mm: vmscan: remove lumpy reclaim
[cascardo/linux.git] / mm / vmscan.c
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h>  /* for try_to_release_page(),
27                                         buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/backing-dev.h>
30 #include <linux/rmap.h>
31 #include <linux/topology.h>
32 #include <linux/cpu.h>
33 #include <linux/cpuset.h>
34 #include <linux/compaction.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/memcontrol.h>
41 #include <linux/delayacct.h>
42 #include <linux/sysctl.h>
43 #include <linux/oom.h>
44 #include <linux/prefetch.h>
45
46 #include <asm/tlbflush.h>
47 #include <asm/div64.h>
48
49 #include <linux/swapops.h>
50
51 #include "internal.h"
52
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/vmscan.h>
55
56 /*
57  * reclaim_mode determines how the inactive list is shrunk
58  * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
59  * RECLAIM_MODE_ASYNC:  Do not block
60  * RECLAIM_MODE_SYNC:   Allow blocking e.g. call wait_on_page_writeback
61  * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
62  *                      order-0 pages and then compact the zone
63  */
64 typedef unsigned __bitwise__ reclaim_mode_t;
65 #define RECLAIM_MODE_SINGLE             ((__force reclaim_mode_t)0x01u)
66 #define RECLAIM_MODE_ASYNC              ((__force reclaim_mode_t)0x02u)
67 #define RECLAIM_MODE_SYNC               ((__force reclaim_mode_t)0x04u)
68 #define RECLAIM_MODE_COMPACTION         ((__force reclaim_mode_t)0x10u)
69
70 struct scan_control {
71         /* Incremented by the number of inactive pages that were scanned */
72         unsigned long nr_scanned;
73
74         /* Number of pages freed so far during a call to shrink_zones() */
75         unsigned long nr_reclaimed;
76
77         /* How many pages shrink_list() should reclaim */
78         unsigned long nr_to_reclaim;
79
80         unsigned long hibernation_mode;
81
82         /* This context's GFP mask */
83         gfp_t gfp_mask;
84
85         int may_writepage;
86
87         /* Can mapped pages be reclaimed? */
88         int may_unmap;
89
90         /* Can pages be swapped as part of reclaim? */
91         int may_swap;
92
93         int order;
94
95         /*
96          * Intend to reclaim enough continuous memory rather than reclaim
97          * enough amount of memory. i.e, mode for high order allocation.
98          */
99         reclaim_mode_t reclaim_mode;
100
101         /*
102          * The memory cgroup that hit its limit and as a result is the
103          * primary target of this reclaim invocation.
104          */
105         struct mem_cgroup *target_mem_cgroup;
106
107         /*
108          * Nodemask of nodes allowed by the caller. If NULL, all nodes
109          * are scanned.
110          */
111         nodemask_t      *nodemask;
112 };
113
114 struct mem_cgroup_zone {
115         struct mem_cgroup *mem_cgroup;
116         struct zone *zone;
117 };
118
119 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
120
121 #ifdef ARCH_HAS_PREFETCH
122 #define prefetch_prev_lru_page(_page, _base, _field)                    \
123         do {                                                            \
124                 if ((_page)->lru.prev != _base) {                       \
125                         struct page *prev;                              \
126                                                                         \
127                         prev = lru_to_page(&(_page->lru));              \
128                         prefetch(&prev->_field);                        \
129                 }                                                       \
130         } while (0)
131 #else
132 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
133 #endif
134
135 #ifdef ARCH_HAS_PREFETCHW
136 #define prefetchw_prev_lru_page(_page, _base, _field)                   \
137         do {                                                            \
138                 if ((_page)->lru.prev != _base) {                       \
139                         struct page *prev;                              \
140                                                                         \
141                         prev = lru_to_page(&(_page->lru));              \
142                         prefetchw(&prev->_field);                       \
143                 }                                                       \
144         } while (0)
145 #else
146 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
147 #endif
148
149 /*
150  * From 0 .. 100.  Higher means more swappy.
151  */
152 int vm_swappiness = 60;
153 long vm_total_pages;    /* The total number of pages which the VM controls */
154
155 static LIST_HEAD(shrinker_list);
156 static DECLARE_RWSEM(shrinker_rwsem);
157
158 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
159 static bool global_reclaim(struct scan_control *sc)
160 {
161         return !sc->target_mem_cgroup;
162 }
163
164 static bool scanning_global_lru(struct mem_cgroup_zone *mz)
165 {
166         return !mz->mem_cgroup;
167 }
168 #else
169 static bool global_reclaim(struct scan_control *sc)
170 {
171         return true;
172 }
173
174 static bool scanning_global_lru(struct mem_cgroup_zone *mz)
175 {
176         return true;
177 }
178 #endif
179
180 static struct zone_reclaim_stat *get_reclaim_stat(struct mem_cgroup_zone *mz)
181 {
182         if (!scanning_global_lru(mz))
183                 return mem_cgroup_get_reclaim_stat(mz->mem_cgroup, mz->zone);
184
185         return &mz->zone->reclaim_stat;
186 }
187
188 static unsigned long zone_nr_lru_pages(struct mem_cgroup_zone *mz,
189                                        enum lru_list lru)
190 {
191         if (!scanning_global_lru(mz))
192                 return mem_cgroup_zone_nr_lru_pages(mz->mem_cgroup,
193                                                     zone_to_nid(mz->zone),
194                                                     zone_idx(mz->zone),
195                                                     BIT(lru));
196
197         return zone_page_state(mz->zone, NR_LRU_BASE + lru);
198 }
199
200
201 /*
202  * Add a shrinker callback to be called from the vm
203  */
204 void register_shrinker(struct shrinker *shrinker)
205 {
206         atomic_long_set(&shrinker->nr_in_batch, 0);
207         down_write(&shrinker_rwsem);
208         list_add_tail(&shrinker->list, &shrinker_list);
209         up_write(&shrinker_rwsem);
210 }
211 EXPORT_SYMBOL(register_shrinker);
212
213 /*
214  * Remove one
215  */
216 void unregister_shrinker(struct shrinker *shrinker)
217 {
218         down_write(&shrinker_rwsem);
219         list_del(&shrinker->list);
220         up_write(&shrinker_rwsem);
221 }
222 EXPORT_SYMBOL(unregister_shrinker);
223
224 static inline int do_shrinker_shrink(struct shrinker *shrinker,
225                                      struct shrink_control *sc,
226                                      unsigned long nr_to_scan)
227 {
228         sc->nr_to_scan = nr_to_scan;
229         return (*shrinker->shrink)(shrinker, sc);
230 }
231
232 #define SHRINK_BATCH 128
233 /*
234  * Call the shrink functions to age shrinkable caches
235  *
236  * Here we assume it costs one seek to replace a lru page and that it also
237  * takes a seek to recreate a cache object.  With this in mind we age equal
238  * percentages of the lru and ageable caches.  This should balance the seeks
239  * generated by these structures.
240  *
241  * If the vm encountered mapped pages on the LRU it increase the pressure on
242  * slab to avoid swapping.
243  *
244  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
245  *
246  * `lru_pages' represents the number of on-LRU pages in all the zones which
247  * are eligible for the caller's allocation attempt.  It is used for balancing
248  * slab reclaim versus page reclaim.
249  *
250  * Returns the number of slab objects which we shrunk.
251  */
252 unsigned long shrink_slab(struct shrink_control *shrink,
253                           unsigned long nr_pages_scanned,
254                           unsigned long lru_pages)
255 {
256         struct shrinker *shrinker;
257         unsigned long ret = 0;
258
259         if (nr_pages_scanned == 0)
260                 nr_pages_scanned = SWAP_CLUSTER_MAX;
261
262         if (!down_read_trylock(&shrinker_rwsem)) {
263                 /* Assume we'll be able to shrink next time */
264                 ret = 1;
265                 goto out;
266         }
267
268         list_for_each_entry(shrinker, &shrinker_list, list) {
269                 unsigned long long delta;
270                 long total_scan;
271                 long max_pass;
272                 int shrink_ret = 0;
273                 long nr;
274                 long new_nr;
275                 long batch_size = shrinker->batch ? shrinker->batch
276                                                   : SHRINK_BATCH;
277
278                 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
279                 if (max_pass <= 0)
280                         continue;
281
282                 /*
283                  * copy the current shrinker scan count into a local variable
284                  * and zero it so that other concurrent shrinker invocations
285                  * don't also do this scanning work.
286                  */
287                 nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
288
289                 total_scan = nr;
290                 delta = (4 * nr_pages_scanned) / shrinker->seeks;
291                 delta *= max_pass;
292                 do_div(delta, lru_pages + 1);
293                 total_scan += delta;
294                 if (total_scan < 0) {
295                         printk(KERN_ERR "shrink_slab: %pF negative objects to "
296                                "delete nr=%ld\n",
297                                shrinker->shrink, total_scan);
298                         total_scan = max_pass;
299                 }
300
301                 /*
302                  * We need to avoid excessive windup on filesystem shrinkers
303                  * due to large numbers of GFP_NOFS allocations causing the
304                  * shrinkers to return -1 all the time. This results in a large
305                  * nr being built up so when a shrink that can do some work
306                  * comes along it empties the entire cache due to nr >>>
307                  * max_pass.  This is bad for sustaining a working set in
308                  * memory.
309                  *
310                  * Hence only allow the shrinker to scan the entire cache when
311                  * a large delta change is calculated directly.
312                  */
313                 if (delta < max_pass / 4)
314                         total_scan = min(total_scan, max_pass / 2);
315
316                 /*
317                  * Avoid risking looping forever due to too large nr value:
318                  * never try to free more than twice the estimate number of
319                  * freeable entries.
320                  */
321                 if (total_scan > max_pass * 2)
322                         total_scan = max_pass * 2;
323
324                 trace_mm_shrink_slab_start(shrinker, shrink, nr,
325                                         nr_pages_scanned, lru_pages,
326                                         max_pass, delta, total_scan);
327
328                 while (total_scan >= batch_size) {
329                         int nr_before;
330
331                         nr_before = do_shrinker_shrink(shrinker, shrink, 0);
332                         shrink_ret = do_shrinker_shrink(shrinker, shrink,
333                                                         batch_size);
334                         if (shrink_ret == -1)
335                                 break;
336                         if (shrink_ret < nr_before)
337                                 ret += nr_before - shrink_ret;
338                         count_vm_events(SLABS_SCANNED, batch_size);
339                         total_scan -= batch_size;
340
341                         cond_resched();
342                 }
343
344                 /*
345                  * move the unused scan count back into the shrinker in a
346                  * manner that handles concurrent updates. If we exhausted the
347                  * scan, there is no need to do an update.
348                  */
349                 if (total_scan > 0)
350                         new_nr = atomic_long_add_return(total_scan,
351                                         &shrinker->nr_in_batch);
352                 else
353                         new_nr = atomic_long_read(&shrinker->nr_in_batch);
354
355                 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
356         }
357         up_read(&shrinker_rwsem);
358 out:
359         cond_resched();
360         return ret;
361 }
362
363 static void set_reclaim_mode(int priority, struct scan_control *sc,
364                                    bool sync)
365 {
366         /* Sync reclaim used only for compaction */
367         reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
368
369         /*
370          * Restrict reclaim/compaction to costly allocations or when
371          * under memory pressure
372          */
373         if (COMPACTION_BUILD && sc->order &&
374                         (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
375                          priority < DEF_PRIORITY - 2))
376                 sc->reclaim_mode = RECLAIM_MODE_COMPACTION | syncmode;
377         else
378                 sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
379 }
380
381 static void reset_reclaim_mode(struct scan_control *sc)
382 {
383         sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
384 }
385
386 static inline int is_page_cache_freeable(struct page *page)
387 {
388         /*
389          * A freeable page cache page is referenced only by the caller
390          * that isolated the page, the page cache radix tree and
391          * optional buffer heads at page->private.
392          */
393         return page_count(page) - page_has_private(page) == 2;
394 }
395
396 static int may_write_to_queue(struct backing_dev_info *bdi,
397                               struct scan_control *sc)
398 {
399         if (current->flags & PF_SWAPWRITE)
400                 return 1;
401         if (!bdi_write_congested(bdi))
402                 return 1;
403         if (bdi == current->backing_dev_info)
404                 return 1;
405         return 0;
406 }
407
408 /*
409  * We detected a synchronous write error writing a page out.  Probably
410  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
411  * fsync(), msync() or close().
412  *
413  * The tricky part is that after writepage we cannot touch the mapping: nothing
414  * prevents it from being freed up.  But we have a ref on the page and once
415  * that page is locked, the mapping is pinned.
416  *
417  * We're allowed to run sleeping lock_page() here because we know the caller has
418  * __GFP_FS.
419  */
420 static void handle_write_error(struct address_space *mapping,
421                                 struct page *page, int error)
422 {
423         lock_page(page);
424         if (page_mapping(page) == mapping)
425                 mapping_set_error(mapping, error);
426         unlock_page(page);
427 }
428
429 /* possible outcome of pageout() */
430 typedef enum {
431         /* failed to write page out, page is locked */
432         PAGE_KEEP,
433         /* move page to the active list, page is locked */
434         PAGE_ACTIVATE,
435         /* page has been sent to the disk successfully, page is unlocked */
436         PAGE_SUCCESS,
437         /* page is clean and locked */
438         PAGE_CLEAN,
439 } pageout_t;
440
441 /*
442  * pageout is called by shrink_page_list() for each dirty page.
443  * Calls ->writepage().
444  */
445 static pageout_t pageout(struct page *page, struct address_space *mapping,
446                          struct scan_control *sc)
447 {
448         /*
449          * If the page is dirty, only perform writeback if that write
450          * will be non-blocking.  To prevent this allocation from being
451          * stalled by pagecache activity.  But note that there may be
452          * stalls if we need to run get_block().  We could test
453          * PagePrivate for that.
454          *
455          * If this process is currently in __generic_file_aio_write() against
456          * this page's queue, we can perform writeback even if that
457          * will block.
458          *
459          * If the page is swapcache, write it back even if that would
460          * block, for some throttling. This happens by accident, because
461          * swap_backing_dev_info is bust: it doesn't reflect the
462          * congestion state of the swapdevs.  Easy to fix, if needed.
463          */
464         if (!is_page_cache_freeable(page))
465                 return PAGE_KEEP;
466         if (!mapping) {
467                 /*
468                  * Some data journaling orphaned pages can have
469                  * page->mapping == NULL while being dirty with clean buffers.
