mm: vmscan: remove reclaim_mode_t
[cascardo/linux.git] / mm / vmscan.c
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h>  /* for try_to_release_page(),
27                                         buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/backing-dev.h>
30 #include <linux/rmap.h>
31 #include <linux/topology.h>
32 #include <linux/cpu.h>
33 #include <linux/cpuset.h>
34 #include <linux/compaction.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/memcontrol.h>
41 #include <linux/delayacct.h>
42 #include <linux/sysctl.h>
43 #include <linux/oom.h>
44 #include <linux/prefetch.h>
45
46 #include <asm/tlbflush.h>
47 #include <asm/div64.h>
48
49 #include <linux/swapops.h>
50
51 #include "internal.h"
52
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/vmscan.h>
55
56 struct scan_control {
57         /* Incremented by the number of inactive pages that were scanned */
58         unsigned long nr_scanned;
59
60         /* Number of pages freed so far during a call to shrink_zones() */
61         unsigned long nr_reclaimed;
62
63         /* How many pages shrink_list() should reclaim */
64         unsigned long nr_to_reclaim;
65
66         unsigned long hibernation_mode;
67
68         /* This context's GFP mask */
69         gfp_t gfp_mask;
70
71         int may_writepage;
72
73         /* Can mapped pages be reclaimed? */
74         int may_unmap;
75
76         /* Can pages be swapped as part of reclaim? */
77         int may_swap;
78
79         int order;
80
81         /*
82          * The memory cgroup that hit its limit and as a result is the
83          * primary target of this reclaim invocation.
84          */
85         struct mem_cgroup *target_mem_cgroup;
86
87         /*
88          * Nodemask of nodes allowed by the caller. If NULL, all nodes
89          * are scanned.
90          */
91         nodemask_t      *nodemask;
92 };
93
94 struct mem_cgroup_zone {
95         struct mem_cgroup *mem_cgroup;
96         struct zone *zone;
97 };
98
99 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
100
101 #ifdef ARCH_HAS_PREFETCH
102 #define prefetch_prev_lru_page(_page, _base, _field)                    \
103         do {                                                            \
104                 if ((_page)->lru.prev != _base) {                       \
105                         struct page *prev;                              \
106                                                                         \
107                         prev = lru_to_page(&(_page->lru));              \
108                         prefetch(&prev->_field);                        \
109                 }                                                       \
110         } while (0)
111 #else
112 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
113 #endif
114
115 #ifdef ARCH_HAS_PREFETCHW
116 #define prefetchw_prev_lru_page(_page, _base, _field)                   \
117         do {                                                            \
118                 if ((_page)->lru.prev != _base) {                       \
119                         struct page *prev;                              \
120                                                                         \
121                         prev = lru_to_page(&(_page->lru));              \
122                         prefetchw(&prev->_field);                       \
123                 }                                                       \
124         } while (0)
125 #else
126 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
127 #endif
128
129 /*
130  * From 0 .. 100.  Higher means more swappy.
131  */
132 int vm_swappiness = 60;
133 long vm_total_pages;    /* The total number of pages which the VM controls */
134
135 static LIST_HEAD(shrinker_list);
136 static DECLARE_RWSEM(shrinker_rwsem);
137
138 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
139 static bool global_reclaim(struct scan_control *sc)
140 {
141         return !sc->target_mem_cgroup;
142 }
143
144 static bool scanning_global_lru(struct mem_cgroup_zone *mz)
145 {
146         return !mz->mem_cgroup;
147 }
148 #else
149 static bool global_reclaim(struct scan_control *sc)
150 {
151         return true;
152 }
153
154 static bool scanning_global_lru(struct mem_cgroup_zone *mz)
155 {
156         return true;
157 }
158 #endif
159
160 static struct zone_reclaim_stat *get_reclaim_stat(struct mem_cgroup_zone *mz)
161 {
162         if (!scanning_global_lru(mz))
163                 return mem_cgroup_get_reclaim_stat(mz->mem_cgroup, mz->zone);
164
165         return &mz->zone->reclaim_stat;
166 }
167
168 static unsigned long zone_nr_lru_pages(struct mem_cgroup_zone *mz,
169                                        enum lru_list lru)
170 {
171         if (!scanning_global_lru(mz))
172                 return mem_cgroup_zone_nr_lru_pages(mz->mem_cgroup,
173                                                     zone_to_nid(mz->zone),
174                                                     zone_idx(mz->zone),
175                                                     BIT(lru));
176
177         return zone_page_state(mz->zone, NR_LRU_BASE + lru);
178 }
179
180
181 /*
182  * Add a shrinker callback to be called from the vm
183  */
184 void register_shrinker(struct shrinker *shrinker)
185 {
186         atomic_long_set(&shrinker->nr_in_batch, 0);
187         down_write(&shrinker_rwsem);
188         list_add_tail(&shrinker->list, &shrinker_list);
189         up_write(&shrinker_rwsem);
190 }
191 EXPORT_SYMBOL(register_shrinker);
192
193 /*
194  * Remove one
195  */
196 void unregister_shrinker(struct shrinker *shrinker)
197 {
198         down_write(&shrinker_rwsem);
199         list_del(&shrinker->list);
200         up_write(&shrinker_rwsem);
201 }
202 EXPORT_SYMBOL(unregister_shrinker);
203
204 static inline int do_shrinker_shrink(struct shrinker *shrinker,
205                                      struct shrink_control *sc,
206                                      unsigned long nr_to_scan)
207 {
208         sc->nr_to_scan = nr_to_scan;
209         return (*shrinker->shrink)(shrinker, sc);
210 }
211
212 #define SHRINK_BATCH 128
213 /*
214  * Call the shrink functions to age shrinkable caches
215  *
216  * Here we assume it costs one seek to replace a lru page and that it also
217  * takes a seek to recreate a cache object.  With this in mind we age equal
218  * percentages of the lru and ageable caches.  This should balance the seeks
219  * generated by these structures.
220  *
221  * If the vm encountered mapped pages on the LRU it increase the pressure on
222  * slab to avoid swapping.
223  *
224  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
225  *
226  * `lru_pages' represents the number of on-LRU pages in all the zones which
227  * are eligible for the caller's allocation attempt.  It is used for balancing
228  * slab reclaim versus page reclaim.
229  *
230  * Returns the number of slab objects which we shrunk.
231  */
232 unsigned long shrink_slab(struct shrink_control *shrink,
233                           unsigned long nr_pages_scanned,
234                           unsigned long lru_pages)
235 {
236         struct shrinker *shrinker;
237         unsigned long ret = 0;
238
239         if (nr_pages_scanned == 0)
240                 nr_pages_scanned = SWAP_CLUSTER_MAX;
241
242         if (!down_read_trylock(&shrinker_rwsem)) {
243                 /* Assume we'll be able to shrink next time */
244                 ret = 1;
245                 goto out;
246         }
247
248         list_for_each_entry(shrinker, &shrinker_list, list) {
249                 unsigned long long delta;
250                 long total_scan;
251                 long max_pass;
252                 int shrink_ret = 0;
253                 long nr;
254                 long new_nr;
255                 long batch_size = shrinker->batch ? shrinker->batch
256                                                   : SHRINK_BATCH;
257
258                 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
259                 if (max_pass <= 0)
260                         continue;
261
262                 /*
263                  * copy the current shrinker scan count into a local variable
264                  * and zero it so that other concurrent shrinker invocations
265                  * don't also do this scanning work.
266                  */
267                 nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
268
269                 total_scan = nr;
270                 delta = (4 * nr_pages_scanned) / shrinker->seeks;
271                 delta *= max_pass;
272                 do_div(delta, lru_pages + 1);
273                 total_scan += delta;
274                 if (total_scan < 0) {
275                         printk(KERN_ERR "shrink_slab: %pF negative objects to "
276                                "delete nr=%ld\n",
277                                shrinker->shrink, total_scan);
278                         total_scan = max_pass;
279                 }
280
281                 /*
282                  * We need to avoid excessive windup on filesystem shrinkers
283                  * due to large numbers of GFP_NOFS allocations causing the
284                  * shrinkers to return -1 all the time. This results in a large
285                  * nr being built up so when a shrink that can do some work
286                  * comes along it empties the entire cache due to nr >>>
287                  * max_pass.  This is bad for sustaining a working set in
288                  * memory.
289                  *
290                  * Hence only allow the shrinker to scan the entire cache when
291                  * a large delta change is calculated directly.
292                  */
293                 if (delta < max_pass / 4)
294                         total_scan = min(total_scan, max_pass / 2);
295
296                 /*
297                  * Avoid risking looping forever due to too large nr value:
298                  * never try to free more than twice the estimate number of
299                  * freeable entries.
300                  */
301                 if (total_scan > max_pass * 2)
302                         total_scan = max_pass * 2;
303
304                 trace_mm_shrink_slab_start(shrinker, shrink, nr,
305                                         nr_pages_scanned, lru_pages,
306                                         max_pass, delta, total_scan);
307
308                 while (total_scan >= batch_size) {
309                         int nr_before;
310
311                         nr_before = do_shrinker_shrink(shrinker, shrink, 0);
312                         shrink_ret = do_shrinker_shrink(shrinker, shrink,
313                                                         batch_size);
314                         if (shrink_ret == -1)
315                                 break;
316                         if (shrink_ret < nr_before)
317                                 ret += nr_before - shrink_ret;
318                         count_vm_events(SLABS_SCANNED, batch_size);
319                         total_scan -= batch_size;
320
321                         cond_resched();
322                 }
323
324                 /*
325                  * move the unused scan count back into the shrinker in a
326                  * manner that handles concurrent updates. If we exhausted the
327                  * scan, there is no need to do an update.
328                  */
329                 if (total_scan > 0)
330                         new_nr = atomic_long_add_return(total_scan,
331                                         &shrinker->nr_in_batch);
332                 else
333                         new_nr = atomic_long_read(&shrinker->nr_in_batch);
334
335                 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
336         }
337         up_read(&shrinker_rwsem);
338 out:
339         cond_resched();
340         return ret;
341 }
342
343 static inline int is_page_cache_freeable(struct page *page)
344 {
345         /*
346          * A freeable page cache page is referenced only by the caller
347          * that isolated the page, the page cache radix tree and
348          * optional buffer heads at page->private.
349          */
350         return page_count(page) - page_has_private(page) == 2;
351 }
352
353 static int may_write_to_queue(struct backing_dev_info *bdi,
354                               struct scan_control *sc)
355 {
356         if (current->flags & PF_SWAPWRITE)
357                 return 1;
358         if (!bdi_write_congested(bdi))
359                 return 1;
360         if (bdi == current->backing_dev_info)
361                 return 1;
362         return 0;
363 }
364
365 /*
366  * We detected a synchronous write error writing a page out.  Probably
367  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
368  * fsync(), msync() or close().
369  *
370  * The tricky part is that after writepage we cannot touch the mapping: nothing
371  * prevents it from being freed up.  But we have a ref on the page and once
372  * that page is locked, the mapping is pinned.
373  *
374  * We're allowed to run sleeping lock_page() here because we know the caller has
375  * __GFP_FS.
376  */
377 static void handle_write_error(struct address_space *mapping,
378                                 struct page *page, int error)
379 {
380         lock_page(page);
381         if (page_mapping(page) == mapping)
382                 mapping_set_error(mapping, error);
383         unlock_page(page);
384 }
385
386 /* possible outcome of pageout() */
387 typedef enum {
388         /* failed to write page out, page is locked */
389         PAGE_KEEP,
390         /* move page to the active list, page is locked */
391         PAGE_ACTIVATE,
392         /* page has been sent to the disk successfully, page is unlocked */
393         PAGE_SUCCESS,
394         /* page is clean and locked */
395         PAGE_CLEAN,
396 } pageout_t;
397
398 /*
399  * pageout is called by shrink_page_list() for each dirty page.
400  * Calls ->writepage().
401  */
402 static pageout_t pageout(struct page *page, struct address_space *mapping,
403                          struct scan_control *sc)
404 {
405         /*
406          * If the page is dirty, only perform writeback if that write
407          * will be non-blocking.  To prevent this allocation from being
408          * stalled by pagecache activity.  But note that there may be
409          * stalls if we need to run get_block().  We could test
410          * PagePrivate for that.
411          *
412          * If this process is currently in __generic_file_aio_write() against
413          * this page's queue, we can perform writeback even if that
414          * will block.
415          *
416          * If the page is swapcache, write it back even if that would
417          * block, for some throttling. This happens by accident, because
418          * swap_backing_dev_info is bust: it doesn't reflect the
419          * congestion state of the swapdevs.  Easy to fix, if needed.
420          */
421         if (!is_page_cache_freeable(page))
422                 return PAGE_KEEP;
423         if (!mapping) {
424                 /*
425                  * Some data journaling orphaned pages can have
426                  * page->mapping == NULL while being dirty with clean buffers.
427                  */
428                 if (page_has_private(page)) {
429                         if (try_to_free_buffers(page)) {
430                                 ClearPageDirty(page);
431                                 printk("%s: orphaned page\n", __func__);
432                                 return PAGE_CLEAN;
433                         }
434                 }
435                 return PAGE_KEEP;
436         }
437         if (mapping->a_ops->writepage == NULL)
438                 return PAGE_ACTIVATE;
439         if (!may_write_to_queue(mapping->backing_dev_info, sc))
440                 return PAGE_KEEP;
441
442         if (clear_page_dirty_for_io(page)) {
443                 int res;
444                 struct writeback_control wbc = {
445                         .sync_mode = WB_SYNC_NONE,
446                         .nr_to_write = SWAP_CLUSTER_MAX,
447                         .range_start = 0,
448                         .range_end = LLONG_MAX,
449                         .for_reclaim = 1,
450                 };
451
452                 SetPageReclaim(page);
453                 res = mapping->a_ops->writepage(page, &wbc);
454                 if (res < 0)
455                         handle_write_error(mapping, page, res);
456                 if (res == AOP_WRITEPAGE_ACTIVATE) {
457                         ClearPageReclaim(page);
458                         return PAGE_ACTIVATE;
459                 }
460
461                 if (!PageWriteback(page)) {
462                         /* synchronous write or broken a_ops? */
463                         ClearPageReclaim(page);
464                 }
465                 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
466                 inc_zone_page_state(page, NR_VMSCAN_WRITE);
467                 return PAGE_SUCCESS;
468         }
469
470         return PAGE_CLEAN;
471 }
472
473 /*
474  * Same as remove_mapping, but if the page is removed from the mapping, it
475  * gets returned with a refcount of 0.
