_zone *mz)
1877 {
1878         unsigned long pages_min, active, inactive;
1879
1880         if (!scanning_global_lru(mz))
1881                 return false;
1882
1883         pages_min = min_filelist_kbytes >> (PAGE_SHIFT - 10);
1884         active = zone_page_state(mz->zone, NR_ACTIVE_FILE);
1885         inactive = zone_page_state(mz->zone, NR_INACTIVE_FILE);
1886
1887         return ((active + inactive) < pages_min);
1888 }
1889
1890 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1891                                  struct mem_cgroup_zone *mz,
1892                                  struct scan_control *sc, int priority)
1893 {
1894         int file = is_file_lru(lru);
1895
1896         if (file && file_is_low(mz))
1897                 return 0;
1898
1899         if (is_active_lru(lru)) {
1900                 if (inactive_list_is_low(mz, file))
1901                         shrink_active_list(nr_to_scan, mz, sc, priority, file);
1902                 return 0;
1903         }
1904
1905         return shrink_inactive_list(nr_to_scan, mz, sc, priority, file);
1906 }
1907
1908 static int vmscan_swappiness(struct mem_cgroup_zone *mz,
1909                              struct scan_control *sc)
1910 {
1911         if (global_reclaim(sc))
1912                 return vm_swappiness;
1913         return mem_cgroup_swappiness(mz->mem_cgroup);
1914 }
1915
1916 /*
1917  * Determine how aggressively the anon and file LRU lists should be
1918  * scanned.  The relative value of each set of LRU lists is determined
1919  * by looking at the fraction of the pages scanned we did rotate back
1920  * onto the active list instead of evict.
1921  *
1922  * nr[0] = anon pages to scan; nr[1] = file pages to scan
1923  */
1924 static void get_scan_count(struct mem_cgroup_zone *mz, struct scan_control *sc,
1925                            unsigned long *nr, int priority)
1926 {
1927         unsigned long anon, file, free;
1928         unsigned long anon_prio, file_prio;
1929         unsigned long ap, fp;
1930         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1931         u64 fraction[2], denominator;
1932         enum lru_list lru;
1933         int noswap = 0;
1934         bool force_scan = false;
1935
1936         /*
1937          * If the zone or memcg is small, nr[l] can be 0.  This
1938          * results in no scanning on this priority and a potential
1939          * priority drop.  Global direct reclaim can go to the next
1940          * zone and tends to have no problems. Global kswapd is for
1941          * zone balancing and it needs to scan a minimum amount. When
1942          * reclaiming for a memcg, a priority drop can cause high
1943          * latencies, so it's better to scan a minimum amount there as
1944          * well.
1945          */
1946         if (current_is_kswapd() && mz->zone->all_unreclaimable)
1947                 force_scan = true;
1948         if (!global_reclaim(sc))
1949                 force_scan = true;
1950
1951         /* If we have no swap space, do not bother scanning anon pages. */
1952         if (!sc->may_swap || (nr_swap_pages <= 0)) {
1953                 noswap = 1;
1954                 fraction[0] = 0;
1955                 fraction[1] = 1;
1956                 denominator = 1;
1957                 goto out;
1958         }
1959
1960         anon  = zone_nr_lru_pages(mz, LRU_ACTIVE_ANON) +
1961                 zone_nr_lru_pages(mz, LRU_INACTIVE_ANON);
1962         file  = zone_nr_lru_pages(mz, LRU_ACTIVE_FILE) +
1963                 zone_nr_lru_pages(mz, LRU_INACTIVE_FILE);
1964
1965         if (global_reclaim(sc)) {
1966                 free  = zone_page_state(mz->zone, NR_FREE_PAGES);
1967                 /* If we have very few page cache pages,
1968                    force-scan anon pages. */
1969                 if (unlikely(file + free <= high_wmark_pages(mz->zone))) {
1970                         fraction[0] = 1;
1971                         fraction[1] = 0;
1972                         denominator = 1;
1973                         goto out;
1974                 }
1975         }
1976
1977         /*
1978          * With swappiness at 100, anonymous and file have the same priority.
1979          * This scanning priority is essentially the inverse of IO cost.
1980          */
1981         anon_prio = vmscan_swappiness(mz, sc);
1982         file_prio = 200 - vmscan_swappiness(mz, sc);
1983
1984         /*
1985          * OK, so we have swap space and a fair amount of page cache
1986          * pages.  We use the recently rotated / recently scanned
1987          * ratios to determine how valuable each cache is.
1988          *
1989          * Because workloads change over time (and to avoid overflow)
1990          * we keep these statistics as a floating average, which ends
1991          * up weighing recent references more than old ones.
1992          *
1993          * anon in [0], file in [1]
1994          */
1995         spin_lock_irq(&mz->zone->lru_lock);
1996         if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1997                 reclaim_stat->recent_scanned[0] /= 2;
1998                 reclaim_stat->recent_rotated[0] /= 2;
1999         }
2000
2001         if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2002                 reclaim_stat->recent_scanned[1] /= 2;
2003                 reclaim_stat->recent_rotated[1] /= 2;
2004         }
2005
2006         /*
2007          * The amount of pressure on anon vs file pages is inversely
2008          * proportional to the fraction of recently scanned pages on
2009          * each list that were recently referenced and in active use.
2010          */
2011         ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
2012         ap /= reclaim_stat->recent_rotated[0] + 1;
2013
2014         fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
2015         fp /= reclaim_stat->recent_rotated[1] + 1;
2016         spin_unlock_irq(&mz->zone->lru_lock);
2017
2018         fraction[0] = ap;
2019         fraction[1] = fp;
2020         denominator = ap + fp + 1;
2021 out:
2022         for_each_evictable_lru(lru) {
2023                 int file = is_file_lru(lru);
2024                 unsigned long scan;
2025
2026                 scan = zone_nr_lru_pages(mz, lru);
2027                 if (priority || noswap) {
2028                         scan >>= priority;
2029                         if (!scan && force_scan)
2030                                 scan = SWAP_CLUSTER_MAX;
2031                         scan = div64_u64(scan * fraction[file], denominator);
2032                 }
2033                 nr[lru] = scan;
2034         }
2035 }
2036
2037 /*
2038  * Reclaim/compaction depends on a number of pages being freed. To avoid
2039  * disruption to the system, a small number of order-0 pages continue to be
2040  * rotated and reclaimed in the normal fashion. However, by the time we get
2041  * back to the allocator and call try_to_compact_zone(), we ensure that
2042  * there are enough free pages for it to be likely successful
2043  */
2044 static inline bool should_continue_reclaim(struct mem_cgroup_zone *mz,
2045                                         unsigned long nr_reclaimed,
2046                                         unsigned long nr_scanned,
2047                                         struct scan_control *sc)
2048 {
2049         unsigned long pages_for_compaction;
2050         unsigned long inactive_lru_pages;
2051
2052         /* If not in reclaim/compaction mode, stop */
2053         if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
2054                 return false;
2055
2056         /* Consider stopping depending on scan and reclaim activity */
2057         if (sc->gfp_mask & __GFP_REPEAT) {
2058                 /*
2059                  * For __GFP_REPEAT allocations, stop reclaiming if the
2060                  * full LRU list has been scanned and we are still failing
2061                  * to reclaim pages. This full LRU scan is potentially
2062                  * expensive but a __GFP_REPEAT caller really wants to succeed
2063                  */
2064                 if (!nr_reclaimed && !nr_scanned)
2065                         return false;
2066         } else {
2067                 /*
2068                  * For non-__GFP_REPEAT allocations which can presumably
2069                  * fail without consequence, stop if we failed to reclaim
2070                  * any pages from the last SWAP_CLUSTER_MAX number of
2071                  * pages that were scanned. This will return to the
2072                  * caller faster at the risk reclaim/compaction and
2073                  * the resulting allocation attempt fails
2074                  */
2075                 if (!nr_reclaimed)
2076                         return false;
2077         }
2078
2079         /*
2080          * If we have not reclaimed enough pages for compaction and the
2081          * inactive lists are large enough, continue reclaiming
2082          */
2083         pages_for_compaction = (2UL << sc->order);
2084         inactive_lru_pages = zone_nr_lru_pages(mz, LRU_INACTIVE_FILE);