470                  */
471                 if (page_has_private(page)) {
472                         if (try_to_free_buffers(page)) {
473                                 ClearPageDirty(page);
474                                 printk("%s: orphaned page\n", __func__);
475                                 return PAGE_CLEAN;
476                         }
477                 }
478                 return PAGE_KEEP;
479         }
480         if (mapping->a_ops->writepage == NULL)
481                 return PAGE_ACTIVATE;
482         if (!may_write_to_queue(mapping->backing_dev_info, sc))
483                 return PAGE_KEEP;
484
485         if (clear_page_dirty_for_io(page)) {
486                 int res;
487                 struct writeback_control wbc = {
488                         .sync_mode = WB_SYNC_NONE,
489                         .nr_to_write = SWAP_CLUSTER_MAX,
490                         .range_start = 0,
491                         .range_end = LLONG_MAX,
492                         .for_reclaim = 1,
493                 };
494
495                 SetPageReclaim(page);
496                 res = mapping->a_ops->writepage(page, &wbc);
497                 if (res < 0)
498                         handle_write_error(mapping, page, res);
499                 if (res == AOP_WRITEPAGE_ACTIVATE) {
500                         ClearPageReclaim(page);
501                         return PAGE_ACTIVATE;
502                 }
503
504                 if (!PageWriteback(page)) {
505                         /* synchronous write or broken a_ops? */
506                         ClearPageReclaim(page);
507                 }
508                 trace_mm_vmscan_writepage(page,
509                         trace_reclaim_flags(page, sc->reclaim_mode));
510                 inc_zone_page_state(page, NR_VMSCAN_WRITE);
511                 return PAGE_SUCCESS;
512         }
513
514         return PAGE_CLEAN;
515 }
516
517 /*
518  * Same as remove_mapping, but if the page is removed from the mapping, it
519  * gets returned with a refcount of 0.
520  */
521 static int __remove_mapping(struct address_space *mapping, struct page *page)
522 {
523         BUG_ON(!PageLocked(page));
524         BUG_ON(mapping != page_mapping(page));
525
526         spin_lock_irq(&mapping->tree_lock);
527         /*
528          * The non racy check for a busy page.
529          *
530          * Must be careful with the order of the tests. When someone has
531          * a ref to the page, it may be possible that they dirty it then
532          * drop the reference. So if PageDirty is tested before page_count
533          * here, then the following race may occur:
534          *
535          * get_user_pages(&page);
536          * [user mapping goes away]
537          * write_to(page);
538          *                              !PageDirty(page)    [good]
539          * SetPageDirty(page);
540          * put_page(page);
541          *                              !page_count(page)   [good, discard it]
542          *
543          * [oops, our write_to data is lost]
544          *
545          * Reversing the order of the tests ensures such a situation cannot
546          * escape unnoticed. The smp_rmb is needed to ensure the page->flags
547          * load is not satisfied before that of page->_count.
548          *
549          * Note that if SetPageDirty is always performed via set_page_dirty,
550          * and thus under tree_lock, then this ordering is not required.
551          */
552         if (!page_freeze_refs(page, 2))
553                 goto cannot_free;
554         /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
555         if (unlikely(PageDirty(page))) {
556                 page_unfreeze_refs(page, 2);
557                 goto cannot_free;
558         }
559
560         if (PageSwapCache(page)) {
561                 swp_entry_t swap = { .val = page_private(page) };
562                 __delete_from_swap_cache(page);
563                 spin_unlock_irq(&mapping->tree_lock);
564                 swapcache_free(swap, page);
565         } else {
566                 void (*freepage)(struct page *);
567
568                 freepage = mapping->a_ops->freepage;
569
570                 __delete_from_page_cache(page);
571                 spin_unlock_irq(&mapping->tree_lock);
572                 mem_cgroup_uncharge_cache_page(page);
573
574                 if (freepage != NULL)
575                         freepage(page);
576         }
577
578         return 1;
579
580 cannot_free:
581         spin_unlock_irq(&mapping->tree_lock);
582         return 0;
583 }
584
585 /*
586  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
587  * someone else has a ref on the page, abort and return 0.  If it was
588  * successfully detached, return 1.  Assumes the caller has a single ref on
589  * this page.
590  */
591 int remove_mapping(struct address_space *mapping, struct page *page)
592 {
593         if (__remove_mapping(mapping, page)) {
594                 /*
595                  * Unfreezing the refcount with 1 rather than 2 effectively
596                  * drops the pagecache ref for us without requiring another
597                  * atomic operation.
598                  */
599                 page_unfreeze_refs(page, 1);
600                 return 1;
601         }
602         return 0;
603 }
604
605 /**
606  * putback_lru_page - put previously isolated page onto appropriate LRU list
607  * @page: page to be put back to appropriate lru list
608  *
609  * Add previously isolated @page to appropriate LRU list.
610  * Page may still be unevictable for other reasons.
611  *
612  * lru_lock must not be held, interrupts must be enabled.
613  */
614 void putback_lru_page(struct page *page)
615 {
616         int lru;
617         int active = !!TestClearPageActive(page);
618         int was_unevictable = PageUnevictable(page);
619
620         VM_BUG_ON(PageLRU(page));
621
622 redo:
623         ClearPageUnevictable(page);
624
625         if (page_evictable(page, NULL)) {
626                 /*
627                  * For evictable pages, we can use the cache.
628                  * In event of a race, worst case is we end up with an
629                  * unevictable page on [in]active list.
630                  * We know how to handle that.
631                  */
632                 lru = active + page_lru_base_type(page);
633                 lru_cache_add_lru(page, lru);
634         } else {
635                 /*
636                  * Put unevictable pages directly on zone's unevictable
637                  * list.
638                  */
639                 lru = LRU_UNEVICTABLE;
640                 add_page_to_unevictable_list(page);
641                 /*
642                  * When racing with an mlock or AS_UNEVICTABLE clearing
643                  * (page is unlocked) make sure that if the other thread
644                  * does not observe our setting of PG_lru and fails
645                  * isolation/check_move_unevictable_pages,
646                  * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
647                  * the page back to the evictable list.
648                  *
649                  * The other side is TestClearPageMlocked() or shmem_lock().
650                  */
651                 smp_mb();
652         }
653
654         /*
655          * page's status can change while we move it among lru. If an evictable
656          * page is on unevictable list, it never be freed. To avoid that,
657          * check after we added it to the list, again.
658          */
659         if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
660                 if (!isolate_lru_page(page)) {
661                         put_page(page);
662                         goto redo;
663                 }
664                 /* This means someone else dropped this page from LRU
665                  * So, it will be freed or putback to LRU again. There is
666                  * nothing to do here.
667                  */
668         }
669
670         if (was_unevictable && lru != LRU_UNEVICTABLE)
671                 count_vm_event(UNEVICTABLE_PGRESCUED);
672         else if (!was_unevictable && lru == LRU_UNEVICTABLE)
673                 count_vm_event(UNEVICTABLE_PGCULLED);
674
675         put_page(page);         /* drop ref from isolate */
676 }
677
678 enum page_references {
679         PAGEREF_RECLAIM,
680         PAGEREF_RECLAIM_CLEAN,
681         PAGEREF_KEEP,
682         PAGEREF_ACTIVATE,
683 };
684
685 static enum page_references page_check_references(struct page *page,
686                                                   struct mem_cgroup_zone *mz,
687                                                   struct scan_control *sc)
688 {
689         int referenced_ptes, referenced_page;
690         unsigned long vm_flags;
691
692         referenced_ptes = page_referenced(page, 1, mz->mem_cgroup, &vm_flags);
693         referenced_page = TestClearPageReferenced(page);
694
695         /*
696          * Mlock lost the isolation race with us.  Let try_to_unmap()
697          * move the page to the unevictable list.
698          */
699         if (vm_flags & VM_LOCKED)
700                 return PAGEREF_RECLAIM;
701
702         if (referenced_ptes) {
703                 if (PageAnon(page))
704                         return PAGEREF_ACTIVATE;
705                 /*
706                  * All mapped pages start out with page table
707                  * references from the instantiating fault, so we need
708                  * to look twice if a mapped file page is used more
709                  * than once.
710                  *
711                  * Mark it and spare it for another trip around the
712                  * inactive list.  Another page table reference will
713                  * lead to its activation.
714                  *
715                  * Note: the mark is set for activated pages as well
716                  * so that recently deactivated but used pages are
717                  * quickly recovered.
718                  */
719                 SetPageReferenced(page);
720
721                 if (referenced_page || referenced_ptes > 1)
722                         return PAGEREF_ACTIVATE;
723
724                 /*
725                  * Activate file-backed executable pages after first usage.
726                  */
727                 if (vm_flags & VM_EXEC)
728                         return PAGEREF_ACTIVATE;
729
730                 return PAGEREF_KEEP;
731         }
732
733         /* Reclaim if clean, defer dirty pages to writeback */
734         if (referenced_page && !PageSwapBacked(page))
735                 return PAGEREF_RECLAIM_CLEAN;
736
737         return PAGEREF_RECLAIM;
738 }
739
740 /*
741  * shrink_page_list() returns the number of reclaimed pages
742  */
743 static unsigned long shrink_page_list(struct list_head *page_list,
744                                       struct mem_cgroup_zone *mz,
745                                       struct scan_control *sc,
746                                       int priority,
747                                       unsigned long *ret_nr_dirty,
748                                       unsigned long *ret_nr_writeback)
749 {
750         LIST_HEAD(ret_pages);
751         LIST_HEAD(free_pages);
752         int pgactivate = 0;
753         unsigned long nr_dirty = 0;
754         unsigned long nr_congested = 0;
755         unsigned long nr_reclaimed = 0;
756         unsigned long nr_writeback = 0;
757
758         cond_resched();
759
760         while (!list_empty(page_list)) {
761                 enum page_references references;
762                 struct address_space *mapping;
763                 struct page *page;
764                 int may_enter_fs;
765
766                 cond_resched();
767
768                 page = lru_to_page(page_list);
769                 list_del(&page->lru);
770
771                 if (!trylock_page(page))
772                         goto keep;
773
774                 VM_BUG_ON(PageActive(page));
775                 VM_BUG_ON(page_zone(page) != mz->zone);
776
777                 sc->nr_scanned++;
778
779                 if (unlikely(!page_evictable(page, NULL)))
780                         goto cull_mlocked;
781
782                 if (!sc->may_unmap && page_mapped(page))
783                         goto keep_locked;
784
785                 /* Double the slab pressure for mapped and swapcache pages */
786                 if (page_mapped(page) || PageSwapCache(page))
787                         sc->nr_scanned++;
788
789                 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
790                         (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
791
792                 if (PageWriteback(page)) {
793                         nr_writeback++;
794                         /*
795                          * Synchronous reclaim cannot queue pages for
796                          * writeback due to the possibility of stack overflow
797                          * but if it encounters a page under writeback, wait
798                          * for the IO to complete.
799                          */
800                         if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
801                             may_enter_fs)
802                                 wait_on_page_writeback(page);
803                         else {
804                                 unlock_page(page);
805                                 goto keep_reclaim_mode;
806                         }
807                 }
808
809                 references = page_check_references(page, mz, sc);
810                 switch (references) {
811                 case PAGEREF_ACTIVATE:
812                         goto activate_locked;
813                 case PAGEREF_KEEP:
814                         goto keep_locked;
815                 case PAGEREF_RECLAIM:
816                 case PAGEREF_RECLAIM_CLEAN:
817                         ; /* try to reclaim the page below */
818                 }
819
820                 /*
821                  * Anonymous process memory has backing store?
822                  * Try to allocate it some swap space here.
823                  */
824                 if (PageAnon(page) && !PageSwapCache(page)) {
825                         if (!(sc->gfp_mask & __GFP_IO))
826                                 goto keep_locked;
827                         if (!add_to_swap(page))
828                                 goto activate_locked;
829                         may_enter_fs = 1;
830                 }
831
832                 mapping = page_mapping(page);
833
834                 /*
835                  * The page is mapped into the page tables of one or more
836                  * processes. Try to unmap it here.
837                  */
838                 if (page_mapped(page) && mapping) {
839                         switch (try_to_unmap(page, TTU_UNMAP)) {
840                         case SWAP_FAIL:
841                                 goto activate_locked;
842                         case SWAP_AGAIN:
843                                 goto keep_locked;
844                         case SWAP_MLOCK:
845                                 goto cull_mlocked;
846                         case SWAP_SUCCESS:
847                                 ; /* try to free the page below */
848                         }
849                 }
850
851                 if (PageDirty(page)) {
852                         nr_dirty++;
853
854                         /*
855                          * Only kswapd can writeback filesystem pages to
856                          * avoid risk of stack overflow but do not writeback
857                          * unless under significant pressure.
858                          */
859                         if (page_is_file_cache(page) &&
860                                         (!current_is_kswapd() || priority >= DEF_PRIORITY - 2)) {
861                                 /*
862                                  * Immediately reclaim when written back.
863                                  * Similar in principal to deactivate_page()
864                                  * except we already have the page isolated
865                                  * and know it's dirty
866                                  */
867                                 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
868                                 SetPageReclaim(page);
869
870                                 goto keep_locked;
871                         }
872
873                         if (references == PAGEREF_RECLAIM_CLEAN)
874                                 goto keep_locked;
875                         if (!may_enter_fs)
876                                 goto keep_locked;
877                         if (!sc->may_writepage)
878                                 goto keep_locked;
879
880                         /* Page is dirty, try to write it out here */
881                         switch (pageout(page, mapping, sc)) {
882                         case PAGE_KEEP:
883                                 nr_congested++;
884                                 goto keep_locked;
885                         case PAGE_ACTIVATE:
886                                 goto activate_locked;
887                         case PAGE_SUCCESS:
888                                 if (PageWriteback(page))
889                                         goto keep_reclaim_mode;
890                                 if (PageDirty(page))
891                                         goto keep;
892
893                                 /*
894                                  * A synchronous write - probably a ramdisk.  Go
895                                  * ahead and try to reclaim the page.
896                                  */
897                                 if (!trylock_page(page))
898                                         goto keep;
899                                 if (PageDirty(page) || PageWriteback(page))
900                                         goto keep_locked;
901                                 mapping = page_mapping(page);
902                         case PAGE_CLEAN:
903                                 ; /* try to free the page below */
904                         }
905                 }
906
907                 /*
908                  * If the page has buffers, try to free the buffer mappings
909                  * associated with this page. If we succeed we try to free
910                  * the page as well.
911                  *
912                  * We do this even if the page is PageDirty().
913                  * try_to_release_page() does not perform I/O, but it is
914                  * possible for a page to have PageDirty set, but it is actually
915                  * clean (all its buffers are clean).  This happens if the
916                  * buffers were written out directly, with submit_bh(). ext3
917                  * will do this, as well as the blockdev mapping.
918                  * try_to_release_page() will discover that cleanness and will
919                  * drop the buffers and mark the page clean - it can be freed.
920                  *
921                  * Rarely, pages can have buffers and no ->mapping.  These are
922                  * the pages which were not successfully invalidated in
923                  * truncate_complete_page().  We try to drop those buffers here
924                  * and if that worked, and the page is no longer mapped into
925                  * process address space (page_count == 1) it can be freed.
926                  * Otherwise, leave the page on the LRU so it is swappable.
