[PATCH] Thin out scan_control: remove nr_to_scan and priority
[cascardo/linux.git] / mm / vmscan.c
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/file.h>
23 #include <linux/writeback.h>
24 #include <linux/blkdev.h>
25 #include <linux/buffer_head.h>  /* for try_to_release_page(),
26                                         buffer_heads_over_limit */
27 #include <linux/mm_inline.h>
28 #include <linux/pagevec.h>
29 #include <linux/backing-dev.h>
30 #include <linux/rmap.h>
31 #include <linux/topology.h>
32 #include <linux/cpu.h>
33 #include <linux/cpuset.h>
34 #include <linux/notifier.h>
35 #include <linux/rwsem.h>
36
37 #include <asm/tlbflush.h>
38 #include <asm/div64.h>
39
40 #include <linux/swapops.h>
41
42 /* possible outcome of pageout() */
43 typedef enum {
44         /* failed to write page out, page is locked */
45         PAGE_KEEP,
46         /* move page to the active list, page is locked */
47         PAGE_ACTIVATE,
48         /* page has been sent to the disk successfully, page is unlocked */
49         PAGE_SUCCESS,
50         /* page is clean and locked */
51         PAGE_CLEAN,
52 } pageout_t;
53
54 struct scan_control {
55         /* Incremented by the number of inactive pages that were scanned */
56         unsigned long nr_scanned;
57
58         /* Incremented by the number of pages reclaimed */
59         unsigned long nr_reclaimed;
60
61         unsigned long nr_mapped;        /* From page_state */
62
63         /* This context's GFP mask */
64         gfp_t gfp_mask;
65
66         int may_writepage;
67
68         /* Can pages be swapped as part of reclaim? */
69         int may_swap;
70
71         /* This context's SWAP_CLUSTER_MAX. If freeing memory for
72          * suspend, we effectively ignore SWAP_CLUSTER_MAX.
73          * In this context, it doesn't matter that we scan the
74          * whole list at once. */
75         int swap_cluster_max;
76 };
77
78 /*
79  * The list of shrinker callbacks used by to apply pressure to
80  * ageable caches.
81  */
82 struct shrinker {
83         shrinker_t              shrinker;
84         struct list_head        list;
85         int                     seeks;  /* seeks to recreate an obj */
86         long                    nr;     /* objs pending delete */
87 };
88
89 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
90
91 #ifdef ARCH_HAS_PREFETCH
92 #define prefetch_prev_lru_page(_page, _base, _field)                    \
93         do {                                                            \
94                 if ((_page)->lru.prev != _base) {                       \
95                         struct page *prev;                              \
96                                                                         \
97                         prev = lru_to_page(&(_page->lru));              \
98                         prefetch(&prev->_field);                        \
99                 }                                                       \
100         } while (0)
101 #else
102 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
103 #endif
104
105 #ifdef ARCH_HAS_PREFETCHW
106 #define prefetchw_prev_lru_page(_page, _base, _field)                   \
107         do {                                                            \
108                 if ((_page)->lru.prev != _base) {                       \
109                         struct page *prev;                              \
110                                                                         \
111                         prev = lru_to_page(&(_page->lru));              \
112                         prefetchw(&prev->_field);                       \
113                 }                                                       \
114         } while (0)
115 #else
116 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
117 #endif
118
119 /*
120  * From 0 .. 100.  Higher means more swappy.
121  */
122 int vm_swappiness = 60;
123 static long total_memory;
124
125 static LIST_HEAD(shrinker_list);
126 static DECLARE_RWSEM(shrinker_rwsem);
127
128 /*
129  * Add a shrinker callback to be called from the vm
130  */
131 struct shrinker *set_shrinker(int seeks, shrinker_t theshrinker)
132 {
133         struct shrinker *shrinker;
134
135         shrinker = kmalloc(sizeof(*shrinker), GFP_KERNEL);
136         if (shrinker) {
137                 shrinker->shrinker = theshrinker;
138                 shrinker->seeks = seeks;
139                 shrinker->nr = 0;
140                 down_write(&shrinker_rwsem);
141                 list_add_tail(&shrinker->list, &shrinker_list);
142                 up_write(&shrinker_rwsem);
143         }
144         return shrinker;
145 }
146 EXPORT_SYMBOL(set_shrinker);
147
148 /*
149  * Remove one
150  */
151 void remove_shrinker(struct shrinker *shrinker)
152 {
153         down_write(&shrinker_rwsem);
154         list_del(&shrinker->list);
155         up_write(&shrinker_rwsem);
156         kfree(shrinker);
157 }
158 EXPORT_SYMBOL(remove_shrinker);
159
160 #define SHRINK_BATCH 128
161 /*
162  * Call the shrink functions to age shrinkable caches
163  *
164  * Here we assume it costs one seek to replace a lru page and that it also
165  * takes a seek to recreate a cache object.  With this in mind we age equal
166  * percentages of the lru and ageable caches.  This should balance the seeks
167  * generated by these structures.
168  *
169  * If the vm encounted mapped pages on the LRU it increase the pressure on
170  * slab to avoid swapping.
171  *
172  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
173  *
174  * `lru_pages' represents the number of on-LRU pages in all the zones which
175  * are eligible for the caller's allocation attempt.  It is used for balancing
176  * slab reclaim versus page reclaim.
177  *
178  * Returns the number of slab objects which we shrunk.
179  */
180 int shrink_slab(unsigned long scanned, gfp_t gfp_mask, unsigned long lru_pages)
181 {
182         struct shrinker *shrinker;
183         int ret = 0;
184
185         if (scanned == 0)
186                 scanned = SWAP_CLUSTER_MAX;
187
188         if (!down_read_trylock(&shrinker_rwsem))
189                 return 1;       /* Assume we'll be able to shrink next time */
190
191         list_for_each_entry(shrinker, &shrinker_list, list) {
192                 unsigned long long delta;
193                 unsigned long total_scan;
194                 unsigned long max_pass = (*shrinker->shrinker)(0, gfp_mask);
195
196                 delta = (4 * scanned) / shrinker->seeks;
197                 delta *= max_pass;
198                 do_div(delta, lru_pages + 1);
199                 shrinker->nr += delta;
200                 if (shrinker->nr < 0) {
201                         printk(KERN_ERR "%s: nr=%ld\n",
202                                         __FUNCTION__, shrinker->nr);
203                         shrinker->nr = max_pass;
204                 }
205
206                 /*
207                  * Avoid risking looping forever due to too large nr value:
208                  * never try to free more than twice the estimate number of
209                  * freeable entries.
210                  */
211                 if (shrinker->nr > max_pass * 2)
212                         shrinker->nr = max_pass * 2;
213
214                 total_scan = shrinker->nr;
215                 shrinker->nr = 0;
216
217                 while (total_scan >= SHRINK_BATCH) {
218                         long this_scan = SHRINK_BATCH;
219                         int shrink_ret;
220                         int nr_before;
221
222                         nr_before = (*shrinker->shrinker)(0, gfp_mask);
223                         shrink_ret = (*shrinker->shrinker)(this_scan, gfp_mask);
224                         if (shrink_ret == -1)
225                                 break;
226                         if (shrink_ret < nr_before)
227                                 ret += nr_before - shrink_ret;
228                         mod_page_state(slabs_scanned, this_scan);
229                         total_scan -= this_scan;
230
231                         cond_resched();
232                 }
233
234                 shrinker->nr += total_scan;
235         }
236         up_read(&shrinker_rwsem);
237         return ret;
238 }
239
240 /* Called without lock on whether page is mapped, so answer is unstable */
241 static inline int page_mapping_inuse(struct page *page)
242 {
243         struct address_space *mapping;
244
245         /* Page is in somebody's page tables. */
246         if (page_mapped(page))
247                 return 1;
248
249         /* Be more reluctant to reclaim swapcache than pagecache */
250         if (PageSwapCache(page))
251                 return 1;
252
253         mapping = page_mapping(page);
254         if (!mapping)
255                 return 0;
256
257         /* File is mmap'd by somebody? */
258         return mapping_mapped(mapping);
259 }
260
261 static inline int is_page_cache_freeable(struct page *page)
262 {
263         return page_count(page) - !!PagePrivate(page) == 2;
264 }
265
266 static int may_write_to_queue(struct backing_dev_info *bdi)
267 {
268         if (current->flags & PF_SWAPWRITE)
269                 return 1;
270         if (!bdi_write_congested(bdi))
271                 return 1;
272         if (bdi == current->backing_dev_info)
273                 return 1;
274         return 0;
275 }
276
277 /*
278  * We detected a synchronous write error writing a page out.  Probably
279  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
280  * fsync(), msync() or close().