2085         if (nr_swap_pages > 0)
2086                 inactive_lru_pages += zone_nr_lru_pages(mz, LRU_INACTIVE_ANON);
2087         if (sc->nr_reclaimed < pages_for_compaction &&
2088                         inactive_lru_pages > pages_for_compaction)
2089                 return true;
2090
2091         /* If compaction would go ahead or the allocation would succeed, stop */
2092         switch (compaction_suitable(mz->zone, sc->order)) {
2093         case COMPACT_PARTIAL:
2094         case COMPACT_CONTINUE:
2095                 return false;
2096         default:
2097                 return true;
2098         }
2099 }
2100
2101 /*
2102  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
2103  */
2104 static void shrink_mem_cgroup_zone(int priority, struct mem_cgroup_zone *mz,
2105                                    struct scan_control *sc)
2106 {
2107         unsigned long nr[NR_LRU_LISTS];
2108         unsigned long nr_to_scan;
2109         enum lru_list lru;
2110         unsigned long nr_reclaimed, nr_scanned;
2111         unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2112         struct blk_plug plug;
2113
2114 restart:
2115         nr_reclaimed = 0;
2116         nr_scanned = sc->nr_scanned;
2117         get_scan_count(mz, sc, nr, priority);
2118
2119         blk_start_plug(&plug);
2120         while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2121                                         nr[LRU_INACTIVE_FILE]) {
2122                 for_each_evictable_lru(lru) {
2123                         if (nr[lru]) {
2124                                 nr_to_scan = min_t(unsigned long,
2125                                                    nr[lru], SWAP_CLUSTER_MAX);
2126                                 nr[lru] -= nr_to_scan;
2127
2128                                 nr_reclaimed += shrink_list(lru, nr_to_scan,
2129                                                             mz, sc, priority);
2130                         }
2131                 }
2132                 /*
2133                  * On large memory systems, scan >> priority can become
2134                  * really large. This is fine for the starting priority;
2135                  * we want to put equal scanning pressure on each zone.
2136                  * However, if the VM has a harder time of freeing pages,
2137                  * with multiple processes reclaiming pages, the total
2138                  * freeing target can get unreasonably large.
2139                  */
2140                 if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
2141                         break;
2142         }
2143         blk_finish_plug(&plug);
2144         sc->nr_reclaimed += nr_reclaimed;
2145
2146         /*
2147          * Even if we did not try to evict anon pages at all, we want to
2148          * rebalance the anon lru active/inactive ratio.
2149          */
2150         if (inactive_anon_is_low(mz))
2151                 shrink_active_list(SWAP_CLUSTER_MAX, mz, sc, priority, 0);
2152
2153         /* reclaim/compaction might need reclaim to continue */
2154         if (should_continue_reclaim(mz, nr_reclaimed,
2155                                         sc->nr_scanned - nr_scanned, sc))
2156                 goto restart;
2157
2158         throttle_vm_writeout(sc->gfp_mask);
2159 }
2160
2161 static void shrink_zone(int priority, struct zone *zone,
2162                         struct scan_control *sc)
2163 {
2164         struct mem_cgroup *root = sc->target_mem_cgroup;
2165         struct mem_cgroup_reclaim_cookie reclaim = {
2166                 .zone = zone,
2167                 .priority = priority,
2168         };
2169         struct mem_cgroup *memcg;
2170
2171         memcg = mem_cgroup_iter(root, NULL, &reclaim);
2172         do {
2173                 struct mem_cgroup_zone mz = {
2174                         .mem_cgroup = memcg,
2175                         .zone = zone,
2176                 };
2177
2178                 shrink_mem_cgroup_zone(priority, &mz, sc);
2179                 /*
2180                  * Limit reclaim has historically picked one memcg and
2181                  * scanned it with decreasing priority levels until
2182                  * nr_to_reclaim had been reclaimed.  This priority
2183                  * cycle is thus over after a single memcg.
2184                  *
2185                  * Direct reclaim and kswapd, on the other hand, have
2186                  * to scan all memory cgroups to fulfill the overall
2187                  * scan target for the zone.
2188                  */
2189                 if (!global_reclaim(sc)) {
2190                         mem_cgroup_iter_break(root, memcg);
2191                         break;
2192                 }
2193                 memcg = mem_cgroup_iter(root, memcg, &reclaim);
2194         } while (memcg);
2195 }
2196
2197 /* Returns true if compaction should go ahead for a high-order request */
2198 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2199 {
2200         unsigned long balance_gap, watermark;
2201         bool watermark_ok;
2202
2203         /* Do not consider compaction for orders reclaim is meant to satisfy */
2204         if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
2205                 return false;
2206
2207         /*
2208          * Compaction takes time to run and there are potentially other
2209          * callers using the pages just freed. Continue reclaiming until
2210          * there is a buffer of free pages available to give compaction
2211          * a reasonable chance of completing and allocating the page
2212          */
2213         balance_gap = min(low_wmark_pages(zone),
2214                 (zone->present_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2215                         KSWAPD_ZONE_BALANCE_GAP_RATIO);
2216         watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
2217         watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2218
2219         /*
2220          * If compaction is deferred, reclaim up to a point where
2221          * compaction will have a chance of success when re-enabled
2222          */
2223         if (compaction_deferred(zone, sc->order))
2224                 return watermark_ok;
2225
2226         /* If compaction is not ready to start, keep reclaiming */
2227         if (!compaction_suitable(zone, sc->order))
2228                 return false;
2229
2230         return watermark_ok;
2231 }
2232
2233 /*
2234  * This is the direct reclaim path, for page-allocating processes.  We only
2235  * try to reclaim pages from zones which will satisfy the caller's allocation
2236  * request.
2237  *
2238  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2239  * Because:
2240  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2241  *    allocation or
2242  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2243  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2244  *    zone defense algorithm.
2245  *
2246  * If a zone is deemed to be full of pinned pages then just give it a light
2247  * scan then give up on it.
2248  *
2249  * This function returns true if a zone is being reclaimed for a costly
2250  * high-order allocation and compaction is ready to begin. This indicates to
2251  * the caller that it should consider retrying the allocation instead of
2252  * further reclaim.
2253  */
2254 static bool shrink_zones(int priority, struct zonelist *zonelist,
2255                                         struct scan_control *sc)
2256 {
2257         struct zoneref *z;
2258         struct zone *zone;
2259         unsigned long nr_soft_reclaimed;
2260         unsigned long nr_soft_scanned;
2261         bool aborted_reclaim = false;
2262
2263         /*
2264          * If the number of buffer_heads in the machine exceeds the maximum
2265          * allowed level, force direct reclaim to scan the highmem zone as
2266          * highmem pages could be pinning lowmem pages storing buffer_heads
2267          */
2268         if (buffer_heads_over_limit)
2269                 sc->gfp_mask |= __GFP_HIGHMEM;
2270
2271         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2272                                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2273                 if (!populated_zone(zone))
2274                         continue;
2275                 /*
2276                  * Take care memory controller reclaiming has small influence
2277                  * to global LRU.
2278                  */
2279                 if (global_reclaim(sc)) {
2280                         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2281                                 continue;
2282                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2283                                 continue;       /* Let kswapd poll it */
2284                         if (COMPACTION_BUILD) {
2285                                 /*
2286                                  * If we already have plenty of memory free for
2287                                  * compaction in this zone, don't free any more.