476  */
477 static int __remove_mapping(struct address_space *mapping, struct page *page)
478 {
479         BUG_ON(!PageLocked(page));
480         BUG_ON(mapping != page_mapping(page));
481
482         spin_lock_irq(&mapping->tree_lock);
483         /*
484          * The non racy check for a busy page.
485          *
486          * Must be careful with the order of the tests. When someone has
487          * a ref to the page, it may be possible that they dirty it then
488          * drop the reference. So if PageDirty is tested before page_count
489          * here, then the following race may occur:
490          *
491          * get_user_pages(&page);
492          * [user mapping goes away]
493          * write_to(page);
494          *                              !PageDirty(page)    [good]
495          * SetPageDirty(page);
496          * put_page(page);
497          *                              !page_count(page)   [good, discard it]
498          *
499          * [oops, our write_to data is lost]
500          *
501          * Reversing the order of the tests ensures such a situation cannot
502          * escape unnoticed. The smp_rmb is needed to ensure the page->flags
503          * load is not satisfied before that of page->_count.
504          *
505          * Note that if SetPageDirty is always performed via set_page_dirty,
506          * and thus under tree_lock, then this ordering is not required.
507          */
508         if (!page_freeze_refs(page, 2))
509                 goto cannot_free;
510         /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
511         if (unlikely(PageDirty(page))) {
512                 page_unfreeze_refs(page, 2);
513                 goto cannot_free;
514         }
515
516         if (PageSwapCache(page)) {
517                 swp_entry_t swap = { .val = page_private(page) };
518                 __delete_from_swap_cache(page);
519                 spin_unlock_irq(&mapping->tree_lock);
520                 swapcache_free(swap, page);
521         } else {
522                 void (*freepage)(struct page *);
523
524                 freepage = mapping->a_ops->freepage;
525
526                 __delete_from_page_cache(page);
527                 spin_unlock_irq(&mapping->tree_lock);
528                 mem_cgroup_uncharge_cache_page(page);
529
530                 if (freepage != NULL)
531                         freepage(page);
532         }
533
534         return 1;
535
536 cannot_free:
537         spin_unlock_irq(&mapping->tree_lock);
538         return 0;
539 }
540
541 /*
542  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
543  * someone else has a ref on the page, abort and return 0.  If it was
544  * successfully detached, return 1.  Assumes the caller has a single ref on
545  * this page.
546  */
547 int remove_mapping(struct address_space *mapping, struct page *page)
548 {
549         if (__remove_mapping(mapping, page)) {
550                 /*
551                  * Unfreezing the refcount with 1 rather than 2 effectively
552                  * drops the pagecache ref for us without requiring another
553                  * atomic operation.
554                  */
555                 page_unfreeze_refs(page, 1);
556                 return 1;
557         }
558         return 0;
559 }
560
561 /**
562  * putback_lru_page - put previously isolated page onto appropriate LRU list
563  * @page: page to be put back to appropriate lru list
564  *
565  * Add previously isolated @page to appropriate LRU list.
566  * Page may still be unevictable for other reasons.
567  *
568  * lru_lock must not be held, interrupts must be enabled.
569  */
570 void putback_lru_page(struct page *page)
571 {
572         int lru;
573         int active = !!TestClearPageActive(page);
574         int was_unevictable = PageUnevictable(page);
575
576         VM_BUG_ON(PageLRU(page));
577
578 redo:
579         ClearPageUnevictable(page);
580
581         if (page_evictable(page, NULL)) {
582                 /*
583                  * For evictable pages, we can use the cache.
584                  * In event of a race, worst case is we end up with an
585                  * unevictable page on [in]active list.
586                  * We know how to handle that.
587                  */
588                 lru = active + page_lru_base_type(page);
589                 lru_cache_add_lru(page, lru);
590         } else {
591                 /*
592                  * Put unevictable pages directly on zone's unevictable
593                  * list.
594                  */
595                 lru = LRU_UNEVICTABLE;
596                 add_page_to_unevictable_list(page);
597                 /*
598                  * When racing with an mlock or AS_UNEVICTABLE clearing
599                  * (page is unlocked) make sure that if the other thread
600                  * does not observe our setting of PG_lru and fails
601                  * isolation/check_move_unevictable_pages,
602                  * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
603                  * the page back to the evictable list.
604                  *
605                  * The other side is TestClearPageMlocked() or shmem_lock().
606                  */
607                 smp_mb();
608         }
609
610         /*
611          * page's status can change while we move it among lru. If an evictable
612          * page is on unevictable list, it never be freed. To avoid that,
613          * check after we added it to the list, again.
614          */
615         if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
616                 if (!isolate_lru_page(page)) {
617                         put_page(page);
618                         goto redo;
619                 }
620                 /* This means someone else dropped this page from LRU
621                  * So, it will be freed or putback to LRU again. There is
622                  * nothing to do here.
623                  */
624         }
625
626         if (was_unevictable && lru != LRU_UNEVICTABLE)
627                 count_vm_event(UNEVICTABLE_PGRESCUED);
628         else if (!was_unevictable && lru == LRU_UNEVICTABLE)
629                 count_vm_event(UNEVICTABLE_PGCULLED);
630
631         put_page(page);         /* drop ref from isolate */
632 }
633
634 enum page_references {
635         PAGEREF_RECLAIM,
636         PAGEREF_RECLAIM_CLEAN,
637         PAGEREF_KEEP,
638         PAGEREF_ACTIVATE,
639 };
640
641 static enum page_references page_check_references(struct page *page,
642                                                   struct mem_cgroup_zone *mz,
643                                                   struct scan_control *sc)
644 {
645         int referenced_ptes, referenced_page;
646         unsigned long vm_flags;
647
648         referenced_ptes = page_referenced(page, 1, mz->mem_cgroup, &vm_flags);
649         referenced_page = TestClearPageReferenced(page);
650
651         /*
652          * Mlock lost the isolation race with us.  Let try_to_unmap()
653          * move the page to the unevictable list.
654          */
655         if (vm_flags & VM_LOCKED)
656                 return PAGEREF_RECLAIM;
657
658         if (referenced_ptes) {
659                 if (PageAnon(page))
660                         return PAGEREF_ACTIVATE;
661                 /*
662                  * All mapped pages start out with page table
663                  * references from the instantiating fault, so we need
664                  * to look twice if a mapped file page is used more
665                  * than once.
666                  *
667                  * Mark it and spare it for another trip around the
668                  * inactive list.  Another page table reference will
669                  * lead to its activation.
670                  *
671                  * Note: the mark is set for activated pages as well
672                  * so that recently deactivated but used pages are
673                  * quickly recovered.
674                  */
675                 SetPageReferenced(page);
676
677                 if (referenced_page || referenced_ptes > 1)
678                         return PAGEREF_ACTIVATE;
679
680                 /*
681                  * Activate file-backed executable pages after first usage.
682                  */
683                 if (vm_flags & VM_EXEC)
684                         return PAGEREF_ACTIVATE;
685
686                 return PAGEREF_KEEP;
687         }
688
689         /* Reclaim if clean, defer dirty pages to writeback */
690         if (referenced_page && !PageSwapBacked(page))
691                 return PAGEREF_RECLAIM_CLEAN;
692
693         return PAGEREF_RECLAIM;
694 }
695
696 /*
697  * shrink_page_list() returns the number of reclaimed pages
698  */
699 static unsigned long shrink_page_list(struct list_head *page_list,
700                                       struct mem_cgroup_zone *mz,
701                                       struct scan_control *sc,
702                                       int priority,
703                                       unsigned long *ret_nr_dirty,
704                                       unsigned long *ret_nr_writeback)
705 {
706         LIST_HEAD(ret_pages);
707         LIST_HEAD(free_pages);
708         int pgactivate = 0;
709         unsigned long nr_dirty = 0;
710         unsigned long nr_congested = 0;
711         unsigned long nr_reclaimed = 0;
712         unsigned long nr_writeback = 0;
713
714         cond_resched();
715
716         while (!list_empty(page_list)) {
717                 enum page_references references;
718                 struct address_space *mapping;
719                 struct page *page;
720                 int may_enter_fs;
721
722                 cond_resched();
723
724                 page = lru_to_page(page_list);
725                 list_del(&page->lru);
726
727                 if (!trylock_page(page))
728                         goto keep;
729
730                 VM_BUG_ON(PageActive(page));
731                 VM_BUG_ON(page_zone(page) != mz->zone);
732
733                 sc->nr_scanned++;
734
735                 if (unlikely(!page_evictable(page, NULL)))
736                         goto cull_mlocked;
737
738                 if (!sc->may_unmap && page_mapped(page))
739                         goto keep_locked;
740
741                 /* Double the slab pressure for mapped and swapcache pages */
742                 if (page_mapped(page) || PageSwapCache(page))
743                         sc->nr_scanned++;
744
745                 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
746                         (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
747
748                 if (PageWriteback(page)) {
749                         nr_writeback++;
750                         unlock_page(page);
751                         goto keep;
752                 }
753
754                 references = page_check_references(page, mz, sc);
755                 switch (references) {
756                 case PAGEREF_ACTIVATE:
757                         goto activate_locked;
758                 case PAGEREF_KEEP:
759                         goto keep_locked;
760                 case PAGEREF_RECLAIM:
761                 case PAGEREF_RECLAIM_CLEAN:
762                         ; /* try to reclaim the page below */
763                 }
764
765                 /*
766                  * Anonymous process memory has backing store?
767                  * Try to allocate it some swap space here.
768                  */
769                 if (PageAnon(page) && !PageSwapCache(page)) {
770                         if (!(sc->gfp_mask & __GFP_IO))
771                                 goto keep_locked;
772                         if (!add_to_swap(page))
773                                 goto activate_locked;
774                         may_enter_fs = 1;
775                 }
776
777                 mapping = page_mapping(page);
778
779                 /*
780                  * The page is mapped into the page tables of one or more
781                  * processes. Try to unmap it here.
782                  */
783                 if (page_mapped(page) && mapping) {
784                         switch (try_to_unmap(page, TTU_UNMAP)) {
785                         case SWAP_FAIL:
786                                 goto activate_locked;
787                         case SWAP_AGAIN:
788                                 goto keep_locked;
789                         case SWAP_MLOCK:
790                                 goto cull_mlocked;
791                         case SWAP_SUCCESS:
792                                 ; /* try to free the page below */
793                         }
794                 }
795
796                 if (PageDirty(page)) {
797                         nr_dirty++;
798
799                         /*
800                          * Only kswapd can writeback filesystem pages to
801                          * avoid risk of stack overflow but do not writeback
802                          * unless under significant pressure.
803                          */
804                         if (page_is_file_cache(page) &&
805                                         (!current_is_kswapd() || priority >= DEF_PRIORITY - 2)) {
806                                 /*
807                                  * Immediately reclaim when written back.
808                                  * Similar in principal to deactivate_page()
809                                  * except we already have the page isolated
810                                  * and know it's dirty
811                                  */
812                                 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
813                                 SetPageReclaim(page);
814
815                                 goto keep_locked;
816                         }
817
818                         if (references == PAGEREF_RECLAIM_CLEAN)
819                                 goto keep_locked;
820                         if (!may_enter_fs)
821                                 goto keep_locked;
822                         if (!sc->may_writepage)
823                                 goto keep_locked;
824
825                         /* Page is dirty, try to write it out here */
826                         switch (pageout(page, mapping, sc)) {
827                         case PAGE_KEEP:
828                                 nr_congested++;
829                                 goto keep_locked;
830                         case PAGE_ACTIVATE:
831                                 goto activate_locked;
832                         case PAGE_SUCCESS:
833                                 if (PageWriteback(page))
834                                         goto keep;
835                                 if (PageDirty(page))
836                                         goto keep;
837
838                                 /*
839                                  * A synchronous write - probably a ramdisk.  Go
840                                  * ahead and try to reclaim the page.
841                                  */
842                                 if (!trylock_page(page))
843                                         goto keep;
844                                 if (PageDirty(page) || PageWriteback(page))
845                                         goto keep_locked;
846                                 mapping = page_mapping(page);
847                         case PAGE_CLEAN:
848                                 ; /* try to free the page below */
849                         }
850                 }
851
852                 /*
853                  * If the page has buffers, try to free the buffer mappings
854                  * associated with this page. If we succeed we try to free
855                  * the page as well.
856                  *
857                  * We do this even if the page is PageDirty().
858                  * try_to_release_page() does not perform I/O, but it is
859                  * possible for a page to have PageDirty set, but it is actually
860                  * clean (all its buffers are clean).  This happens if the
861                  * buffers were written out directly, with submit_bh(). ext3
862                  * will do this, as well as the blockdev mapping.
863                  * try_to_release_page() will discover that cleanness and will
864                  * drop the buffers and mark the page clean - it can be freed.
865                  *
866                  * Rarely, pages can have buffers and no ->mapping.  These are
867                  * the pages which were not successfully invalidated in
868                  * truncate_complete_page().  We try to drop those buffers here
869                  * and if that worked, and the page is no longer mapped into
870                  * process address space (page_count == 1) it can be freed.
871                  * Otherwise, leave the page on the LRU so it is swappable.
872                  */
873                 if (page_has_private(page)) {
874                         if (!try_to_release_page(page, sc->gfp_mask))
875                                 goto activate_locked;
876                         if (!mapping && page_count(page) == 1) {
877                                 unlock_page(page);
878                                 if (put_page_testzero(page))
879                                         goto free_it;
880                                 else {
881                                         /*
882                                          * rare race with speculative reference.
883                                          * the speculative reference will free
884                                          * this page shortly, so we may
885                                          * increment nr_reclaimed here (and
886                                          * leave it off the LRU).
887                                          */
888                                         nr_reclaimed++;
889                                         continue;
890                                 }
891                         }
892                 }
893
894                 if (!mapping || !__remove_mapping(mapping, page))
895                         goto keep_locked;
896
897                 /*
898                  * At this point, we have no other references and there is
899                  * no way to pick any more up (removed from LRU, removed
900                  * from pagecache). Can use non-atomic bitops now (and
901                  * we obviously don't have to worry about waking up a process
902                  * waiting on the page lock, because there are no references.
