zsmalloc: use OBJ_TAG_BIT for bit shifter
[cascardo/linux.git] / mm / zsmalloc.c
1 /*
2  * zsmalloc memory allocator
3  *
4  * Copyright (C) 2011  Nitin Gupta
5  * Copyright (C) 2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the license that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  */
13
14 /*
15  * Following is how we use various fields and flags of underlying
16  * struct page(s) to form a zspage.
17  *
18  * Usage of struct page fields:
19  *      page->private: points to zspage
20  *      page->freelist(index): links together all component pages of a zspage
21  *              For the huge page, this is always 0, so we use this field
22  *              to store handle.
23  *
24  * Usage of struct page flags:
25  *      PG_private: identifies the first component page
26  *      PG_private2: identifies the last component page
27  *      PG_owner_priv_1: indentifies the huge component page
28  *
29  */
30
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
33 #include <linux/module.h>
34 #include <linux/kernel.h>
35 #include <linux/sched.h>
36 #include <linux/bitops.h>
37 #include <linux/errno.h>
38 #include <linux/highmem.h>
39 #include <linux/string.h>
40 #include <linux/slab.h>
41 #include <asm/tlbflush.h>
42 #include <asm/pgtable.h>
43 #include <linux/cpumask.h>
44 #include <linux/cpu.h>
45 #include <linux/vmalloc.h>
46 #include <linux/preempt.h>
47 #include <linux/spinlock.h>
48 #include <linux/types.h>
49 #include <linux/debugfs.h>
50 #include <linux/zsmalloc.h>
51 #include <linux/zpool.h>
52 #include <linux/mount.h>
53 #include <linux/compaction.h>
54 #include <linux/pagemap.h>
55
56 #define ZSPAGE_MAGIC    0x58
57
58 /*
59  * This must be power of 2 and greater than of equal to sizeof(link_free).
60  * These two conditions ensure that any 'struct link_free' itself doesn't
61  * span more than 1 page which avoids complex case of mapping 2 pages simply
62  * to restore link_free pointer values.
63  */
64 #define ZS_ALIGN                8
65
66 /*
67  * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
68  * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
69  */
70 #define ZS_MAX_ZSPAGE_ORDER 2
71 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
72
73 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
74
75 /*
76  * Object location (<PFN>, <obj_idx>) is encoded as
77  * as single (unsigned long) handle value.
78  *
79  * Note that object index <obj_idx> starts from 0.
80  *
81  * This is made more complicated by various memory models and PAE.
82  */
83
84 #ifndef MAX_PHYSMEM_BITS
85 #ifdef CONFIG_HIGHMEM64G
86 #define MAX_PHYSMEM_BITS 36
87 #else /* !CONFIG_HIGHMEM64G */
88 /*
89  * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
90  * be PAGE_SHIFT
91  */
92 #define MAX_PHYSMEM_BITS BITS_PER_LONG
93 #endif
94 #endif
95 #define _PFN_BITS               (MAX_PHYSMEM_BITS - PAGE_SHIFT)
96
97 /*
98  * Memory for allocating for handle keeps object position by
99  * encoding <page, obj_idx> and the encoded value has a room
100  * in least bit(ie, look at obj_to_location).
101  * We use the bit to synchronize between object access by
102  * user and migration.
103  */
104 #define HANDLE_PIN_BIT  0
105
106 /*
107  * Head in allocated object should have OBJ_ALLOCATED_TAG
108  * to identify the object was allocated or not.
109  * It's okay to add the status bit in the least bit because
110  * header keeps handle which is 4byte-aligned address so we
111  * have room for two bit at least.