927                  */
928                 if (page_has_private(page)) {
929                         if (!try_to_release_page(page, sc->gfp_mask))
930                                 goto activate_locked;
931                         if (!mapping && page_count(page) == 1) {
932                                 unlock_page(page);
933                                 if (put_page_testzero(page))
934                                         goto free_it;
935                                 else {
936                                         /*
937                                          * rare race with speculative reference.
938                                          * the speculative reference will free
939                                          * this page shortly, so we may
940                                          * increment nr_reclaimed here (and
941                                          * leave it off the LRU).
942                                          */
943                                         nr_reclaimed++;
944                                         continue;
945                                 }
946                         }
947                 }
948
949                 if (!mapping || !__remove_mapping(mapping, page))
950                         goto keep_locked;
951
952                 /*
953                  * At this point, we have no other references and there is
954                  * no way to pick any more up (removed from LRU, removed
955                  * from pagecache). Can use non-atomic bitops now (and
956                  * we obviously don't have to worry about waking up a process
957                  * waiting on the page lock, because there are no references.
958                  */
959                 __clear_page_locked(page);
960 free_it:
961                 nr_reclaimed++;
962
963                 /*
964                  * Is there need to periodically free_page_list? It would
965                  * appear not as the counts should be low
966                  */
967                 list_add(&page->lru, &free_pages);
968                 continue;
969
970 cull_mlocked:
971                 if (PageSwapCache(page))
972                         try_to_free_swap(page);
973                 unlock_page(page);
974                 putback_lru_page(page);
975                 reset_reclaim_mode(sc);
976                 continue;
977
978 activate_locked:
979                 /* Not a candidate for swapping, so reclaim swap space. */
980                 if (PageSwapCache(page) && vm_swap_full())
981                         try_to_free_swap(page);
982                 VM_BUG_ON(PageActive(page));
983                 SetPageActive(page);
984                 pgactivate++;
985 keep_locked:
986                 unlock_page(page);
987 keep:
988                 reset_reclaim_mode(sc);
989 keep_reclaim_mode:
990                 list_add(&page->lru, &ret_pages);
991                 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
992         }
993
994         /*
995          * Tag a zone as congested if all the dirty pages encountered were
996          * backed by a congested BDI. In this case, reclaimers should just
997          * back off and wait for congestion to clear because further reclaim
998          * will encounter the same problem
999          */
1000         if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
1001                 zone_set_flag(mz->zone, ZONE_CONGESTED);
1002
1003         free_hot_cold_page_list(&free_pages, 1);
1004
1005         list_splice(&ret_pages, page_list);
1006         count_vm_events(PGACTIVATE, pgactivate);
1007         *ret_nr_dirty += nr_dirty;
1008         *ret_nr_writeback += nr_writeback;
1009         return nr_reclaimed;
1010 }
1011
1012 /*
1013  * Attempt to remove the specified page from its LRU.  Only take this page
1014  * if it is of the appropriate PageActive status.  Pages which are being
1015  * freed elsewhere are also ignored.
1016  *
1017  * page:        page to consider
1018  * mode:        one of the LRU isolation modes defined above
1019  *
1020  * returns 0 on success, -ve errno on failure.
1021  */
1022 int __isolate_lru_page(struct page *page, isolate_mode_t mode, int file)
1023 {
1024         bool all_lru_mode;
1025         int ret = -EINVAL;
1026
1027         /* Only take pages on the LRU. */
1028         if (!PageLRU(page))
1029                 return ret;
1030
1031         all_lru_mode = (mode & (ISOLATE_ACTIVE|ISOLATE_INACTIVE)) ==
1032                 (ISOLATE_ACTIVE|ISOLATE_INACTIVE);
1033
1034         /*
1035          * When checking the active state, we need to be sure we are
1036          * dealing with comparible boolean values.  Take the logical not
1037          * of each.
1038          */
1039         if (!all_lru_mode && !PageActive(page) != !(mode & ISOLATE_ACTIVE))
1040                 return ret;
1041
1042         if (!all_lru_mode && !!page_is_file_cache(page) != file)
1043                 return ret;
1044
1045         /* Do not give back unevictable pages for compaction */
1046         if (PageUnevictable(page))
1047                 return ret;
1048
1049         ret = -EBUSY;
1050
1051         /*
1052          * To minimise LRU disruption, the caller can indicate that it only
1053          * wants to isolate pages it will be able to operate on without
1054          * blocking - clean pages for the most part.
1055          *
1056          * ISOLATE_CLEAN means that only clean pages should be isolated. This
1057          * is used by reclaim when it is cannot write to backing storage
1058          *
1059          * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1060          * that it is possible to migrate without blocking
1061          */
1062         if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1063                 /* All the caller can do on PageWriteback is block */
1064                 if (PageWriteback(page))
1065                         return ret;
1066
1067                 if (PageDirty(page)) {
1068                         struct address_space *mapping;
1069
1070                         /* ISOLATE_CLEAN means only clean pages */
1071                         if (mode & ISOLATE_CLEAN)
1072                                 return ret;
1073
1074                         /*
1075                          * Only pages without mappings or that have a
1076                          * ->migratepage callback are possible to migrate
1077                          * without blocking
1078                          */
1079                         mapping = page_mapping(page);
1080                         if (mapping && !mapping->a_ops->migratepage)
1081                                 return ret;
1082                 }
1083         }
1084
1085         if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1086                 return ret;
1087
1088         if (likely(get_page_unless_zero(page))) {
1089                 /*
1090                  * Be careful not to clear PageLRU until after we're
1091                  * sure the page is not being freed elsewhere -- the
1092                  * page release code relies on it.
1093                  */
1094                 ClearPageLRU(page);
1095                 ret = 0;
1096         }
1097
1098         return ret;
1099 }
1100
1101 /*
1102  * zone->lru_lock is heavily contended.  Some of the functions that
1103  * shrink the lists perform better by taking out a batch of pages
1104  * and working on them outside the LRU lock.
1105  *
1106  * For pagecache intensive workloads, this function is the hottest
1107  * spot in the kernel (apart from copy_*_user functions).
1108  *
1109  * Appropriate locks must be held before calling this function.
1110  *
1111  * @nr_to_scan: The number of pages to look through on the list.
1112  * @mz:         The mem_cgroup_zone to pull pages from.
1113  * @dst:        The temp list to put pages on to.
1114  * @nr_scanned: The number of pages that were scanned.
1115  * @sc:         The scan_control struct for this reclaim session
1116  * @mode:       One of the LRU isolation modes
1117  * @active:     True [1] if isolating active pages
1118  * @file:       True [1] if isolating file [!anon] pages
1119  *
1120  * returns how many pages were moved onto *@dst.
1121  */
1122 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1123                 struct mem_cgroup_zone *mz, struct list_head *dst,
1124                 unsigned long *nr_scanned, struct scan_control *sc,
1125                 isolate_mode_t mode, int active, int file)
1126 {
1127         struct lruvec *lruvec;
1128         struct list_head *src;
1129         unsigned long nr_taken = 0;
1130         unsigned long scan;
1131         int lru = LRU_BASE;
1132
1133         lruvec = mem_cgroup_zone_lruvec(mz->zone, mz->mem_cgroup);
1134         if (active)
1135                 lru += LRU_ACTIVE;
1136         if (file)
1137                 lru += LRU_FILE;
1138         src = &lruvec->lists[lru];
1139
1140         for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1141                 struct page *page;
1142
1143                 page = lru_to_page(src);
1144                 prefetchw_prev_lru_page(page, src, flags);
1145
1146                 VM_BUG_ON(!PageLRU(page));
1147
1148                 switch (__isolate_lru_page(page, mode, file)) {
1149                 case 0:
1150                         mem_cgroup_lru_del(page);
1151                         list_move(&page->lru, dst);
1152                         nr_taken += hpage_nr_pages(page);
1153                         break;
1154
1155                 case -EBUSY:
1156                         /* else it is being freed elsewhere */
1157                         list_move(&page->lru, src);
1158                         continue;
1159
1160                 default:
1161                         BUG();
1162                 }
1163         }
1164
1165         *nr_scanned = scan;
1166
1167         trace_mm_vmscan_lru_isolate(sc->order,
1168                         nr_to_scan, scan,
1169                         nr_taken,
1170                         mode, file);
1171         return nr_taken;
1172 }
1173
1174 /**
1175  * isolate_lru_page - tries to isolate a page from its LRU list
1176  * @page: page to isolate from its LRU list
1177  *
1178  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1179  * vmstat statistic corresponding to whatever LRU list the page was on.
1180  *
1181  * Returns 0 if the page was removed from an LRU list.
1182  * Returns -EBUSY if the page was not on an LRU list.
1183  *
1184  * The returned page will have PageLRU() cleared.  If it was found on
1185  * the active list, it will have PageActive set.  If it was found on
1186  * the unevictable list, it will have the PageUnevictable bit set. That flag
1187  * may need to be cleared by the caller before letting the page go.
1188  *
1189  * The vmstat statistic corresponding to the list on which the page was
1190  * found will be decremented.
1191  *
1192  * Restrictions:
1193  * (1) Must be called with an elevated refcount on the page. This is a
1194  *     fundamentnal difference from isolate_lru_pages (which is called
1195  *     without a stable reference).
1196  * (2) the lru_lock must not be held.
1197  * (3) interrupts must be enabled.
1198  */
1199 int isolate_lru_page(struct page *page)
1200 {
1201         int ret = -EBUSY;
1202
1203         VM_BUG_ON(!page_count(page));
1204
1205         if (PageLRU(page)) {
1206                 struct zone *zone = page_zone(page);
1207
1208                 spin_lock_irq(&zone->lru_lock);
1209                 if (PageLRU(page)) {
1210                         int lru = page_lru(page);
1211                         ret = 0;
1212                         get_page(page);
1213                         ClearPageLRU(page);
1214
1215                         del_page_from_lru_list(zone, page, lru);
1216                 }
1217                 spin_unlock_irq(&zone->lru_lock);
1218         }
1219         return ret;
1220 }
1221
1222 /*
1223  * Are there way too many processes in the direct reclaim path already?
1224  */
1225 static int too_many_isolated(struct zone *zone, int file,
1226                 struct scan_control *sc)
1227 {
1228         unsigned long inactive, isolated;
1229
1230         if (current_is_kswapd())
1231                 return 0;
1232
1233         if (!global_reclaim(sc))
1234                 return 0;
1235
1236         if (file) {
1237                 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1238                 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1239         } else {
1240                 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1241                 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1242         }
1243
1244         return isolated > inactive;
1245 }
1246
1247 static noinline_for_stack void
1248 putback_inactive_pages(struct mem_cgroup_zone *mz,
1249                        struct list_head *page_list)
1250 {
1251         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1252         struct zone *zone = mz->zone;
1253         LIST_HEAD(pages_to_free);
1254
1255         /*
1256          * Put back any unfreeable pages.
1257          */
1258         while (!list_empty(page_list)) {
1259                 struct page *page = lru_to_page(page_list);
1260                 int lru;
1261
1262                 VM_BUG_ON(PageLRU(page));
1263                 list_del(&page->lru);
1264                 if (unlikely(!page_evictable(page, NULL))) {
1265                         spin_unlock_irq(&zone->lru_lock);
1266                         putback_lru_page(page);
1267                         spin_lock_irq(&zone->lru_lock);
1268                         continue;
1269                 }
1270                 SetPageLRU(page);
1271                 lru = page_lru(page);
1272                 add_page_to_lru_list(zone, page, lru);
1273                 if (is_active_lru(lru)) {
1274                         int file = is_file_lru(lru);
1275                         int numpages = hpage_nr_pages(page);
1276                         reclaim_stat->recent_rotated[file] += numpages;
1277                 }
1278                 if (put_page_testzero(page)) {
1279                         __ClearPageLRU(page);
1280                         __ClearPageActive(page);
1281                         del_page_from_lru_list(zone, page, lru);
1282
1283                         if (unlikely(PageCompound(page))) {
1284                                 spin_unlock_irq(&zone->lru_lock);
1285                                 (*get_compound_page_dtor(page))(page);
1286                                 spin_lock_irq(&zone->lru_lock);
1287                         } else
1288                                 list_add(&page->lru, &pages_to_free);
1289                 }
1290         }
1291
1292         /*
1293          * To save our caller's stack, now use input list for pages to free.
1294          */
1295         list_splice(&pages_to_free, page_list);
1296 }
1297
1298 static noinline_for_stack void
1299 update_isolated_counts(struct mem_cgroup_zone *mz,
1300                        struct list_head *page_list,
1301                        unsigned long *nr_anon,
1302                        unsigned long *nr_file)
1303 {
1304         struct zone *zone = mz->zone;
1305         unsigned int count[NR_LRU_LISTS] = { 0, };
1306         unsigned long nr_active = 0;
1307         struct page *page;
1308         int lru;
1309
1310         /*
1311          * Count pages and clear active flags
1312          */
1313         list_for_each_entry(page, page_list, lru) {
1314                 int numpages = hpage_nr_pages(page);
1315                 lru = page_lru_base_type(page);
1316                 if (PageActive(page)) {
1317                         lru += LRU_ACTIVE;
1318                         ClearPageActive(page);
1319                         nr_active += numpages;
1320                 }
1321                 count[lru] += numpages;
1322         }
1323
1324         preempt_disable();
1325         __count_vm_events(PGDEACTIVATE, nr_active);
1326
1327         __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1328                               -count[LRU_ACTIVE_FILE]);
1329         __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1330                               -count[LRU_INACTIVE_FILE]);
1331         __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1332                               -count[LRU_ACTIVE_ANON]);
1333         __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1334                               -count[LRU_INACTIVE_ANON]);
1335
1336         *nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1337         *nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1338
1339         __mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1340         __mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1341         preempt_enable();
1342 }
1343
1344 /*
1345  * Returns true if a direct reclaim should wait on pages under writeback.
1346  *
1347  * If we are direct reclaiming for contiguous pages and we do not reclaim
1348  * everything in the list, try again and wait for writeback IO to complete.
1349  * This will stall high-order allocations noticeably. Only do that when really
1350  * need to free the pages under high memory pressure.
1351  */
1352 static inline bool should_reclaim_stall(unsigned long nr_taken,
1353                                         unsigned long nr_freed,
1354                                         int priority,
1355                                         struct scan_control *sc)
1356 {
1357         int stall_priority;
1358
1359         /* kswapd should not stall on sync IO */
1360         if (current_is_kswapd())
1361                 return false;
1362
1363         /* Only stall for memory compaction */
1364         if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
1365                 return false;
1366
1367         /* If we have reclaimed everything on the isolated list, no stall */
1368         if (nr_freed == nr_taken)
1369                 return false;
1370
1371         /*
1372          * For high-order allocations, there are two stall thresholds.
1373          * High-cost allocations stall immediately where as lower
1374          * order allocations such as stacks require the scanning
1375          * priority to be much higher before stalling.