281  *
282  * The tricky part is that after writepage we cannot touch the mapping: nothing
283  * prevents it from being freed up.  But we have a ref on the page and once
284  * that page is locked, the mapping is pinned.
285  *
286  * We're allowed to run sleeping lock_page() here because we know the caller has
287  * __GFP_FS.
288  */
289 static void handle_write_error(struct address_space *mapping,
290                                 struct page *page, int error)
291 {
292         lock_page(page);
293         if (page_mapping(page) == mapping) {
294                 if (error == -ENOSPC)
295                         set_bit(AS_ENOSPC, &mapping->flags);
296                 else
297                         set_bit(AS_EIO, &mapping->flags);
298         }
299         unlock_page(page);
300 }
301
302 /*
303  * pageout is called by shrink_list() for each dirty page. Calls ->writepage().
304  */
305 static pageout_t pageout(struct page *page, struct address_space *mapping)
306 {
307         /*
308          * If the page is dirty, only perform writeback if that write
309          * will be non-blocking.  To prevent this allocation from being
310          * stalled by pagecache activity.  But note that there may be
311          * stalls if we need to run get_block().  We could test
312          * PagePrivate for that.
313          *
314          * If this process is currently in generic_file_write() against
315          * this page's queue, we can perform writeback even if that
316          * will block.
317          *
318          * If the page is swapcache, write it back even if that would
319          * block, for some throttling. This happens by accident, because
320          * swap_backing_dev_info is bust: it doesn't reflect the
321          * congestion state of the swapdevs.  Easy to fix, if needed.
322          * See swapfile.c:page_queue_congested().
323          */
324         if (!is_page_cache_freeable(page))
325                 return PAGE_KEEP;
326         if (!mapping) {
327                 /*
328                  * Some data journaling orphaned pages can have
329                  * page->mapping == NULL while being dirty with clean buffers.
330                  */
331                 if (PagePrivate(page)) {
332                         if (try_to_free_buffers(page)) {
333                                 ClearPageDirty(page);
334                                 printk("%s: orphaned page\n", __FUNCTION__);
335                                 return PAGE_CLEAN;
336                         }
337                 }
338                 return PAGE_KEEP;
339         }
340         if (mapping->a_ops->writepage == NULL)
341                 return PAGE_ACTIVATE;
342         if (!may_write_to_queue(mapping->backing_dev_info))
343                 return PAGE_KEEP;
344
345         if (clear_page_dirty_for_io(page)) {
346                 int res;
347                 struct writeback_control wbc = {
348                         .sync_mode = WB_SYNC_NONE,
349                         .nr_to_write = SWAP_CLUSTER_MAX,
350                         .nonblocking = 1,
351                         .for_reclaim = 1,
352                 };
353
354                 SetPageReclaim(page);
355                 res = mapping->a_ops->writepage(page, &wbc);
356                 if (res < 0)
357                         handle_write_error(mapping, page, res);
358                 if (res == AOP_WRITEPAGE_ACTIVATE) {
359                         ClearPageReclaim(page);
360                         return PAGE_ACTIVATE;
361                 }
362                 if (!PageWriteback(page)) {
363                         /* synchronous write or broken a_ops? */
364                         ClearPageReclaim(page);
365                 }
366
367                 return PAGE_SUCCESS;
368         }
369
370         return PAGE_CLEAN;
371 }
372
373 static int remove_mapping(struct address_space *mapping, struct page *page)
374 {
375         if (!mapping)
376                 return 0;               /* truncate got there first */
377
378         write_lock_irq(&mapping->tree_lock);
379
380         /*
381          * The non-racy check for busy page.  It is critical to check
382          * PageDirty _after_ making sure that the page is freeable and
383          * not in use by anybody.       (pagecache + us == 2)
384          */
385         if (unlikely(page_count(page) != 2))
386                 goto cannot_free;
387         smp_rmb();
388         if (unlikely(PageDirty(page)))
389                 goto cannot_free;
390
391         if (PageSwapCache(page)) {
392                 swp_entry_t swap = { .val = page_private(page) };
393                 __delete_from_swap_cache(page);
394                 write_unlock_irq(&mapping->tree_lock);
395                 swap_free(swap);
396                 __put_page(page);       /* The pagecache ref */
397                 return 1;
398         }
399
400         __remove_from_page_cache(page);
401         write_unlock_irq(&mapping->tree_lock);
402         __put_page(page);
403         return 1;
404
405 cannot_free:
406         write_unlock_irq(&mapping->tree_lock);
407         return 0;
408 }
409
410 /*
411  * shrink_list adds the number of reclaimed pages to sc->nr_reclaimed
412  */
413 static int shrink_list(struct list_head *page_list, struct scan_control *sc)
414 {
415         LIST_HEAD(ret_pages);
416         struct pagevec freed_pvec;
417         int pgactivate = 0;
418         int reclaimed = 0;
419
420         cond_resched();
421
422         pagevec_init(&freed_pvec, 1);
423         while (!list_empty(page_list)) {
424                 struct address_space *mapping;
425                 struct page *page;
426                 int may_enter_fs;
427                 int referenced;
428
429                 cond_resched();
430
431                 page = lru_to_page(page_list);
432                 list_del(&page->lru);
433
434                 if (TestSetPageLocked(page))
435                         goto keep;
436
437                 BUG_ON(PageActive(page));
438
439                 sc->nr_scanned++;
440
441                 if (!sc->may_swap && page_mapped(page))
442                         goto keep_locked;
443
444                 /* Double the slab pressure for mapped and swapcache pages */
445                 if (page_mapped(page) || PageSwapCache(page))
446                         sc->nr_scanned++;
447
448                 if (PageWriteback(page))
449                         goto keep_locked;
450
451                 referenced = page_referenced(page, 1);
452                 /* In active use or really unfreeable?  Activate it. */
453                 if (referenced && page_mapping_inuse(page))
454                         goto activate_locked;
455
456 #ifdef CONFIG_SWAP
457                 /*
458                  * Anonymous process memory has backing store?
459                  * Try to allocate it some swap space here.
460                  */
461                 if (PageAnon(page) && !PageSwapCache(page)) {
462                         if (!sc->may_swap)
463                                 goto keep_locked;
464                         if (!add_to_swap(page, GFP_ATOMIC))
465                                 goto activate_locked;
466                 }
467 #endif /* CONFIG_SWAP */
468
469                 mapping = page_mapping(page);
470                 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
471                         (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
472
473                 /*
474                  * The page is mapped into the page tables of one or more
475                  * processes. Try to unmap it here.
476                  */
477                 if (page_mapped(page) && mapping) {
478                         /*
479                          * No unmapping if we do not swap
480                          */
481                         if (!sc->may_swap)
482                                 goto keep_locked;
483
484                         switch (try_to_unmap(page, 0)) {
485                         case SWAP_FAIL:
486                                 goto activate_locked;
487                         case SWAP_AGAIN:
488                                 goto keep_locked;
489                         case SWAP_SUCCESS:
490                                 ; /* try to free the page below */
491                         }
492                 }
493
494                 if (PageDirty(page)) {
495                         if (referenced)
496                                 goto keep_locked;
497                         if (!may_enter_fs)
498                                 goto keep_locked;
499                         if (!sc->may_writepage)
500                                 goto keep_locked;
501
502                         /* Page is dirty, try to write it out here */
503                         switch(pageout(page, mapping)) {
504                         case PAGE_KEEP:
505                                 goto keep_locked;
506                         case PAGE_ACTIVATE:
507                                 goto activate_locked;
508                         case PAGE_SUCCESS:
509                                 if (PageWriteback(page) || PageDirty(page))
510                                         goto keep;
511                                 /*
512                                  * A synchronous write - probably a ramdisk.  Go
513                                  * ahead and try to reclaim the page.
514                                  */
515                                 if (TestSetPageLocked(page))
516                                         goto keep;
517                                 if (PageDirty(page) || PageWriteback(page))
518                                         goto keep_locked;
519                                 mapping = page_mapping(page);
520                         case PAGE_CLEAN:
521                                 ; /* try to free the page below */
522                         }
523                 }
524
525                 /*
526                  * If the page has buffers, try to free the buffer mappings
527                  * associated with this page. If we succeed we try to free
528                  * the page as well.