112  */
113 #define OBJ_ALLOCATED_TAG 1
114 #define OBJ_TAG_BITS 1
115 #define OBJ_INDEX_BITS  (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
116 #define OBJ_INDEX_MASK  ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
117
118 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
119 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
120 #define ZS_MIN_ALLOC_SIZE \
121         MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
122 /* each chunk includes extra space to keep handle */
123 #define ZS_MAX_ALLOC_SIZE       PAGE_SIZE
124
125 /*
126  * On systems with 4K page size, this gives 255 size classes! There is a
127  * trader-off here:
128  *  - Large number of size classes is potentially wasteful as free page are
129  *    spread across these classes
130  *  - Small number of size classes causes large internal fragmentation
131  *  - Probably its better to use specific size classes (empirically
132  *    determined). NOTE: all those class sizes must be set as multiple of
133  *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
134  *
135  *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
136  *  (reason above)
137  */
138 #define ZS_SIZE_CLASS_DELTA     (PAGE_SIZE >> CLASS_BITS)
139
140 /*
141  * We do not maintain any list for completely empty or full pages
142  */
143 enum fullness_group {
144         ZS_EMPTY,
145         ZS_ALMOST_EMPTY,
146         ZS_ALMOST_FULL,
147         ZS_FULL,
148         NR_ZS_FULLNESS,
149 };
150
151 enum zs_stat_type {
152         CLASS_EMPTY,
153         CLASS_ALMOST_EMPTY,
154         CLASS_ALMOST_FULL,
155         CLASS_FULL,
156         OBJ_ALLOCATED,
157         OBJ_USED,
158         NR_ZS_STAT_TYPE,
159 };
160
161 struct zs_size_stat {
162         unsigned long objs[NR_ZS_STAT_TYPE];
163 };
164
165 #ifdef CONFIG_ZSMALLOC_STAT
166 static struct dentry *zs_stat_root;
167 #endif
168
169 #ifdef CONFIG_COMPACTION
170 static struct vfsmount *zsmalloc_mnt;
171 #endif
172
173 /*
174  * number of size_classes
175  */
176 static int zs_size_classes;
177
178 /*
179  * We assign a page to ZS_ALMOST_EMPTY fullness group when:
180  *      n <= N / f, where
181  * n = number of allocated objects
182  * N = total number of objects zspage can store
183  * f = fullness_threshold_frac
184  *
185  * Similarly, we assign zspage to:
186  *      ZS_ALMOST_FULL  when n > N / f
187  *      ZS_EMPTY        when n == 0
188  *      ZS_FULL         when n == N
189  *
190  * (see: fix_fullness_group())
191  */
192 static const int fullness_threshold_frac = 4;
193
194 struct size_class {
195         spinlock_t lock;
196         struct list_head fullness_list[NR_ZS_FULLNESS];
197         /*
198          * Size of objects stored in this class. Must be multiple
199          * of ZS_ALIGN.
200          */
201         int size;
202         int objs_per_zspage;
203         /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
204         int pages_per_zspage;
205
206         unsigned int index;
207         struct zs_size_stat stats;
208 };
209
210 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
211 static void SetPageHugeObject(struct page *page)
212 {
213         SetPageOwnerPriv1(page);
214 }
215
216 static void ClearPageHugeObject(struct page *page)
217 {
218         ClearPageOwnerPriv1(page);
219 }
220
221 static int PageHugeObject(struct page *page)
222 {
223         return PageOwnerPriv1(page);
224 }
225
226 /*
227  * Placed within free objects to form a singly linked list.
228  * For every zspage, zspage->freeobj gives head of this list.
229  *
230  * This must be power of 2 and less than or equal to ZS_ALIGN
231  */
232 struct link_free {
233         union {
234                 /*
235                  * Free object index;
236                  * It's valid for non-allocated object
237                  */
238                 unsigned long next;
239                 /*
240                  * Handle of allocated object.
241                  */
242                 unsigned long handle;
243         };
244 };
245
246 struct zs_pool {
247         const char *name;
248
249         struct size_class **size_class;
250         struct kmem_cache *handle_cachep;
251         struct kmem_cache *zspage_cachep;
252
253         atomic_long_t pages_allocated;
254
255         struct zs_pool_stats stats;
256
257         /* Compact classes */
258         struct shrinker shrinker;
259         /*
260          * To signify that register_shrinker() was successful
261          * and unregister_shrinker() will not Oops.