1376          */
1377         if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1378                 stall_priority = DEF_PRIORITY;
1379         else
1380                 stall_priority = DEF_PRIORITY / 3;
1381
1382         return priority <= stall_priority;
1383 }
1384
1385 /*
1386  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1387  * of reclaimed pages
1388  */
1389 static noinline_for_stack unsigned long
1390 shrink_inactive_list(unsigned long nr_to_scan, struct mem_cgroup_zone *mz,
1391                      struct scan_control *sc, int priority, int file)
1392 {
1393         LIST_HEAD(page_list);
1394         unsigned long nr_scanned;
1395         unsigned long nr_reclaimed = 0;
1396         unsigned long nr_taken;
1397         unsigned long nr_anon;
1398         unsigned long nr_file;
1399         unsigned long nr_dirty = 0;
1400         unsigned long nr_writeback = 0;
1401         isolate_mode_t isolate_mode = ISOLATE_INACTIVE;
1402         struct zone *zone = mz->zone;
1403         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1404
1405         while (unlikely(too_many_isolated(zone, file, sc))) {
1406                 congestion_wait(BLK_RW_ASYNC, HZ/10);
1407
1408                 /* We are about to die and free our memory. Return now. */
1409                 if (fatal_signal_pending(current))
1410                         return SWAP_CLUSTER_MAX;
1411         }
1412
1413         set_reclaim_mode(priority, sc, false);
1414
1415         lru_add_drain();
1416
1417         if (!sc->may_unmap)
1418                 isolate_mode |= ISOLATE_UNMAPPED;
1419         if (!sc->may_writepage)
1420                 isolate_mode |= ISOLATE_CLEAN;
1421
1422         spin_lock_irq(&zone->lru_lock);
1423
1424         nr_taken = isolate_lru_pages(nr_to_scan, mz, &page_list, &nr_scanned,
1425                                      sc, isolate_mode, 0, file);
1426         if (global_reclaim(sc)) {
1427                 zone->pages_scanned += nr_scanned;
1428                 if (current_is_kswapd())
1429                         __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1430                                                nr_scanned);
1431                 else
1432                         __count_zone_vm_events(PGSCAN_DIRECT, zone,
1433                                                nr_scanned);
1434         }
1435         spin_unlock_irq(&zone->lru_lock);
1436
1437         if (nr_taken == 0)
1438                 return 0;
1439
1440         update_isolated_counts(mz, &page_list, &nr_anon, &nr_file);
1441
1442         nr_reclaimed = shrink_page_list(&page_list, mz, sc, priority,
1443                                                 &nr_dirty, &nr_writeback);
1444
1445         /* Check if we should syncronously wait for writeback */
1446         if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
1447                 set_reclaim_mode(priority, sc, true);
1448                 nr_reclaimed += shrink_page_list(&page_list, mz, sc,
1449                                         priority, &nr_dirty, &nr_writeback);
1450         }
1451
1452         spin_lock_irq(&zone->lru_lock);
1453
1454         reclaim_stat->recent_scanned[0] += nr_anon;
1455         reclaim_stat->recent_scanned[1] += nr_file;
1456
1457         if (global_reclaim(sc)) {
1458                 if (current_is_kswapd())
1459                         __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1460                                                nr_reclaimed);
1461                 else
1462                         __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1463                                                nr_reclaimed);
1464         }
1465
1466         putback_inactive_pages(mz, &page_list);
1467
1468         __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1469         __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1470
1471         spin_unlock_irq(&zone->lru_lock);
1472
1473         free_hot_cold_page_list(&page_list, 1);
1474
1475         /*
1476          * If reclaim is isolating dirty pages under writeback, it implies
1477          * that the long-lived page allocation rate is exceeding the page
1478          * laundering rate. Either the global limits are not being effective
1479          * at throttling processes due to the page distribution throughout
1480          * zones or there is heavy usage of a slow backing device. The
1481          * only option is to throttle from reclaim context which is not ideal
1482          * as there is no guarantee the dirtying process is throttled in the
1483          * same way balance_dirty_pages() manages.
1484          *
1485          * This scales the number of dirty pages that must be under writeback
1486          * before throttling depending on priority. It is a simple backoff
1487          * function that has the most effect in the range DEF_PRIORITY to
1488          * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1489          * in trouble and reclaim is considered to be in trouble.
1490          *
1491          * DEF_PRIORITY   100% isolated pages must be PageWriteback to throttle
1492          * DEF_PRIORITY-1  50% must be PageWriteback
1493          * DEF_PRIORITY-2  25% must be PageWriteback, kswapd in trouble
1494          * ...
1495          * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1496          *                     isolated page is PageWriteback
1497          */
1498         if (nr_writeback && nr_writeback >= (nr_taken >> (DEF_PRIORITY-priority)))
1499                 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1500
1501         trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1502                 zone_idx(zone),
1503                 nr_scanned, nr_reclaimed,
1504                 priority,
1505                 trace_shrink_flags(file, sc->reclaim_mode));
1506         return nr_reclaimed;
1507 }
1508
1509 /*
1510  * This moves pages from the active list to the inactive list.
1511  *
1512  * We move them the other way if the page is referenced by one or more
1513  * processes, from rmap.
1514  *
1515  * If the pages are mostly unmapped, the processing is fast and it is
1516  * appropriate to hold zone->lru_lock across the whole operation.  But if
1517  * the pages are mapped, the processing is slow (page_referenced()) so we
1518  * should drop zone->lru_lock around each page.  It's impossible to balance
1519  * this, so instead we remove the pages from the LRU while processing them.
1520  * It is safe to rely on PG_active against the non-LRU pages in here because
1521  * nobody will play with that bit on a non-LRU page.
1522  *
1523  * The downside is that we have to touch page->_count against each page.
1524  * But we had to alter page->flags anyway.
1525  */
1526
1527 static void move_active_pages_to_lru(struct zone *zone,
1528                                      struct list_head *list,
1529                                      struct list_head *pages_to_free,
1530                                      enum lru_list lru)
1531 {
1532         unsigned long pgmoved = 0;
1533         struct page *page;
1534
1535         while (!list_empty(list)) {
1536                 struct lruvec *lruvec;
1537
1538                 page = lru_to_page(list);
1539
1540                 VM_BUG_ON(PageLRU(page));
1541                 SetPageLRU(page);
1542
1543                 lruvec = mem_cgroup_lru_add_list(zone, page, lru);
1544                 list_move(&page->lru, &lruvec->lists[lru]);
1545                 pgmoved += hpage_nr_pages(page);
1546
1547                 if (put_page_testzero(page)) {
1548                         __ClearPageLRU(page);
1549                         __ClearPageActive(page);
1550                         del_page_from_lru_list(zone, page, lru);
1551
1552                         if (unlikely(PageCompound(page))) {
1553                                 spin_unlock_irq(&zone->lru_lock);
1554                                 (*get_compound_page_dtor(page))(page);
1555                                 spin_lock_irq(&zone->lru_lock);
1556                         } else
1557                                 list_add(&page->lru, pages_to_free);
1558                 }
1559         }
1560         __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1561         if (!is_active_lru(lru))
1562                 __count_vm_events(PGDEACTIVATE, pgmoved);
1563 }
1564
1565 static void shrink_active_list(unsigned long nr_to_scan,
1566                                struct mem_cgroup_zone *mz,
1567                                struct scan_control *sc,
1568                                int priority, int file)
1569 {
1570         unsigned long nr_taken;
1571         unsigned long nr_scanned;
1572         unsigned long vm_flags;
1573         LIST_HEAD(l_hold);      /* The pages which were snipped off */
1574         LIST_HEAD(l_active);
1575         LIST_HEAD(l_inactive);
1576         struct page *page;
1577         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1578         unsigned long nr_rotated = 0;
1579         isolate_mode_t isolate_mode = ISOLATE_ACTIVE;
1580         struct zone *zone = mz->zone;
1581
1582         lru_add_drain();
1583
1584         reset_reclaim_mode(sc);
1585
1586         if (!sc->may_unmap)
1587                 isolate_mode |= ISOLATE_UNMAPPED;
1588         if (!sc->may_writepage)
1589                 isolate_mode |= ISOLATE_CLEAN;
1590
1591         spin_lock_irq(&zone->lru_lock);
1592
1593         nr_taken = isolate_lru_pages(nr_to_scan, mz, &l_hold, &nr_scanned, sc,
1594                                      isolate_mode, 1, file);
1595         if (global_reclaim(sc))
1596                 zone->pages_scanned += nr_scanned;
1597
1598         reclaim_stat->recent_scanned[file] += nr_taken;
1599
1600         __count_zone_vm_events(PGREFILL, zone, nr_scanned);
1601         if (file)
1602                 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1603         else
1604                 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1605         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1606         spin_unlock_irq(&zone->lru_lock);
1607
1608         while (!list_empty(&l_hold)) {
1609                 cond_resched();
1610                 page = lru_to_page(&l_hold);
1611                 list_del(&page->lru);
1612
1613                 if (unlikely(!page_evictable(page, NULL))) {
1614                         putback_lru_page(page);
1615                         continue;
1616                 }
1617
1618                 if (unlikely(buffer_heads_over_limit)) {
1619                         if (page_has_private(page) && trylock_page(page)) {
1620                                 if (page_has_private(page))
1621                                         try_to_release_page(page, 0);
1622                                 unlock_page(page);
1623                         }
1624                 }
1625
1626                 if (page_referenced(page, 0, mz->mem_cgroup, &vm_flags)) {
1627                         nr_rotated += hpage_nr_pages(page);
1628                         /*
1629                          * Identify referenced, file-backed active pages and
1630                          * give them one more trip around the active list. So
1631                          * that executable code get better chances to stay in
1632                          * memory under moderate memory pressure.  Anon pages
1633                          * are not likely to be evicted by use-once streaming
1634                          * IO, plus JVM can create lots of anon VM_EXEC pages,
1635                          * so we ignore them here.
1636                          */
1637                         if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1638                                 list_add(&page->lru, &l_active);
1639                                 continue;
1640                         }
1641                 }
1642
1643                 ClearPageActive(page);  /* we are de-activating */
1644                 list_add(&page->lru, &l_inactive);
1645         }
1646
1647         /*
1648          * Move pages back to the lru list.
1649          */
1650         spin_lock_irq(&zone->lru_lock);
1651         /*
1652          * Count referenced pages from currently used mappings as rotated,
1653          * even though only some of them are actually re-activated.  This
1654          * helps balance scan pressure between file and anonymous pages in
1655          * get_scan_ratio.
1656          */
1657         reclaim_stat->recent_rotated[file] += nr_rotated;
1658
1659         move_active_pages_to_lru(zone, &l_active, &l_hold,
1660                                                 LRU_ACTIVE + file * LRU_FILE);
1661         move_active_pages_to_lru(zone, &l_inactive, &l_hold,
1662                                                 LRU_BASE   + file * LRU_FILE);
1663         __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1664         spin_unlock_irq(&zone->lru_lock);
1665
1666         free_hot_cold_page_list(&l_hold, 1);
1667 }
1668
1669 #ifdef CONFIG_SWAP
1670 static int inactive_anon_is_low_global(struct zone *zone)
1671 {
1672         unsigned long active, inactive;
1673
1674         active = zone_page_state(zone, NR_ACTIVE_ANON);
1675         inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1676
1677         if (inactive * zone->inactive_ratio < active)
1678                 return 1;
1679
1680         return 0;
1681 }
1682
1683 /**
1684  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1685  * @zone: zone to check
1686  * @sc:   scan control of this context
1687  *
1688  * Returns true if the zone does not have enough inactive anon pages,
1689  * meaning some active anon pages need to be deactivated.
1690  */
1691 static int inactive_anon_is_low(struct mem_cgroup_zone *mz)
1692 {
1693         /*
1694          * If we don't have swap space, anonymous page deactivation
1695          * is pointless.
1696          */
1697         if (!total_swap_pages)
1698                 return 0;
1699
1700         if (!scanning_global_lru(mz))
1701                 return mem_cgroup_inactive_anon_is_low(mz->mem_cgroup,
1702                                                        mz->zone);
1703
1704         return inactive_anon_is_low_global(mz->zone);
1705 }
1706 #else
1707 static inline int inactive_anon_is_low(struct mem_cgroup_zone *mz)
1708 {
1709         return 0;
1710 }
1711 #endif
1712
1713 static int inactive_file_is_low_global(struct zone *zone)
1714 {
1715         unsigned long active, inactive;
1716
1717         active = zone_page_state(zone, NR_ACTIVE_FILE);
1718         inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1719
1720         return (active > inactive);
1721 }
1722
1723 /**
1724  * inactive_file_is_low - check if file pages need to be deactivated
1725  * @mz: memory cgroup and zone to check
1726  *
1727  * When the system is doing streaming IO, memory pressure here
1728  * ensures that active file pages get deactivated, until more
1729  * than half of the file pages are on the inactive list.
1730  *
1731  * Once we get to that situation, protect the system's working
1732  * set from being evicted by disabling active file page aging.
1733  *
1734  * This uses a different ratio than the anonymous pages, because
1735  * the page cache uses a use-once replacement algorithm.
1736  */
1737 static int inactive_file_is_low(struct mem_cgroup_zone *mz)
1738 {
1739         if (!scanning_global_lru(mz))
1740                 return mem_cgroup_inactive_file_is_low(mz->mem_cgroup,
1741                                                        mz->zone);
1742
1743         return inactive_file_is_low_global(mz->zone);
1744 }
1745
1746 static int inactive_list_is_low(struct mem_cgroup_zone *mz, int file)
1747 {
1748         if (file)
1749                 return inactive_file_is_low(mz);
1750         else
1751                 return inactive_anon_is_low(mz);
1752 }
1753
1754 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1755                                  struct mem_cgroup_zone *mz,
1756                                  struct scan_control *sc, int priority)
1757 {
1758         int file = is_file_lru(lru);
1759
1760         if (is_active_lru(lru)) {
1761                 if (inactive_list_is_low(mz, file))
1762                         shrink_active_list(nr_to_scan, mz, sc, priority, file);
1763                 return 0;
1764         }
1765
1766         return shrink_inactive_list(nr_to_scan, mz, sc, priority, file);
1767 }
1768
1769 static int vmscan_swappiness(struct mem_cgroup_zone *mz,
1770                              struct scan_control *sc)
1771 {
1772         if (global_reclaim(sc))
1773                 return vm_swappiness;
1774         return mem_cgroup_swappiness(mz->mem_cgroup);
1775 }
1776
1777 /*
1778  * Determine how aggressively the anon and file LRU lists should be
1779  * scanned.  The relative value of each set of LRU lists is determined
1780  * by looking at the fraction of the pages scanned we did rotate back
1781  * onto the active list instead of evict.