529                  *
530                  * We do this even if the page is PageDirty().
531                  * try_to_release_page() does not perform I/O, but it is
532                  * possible for a page to have PageDirty set, but it is actually
533                  * clean (all its buffers are clean).  This happens if the
534                  * buffers were written out directly, with submit_bh(). ext3
535                  * will do this, as well as the blockdev mapping. 
536                  * try_to_release_page() will discover that cleanness and will
537                  * drop the buffers and mark the page clean - it can be freed.
538                  *
539                  * Rarely, pages can have buffers and no ->mapping.  These are
540                  * the pages which were not successfully invalidated in
541                  * truncate_complete_page().  We try to drop those buffers here
542                  * and if that worked, and the page is no longer mapped into
543                  * process address space (page_count == 1) it can be freed.
544                  * Otherwise, leave the page on the LRU so it is swappable.
545                  */
546                 if (PagePrivate(page)) {
547                         if (!try_to_release_page(page, sc->gfp_mask))
548                                 goto activate_locked;
549                         if (!mapping && page_count(page) == 1)
550                                 goto free_it;
551                 }
552
553                 if (!remove_mapping(mapping, page))
554                         goto keep_locked;
555
556 free_it:
557                 unlock_page(page);
558                 reclaimed++;
559                 if (!pagevec_add(&freed_pvec, page))
560                         __pagevec_release_nonlru(&freed_pvec);
561                 continue;
562
563 activate_locked:
564                 SetPageActive(page);
565                 pgactivate++;
566 keep_locked:
567                 unlock_page(page);
568 keep:
569                 list_add(&page->lru, &ret_pages);
570                 BUG_ON(PageLRU(page));
571         }
572         list_splice(&ret_pages, page_list);
573         if (pagevec_count(&freed_pvec))
574                 __pagevec_release_nonlru(&freed_pvec);
575         mod_page_state(pgactivate, pgactivate);
576         sc->nr_reclaimed += reclaimed;
577         return reclaimed;
578 }
579
580 #ifdef CONFIG_MIGRATION
581 static inline void move_to_lru(struct page *page)
582 {
583         list_del(&page->lru);
584         if (PageActive(page)) {
585                 /*
586                  * lru_cache_add_active checks that
587                  * the PG_active bit is off.
588                  */
589                 ClearPageActive(page);
590                 lru_cache_add_active(page);
591         } else {
592                 lru_cache_add(page);
593         }
594         put_page(page);
595 }
596
597 /*
598  * Add isolated pages on the list back to the LRU.
599  *
600  * returns the number of pages put back.
601  */
602 int putback_lru_pages(struct list_head *l)
603 {
604         struct page *page;
605         struct page *page2;
606         int count = 0;
607
608         list_for_each_entry_safe(page, page2, l, lru) {
609                 move_to_lru(page);
610                 count++;
611         }
612         return count;
613 }
614
615 /*
616  * Non migratable page
617  */
618 int fail_migrate_page(struct page *newpage, struct page *page)
619 {
620         return -EIO;
621 }
622 EXPORT_SYMBOL(fail_migrate_page);
623
624 /*
625  * swapout a single page
626  * page is locked upon entry, unlocked on exit
627  */
628 static int swap_page(struct page *page)
629 {
630         struct address_space *mapping = page_mapping(page);
631
632         if (page_mapped(page) && mapping)
633                 if (try_to_unmap(page, 1) != SWAP_SUCCESS)
634                         goto unlock_retry;
635
636         if (PageDirty(page)) {
637                 /* Page is dirty, try to write it out here */
638                 switch(pageout(page, mapping)) {
639                 case PAGE_KEEP:
640                 case PAGE_ACTIVATE:
641                         goto unlock_retry;
642
643                 case PAGE_SUCCESS:
644                         goto retry;
645
646                 case PAGE_CLEAN:
647                         ; /* try to free the page below */
648                 }
649         }
650
651         if (PagePrivate(page)) {
652                 if (!try_to_release_page(page, GFP_KERNEL) ||
653                     (!mapping && page_count(page) == 1))
654                         goto unlock_retry;
655         }
656
657         if (remove_mapping(mapping, page)) {
658                 /* Success */
659                 unlock_page(page);
660                 return 0;
661         }
662
663 unlock_retry:
664         unlock_page(page);
665
666 retry:
667         return -EAGAIN;
668 }
669 EXPORT_SYMBOL(swap_page);
670
671 /*
672  * Page migration was first developed in the context of the memory hotplug
673  * project. The main authors of the migration code are:
674  *
675  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
676  * Hirokazu Takahashi <taka@valinux.co.jp>
677  * Dave Hansen <haveblue@us.ibm.com>
678  * Christoph Lameter <clameter@sgi.com>
679  */
680
681 /*
682  * Remove references for a page and establish the new page with the correct
683  * basic settings to be able to stop accesses to the page.
684  */
685 int migrate_page_remove_references(struct page *newpage,
686                                 struct page *page, int nr_refs)
687 {
688         struct address_space *mapping = page_mapping(page);
689         struct page **radix_pointer;
690
691         /*
692          * Avoid doing any of the following work if the page count
693          * indicates that the page is in use or truncate has removed
694          * the page.
695          */
696         if (!mapping || page_mapcount(page) + nr_refs != page_count(page))
697                 return -EAGAIN;
698
699         /*
700          * Establish swap ptes for anonymous pages or destroy pte
701          * maps for files.
702          *
703          * In order to reestablish file backed mappings the fault handlers
704          * will take the radix tree_lock which may then be used to stop
705          * processses from accessing this page until the new page is ready.
706          *
707          * A process accessing via a swap pte (an anonymous page) will take a
708          * page_lock on the old page which will block the process until the
709          * migration attempt is complete. At that time the PageSwapCache bit
710          * will be examined. If the page was migrated then the PageSwapCache
711          * bit will be clear and the operation to retrieve the page will be
712          * retried which will find the new page in the radix tree. Then a new
713          * direct mapping may be generated based on the radix tree contents.
714          *
715          * If the page was not migrated then the PageSwapCache bit
716          * is still set and the operation may continue.
717          */
718         if (try_to_unmap(page, 1) == SWAP_FAIL)
719                 /* A vma has VM_LOCKED set -> Permanent failure */
720                 return -EPERM;
721
722         /*
723          * Give up if we were unable to remove all mappings.
724          */
725         if (page_mapcount(page))
726                 return -EAGAIN;
727
728         write_lock_irq(&mapping->tree_lock);
729
730         radix_pointer = (struct page **)radix_tree_lookup_slot(
731                                                 &mapping->page_tree,
732                                                 page_index(page));
733
734         if (!page_mapping(page) || page_count(page) != nr_refs ||
735                         *radix_pointer != page) {
736                 write_unlock_irq(&mapping->tree_lock);
737                 return -EAGAIN;
738         }
739
740         /*
741          * Now we know that no one else is looking at the page.
742          *
743          * Certain minimal information about a page must be available
744          * in order for other subsystems to properly handle the page if they
745          * find it through the radix tree update before we are finished
746          * copying the page.
747          */
748         get_page(newpage);
749         newpage->index = page->index;
750         newpage->mapping = page->mapping;
751         if (PageSwapCache(page)) {
752                 SetPageSwapCache(newpage);
753                 set_page_private(newpage, page_private(page));
754         }
755
756         *radix_pointer = newpage;
757         __put_page(page);
758         write_unlock_irq(&mapping->tree_lock);
759
760         return 0;
761 }
762 EXPORT_SYMBOL(migrate_page_remove_references);
763
764 /*
765  * Copy the page to its new location
766  */
767 void migrate_page_copy(struct page *newpage, struct page *page)
768 {
769         copy_highpage(newpage, page);
770
771         if (PageError(page))
772                 SetPageError(newpage);
773         if (PageReferenced(page))
774                 SetPageReferenced(newpage);
775         if (PageUptodate(page))
776                 SetPageUptodate(newpage);
777         if (PageActive(page))
778                 SetPageActive(newpage);
779         if (PageChecked(page))
780                 SetPageChecked(newpage);
781         if (PageMappedToDisk(page))
782                 SetPageMappedToDisk(newpage);
783
784         if (PageDirty(page)) {
785                 clear_page_dirty_for_io(page);
786                 set_page_dirty(newpage);
787         }
788
789         ClearPageSwapCache(page);
790         ClearPageActive(page);
791         ClearPagePrivate(page);
792         set_page_private(page, 0);
793         page->mapping = NULL;
794
795         /*
796          * If any waiters have accumulated on the new page then
797          * wake them up.