2288                                  * Even though compaction is invoked for any
2289                                  * non-zero order, only frequent costly order
2290                                  * reclamation is disruptive enough to become a
2291                                  * noticeable problem, like transparent huge
2292                                  * page allocations.
2293                                  */
2294                                 if (compaction_ready(zone, sc)) {
2295                                         aborted_reclaim = true;
2296                                         continue;
2297                                 }
2298                         }
2299                         /*
2300                          * This steals pages from memory cgroups over softlimit
2301                          * and returns the number of reclaimed pages and
2302                          * scanned pages. This works for global memory pressure
2303                          * and balancing, not for a memcg's limit.
2304                          */
2305                         nr_soft_scanned = 0;
2306                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2307                                                 sc->order, sc->gfp_mask,
2308                                                 &nr_soft_scanned);
2309                         sc->nr_reclaimed += nr_soft_reclaimed;
2310                         sc->nr_scanned += nr_soft_scanned;
2311                         /* need some check for avoid more shrink_zone() */
2312                 }
2313
2314                 shrink_zone(priority, zone, sc);
2315         }
2316
2317         return aborted_reclaim;
2318 }
2319
2320 static bool zone_reclaimable(struct zone *zone)
2321 {
2322         return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2323 }
2324
2325 /* All zones in zonelist are unreclaimable? */
2326 static bool all_unreclaimable(struct zonelist *zonelist,
2327                 struct scan_control *sc)
2328 {
2329         struct zoneref *z;
2330         struct zone *zone;
2331
2332         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2333                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2334                 if (!populated_zone(zone))
2335                         continue;
2336                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2337                         continue;
2338                 if (!zone->all_unreclaimable)
2339                         return false;
2340         }
2341
2342         return true;
2343 }
2344
2345 /*
2346  * This is the main entry point to direct page reclaim.
2347  *
2348  * If a full scan of the inactive list fails to free enough memory then we
2349  * are "out of memory" and something needs to be killed.
2350  *
2351  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2352  * high - the zone may be full of dirty or under-writeback pages, which this
2353  * caller can't do much about.  We kick the writeback threads and take explicit
2354  * naps in the hope that some of these pages can be written.  But if the
2355  * allocating task holds filesystem locks which prevent writeout this might not
2356  * work, and the allocation attempt will fail.
2357  *
2358  * returns:     0, if no pages reclaimed
2359  *              else, the number of pages reclaimed
2360  */
2361 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2362                                         struct scan_control *sc,
2363                                         struct shrink_control *shrink)
2364 {
2365         int priority;
2366         unsigned long total_scanned = 0;
2367         struct reclaim_state *reclaim_state = current->reclaim_state;
2368         struct zoneref *z;
2369         struct zone *zone;
2370         unsigned long writeback_threshold;
2371         bool aborted_reclaim;
2372
2373         delayacct_freepages_start();
2374
2375         if (global_reclaim(sc))
2376                 count_vm_event(ALLOCSTALL);
2377
2378         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2379                 sc->nr_scanned = 0;
2380                 if (!priority)
2381                         disable_swap_token(sc->target_mem_cgroup);
2382                 aborted_reclaim = shrink_zones(priority, zonelist, sc);
2383
2384                 /*
2385                  * Don't shrink slabs when reclaiming memory from
2386                  * over limit cgroups
2387                  */
2388                 if (global_reclaim(sc)) {
2389                         unsigned long lru_pages = 0;
2390                         for_each_zone_zonelist(zone, z, zonelist,
2391                                         gfp_zone(sc->gfp_mask)) {
2392                                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2393                                         continue;
2394
2395                                 lru_pages += zone_reclaimable_pages(zone);
2396                         }
2397
2398                         shrink_slab(shrink, sc->nr_scanned, lru_pages);
2399                         if (reclaim_state) {
2400                                 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2401                                 reclaim_state->reclaimed_slab = 0;
2402                         }
2403                 }
2404                 total_scanned += sc->nr_scanned;
2405                 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2406                         goto out;
2407
2408                 /*
2409                  * Try to write back as many pages as we just scanned.  This
2410                  * tends to cause slow streaming writers to write data to the
2411                  * disk smoothly, at the dirtying rate, which is nice.   But
2412                  * that's undesirable in laptop mode, where we *want* lumpy
2413                  * writeout.  So in laptop mode, write out the whole world.
2414                  */
2415                 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2416                 if (total_scanned > writeback_threshold) {
2417                         wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2418                                                 WB_REASON_TRY_TO_FREE_PAGES);
2419                         sc->may_writepage = 1;
2420                 }
2421
2422                 /* Take a nap, wait for some writeback to complete */
2423                 if (!sc->hibernation_mode && sc->nr_scanned &&
2424                     priority < DEF_PRIORITY - 2) {
2425                         struct zone *preferred_zone;
2426
2427                         first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2428                                                 &cpuset_current_mems_allowed,
2429                                                 &preferred_zone);
2430                         wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2431                 }
2432         }
2433
2434 out:
2435         delayacct_freepages_end();
2436
2437         if (sc->nr_reclaimed)
2438                 return sc->nr_reclaimed;
2439
2440         /*
2441          * As hibernation is going on, kswapd is freezed so that it can't mark
2442          * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2443          * check.
2444          */
2445         if (oom_killer_disabled)
2446                 return 0;
2447
2448         /* Aborted reclaim to try compaction? don't OOM, then */
2449         if (aborted_reclaim)
2450                 return 1;
2451
2452         /* top priority shrink_zones still had more to do? don't OOM, then */
2453         if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2454                 return 1;
2455
2456         return 0;
2457 }
2458
2459 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2460                                 gfp_t gfp_mask, nodemask_t *nodemask)
2461 {
2462         unsigned long nr_reclaimed;
2463         struct scan_control sc = {
2464                 .gfp_mask = gfp_mask,
2465                 .may_writepage = !laptop_mode,
2466                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2467                 .may_unmap = 1,
2468                 .may_swap = 1,
2469                 .order = order,
2470                 .target_mem_cgroup = NULL,
2471                 .nodemask = nodemask,
2472         };
2473         struct shrink_control shrink = {
2474                 .gfp_mask = sc.gfp_mask,
2475         };
2476
2477         trace_mm_vmscan_direct_reclaim_begin(order,
2478                                 sc.may_writepage,
2479                                 gfp_mask);
2480
2481         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2482
2483         trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2484
2485         return nr_reclaimed;
2486 }
2487
2488 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2489
2490 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2491                                                 gfp_t gfp_mask, bool noswap,
2492                                                 struct zone *zone,
2493                                                 unsigned long *nr_scanned)
2494 {
2495         struct scan_control sc = {
2496                 .nr_scanned = 0,
2497                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2498                 .may_writepage = !laptop_mode,
2499                 .may_unmap = 1,
2500                 .may_swap = !noswap,
2501                 .order = 0,
2502                 .target_mem_cgroup = memcg,
2503         };
2504         struct mem_cgroup_zone mz = {
2505                 .mem_cgroup = memcg,
2506                 .zone = zone,
2507         };
2508
2509         sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2510                         (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2511
2512         trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2513                                                       sc.may_writepage,
2514                                                       sc.gfp_mask);
2515
2516         /*
2517          * NOTE: Although we can get the priority field, using it
2518          * here is not a good idea, since it limits the pages we can scan.
2519          * if we don't reclaim here, the shrink_zone from balance_pgdat
2520          * will pick up pages from other mem cgroup's as well. We hack
2521          * the priority and make it zero.