903                  */
904                 __clear_page_locked(page);
905 free_it:
906                 nr_reclaimed++;
907
908                 /*
909                  * Is there need to periodically free_page_list? It would
910                  * appear not as the counts should be low
911                  */
912                 list_add(&page->lru, &free_pages);
913                 continue;
914
915 cull_mlocked:
916                 if (PageSwapCache(page))
917                         try_to_free_swap(page);
918                 unlock_page(page);
919                 putback_lru_page(page);
920                 continue;
921
922 activate_locked:
923                 /* Not a candidate for swapping, so reclaim swap space. */
924                 if (PageSwapCache(page) && vm_swap_full())
925                         try_to_free_swap(page);
926                 VM_BUG_ON(PageActive(page));
927                 SetPageActive(page);
928                 pgactivate++;
929 keep_locked:
930                 unlock_page(page);
931 keep:
932                 list_add(&page->lru, &ret_pages);
933                 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
934         }
935
936         /*
937          * Tag a zone as congested if all the dirty pages encountered were
938          * backed by a congested BDI. In this case, reclaimers should just
939          * back off and wait for congestion to clear because further reclaim
940          * will encounter the same problem
941          */
942         if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
943                 zone_set_flag(mz->zone, ZONE_CONGESTED);
944
945         free_hot_cold_page_list(&free_pages, 1);
946
947         list_splice(&ret_pages, page_list);
948         count_vm_events(PGACTIVATE, pgactivate);
949         *ret_nr_dirty += nr_dirty;
950         *ret_nr_writeback += nr_writeback;
951         return nr_reclaimed;
952 }
953
954 /*
955  * Attempt to remove the specified page from its LRU.  Only take this page
956  * if it is of the appropriate PageActive status.  Pages which are being
957  * freed elsewhere are also ignored.
958  *
959  * page:        page to consider
960  * mode:        one of the LRU isolation modes defined above
961  *
962  * returns 0 on success, -ve errno on failure.
963  */
964 int __isolate_lru_page(struct page *page, isolate_mode_t mode, int file)
965 {
966         bool all_lru_mode;
967         int ret = -EINVAL;
968
969         /* Only take pages on the LRU. */
970         if (!PageLRU(page))
971                 return ret;
972
973         all_lru_mode = (mode & (ISOLATE_ACTIVE|ISOLATE_INACTIVE)) ==
974                 (ISOLATE_ACTIVE|ISOLATE_INACTIVE);
975
976         /*
977          * When checking the active state, we need to be sure we are
978          * dealing with comparible boolean values.  Take the logical not
979          * of each.
980          */
981         if (!all_lru_mode && !PageActive(page) != !(mode & ISOLATE_ACTIVE))
982                 return ret;
983
984         if (!all_lru_mode && !!page_is_file_cache(page) != file)
985                 return ret;
986
987         /* Do not give back unevictable pages for compaction */
988         if (PageUnevictable(page))
989                 return ret;
990
991         ret = -EBUSY;
992
993         /*
994          * To minimise LRU disruption, the caller can indicate that it only
995          * wants to isolate pages it will be able to operate on without
996          * blocking - clean pages for the most part.
997          *
998          * ISOLATE_CLEAN means that only clean pages should be isolated. This
999          * is used by reclaim when it is cannot write to backing storage
1000          *
1001          * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1002          * that it is possible to migrate without blocking
1003          */
1004         if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1005                 /* All the caller can do on PageWriteback is block */
1006                 if (PageWriteback(page))
1007                         return ret;
1008
1009                 if (PageDirty(page)) {
1010                         struct address_space *mapping;
1011
1012                         /* ISOLATE_CLEAN means only clean pages */
1013                         if (mode & ISOLATE_CLEAN)
1014                                 return ret;
1015
1016                         /*
1017                          * Only pages without mappings or that have a
1018                          * ->migratepage callback are possible to migrate
1019                          * without blocking
1020                          */
1021                         mapping = page_mapping(page);
1022                         if (mapping && !mapping->a_ops->migratepage)
1023                                 return ret;
1024                 }
1025         }
1026
1027         if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1028                 return ret;
1029
1030         if (likely(get_page_unless_zero(page))) {
1031                 /*
1032                  * Be careful not to clear PageLRU until after we're
1033                  * sure the page is not being freed elsewhere -- the
1034                  * page release code relies on it.
1035                  */
1036                 ClearPageLRU(page);
1037                 ret = 0;
1038         }
1039
1040         return ret;
1041 }
1042
1043 /*
1044  * zone->lru_lock is heavily contended.  Some of the functions that
1045  * shrink the lists perform better by taking out a batch of pages
1046  * and working on them outside the LRU lock.
1047  *
1048  * For pagecache intensive workloads, this function is the hottest
1049  * spot in the kernel (apart from copy_*_user functions).
1050  *
1051  * Appropriate locks must be held before calling this function.
1052  *
1053  * @nr_to_scan: The number of pages to look through on the list.
1054  * @mz:         The mem_cgroup_zone to pull pages from.
1055  * @dst:        The temp list to put pages on to.
1056  * @nr_scanned: The number of pages that were scanned.
1057  * @sc:         The scan_control struct for this reclaim session
1058  * @mode:       One of the LRU isolation modes
1059  * @active:     True [1] if isolating active pages
1060  * @file:       True [1] if isolating file [!anon] pages
1061  *
1062  * returns how many pages were moved onto *@dst.
1063  */
1064 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1065                 struct mem_cgroup_zone *mz, struct list_head *dst,
1066                 unsigned long *nr_scanned, struct scan_control *sc,
1067                 isolate_mode_t mode, int active, int file)
1068 {
1069         struct lruvec *lruvec;
1070         struct list_head *src;
1071         unsigned long nr_taken = 0;
1072         unsigned long scan;
1073         int lru = LRU_BASE;
1074
1075         lruvec = mem_cgroup_zone_lruvec(mz->zone, mz->mem_cgroup);
1076         if (active)
1077                 lru += LRU_ACTIVE;
1078         if (file)
1079                 lru += LRU_FILE;
1080         src = &lruvec->lists[lru];
1081
1082         for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1083                 struct page *page;
1084
1085                 page = lru_to_page(src);
1086                 prefetchw_prev_lru_page(page, src, flags);
1087
1088                 VM_BUG_ON(!PageLRU(page));
1089
1090                 switch (__isolate_lru_page(page, mode, file)) {
1091                 case 0:
1092                         mem_cgroup_lru_del(page);
1093                         list_move(&page->lru, dst);
1094                         nr_taken += hpage_nr_pages(page);
1095                         break;
1096
1097                 case -EBUSY:
1098                         /* else it is being freed elsewhere */
1099                         list_move(&page->lru, src);
1100                         continue;
1101
1102                 default:
1103                         BUG();
1104                 }
1105         }
1106
1107         *nr_scanned = scan;
1108
1109         trace_mm_vmscan_lru_isolate(sc->order,
1110                         nr_to_scan, scan,
1111                         nr_taken,
1112                         mode, file);
1113         return nr_taken;
1114 }
1115
1116 /**
1117  * isolate_lru_page - tries to isolate a page from its LRU list
1118  * @page: page to isolate from its LRU list
1119  *
1120  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1121  * vmstat statistic corresponding to whatever LRU list the page was on.
1122  *
1123  * Returns 0 if the page was removed from an LRU list.
1124  * Returns -EBUSY if the page was not on an LRU list.
1125  *
1126  * The returned page will have PageLRU() cleared.  If it was found on
1127  * the active list, it will have PageActive set.  If it was found on
1128  * the unevictable list, it will have the PageUnevictable bit set. That flag
1129  * may need to be cleared by the caller before letting the page go.
1130  *
1131  * The vmstat statistic corresponding to the list on which the page was
1132  * found will be decremented.
1133  *
1134  * Restrictions:
1135  * (1) Must be called with an elevated refcount on the page. This is a
1136  *     fundamentnal difference from isolate_lru_pages (which is called
1137  *     without a stable reference).
1138  * (2) the lru_lock must not be held.
1139  * (3) interrupts must be enabled.
1140  */
1141 int isolate_lru_page(struct page *page)
1142 {
1143         int ret = -EBUSY;
1144
1145         VM_BUG_ON(!page_count(page));
1146
1147         if (PageLRU(page)) {
1148                 struct zone *zone = page_zone(page);
1149
1150                 spin_lock_irq(&zone->lru_lock);
1151                 if (PageLRU(page)) {
1152                         int lru = page_lru(page);
1153                         ret = 0;
1154                         get_page(page);
1155                         ClearPageLRU(page);
1156
1157                         del_page_from_lru_list(zone, page, lru);
1158                 }
1159                 spin_unlock_irq(&zone->lru_lock);
1160         }
1161         return ret;
1162 }
1163
1164 /*
1165  * Are there way too many processes in the direct reclaim path already?
1166  */
1167 static int too_many_isolated(struct zone *zone, int file,
1168                 struct scan_control *sc)
1169 {
1170         unsigned long inactive, isolated;
1171
1172         if (current_is_kswapd())
1173                 return 0;
1174
1175         if (!global_reclaim(sc))
1176                 return 0;
1177
1178         if (file) {
1179                 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1180                 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1181         } else {
1182                 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1183                 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1184         }
1185
1186         return isolated > inactive;
1187 }
1188
1189 static noinline_for_stack void
1190 putback_inactive_pages(struct mem_cgroup_zone *mz,
1191                        struct list_head *page_list)
1192 {
1193         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1194         struct zone *zone = mz->zone;
1195         LIST_HEAD(pages_to_free);
1196
1197         /*
1198          * Put back any unfreeable pages.
1199          */
1200         while (!list_empty(page_list)) {
1201                 struct page *page = lru_to_page(page_list);
1202                 int lru;
1203
1204                 VM_BUG_ON(PageLRU(page));
1205                 list_del(&page->lru);
1206                 if (unlikely(!page_evictable(page, NULL))) {
1207                         spin_unlock_irq(&zone->lru_lock);
1208                         putback_lru_page(page);
1209                         spin_lock_irq(&zone->lru_lock);
1210                         continue;
1211                 }
1212                 SetPageLRU(page);
1213                 lru = page_lru(page);
1214                 add_page_to_lru_list(zone, page, lru);
1215                 if (is_active_lru(lru)) {
1216                         int file = is_file_lru(lru);
1217                         int numpages = hpage_nr_pages(page);
1218                         reclaim_stat->recent_rotated[file] += numpages;
1219                 }
1220                 if (put_page_testzero(page)) {
1221                         __ClearPageLRU(page);
1222                         __ClearPageActive(page);
1223                         del_page_from_lru_list(zone, page, lru);
1224
1225                         if (unlikely(PageCompound(page))) {
1226                                 spin_unlock_irq(&zone->lru_lock);
1227                                 (*get_compound_page_dtor(page))(page);
1228                                 spin_lock_irq(&zone->lru_lock);
1229                         } else
1230                                 list_add(&page->lru, &pages_to_free);
1231                 }
1232         }
1233
1234         /*
1235          * To save our caller's stack, now use input list for pages to free.
1236          */
1237         list_splice(&pages_to_free, page_list);
1238 }
1239
1240 static noinline_for_stack void
1241 update_isolated_counts(struct mem_cgroup_zone *mz,
1242                        struct list_head *page_list,
1243                        unsigned long *nr_anon,
1244                        unsigned long *nr_file)
1245 {
1246         struct zone *zone = mz->zone;
1247         unsigned int count[NR_LRU_LISTS] = { 0, };
1248         unsigned long nr_active = 0;
1249         struct page *page;
1250         int lru;
1251
1252         /*
1253          * Count pages and clear active flags
1254          */
1255         list_for_each_entry(page, page_list, lru) {
1256                 int numpages = hpage_nr_pages(page);
1257                 lru = page_lru_base_type(page);
1258                 if (PageActive(page)) {
1259                         lru += LRU_ACTIVE;
1260                         ClearPageActive(page);
1261                         nr_active += numpages;
1262                 }
1263                 count[lru] += numpages;
1264         }
1265
1266         preempt_disable();
1267         __count_vm_events(PGDEACTIVATE, nr_active);
1268
1269         __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1270                               -count[LRU_ACTIVE_FILE]);
1271         __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1272                               -count[LRU_INACTIVE_FILE]);
1273         __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1274                               -count[LRU_ACTIVE_ANON]);
1275         __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1276                               -count[LRU_INACTIVE_ANON]);
1277
1278         *nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1279         *nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1280
1281         __mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1282         __mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1283         preempt_enable();
1284 }
1285
1286 /*
1287  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1288  * of reclaimed pages
1289  */
1290 static noinline_for_stack unsigned long
1291 shrink_inactive_list(unsigned long nr_to_scan, struct mem_cgroup_zone *mz,
1292                      struct scan_control *sc, int priority, int file)
1293 {
1294         LIST_HEAD(page_list);
1295         unsigned long nr_scanned;
1296         unsigned long nr_reclaimed = 0;
1297         unsigned long nr_taken;
1298         unsigned long nr_anon;
1299         unsigned long nr_file;
1300         unsigned long nr_dirty = 0;
1301         unsigned long nr_writeback = 0;
1302         isolate_mode_t isolate_mode = ISOLATE_INACTIVE;
1303         struct zone *zone = mz->zone;
1304         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1305
1306         while (unlikely(too_many_isolated(zone, file, sc))) {
1307                 congestion_wait(BLK_RW_ASYNC, HZ/10);
1308
1309                 /* We are about to die and free our memory. Return now. */
1310                 if (fatal_signal_pending(current))
1311                         return SWAP_CLUSTER_MAX;
1312         }
1313
1314         lru_add_drain();
1315
1316         if (!sc->may_unmap)
1317                 isolate_mode |= ISOLATE_UNMAPPED;
1318         if (!sc->may_writepage)
1319                 isolate_mode |= ISOLATE_CLEAN;
1320
1321         spin_lock_irq(&zone->lru_lock);
1322
1323         nr_taken = isolate_lru_pages(nr_to_scan, mz, &page_list, &nr_scanned,
1324                                      sc, isolate_mode, 0, file);
1325         if (global_reclaim(sc)) {
1326                 zone->pages_scanned += nr_scanned;
1327                 if (current_is_kswapd())
1328                         __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1329                                                nr_scanned);
1330                 else
1331                         __count_zone_vm_events(PGSCAN_DIRECT, zone,
1332                                                nr_scanned);
1333         }
1334         spin_unlock_irq(&zone->lru_lock);
1335
1336         if (nr_taken == 0)
1337                 return 0;
1338
1339         update_isolated_counts(mz, &page_list, &nr_anon, &nr_file);
1340
1341         nr_reclaimed = shrink_page_list(&page_list, mz, sc, priority,
1342                                                 &nr_dirty, &nr_writeback);
1343
1344         spin_lock_irq(&zone->lru_lock);
1345
1346         reclaim_stat->recent_scanned[0] += nr_anon;
1347         reclaim_stat->recent_scanned[1] += nr_file;
1348
1349         if (global_reclaim(sc)) {
1350                 if (current_is_kswapd())
1351                         __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1352                                                nr_reclaimed);
1353                 else
1354                         __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1355                                                nr_reclaimed);
1356         }
1357
1358         putback_inactive_pages(mz, &page_list);
1359
1360         __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1361         __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1362
1363         spin_unlock_irq(&zone->lru_lock);
1364
1365         free_hot_cold_page_list(&page_list, 1);
1366
1367         /*
1368          * If reclaim is isolating dirty pages under writeback, it implies
1369          * that the long-lived page allocation rate is exceeding the page
1370          * laundering rate. Either the global limits are not being effective
1371          * at throttling processes due to the page distribution throughout
1372          * zones or there is heavy usage of a slow backing device. The
1373          * only option is to throttle from reclaim context which is not ideal
1374          * as there is no guarantee the dirtying process is throttled in the
1375          * same way balance_dirty_pages() manages.