798          */
799         if (PageWriteback(newpage))
800                 end_page_writeback(newpage);
801 }
802 EXPORT_SYMBOL(migrate_page_copy);
803
804 /*
805  * Common logic to directly migrate a single page suitable for
806  * pages that do not use PagePrivate.
807  *
808  * Pages are locked upon entry and exit.
809  */
810 int migrate_page(struct page *newpage, struct page *page)
811 {
812         int rc;
813
814         BUG_ON(PageWriteback(page));    /* Writeback must be complete */
815
816         rc = migrate_page_remove_references(newpage, page, 2);
817
818         if (rc)
819                 return rc;
820
821         migrate_page_copy(newpage, page);
822
823         /*
824          * Remove auxiliary swap entries and replace
825          * them with real ptes.
826          *
827          * Note that a real pte entry will allow processes that are not
828          * waiting on the page lock to use the new page via the page tables
829          * before the new page is unlocked.
830          */
831         remove_from_swap(newpage);
832         return 0;
833 }
834 EXPORT_SYMBOL(migrate_page);
835
836 /*
837  * migrate_pages
838  *
839  * Two lists are passed to this function. The first list
840  * contains the pages isolated from the LRU to be migrated.
841  * The second list contains new pages that the pages isolated
842  * can be moved to. If the second list is NULL then all
843  * pages are swapped out.
844  *
845  * The function returns after 10 attempts or if no pages
846  * are movable anymore because to has become empty
847  * or no retryable pages exist anymore.
848  *
849  * Return: Number of pages not migrated when "to" ran empty.
850  */
851 int migrate_pages(struct list_head *from, struct list_head *to,
852                   struct list_head *moved, struct list_head *failed)
853 {
854         int retry;
855         int nr_failed = 0;
856         int pass = 0;
857         struct page *page;
858         struct page *page2;
859         int swapwrite = current->flags & PF_SWAPWRITE;
860         int rc;
861
862         if (!swapwrite)
863                 current->flags |= PF_SWAPWRITE;
864
865 redo:
866         retry = 0;
867
868         list_for_each_entry_safe(page, page2, from, lru) {
869                 struct page *newpage = NULL;
870                 struct address_space *mapping;
871
872                 cond_resched();
873
874                 rc = 0;
875                 if (page_count(page) == 1)
876                         /* page was freed from under us. So we are done. */
877                         goto next;
878
879                 if (to && list_empty(to))
880                         break;
881
882                 /*
883                  * Skip locked pages during the first two passes to give the
884                  * functions holding the lock time to release the page. Later we
885                  * use lock_page() to have a higher chance of acquiring the
886                  * lock.
887                  */
888                 rc = -EAGAIN;
889                 if (pass > 2)
890                         lock_page(page);
891                 else
892                         if (TestSetPageLocked(page))
893                                 goto next;
894
895                 /*
896                  * Only wait on writeback if we have already done a pass where
897                  * we we may have triggered writeouts for lots of pages.
898                  */
899                 if (pass > 0) {
900                         wait_on_page_writeback(page);
901                 } else {
902                         if (PageWriteback(page))
903                                 goto unlock_page;
904                 }
905
906                 /*
907                  * Anonymous pages must have swap cache references otherwise
908                  * the information contained in the page maps cannot be
909                  * preserved.
910                  */
911                 if (PageAnon(page) && !PageSwapCache(page)) {
912                         if (!add_to_swap(page, GFP_KERNEL)) {
913                                 rc = -ENOMEM;
914                                 goto unlock_page;
915                         }
916                 }
917
918                 if (!to) {
919                         rc = swap_page(page);
920                         goto next;
921                 }
922
923                 newpage = lru_to_page(to);
924                 lock_page(newpage);
925
926                 /*
927                  * Pages are properly locked and writeback is complete.
928                  * Try to migrate the page.
929                  */
930                 mapping = page_mapping(page);
931                 if (!mapping)
932                         goto unlock_both;
933
934                 if (mapping->a_ops->migratepage) {
935                         /*
936                          * Most pages have a mapping and most filesystems
937                          * should provide a migration function. Anonymous
938                          * pages are part of swap space which also has its
939                          * own migration function. This is the most common
940                          * path for page migration.
941                          */
942                         rc = mapping->a_ops->migratepage(newpage, page);
943                         goto unlock_both;
944                 }
945
946                 /*
947                  * Default handling if a filesystem does not provide
948                  * a migration function. We can only migrate clean
949                  * pages so try to write out any dirty pages first.
950                  */
951                 if (PageDirty(page)) {
952                         switch (pageout(page, mapping)) {
953                         case PAGE_KEEP:
954                         case PAGE_ACTIVATE:
955                                 goto unlock_both;
956
957                         case PAGE_SUCCESS:
958                                 unlock_page(newpage);
959                                 goto next;
960
961                         case PAGE_CLEAN:
962                                 ; /* try to migrate the page below */
963                         }
964                 }
965
966                 /*
967                  * Buffers are managed in a filesystem specific way.
968                  * We must have no buffers or drop them.
969                  */
970                 if (!page_has_buffers(page) ||
971                     try_to_release_page(page, GFP_KERNEL)) {
972                         rc = migrate_page(newpage, page);
973                         goto unlock_both;
974                 }
975
976                 /*
977                  * On early passes with mapped pages simply
978                  * retry. There may be a lock held for some
979                  * buffers that may go away. Later
980                  * swap them out.
981                  */
982                 if (pass > 4) {
983                         /*
984                          * Persistently unable to drop buffers..... As a
985                          * measure of last resort we fall back to
986                          * swap_page().
987                          */
988                         unlock_page(newpage);
989                         newpage = NULL;
990                         rc = swap_page(page);
991                         goto next;
992                 }
993
994 unlock_both:
995                 unlock_page(newpage);
996
997 unlock_page:
998                 unlock_page(page);
999
1000 next:
1001                 if (rc == -EAGAIN) {
1002                         retry++;
1003                 } else if (rc) {
1004                         /* Permanent failure */
1005                         list_move(&page->lru, failed);
1006                         nr_failed++;
1007                 } else {
1008                         if (newpage) {
1009                                 /* Successful migration. Return page to LRU */
1010                                 move_to_lru(newpage);
1011                         }
1012                         list_move(&page->lru, moved);
1013                 }
1014         }
1015         if (retry && pass++ < 10)
1016                 goto redo;
1017
1018         if (!swapwrite)
1019                 current->flags &= ~PF_SWAPWRITE;
1020
1021         return nr_failed + retry;
1022 }
1023
1024 /*
1025  * Isolate one page from the LRU lists and put it on the
1026  * indicated list with elevated refcount.
1027  *
1028  * Result:
1029  *  0 = page not on LRU list
1030  *  1 = page removed from LRU list and added to the specified list.
1031  */
1032 int isolate_lru_page(struct page *page)
1033 {
1034         int ret = 0;
1035
1036         if (PageLRU(page)) {
1037                 struct zone *zone = page_zone(page);
1038                 spin_lock_irq(&zone->lru_lock);
1039                 if (PageLRU(page)) {
1040                         ret = 1;
1041                         get_page(page);
1042                         ClearPageLRU(page);
1043                         if (PageActive(page))
1044                                 del_page_from_active_list(zone, page);
1045                         else
1046                                 del_page_from_inactive_list(zone, page);
1047                 }
1048                 spin_unlock_irq(&zone->lru_lock);
1049         }
1050
1051         return ret;
1052 }
1053 #endif
1054
1055 /*
1056  * zone->lru_lock is heavily contended.  Some of the functions that
1057  * shrink the lists perform better by taking out a batch of pages
1058  * and working on them outside the LRU lock.
1059  *
1060  * For pagecache intensive workloads, this function is the hottest
1061  * spot in the kernel (apart from copy_*_user functions).
1062  *
1063  * Appropriate locks must be held before calling this function.
1064  *
1065  * @nr_to_scan: The number of pages to look through on the list.
1066  * @src:        The LRU list to pull pages off.
1067  * @dst:        The temp list to put pages on to.
1068  * @scanned:    The number of pages that were scanned.