262          */
263         bool shrinker_enabled;
264 #ifdef CONFIG_ZSMALLOC_STAT
265         struct dentry *stat_dentry;
266 #endif
267 #ifdef CONFIG_COMPACTION
268         struct inode *inode;
269         struct work_struct free_work;
270 #endif
271 };
272
273 /*
274  * A zspage's class index and fullness group
275  * are encoded in its (first)page->mapping
276  */
277 #define FULLNESS_BITS   2
278 #define CLASS_BITS      8
279 #define ISOLATED_BITS   3
280 #define MAGIC_VAL_BITS  8
281
282 struct zspage {
283         struct {
284                 unsigned int fullness:FULLNESS_BITS;
285                 unsigned int class:CLASS_BITS;
286                 unsigned int isolated:ISOLATED_BITS;
287                 unsigned int magic:MAGIC_VAL_BITS;
288         };
289         unsigned int inuse;
290         unsigned int freeobj;
291         struct page *first_page;
292         struct list_head list; /* fullness list */
293 #ifdef CONFIG_COMPACTION
294         rwlock_t lock;
295 #endif
296 };
297
298 struct mapping_area {
299 #ifdef CONFIG_PGTABLE_MAPPING
300         struct vm_struct *vm; /* vm area for mapping object that span pages */
301 #else
302         char *vm_buf; /* copy buffer for objects that span pages */
303 #endif
304         char *vm_addr; /* address of kmap_atomic()'ed pages */
305         enum zs_mapmode vm_mm; /* mapping mode */
306 };
307
308 #ifdef CONFIG_COMPACTION
309 static int zs_register_migration(struct zs_pool *pool);
310 static void zs_unregister_migration(struct zs_pool *pool);
311 static void migrate_lock_init(struct zspage *zspage);
312 static void migrate_read_lock(struct zspage *zspage);
313 static void migrate_read_unlock(struct zspage *zspage);
314 static void kick_deferred_free(struct zs_pool *pool);
315 static void init_deferred_free(struct zs_pool *pool);
316 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
317 #else
318 static int zsmalloc_mount(void) { return 0; }
319 static void zsmalloc_unmount(void) {}
320 static int zs_register_migration(struct zs_pool *pool) { return 0; }
321 static void zs_unregister_migration(struct zs_pool *pool) {}
322 static void migrate_lock_init(struct zspage *zspage) {}
323 static void migrate_read_lock(struct zspage *zspage) {}
324 static void migrate_read_unlock(struct zspage *zspage) {}
325 static void kick_deferred_free(struct zs_pool *pool) {}
326 static void init_deferred_free(struct zs_pool *pool) {}
327 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
328 #endif
329
330 static int create_cache(struct zs_pool *pool)
331 {
332         pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
333                                         0, 0, NULL);
334         if (!pool->handle_cachep)
335                 return 1;
336
337         pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
338                                         0, 0, NULL);
339         if (!pool->zspage_cachep) {
340                 kmem_cache_destroy(pool->handle_cachep);
341                 pool->handle_cachep = NULL;
342                 return 1;
343         }
344
345         return 0;
346 }
347
348 static void destroy_cache(struct zs_pool *pool)
349 {
350         kmem_cache_destroy(pool->handle_cachep);
351         kmem_cache_destroy(pool->zspage_cachep);
352 }
353
354 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
355 {
356         return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
357                         gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
358 }
359
360 static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
361 {
362         kmem_cache_free(pool->handle_cachep, (void *)handle);
363 }
364
365 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
366 {
367         return kmem_cache_alloc(pool->zspage_cachep,
368                         flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
369 };
370
371 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
372 {
373         kmem_cache_free(pool->zspage_cachep, zspage);
374 }
375
376 static void record_obj(unsigned long handle, unsigned long obj)
377 {
378         /*
379          * lsb of @obj represents handle lock while other bits
380          * represent object value the handle is pointing so
381          * updating shouldn't do store tearing.