1376          *
1377          * This scales the number of dirty pages that must be under writeback
1378          * before throttling depending on priority. It is a simple backoff
1379          * function that has the most effect in the range DEF_PRIORITY to
1380          * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1381          * in trouble and reclaim is considered to be in trouble.
1382          *
1383          * DEF_PRIORITY   100% isolated pages must be PageWriteback to throttle
1384          * DEF_PRIORITY-1  50% must be PageWriteback
1385          * DEF_PRIORITY-2  25% must be PageWriteback, kswapd in trouble
1386          * ...
1387          * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1388          *                     isolated page is PageWriteback
1389          */
1390         if (nr_writeback && nr_writeback >= (nr_taken >> (DEF_PRIORITY-priority)))
1391                 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1392
1393         trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1394                 zone_idx(zone),
1395                 nr_scanned, nr_reclaimed,
1396                 priority,
1397                 trace_shrink_flags(file));
1398         return nr_reclaimed;
1399 }
1400
1401 /*
1402  * This moves pages from the active list to the inactive list.
1403  *
1404  * We move them the other way if the page is referenced by one or more
1405  * processes, from rmap.
1406  *
1407  * If the pages are mostly unmapped, the processing is fast and it is
1408  * appropriate to hold zone->lru_lock across the whole operation.  But if
1409  * the pages are mapped, the processing is slow (page_referenced()) so we
1410  * should drop zone->lru_lock around each page.  It's impossible to balance
1411  * this, so instead we remove the pages from the LRU while processing them.
1412  * It is safe to rely on PG_active against the non-LRU pages in here because
1413  * nobody will play with that bit on a non-LRU page.
1414  *
1415  * The downside is that we have to touch page->_count against each page.
1416  * But we had to alter page->flags anyway.
1417  */
1418
1419 static void move_active_pages_to_lru(struct zone *zone,
1420                                      struct list_head *list,
1421                                      struct list_head *pages_to_free,
1422                                      enum lru_list lru)
1423 {
1424         unsigned long pgmoved = 0;
1425         struct page *page;
1426
1427         while (!list_empty(list)) {
1428                 struct lruvec *lruvec;
1429
1430                 page = lru_to_page(list);
1431
1432                 VM_BUG_ON(PageLRU(page));
1433                 SetPageLRU(page);
1434
1435                 lruvec = mem_cgroup_lru_add_list(zone, page, lru);
1436                 list_move(&page->lru, &lruvec->lists[lru]);
1437                 pgmoved += hpage_nr_pages(page);
1438
1439                 if (put_page_testzero(page)) {
1440                         __ClearPageLRU(page);
1441                         __ClearPageActive(page);
1442                         del_page_from_lru_list(zone, page, lru);
1443
1444                         if (unlikely(PageCompound(page))) {
1445                                 spin_unlock_irq(&zone->lru_lock);
1446                                 (*get_compound_page_dtor(page))(page);
1447                                 spin_lock_irq(&zone->lru_lock);
1448                         } else
1449                                 list_add(&page->lru, pages_to_free);
1450                 }
1451         }
1452         __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1453         if (!is_active_lru(lru))
1454                 __count_vm_events(PGDEACTIVATE, pgmoved);
1455 }
1456
1457 static void shrink_active_list(unsigned long nr_to_scan,
1458                                struct mem_cgroup_zone *mz,
1459                                struct scan_control *sc,
1460                                int priority, int file)
1461 {
1462         unsigned long nr_taken;
1463         unsigned long nr_scanned;
1464         unsigned long vm_flags;
1465         LIST_HEAD(l_hold);      /* The pages which were snipped off */
1466         LIST_HEAD(l_active);
1467         LIST_HEAD(l_inactive);
1468         struct page *page;
1469         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1470         unsigned long nr_rotated = 0;
1471         isolate_mode_t isolate_mode = ISOLATE_ACTIVE;
1472         struct zone *zone = mz->zone;
1473
1474         lru_add_drain();
1475
1476         if (!sc->may_unmap)
1477                 isolate_mode |= ISOLATE_UNMAPPED;
1478         if (!sc->may_writepage)
1479                 isolate_mode |= ISOLATE_CLEAN;
1480
1481         spin_lock_irq(&zone->lru_lock);
1482
1483         nr_taken = isolate_lru_pages(nr_to_scan, mz, &l_hold, &nr_scanned, sc,
1484                                      isolate_mode, 1, file);
1485         if (global_reclaim(sc))
1486                 zone->pages_scanned += nr_scanned;
1487
1488         reclaim_stat->recent_scanned[file] += nr_taken;
1489
1490         __count_zone_vm_events(PGREFILL, zone, nr_scanned);
1491         if (file)
1492                 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1493         else
1494                 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1495         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1496         spin_unlock_irq(&zone->lru_lock);
1497
1498         while (!list_empty(&l_hold)) {
1499                 cond_resched();
1500                 page = lru_to_page(&l_hold);
1501                 list_del(&page->lru);
1502
1503                 if (unlikely(!page_evictable(page, NULL))) {
1504                         putback_lru_page(page);
1505                         continue;
1506                 }
1507
1508                 if (unlikely(buffer_heads_over_limit)) {
1509                         if (page_has_private(page) && trylock_page(page)) {
1510                                 if (page_has_private(page))
1511                                         try_to_release_page(page, 0);
1512                                 unlock_page(page);
1513                         }
1514                 }
1515
1516                 if (page_referenced(page, 0, mz->mem_cgroup, &vm_flags)) {
1517                         nr_rotated += hpage_nr_pages(page);
1518                         /*
1519                          * Identify referenced, file-backed active pages and
1520                          * give them one more trip around the active list. So
1521                          * that executable code get better chances to stay in
1522                          * memory under moderate memory pressure.  Anon pages
1523                          * are not likely to be evicted by use-once streaming
1524                          * IO, plus JVM can create lots of anon VM_EXEC pages,
1525                          * so we ignore them here.
1526                          */
1527                         if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1528                                 list_add(&page->lru, &l_active);
1529                                 continue;
1530                         }
1531                 }
1532
1533                 ClearPageActive(page);  /* we are de-activating */
1534                 list_add(&page->lru, &l_inactive);
1535         }
1536
1537         /*
1538          * Move pages back to the lru list.
1539          */
1540         spin_lock_irq(&zone->lru_lock);
1541         /*
1542          * Count referenced pages from currently used mappings as rotated,
1543          * even though only some of them are actually re-activated.  This
1544          * helps balance scan pressure between file and anonymous pages in
1545          * get_scan_ratio.
1546          */
1547         reclaim_stat->recent_rotated[file] += nr_rotated;
1548
1549         move_active_pages_to_lru(zone, &l_active, &l_hold,
1550                                                 LRU_ACTIVE + file * LRU_FILE);
1551         move_active_pages_to_lru(zone, &l_inactive, &l_hold,
1552                                                 LRU_BASE   + file * LRU_FILE);
1553         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1554         spin_unlock_irq(&zone->lru_lock);
1555
1556         free_hot_cold_page_list(&l_hold, 1);
1557 }
1558
1559 #ifdef CONFIG_SWAP
1560 static int inactive_anon_is_low_global(struct zone *zone)
1561 {
1562         unsigned long active, inactive;
1563
1564         active = zone_page_state(zone, NR_ACTIVE_ANON);
1565         inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1566
1567         if (inactive * zone->inactive_ratio < active)
1568                 return 1;
1569
1570         return 0;
1571 }
1572
1573 /**
1574  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1575  * @zone: zone to check
1576  * @sc:   scan control of this context
1577  *
1578  * Returns true if the zone does not have enough inactive anon pages,
1579  * meaning some active anon pages need to be deactivated.
1580  */
1581 static int inactive_anon_is_low(struct mem_cgroup_zone *mz)
1582 {
1583         /*
1584          * If we don't have swap space, anonymous page deactivation
1585          * is pointless.
1586          */
1587         if (!total_swap_pages)
1588                 return 0;
1589
1590         if (!scanning_global_lru(mz))
1591                 return mem_cgroup_inactive_anon_is_low(mz->mem_cgroup,
1592                                                        mz->zone);
1593
1594         return inactive_anon_is_low_global(mz->zone);
1595 }
1596 #else
1597 static inline int inactive_anon_is_low(struct mem_cgroup_zone *mz)
1598 {
1599         return 0;
1600 }
1601 #endif
1602
1603 static int inactive_file_is_low_global(struct zone *zone)
1604 {
1605         unsigned long active, inactive;
1606
1607         active = zone_page_state(zone, NR_ACTIVE_FILE);
1608         inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1609
1610         return (active > inactive);
1611 }
1612
1613 /**
1614  * inactive_file_is_low - check if file pages need to be deactivated
1615  * @mz: memory cgroup and zone to check
1616  *
1617  * When the system is doing streaming IO, memory pressure here
1618  * ensures that active file pages get deactivated, until more
1619  * than half of the file pages are on the inactive list.
1620  *
1621  * Once we get to that situation, protect the system's working
1622  * set from being evicted by disabling active file page aging.
1623  *
1624  * This uses a different ratio than the anonymous pages, because
1625  * the page cache uses a use-once replacement algorithm.
1626  */
1627 static int inactive_file_is_low(struct mem_cgroup_zone *mz)
1628 {
1629         if (!scanning_global_lru(mz))
1630                 return mem_cgroup_inactive_file_is_low(mz->mem_cgroup,
1631                                                        mz->zone);
1632
1633         return inactive_file_is_low_global(mz->zone);
1634 }
1635
1636 static int inactive_list_is_low(struct mem_cgroup_zone *mz, int file)
1637 {
1638         if (file)
1639                 return inactive_file_is_low(mz);
1640         else
1641                 return inactive_anon_is_low(mz);
1642 }
1643
1644 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1645                                  struct mem_cgroup_zone *mz,
1646                                  struct scan_control *sc, int priority)
1647 {
1648         int file = is_file_lru(lru);
1649
1650         if (is_active_lru(lru)) {
1651                 if (inactive_list_is_low(mz, file))
1652                         shrink_active_list(nr_to_scan, mz, sc, priority, file);
1653                 return 0;
1654         }
1655
1656         return shrink_inactive_list(nr_to_scan, mz, sc, priority, file);
1657 }
1658
1659 static int vmscan_swappiness(struct mem_cgroup_zone *mz,
1660                              struct scan_control *sc)
1661 {
1662         if (global_reclaim(sc))
1663                 return vm_swappiness;
1664         return mem_cgroup_swappiness(mz->mem_cgroup);
1665 }
1666
1667 /*
1668  * Determine how aggressively the anon and file LRU lists should be
1669  * scanned.  The relative value of each set of LRU lists is determined
1670  * by looking at the fraction of the pages scanned we did rotate back
1671  * onto the active list instead of evict.
1672  *
1673  * nr[0] = anon pages to scan; nr[1] = file pages to scan
1674  */
1675 static void get_scan_count(struct mem_cgroup_zone *mz, struct scan_control *sc,
1676                            unsigned long *nr, int priority)
1677 {
1678         unsigned long anon, file, free;
1679         unsigned long anon_prio, file_prio;
1680         unsigned long ap, fp;
1681         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1682         u64 fraction[2], denominator;
1683         enum lru_list lru;
1684         int noswap = 0;
1685         bool force_scan = false;
1686
1687         /*
1688          * If the zone or memcg is small, nr[l] can be 0.  This
1689          * results in no scanning on this priority and a potential
1690          * priority drop.  Global direct reclaim can go to the next
1691          * zone and tends to have no problems. Global kswapd is for
1692          * zone balancing and it needs to scan a minimum amount. When
1693          * reclaiming for a memcg, a priority drop can cause high
1694          * latencies, so it's better to scan a minimum amount there as
1695          * well.
1696          */
1697         if (current_is_kswapd() && mz->zone->all_unreclaimable)
1698                 force_scan = true;
1699         if (!global_reclaim(sc))
1700                 force_scan = true;
1701
1702         /* If we have no swap space, do not bother scanning anon pages. */
1703         if (!sc->may_swap || (nr_swap_pages <= 0)) {
1704                 noswap = 1;
1705                 fraction[0] = 0;
1706                 fraction[1] = 1;
1707                 denominator = 1;
1708                 goto out;
1709         }
1710
1711         anon  = zone_nr_lru_pages(mz, LRU_ACTIVE_ANON) +
1712                 zone_nr_lru_pages(mz, LRU_INACTIVE_ANON);
1713         file  = zone_nr_lru_pages(mz, LRU_ACTIVE_FILE) +
1714                 zone_nr_lru_pages(mz, LRU_INACTIVE_FILE);
1715
1716         if (global_reclaim(sc)) {
1717                 free  = zone_page_state(mz->zone, NR_FREE_PAGES);
1718                 /* If we have very few page cache pages,
1719                    force-scan anon pages. */
1720                 if (unlikely(file + free <= high_wmark_pages(mz->zone))) {
1721                         fraction[0] = 1;
1722                         fraction[1] = 0;
1723                         denominator = 1;
1724                         goto out;
1725                 }
1726         }
1727
1728         /*
1729          * With swappiness at 100, anonymous and file have the same priority.