1069  *
1070  * returns how many pages were moved onto *@dst.
1071  */
1072 static int isolate_lru_pages(int nr_to_scan, struct list_head *src,
1073                              struct list_head *dst, int *scanned)
1074 {
1075         int nr_taken = 0;
1076         struct page *page;
1077         int scan = 0;
1078
1079         while (scan++ < nr_to_scan && !list_empty(src)) {
1080                 struct list_head *target;
1081                 page = lru_to_page(src);
1082                 prefetchw_prev_lru_page(page, src, flags);
1083
1084                 BUG_ON(!PageLRU(page));
1085
1086                 list_del(&page->lru);
1087                 target = src;
1088                 if (likely(get_page_unless_zero(page))) {
1089                         /*
1090                          * Be careful not to clear PageLRU until after we're
1091                          * sure the page is not being freed elsewhere -- the
1092                          * page release code relies on it.
1093                          */
1094                         ClearPageLRU(page);
1095                         target = dst;
1096                         nr_taken++;
1097                 } /* else it is being freed elsewhere */
1098
1099                 list_add(&page->lru, target);
1100         }
1101
1102         *scanned = scan;
1103         return nr_taken;
1104 }
1105
1106 /*
1107  * shrink_cache() adds the number of pages reclaimed to sc->nr_reclaimed
1108  */
1109 static void shrink_cache(int max_scan, struct zone *zone, struct scan_control *sc)
1110 {
1111         LIST_HEAD(page_list);
1112         struct pagevec pvec;
1113
1114         pagevec_init(&pvec, 1);
1115
1116         lru_add_drain();
1117         spin_lock_irq(&zone->lru_lock);
1118         while (max_scan > 0) {
1119                 struct page *page;
1120                 int nr_taken;
1121                 int nr_scan;
1122                 int nr_freed;
1123
1124                 nr_taken = isolate_lru_pages(sc->swap_cluster_max,
1125                                              &zone->inactive_list,
1126                                              &page_list, &nr_scan);
1127                 zone->nr_inactive -= nr_taken;
1128                 zone->pages_scanned += nr_scan;
1129                 spin_unlock_irq(&zone->lru_lock);
1130
1131                 if (nr_taken == 0)
1132                         goto done;
1133
1134                 max_scan -= nr_scan;
1135                 nr_freed = shrink_list(&page_list, sc);
1136
1137                 local_irq_disable();
1138                 if (current_is_kswapd()) {
1139                         __mod_page_state_zone(zone, pgscan_kswapd, nr_scan);
1140                         __mod_page_state(kswapd_steal, nr_freed);
1141                 } else
1142                         __mod_page_state_zone(zone, pgscan_direct, nr_scan);
1143                 __mod_page_state_zone(zone, pgsteal, nr_freed);
1144
1145                 spin_lock(&zone->lru_lock);
1146                 /*
1147                  * Put back any unfreeable pages.
1148                  */
1149                 while (!list_empty(&page_list)) {
1150                         page = lru_to_page(&page_list);
1151                         BUG_ON(PageLRU(page));
1152                         SetPageLRU(page);
1153                         list_del(&page->lru);
1154                         if (PageActive(page))
1155                                 add_page_to_active_list(zone, page);
1156                         else
1157                                 add_page_to_inactive_list(zone, page);
1158                         if (!pagevec_add(&pvec, page)) {
1159                                 spin_unlock_irq(&zone->lru_lock);
1160                                 __pagevec_release(&pvec);
1161                                 spin_lock_irq(&zone->lru_lock);
1162                         }
1163                 }
1164         }
1165         spin_unlock_irq(&zone->lru_lock);
1166 done:
1167         pagevec_release(&pvec);
1168 }
1169
1170 /*
1171  * This moves pages from the active list to the inactive list.
1172  *
1173  * We move them the other way if the page is referenced by one or more
1174  * processes, from rmap.
1175  *
1176  * If the pages are mostly unmapped, the processing is fast and it is
1177  * appropriate to hold zone->lru_lock across the whole operation.  But if
1178  * the pages are mapped, the processing is slow (page_referenced()) so we
1179  * should drop zone->lru_lock around each page.  It's impossible to balance
1180  * this, so instead we remove the pages from the LRU while processing them.
1181  * It is safe to rely on PG_active against the non-LRU pages in here because
1182  * nobody will play with that bit on a non-LRU page.
1183  *
1184  * The downside is that we have to touch page->_count against each page.
1185  * But we had to alter page->flags anyway.
1186  */
1187 static void
1188 refill_inactive_zone(int nr_pages, struct zone *zone, struct scan_control *sc)
1189 {
1190         int pgmoved;
1191         int pgdeactivate = 0;
1192         int pgscanned;
1193         LIST_HEAD(l_hold);      /* The pages which were snipped off */
1194         LIST_HEAD(l_inactive);  /* Pages to go onto the inactive_list */
1195         LIST_HEAD(l_active);    /* Pages to go onto the active_list */
1196         struct page *page;
1197         struct pagevec pvec;
1198         int reclaim_mapped = 0;
1199
1200         if (unlikely(sc->may_swap)) {
1201                 long mapped_ratio;
1202                 long distress;
1203                 long swap_tendency;
1204
1205                 /*
1206                  * `distress' is a measure of how much trouble we're having
1207                  * reclaiming pages.  0 -> no problems.  100 -> great trouble.
1208                  */
1209                 distress = 100 >> zone->prev_priority;
1210
1211                 /*
1212                  * The point of this algorithm is to decide when to start
1213                  * reclaiming mapped memory instead of just pagecache.  Work out
1214                  * how much memory
1215                  * is mapped.
1216                  */
1217                 mapped_ratio = (sc->nr_mapped * 100) / total_memory;
1218
1219                 /*
1220                  * Now decide how much we really want to unmap some pages.  The
1221                  * mapped ratio is downgraded - just because there's a lot of
1222                  * mapped memory doesn't necessarily mean that page reclaim
1223                  * isn't succeeding.
1224                  *
1225                  * The distress ratio is important - we don't want to start
1226                  * going oom.
1227                  *
1228                  * A 100% value of vm_swappiness overrides this algorithm
1229                  * altogether.
1230                  */
1231                 swap_tendency = mapped_ratio / 2 + distress + vm_swappiness;
1232
1233                 /*
1234                  * Now use this metric to decide whether to start moving mapped
1235                  * memory onto the inactive list.