382          */
383         WRITE_ONCE(*(unsigned long *)handle, obj);
384 }
385
386 /* zpool driver */
387
388 #ifdef CONFIG_ZPOOL
389
390 static void *zs_zpool_create(const char *name, gfp_t gfp,
391                              const struct zpool_ops *zpool_ops,
392                              struct zpool *zpool)
393 {
394         /*
395          * Ignore global gfp flags: zs_malloc() may be invoked from
396          * different contexts and its caller must provide a valid
397          * gfp mask.
398          */
399         return zs_create_pool(name);
400 }
401
402 static void zs_zpool_destroy(void *pool)
403 {
404         zs_destroy_pool(pool);
405 }
406
407 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
408                         unsigned long *handle)
409 {
410         *handle = zs_malloc(pool, size, gfp);
411         return *handle ? 0 : -1;
412 }
413 static void zs_zpool_free(void *pool, unsigned long handle)
414 {
415         zs_free(pool, handle);
416 }
417
418 static int zs_zpool_shrink(void *pool, unsigned int pages,
419                         unsigned int *reclaimed)
420 {
421         return -EINVAL;
422 }
423
424 static void *zs_zpool_map(void *pool, unsigned long handle,
425                         enum zpool_mapmode mm)
426 {
427         enum zs_mapmode zs_mm;
428
429         switch (mm) {
430         case ZPOOL_MM_RO:
431                 zs_mm = ZS_MM_RO;
432                 break;
433         case ZPOOL_MM_WO:
434                 zs_mm = ZS_MM_WO;
435                 break;
436         case ZPOOL_MM_RW: /* fallthru */
437         default:
438                 zs_mm = ZS_MM_RW;
439                 break;
440         }
441
442         return zs_map_object(pool, handle, zs_mm);
443 }
444 static void zs_zpool_unmap(void *pool, unsigned long handle)
445 {
446         zs_unmap_object(pool, handle);
447 }
448
449 static u64 zs_zpool_total_size(void *pool)
450 {
451         return zs_get_total_pages(pool) << PAGE_SHIFT;
452 }
453
454 static struct zpool_driver zs_zpool_driver = {
455         .type =         "zsmalloc",
456         .owner =        THIS_MODULE,
457         .create =       zs_zpool_create,
458         .destroy =      zs_zpool_destroy,
459         .malloc =       zs_zpool_malloc,
460         .free =         zs_zpool_free,
461         .shrink =       zs_zpool_shrink,
462         .map =          zs_zpool_map,
463         .unmap =        zs_zpool_unmap,
464         .total_size =   zs_zpool_total_size,
465 };
466
467 MODULE_ALIAS("zpool-zsmalloc");
468 #endif /* CONFIG_ZPOOL */
469
470 static unsigned int get_maxobj_per_zspage(int size, int pages_per_zspage)
471 {
472         return pages_per_zspage * PAGE_SIZE / size;
473 }
474
475 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
476 static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
477
478 static bool is_zspage_isolated(struct zspage *zspage)
479 {
480         return zspage->isolated;
481 }
482
483 static int is_first_page(struct page *page)
484 {
485         return PagePrivate(page);
486 }
487
488 /* Protected by class->lock */
489 static inline int get_zspage_inuse(struct zspage *zspage)
490 {
491         return zspage->inuse;
492 }
493
494 static inline void set_zspage_inuse(struct zspage *zspage, int val)
495 {
496         zspage->inuse = val;
497 }
498
499 static inline void mod_zspage_inuse(struct zspage *zspage, int val)
500 {
501         zspage->inuse += val;
502 }
503
504 static inline struct page *get_first_page(struct zspage *zspage)
505 {
506         struct page *first_page = zspage->first_page;
507
508         VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
509         return first_page;
510 }
511
512 static inline int get_first_obj_offset(struct page *page)
513 {
514         return page->units;
515 }
516
517 static inline void set_first_obj_offset(struct page *page, int offset)
518 {
519         page->units = offset;
520 }
521
522 static inline unsigned int get_freeobj(struct zspage *zspage)
523 {
524         return zspage->freeobj;
525 }
526
527 static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
528 {
529         zspage->freeobj = obj;
530 }
531
532 static void get_zspage_mapping(struct zspage *zspage,
533                                 unsigned int *class_idx,
534                                 enum fullness_group *fullness)
535 {
536         BUG_ON(zspage->magic != ZSPAGE_MAGIC);
537
538         *fullness = zspage->fullness;
539         *class_idx = zspage->class;
540 }
541
542 static void set_zspage_mapping(struct zspage *zspage,
543                                 unsigned int class_idx,
544                                 enum fullness_group fullness)
545 {
546         zspage->class = class_idx;
547         zspage->fullness = fullness;
548 }
549
550 /*
551  * zsmalloc divides the pool into various size classes where each
552  * class maintains a list of zspages where each zspage is divided
553  * into equal sized chunks. Each allocation falls into one of these
554  * classes depending on its size. This function returns index of the
555  * size class which has chunk size big enough to hold the give size.