1730          * This scanning priority is essentially the inverse of IO cost.
1731          */
1732         anon_prio = vmscan_swappiness(mz, sc);
1733         file_prio = 200 - vmscan_swappiness(mz, sc);
1734
1735         /*
1736          * OK, so we have swap space and a fair amount of page cache
1737          * pages.  We use the recently rotated / recently scanned
1738          * ratios to determine how valuable each cache is.
1739          *
1740          * Because workloads change over time (and to avoid overflow)
1741          * we keep these statistics as a floating average, which ends
1742          * up weighing recent references more than old ones.
1743          *
1744          * anon in [0], file in [1]
1745          */
1746         spin_lock_irq(&mz->zone->lru_lock);
1747         if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1748                 reclaim_stat->recent_scanned[0] /= 2;
1749                 reclaim_stat->recent_rotated[0] /= 2;
1750         }
1751
1752         if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1753                 reclaim_stat->recent_scanned[1] /= 2;
1754                 reclaim_stat->recent_rotated[1] /= 2;
1755         }
1756
1757         /*
1758          * The amount of pressure on anon vs file pages is inversely
1759          * proportional to the fraction of recently scanned pages on
1760          * each list that were recently referenced and in active use.
1761          */
1762         ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1763         ap /= reclaim_stat->recent_rotated[0] + 1;
1764
1765         fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1766         fp /= reclaim_stat->recent_rotated[1] + 1;
1767         spin_unlock_irq(&mz->zone->lru_lock);
1768
1769         fraction[0] = ap;
1770         fraction[1] = fp;
1771         denominator = ap + fp + 1;
1772 out:
1773         for_each_evictable_lru(lru) {
1774                 int file = is_file_lru(lru);
1775                 unsigned long scan;
1776
1777                 scan = zone_nr_lru_pages(mz, lru);
1778                 if (priority || noswap) {
1779                         scan >>= priority;
1780                         if (!scan && force_scan)
1781                                 scan = SWAP_CLUSTER_MAX;
1782                         scan = div64_u64(scan * fraction[file], denominator);
1783                 }
1784                 nr[lru] = scan;
1785         }
1786 }
1787
1788 /* Use reclaim/compaction for costly allocs or under memory pressure */
1789 static bool in_reclaim_compaction(int priority, struct scan_control *sc)
1790 {
1791         if (COMPACTION_BUILD && sc->order &&
1792                         (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
1793                          priority < DEF_PRIORITY - 2))
1794                 return true;
1795
1796         return false;
1797 }
1798
1799 /*
1800  * Reclaim/compaction is used for high-order allocation requests. It reclaims
1801  * order-0 pages before compacting the zone. should_continue_reclaim() returns
1802  * true if more pages should be reclaimed such that when the page allocator
1803  * calls try_to_compact_zone() that it will have enough free pages to succeed.
1804  * It will give up earlier than that if there is difficulty reclaiming pages.
1805  */
1806 static inline bool should_continue_reclaim(struct mem_cgroup_zone *mz,
1807                                         unsigned long nr_reclaimed,
1808                                         unsigned long nr_scanned,
1809                                         int priority,
1810                                         struct scan_control *sc)
1811 {
1812         unsigned long pages_for_compaction;
1813         unsigned long inactive_lru_pages;
1814
1815         /* If not in reclaim/compaction mode, stop */
1816         if (!in_reclaim_compaction(priority, sc))
1817                 return false;
1818
1819         /* Consider stopping depending on scan and reclaim activity */
1820         if (sc->gfp_mask & __GFP_REPEAT) {
1821                 /*
1822                  * For __GFP_REPEAT allocations, stop reclaiming if the
1823                  * full LRU list has been scanned and we are still failing
1824                  * to reclaim pages. This full LRU scan is potentially
1825                  * expensive but a __GFP_REPEAT caller really wants to succeed
1826                  */
1827                 if (!nr_reclaimed && !nr_scanned)
1828                         return false;
1829         } else {
1830                 /*
1831                  * For non-__GFP_REPEAT allocations which can presumably
1832                  * fail without consequence, stop if we failed to reclaim
1833                  * any pages from the last SWAP_CLUSTER_MAX number of
1834                  * pages that were scanned. This will return to the
1835                  * caller faster at the risk reclaim/compaction and
1836                  * the resulting allocation attempt fails
1837                  */
1838                 if (!nr_reclaimed)
1839                         return false;
1840         }
1841
1842         /*
1843          * If we have not reclaimed enough pages for compaction and the
1844          * inactive lists are large enough, continue reclaiming
1845          */
1846         pages_for_compaction = (2UL << sc->order);
1847         inactive_lru_pages = zone_nr_lru_pages(mz, LRU_INACTIVE_FILE);
1848         if (nr_swap_pages > 0)
1849                 inactive_lru_pages += zone_nr_lru_pages(mz, LRU_INACTIVE_ANON);
1850         if (sc->nr_reclaimed < pages_for_compaction &&
1851                         inactive_lru_pages > pages_for_compaction)
1852                 return true;
1853
1854         /* If compaction would go ahead or the allocation would succeed, stop */
1855         switch (compaction_suitable(mz->zone, sc->order)) {
1856         case COMPACT_PARTIAL:
1857         case COMPACT_CONTINUE:
1858                 return false;
1859         default:
1860                 return true;
1861         }
1862 }
1863
1864 /*
1865  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1866  */
1867 static void shrink_mem_cgroup_zone(int priority, struct mem_cgroup_zone *mz,
1868                                    struct scan_control *sc)
1869 {
1870         unsigned long nr[NR_LRU_LISTS];
1871         unsigned long nr_to_scan;
1872         enum lru_list lru;
1873         unsigned long nr_reclaimed, nr_scanned;
1874         unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1875         struct blk_plug plug;
1876
1877 restart:
1878         nr_reclaimed = 0;
1879         nr_scanned = sc->nr_scanned;
1880         get_scan_count(mz, sc, nr, priority);
1881
1882         blk_start_plug(&plug);
1883         while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1884                                         nr[LRU_INACTIVE_FILE]) {
1885                 for_each_evictable_lru(lru) {
1886                         if (nr[lru]) {
1887                                 nr_to_scan = min_t(unsigned long,
1888                                                    nr[lru], SWAP_CLUSTER_MAX);
1889                                 nr[lru] -= nr_to_scan;
1890
1891                                 nr_reclaimed += shrink_list(lru, nr_to_scan,
1892                                                             mz, sc, priority);
1893                         }
1894                 }
1895                 /*
1896                  * On large memory systems, scan >> priority can become
1897                  * really large. This is fine for the starting priority;
1898                  * we want to put equal scanning pressure on each zone.
1899                  * However, if the VM has a harder time of freeing pages,
1900                  * with multiple processes reclaiming pages, the total
1901                  * freeing target can get unreasonably large.
1902                  */
1903                 if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
1904                         break;
1905         }
1906         blk_finish_plug(&plug);
1907         sc->nr_reclaimed += nr_reclaimed;
1908
1909         /*
1910          * Even if we did not try to evict anon pages at all, we want to
1911          * rebalance the anon lru active/inactive ratio.
1912          */
1913         if (inactive_anon_is_low(mz))
1914                 shrink_active_list(SWAP_CLUSTER_MAX, mz, sc, priority, 0);
1915
1916         /* reclaim/compaction might need reclaim to continue */
1917         if (should_continue_reclaim(mz, nr_reclaimed,
1918                                         sc->nr_scanned - nr_scanned,
1919                                         priority, sc))
1920                 goto restart;
1921
1922         throttle_vm_writeout(sc->gfp_mask);
1923 }
1924
1925 static void shrink_zone(int priority, struct zone *zone,
1926                         struct scan_control *sc)
1927 {
1928         struct mem_cgroup *root = sc->target_mem_cgroup;
1929         struct mem_cgroup_reclaim_cookie reclaim = {
1930                 .zone = zone,
1931                 .priority = priority,
1932         };
1933         struct mem_cgroup *memcg;
1934
1935         memcg = mem_cgroup_iter(root, NULL, &reclaim);
1936         do {
1937                 struct mem_cgroup_zone mz = {
1938                         .mem_cgroup = memcg,
1939                         .zone = zone,
1940                 };
1941
1942                 shrink_mem_cgroup_zone(priority, &mz, sc);
1943                 /*
1944                  * Limit reclaim has historically picked one memcg and
1945                  * scanned it with decreasing priority levels until
1946                  * nr_to_reclaim had been reclaimed.  This priority
1947                  * cycle is thus over after a single memcg.
1948                  *
1949                  * Direct reclaim and kswapd, on the other hand, have
1950                  * to scan all memory cgroups to fulfill the overall
1951                  * scan target for the zone.
1952                  */
1953                 if (!global_reclaim(sc)) {
1954                         mem_cgroup_iter_break(root, memcg);
1955                         break;
1956                 }
1957                 memcg = mem_cgroup_iter(root, memcg, &reclaim);
1958         } while (memcg);
1959 }
1960
1961 /* Returns true if compaction should go ahead for a high-order request */
1962 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
1963 {
1964         unsigned long balance_gap, watermark;
1965         bool watermark_ok;
1966
1967         /* Do not consider compaction for orders reclaim is meant to satisfy */
1968         if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
1969                 return false;
1970
1971         /*
1972          * Compaction takes time to run and there are potentially other
1973          * callers using the pages just freed. Continue reclaiming until
1974          * there is a buffer of free pages available to give compaction
1975          * a reasonable chance of completing and allocating the page
1976          */
1977         balance_gap = min(low_wmark_pages(zone),
1978                 (zone->present_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
1979                         KSWAPD_ZONE_BALANCE_GAP_RATIO);
1980         watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
1981         watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
1982
1983         /*
1984          * If compaction is deferred, reclaim up to a point where
1985          * compaction will have a chance of success when re-enabled
1986          */
1987         if (compaction_deferred(zone, sc->order))
1988                 return watermark_ok;
1989
1990         /* If compaction is not ready to start, keep reclaiming */
1991         if (!compaction_suitable(zone, sc->order))
1992                 return false;
1993
1994         return watermark_ok;
1995 }
1996
1997 /*
1998  * This is the direct reclaim path, for page-allocating processes.  We only
1999  * try to reclaim pages from zones which will satisfy the caller's allocation
2000  * request.
2001  *
2002  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2003  * Because:
2004  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2005  *    allocation or
2006  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2007  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2008  *    zone defense algorithm.
2009  *
2010  * If a zone is deemed to be full of pinned pages then just give it a light
2011  * scan then give up on it.
2012  *
2013  * This function returns true if a zone is being reclaimed for a costly
2014  * high-order allocation and compaction is ready to begin. This indicates to
2015  * the caller that it should consider retrying the allocation instead of
2016  * further reclaim.
2017  */
2018 static bool shrink_zones(int priority, struct zonelist *zonelist,
2019                                         struct scan_control *sc)
2020 {
2021         struct zoneref *z;
2022         struct zone *zone;
2023         unsigned long nr_soft_reclaimed;
2024         unsigned long nr_soft_scanned;
2025         bool aborted_reclaim = false;
2026
2027         /*
2028          * If the number of buffer_heads in the machine exceeds the maximum
2029          * allowed level, force direct reclaim to scan the highmem zone as
2030          * highmem pages could be pinning lowmem pages storing buffer_heads
2031          */
2032         if (buffer_heads_over_limit)
2033                 sc->gfp_mask |= __GFP_HIGHMEM;
2034
2035         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2036                                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2037                 if (!populated_zone(zone))
2038                         continue;
2039                 /*
2040                  * Take care memory controller reclaiming has small influence
2041                  * to global LRU.
2042                  */
2043                 if (global_reclaim(sc)) {
2044                         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2045                                 continue;
2046                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2047                                 continue;       /* Let kswapd poll it */
2048                         if (COMPACTION_BUILD) {
2049                                 /*
2050                                  * If we already have plenty of memory free for
2051                                  * compaction in this zone, don't free any more.
2052                                  * Even though compaction is invoked for any
2053                                  * non-zero order, only frequent costly order
2054                                  * reclamation is disruptive enough to become a
2055                                  * noticeable problem, like transparent huge
2056                                  * page allocations.
2057                                  */
2058                                 if (compaction_ready(zone, sc)) {
2059                                         aborted_reclaim = true;
2060                                         continue;
2061                                 }
2062                         }
2063                         /*
2064                          * This steals pages from memory cgroups over softlimit
2065                          * and returns the number of reclaimed pages and
2066                          * scanned pages. This works for global memory pressure
2067                          * and balancing, not for a memcg's limit.
2068                          */
2069                         nr_soft_scanned = 0;
2070                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2071                                                 sc->order, sc->gfp_mask,
2072                                                 &nr_soft_scanned);
2073                         sc->nr_reclaimed += nr_soft_reclaimed;
2074                         sc->nr_scanned += nr_soft_scanned;
2075                         /* need some check for avoid more shrink_zone() */
2076                 }
2077
2078                 shrink_zone(priority, zone, sc);
2079         }
2080
2081         return aborted_reclaim;
2082 }
2083
2084 static bool zone_reclaimable(struct zone *zone)
2085 {
2086         return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2087 }
2088
2089 /* All zones in zonelist are unreclaimable? */
2090 static bool all_unreclaimable(struct zonelist *zonelist,
2091                 struct scan_control *sc)
2092 {
2093         struct zoneref *z;
2094         struct zone *zone;
2095
2096         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2097                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2098                 if (!populated_zone(zone))
2099                         continue;
2100                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2101                         continue;
2102                 if (!zone->all_unreclaimable)
2103                         return false;
2104         }
2105
2106         return true;
2107 }
2108
2109 /*
2110  * This is the main entry point to direct page reclaim.
2111  *
2112  * If a full scan of the inactive list fails to free enough memory then we
2113  * are "out of memory" and something needs to be killed.
2114  *
2115  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2116  * high - the zone may be full of dirty or under-writeback pages, which this
2117  * caller can't do much about.  We kick the writeback threads and take explicit
2118  * naps in the hope that some of these pages can be written.  But if the
2119  * allocating task holds filesystem locks which prevent writeout this might not
2120  * work, and the allocation attempt will fail.