2522          */
2523         shrink_mem_cgroup_zone(0, &mz, &sc);
2524
2525         trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2526
2527         *nr_scanned = sc.nr_scanned;
2528         return sc.nr_reclaimed;
2529 }
2530
2531 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2532                                            gfp_t gfp_mask,
2533                                            bool noswap)
2534 {
2535         struct zonelist *zonelist;
2536         unsigned long nr_reclaimed;
2537         int nid;
2538         struct scan_control sc = {
2539                 .may_writepage = !laptop_mode,
2540                 .may_unmap = 1,
2541                 .may_swap = !noswap,
2542                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2543                 .order = 0,
2544                 .target_mem_cgroup = memcg,
2545                 .nodemask = NULL, /* we don't care the placement */
2546                 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2547                                 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2548         };
2549         struct shrink_control shrink = {
2550                 .gfp_mask = sc.gfp_mask,
2551         };
2552
2553         /*
2554          * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2555          * take care of from where we get pages. So the node where we start the
2556          * scan does not need to be the current node.
2557          */
2558         nid = mem_cgroup_select_victim_node(memcg);
2559
2560         zonelist = NODE_DATA(nid)->node_zonelists;
2561
2562         trace_mm_vmscan_memcg_reclaim_begin(0,
2563                                             sc.may_writepage,
2564                                             sc.gfp_mask);
2565
2566         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2567
2568         trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2569
2570         return nr_reclaimed;
2571 }
2572 #endif
2573
2574 static void age_active_anon(struct zone *zone, struct scan_control *sc,
2575                             int priority)
2576 {
2577         struct mem_cgroup *memcg;
2578
2579         if (!total_swap_pages)
2580                 return;
2581
2582         memcg = mem_cgroup_iter(NULL, NULL, NULL);
2583         do {
2584                 struct mem_cgroup_zone mz = {
2585                         .mem_cgroup = memcg,
2586                         .zone = zone,
2587                 };
2588
2589                 if (inactive_anon_is_low(&mz))
2590                         shrink_active_list(SWAP_CLUSTER_MAX, &mz,
2591                                            sc, priority, 0);
2592
2593                 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2594         } while (memcg);
2595 }
2596
2597 /*
2598  * pgdat_balanced is used when checking if a node is balanced for high-order
2599  * allocations. Only zones that meet watermarks and are in a zone allowed
2600  * by the callers classzone_idx are added to balanced_pages. The total of
2601  * balanced pages must be at least 25% of the zones allowed by classzone_idx
2602  * for the node to be considered balanced. Forcing all zones to be balanced
2603  * for high orders can cause excessive reclaim when there are imbalanced zones.
2604  * The choice of 25% is due to
2605  *   o a 16M DMA zone that is balanced will not balance a zone on any
2606  *     reasonable sized machine
2607  *   o On all other machines, the top zone must be at least a reasonable
2608  *     percentage of the middle zones. For example, on 32-bit x86, highmem
2609  *     would need to be at least 256M for it to be balance a whole node.
2610  *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2611  *     to balance a node on its own. These seemed like reasonable ratios.
2612  */
2613 static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2614                                                 int classzone_idx)
2615 {
2616         unsigned long present_pages = 0;
2617         int i;
2618
2619         for (i = 0; i <= classzone_idx; i++)
2620                 present_pages += pgdat->node_zones[i].present_pages;
2621
2622         /* A special case here: if zone has no page, we think it's balanced */
2623         return balanced_pages >= (present_pages >> 2);
2624 }
2625
2626 /* is kswapd sleeping prematurely? */
2627 static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2628                                         int classzone_idx)
2629 {
2630         int i;
2631         unsigned long balanced = 0;
2632         bool all_zones_ok = true;
2633
2634         /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2635         if (remaining)
2636                 return true;
2637
2638         /* Check the watermark levels */
2639         for (i = 0; i <= classzone_idx; i++) {
2640                 struct zone *zone = pgdat->node_zones + i;
2641
2642                 if (!populated_zone(zone))
2643                         continue;
2644
2645                 /*
2646                  * balance_pgdat() skips over all_unreclaimable after
2647                  * DEF_PRIORITY. Effectively, it considers them balanced so
2648                  * they must be considered balanced here as well if kswapd
2649                  * is to sleep
2650                  */
2651                 if (zone->all_unreclaimable) {
2652                         balanced += zone->present_pages;
2653                         continue;
2654                 }
2655
2656                 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2657                                                         i, 0))
2658                         all_zones_ok = false;
2659                 else
2660                         balanced += zone->present_pages;
2661         }
2662
2663         /*
2664          * For high-order requests, the balanced zones must contain at least
2665          * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2666          * must be balanced
2667          */
2668         if (order)
2669                 return !pgdat_balanced(pgdat, balanced, classzone_idx);
2670         else
2671                 return !all_zones_ok;
2672 }
2673
2674 /*
2675  * For kswapd, balance_pgdat() will work across all this node's zones until
2676  * they are all at high_wmark_pages(zone).
2677  *
2678  * Returns the final order kswapd was reclaiming at
2679  *
2680  * There is special handling here for zones which are full of pinned pages.
2681  * This can happen if the pages are all mlocked, or if they are all used by
2682  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2683  * What we do is to detect the case where all pages in the zone have been
2684  * scanned twice and there has been zero successful reclaim.  Mark the zone as
2685  * dead and from now on, only perform a short scan.  Basically we're polling
2686  * the zone for when the problem goes away.
2687  *
2688  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2689  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2690  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2691  * lower zones regardless of the number of free pages in the lower zones. This
2692  * interoperates with the page allocator fallback scheme to ensure that aging
2693  * of pages is balanced across the zones.
2694  */
2695 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2696                                                         int *classzone_idx)
2697 {
2698         int all_zones_ok;
2699         unsigned long balanced;
2700         int priority;
2701         int i;
2702         int end_zone = 0;       /* Inclusive.  0 = ZONE_DMA */
2703         unsigned long total_scanned;
2704         struct reclaim_state *reclaim_state = current->reclaim_state;
2705         unsigned long nr_soft_reclaimed;
2706         unsigned long nr_soft_scanned;
2707         struct scan_control sc = {
2708                 .gfp_mask = GFP_KERNEL,
2709                 .may_unmap = 1,
2710                 .may_swap = 1,
2711                 /*
2712                  * kswapd doesn't want to be bailed out while reclaim. because
2713                  * we want to put equal scanning pressure on each zone.
2714                  */
2715                 .nr_to_reclaim = ULONG_MAX,
2716                 .order = order,
2717                 .target_mem_cgroup = NULL,
2718         };
2719         struct shrink_control shrink = {
2720                 .gfp_mask = sc.gfp_mask,
2721         };
2722 loop_again:
2723         total_scanned = 0;
2724         sc.nr_reclaimed = 0;
2725         sc.may_writepage = !laptop_mode;
2726         count_vm_event(PAGEOUTRUN);
2727
2728         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2729                 unsigned long lru_pages = 0;
2730                 int has_under_min_watermark_zone = 0;
2731
2732                 /* The swap token gets in the way of swapout... */
2733                 if (!priority)
2734                         disable_swap_token(NULL);
2735
2736                 all_zones_ok = 1;
2737                 balanced = 0;
2738
2739                 /*
2740                  * Scan in the highmem->dma direction for the highest
2741                  * zone which needs scanning
2742                  */
2743                 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2744                         struct zone *zone = pgdat->node_zones + i;
2745
2746                         if (!populated_zone(zone))
2747                                 continue;
2748
2749                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2750                                 continue;
2751
2752                         /*
2753                          * Do some background aging of the anon list, to give
2754                          * pages a chance to be referenced before reclaiming.
2755                          */
2756                         age_active_anon(zone, &sc, priority);
2757
2758                         /*
2759                          * If the number of buffer_heads in the machine
2760                          * exceeds the maximum allowed level and this node
2761                          * has a highmem zone, force kswapd to reclaim from
2762                          * it to relieve lowmem pressure.