556  */
557 static int get_size_class_index(int size)
558 {
559         int idx = 0;
560
561         if (likely(size > ZS_MIN_ALLOC_SIZE))
562                 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
563                                 ZS_SIZE_CLASS_DELTA);
564
565         return min(zs_size_classes - 1, idx);
566 }
567
568 static inline void zs_stat_inc(struct size_class *class,
569                                 enum zs_stat_type type, unsigned long cnt)
570 {
571         class->stats.objs[type] += cnt;
572 }
573
574 static inline void zs_stat_dec(struct size_class *class,
575                                 enum zs_stat_type type, unsigned long cnt)
576 {
577         class->stats.objs[type] -= cnt;
578 }
579
580 static inline unsigned long zs_stat_get(struct size_class *class,
581                                 enum zs_stat_type type)
582 {
583         return class->stats.objs[type];
584 }
585
586 #ifdef CONFIG_ZSMALLOC_STAT
587
588 static void __init zs_stat_init(void)
589 {
590         if (!debugfs_initialized()) {
591                 pr_warn("debugfs not available, stat dir not created\n");
592                 return;
593         }
594
595         zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
596         if (!zs_stat_root)
597                 pr_warn("debugfs 'zsmalloc' stat dir creation failed\n");
598 }
599
600 static void __exit zs_stat_exit(void)
601 {
602         debugfs_remove_recursive(zs_stat_root);
603 }
604
605 static unsigned long zs_can_compact(struct size_class *class);
606
607 static int zs_stats_size_show(struct seq_file *s, void *v)
608 {
609         int i;
610         struct zs_pool *pool = s->private;
611         struct size_class *class;
612         int objs_per_zspage;
613         unsigned long class_almost_full, class_almost_empty;
614         unsigned long obj_allocated, obj_used, pages_used, freeable;
615         unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
616         unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
617         unsigned long total_freeable = 0;
618
619         seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
620                         "class", "size", "almost_full", "almost_empty",
621                         "obj_allocated", "obj_used", "pages_used",
622                         "pages_per_zspage", "freeable");
623
624         for (i = 0; i < zs_size_classes; i++) {
625                 class = pool->size_class[i];
626
627                 if (class->index != i)
628                         continue;
629
630                 spin_lock(&class->lock);
631                 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
632                 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
633                 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
634                 obj_used = zs_stat_get(class, OBJ_USED);
635                 freeable = zs_can_compact(class);
636                 spin_unlock(&class->lock);
637
638                 objs_per_zspage = get_maxobj_per_zspage(class->size,
639                                 class->pages_per_zspage);
640                 pages_used = obj_allocated / objs_per_zspage *
641                                 class->pages_per_zspage;
642
643                 seq_printf(s, " %5u %5u %11lu %12lu %13lu"
644                                 " %10lu %10lu %16d %8lu\n",
645                         i, class->size, class_almost_full, class_almost_empty,
646                         obj_allocated, obj_used, pages_used,
647                         class->pages_per_zspage, freeable);
648
649                 total_class_almost_full += class_almost_full;
650                 total_class_almost_empty += class_almost_empty;
651                 total_objs += obj_allocated;
652                 total_used_objs += obj_used;
653                 total_pages += pages_used;
654                 total_freeable += freeable;
655         }
656
657         seq_puts(s, "\n");
658         seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
659                         "Total", "", total_class_almost_full,
660                         total_class_almost_empty, total_objs,