1236                  */
1237                 if (swap_tendency >= 100)
1238                         reclaim_mapped = 1;
1239         }
1240
1241         lru_add_drain();
1242         spin_lock_irq(&zone->lru_lock);
1243         pgmoved = isolate_lru_pages(nr_pages, &zone->active_list,
1244                                     &l_hold, &pgscanned);
1245         zone->pages_scanned += pgscanned;
1246         zone->nr_active -= pgmoved;
1247         spin_unlock_irq(&zone->lru_lock);
1248
1249         while (!list_empty(&l_hold)) {
1250                 cond_resched();
1251                 page = lru_to_page(&l_hold);
1252                 list_del(&page->lru);
1253                 if (page_mapped(page)) {
1254                         if (!reclaim_mapped ||
1255                             (total_swap_pages == 0 && PageAnon(page)) ||
1256                             page_referenced(page, 0)) {
1257                                 list_add(&page->lru, &l_active);
1258                                 continue;
1259                         }
1260                 }
1261                 list_add(&page->lru, &l_inactive);
1262         }
1263
1264         pagevec_init(&pvec, 1);
1265         pgmoved = 0;
1266         spin_lock_irq(&zone->lru_lock);
1267         while (!list_empty(&l_inactive)) {
1268                 page = lru_to_page(&l_inactive);
1269                 prefetchw_prev_lru_page(page, &l_inactive, flags);
1270                 BUG_ON(PageLRU(page));
1271                 SetPageLRU(page);
1272                 BUG_ON(!PageActive(page));
1273                 ClearPageActive(page);
1274
1275                 list_move(&page->lru, &zone->inactive_list);
1276                 pgmoved++;
1277                 if (!pagevec_add(&pvec, page)) {
1278                         zone->nr_inactive += pgmoved;
1279                         spin_unlock_irq(&zone->lru_lock);
1280                         pgdeactivate += pgmoved;
1281                         pgmoved = 0;
1282                         if (buffer_heads_over_limit)
1283                                 pagevec_strip(&pvec);
1284                         __pagevec_release(&pvec);
1285                         spin_lock_irq(&zone->lru_lock);
1286                 }
1287         }
1288         zone->nr_inactive += pgmoved;
1289         pgdeactivate += pgmoved;
1290         if (buffer_heads_over_limit) {
1291                 spin_unlock_irq(&zone->lru_lock);
1292                 pagevec_strip(&pvec);
1293                 spin_lock_irq(&zone->lru_lock);
1294         }
1295
1296         pgmoved = 0;
1297         while (!list_empty(&l_active)) {
1298                 page = lru_to_page(&l_active);
1299                 prefetchw_prev_lru_page(page, &l_active, flags);
1300                 BUG_ON(PageLRU(page));
1301                 SetPageLRU(page);
1302                 BUG_ON(!PageActive(page));
1303                 list_move(&page->lru, &zone->active_list);
1304                 pgmoved++;
1305                 if (!pagevec_add(&pvec, page)) {
1306                         zone->nr_active += pgmoved;
1307                         pgmoved = 0;
1308                         spin_unlock_irq(&zone->lru_lock);
1309                         __pagevec_release(&pvec);
1310                         spin_lock_irq(&zone->lru_lock);
1311                 }
1312         }
1313         zone->nr_active += pgmoved;
1314         spin_unlock(&zone->lru_lock);
1315
1316         __mod_page_state_zone(zone, pgrefill, pgscanned);
1317         __mod_page_state(pgdeactivate, pgdeactivate);
1318         local_irq_enable();
1319
1320         pagevec_release(&pvec);
1321 }
1322
1323 /*
1324  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1325  */
1326 static void
1327 shrink_zone(int priority, struct zone *zone, struct scan_control *sc)
1328 {
1329         unsigned long nr_active;
1330         unsigned long nr_inactive;
1331         unsigned long nr_to_scan;
1332
1333         atomic_inc(&zone->reclaim_in_progress);
1334
1335         /*
1336          * Add one to `nr_to_scan' just to make sure that the kernel will
1337          * slowly sift through the active list.
1338          */
1339         zone->nr_scan_active += (zone->nr_active >> priority) + 1;
1340         nr_active = zone->nr_scan_active;
1341         if (nr_active >= sc->swap_cluster_max)
1342                 zone->nr_scan_active = 0;
1343         else
1344                 nr_active = 0;
1345
1346         zone->nr_scan_inactive += (zone->nr_inactive >> priority) + 1;
1347         nr_inactive = zone->nr_scan_inactive;
1348         if (nr_inactive >= sc->swap_cluster_max)
1349                 zone->nr_scan_inactive = 0;
1350         else
1351                 nr_inactive = 0;
1352
1353         while (nr_active || nr_inactive) {
1354                 if (nr_active) {
1355                         nr_to_scan = min(nr_active,
1356                                         (unsigned long)sc->swap_cluster_max);
1357                         nr_active -= nr_to_scan;
1358                         refill_inactive_zone(nr_to_scan, zone, sc);
1359                 }
1360
1361                 if (nr_inactive) {
1362                         nr_to_scan = min(nr_inactive,
1363                                         (unsigned long)sc->swap_cluster_max);
1364                         nr_inactive -= nr_to_scan;
1365                         shrink_cache(nr_to_scan, zone, sc);
1366                 }
1367         }
1368
1369         throttle_vm_writeout();
1370
1371         atomic_dec(&zone->reclaim_in_progress);
1372 }
1373
1374 /*
1375  * This is the direct reclaim path, for page-allocating processes.  We only
1376  * try to reclaim pages from zones which will satisfy the caller's allocation
1377  * request.
1378  *
1379  * We reclaim from a zone even if that zone is over pages_high.  Because:
1380  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1381  *    allocation or
1382  * b) The zones may be over pages_high but they must go *over* pages_high to
1383  *    satisfy the `incremental min' zone defense algorithm.
1384  *
1385  * Returns the number of reclaimed pages.
1386  *
1387  * If a zone is deemed to be full of pinned pages then just give it a light
1388  * scan then give up on it.
1389  */
1390 static void
1391 shrink_caches(int priority, struct zone **zones, struct scan_control *sc)
1392 {
1393         int i;
1394
1395         for (i = 0; zones[i] != NULL; i++) {
1396                 struct zone *zone = zones[i];
1397
1398                 if (!populated_zone(zone))
1399                         continue;
1400
1401                 if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
1402                         continue;
1403
1404                 zone->temp_priority = priority;
1405                 if (zone->prev_priority > priority)
1406                         zone->prev_priority = priority;
1407
1408                 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1409                         continue;       /* Let kswapd poll it */
1410
1411                 shrink_zone(priority, zone, sc);
1412         }
1413 }
1414  
1415 /*
1416  * This is the main entry point to direct page reclaim.
1417  *
1418  * If a full scan of the inactive list fails to free enough memory then we
1419  * are "out of memory" and something needs to be killed.
1420  *
1421  * If the caller is !__GFP_FS then the probability of a failure is reasonably
1422  * high - the zone may be full of dirty or under-writeback pages, which this
1423  * caller can't do much about.  We kick pdflush and take explicit naps in the
1424  * hope that some of these pages can be written.  But if the allocating task
1425  * holds filesystem locks which prevent writeout this might not work, and the
1426  * allocation attempt will fail.
1427  */
1428 int try_to_free_pages(struct zone **zones, gfp_t gfp_mask)
1429 {
1430         int priority;
1431         int ret = 0;
1432         int total_scanned = 0, total_reclaimed = 0;
1433         struct reclaim_state *reclaim_state = current->reclaim_state;
1434         struct scan_control sc;
1435         unsigned long lru_pages = 0;
1436         int i;
1437
1438         sc.gfp_mask = gfp_mask;
1439         sc.may_writepage = !laptop_mode;
1440         sc.may_swap = 1;
1441
1442         inc_page_state(allocstall);
1443
1444         for (i = 0; zones[i] != NULL; i++) {
1445                 struct zone *zone = zones[i];
1446
1447                 if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
1448                         continue;
1449
1450                 zone->temp_priority = DEF_PRIORITY;
1451                 lru_pages += zone->nr_active + zone->nr_inactive;
1452         }
1453
1454         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1455                 sc.nr_mapped = read_page_state(nr_mapped);
1456                 sc.nr_scanned = 0;
1457                 sc.nr_reclaimed = 0;
1458                 sc.swap_cluster_max = SWAP_CLUSTER_MAX;
1459                 if (!priority)
1460                         disable_swap_token();
1461                 shrink_caches(priority, zones, &sc);
1462                 shrink_slab(sc.nr_scanned, gfp_mask, lru_pages);
1463                 if (reclaim_state) {
1464                         sc.nr_reclaimed += reclaim_state->reclaimed_slab;
1465                         reclaim_state->reclaimed_slab = 0;
1466                 }
1467                 total_scanned += sc.nr_scanned;
1468                 total_reclaimed += sc.nr_reclaimed;
1469                 if (total_reclaimed >= sc.swap_cluster_max) {
1470                         ret = 1;
1471                         goto out;
1472                 }
1473
1474                 /*
1475                  * Try to write back as many pages as we just scanned.  This
1476                  * tends to cause slow streaming writers to write data to the
1477                  * disk smoothly, at the dirtying rate, which is nice.   But
1478                  * that's undesirable in laptop mode, where we *want* lumpy
1479                  * writeout.  So in laptop mode, write out the whole world.
1480                  */
1481                 if (total_scanned > sc.swap_cluster_max + sc.swap_cluster_max/2) {
1482                         wakeup_pdflush(laptop_mode ? 0 : total_scanned);
1483                         sc.may_writepage = 1;
1484                 }
1485
1486                 /* Take a nap, wait for some writeback to complete */
1487                 if (sc.nr_scanned && priority < DEF_PRIORITY - 2)
1488                         blk_congestion_wait(WRITE, HZ/10);
1489         }
1490 out:
1491         for (i = 0; zones[i] != 0; i++) {
1492                 struct zone *zone = zones[i];
1493
1494                 if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
1495                         continue;
1496
1497                 zone->prev_priority = zone->temp_priority;
1498         }
1499         return ret;
1500 }
1501
1502 /*
1503  * For kswapd, balance_pgdat() will work across all this node's zones until
1504  * they are all at pages_high.