1782  *
1783  * nr[0] = anon pages to scan; nr[1] = file pages to scan
1784  */
1785 static void get_scan_count(struct mem_cgroup_zone *mz, struct scan_control *sc,
1786                            unsigned long *nr, int priority)
1787 {
1788         unsigned long anon, file, free;
1789         unsigned long anon_prio, file_prio;
1790         unsigned long ap, fp;
1791         struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1792         u64 fraction[2], denominator;
1793         enum lru_list lru;
1794         int noswap = 0;
1795         bool force_scan = false;
1796
1797         /*
1798          * If the zone or memcg is small, nr[l] can be 0.  This
1799          * results in no scanning on this priority and a potential
1800          * priority drop.  Global direct reclaim can go to the next
1801          * zone and tends to have no problems. Global kswapd is for
1802          * zone balancing and it needs to scan a minimum amount. When
1803          * reclaiming for a memcg, a priority drop can cause high
1804          * latencies, so it's better to scan a minimum amount there as
1805          * well.
1806          */
1807         if (current_is_kswapd() && mz->zone->all_unreclaimable)
1808                 force_scan = true;
1809         if (!global_reclaim(sc))
1810                 force_scan = true;
1811
1812         /* If we have no swap space, do not bother scanning anon pages. */
1813         if (!sc->may_swap || (nr_swap_pages <= 0)) {
1814                 noswap = 1;
1815                 fraction[0] = 0;
1816                 fraction[1] = 1;
1817                 denominator = 1;
1818                 goto out;
1819         }
1820
1821         anon  = zone_nr_lru_pages(mz, LRU_ACTIVE_ANON) +
1822                 zone_nr_lru_pages(mz, LRU_INACTIVE_ANON);
1823         file  = zone_nr_lru_pages(mz, LRU_ACTIVE_FILE) +
1824                 zone_nr_lru_pages(mz, LRU_INACTIVE_FILE);
1825
1826         if (global_reclaim(sc)) {
1827                 free  = zone_page_state(mz->zone, NR_FREE_PAGES);
1828                 /* If we have very few page cache pages,
1829                    force-scan anon pages. */
1830                 if (unlikely(file + free <= high_wmark_pages(mz->zone))) {
1831                         fraction[0] = 1;
1832                         fraction[1] = 0;
1833                         denominator = 1;
1834                         goto out;
1835                 }
1836         }
1837
1838         /*
1839          * With swappiness at 100, anonymous and file have the same priority.
1840          * This scanning priority is essentially the inverse of IO cost.
1841          */
1842         anon_prio = vmscan_swappiness(mz, sc);
1843         file_prio = 200 - vmscan_swappiness(mz, sc);
1844
1845         /*
1846          * OK, so we have swap space and a fair amount of page cache
1847          * pages.  We use the recently rotated / recently scanned
1848          * ratios to determine how valuable each cache is.
1849          *
1850          * Because workloads change over time (and to avoid overflow)
1851          * we keep these statistics as a floating average, which ends
1852          * up weighing recent references more than old ones.
1853          *
1854          * anon in [0], file in [1]
1855          */
1856         spin_lock_irq(&mz->zone->lru_lock);
1857         if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1858                 reclaim_stat->recent_scanned[0] /= 2;
1859                 reclaim_stat->recent_rotated[0] /= 2;
1860         }
1861
1862         if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1863                 reclaim_stat->recent_scanned[1] /= 2;
1864                 reclaim_stat->recent_rotated[1] /= 2;
1865         }
1866
1867         /*
1868          * The amount of pressure on anon vs file pages is inversely
1869          * proportional to the fraction of recently scanned pages on
1870          * each list that were recently referenced and in active use.
1871          */
1872         ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1873         ap /= reclaim_stat->recent_rotated[0] + 1;
1874
1875         fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1876         fp /= reclaim_stat->recent_rotated[1] + 1;
1877         spin_unlock_irq(&mz->zone->lru_lock);
1878
1879         fraction[0] = ap;
1880         fraction[1] = fp;
1881         denominator = ap + fp + 1;
1882 out:
1883         for_each_evictable_lru(lru) {
1884                 int file = is_file_lru(lru);
1885                 unsigned long scan;
1886
1887                 scan = zone_nr_lru_pages(mz, lru);
1888                 if (priority || noswap) {
1889                         scan >>= priority;
1890                         if (!scan && force_scan)
1891                                 scan = SWAP_CLUSTER_MAX;
1892                         scan = div64_u64(scan * fraction[file], denominator);
1893                 }
1894                 nr[lru] = scan;
1895         }
1896 }
1897
1898 /*
1899  * Reclaim/compaction depends on a number of pages being freed. To avoid
1900  * disruption to the system, a small number of order-0 pages continue to be
1901  * rotated and reclaimed in the normal fashion. However, by the time we get
1902  * back to the allocator and call try_to_compact_zone(), we ensure that
1903  * there are enough free pages for it to be likely successful
1904  */
1905 static inline bool should_continue_reclaim(struct mem_cgroup_zone *mz,
1906                                         unsigned long nr_reclaimed,
1907                                         unsigned long nr_scanned,
1908                                         struct scan_control *sc)
1909 {
1910         unsigned long pages_for_compaction;
1911         unsigned long inactive_lru_pages;
1912
1913         /* If not in reclaim/compaction mode, stop */
1914         if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
1915                 return false;
1916
1917         /* Consider stopping depending on scan and reclaim activity */
1918         if (sc->gfp_mask & __GFP_REPEAT) {
1919                 /*
1920                  * For __GFP_REPEAT allocations, stop reclaiming if the
1921                  * full LRU list has been scanned and we are still failing
1922                  * to reclaim pages. This full LRU scan is potentially
1923                  * expensive but a __GFP_REPEAT caller really wants to succeed
1924                  */
1925                 if (!nr_reclaimed && !nr_scanned)
1926                         return false;
1927         } else {
1928                 /*
1929                  * For non-__GFP_REPEAT allocations which can presumably
1930                  * fail without consequence, stop if we failed to reclaim
1931                  * any pages from the last SWAP_CLUSTER_MAX number of
1932                  * pages that were scanned. This will return to the
1933                  * caller faster at the risk reclaim/compaction and
1934                  * the resulting allocation attempt fails
1935                  */
1936                 if (!nr_reclaimed)
1937                         return false;
1938         }
1939
1940         /*
1941          * If we have not reclaimed enough pages for compaction and the
1942          * inactive lists are large enough, continue reclaiming
1943          */
1944         pages_for_compaction = (2UL << sc->order);
1945         inactive_lru_pages = zone_nr_lru_pages(mz, LRU_INACTIVE_FILE);
1946         if (nr_swap_pages > 0)
1947                 inactive_lru_pages += zone_nr_lru_pages(mz, LRU_INACTIVE_ANON);
1948         if (sc->nr_reclaimed < pages_for_compaction &&
1949                         inactive_lru_pages > pages_for_compaction)
1950                 return true;
1951
1952         /* If compaction would go ahead or the allocation would succeed, stop */
1953         switch (compaction_suitable(mz->zone, sc->order)) {
1954         case COMPACT_PARTIAL:
1955         case COMPACT_CONTINUE:
1956                 return false;
1957         default:
1958                 return true;
1959         }
1960 }
1961
1962 /*
1963  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1964  */
1965 static void shrink_mem_cgroup_zone(int priority, struct mem_cgroup_zone *mz,
1966                                    struct scan_control *sc)
1967 {
1968         unsigned long nr[NR_LRU_LISTS];
1969         unsigned long nr_to_scan;
1970         enum lru_list lru;
1971         unsigned long nr_reclaimed, nr_scanned;
1972         unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1973         struct blk_plug plug;
1974
1975 restart:
1976         nr_reclaimed = 0;
1977         nr_scanned = sc->nr_scanned;
1978         get_scan_count(mz, sc, nr, priority);
1979
1980         blk_start_plug(&plug);
1981         while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1982                                         nr[LRU_INACTIVE_FILE]) {
1983                 for_each_evictable_lru(lru) {
1984                         if (nr[lru]) {
1985                                 nr_to_scan = min_t(unsigned long,
1986                                                    nr[lru], SWAP_CLUSTER_MAX);
1987                                 nr[lru] -= nr_to_scan;
1988
1989                                 nr_reclaimed += shrink_list(lru, nr_to_scan,
1990                                                             mz, sc, priority);
1991                         }
1992                 }
1993                 /*
1994                  * On large memory systems, scan >> priority can become
1995                  * really large. This is fine for the starting priority;
1996                  * we want to put equal scanning pressure on each zone.
1997                  * However, if the VM has a harder time of freeing pages,
1998                  * with multiple processes reclaiming pages, the total
1999                  * freeing target can get unreasonably large.
2000                  */
2001                 if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
2002                         break;
2003         }
2004         blk_finish_plug(&plug);
2005         sc->nr_reclaimed += nr_reclaimed;
2006
2007         /*
2008          * Even if we did not try to evict anon pages at all, we want to
2009          * rebalance the anon lru active/inactive ratio.
2010          */
2011         if (inactive_anon_is_low(mz))
2012                 shrink_active_list(SWAP_CLUSTER_MAX, mz, sc, priority, 0);
2013
2014         /* reclaim/compaction might need reclaim to continue */
2015         if (should_continue_reclaim(mz, nr_reclaimed,
2016                                         sc->nr_scanned - nr_scanned, sc))
2017                 goto restart;
2018
2019         throttle_vm_writeout(sc->gfp_mask);
2020 }
2021
2022 static void shrink_zone(int priority, struct zone *zone,
2023                         struct scan_control *sc)
2024 {
2025         struct mem_cgroup *root = sc->target_mem_cgroup;
2026         struct mem_cgroup_reclaim_cookie reclaim = {
2027                 .zone = zone,
2028                 .priority = priority,
2029         };
2030         struct mem_cgroup *memcg;
2031
2032         memcg = mem_cgroup_iter(root, NULL, &reclaim);
2033         do {
2034                 struct mem_cgroup_zone mz = {
2035                         .mem_cgroup = memcg,
2036                         .zone = zone,
2037                 };
2038
2039                 shrink_mem_cgroup_zone(priority, &mz, sc);
2040                 /*
2041                  * Limit reclaim has historically picked one memcg and
2042                  * scanned it with decreasing priority levels until
2043                  * nr_to_reclaim had been reclaimed.  This priority
2044                  * cycle is thus over after a single memcg.
2045                  *
2046                  * Direct reclaim and kswapd, on the other hand, have
2047                  * to scan all memory cgroups to fulfill the overall
2048                  * scan target for the zone.
2049                  */
2050                 if (!global_reclaim(sc)) {
2051                         mem_cgroup_iter_break(root, memcg);
2052                         break;
2053                 }
2054                 memcg = mem_cgroup_iter(root, memcg, &reclaim);
2055         } while (memcg);
2056 }
2057
2058 /* Returns true if compaction should go ahead for a high-order request */
2059 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2060 {
2061         unsigned long balance_gap, watermark;
2062         bool watermark_ok;
2063
2064         /* Do not consider compaction for orders reclaim is meant to satisfy */
2065         if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
2066                 return false;
2067
2068         /*
2069          * Compaction takes time to run and there are potentially other
2070          * callers using the pages just freed. Continue reclaiming until
2071          * there is a buffer of free pages available to give compaction
2072          * a reasonable chance of completing and allocating the page
2073          */
2074         balance_gap = min(low_wmark_pages(zone),
2075                 (zone->present_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2076                         KSWAPD_ZONE_BALANCE_GAP_RATIO);
2077         watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
2078         watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2079
2080         /*
2081          * If compaction is deferred, reclaim up to a point where
2082          * compaction will have a chance of success when re-enabled
2083          */
2084         if (compaction_deferred(zone, sc->order))
2085                 return watermark_ok;
2086
2087         /* If compaction is not ready to start, keep reclaiming */
2088         if (!compaction_suitable(zone, sc->order))
2089                 return false;
2090
2091         return watermark_ok;
2092 }
2093
2094 /*
2095  * This is the direct reclaim path, for page-allocating processes.  We only
2096  * try to reclaim pages from zones which will satisfy the caller's allocation
2097  * request.
2098  *
2099  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2100  * Because:
2101  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2102  *    allocation or
2103  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2104  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2105  *    zone defense algorithm.
2106  *
2107  * If a zone is deemed to be full of pinned pages then just give it a light
2108  * scan then give up on it.
2109  *
2110  * This function returns true if a zone is being reclaimed for a costly
2111  * high-order allocation and compaction is ready to begin. This indicates to
2112  * the caller that it should consider retrying the allocation instead of
2113  * further reclaim.
2114  */
2115 static bool shrink_zones(int priority, struct zonelist *zonelist,
2116                                         struct scan_control *sc)
2117 {
2118         struct zoneref *z;
2119         struct zone *zone;
2120         unsigned long nr_soft_reclaimed;
2121         unsigned long nr_soft_scanned;
2122         bool aborted_reclaim = false;
2123
2124         /*
2125          * If the number of buffer_heads in the machine exceeds the maximum
2126          * allowed level, force direct reclaim to scan the highmem zone as
2127          * highmem pages could be pinning lowmem pages storing buffer_heads
2128          */
2129         if (buffer_heads_over_limit)
2130                 sc->gfp_mask |= __GFP_HIGHMEM;
2131
2132         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2133                                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2134                 if (!populated_zone(zone))
2135                         continue;
2136                 /*
2137                  * Take care memory controller reclaiming has small influence
2138                  * to global LRU.
2139                  */
2140                 if (global_reclaim(sc)) {
2141                         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2142                                 continue;
2143                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2144                                 continue;       /* Let kswapd poll it */
2145                         if (COMPACTION_BUILD) {
2146                                 /*
2147                                  * If we already have plenty of memory free for
2148                                  * compaction in this zone, don't free any more.
2149                                  * Even though compaction is invoked for any
2150                                  * non-zero order, only frequent costly order
2151                                  * reclamation is disruptive enough to become a
2152                                  * noticeable problem, like transparent huge
2153                                  * page allocations.
2154                                  */
2155                                 if (compaction_ready(zone, sc)) {
2156                                         aborted_reclaim = true;
2157                                         continue;
2158                                 }
2159                         }
2160                         /*
2161                          * This steals pages from memory cgroups over softlimit
2162                          * and returns the number of reclaimed pages and
2163                          * scanned pages. This works for global memory pressure
2164                          * and balancing, not for a memcg's limit.