661                         total_used_objs, total_pages, "", total_freeable);
662
663         return 0;
664 }
665
666 static int zs_stats_size_open(struct inode *inode, struct file *file)
667 {
668         return single_open(file, zs_stats_size_show, inode->i_private);
669 }
670
671 static const struct file_operations zs_stat_size_ops = {
672         .open           = zs_stats_size_open,
673         .read           = seq_read,
674         .llseek         = seq_lseek,
675         .release        = single_release,
676 };
677
678 static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
679 {
680         struct dentry *entry;
681
682         if (!zs_stat_root) {
683                 pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
684                 return;
685         }
686
687         entry = debugfs_create_dir(name, zs_stat_root);
688         if (!entry) {
689                 pr_warn("debugfs dir <%s> creation failed\n", name);
690                 return;
691         }
692         pool->stat_dentry = entry;
693
694         entry = debugfs_create_file("classes", S_IFREG | S_IRUGO,
695                         pool->stat_dentry, pool, &zs_stat_size_ops);
696         if (!entry) {
697                 pr_warn("%s: debugfs file entry <%s> creation failed\n",
698                                 name, "classes");
699                 debugfs_remove_recursive(pool->stat_dentry);
700                 pool->stat_dentry = NULL;
701         }
702 }
703
704 static void zs_pool_stat_destroy(struct zs_pool *pool)
705 {
706         debugfs_remove_recursive(pool->stat_dentry);
707 }
708
709 #else /* CONFIG_ZSMALLOC_STAT */
710 static void __init zs_stat_init(void)
711 {
712 }
713
714 static void __exit zs_stat_exit(void)
715 {
716 }
717
718 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
719 {
720 }
721
722 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
723 {
724 }
725 #endif
726
727
728 /*
729  * For each size class, zspages are divided into different groups
730  * depending on how "full" they are. This was done so that we could
731  * easily find empty or nearly empty zspages when we try to shrink
732  * the pool (not yet implemented). This function returns fullness
733  * status of the given page.
734  */
735 static enum fullness_group get_fullness_group(struct size_class *class,
736                                                 struct zspage *zspage)
737 {
738         int inuse, objs_per_zspage;
739         enum fullness_group fg;
740
741         inuse = get_zspage_inuse(zspage);
742         objs_per_zspage = class->objs_per_zspage;
743
744         if (inuse == 0)
745                 fg = ZS_EMPTY;
746         else if (inuse == objs_per_zspage)
747                 fg = ZS_FULL;
748         else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
749                 fg = ZS_ALMOST_EMPTY;
750         else
751                 fg = ZS_ALMOST_FULL;
752
753         return fg;
754 }
755
756 /*
757  * Each size class maintains various freelists and zspages are assigned
758  * to one of these freelists based on the number of live objects they
759  * have. This functions inserts the given zspage into the freelist
760  * identified by <class, fullness_group>.
761  */
762 static void insert_zspage(struct size_class *class,
763                                 struct zspage *zspage,
764                                 enum fullness_group fullness)
765 {
766         struct zspage *head;
767
768         zs_stat_inc(class, fullness, 1);
769         head = list_first_entry_or_null(&class->fullness_list[fullness],
770                                         struct zspage, list);
771         /*
772          * We want to see more ZS_FULL pages and less almost empty/full.
773          * Put pages with higher ->inuse first.
774          */
775         if (head) {
776                 if (get_zspage_inuse(zspage) < get_zspage_inuse(head)) {
777                         list_add(&zspage->list, &head->list);
778                         return;
779                 }
780         }
781         list_add(&zspage->list, &class->fullness_list[fullness]);
782 }
783
784 /*
785  * This function removes the given zspage from the freelist identified
786  * by <class, fullness_group>.