2763                          */
2764                         if (buffer_heads_over_limit && is_highmem_idx(i)) {
2765                                 end_zone = i;
2766                                 break;
2767                         }
2768
2769                         if (!zone_watermark_ok_safe(zone, order,
2770                                         high_wmark_pages(zone), 0, 0)) {
2771                                 end_zone = i;
2772                                 break;
2773                         } else {
2774                                 /* If balanced, clear the congested flag */
2775                                 zone_clear_flag(zone, ZONE_CONGESTED);
2776                         }
2777                 }
2778                 if (i < 0)
2779                         goto out;
2780
2781                 for (i = 0; i <= end_zone; i++) {
2782                         struct zone *zone = pgdat->node_zones + i;
2783
2784                         lru_pages += zone_reclaimable_pages(zone);
2785                 }
2786
2787                 /*
2788                  * Now scan the zone in the dma->highmem direction, stopping
2789                  * at the last zone which needs scanning.
2790                  *
2791                  * We do this because the page allocator works in the opposite
2792                  * direction.  This prevents the page allocator from allocating
2793                  * pages behind kswapd's direction of progress, which would
2794                  * cause too much scanning of the lower zones.
2795                  */
2796                 for (i = 0; i <= end_zone; i++) {
2797                         struct zone *zone = pgdat->node_zones + i;
2798                         int nr_slab, testorder;
2799                         unsigned long balance_gap;
2800
2801                         if (!populated_zone(zone))
2802                                 continue;
2803
2804                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2805                                 continue;
2806
2807                         sc.nr_scanned = 0;
2808
2809                         nr_soft_scanned = 0;
2810                         /*
2811                          * Call soft limit reclaim before calling shrink_zone.
2812                          */
2813                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2814                                                         order, sc.gfp_mask,
2815                                                         &nr_soft_scanned);
2816                         sc.nr_reclaimed += nr_soft_reclaimed;
2817                         total_scanned += nr_soft_scanned;
2818
2819                         /*
2820                          * We put equal pressure on every zone, unless
2821                          * one zone has way too many pages free
2822                          * already. The "too many pages" is defined
2823                          * as the high wmark plus a "gap" where the
2824                          * gap is either the low watermark or 1%
2825                          * of the zone, whichever is smaller.
2826                          */
2827                         balance_gap = min(low_wmark_pages(zone),
2828                                 (zone->present_pages +
2829                                         KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2830                                 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2831                         /*
2832                          * Kswapd reclaims only single pages with compaction
2833                          * enabled. Trying too hard to reclaim until contiguous
2834                          * free pages have become available can hurt performance
2835                          * by evicting too much useful data from memory.
2836                          * Do not reclaim more than needed for compaction.
2837                          */
2838                         testorder = order;
2839                         if (COMPACTION_BUILD && order &&
2840                                         compaction_suitable(zone, order) !=
2841                                                 COMPACT_SKIPPED)
2842                                 testorder = 0;
2843
2844                         if ((buffer_heads_over_limit && is_highmem_idx(i)) ||
2845                                     !zone_watermark_ok_safe(zone, testorder,
2846                                         high_wmark_pages(zone) + balance_gap,
2847                                         end_zone, 0)) {
2848                                 shrink_zone(priority, zone, &sc);
2849
2850                                 reclaim_state->reclaimed_slab = 0;
2851                                 nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2852                                 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2853                                 total_scanned += sc.nr_scanned;
2854
2855                                 if (nr_slab == 0 && !zone_reclaimable(zone))
2856                                         zone->all_unreclaimable = 1;
2857                         }
2858
2859                         /*
2860                          * If we've done a decent amount of scanning and
2861                          * the reclaim ratio is low, start doing writepage
2862                          * even in laptop mode
2863                          */
2864                         if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2865                             total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2866                                 sc.may_writepage = 1;
2867
2868                         if (zone->all_unreclaimable) {
2869                                 if (end_zone && end_zone == i)
2870                                         end_zone--;
2871                                 continue;
2872                         }
2873
2874                         if (!zone_watermark_ok_safe(zone, testorder,
2875                                         high_wmark_pages(zone), end_zone, 0)) {
2876                                 all_zones_ok = 0;
2877                                 /*
2878                                  * We are still under min water mark.  This
2879                                  * means that we have a GFP_ATOMIC allocation
2880                                  * failure risk. Hurry up!
2881                                  */
2882                                 if (!zone_watermark_ok_safe(zone, order,
2883                                             min_wmark_pages(zone), end_zone, 0))
2884                                         has_under_min_watermark_zone = 1;
2885                         } else {
2886                                 /*
2887                                  * If a zone reaches its high watermark,
2888                                  * consider it to be no longer congested. It's
2889                                  * possible there are dirty pages backed by
2890                                  * congested BDIs but as pressure is relieved,
2891                                  * spectulatively avoid congestion waits
2892                                  */
2893                                 zone_clear_flag(zone, ZONE_CONGESTED);
2894                                 if (i <= *classzone_idx)
2895                                         balanced += zone->present_pages;
2896                         }
2897
2898                 }
2899                 if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2900                         break;          /* kswapd: all done */
2901                 /*
2902                  * OK, kswapd is getting into trouble.  Take a nap, then take
2903                  * another pass across the zones.
2904                  */
2905                 if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2906                         if (has_under_min_watermark_zone)
2907                                 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2908                         else
2909                                 congestion_wait(BLK_RW_ASYNC, HZ/10);
2910                 }
2911
2912                 /*
2913                  * We do this so kswapd doesn't build up large priorities for
2914                  * example when it is freeing in parallel with allocators. It
2915                  * matches the direct reclaim path behaviour in terms of impact
2916                  * on zone->*_priority.
2917                  */
2918                 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2919                         break;
2920         }
2921 out:
2922
2923         /*
2924          * order-0: All zones must meet high watermark for a balanced node
2925          * high-order: Balanced zones must make up at least 25% of the node
2926          *             for the node to be balanced
2927          */
2928         if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2929                 cond_resched();
2930
2931                 try_to_freeze();
2932
2933                 /*
2934                  * Fragmentation may mean that the system cannot be
2935                  * rebalanced for high-order allocations in all zones.
2936                  * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2937                  * it means the zones have been fully scanned and are still
2938                  * not balanced. For high-order allocations, there is
2939                  * little point trying all over again as kswapd may
2940                  * infinite loop.
2941                  *
2942                  * Instead, recheck all watermarks at order-0 as they
2943                  * are the most important. If watermarks are ok, kswapd will go
2944                  * back to sleep. High-order users can still perform direct
2945                  * reclaim if they wish.
2946                  */
2947                 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2948                         order = sc.order = 0;
2949
2950                 goto loop_again;
2951         }
2952
2953         /*
2954          * If kswapd was reclaiming at a higher order, it has the option of
2955          * sleeping without all zones being balanced. Before it does, it must
2956          * ensure that the watermarks for order-0 on *all* zones are met and
2957          * that the congestion flags are cleared. The congestion flag must
2958          * be cleared as kswapd is the only mechanism that clears the flag
2959          * and it is potentially going to sleep here.