2121  *
2122  * returns:     0, if no pages reclaimed
2123  *              else, the number of pages reclaimed
2124  */
2125 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2126                                         struct scan_control *sc,
2127                                         struct shrink_control *shrink)
2128 {
2129         int priority;
2130         unsigned long total_scanned = 0;
2131         struct reclaim_state *reclaim_state = current->reclaim_state;
2132         struct zoneref *z;
2133         struct zone *zone;
2134         unsigned long writeback_threshold;
2135         bool aborted_reclaim;
2136
2137         delayacct_freepages_start();
2138
2139         if (global_reclaim(sc))
2140                 count_vm_event(ALLOCSTALL);
2141
2142         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2143                 sc->nr_scanned = 0;
2144                 aborted_reclaim = shrink_zones(priority, zonelist, sc);
2145
2146                 /*
2147                  * Don't shrink slabs when reclaiming memory from
2148                  * over limit cgroups
2149                  */
2150                 if (global_reclaim(sc)) {
2151                         unsigned long lru_pages = 0;
2152                         for_each_zone_zonelist(zone, z, zonelist,
2153                                         gfp_zone(sc->gfp_mask)) {
2154                                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2155                                         continue;
2156
2157                                 lru_pages += zone_reclaimable_pages(zone);
2158                         }
2159
2160                         shrink_slab(shrink, sc->nr_scanned, lru_pages);
2161                         if (reclaim_state) {
2162                                 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2163                                 reclaim_state->reclaimed_slab = 0;
2164                         }
2165                 }
2166                 total_scanned += sc->nr_scanned;
2167                 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2168                         goto out;
2169
2170                 /*
2171                  * Try to write back as many pages as we just scanned.  This
2172                  * tends to cause slow streaming writers to write data to the
2173                  * disk smoothly, at the dirtying rate, which is nice.   But
2174                  * that's undesirable in laptop mode, where we *want* lumpy
2175                  * writeout.  So in laptop mode, write out the whole world.
2176                  */
2177                 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2178                 if (total_scanned > writeback_threshold) {
2179                         wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2180                                                 WB_REASON_TRY_TO_FREE_PAGES);
2181                         sc->may_writepage = 1;
2182                 }
2183
2184                 /* Take a nap, wait for some writeback to complete */
2185                 if (!sc->hibernation_mode && sc->nr_scanned &&
2186                     priority < DEF_PRIORITY - 2) {
2187                         struct zone *preferred_zone;
2188
2189                         first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2190                                                 &cpuset_current_mems_allowed,
2191                                                 &preferred_zone);
2192                         wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2193                 }
2194         }
2195
2196 out:
2197         delayacct_freepages_end();
2198
2199         if (sc->nr_reclaimed)
2200                 return sc->nr_reclaimed;
2201
2202         /*
2203          * As hibernation is going on, kswapd is freezed so that it can't mark
2204          * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2205          * check.
2206          */
2207         if (oom_killer_disabled)
2208                 return 0;
2209
2210         /* Aborted reclaim to try compaction? don't OOM, then */
2211         if (aborted_reclaim)
2212                 return 1;
2213
2214         /* top priority shrink_zones still had more to do? don't OOM, then */
2215         if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2216                 return 1;
2217
2218         return 0;
2219 }
2220
2221 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2222                                 gfp_t gfp_mask, nodemask_t *nodemask)
2223 {
2224         unsigned long nr_reclaimed;
2225         struct scan_control sc = {
2226                 .gfp_mask = gfp_mask,
2227                 .may_writepage = !laptop_mode,
2228                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2229                 .may_unmap = 1,
2230                 .may_swap = 1,
2231                 .order = order,
2232                 .target_mem_cgroup = NULL,
2233                 .nodemask = nodemask,
2234         };
2235         struct shrink_control shrink = {
2236                 .gfp_mask = sc.gfp_mask,
2237         };
2238
2239         trace_mm_vmscan_direct_reclaim_begin(order,
2240                                 sc.may_writepage,
2241                                 gfp_mask);
2242
2243         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2244
2245         trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2246
2247         return nr_reclaimed;
2248 }
2249
2250 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2251
2252 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2253                                                 gfp_t gfp_mask, bool noswap,
2254                                                 struct zone *zone,
2255                                                 unsigned long *nr_scanned)
2256 {
2257         struct scan_control sc = {
2258                 .nr_scanned = 0,
2259                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2260                 .may_writepage = !laptop_mode,
2261                 .may_unmap = 1,
2262                 .may_swap = !noswap,
2263                 .order = 0,
2264                 .target_mem_cgroup = memcg,
2265         };
2266         struct mem_cgroup_zone mz = {
2267                 .mem_cgroup = memcg,
2268                 .zone = zone,
2269         };
2270
2271         sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2272                         (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2273
2274         trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2275                                                       sc.may_writepage,
2276                                                       sc.gfp_mask);
2277
2278         /*
2279          * NOTE: Although we can get the priority field, using it
2280          * here is not a good idea, since it limits the pages we can scan.
2281          * if we don't reclaim here, the shrink_zone from balance_pgdat
2282          * will pick up pages from other mem cgroup's as well. We hack
2283          * the priority and make it zero.
2284          */
2285         shrink_mem_cgroup_zone(0, &mz, &sc);
2286
2287         trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2288
2289         *nr_scanned = sc.nr_scanned;
2290         return sc.nr_reclaimed;
2291 }
2292
2293 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2294                                            gfp_t gfp_mask,
2295                                            bool noswap)
2296 {
2297         struct zonelist *zonelist;
2298         unsigned long nr_reclaimed;
2299         int nid;
2300         struct scan_control sc = {
2301                 .may_writepage = !laptop_mode,
2302                 .may_unmap = 1,
2303                 .may_swap = !noswap,
2304                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2305                 .order = 0,
2306                 .target_mem_cgroup = memcg,
2307                 .nodemask = NULL, /* we don't care the placement */
2308                 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2309                                 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2310         };
2311         struct shrink_control shrink = {
2312                 .gfp_mask = sc.gfp_mask,
2313         };
2314
2315         /*
2316          * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2317          * take care of from where we get pages. So the node where we start the
2318          * scan does not need to be the current node.
2319          */
2320         nid = mem_cgroup_select_victim_node(memcg);
2321
2322         zonelist = NODE_DATA(nid)->node_zonelists;
2323
2324         trace_mm_vmscan_memcg_reclaim_begin(0,
2325                                             sc.may_writepage,
2326                                             sc.gfp_mask);
2327
2328         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2329
2330         trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2331
2332         return nr_reclaimed;
2333 }
2334 #endif
2335
2336 static void age_active_anon(struct zone *zone, struct scan_control *sc,
2337                             int priority)
2338 {
2339         struct mem_cgroup *memcg;
2340
2341         if (!total_swap_pages)
2342                 return;
2343
2344         memcg = mem_cgroup_iter(NULL, NULL, NULL);
2345         do {
2346                 struct mem_cgroup_zone mz = {
2347                         .mem_cgroup = memcg,
2348                         .zone = zone,
2349                 };
2350
2351                 if (inactive_anon_is_low(&mz))
2352                         shrink_active_list(SWAP_CLUSTER_MAX, &mz,
2353                                            sc, priority, 0);
2354
2355                 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2356         } while (memcg);
2357 }
2358
2359 /*
2360  * pgdat_balanced is used when checking if a node is balanced for high-order
2361  * allocations. Only zones that meet watermarks and are in a zone allowed
2362  * by the callers classzone_idx are added to balanced_pages. The total of
2363  * balanced pages must be at least 25% of the zones allowed by classzone_idx
2364  * for the node to be considered balanced. Forcing all zones to be balanced
2365  * for high orders can cause excessive reclaim when there are imbalanced zones.
2366  * The choice of 25% is due to
2367  *   o a 16M DMA zone that is balanced will not balance a zone on any
2368  *     reasonable sized machine
2369  *   o On all other machines, the top zone must be at least a reasonable
2370  *     percentage of the middle zones. For example, on 32-bit x86, highmem
2371  *     would need to be at least 256M for it to be balance a whole node.
2372  *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2373  *     to balance a node on its own. These seemed like reasonable ratios.
2374  */
2375 static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2376                                                 int classzone_idx)
2377 {
2378         unsigned long present_pages = 0;
2379         int i;
2380
2381         for (i = 0; i <= classzone_idx; i++)
2382                 present_pages += pgdat->node_zones[i].present_pages;
2383
2384         /* A special case here: if zone has no page, we think it's balanced */
2385         return balanced_pages >= (present_pages >> 2);
2386 }
2387
2388 /* is kswapd sleeping prematurely? */
2389 static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2390                                         int classzone_idx)
2391 {
2392         int i;
2393         unsigned long balanced = 0;
2394         bool all_zones_ok = true;
2395
2396         /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2397         if (remaining)
2398                 return true;
2399
2400         /* Check the watermark levels */
2401         for (i = 0; i <= classzone_idx; i++) {
2402                 struct zone *zone = pgdat->node_zones + i;
2403
2404                 if (!populated_zone(zone))
2405                         continue;
2406
2407                 /*
2408                  * balance_pgdat() skips over all_unreclaimable after
2409                  * DEF_PRIORITY. Effectively, it considers them balanced so
2410                  * they must be considered balanced here as well if kswapd
2411                  * is to sleep
2412                  */
2413                 if (zone->all_unreclaimable) {
2414                         balanced += zone->present_pages;
2415                         continue;
2416                 }
2417
2418                 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2419                                                         i, 0))
2420                         all_zones_ok = false;
2421                 else
2422                         balanced += zone->present_pages;
2423         }
2424
2425         /*
2426          * For high-order requests, the balanced zones must contain at least
2427          * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2428          * must be balanced
2429          */
2430         if (order)
2431                 return !pgdat_balanced(pgdat, balanced, classzone_idx);
2432         else
2433                 return !all_zones_ok;
2434 }
2435
2436 /*
2437  * For kswapd, balance_pgdat() will work across all this node's zones until
2438  * they are all at high_wmark_pages(zone).
2439  *
2440  * Returns the final order kswapd was reclaiming at
2441  *
2442  * There is special handling here for zones which are full of pinned pages.
2443  * This can happen if the pages are all mlocked, or if they are all used by
2444  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2445  * What we do is to detect the case where all pages in the zone have been
2446  * scanned twice and there has been zero successful reclaim.  Mark the zone as
2447  * dead and from now on, only perform a short scan.  Basically we're polling
2448  * the zone for when the problem goes away.
2449  *
2450  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2451  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2452  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2453  * lower zones regardless of the number of free pages in the lower zones. This
2454  * interoperates with the page allocator fallback scheme to ensure that aging
2455  * of pages is balanced across the zones.
2456  */
2457 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2458                                                         int *classzone_idx)
2459 {
2460         int all_zones_ok;
2461         unsigned long balanced;
2462         int priority;
2463         int i;
2464         int end_zone = 0;       /* Inclusive.  0 = ZONE_DMA */
2465         unsigned long total_scanned;
2466         struct reclaim_state *reclaim_state = current->reclaim_state;
2467         unsigned long nr_soft_reclaimed;
2468         unsigned long nr_soft_scanned;
2469         struct scan_control sc = {
2470                 .gfp_mask = GFP_KERNEL,
2471                 .may_unmap = 1,
2472                 .may_swap = 1,
2473                 /*
2474                  * kswapd doesn't want to be bailed out while reclaim. because
2475                  * we want to put equal scanning pressure on each zone.
2476                  */
2477                 .nr_to_reclaim = ULONG_MAX,
2478                 .order = order,
2479                 .target_mem_cgroup = NULL,
2480         };
2481         struct shrink_control shrink = {
2482                 .gfp_mask = sc.gfp_mask,
2483         };
2484 loop_again:
2485         total_scanned = 0;
2486         sc.nr_reclaimed = 0;
2487         sc.may_writepage = !laptop_mode;
2488         count_vm_event(PAGEOUTRUN);
2489
2490         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2491                 unsigned long lru_pages = 0;
2492                 int has_under_min_watermark_zone = 0;
2493
2494                 all_zones_ok = 1;
2495                 balanced = 0;
2496
2497                 /*
2498                  * Scan in the highmem->dma direction for the highest
2499                  * zone which needs scanning
2500                  */
2501                 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2502                         struct zone *zone = pgdat->node_zones + i;
2503
2504                         if (!populated_zone(zone))
2505                                 continue;
2506
2507                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2508                                 continue;
2509
2510                         /*
2511                          * Do some background aging of the anon list, to give
2512                          * pages a chance to be referenced before reclaiming.
2513                          */
2514                         age_active_anon(zone, &sc, priority);
2515
2516                         /*
2517                          * If the number of buffer_heads in the machine
2518                          * exceeds the maximum allowed level and this node
2519                          * has a highmem zone, force kswapd to reclaim from
2520                          * it to relieve lowmem pressure.
2521                          */
2522                         if (buffer_heads_over_limit && is_highmem_idx(i)) {
2523                                 end_zone = i;
2524                                 break;
2525                         }
2526
2527                         if (!zone_watermark_ok_safe(zone, order,
2528                                         high_wmark_pages(zone), 0, 0)) {
2529                                 end_zone = i;
2530                                 break;
2531                         } else {
2532                                 /* If balanced, clear the congested flag */
2533                                 zone_clear_flag(zone, ZONE_CONGESTED);
2534                         }
2535                 }
2536                 if (i < 0)
2537                         goto out;
2538
2539                 for (i = 0; i <= end_zone; i++) {
2540                         struct zone *zone = pgdat->node_zones + i;
2541
2542                         lru_pages += zone_reclaimable_pages(zone);
2543                 }
2544
2545                 /*
2546                  * Now scan the zone in the dma->highmem direction, stopping
2547                  * at the last zone which needs scanning.
2548                  *
2549                  * We do this because the page allocator works in the opposite
2550                  * direction.  This prevents the page allocator from allocating
2551                  * pages behind kswapd's direction of progress, which would
2552                  * cause too much scanning of the lower zones.
2553                  */
2554                 for (i = 0; i <= end_zone; i++) {
2555                         struct zone *zone = pgdat->node_zones + i;
2556                         int nr_slab, testorder;
2557                         unsigned long balance_gap;
2558
2559                         if (!populated_zone(zone))
2560                                 continue;
2561
2562                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2563                                 continue;
2564
2565                         sc.nr_scanned = 0;
2566
2567                         nr_soft_scanned = 0;
2568                         /*
2569                          * Call soft limit reclaim before calling shrink_zone.