1505  *
1506  * If `nr_pages' is non-zero then it is the number of pages which are to be
1507  * reclaimed, regardless of the zone occupancies.  This is a software suspend
1508  * special.
1509  *
1510  * Returns the number of pages which were actually freed.
1511  *
1512  * There is special handling here for zones which are full of pinned pages.
1513  * This can happen if the pages are all mlocked, or if they are all used by
1514  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
1515  * What we do is to detect the case where all pages in the zone have been
1516  * scanned twice and there has been zero successful reclaim.  Mark the zone as
1517  * dead and from now on, only perform a short scan.  Basically we're polling
1518  * the zone for when the problem goes away.
1519  *
1520  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
1521  * zones which have free_pages > pages_high, but once a zone is found to have
1522  * free_pages <= pages_high, we scan that zone and the lower zones regardless
1523  * of the number of free pages in the lower zones.  This interoperates with
1524  * the page allocator fallback scheme to ensure that aging of pages is balanced
1525  * across the zones.
1526  */
1527 static int balance_pgdat(pg_data_t *pgdat, int nr_pages, int order)
1528 {
1529         int to_free = nr_pages;
1530         int all_zones_ok;
1531         int priority;
1532         int i;
1533         int total_scanned, total_reclaimed;
1534         struct reclaim_state *reclaim_state = current->reclaim_state;
1535         struct scan_control sc;
1536
1537 loop_again:
1538         total_scanned = 0;
1539         total_reclaimed = 0;
1540         sc.gfp_mask = GFP_KERNEL;
1541         sc.may_writepage = !laptop_mode;
1542         sc.may_swap = 1;
1543         sc.nr_mapped = read_page_state(nr_mapped);
1544
1545         inc_page_state(pageoutrun);
1546
1547         for (i = 0; i < pgdat->nr_zones; i++) {
1548                 struct zone *zone = pgdat->node_zones + i;
1549
1550                 zone->temp_priority = DEF_PRIORITY;
1551         }
1552
1553         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1554                 int end_zone = 0;       /* Inclusive.  0 = ZONE_DMA */
1555                 unsigned long lru_pages = 0;
1556
1557                 /* The swap token gets in the way of swapout... */
1558                 if (!priority)
1559                         disable_swap_token();
1560
1561                 all_zones_ok = 1;
1562
1563                 if (nr_pages == 0) {
1564                         /*
1565                          * Scan in the highmem->dma direction for the highest
1566                          * zone which needs scanning
1567                          */
1568                         for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1569                                 struct zone *zone = pgdat->node_zones + i;
1570
1571                                 if (!populated_zone(zone))
1572                                         continue;
1573
1574                                 if (zone->all_unreclaimable &&
1575                                                 priority != DEF_PRIORITY)
1576                                         continue;
1577
1578                                 if (!zone_watermark_ok(zone, order,
1579                                                 zone->pages_high, 0, 0)) {
1580                                         end_zone = i;
1581                                         goto scan;
1582                                 }
1583                         }
1584                         goto out;
1585                 } else {
1586                         end_zone = pgdat->nr_zones - 1;
1587                 }
1588 scan:
1589                 for (i = 0; i <= end_zone; i++) {
1590                         struct zone *zone = pgdat->node_zones + i;
1591
1592                         lru_pages += zone->nr_active + zone->nr_inactive;
1593                 }
1594
1595                 /*
1596                  * Now scan the zone in the dma->highmem direction, stopping
1597                  * at the last zone which needs scanning.
1598                  *
1599                  * We do this because the page allocator works in the opposite
1600                  * direction.  This prevents the page allocator from allocating
1601                  * pages behind kswapd's direction of progress, which would
1602                  * cause too much scanning of the lower zones.
1603                  */
1604                 for (i = 0; i <= end_zone; i++) {
1605                         struct zone *zone = pgdat->node_zones + i;
1606                         int nr_slab;
1607
1608                         if (!populated_zone(zone))
1609                                 continue;
1610
1611                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1612                                 continue;
1613
1614                         if (nr_pages == 0) {    /* Not software suspend */
1615                                 if (!zone_watermark_ok(zone, order,
1616                                                 zone->pages_high, end_zone, 0))
1617                                         all_zones_ok = 0;
1618                         }
1619                         zone->temp_priority = priority;
1620                         if (zone->prev_priority > priority)
1621                                 zone->prev_priority = priority;
1622                         sc.nr_scanned = 0;
1623                         sc.nr_reclaimed = 0;
1624                         sc.swap_cluster_max = nr_pages? nr_pages : SWAP_CLUSTER_MAX;
1625                         shrink_zone(priority, zone, &sc);
1626                         reclaim_state->reclaimed_slab = 0;
1627                         nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
1628                                                 lru_pages);
1629                         sc.nr_reclaimed += reclaim_state->reclaimed_slab;
1630                         total_reclaimed += sc.nr_reclaimed;
1631                         total_scanned += sc.nr_scanned;
1632                         if (zone->all_unreclaimable)
1633                                 continue;
1634                         if (nr_slab == 0 && zone->pages_scanned >=
1635                                     (zone->nr_active + zone->nr_inactive) * 4)
1636                                 zone->all_unreclaimable = 1;
1637                         /*
1638                          * If we've done a decent amount of scanning and
1639                          * the reclaim ratio is low, start doing writepage
1640                          * even in laptop mode
1641                          */
1642                         if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
1643                             total_scanned > total_reclaimed+total_reclaimed/2)
1644                                 sc.may_writepage = 1;
1645                 }
1646                 if (nr_pages && to_free > total_reclaimed)
1647                         continue;       /* swsusp: need to do more work */
1648                 if (all_zones_ok)
1649                         break;          /* kswapd: all done */
1650                 /*
1651                  * OK, kswapd is getting into trouble.  Take a nap, then take
1652                  * another pass across the zones.
1653                  */
1654                 if (total_scanned && priority < DEF_PRIORITY - 2)
1655                         blk_congestion_wait(WRITE, HZ/10);
1656
1657                 /*
1658                  * We do this so kswapd doesn't build up large priorities for
1659                  * example when it is freeing in parallel with allocators. It
1660                  * matches the direct reclaim path behaviour in terms of impact
1661                  * on zone->*_priority.
1662                  */
1663                 if ((total_reclaimed >= SWAP_CLUSTER_MAX) && (!nr_pages))
1664                         break;
1665         }
1666 out:
1667         for (i = 0; i < pgdat->nr_zones; i++) {
1668                 struct zone *zone = pgdat->node_zones + i;
1669
1670                 zone->prev_priority = zone->temp_priority;
1671         }
1672         if (!all_zones_ok) {
1673                 cond_resched();
1674                 goto loop_again;
1675         }
1676
1677         return total_reclaimed;
1678 }
1679
1680 /*
1681  * The background pageout daemon, started as a kernel thread
1682  * from the init process. 
1683  *
1684  * This basically trickles out pages so that we have _some_
1685  * free memory available even if there is no other activity
1686  * that frees anything up. This is needed for things like routing
1687  * etc, where we otherwise might have all activity going on in
1688  * asynchronous contexts that cannot page things out.
1689  *
1690  * If there are applications that are active memory-allocators
1691  * (most normal use), this basically shouldn't matter.
1692  */
1693 static int kswapd(void *p)
1694 {
1695         unsigned long order;
1696         pg_data_t *pgdat = (pg_data_t*)p;
1697         struct task_struct *tsk = current;
1698         DEFINE_WAIT(wait);
1699         struct reclaim_state reclaim_state = {
1700                 .reclaimed_slab = 0,
1701         };
1702         cpumask_t cpumask;
1703
1704         daemonize("kswapd%d", pgdat->node_id);
1705         cpumask = node_to_cpumask(pgdat->node_id);
1706         if (!cpus_empty(cpumask))
1707                 set_cpus_allowed(tsk, cpumask);
1708         current->reclaim_state = &reclaim_state;
1709
1710         /*
1711          * Tell the memory management that we're a "memory allocator",
1712          * and that if we need more memory we should get access to it
1713          * regardless (see "__alloc_pages()"). "kswapd" should
1714          * never get caught in the normal page freeing logic.
1715          *
1716          * (Kswapd normally doesn't need memory anyway, but sometimes
1717          * you need a small amount of memory in order to be able to
1718          * page out something else, and this flag essentially protects
1719          * us from recursively trying to free more memory as we're
1720          * trying to free the first piece of memory in the first place).