2960          */
2961         if (order) {
2962                 int zones_need_compaction = 1;
2963
2964                 for (i = 0; i <= end_zone; i++) {
2965                         struct zone *zone = pgdat->node_zones + i;
2966
2967                         if (!populated_zone(zone))
2968                                 continue;
2969
2970                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2971                                 continue;
2972
2973                         /* Would compaction fail due to lack of free memory? */
2974                         if (COMPACTION_BUILD &&
2975                             compaction_suitable(zone, order) == COMPACT_SKIPPED)
2976                                 goto loop_again;
2977
2978                         /* Confirm the zone is balanced for order-0 */
2979                         if (!zone_watermark_ok(zone, 0,
2980                                         high_wmark_pages(zone), 0, 0)) {
2981                                 order = sc.order = 0;
2982                                 goto loop_again;
2983                         }
2984
2985                         /* Check if the memory needs to be defragmented. */
2986                         if (zone_watermark_ok(zone, order,
2987                                     low_wmark_pages(zone), *classzone_idx, 0))
2988                                 zones_need_compaction = 0;
2989
2990                         /* If balanced, clear the congested flag */
2991                         zone_clear_flag(zone, ZONE_CONGESTED);
2992                 }
2993
2994                 if (zones_need_compaction)
2995                         compact_pgdat(pgdat, order);
2996         }
2997
2998         /*
2999          * Return the order we were reclaiming at so sleeping_prematurely()
3000          * makes a decision on the order we were last reclaiming at. However,
3001          * if another caller entered the allocator slow path while kswapd
3002          * was awake, order will remain at the higher level
3003          */
3004         *classzone_idx = end_zone;
3005         return order;
3006 }
3007
3008 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3009 {
3010         long remaining = 0;
3011         DEFINE_WAIT(wait);
3012
3013         if (freezing(current) || kthread_should_stop())
3014                 return;
3015
3016         prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3017
3018         /* Try to sleep for a short interval */
3019         if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
3020                 remaining = schedule_timeout(HZ/10);
3021                 finish_wait(&pgdat->kswapd_wait, &wait);
3022                 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3023         }
3024
3025         /*
3026          * After a short sleep, check if it was a premature sleep. If not, then
3027          * go fully to sleep until explicitly woken up.
3028          */
3029         if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
3030                 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3031
3032                 /*
3033                  * vmstat counters are not perfectly accurate and the estimated
3034                  * value for counters such as NR_FREE_PAGES can deviate from the
3035                  * true value by nr_online_cpus * threshold. To avoid the zone
3036                  * watermarks being breached while under pressure, we reduce the
3037                  * per-cpu vmstat threshold while kswapd is awake and restore
3038                  * them before going back to sleep.
3039                  */
3040                 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3041                 schedule();
3042                 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3043         } else {
3044                 if (remaining)
3045                         count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3046                 else
3047                         count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3048         }
3049         finish_wait(&pgdat->kswapd_wait, &wait);
3050 }
3051
3052 /*
3053  * The background pageout daemon, started as a kernel thread
3054  * from the init process.
3055  *
3056  * This basically trickles out pages so that we have _some_
3057  * free memory available even if there is no other activity
3058  * that frees anything up. This is needed for things like routing
3059  * etc, where we otherwise might have all activity going on in
3060  * asynchronous contexts that cannot page things out.
3061  *
3062  * If there are applications that are active memory-allocators
3063  * (most normal use), this basically shouldn't matter.
3064  */
3065 static int kswapd(void *p)
3066 {
3067         unsigned long order, new_order;
3068         unsigned balanced_order;
3069         int classzone_idx, new_classzone_idx;
3070         int balanced_classzone_idx;
3071         pg_data_t *pgdat = (pg_data_t*)p;
3072         struct task_struct *tsk = current;
3073
3074         struct reclaim_state reclaim_state = {
3075                 .reclaimed_slab = 0,
3076         };
3077         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3078
3079         lockdep_set_current_reclaim_state(GFP_KERNEL);
3080
3081         if (!cpumask_empty(cpumask))
3082                 set_cpus_allowed_ptr(tsk, cpumask);
3083         current->reclaim_state = &reclaim_state;
3084
3085         /*
3086          * Tell the memory management that we're a "memory allocator",
3087          * and that if we need more memory we should get access to it
3088          * regardless (see "__alloc_pages()"). "kswapd" should
3089          * never get caught in the normal page freeing logic.
3090          *
3091          * (Kswapd normally doesn't need memory anyway, but sometimes
3092          * you need a small amount of memory in order to be able to
3093          * page out something else, and this flag essentially protects
3094          * us from recursively trying to free more memory as we're
3095          * trying to free the first piece of memory in the first place).
3096          */
3097         tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3098         set_freezable();
3099
3100         order = new_order = 0;
3101         balanced_order = 0;
3102         classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3103         balanced_classzone_idx = classzone_idx;
3104         for ( ; ; ) {
3105                 int ret;
3106
3107                 /*
3108                  * If the last balance_pgdat was unsuccessful it's unlikely a
3109                  * new request of a similar or harder type will succeed soon
3110                  * so consider going to sleep on the basis we reclaimed at
3111                  */
3112                 if (balanced_classzone_idx >= new_classzone_idx &&
3113                                         balanced_order == new_order) {
3114                         new_order = pgdat->kswapd_max_order;
3115                         new_classzone_idx = pgdat->classzone_idx;
3116                         pgdat->kswapd_max_order =  0;
3117                         pgdat->classzone_idx = pgdat->nr_zones - 1;
3118                 }
3119
3120                 if (order < new_order || classzone_idx > new_classzone_idx) {
3121                         /*
3122                          * Don't sleep if someone wants a larger 'order'
3123                          * allocation or has tigher zone constraints
3124                          */
3125                         order = new_order;
3126                         classzone_idx = new_classzone_idx;
3127                 } else {
3128                         kswapd_try_to_sleep(pgdat, balanced_order,
3129                                                 balanced_classzone_idx);
3130                         order = pgdat->kswapd_max_order;
3131                         classzone_idx = pgdat->classzone_idx;
3132                         new_order = order;
3133                         new_classzone_idx = classzone_idx;
3134                         pgdat->kswapd_max_order = 0;
3135                         pgdat->classzone_idx = pgdat->nr_zones - 1;
3136                 }
3137
3138                 ret = try_to_freeze();
3139                 if (kthread_should_stop())
3140                         break;
3141
3142                 /*
3143                  * We can speed up thawing tasks if we don't call balance_pgdat
3144                  * after returning from the refrigerator
3145                  */
3146                 if (!ret) {
3147                         trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3148                         balanced_classzone_idx = classzone_idx;
3149                         balanced_order = balance_pgdat(pgdat, order,
3150                                                 &balanced_classzone_idx);
3151                 }
3152         }
3153         return 0;
3154 }
3155
3156 /*
3157  * A zone is low on free memory, so wake its kswapd task to service it.
3158  */
3159 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3160 {
3161         pg_data_t *pgdat;
3162
3163         if (!populated_zone(zone))
3164                 return;
3165
3166         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
3167                 return;
3168         pgdat = zone->zone_pgdat;
3169         if (pgdat->kswapd_max_order < order) {
3170                 pgdat->kswapd_max_order = order;
3171                 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3172         }
3173         if (!waitqueue_active(&pgdat->kswapd_wait))
3174                 return;
3175         if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
3176                 return;
3177
3178         trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3179         wake_up_interruptible(&pgdat->kswapd_wait);
3180 }
3181
3182 /*
3183  * The reclaimable count would be mostly accurate.
3184  * The less reclaimable pages may be
3185  * - mlocked pages, which will be moved to unevictable list when encountered
3186  * - mapped pages, which may require several travels to be reclaimed
3187  * - dirty pages, which is not "instantly" reclaimable
3188  */
3189 unsigned long global_reclaimable_pages(void)
3190 {
3191         int nr;
3192
3193         nr = global_page_state(NR_ACTIVE_FILE) +
3194              global_page_state(NR_INACTIVE_FILE);
3195
3196         if (nr_swap_pages > 0)
3197                 nr += global_page_state(NR_ACTIVE_ANON) +
3198                       global_page_state(NR_INACTIVE_ANON);
3199
3200         return nr;
3201 }
3202
3203 unsigned long zone_reclaimable_pages(struct zone *zone)
3204 {
3205         unsigned long pages_min;
3206         int nr;
3207
3208         nr = zone_page_state(zone, NR_ACTIVE_FILE) +
3209              zone_page_state(zone, NR_INACTIVE_FILE);
3210
3211         pages_min = min_filelist_kbytes >> (PAGE_SHIFT - 10);
3212         if (nr < pages_min)
3213                 nr = 0;
3214
3215         if (nr_swap_pages > 0)
3216                 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
3217                       zone_page_state(zone, NR_INACTIVE_ANON);
3218
3219         return nr;
3220 }
3221
3222 #ifdef CONFIG_HIBERNATION
3223 /*
3224  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3225  * freed pages.