2570                          */
2571                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2572                                                         order, sc.gfp_mask,
2573                                                         &nr_soft_scanned);
2574                         sc.nr_reclaimed += nr_soft_reclaimed;
2575                         total_scanned += nr_soft_scanned;
2576
2577                         /*
2578                          * We put equal pressure on every zone, unless
2579                          * one zone has way too many pages free
2580                          * already. The "too many pages" is defined
2581                          * as the high wmark plus a "gap" where the
2582                          * gap is either the low watermark or 1%
2583                          * of the zone, whichever is smaller.
2584                          */
2585                         balance_gap = min(low_wmark_pages(zone),
2586                                 (zone->present_pages +
2587                                         KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2588                                 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2589                         /*
2590                          * Kswapd reclaims only single pages with compaction
2591                          * enabled. Trying too hard to reclaim until contiguous
2592                          * free pages have become available can hurt performance
2593                          * by evicting too much useful data from memory.
2594                          * Do not reclaim more than needed for compaction.
2595                          */
2596                         testorder = order;
2597                         if (COMPACTION_BUILD && order &&
2598                                         compaction_suitable(zone, order) !=
2599                                                 COMPACT_SKIPPED)
2600                                 testorder = 0;
2601
2602                         if ((buffer_heads_over_limit && is_highmem_idx(i)) ||
2603                                     !zone_watermark_ok_safe(zone, testorder,
2604                                         high_wmark_pages(zone) + balance_gap,
2605                                         end_zone, 0)) {
2606                                 shrink_zone(priority, zone, &sc);
2607
2608                                 reclaim_state->reclaimed_slab = 0;
2609                                 nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2610                                 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2611                                 total_scanned += sc.nr_scanned;
2612
2613                                 if (nr_slab == 0 && !zone_reclaimable(zone))
2614                                         zone->all_unreclaimable = 1;
2615                         }
2616
2617                         /*
2618                          * If we've done a decent amount of scanning and
2619                          * the reclaim ratio is low, start doing writepage
2620                          * even in laptop mode
2621                          */
2622                         if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2623                             total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2624                                 sc.may_writepage = 1;
2625
2626                         if (zone->all_unreclaimable) {
2627                                 if (end_zone && end_zone == i)
2628                                         end_zone--;
2629                                 continue;
2630                         }
2631
2632                         if (!zone_watermark_ok_safe(zone, testorder,
2633                                         high_wmark_pages(zone), end_zone, 0)) {
2634                                 all_zones_ok = 0;
2635                                 /*
2636                                  * We are still under min water mark.  This
2637                                  * means that we have a GFP_ATOMIC allocation
2638                                  * failure risk. Hurry up!
2639                                  */
2640                                 if (!zone_watermark_ok_safe(zone, order,
2641                                             min_wmark_pages(zone), end_zone, 0))
2642                                         has_under_min_watermark_zone = 1;
2643                         } else {
2644                                 /*
2645                                  * If a zone reaches its high watermark,
2646                                  * consider it to be no longer congested. It's
2647                                  * possible there are dirty pages backed by
2648                                  * congested BDIs but as pressure is relieved,
2649                                  * spectulatively avoid congestion waits
2650                                  */
2651                                 zone_clear_flag(zone, ZONE_CONGESTED);
2652                                 if (i <= *classzone_idx)
2653                                         balanced += zone->present_pages;
2654                         }
2655
2656                 }
2657                 if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2658                         break;          /* kswapd: all done */
2659                 /*
2660                  * OK, kswapd is getting into trouble.  Take a nap, then take
2661                  * another pass across the zones.
2662                  */
2663                 if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2664                         if (has_under_min_watermark_zone)
2665                                 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2666                         else
2667                                 congestion_wait(BLK_RW_ASYNC, HZ/10);
2668                 }
2669
2670                 /*
2671                  * We do this so kswapd doesn't build up large priorities for
2672                  * example when it is freeing in parallel with allocators. It
2673                  * matches the direct reclaim path behaviour in terms of impact
2674                  * on zone->*_priority.
2675                  */
2676                 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2677                         break;
2678         }
2679 out:
2680
2681         /*
2682          * order-0: All zones must meet high watermark for a balanced node
2683          * high-order: Balanced zones must make up at least 25% of the node
2684          *             for the node to be balanced
2685          */
2686         if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2687                 cond_resched();
2688
2689                 try_to_freeze();
2690
2691                 /*
2692                  * Fragmentation may mean that the system cannot be
2693                  * rebalanced for high-order allocations in all zones.
2694                  * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2695                  * it means the zones have been fully scanned and are still
2696                  * not balanced. For high-order allocations, there is
2697                  * little point trying all over again as kswapd may
2698                  * infinite loop.
2699                  *
2700                  * Instead, recheck all watermarks at order-0 as they
2701                  * are the most important. If watermarks are ok, kswapd will go
2702                  * back to sleep. High-order users can still perform direct
2703                  * reclaim if they wish.
2704                  */
2705                 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2706                         order = sc.order = 0;
2707
2708                 goto loop_again;
2709         }
2710
2711         /*
2712          * If kswapd was reclaiming at a higher order, it has the option of
2713          * sleeping without all zones being balanced. Before it does, it must
2714          * ensure that the watermarks for order-0 on *all* zones are met and
2715          * that the congestion flags are cleared. The congestion flag must
2716          * be cleared as kswapd is the only mechanism that clears the flag
2717          * and it is potentially going to sleep here.
2718          */
2719         if (order) {
2720                 int zones_need_compaction = 1;
2721
2722                 for (i = 0; i <= end_zone; i++) {
2723                         struct zone *zone = pgdat->node_zones + i;
2724
2725                         if (!populated_zone(zone))
2726                                 continue;
2727
2728                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2729                                 continue;
2730
2731                         /* Would compaction fail due to lack of free memory? */
2732                         if (COMPACTION_BUILD &&
2733                             compaction_suitable(zone, order) == COMPACT_SKIPPED)
2734                                 goto loop_again;
2735
2736                         /* Confirm the zone is balanced for order-0 */
2737                         if (!zone_watermark_ok(zone, 0,
2738                                         high_wmark_pages(zone), 0, 0)) {
2739                                 order = sc.order = 0;
2740                                 goto loop_again;
2741                         }
2742
2743                         /* Check if the memory needs to be defragmented. */
2744                         if (zone_watermark_ok(zone, order,
2745                                     low_wmark_pages(zone), *classzone_idx, 0))
2746                                 zones_need_compaction = 0;
2747
2748                         /* If balanced, clear the congested flag */
2749                         zone_clear_flag(zone, ZONE_CONGESTED);
2750                 }
2751
2752                 if (zones_need_compaction)
2753                         compact_pgdat(pgdat, order);
2754         }
2755
2756         /*
2757          * Return the order we were reclaiming at so sleeping_prematurely()
2758          * makes a decision on the order we were last reclaiming at. However,
2759          * if another caller entered the allocator slow path while kswapd
2760          * was awake, order will remain at the higher level
2761          */
2762         *classzone_idx = end_zone;
2763         return order;
2764 }
2765
2766 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2767 {
2768         long remaining = 0;
2769         DEFINE_WAIT(wait);
2770
2771         if (freezing(current) || kthread_should_stop())
2772                 return;
2773
2774         prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2775
2776         /* Try to sleep for a short interval */
2777         if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2778                 remaining = schedule_timeout(HZ/10);
2779                 finish_wait(&pgdat->kswapd_wait, &wait);
2780                 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2781         }
2782
2783         /*
2784          * After a short sleep, check if it was a premature sleep. If not, then
2785          * go fully to sleep until explicitly woken up.
2786          */
2787         if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2788                 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2789
2790                 /*
2791                  * vmstat counters are not perfectly accurate and the estimated
2792                  * value for counters such as NR_FREE_PAGES can deviate from the
2793                  * true value by nr_online_cpus * threshold. To avoid the zone
2794                  * watermarks being breached while under pressure, we reduce the
2795                  * per-cpu vmstat threshold while kswapd is awake and restore
2796                  * them before going back to sleep.
2797                  */
2798                 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2799                 schedule();
2800                 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2801         } else {
2802                 if (remaining)
2803                         count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2804                 else
2805                         count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2806         }
2807         finish_wait(&pgdat->kswapd_wait, &wait);
2808 }
2809
2810 /*
2811  * The background pageout daemon, started as a kernel thread
2812  * from the init process.
2813  *
2814  * This basically trickles out pages so that we have _some_
2815  * free memory available even if there is no other activity
2816  * that frees anything up. This is needed for things like routing
2817  * etc, where we otherwise might have all activity going on in
2818  * asynchronous contexts that cannot page things out.
2819  *
2820  * If there are applications that are active memory-allocators
2821  * (most normal use), this basically shouldn't matter.
2822  */
2823 static int kswapd(void *p)
2824 {
2825         unsigned long order, new_order;
2826         unsigned balanced_order;
2827         int classzone_idx, new_classzone_idx;
2828         int balanced_classzone_idx;
2829         pg_data_t *pgdat = (pg_data_t*)p;
2830         struct task_struct *tsk = current;
2831
2832         struct reclaim_state reclaim_state = {
2833                 .reclaimed_slab = 0,
2834         };
2835         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2836
2837         lockdep_set_current_reclaim_state(GFP_KERNEL);
2838
2839         if (!cpumask_empty(cpumask))
2840                 set_cpus_allowed_ptr(tsk, cpumask);
2841         current->reclaim_state = &reclaim_state;
2842
2843         /*
2844          * Tell the memory management that we're a "memory allocator",
2845          * and that if we need more memory we should get access to it
2846          * regardless (see "__alloc_pages()"). "kswapd" should
2847          * never get caught in the normal page freeing logic.
2848          *
2849          * (Kswapd normally doesn't need memory anyway, but sometimes
2850          * you need a small amount of memory in order to be able to
2851          * page out something else, and this flag essentially protects
2852          * us from recursively trying to free more memory as we're
2853          * trying to free the first piece of memory in the first place).
2854          */
2855         tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2856         set_freezable();
2857
2858         order = new_order = 0;
2859         balanced_order = 0;
2860         classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
2861         balanced_classzone_idx = classzone_idx;
2862         for ( ; ; ) {
2863                 int ret;
2864
2865                 /*
2866                  * If the last balance_pgdat was unsuccessful it's unlikely a
2867                  * new request of a similar or harder type will succeed soon
2868                  * so consider going to sleep on the basis we reclaimed at
2869                  */
2870                 if (balanced_classzone_idx >= new_classzone_idx &&
2871                                         balanced_order == new_order) {
2872                         new_order = pgdat->kswapd_max_order;
2873                         new_classzone_idx = pgdat->classzone_idx;
2874                         pgdat->kswapd_max_order =  0;
2875                         pgdat->classzone_idx = pgdat->nr_zones - 1;
2876                 }
2877
2878                 if (order < new_order || classzone_idx > new_classzone_idx) {
2879                         /*
2880                          * Don't sleep if someone wants a larger 'order'
2881                          * allocation or has tigher zone constraints
2882                          */
2883                         order = new_order;
2884                         classzone_idx = new_classzone_idx;
2885                 } else {
2886                         kswapd_try_to_sleep(pgdat, balanced_order,
2887                                                 balanced_classzone_idx);
2888                         order = pgdat->kswapd_max_order;
2889                         classzone_idx = pgdat->classzone_idx;
2890                         new_order = order;
2891                         new_classzone_idx = classzone_idx;
2892                         pgdat->kswapd_max_order = 0;
2893                         pgdat->classzone_idx = pgdat->nr_zones - 1;
2894                 }
2895
2896                 ret = try_to_freeze();
2897                 if (kthread_should_stop())
2898                         break;
2899
2900                 /*
2901                  * We can speed up thawing tasks if we don't call balance_pgdat
2902                  * after returning from the refrigerator
2903                  */
2904                 if (!ret) {
2905                         trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2906                         balanced_classzone_idx = classzone_idx;
2907                         balanced_order = balance_pgdat(pgdat, order,
2908                                                 &balanced_classzone_idx);
2909                 }
2910         }
2911         return 0;
2912 }
2913
2914 /*
2915  * A zone is low on free memory, so wake its kswapd task to service it.
2916  */
2917 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
2918 {
2919         pg_data_t *pgdat;
2920
2921         if (!populated_zone(zone))
2922                 return;
2923
2924         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2925                 return;
2926         pgdat = zone->zone_pgdat;
2927         if (pgdat->kswapd_max_order < order) {
2928                 pgdat->kswapd_max_order = order;
2929                 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
2930         }
2931         if (!waitqueue_active(&pgdat->kswapd_wait))
2932                 return;
2933         if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
2934                 return;
2935
2936         trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2937         wake_up_interruptible(&pgdat->kswapd_wait);
2938 }
2939
2940 /*
2941  * The reclaimable count would be mostly accurate.
2942  * The less reclaimable pages may be
2943  * - mlocked pages, which will be moved to unevictable list when encountered
2944  * - mapped pages, which may require several travels to be reclaimed
2945  * - dirty pages, which is not "instantly" reclaimable
2946  */
2947 unsigned long global_reclaimable_pages(void)
2948 {
2949         int nr;
2950
2951         nr = global_page_state(NR_ACTIVE_FILE) +
2952              global_page_state(NR_INACTIVE_FILE);
2953
2954         if (nr_swap_pages > 0)
2955                 nr += global_page_state(NR_ACTIVE_ANON) +
2956                       global_page_state(NR_INACTIVE_ANON);
2957
2958         return nr;
2959 }
2960
2961 unsigned long zone_reclaimable_pages(struct zone *zone)
2962 {
2963         int nr;
2964
2965         nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2966              zone_page_state(zone, NR_INACTIVE_FILE);
2967
2968         if (nr_swap_pages > 0)
2969                 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2970                       zone_page_state(zone, NR_INACTIVE_ANON);
2971
2972         return nr;
2973 }
2974
2975 #ifdef CONFIG_HIBERNATION
2976 /*
2977  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2978  * freed pages.