1721          */
1722         tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
1723
1724         order = 0;
1725         for ( ; ; ) {
1726                 unsigned long new_order;
1727
1728                 try_to_freeze();
1729
1730                 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
1731                 new_order = pgdat->kswapd_max_order;
1732                 pgdat->kswapd_max_order = 0;
1733                 if (order < new_order) {
1734                         /*
1735                          * Don't sleep if someone wants a larger 'order'
1736                          * allocation
1737                          */
1738                         order = new_order;
1739                 } else {
1740                         schedule();
1741                         order = pgdat->kswapd_max_order;
1742                 }
1743                 finish_wait(&pgdat->kswapd_wait, &wait);
1744
1745                 balance_pgdat(pgdat, 0, order);
1746         }
1747         return 0;
1748 }
1749
1750 /*
1751  * A zone is low on free memory, so wake its kswapd task to service it.
1752  */
1753 void wakeup_kswapd(struct zone *zone, int order)
1754 {
1755         pg_data_t *pgdat;
1756
1757         if (!populated_zone(zone))
1758                 return;
1759
1760         pgdat = zone->zone_pgdat;
1761         if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0))
1762                 return;
1763         if (pgdat->kswapd_max_order < order)
1764                 pgdat->kswapd_max_order = order;
1765         if (!cpuset_zone_allowed(zone, __GFP_HARDWALL))
1766                 return;
1767         if (!waitqueue_active(&pgdat->kswapd_wait))
1768                 return;
1769         wake_up_interruptible(&pgdat->kswapd_wait);
1770 }
1771
1772 #ifdef CONFIG_PM
1773 /*
1774  * Try to free `nr_pages' of memory, system-wide.  Returns the number of freed
1775  * pages.
1776  */
1777 int shrink_all_memory(int nr_pages)
1778 {
1779         pg_data_t *pgdat;
1780         int nr_to_free = nr_pages;
1781         int ret = 0;
1782         struct reclaim_state reclaim_state = {
1783                 .reclaimed_slab = 0,
1784         };
1785
1786         current->reclaim_state = &reclaim_state;
1787         for_each_pgdat(pgdat) {
1788                 int freed;
1789                 freed = balance_pgdat(pgdat, nr_to_free, 0);
1790                 ret += freed;
1791                 nr_to_free -= freed;
1792                 if (nr_to_free <= 0)
1793                         break;
1794         }
1795         current->reclaim_state = NULL;
1796         return ret;
1797 }
1798 #endif
1799
1800 #ifdef CONFIG_HOTPLUG_CPU
1801 /* It's optimal to keep kswapds on the same CPUs as their memory, but
1802    not required for correctness.  So if the last cpu in a node goes
1803    away, we get changed to run anywhere: as the first one comes back,
1804    restore their cpu bindings. */
1805 static int __devinit cpu_callback(struct notifier_block *nfb,
1806                                   unsigned long action,
1807                                   void *hcpu)
1808 {
1809         pg_data_t *pgdat;
1810         cpumask_t mask;
1811
1812         if (action == CPU_ONLINE) {
1813                 for_each_pgdat(pgdat) {
1814                         mask = node_to_cpumask(pgdat->node_id);
1815                         if (any_online_cpu(mask) != NR_CPUS)
1816                                 /* One of our CPUs online: restore mask */
1817                                 set_cpus_allowed(pgdat->kswapd, mask);
1818                 }
1819         }
1820         return NOTIFY_OK;
1821 }
1822 #endif /* CONFIG_HOTPLUG_CPU */
1823
1824 static int __init kswapd_init(void)
1825 {
1826         pg_data_t *pgdat;
1827         swap_setup();
1828         for_each_pgdat(pgdat)
1829                 pgdat->kswapd
1830                 = find_task_by_pid(kernel_thread(kswapd, pgdat, CLONE_KERNEL));
1831         total_memory = nr_free_pagecache_pages();
1832         hotcpu_notifier(cpu_callback, 0);
1833         return 0;
1834 }
1835
1836 module_init(kswapd_init)
1837
1838 #ifdef CONFIG_NUMA
1839 /*
1840  * Zone reclaim mode
1841  *
1842  * If non-zero call zone_reclaim when the number of free pages falls below
1843  * the watermarks.
1844  *
1845  * In the future we may add flags to the mode. However, the page allocator
1846  * should only have to check that zone_reclaim_mode != 0 before calling
1847  * zone_reclaim().
1848  */
1849 int zone_reclaim_mode __read_mostly;
1850
1851 #define RECLAIM_OFF 0
1852 #define RECLAIM_ZONE (1<<0)     /* Run shrink_cache on the zone */
1853 #define RECLAIM_WRITE (1<<1)    /* Writeout pages during reclaim */
1854 #define RECLAIM_SWAP (1<<2)     /* Swap pages out during reclaim */
1855 #define RECLAIM_SLAB (1<<3)     /* Do a global slab shrink if the zone is out of memory */
1856
1857 /*
1858  * Mininum time between zone reclaim scans
1859  */
1860 int zone_reclaim_interval __read_mostly = 30*HZ;
1861
1862 /*
1863  * Priority for ZONE_RECLAIM. This determines the fraction of pages
1864  * of a node considered for each zone_reclaim. 4 scans 1/16th of
1865  * a zone.
1866  */
1867 #define ZONE_RECLAIM_PRIORITY 4
1868
1869 /*
1870  * Try to free up some pages from this zone through reclaim.
1871  */
1872 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
1873 {
1874         int nr_pages;
1875         struct task_struct *p = current;
1876         struct reclaim_state reclaim_state;
1877         struct scan_control sc;
1878         cpumask_t mask;
1879         int node_id;
1880         int priority;
1881
1882         if (time_before(jiffies,
1883                 zone->last_unsuccessful_zone_reclaim + zone_reclaim_interval))
1884                         return 0;
1885
1886         if (!(gfp_mask & __GFP_WAIT) ||
1887                 zone->all_unreclaimable ||
1888                 atomic_read(&zone->reclaim_in_progress) > 0 ||
1889                 (p->flags & PF_MEMALLOC))
1890                         return 0;
1891
1892         node_id = zone->zone_pgdat->node_id;
1893         mask = node_to_cpumask(node_id);
1894         if (!cpus_empty(mask) && node_id != numa_node_id())
1895                 return 0;
1896
1897         sc.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE);
1898         sc.may_swap = !!(zone_reclaim_mode & RECLAIM_SWAP);
1899         sc.nr_scanned = 0;
1900         sc.nr_reclaimed = 0;
1901         sc.nr_mapped = read_page_state(nr_mapped);
1902         sc.gfp_mask = gfp_mask;
1903
1904         disable_swap_token();
1905
1906         nr_pages = 1 << order;
1907         if (nr_pages > SWAP_CLUSTER_MAX)
1908                 sc.swap_cluster_max = nr_pages;
1909         else
1910                 sc.swap_cluster_max = SWAP_CLUSTER_MAX;
1911
1912         cond_resched();
1913         /*
1914          * We need to be able to allocate from the reserves for RECLAIM_SWAP
1915          * and we also need to be able to write out pages for RECLAIM_WRITE
1916          * and RECLAIM_SWAP.
1917          */
1918         p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
1919         reclaim_state.reclaimed_slab = 0;
1920         p->reclaim_state = &reclaim_state;
1921
1922         /*
1923          * Free memory by calling shrink zone with increasing priorities
1924          * until we have enough memory freed.
1925          */
1926         priority = ZONE_RECLAIM_PRIORITY;
1927         do {
1928                 shrink_zone(priority, zone, &sc);
1929                 priority--;
1930         } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
1931
1932         if (sc.nr_reclaimed < nr_pages && (zone_reclaim_mode & RECLAIM_SLAB)) {
1933                 /*
1934                  * shrink_slab does not currently allow us to determine
1935                  * how many pages were freed in the zone. So we just
1936                  * shake the slab and then go offnode for a single allocation.
1937                  *
1938                  * shrink_slab will free memory on all zones and may take
1939                  * a long time.
1940                  */
1941                 shrink_slab(sc.nr_scanned, gfp_mask, order);
1942         }
1943
1944         p->reclaim_state = NULL;
1945         current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
1946
1947         if (sc.nr_reclaimed == 0)
1948                 zone->last_unsuccessful_zone_reclaim = jiffies;
1949
1950         return sc.nr_reclaimed >= nr_pages;
1951 }
1952 #endif
1953