2165                          */
2166                         nr_soft_scanned = 0;
2167                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2168                                                 sc->order, sc->gfp_mask,
2169                                                 &nr_soft_scanned);
2170                         sc->nr_reclaimed += nr_soft_reclaimed;
2171                         sc->nr_scanned += nr_soft_scanned;
2172                         /* need some check for avoid more shrink_zone() */
2173                 }
2174
2175                 shrink_zone(priority, zone, sc);
2176         }
2177
2178         return aborted_reclaim;
2179 }
2180
2181 static bool zone_reclaimable(struct zone *zone)
2182 {
2183         return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2184 }
2185
2186 /* All zones in zonelist are unreclaimable? */
2187 static bool all_unreclaimable(struct zonelist *zonelist,
2188                 struct scan_control *sc)
2189 {
2190         struct zoneref *z;
2191         struct zone *zone;
2192
2193         for_each_zone_zonelist_nodemask(zone, z, zonelist,
2194                         gfp_zone(sc->gfp_mask), sc->nodemask) {
2195                 if (!populated_zone(zone))
2196                         continue;
2197                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2198                         continue;
2199                 if (!zone->all_unreclaimable)
2200                         return false;
2201         }
2202
2203         return true;
2204 }
2205
2206 /*
2207  * This is the main entry point to direct page reclaim.
2208  *
2209  * If a full scan of the inactive list fails to free enough memory then we
2210  * are "out of memory" and something needs to be killed.
2211  *
2212  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2213  * high - the zone may be full of dirty or under-writeback pages, which this
2214  * caller can't do much about.  We kick the writeback threads and take explicit
2215  * naps in the hope that some of these pages can be written.  But if the
2216  * allocating task holds filesystem locks which prevent writeout this might not
2217  * work, and the allocation attempt will fail.
2218  *
2219  * returns:     0, if no pages reclaimed
2220  *              else, the number of pages reclaimed
2221  */
2222 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2223                                         struct scan_control *sc,
2224                                         struct shrink_control *shrink)
2225 {
2226         int priority;
2227         unsigned long total_scanned = 0;
2228         struct reclaim_state *reclaim_state = current->reclaim_state;
2229         struct zoneref *z;
2230         struct zone *zone;
2231         unsigned long writeback_threshold;
2232         bool aborted_reclaim;
2233
2234         delayacct_freepages_start();
2235
2236         if (global_reclaim(sc))
2237                 count_vm_event(ALLOCSTALL);
2238
2239         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2240                 sc->nr_scanned = 0;
2241                 aborted_reclaim = shrink_zones(priority, zonelist, sc);
2242
2243                 /*
2244                  * Don't shrink slabs when reclaiming memory from
2245                  * over limit cgroups
2246                  */
2247                 if (global_reclaim(sc)) {
2248                         unsigned long lru_pages = 0;
2249                         for_each_zone_zonelist(zone, z, zonelist,
2250                                         gfp_zone(sc->gfp_mask)) {
2251                                 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2252                                         continue;
2253
2254                                 lru_pages += zone_reclaimable_pages(zone);
2255                         }
2256
2257                         shrink_slab(shrink, sc->nr_scanned, lru_pages);
2258                         if (reclaim_state) {
2259                                 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2260                                 reclaim_state->reclaimed_slab = 0;
2261                         }
2262                 }
2263                 total_scanned += sc->nr_scanned;
2264                 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2265                         goto out;
2266
2267                 /*
2268                  * Try to write back as many pages as we just scanned.  This
2269                  * tends to cause slow streaming writers to write data to the
2270                  * disk smoothly, at the dirtying rate, which is nice.   But
2271                  * that's undesirable in laptop mode, where we *want* lumpy
2272                  * writeout.  So in laptop mode, write out the whole world.
2273                  */
2274                 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2275                 if (total_scanned > writeback_threshold) {
2276                         wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2277                                                 WB_REASON_TRY_TO_FREE_PAGES);
2278                         sc->may_writepage = 1;
2279                 }
2280
2281                 /* Take a nap, wait for some writeback to complete */
2282                 if (!sc->hibernation_mode && sc->nr_scanned &&
2283                     priority < DEF_PRIORITY - 2) {
2284                         struct zone *preferred_zone;
2285
2286                         first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2287                                                 &cpuset_current_mems_allowed,
2288                                                 &preferred_zone);
2289                         wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2290                 }
2291         }
2292
2293 out:
2294         delayacct_freepages_end();
2295
2296         if (sc->nr_reclaimed)
2297                 return sc->nr_reclaimed;
2298
2299         /*
2300          * As hibernation is going on, kswapd is freezed so that it can't mark
2301          * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2302          * check.
2303          */
2304         if (oom_killer_disabled)
2305                 return 0;
2306
2307         /* Aborted reclaim to try compaction? don't OOM, then */
2308         if (aborted_reclaim)
2309                 return 1;
2310
2311         /* top priority shrink_zones still had more to do? don't OOM, then */
2312         if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2313                 return 1;
2314
2315         return 0;
2316 }
2317
2318 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2319                                 gfp_t gfp_mask, nodemask_t *nodemask)
2320 {
2321         unsigned long nr_reclaimed;
2322         struct scan_control sc = {
2323                 .gfp_mask = gfp_mask,
2324                 .may_writepage = !laptop_mode,
2325                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2326                 .may_unmap = 1,
2327                 .may_swap = 1,
2328                 .order = order,
2329                 .target_mem_cgroup = NULL,
2330                 .nodemask = nodemask,
2331         };
2332         struct shrink_control shrink = {
2333                 .gfp_mask = sc.gfp_mask,
2334         };
2335
2336         trace_mm_vmscan_direct_reclaim_begin(order,
2337                                 sc.may_writepage,
2338                                 gfp_mask);
2339
2340         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2341
2342         trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2343
2344         return nr_reclaimed;
2345 }
2346
2347 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2348
2349 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2350                                                 gfp_t gfp_mask, bool noswap,
2351                                                 struct zone *zone,
2352                                                 unsigned long *nr_scanned)
2353 {
2354         struct scan_control sc = {
2355                 .nr_scanned = 0,
2356                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2357                 .may_writepage = !laptop_mode,
2358                 .may_unmap = 1,
2359                 .may_swap = !noswap,
2360                 .order = 0,
2361                 .target_mem_cgroup = memcg,
2362         };
2363         struct mem_cgroup_zone mz = {
2364                 .mem_cgroup = memcg,
2365                 .zone = zone,
2366         };
2367
2368         sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2369                         (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2370
2371         trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2372                                                       sc.may_writepage,
2373                                                       sc.gfp_mask);
2374
2375         /*
2376          * NOTE: Although we can get the priority field, using it
2377          * here is not a good idea, since it limits the pages we can scan.
2378          * if we don't reclaim here, the shrink_zone from balance_pgdat
2379          * will pick up pages from other mem cgroup's as well. We hack
2380          * the priority and make it zero.
2381          */
2382         shrink_mem_cgroup_zone(0, &mz, &sc);
2383
2384         trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2385
2386         *nr_scanned = sc.nr_scanned;
2387         return sc.nr_reclaimed;
2388 }
2389
2390 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2391                                            gfp_t gfp_mask,
2392                                            bool noswap)
2393 {
2394         struct zonelist *zonelist;
2395         unsigned long nr_reclaimed;
2396         int nid;
2397         struct scan_control sc = {
2398                 .may_writepage = !laptop_mode,
2399                 .may_unmap = 1,
2400                 .may_swap = !noswap,
2401                 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2402                 .order = 0,
2403                 .target_mem_cgroup = memcg,
2404                 .nodemask = NULL, /* we don't care the placement */
2405                 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2406                                 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2407         };
2408         struct shrink_control shrink = {
2409                 .gfp_mask = sc.gfp_mask,
2410         };
2411
2412         /*
2413          * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2414          * take care of from where we get pages. So the node where we start the
2415          * scan does not need to be the current node.
2416          */
2417         nid = mem_cgroup_select_victim_node(memcg);
2418
2419         zonelist = NODE_DATA(nid)->node_zonelists;
2420
2421         trace_mm_vmscan_memcg_reclaim_begin(0,
2422                                             sc.may_writepage,
2423                                             sc.gfp_mask);
2424
2425         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2426
2427         trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2428
2429         return nr_reclaimed;
2430 }
2431 #endif
2432
2433 static void age_active_anon(struct zone *zone, struct scan_control *sc,
2434                             int priority)
2435 {
2436         struct mem_cgroup *memcg;
2437
2438         if (!total_swap_pages)
2439                 return;
2440
2441         memcg = mem_cgroup_iter(NULL, NULL, NULL);
2442         do {
2443                 struct mem_cgroup_zone mz = {
2444                         .mem_cgroup = memcg,
2445                         .zone = zone,
2446                 };
2447
2448                 if (inactive_anon_is_low(&mz))
2449                         shrink_active_list(SWAP_CLUSTER_MAX, &mz,
2450                                            sc, priority, 0);
2451
2452                 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2453         } while (memcg);
2454 }
2455
2456 /*
2457  * pgdat_balanced is used when checking if a node is balanced for high-order
2458  * allocations. Only zones that meet watermarks and are in a zone allowed
2459  * by the callers classzone_idx are added to balanced_pages. The total of
2460  * balanced pages must be at least 25% of the zones allowed by classzone_idx
2461  * for the node to be considered balanced. Forcing all zones to be balanced
2462  * for high orders can cause excessive reclaim when there are imbalanced zones.
2463  * The choice of 25% is due to
2464  *   o a 16M DMA zone that is balanced will not balance a zone on any
2465  *     reasonable sized machine
2466  *   o On all other machines, the top zone must be at least a reasonable
2467  *     percentage of the middle zones. For example, on 32-bit x86, highmem
2468  *     would need to be at least 256M for it to be balance a whole node.
2469  *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2470  *     to balance a node on its own. These seemed like reasonable ratios.
2471  */
2472 static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2473                                                 int classzone_idx)
2474 {
2475         unsigned long present_pages = 0;
2476         int i;
2477
2478         for (i = 0; i <= classzone_idx; i++)
2479                 present_pages += pgdat->node_zones[i].present_pages;
2480
2481         /* A special case here: if zone has no page, we think it's balanced */
2482         return balanced_pages >= (present_pages >> 2);
2483 }
2484
2485 /* is kswapd sleeping prematurely? */
2486 static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2487                                         int classzone_idx)
2488 {
2489         int i;
2490         unsigned long balanced = 0;
2491         bool all_zones_ok = true;
2492
2493         /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2494         if (remaining)
2495                 return true;
2496
2497         /* Check the watermark levels */
2498         for (i = 0; i <= classzone_idx; i++) {
2499                 struct zone *zone = pgdat->node_zones + i;
2500
2501                 if (!populated_zone(zone))
2502                         continue;
2503
2504                 /*
2505                  * balance_pgdat() skips over all_unreclaimable after
2506                  * DEF_PRIORITY. Effectively, it considers them balanced so
2507                  * they must be considered balanced here as well if kswapd
2508                  * is to sleep
2509                  */
2510                 if (zone->all_unreclaimable) {
2511                         balanced += zone->present_pages;
2512                         continue;
2513                 }
2514
2515                 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2516                                                         i, 0))
2517                         all_zones_ok = false;
2518                 else
2519                         balanced += zone->present_pages;
2520         }
2521
2522         /*
2523          * For high-order requests, the balanced zones must contain at least
2524          * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2525          * must be balanced
2526          */
2527         if (order)
2528                 return !pgdat_balanced(pgdat, balanced, classzone_idx);
2529         else
2530                 return !all_zones_ok;
2531 }
2532
2533 /*
2534  * For kswapd, balance_pgdat() will work across all this node's zones until
2535  * they are all at high_wmark_pages(zone).
2536  *
2537  * Returns the final order kswapd was reclaiming at
2538  *
2539  * There is special handling here for zones which are full of pinned pages.
2540  * This can happen if the pages are all mlocked, or if they are all used by
2541  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2542  * What we do is to detect the case where all pages in the zone have been
2543  * scanned twice and there has been zero successful reclaim.  Mark the zone as
2544  * dead and from now on, only perform a short scan.  Basically we're polling
2545  * the zone for when the problem goes away.
2546  *
2547  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2548  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2549  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2550  * lower zones regardless of the number of free pages in the lower zones. This
2551  * interoperates with the page allocator fallback scheme to ensure that aging
2552  * of pages is balanced across the zones.
2553  */
2554 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2555                                                         int *classzone_idx)
2556 {
2557         int all_zones_ok;
2558         unsigned long balanced;
2559         int priority;
2560         int i;
2561         int end_zone = 0;       /* Inclusive.  0 = ZONE_DMA */
2562         unsigned long total_scanned;
2563         struct reclaim_state *reclaim_state = current->reclaim_state;
2564         unsigned long nr_soft_reclaimed;
2565         unsigned long nr_soft_scanned;
2566         struct scan_control sc = {
2567                 .gfp_mask = GFP_KERNEL,
2568                 .may_unmap = 1,
2569                 .may_swap = 1,
2570                 /*
2571                  * kswapd doesn't want to be bailed out while reclaim. because
2572                  * we want to put equal scanning pressure on each zone.
2573                  */
2574                 .nr_to_reclaim = ULONG_MAX,
2575                 .order = order,
2576                 .target_mem_cgroup = NULL,
2577         };
2578         struct shrink_control shrink = {
2579                 .gfp_mask = sc.gfp_mask,
2580         };
2581 loop_again:
2582         total_scanned = 0;
2583         sc.nr_reclaimed = 0;
2584         sc.may_writepage = !laptop_mode;
2585         count_vm_event(PAGEOUTRUN);
2586
2587         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2588                 unsigned long lru_pages = 0;
2589                 int has_under_min_watermark_zone = 0;
2590
2591                 all_zones_ok = 1;
2592                 balanced = 0;
2593
2594                 /*
2595                  * Scan in the highmem->dma direction for the highest
2596                  * zone which needs scanning
2597                  */
2598                 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2599                         struct zone *zone = pgdat->node_zones + i;
2600
2601                         if (!populated_zone(zone))
2602                                 continue;
2603
2604                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2605                                 continue;
2606
2607                         /*
2608                          * Do some background aging of the anon list, to give
2609                          * pages a chance to be referenced before reclaiming.
2610                          */
2611                         age_active_anon(zone, &sc, priority);
2612
2613                         /*
2614                          * If the number of buffer_heads in the machine
2615                          * exceeds the maximum allowed level and this node
2616                          * has a highmem zone, force kswapd to reclaim from
2617                          * it to relieve lowmem pressure.
2618                          */
2619                         if (buffer_heads_over_limit && is_highmem_idx(i)) {
2620                                 end_zone = i;
2621                                 break;
2622                         }
2623
2624                         if (!zone_watermark_ok_safe(zone, order,
2625                                         high_wmark_pages(zone), 0, 0)) {
2626                                 end_zone = i;
2627                                 break;
2628                         } else {
2629                                 /* If balanced, clear the congested flag */
2630                                 zone_clear_flag(zone, ZONE_CONGESTED);
2631                         }
2632                 }
2633                 if (i < 0)
2634                         goto out;
2635
2636                 for (i = 0; i <= end_zone; i++) {
2637                         struct zone *zone = pgdat->node_zones + i;
2638
2639                         lru_pages += zone_reclaimable_pages(zone);
2640                 }
2641
2642                 /*
2643                  * Now scan the zone in the dma->highmem direction, stopping
2644                  * at the last zone which needs scanning.