2979  *
2980  * Rather than trying to age LRUs the aim is to preserve the overall
2981  * LRU order by reclaiming preferentially
2982  * inactive > active > active referenced > active mapped
2983  */
2984 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
2985 {
2986         struct reclaim_state reclaim_state;
2987         struct scan_control sc = {
2988                 .gfp_mask = GFP_HIGHUSER_MOVABLE,
2989                 .may_swap = 1,
2990                 .may_unmap = 1,
2991                 .may_writepage = 1,
2992                 .nr_to_reclaim = nr_to_reclaim,
2993                 .hibernation_mode = 1,
2994                 .order = 0,
2995         };
2996         struct shrink_control shrink = {
2997                 .gfp_mask = sc.gfp_mask,
2998         };
2999         struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3000         struct task_struct *p = current;
3001         unsigned long nr_reclaimed;
3002
3003         p->flags |= PF_MEMALLOC;
3004         lockdep_set_current_reclaim_state(sc.gfp_mask);
3005         reclaim_state.reclaimed_slab = 0;
3006         p->reclaim_state = &reclaim_state;
3007
3008         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3009
3010         p->reclaim_state = NULL;
3011         lockdep_clear_current_reclaim_state();
3012         p->flags &= ~PF_MEMALLOC;
3013
3014         return nr_reclaimed;
3015 }
3016 #endif /* CONFIG_HIBERNATION */
3017
3018 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3019    not required for correctness.  So if the last cpu in a node goes
3020    away, we get changed to run anywhere: as the first one comes back,
3021    restore their cpu bindings. */
3022 static int __devinit cpu_callback(struct notifier_block *nfb,
3023                                   unsigned long action, void *hcpu)
3024 {
3025         int nid;
3026
3027         if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3028                 for_each_node_state(nid, N_HIGH_MEMORY) {
3029                         pg_data_t *pgdat = NODE_DATA(nid);
3030                         const struct cpumask *mask;
3031
3032                         mask = cpumask_of_node(pgdat->node_id);
3033
3034                         if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3035                                 /* One of our CPUs online: restore mask */
3036                                 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3037                 }
3038         }
3039         return NOTIFY_OK;
3040 }
3041
3042 /*
3043  * This kswapd start function will be called by init and node-hot-add.
3044  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3045  */
3046 int kswapd_run(int nid)
3047 {
3048         pg_data_t *pgdat = NODE_DATA(nid);
3049         int ret = 0;
3050
3051         if (pgdat->kswapd)
3052                 return 0;
3053
3054         pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3055         if (IS_ERR(pgdat->kswapd)) {
3056                 /* failure at boot is fatal */
3057                 BUG_ON(system_state == SYSTEM_BOOTING);
3058                 printk("Failed to start kswapd on node %d\n",nid);
3059                 ret = -1;
3060         }
3061         return ret;
3062 }
3063
3064 /*
3065  * Called by memory hotplug when all memory in a node is offlined.
3066  */
3067 void kswapd_stop(int nid)
3068 {
3069         struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3070
3071         if (kswapd)
3072                 kthread_stop(kswapd);
3073 }
3074
3075 static int __init kswapd_init(void)
3076 {
3077         int nid;
3078
3079         swap_setup();
3080         for_each_node_state(nid, N_HIGH_MEMORY)
3081                 kswapd_run(nid);
3082         hotcpu_notifier(cpu_callback, 0);
3083         return 0;
3084 }
3085
3086 module_init(kswapd_init)
3087
3088 #ifdef CONFIG_NUMA
3089 /*
3090  * Zone reclaim mode
3091  *
3092  * If non-zero call zone_reclaim when the number of free pages falls below
3093  * the watermarks.
3094  */
3095 int zone_reclaim_mode __read_mostly;
3096
3097 #define RECLAIM_OFF 0
3098 #define RECLAIM_ZONE (1<<0)     /* Run shrink_inactive_list on the zone */
3099 #define RECLAIM_WRITE (1<<1)    /* Writeout pages during reclaim */
3100 #define RECLAIM_SWAP (1<<2)     /* Swap pages out during reclaim */
3101
3102 /*
3103  * Priority for ZONE_RECLAIM. This determines the fraction of pages
3104  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3105  * a zone.
3106  */
3107 #define ZONE_RECLAIM_PRIORITY 4
3108
3109 /*
3110  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3111  * occur.
3112  */
3113 int sysctl_min_unmapped_ratio = 1;
3114
3115 /*
3116  * If the number of slab pages in a zone grows beyond this percentage then
3117  * slab reclaim needs to occur.
3118  */
3119 int sysctl_min_slab_ratio = 5;
3120
3121 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3122 {
3123         unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3124         unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3125                 zone_page_state(zone, NR_ACTIVE_FILE);
3126
3127         /*
3128          * It's possible for there to be more file mapped pages than
3129          * accounted for by the pages on the file LRU lists because
3130          * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3131          */
3132         return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3133 }
3134
3135 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3136 static long zone_pagecache_reclaimable(struct zone *zone)
3137 {
3138         long nr_pagecache_reclaimable;
3139         long delta = 0;
3140
3141         /*
3142          * If RECLAIM_SWAP is set, then all file pages are considered
3143          * potentially reclaimable. Otherwise, we have to worry about
3144          * pages like swapcache and zone_unmapped_file_pages() provides
3145          * a better estimate
3146          */
3147         if (zone_reclaim_mode & RECLAIM_SWAP)
3148                 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3149         else
3150                 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3151
3152         /* If we can't clean pages, remove dirty pages from consideration */
3153         if (!(zone_reclaim_mode & RECLAIM_WRITE))
3154                 delta += zone_page_state(zone, NR_FILE_DIRTY);
3155
3156         /* Watch for any possible underflows due to delta */
3157         if (unlikely(delta > nr_pagecache_reclaimable))
3158                 delta = nr_pagecache_reclaimable;
3159
3160         return nr_pagecache_reclaimable - delta;
3161 }
3162
3163 /*
3164  * Try to free up some pages from this zone through reclaim.
3165  */
3166 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3167 {
3168         /* Minimum pages needed in order to stay on node */
3169         const unsigned long nr_pages = 1 << order;
3170         struct task_struct *p = current;
3171         struct reclaim_state reclaim_state;
3172         int priority;
3173         struct scan_control sc = {
3174                 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3175                 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3176                 .may_swap = 1,
3177                 .nr_to_reclaim = max_t(unsigned long, nr_pages,
3178                                        SWAP_CLUSTER_MAX),
3179                 .gfp_mask = gfp_mask,
3180                 .order = order,
3181         };
3182         struct shrink_control shrink = {
3183                 .gfp_mask = sc.gfp_mask,
3184         };
3185         unsigned long nr_slab_pages0, nr_slab_pages1;
3186
3187         cond_resched();
3188         /*
3189          * We need to be able to allocate from the reserves for RECLAIM_SWAP
3190          * and we also need to be able to write out pages for RECLAIM_WRITE
3191          * and RECLAIM_SWAP.
3192          */
3193         p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3194         lockdep_set_current_reclaim_state(gfp_mask);
3195         reclaim_state.reclaimed_slab = 0;
3196         p->reclaim_state = &reclaim_state;
3197
3198         if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3199                 /*
3200                  * Free memory by calling shrink zone with increasing
3201                  * priorities until we have enough memory freed.
3202                  */
3203                 priority = ZONE_RECLAIM_PRIORITY;
3204                 do {
3205                         shrink_zone(priority, zone, &sc);
3206                         priority--;
3207                 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
3208         }
3209
3210         nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3211         if (nr_slab_pages0 > zone->min_slab_pages) {
3212                 /*
3213                  * shrink_slab() does not currently allow us to determine how
3214                  * many pages were freed in this zone. So we take the current
3215                  * number of slab pages and shake the slab until it is reduced
3216                  * by the same nr_pages that we used for reclaiming unmapped
3217                  * pages.
3218                  *
3219                  * Note that shrink_slab will free memory on all zones and may
3220                  * take a long time.
3221                  */
3222                 for (;;) {
3223                         unsigned long lru_pages = zone_reclaimable_pages(zone);
3224
3225                         /* No reclaimable slab or very low memory pressure */
3226                         if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3227                                 break;
3228
3229                         /* Freed enough memory */
3230                         nr_slab_pages1 = zone_page_state(zone,
3231                                                         NR_SLAB_RECLAIMABLE);
3232                         if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3233                                 break;
3234                 }
3235
3236                 /*
3237                  * Update nr_reclaimed by the number of slab pages we
3238                  * reclaimed from this zone.
3239                  */
3240                 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3241                 if (nr_slab_pages1 < nr_slab_pages0)
3242                         sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3243         }
3244
3245         p->reclaim_state = NULL;
3246         current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3247         lockdep_clear_current_reclaim_state();
3248         return sc.nr_reclaimed >= nr_pages;
3249 }
3250
3251 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3252 {
3253         int node_id;
3254         int ret;
3255
3256         /*
3257          * Zone reclaim reclaims unmapped file backed pages and
3258          * slab pages if we are over the defined limits.
3259          *
3260          * A small portion of unmapped file backed pages is needed for
3261          * file I/O otherwise pages read by file I/O will be immediately
3262          * thrown out if the zone is overallocated. So we do not reclaim
3263          * if less than a specified percentage of the zone is used by
3264          * unmapped file backed pages.
3265          */
3266         if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3267             zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3268                 return ZONE_RECLAIM_FULL;
3269
3270         if (zone->all_unreclaimable)
3271                 return ZONE_RECLAIM_FULL;
3272
3273         /*
3274          * Do not scan if the allocation should not be delayed.
3275          */
3276         if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3277                 return ZONE_RECLAIM_NOSCAN;
3278
3279         /*
3280          * Only run zone reclaim on the local zone or on zones that do not
3281          * have associated processors. This will favor the local processor
3282          * over remote processors and spread off node memory allocations
3283          * as wide as possible.
3284          */
3285         node_id = zone_to_nid(zone);
3286         if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3287                 return ZONE_RECLAIM_NOSCAN;
3288
3289         if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3290                 return ZONE_RECLAIM_NOSCAN;
3291
3292         ret = __zone_reclaim(zone, gfp_mask, order);
3293         zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3294
3295         if (!ret)
3296                 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3297
3298         return ret;
3299 }
3300 #endif
3301
3302 /*
3303  * page_evictable - test whether a page is evictable
3304  * @page: the page to test
3305  * @vma: the VMA in which the page is or will be mapped, may be NULL
3306  *
3307  * Test whether page is evictable--i.e., should be placed on active/inactive
3308  * lists vs unevictable list.  The vma argument is !NULL when called from the
3309  * fault path to determine how to instantate a new page.
3310  *
3311  * Reasons page might not be evictable:
3312  * (1) page's mapping marked unevictable
3313  * (2) page is part of an mlocked VMA
3314  *
3315  */
3316 int page_evictable(struct page *page, struct vm_area_struct *vma)
3317 {
3318
3319         if (mapping_unevictable(page_mapping(page)))
3320                 return 0;
3321
3322         if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
3323                 return 0;
3324
3325         return 1;
3326 }
3327
3328 #ifdef CONFIG_SHMEM
3329 /**
3330  * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3331  * @pages:      array of pages to check
3332  * @nr_pages:   number of pages to check
3333  *
3334  * Checks pages for evictability and moves them to the appropriate lru list.
3335  *
3336  * This function is only used for SysV IPC SHM_UNLOCK.
3337  */
3338 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3339 {
3340         struct lruvec *lruvec;
3341         struct zone *zone = NULL;
3342         int pgscanned = 0;
3343         int pgrescued = 0;
3344         int i;
3345
3346         for (i = 0; i < nr_pages; i++) {
3347                 struct page *page = pages[i];
3348                 struct zone *pagezone;
3349
3350                 pgscanned++;
3351                 pagezone = page_zone(page);
3352                 if (pagezone != zone) {
3353                         if (zone)
3354                                 spin_unlock_irq(&zone->lru_lock);
3355                         zone = pagezone;
3356                         spin_lock_irq(&zone->lru_lock);
3357                 }
3358
3359                 if (!PageLRU(page) || !PageUnevictable(page))
3360                         continue;
3361
3362                 if (page_evictable(page, NULL)) {
3363                         enum lru_list lru = page_lru_base_type(page);
3364
3365                         VM_BUG_ON(PageActive(page));
3366                         ClearPageUnevictable(page);
3367                         __dec_zone_state(zone, NR_UNEVICTABLE);
3368                         lruvec = mem_cgroup_lru_move_lists(zone, page,
3369                                                 LRU_UNEVICTABLE, lru);
3370                         list_move(&page->lru, &lruvec->lists[lru]);
3371                         __inc_zone_state(zone, NR_INACTIVE_ANON + lru);
3372                         pgrescued++;
3373                 }
3374         }
3375
3376         if (zone) {
3377                 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3378                 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3379                 spin_unlock_irq(&zone->lru_lock);
3380         }
3381 }
3382 #endif /* CONFIG_SHMEM */
3383
3384 static void warn_scan_unevictable_pages(void)
3385 {
3386         printk_once(KERN_WARNING
3387                     "%s: The scan_unevictable_pages sysctl/node-interface has been "
3388                     "disabled for lack of a legitimate use case.  If you have "
3389                     "one, please send an email to linux-mm@kvack.org.\n",
3390                     current->comm);
3391 }
3392
3393 /*
3394  * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3395  * all nodes' unevictable lists for evictable pages
3396  */
3397 unsigned long scan_unevictable_pages;
3398
3399 int scan_unevictable_handler(struct ctl_table *table, int write,
3400                            void __user *buffer,
3401                            size_t *length, loff_t *ppos)
3402 {
3403         warn_scan_unevictable_pages();
3404         proc_doulongvec_minmax(table, write, buffer, length, ppos);
3405         scan_unevictable_pages = 0;
3406         return 0;
3407 }
3408
3409 #ifdef CONFIG_NUMA
3410 /*
3411  * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3412  * a specified node's per zone unevictable lists for evictable pages.
3413  */
3414
3415 static ssize_t read_scan_unevictable_node(struct device *dev,
3416                                           struct device_attribute *attr,
3417                                           char *buf)
3418 {
3419         warn_scan_unevictable_pages();
3420         return sprintf(buf, "0\n");     /* always zero; should fit... */
3421 }
3422
3423 static ssize_t write_scan_unevictable_node(struct device *dev,
3424                                            struct device_attribute *attr,
3425                                         const char *buf, size_t count)
3426 {
3427         warn_scan_unevictable_pages();
3428         return 1;
3429 }
3430
3431
3432 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3433                         read_scan_unevictable_node,
3434                         write_scan_unevictable_node);
3435
3436 int scan_unevictable_register_node(struct node *node)
3437 {
3438         return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3439 }
3440
3441 void scan_unevictable_unregister_node(struct node *node)
3442 {
3443         device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3444 }
3445 #endif