3226  *
3227  * Rather than trying to age LRUs the aim is to preserve the overall
3228  * LRU order by reclaiming preferentially
3229  * inactive > active > active referenced > active mapped
3230  */
3231 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3232 {
3233         struct reclaim_state reclaim_state;
3234         struct scan_control sc = {
3235                 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3236                 .may_swap = 1,
3237                 .may_unmap = 1,
3238                 .may_writepage = 1,
3239                 .nr_to_reclaim = nr_to_reclaim,
3240                 .hibernation_mode = 1,
3241                 .order = 0,
3242         };
3243         struct shrink_control shrink = {
3244                 .gfp_mask = sc.gfp_mask,
3245         };
3246         struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3247         struct task_struct *p = current;
3248         unsigned long nr_reclaimed;
3249
3250         p->flags |= PF_MEMALLOC;
3251         lockdep_set_current_reclaim_state(sc.gfp_mask);
3252         reclaim_state.reclaimed_slab = 0;
3253         p->reclaim_state = &reclaim_state;
3254
3255         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3256
3257         p->reclaim_state = NULL;
3258         lockdep_clear_current_reclaim_state();
3259         p->flags &= ~PF_MEMALLOC;
3260
3261         return nr_reclaimed;
3262 }
3263 #endif /* CONFIG_HIBERNATION */
3264
3265 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3266    not required for correctness.  So if the last cpu in a node goes
3267    away, we get changed to run anywhere: as the first one comes back,
3268    restore their cpu bindings. */
3269 static int __devinit cpu_callback(struct notifier_block *nfb,
3270                                   unsigned long action, void *hcpu)
3271 {
3272         int nid;
3273
3274         if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3275                 for_each_node_state(nid, N_HIGH_MEMORY) {
3276                         pg_data_t *pgdat = NODE_DATA(nid);
3277                         const struct cpumask *mask;
3278
3279                         mask = cpumask_of_node(pgdat->node_id);
3280
3281                         if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3282                                 /* One of our CPUs online: restore mask */
3283                                 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3284                 }
3285         }
3286         return NOTIFY_OK;
3287 }
3288
3289 /*
3290  * This kswapd start function will be called by init and node-hot-add.
3291  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3292  */
3293 int kswapd_run(int nid)
3294 {
3295         pg_data_t *pgdat = NODE_DATA(nid);
3296         int ret = 0;
3297
3298         if (pgdat->kswapd)
3299                 return 0;
3300
3301         pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3302         if (IS_ERR(pgdat->kswapd)) {
3303                 /* failure at boot is fatal */
3304                 BUG_ON(system_state == SYSTEM_BOOTING);
3305                 printk("Failed to start kswapd on node %d\n",nid);
3306                 ret = -1;
3307         }
3308         return ret;
3309 }
3310
3311 /*
3312  * Called by memory hotplug when all memory in a node is offlined.
3313  */
3314 void kswapd_stop(int nid)
3315 {
3316         struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3317
3318         if (kswapd)
3319                 kthread_stop(kswapd);
3320 }
3321
3322 static int __init kswapd_init(void)
3323 {
3324         int nid;
3325
3326         swap_setup();
3327         for_each_node_state(nid, N_HIGH_MEMORY)
3328                 kswapd_run(nid);
3329         hotcpu_notifier(cpu_callback, 0);
3330         return 0;
3331 }
3332
3333 module_init(kswapd_init)
3334
3335 #ifdef CONFIG_NUMA
3336 /*
3337  * Zone reclaim mode
3338  *
3339  * If non-zero call zone_reclaim when the number of free pages falls below
3340  * the watermarks.
3341  */
3342 int zone_reclaim_mode __read_mostly;
3343
3344 #define RECLAIM_OFF 0
3345 #define RECLAIM_ZONE (1<<0)     /* Run shrink_inactive_list on the zone */
3346 #define RECLAIM_WRITE (1<<1)    /* Writeout pages during reclaim */
3347 #define RECLAIM_SWAP (1<<2)     /* Swap pages out during reclaim */
3348
3349 /*
3350  * Priority for ZONE_RECLAIM. This determines the fraction of pages
3351  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3352  * a zone.
3353  */
3354 #define ZONE_RECLAIM_PRIORITY 4
3355
3356 /*
3357  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3358  * occur.
3359  */
3360 int sysctl_min_unmapped_ratio = 1;
3361
3362 /*
3363  * If the number of slab pages in a zone grows beyond this percentage then
3364  * slab reclaim needs to occur.
3365  */
3366 int sysctl_min_slab_ratio = 5;
3367
3368 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3369 {
3370         unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3371         unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3372                 zone_page_state(zone, NR_ACTIVE_FILE);
3373
3374         /*
3375          * It's possible for there to be more file mapped pages than
3376          * accounted for by the pages on the file LRU lists because
3377          * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3378          */
3379         return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3380 }
3381
3382 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3383 static long zone_pagecache_reclaimable(struct zone *zone)
3384 {
3385         long nr_pagecache_reclaimable;
3386         long delta = 0;
3387
3388         /*
3389          * If RECLAIM_SWAP is set, then all file pages are considered
3390          * potentially reclaimable. Otherwise, we have to worry about
3391          * pages like swapcache and zone_unmapped_file_pages() provides
3392          * a better estimate
3393          */
3394         if (zone_reclaim_mode & RECLAIM_SWAP)
3395                 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3396         else
3397                 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3398
3399         /* If we can't clean pages, remove dirty pages from consideration */
3400         if (!(zone_reclaim_mode & RECLAIM_WRITE))
3401                 delta += zone_page_state(zone, NR_FILE_DIRTY);
3402
3403         /* Watch for any possible underflows due to delta */
3404         if (unlikely(delta > nr_pagecache_reclaimable))
3405                 delta = nr_pagecache_reclaimable;
3406
3407         return nr_pagecache_reclaimable - delta;
3408 }
3409
3410 /*
3411  * Try to free up some pages from this zone through reclaim.
3412  */
3413 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3414 {
3415         /* Minimum pages needed in order to stay on node */
3416         const unsigned long nr_pages = 1 << order;
3417         struct task_struct *p = current;
3418         struct reclaim_state reclaim_state;
3419         int priority;
3420         struct scan_control sc = {
3421                 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3422                 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3423                 .may_swap = 1,
3424                 .nr_to_reclaim = max_t(unsigned long, nr_pages,
3425                                        SWAP_CLUSTER_MAX),
3426                 .gfp_mask = gfp_mask,
3427                 .order = order,
3428         };
3429         struct shrink_control shrink = {
3430                 .gfp_mask = sc.gfp_mask,
3431         };
3432         unsigned long nr_slab_pages0, nr_slab_pages1;
3433
3434         cond_resched();
3435         /*
3436          * We need to be able to allocate from the reserves for RECLAIM_SWAP
3437          * and we also need to be able to write out pages for RECLAIM_WRITE
3438          * and RECLAIM_SWAP.
3439          */
3440         p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3441         lockdep_set_current_reclaim_state(gfp_mask);
3442         reclaim_state.reclaimed_slab = 0;
3443         p->reclaim_state = &reclaim_state;
3444
3445         if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3446                 /*
3447                  * Free memory by calling shrink zone with increasing
3448                  * priorities until we have enough memory freed.