2645                  *
2646                  * We do this because the page allocator works in the opposite
2647                  * direction.  This prevents the page allocator from allocating
2648                  * pages behind kswapd's direction of progress, which would
2649                  * cause too much scanning of the lower zones.
2650                  */
2651                 for (i = 0; i <= end_zone; i++) {
2652                         struct zone *zone = pgdat->node_zones + i;
2653                         int nr_slab, testorder;
2654                         unsigned long balance_gap;
2655
2656                         if (!populated_zone(zone))
2657                                 continue;
2658
2659                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2660                                 continue;
2661
2662                         sc.nr_scanned = 0;
2663
2664                         nr_soft_scanned = 0;
2665                         /*
2666                          * Call soft limit reclaim before calling shrink_zone.
2667                          */
2668                         nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2669                                                         order, sc.gfp_mask,
2670                                                         &nr_soft_scanned);
2671                         sc.nr_reclaimed += nr_soft_reclaimed;
2672                         total_scanned += nr_soft_scanned;
2673
2674                         /*
2675                          * We put equal pressure on every zone, unless
2676                          * one zone has way too many pages free
2677                          * already. The "too many pages" is defined
2678                          * as the high wmark plus a "gap" where the
2679                          * gap is either the low watermark or 1%
2680                          * of the zone, whichever is smaller.
2681                          */
2682                         balance_gap = min(low_wmark_pages(zone),
2683                                 (zone->present_pages +
2684                                         KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2685                                 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2686                         /*
2687                          * Kswapd reclaims only single pages with compaction
2688                          * enabled. Trying too hard to reclaim until contiguous
2689                          * free pages have become available can hurt performance
2690                          * by evicting too much useful data from memory.
2691                          * Do not reclaim more than needed for compaction.
2692                          */
2693                         testorder = order;
2694                         if (COMPACTION_BUILD && order &&
2695                                         compaction_suitable(zone, order) !=
2696                                                 COMPACT_SKIPPED)
2697                                 testorder = 0;
2698
2699                         if ((buffer_heads_over_limit && is_highmem_idx(i)) ||
2700                                     !zone_watermark_ok_safe(zone, testorder,
2701                                         high_wmark_pages(zone) + balance_gap,
2702                                         end_zone, 0)) {
2703                                 shrink_zone(priority, zone, &sc);
2704
2705                                 reclaim_state->reclaimed_slab = 0;
2706                                 nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2707                                 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2708                                 total_scanned += sc.nr_scanned;
2709
2710                                 if (nr_slab == 0 && !zone_reclaimable(zone))
2711                                         zone->all_unreclaimable = 1;
2712                         }
2713
2714                         /*
2715                          * If we've done a decent amount of scanning and
2716                          * the reclaim ratio is low, start doing writepage
2717                          * even in laptop mode
2718                          */
2719                         if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2720                             total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2721                                 sc.may_writepage = 1;
2722
2723                         if (zone->all_unreclaimable) {
2724                                 if (end_zone && end_zone == i)
2725                                         end_zone--;
2726                                 continue;
2727                         }
2728
2729                         if (!zone_watermark_ok_safe(zone, testorder,
2730                                         high_wmark_pages(zone), end_zone, 0)) {
2731                                 all_zones_ok = 0;
2732                                 /*
2733                                  * We are still under min water mark.  This
2734                                  * means that we have a GFP_ATOMIC allocation
2735                                  * failure risk. Hurry up!
2736                                  */
2737                                 if (!zone_watermark_ok_safe(zone, order,
2738                                             min_wmark_pages(zone), end_zone, 0))
2739                                         has_under_min_watermark_zone = 1;
2740                         } else {
2741                                 /*
2742                                  * If a zone reaches its high watermark,
2743                                  * consider it to be no longer congested. It's
2744                                  * possible there are dirty pages backed by
2745                                  * congested BDIs but as pressure is relieved,
2746                                  * spectulatively avoid congestion waits
2747                                  */
2748                                 zone_clear_flag(zone, ZONE_CONGESTED);
2749                                 if (i <= *classzone_idx)
2750                                         balanced += zone->present_pages;
2751                         }
2752
2753                 }
2754                 if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2755                         break;          /* kswapd: all done */
2756                 /*
2757                  * OK, kswapd is getting into trouble.  Take a nap, then take
2758                  * another pass across the zones.
2759                  */
2760                 if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2761                         if (has_under_min_watermark_zone)
2762                                 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2763                         else
2764                                 congestion_wait(BLK_RW_ASYNC, HZ/10);
2765                 }
2766
2767                 /*
2768                  * We do this so kswapd doesn't build up large priorities for
2769                  * example when it is freeing in parallel with allocators. It
2770                  * matches the direct reclaim path behaviour in terms of impact
2771                  * on zone->*_priority.
2772                  */
2773                 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2774                         break;
2775         }
2776 out:
2777
2778         /*
2779          * order-0: All zones must meet high watermark for a balanced node
2780          * high-order: Balanced zones must make up at least 25% of the node
2781          *             for the node to be balanced
2782          */
2783         if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2784                 cond_resched();
2785
2786                 try_to_freeze();
2787
2788                 /*
2789                  * Fragmentation may mean that the system cannot be
2790                  * rebalanced for high-order allocations in all zones.
2791                  * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2792                  * it means the zones have been fully scanned and are still
2793                  * not balanced. For high-order allocations, there is
2794                  * little point trying all over again as kswapd may
2795                  * infinite loop.
2796                  *
2797                  * Instead, recheck all watermarks at order-0 as they
2798                  * are the most important. If watermarks are ok, kswapd will go
2799                  * back to sleep. High-order users can still perform direct
2800                  * reclaim if they wish.
2801                  */
2802                 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2803                         order = sc.order = 0;
2804
2805                 goto loop_again;
2806         }
2807
2808         /*
2809          * If kswapd was reclaiming at a higher order, it has the option of
2810          * sleeping without all zones being balanced. Before it does, it must
2811          * ensure that the watermarks for order-0 on *all* zones are met and
2812          * that the congestion flags are cleared. The congestion flag must
2813          * be cleared as kswapd is the only mechanism that clears the flag
2814          * and it is potentially going to sleep here.
2815          */
2816         if (order) {
2817                 int zones_need_compaction = 1;
2818
2819                 for (i = 0; i <= end_zone; i++) {
2820                         struct zone *zone = pgdat->node_zones + i;
2821
2822                         if (!populated_zone(zone))
2823                                 continue;
2824
2825                         if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2826                                 continue;
2827
2828                         /* Would compaction fail due to lack of free memory? */
2829                         if (COMPACTION_BUILD &&
2830                             compaction_suitable(zone, order) == COMPACT_SKIPPED)
2831                                 goto loop_again;
2832
2833                         /* Confirm the zone is balanced for order-0 */
2834                         if (!zone_watermark_ok(zone, 0,
2835                                         high_wmark_pages(zone), 0, 0)) {
2836                                 order = sc.order = 0;
2837                                 goto loop_again;
2838                         }
2839
2840                         /* Check if the memory needs to be defragmented. */
2841                         if (zone_watermark_ok(zone, order,
2842                                     low_wmark_pages(zone), *classzone_idx, 0))
2843                                 zones_need_compaction = 0;
2844
2845                         /* If balanced, clear the congested flag */
2846                         zone_clear_flag(zone, ZONE_CONGESTED);
2847                 }
2848
2849                 if (zones_need_compaction)
2850                         compact_pgdat(pgdat, order);
2851         }
2852
2853         /*
2854          * Return the order we were reclaiming at so sleeping_prematurely()
2855          * makes a decision on the order we were last reclaiming at. However,
2856          * if another caller entered the allocator slow path while kswapd
2857          * was awake, order will remain at the higher level
2858          */
2859         *classzone_idx = end_zone;
2860         return order;
2861 }
2862
2863 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2864 {
2865         long remaining = 0;
2866         DEFINE_WAIT(wait);
2867
2868         if (freezing(current) || kthread_should_stop())
2869                 return;
2870
2871         prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2872
2873         /* Try to sleep for a short interval */
2874         if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2875                 remaining = schedule_timeout(HZ/10);
2876                 finish_wait(&pgdat->kswapd_wait, &wait);
2877                 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2878         }
2879
2880         /*
2881          * After a short sleep, check if it was a premature sleep. If not, then
2882          * go fully to sleep until explicitly woken up.
2883          */
2884         if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2885                 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2886
2887                 /*
2888                  * vmstat counters are not perfectly accurate and the estimated
2889                  * value for counters such as NR_FREE_PAGES can deviate from the
2890                  * true value by nr_online_cpus * threshold. To avoid the zone
2891                  * watermarks being breached while under pressure, we reduce the
2892                  * per-cpu vmstat threshold while kswapd is awake and restore
2893                  * them before going back to sleep.
2894                  */
2895                 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2896                 schedule();
2897                 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2898         } else {
2899                 if (remaining)
2900                         count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2901                 else
2902                         count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2903         }
2904         finish_wait(&pgdat->kswapd_wait, &wait);
2905 }
2906
2907 /*
2908  * The background pageout daemon, started as a kernel thread
2909  * from the init process.
2910  *
2911  * This basically trickles out pages so that we have _some_
2912  * free memory available even if there is no other activity
2913  * that frees anything up. This is needed for things like routing
2914  * etc, where we otherwise might have all activity going on in
2915  * asynchronous contexts that cannot page things out.
2916  *
2917  * If there are applications that are active memory-allocators
2918  * (most normal use), this basically shouldn't matter.
2919  */
2920 static int kswapd(void *p)
2921 {
2922         unsigned long order, new_order;
2923         unsigned balanced_order;
2924         int classzone_idx, new_classzone_idx;
2925         int balanced_classzone_idx;
2926         pg_data_t *pgdat = (pg_data_t*)p;
2927         struct task_struct *tsk = current;
2928
2929         struct reclaim_state reclaim_state = {
2930                 .reclaimed_slab = 0,
2931         };
2932         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2933
2934         lockdep_set_current_reclaim_state(GFP_KERNEL);
2935
2936         if (!cpumask_empty(cpumask))
2937                 set_cpus_allowed_ptr(tsk, cpumask);
2938         current->reclaim_state = &reclaim_state;
2939
2940         /*
2941          * Tell the memory management that we're a "memory allocator",
2942          * and that if we need more memory we should get access to it
2943          * regardless (see "__alloc_pages()"). "kswapd" should
2944          * never get caught in the normal page freeing logic.
2945          *
2946          * (Kswapd normally doesn't need memory anyway, but sometimes
2947          * you need a small amount of memory in order to be able to
2948          * page out something else, and this flag essentially protects
2949          * us from recursively trying to free more memory as we're
2950          * trying to free the first piece of memory in the first place).
2951          */
2952         tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2953         set_freezable();
2954
2955         order = new_order = 0;
2956         balanced_order = 0;
2957         classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
2958         balanced_classzone_idx = classzone_idx;
2959         for ( ; ; ) {
2960                 int ret;
2961
2962                 /*
2963                  * If the last balance_pgdat was unsuccessful it's unlikely a
2964                  * new request of a similar or harder type will succeed soon
2965                  * so consider going to sleep on the basis we reclaimed at
2966                  */
2967                 if (balanced_classzone_idx >= new_classzone_idx &&
2968                                         balanced_order == new_order) {
2969                         new_order = pgdat->kswapd_max_order;
2970                         new_classzone_idx = pgdat->classzone_idx;
2971                         pgdat->kswapd_max_order =  0;
2972                         pgdat->classzone_idx = pgdat->nr_zones - 1;
2973                 }
2974
2975                 if (order < new_order || classzone_idx > new_classzone_idx) {
2976                         /*
2977                          * Don't sleep if someone wants a larger 'order'
2978                          * allocation or has tigher zone constraints
2979                          */
2980                         order = new_order;
2981                         classzone_idx = new_classzone_idx;
2982                 } else {
2983                         kswapd_try_to_sleep(pgdat, balanced_order,
2984                                                 balanced_classzone_idx);
2985                         order = pgdat->kswapd_max_order;
2986                         classzone_idx = pgdat->classzone_idx;
2987                         new_order = order;
2988                         new_classzone_idx = classzone_idx;
2989                         pgdat->kswapd_max_order = 0;
2990                         pgdat->classzone_idx = pgdat->nr_zones - 1;
2991                 }
2992
2993                 ret = try_to_freeze();
2994                 if (kthread_should_stop())
2995                         break;
2996
2997                 /*
2998                  * We can speed up thawing tasks if we don't call balance_pgdat
2999                  * after returning from the refrigerator
3000                  */
3001                 if (!ret) {
3002                         trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3003                         balanced_classzone_idx = classzone_idx;
3004                         balanced_order = balance_pgdat(pgdat, order,
3005                                                 &balanced_classzone_idx);
3006                 }
3007         }
3008         return 0;
3009 }
3010
3011 /*
3012  * A zone is low on free memory, so wake its kswapd task to service it.
3013  */
3014 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3015 {
3016         pg_data_t *pgdat;
3017
3018         if (!populated_zone(zone))
3019                 return;
3020
3021         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
3022                 return;
3023         pgdat = zone->zone_pgdat;
3024         if (pgdat->kswapd_max_order < order) {
3025                 pgdat->kswapd_max_order = order;
3026                 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3027         }
3028         if (!waitqueue_active(&pgdat->kswapd_wait))
3029                 return;
3030         if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
3031                 return;
3032
3033         trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3034         wake_up_interruptible(&pgdat->kswapd_wait);
3035 }
3036
3037 /*
3038  * The reclaimable count would be mostly accurate.
3039  * The less reclaimable pages may be
3040  * - mlocked pages, which will be moved to unevictable list when encountered
3041  * - mapped pages, which may require several travels to be reclaimed
3042  * - dirty pages, which is not "instantly" reclaimable
3043  */
3044 unsigned long global_reclaimable_pages(void)
3045 {
3046         int nr;
3047
3048         nr = global_page_state(NR_ACTIVE_FILE) +
3049              global_page_state(NR_INACTIVE_FILE);
3050
3051         if (nr_swap_pages > 0)
3052                 nr += global_page_state(NR_ACTIVE_ANON) +
3053                       global_page_state(NR_INACTIVE_ANON);
3054
3055         return nr;
3056 }
3057
3058 unsigned long zone_reclaimable_pages(struct zone *zone)
3059 {
3060         int nr;
3061
3062         nr = zone_page_state(zone, NR_ACTIVE_FILE) +
3063              zone_page_state(zone, NR_INACTIVE_FILE);
3064
3065         if (nr_swap_pages > 0)
3066                 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
3067                       zone_page_state(zone, NR_INACTIVE_ANON);
3068
3069         return nr;
3070 }
3071
3072 #ifdef CONFIG_HIBERNATION
3073 /*
3074  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3075  * freed pages.
3076  *
3077  * Rather than trying to age LRUs the aim is to preserve the overall
3078  * LRU order by reclaiming preferentially
3079  * inactive > active > active referenced > active mapped
3080  */
3081 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3082 {
3083         struct reclaim_state reclaim_state;
3084         struct scan_control sc = {
3085                 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3086                 .may_swap = 1,
3087                 .may_unmap = 1,
3088                 .may_writepage = 1,
3089                 .nr_to_reclaim = nr_to_reclaim,
3090                 .hibernation_mode = 1,
3091                 .order = 0,
3092         };
3093         struct shrink_control shrink = {
3094                 .gfp_mask = sc.gfp_mask,
3095         };
3096         struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3097         struct task_struct *p = current;
3098         unsigned long nr_reclaimed;
3099
3100         p->flags |= PF_MEMALLOC;
3101         lockdep_set_current_reclaim_state(sc.gfp_mask);
3102         reclaim_state.reclaimed_slab = 0;
3103         p->reclaim_state = &reclaim_state;
3104
3105         nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3106
3107         p->reclaim_state = NULL;
3108         lockdep_clear_current_reclaim_state();
3109         p->flags &= ~PF_MEMALLOC;
3110
3111         return nr_reclaimed;
3112 }
3113 #endif /* CONFIG_HIBERNATION */
3114
3115 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3116    not required for correctness.  So if the last cpu in a node goes
3117    away, we get changed to run anywhere: as the first one comes back,
3118    restore their cpu bindings. */
3119 static int __devinit cpu_callback(struct notifier_block *nfb,
3120                                   unsigned long action, void *hcpu)
3121 {
3122         int nid;
3123
3124         if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3125                 for_each_node_state(nid, N_HIGH_MEMORY) {
3126                         pg_data_t *pgdat = NODE_DATA(nid);
3127                         const struct cpumask *mask;
3128
3129                         mask = cpumask_of_node(pgdat->node_id);
3130
3131                         if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3132                                 /* One of our CPUs online: restore mask */
3133                                 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3134                 }
3135         }
3136         return NOTIFY_OK;
3137 }
3138
3139 /*
3140  * This kswapd start function will be called by init and node-hot-add.
3141  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3142  */
3143 int kswapd_run(int nid)
3144 {
3145         pg_data_t *pgdat = NODE_DATA(nid);
3146         int ret = 0;
3147
3148         if (pgdat->kswapd)
3149                 return 0;
3150
3151         pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3152         if (IS_ERR(pgdat->kswapd)) {
3153                 /* failure at boot is fatal */
3154                 BUG_ON(system_state == SYSTEM_BOOTING);
3155                 printk("Failed to start kswapd on node %d\n",nid);
3156                 ret = -1;
3157         }
3158         return ret;
3159 }
3160
3161 /*
3162  * Called by memory hotplug when all memory in a node is offlined.
3163  */
3164 void kswapd_stop(int nid)
3165 {
3166         struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3167
3168         if (kswapd)
3169                 kthread_stop(kswapd);
3170 }
3171
3172 static int __init kswapd_init(void)
3173 {
3174         int nid;
3175
3176         swap_setup();
3177         for_each_node_state(nid, N_HIGH_MEMORY)
3178                 kswapd_run(nid);
3179         hotcpu_notifier(cpu_callback, 0);
3180         return 0;
3181 }
3182
3183 module_init(kswapd_init)
3184
3185 #ifdef CONFIG_NUMA
3186 /*
3187  * Zone reclaim mode
3188  *
3189  * If non-zero call zone_reclaim when the number of free pages falls below
3190  * the watermarks.
3191  */
3192 int zone_reclaim_mode __read_mostly;
3193
3194 #define RECLAIM_OFF 0
3195 #define RECLAIM_ZONE (1<<0)     /* Run shrink_inactive_list on the zone */
3196 #define RECLAIM_WRITE (1<<1)    /* Writeout pages during reclaim */
3197 #define RECLAIM_SWAP (1<<2)     /* Swap pages out during reclaim */
3198
3199 /*
3200  * Priority for ZONE_RECLAIM. This determines the fraction of pages
3201  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3202  * a zone.
3203  */
3204 #define ZONE_RECLAIM_PRIORITY 4
3205
3206 /*
3207  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3208  * occur.
3209  */
3210 int sysctl_min_unmapped_ratio = 1;
3211
3212 /*
3213  * If the number of slab pages in a zone grows beyond this percentage then
3214  * slab reclaim needs to occur.
3215  */
3216 int sysctl_min_slab_ratio = 5;
3217
3218 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3219 {
3220         unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3221         unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3222                 zone_page_state(zone, NR_ACTIVE_FILE);
3223
3224         /*
3225          * It's possible for there to be more file mapped pages than
3226          * accounted for by the pages on the file LRU lists because
3227          * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3228          */
3229         return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3230 }
3231
3232 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3233 static long zone_pagecache_reclaimable(struct zone *zone)
3234 {
3235         long nr_pagecache_reclaimable;
3236         long delta = 0;
3237
3238         /*
3239          * If RECLAIM_SWAP is set, then all file pages are considered
3240          * potentially reclaimable. Otherwise, we have to worry about
3241          * pages like swapcache and zone_unmapped_file_pages() provides
3242          * a better estimate
3243          */
3244         if (zone_reclaim_mode & RECLAIM_SWAP)
3245                 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3246         else
3247                 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3248
3249         /* If we can't clean pages, remove dirty pages from consideration */
3250         if (!(zone_reclaim_mode & RECLAIM_WRITE))
3251                 delta += zone_page_state(zone, NR_FILE_DIRTY);
3252
3253         /* Watch for any possible underflows due to delta */
3254         if (unlikely(delta > nr_pagecache_reclaimable))
3255                 delta = nr_pagecache_reclaimable;
3256
3257         return nr_pagecache_reclaimable - delta;
3258 }
3259
3260 /*
3261  * Try to free up some pages from this zone through reclaim.
3262  */
3263 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3264 {
3265         /* Minimum pages needed in order to stay on node */
3266         const unsigned long nr_pages = 1 << order;
3267         struct task_struct *p = current;
3268         struct reclaim_state reclaim_state;
3269         int priority;
3270         struct scan_control sc = {
3271                 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3272                 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3273                 .may_swap = 1,
3274                 .nr_to_reclaim = max_t(unsigned long, nr_pages,
3275                                        SWAP_CLUSTER_MAX),
3276                 .gfp_mask = gfp_mask,
3277                 .order = order,
3278         };
3279         struct shrink_control shrink = {
3280                 .gfp_mask = sc.gfp_mask,
3281         };
3282         unsigned long nr_slab_pages0, nr_slab_pages1;
3283
3284         cond_resched();
3285         /*
3286          * We need to be able to allocate from the reserves for RECLAIM_SWAP
3287          * and we also need to be able to write out pages for RECLAIM_WRITE
3288          * and RECLAIM_SWAP.
3289          */
3290         p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3291         lockdep_set_current_reclaim_state(gfp_mask);
3292         reclaim_state.reclaimed_slab = 0;
3293         p->reclaim_state = &reclaim_state;
3294
3295         if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3296                 /*
3297                  * Free memory by calling shrink zone with increasing
3298                  * priorities until we have enough memory freed.
3299                  */
3300                 priority = ZONE_RECLAIM_PRIORITY;
3301                 do {
3302                         shrink_zone(priority, zone, &sc);
3303                         priority--;
3304                 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
3305         }
3306
3307         nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3308         if (nr_slab_pages0 > zone->min_slab_pages) {
3309                 /*
3310                  * shrink_slab() does not currently allow us to determine how
3311                  * many pages were freed in this zone. So we take the current
3312                  * number of slab pages and shake the slab until it is reduced
3313                  * by the same nr_pages that we used for reclaiming unmapped
3314                  * pages.
3315                  *
3316                  * Note that shrink_slab will free memory on all zones and may
3317                  * take a long time.
3318                  */
3319                 for (;;) {
3320                         unsigned long lru_pages = zone_reclaimable_pages(zone);
3321
3322                         /* No reclaimable slab or very low memory pressure */
3323                         if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3324                                 break;
3325
3326                         /* Freed enough memory */
3327                         nr_slab_pages1 = zone_page_state(zone,
3328                                                         NR_SLAB_RECLAIMABLE);
3329                         if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3330                                 break;
3331                 }
3332
3333                 /*
3334                  * Update nr_reclaimed by the number of slab pages we
3335                  * reclaimed from this zone.
3336                  */
3337                 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3338                 if (nr_slab_pages1 < nr_slab_pages0)
3339                         sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3340         }
3341
3342         p->reclaim_state = NULL;
3343         current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3344         lockdep_clear_current_reclaim_state();
3345         return sc.nr_reclaimed >= nr_pages;
3346 }
3347
3348 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3349 {
3350         int node_id;
3351         int ret;
3352
3353         /*
3354          * Zone reclaim reclaims unmapped file backed pages and
3355          * slab pages if we are over the defined limits.
3356          *
3357          * A small portion of unmapped file backed pages is needed for
3358          * file I/O otherwise pages read by file I/O will be immediately
3359          * thrown out if the zone is overallocated. So we do not reclaim
3360          * if less than a specified percentage of the zone is used by
3361          * unmapped file backed pages.
3362          */
3363         if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3364             zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3365                 return ZONE_RECLAIM_FULL;
3366
3367         if (zone->all_unreclaimable)
3368                 return ZONE_RECLAIM_FULL;
3369
3370         /*
3371          * Do not scan if the allocation should not be delayed.
3372          */
3373         if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3374                 return ZONE_RECLAIM_NOSCAN;
3375
3376         /*
3377          * Only run zone reclaim on the local zone or on zones that do not
3378          * have associated processors. This will favor the local processor
3379          * over remote processors and spread off node memory allocations
3380          * as wide as possible.
3381          */
3382         node_id = zone_to_nid(zone);
3383         if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3384                 return ZONE_RECLAIM_NOSCAN;
3385
3386         if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3387                 return ZONE_RECLAIM_NOSCAN;
3388
3389         ret = __zone_reclaim(zone, gfp_mask, order);
3390         zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3391
3392         if (!ret)
3393                 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3394
3395         return ret;
3396 }
3397 #endif
3398
3399 /*
3400  * page_evictable - test whether a page is evictable
3401  * @page: the page to test
3402  * @vma: the VMA in which the page is or will be mapped, may be NULL
3403  *
3404  * Test whether page is evictable--i.e., should be placed on active/inactive
3405  * lists vs unevictable list.  The vma argument is !NULL when called from the
3406  * fault path to determine how to instantate a new page.
3407  *
3408  * Reasons page might not be evictable:
3409  * (1) page's mapping marked unevictable
3410  * (2) page is part of an mlocked VMA
3411  *
3412  */
3413 int page_evictable(struct page *page, struct vm_area_struct *vma)
3414 {
3415
3416         if (mapping_unevictable(page_mapping(page)))
3417                 return 0;
3418
3419         if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
3420                 return 0;
3421
3422         return 1;
3423 }
3424
3425 #ifdef CONFIG_SHMEM
3426 /**
3427  * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3428  * @pages:      array of pages to check
3429  * @nr_pages:   number of pages to check
3430  *
3431  * Checks pages for evictability and moves them to the appropriate lru list.
3432  *
3433  * This function is only used for SysV IPC SHM_UNLOCK.
3434  */
3435 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3436 {
3437         struct lruvec *lruvec;
3438         struct zone *zone = NULL;
3439         int pgscanned = 0;
3440         int pgrescued = 0;
3441         int i;
3442
3443         for (i = 0; i < nr_pages; i++) {
3444                 struct page *page = pages[i];
3445                 struct zone *pagezone;
3446
3447                 pgscanned++;
3448                 pagezone = page_zone(page);
3449                 if (pagezone != zone) {
3450                         if (zone)
3451                                 spin_unlock_irq(&zone->lru_lock);
3452                         zone = pagezone;
3453                         spin_lock_irq(&zone->lru_lock);
3454                 }
3455
3456                 if (!PageLRU(page) || !PageUnevictable(page))
3457                         continue;
3458
3459                 if (page_evictable(page, NULL)) {
3460                         enum lru_list lru = page_lru_base_type(page);
3461
3462                         VM_BUG_ON(PageActive(page));
3463                         ClearPageUnevictable(page);
3464                         __dec_zone_state(zone, NR_UNEVICTABLE);
3465                         lruvec = mem_cgroup_lru_move_lists(zone, page,
3466                                                 LRU_UNEVICTABLE, lru);
3467                         list_move(&page->lru, &lruvec->lists[lru]);
3468                         __inc_zone_state(zone, NR_INACTIVE_ANON + lru);
3469                         pgrescued++;
3470                 }
3471         }
3472
3473         if (zone) {
3474                 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3475                 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3476                 spin_unlock_irq(&zone->lru_lock);
3477         }
3478 }
3479 #endif /* CONFIG_SHMEM */
3480
3481 static void warn_scan_unevictable_pages(void)
3482 {
3483         printk_once(KERN_WARNING
3484                     "%s: The scan_unevictable_pages sysctl/node-interface has been "
3485                     "disabled for lack of a legitimate use case.  If you have "
3486                     "one, please send an email to linux-mm@kvack.org.\n",
3487                     current->comm);
3488 }
3489
3490 /*
3491  * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3492  * all nodes' unevictable lists for evictable pages
3493  */
3494 unsigned long scan_unevictable_pages;
3495
3496 int scan_unevictable_handler(struct ctl_table *table, int write,
3497                            void __user *buffer,
3498                            size_t *length, loff_t *ppos)
3499 {
3500         warn_scan_unevictable_pages();
3501         proc_doulongvec_minmax(table, write, buffer, length, ppos);
3502         scan_unevictable_pages = 0;
3503         return 0;
3504 }
3505
3506 #ifdef CONFIG_NUMA
3507 /*
3508  * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3509  * a specified node's per zone unevictable lists for evictable pages.
3510  */
3511
3512 static ssize_t read_scan_unevictable_node(struct device *dev,
3513                                           struct device_attribute *attr,
3514                                           char *buf)
3515 {
3516         warn_scan_unevictable_pages();
3517         return sprintf(buf, "0\n");     /* always zero; should fit... */
3518 }
3519
3520 static ssize_t write_scan_unevictable_node(struct device *dev,
3521                                            struct device_attribute *attr,
3522                                         const char *buf, size_t count)
3523 {
3524         warn_scan_unevictable_pages();
3525         return 1;
3526 }
3527
3528
3529 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3530                         read_scan_unevictable_node,
3531                         write_scan_unevictable_node);
3532
3533 int scan_unevictable_register_node(struct node *node)
3534 {
3535         return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3536 }
3537
3538 void scan_unevictable_unregister_node(struct node *node)
3539 {
3540         device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3541 }
3542 #endif