3449                  */
3450                 priority = ZONE_RECLAIM_PRIORITY;
3451                 do {
3452                         shrink_zone(priority, zone, &sc);
3453                         priority--;
3454                 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
3455         }
3456
3457         nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3458         if (nr_slab_pages0 > zone->min_slab_pages) {
3459                 /*
3460                  * shrink_slab() does not currently allow us to determine how
3461                  * many pages were freed in this zone. So we take the current
3462                  * number of slab pages and shake the slab until it is reduced
3463                  * by the same nr_pages that we used for reclaiming unmapped
3464                  * pages.
3465                  *
3466                  * Note that shrink_slab will free memory on all zones and may
3467                  * take a long time.
3468                  */
3469                 for (;;) {
3470                         unsigned long lru_pages = zone_reclaimable_pages(zone);
3471
3472                         /* No reclaimable slab or very low memory pressure */
3473                         if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3474                                 break;
3475
3476                         /* Freed enough memory */
3477                         nr_slab_pages1 = zone_page_state(zone,
3478                                                         NR_SLAB_RECLAIMABLE);
3479                         if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3480                                 break;
3481                 }
3482
3483                 /*
3484                  * Update nr_reclaimed by the number of slab pages we
3485                  * reclaimed from this zone.
3486                  */
3487                 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3488                 if (nr_slab_pages1 < nr_slab_pages0)
3489                         sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3490         }
3491
3492         p->reclaim_state = NULL;
3493         current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3494         lockdep_clear_current_reclaim_state();
3495         return sc.nr_reclaimed >= nr_pages;
3496 }
3497
3498 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3499 {
3500         int node_id;
3501         int ret;
3502
3503         /*
3504          * Zone reclaim reclaims unmapped file backed pages and
3505          * slab pages if we are over the defined limits.
3506          *
3507          * A small portion of unmapped file backed pages is needed for
3508          * file I/O otherwise pages read by file I/O will be immediately
3509          * thrown out if the zone is overallocated. So we do not reclaim
3510          * if less than a specified percentage of the zone is used by
3511          * unmapped file backed pages.
3512          */
3513         if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3514             zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3515                 return ZONE_RECLAIM_FULL;
3516
3517         if (zone->all_unreclaimable)
3518                 return ZONE_RECLAIM_FULL;
3519
3520         /*
3521          * Do not scan if the allocation should not be delayed.
3522          */
3523         if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3524                 return ZONE_RECLAIM_NOSCAN;
3525
3526         /*
3527          * Only run zone reclaim on the local zone or on zones that do not
3528          * have associated processors. This will favor the local processor
3529          * over remote processors and spread off node memory allocations
3530          * as wide as possible.
3531          */
3532         node_id = zone_to_nid(zone);
3533         if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3534                 return ZONE_RECLAIM_NOSCAN;
3535
3536         if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3537                 return ZONE_RECLAIM_NOSCAN;
3538
3539         ret = __zone_reclaim(zone, gfp_mask, order);
3540         zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3541
3542         if (!ret)
3543                 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3544
3545         return ret;
3546 }
3547 #endif
3548
3549 /*
3550  * page_evictable - test whether a page is evictable
3551  * @page: the page to test
3552  * @vma: the VMA in which the page is or will be mapped, may be NULL
3553  *
3554  * Test whether page is evictable--i.e., should be placed on active/inactive
3555  * lists vs unevictable list.  The vma argument is !NULL when called from the
3556  * fault path to determine how to instantate a new page.
3557  *
3558  * Reasons page might not be evictable:
3559  * (1) page's mapping marked unevictable
3560  * (2) page is part of an mlocked VMA
3561  *
3562  */
3563 int page_evictable(struct page *page, struct vm_area_struct *vma)
3564 {
3565
3566         if (mapping_unevictable(page_mapping(page)))
3567                 return 0;
3568
3569         if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
3570                 return 0;
3571
3572         return 1;
3573 }
3574
3575 #ifdef CONFIG_SHMEM
3576 /**
3577  * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3578  * @pages:      array of pages to check
3579  * @nr_pages:   number of pages to check
3580  *
3581  * Checks pages for evictability and moves them to the appropriate lru list.
3582  *
3583  * This function is only used for SysV IPC SHM_UNLOCK.
3584  */
3585 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3586 {
3587         struct lruvec *lruvec;
3588         struct zone *zone = NULL;
3589         int pgscanned = 0;
3590         int pgrescued = 0;
3591         int i;
3592
3593         for (i = 0; i < nr_pages; i++) {
3594                 struct page *page = pages[i];
3595                 struct zone *pagezone;
3596
3597                 pgscanned++;
3598                 pagezone = page_zone(page);
3599                 if (pagezone != zone) {
3600                         if (zone)
3601                                 spin_unlock_irq(&zone->lru_lock);
3602                         zone = pagezone;
3603                         spin_lock_irq(&zone->lru_lock);
3604                 }
3605
3606                 if (!PageLRU(page) || !PageUnevictable(page))
3607                         continue;
3608
3609                 if (page_evictable(page, NULL)) {
3610                         enum lru_list lru = page_lru_base_type(page);
3611
3612                         VM_BUG_ON(PageActive(page));
3613                         ClearPageUnevictable(page);
3614                         __dec_zone_state(zone, NR_UNEVICTABLE);
3615                         lruvec = mem_cgroup_lru_move_lists(zone, page,
3616                                                 LRU_UNEVICTABLE, lru);
3617                         list_move(&page->lru, &lruvec->lists[lru]);
3618                         __inc_zone_state(zone, NR_INACTIVE_ANON + lru);
3619                         pgrescued++;
3620                 }
3621         }
3622
3623         if (zone) {
3624                 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3625                 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3626                 spin_unlock_irq(&zone->lru_lock);
3627         }
3628 }
3629 #endif /* CONFIG_SHMEM */
3630
3631 static void warn_scan_unevictable_pages(void)
3632 {
3633         printk_once(KERN_WARNING
3634                     "%s: The scan_unevictable_pages sysctl/node-interface has been "
3635                     "disabled for lack of a legitimate use case.  If you have "
3636                     "one, please send an email to linux-mm@kvack.org.\n",
3637                     current->comm);
3638 }
3639
3640 /*
3641  * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3642  * all nodes' unevictable lists for evictable pages
3643  */
3644 unsigned long scan_unevictable_pages;
3645
3646 int scan_unevictable_handler(struct ctl_table *table, int write,
3647                            void __user *buffer,
3648                            size_t *length, loff_t *ppos)
3649 {
3650         warn_scan_unevictable_pages();
3651         proc_doulongvec_minmax(table, write, buffer, length, ppos);
3652         scan_unevictable_pages = 0;
3653         return 0;
3654 }
3655
3656 #ifdef CONFIG_NUMA
3657 /*
3658  * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3659  * a specified node's per zone unevictable lists for evictable pages.
3660  */
3661
3662 static ssize_t read_scan_unevictable_node(struct device *dev,
3663                                           struct device_attribute *attr,
3664                                           char *buf)
3665 {
3666         warn_scan_unevictable_pages();
3667         return sprintf(buf, "0\n");     /* always zero; should fit... */
3668 }
3669
3670 static ssize_t write_scan_unevictable_node(struct device *dev,
3671                                            struct device_attribute *attr,
3672                                         const char *buf, size_t count)
3673 {
3674         warn_scan_unevictable_pages();
3675         return 1;
3676 }
3677
3678
3679 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3680                         read_scan_unevictable_node,
3681                         write_scan_unevictable_node);
3682
3683 int scan_unevictable_register_node(struct node *node)
3684 {
3685         return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3686 }
3687
3688 void scan_unevictable_unregister_node(struct node *node)
3689 {
3690         device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3691 }
3692 #endif