787  */
788 static void remove_zspage(struct size_class *class,
789                                 struct zspage *zspage,
790                                 enum fullness_group fullness)
791 {
792         VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
793         VM_BUG_ON(is_zspage_isolated(zspage));
794
795         list_del_init(&zspage->list);
796         zs_stat_dec(class, fullness, 1);
797 }
798
799 /*
800  * Each size class maintains zspages in different fullness groups depending
801  * on the number of live objects they contain. When allocating or freeing
802  * objects, the fullness status of the page can change, say, from ALMOST_FULL
803  * to ALMOST_EMPTY when freeing an object. This function checks if such
804  * a status change has occurred for the given page and accordingly moves the
805  * page from the freelist of the old fullness group to that of the new
806  * fullness group.
807  */
808 static enum fullness_group fix_fullness_group(struct size_class *class,
809                                                 struct zspage *zspage)
810 {
811         int class_idx;
812         enum fullness_group currfg, newfg;
813
814         get_zspage_mapping(zspage, &class_idx, &currfg);
815         newfg = get_fullness_group(class, zspage);
816         if (newfg == currfg)
817                 goto out;
818
819         if (!is_zspage_isolated(zspage)) {
820                 remove_zspage(class, zspage, currfg);
821                 insert_zspage(class, zspage, newfg);
822         }
823
824         set_zspage_mapping(zspage, class_idx, newfg);
825
826 out:
827         return newfg;
828 }
829
830 /*
831  * We have to decide on how many pages to link together
832  * to form a zspage for each size class. This is important
833  * to reduce wastage due to unusable space left at end of
834  * each zspage which is given as:
835  *     wastage = Zp % class_size
836  *     usage = Zp - wastage
837  * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
838  *
839  * For example, for size class of 3/8 * PAGE_SIZE, we should
840  * link together 3 PAGE_SIZE sized pages to form a zspage
841  * since then we can perfectly fit in 8 such objects.
842  */
843 static int get_pages_per_zspage(int class_size)
844 {
845         int i, max_usedpc = 0;
846         /* zspage order which gives maximum used size per KB */
847         int max_usedpc_order = 1;
848
849         for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
850                 int zspage_size;
851                 int waste, usedpc;
852
853                 zspage_size = i * PAGE_SIZE;
854                 waste = zspage_size % class_size;
855                 usedpc = (zspage_size - waste) * 100 / zspage_size;
856
857                 if (usedpc > max_usedpc) {
858                         max_usedpc = usedpc;
859                         max_usedpc_order = i;
860                 }
861         }
862
863         return max_usedpc_order;
864 }
865
866 static struct zspage *get_zspage(struct page *page)
867 {
868         struct zspage *zspage = (struct zspage *)page->private;
869
870         BUG_ON(zspage->magic != ZSPAGE_MAGIC);
871         return zspage;
872 }
873
874 static struct page *get_next_page(struct page *page)
875 {
876         if (unlikely(PageHugeObject(page)))
877                 return NULL;
878
879         return page->freelist;
880 }
881
882 /**
883  * obj_to_location - get (<page>, <obj_idx>) from encoded object value
884  * @page: page object resides in zspage
885  * @obj_idx: object index
886  */
887 static void obj_to_location(unsigned long obj, struct page **page,
888                                 unsigned int *obj_idx)
889 {
890         obj >>= OBJ_TAG_BITS;
891         *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
892         *obj_idx = (obj & OBJ_INDEX_MASK);
893 }
894
895 /**
896  * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
897  * @page: page object resides in zspage
898  * @obj_idx: object index
899  */
900 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
901 {
902         unsigned long obj;
903
904         obj = page_to_pfn(page) << OBJ_INDEX_BITS;
905         obj |= obj_idx & OBJ_INDEX_MASK;
906         obj <<= OBJ_TAG_BITS;
907
908         return obj;
909 }
910
911 static unsigned long handle_to_obj(unsigned long handle)
912 {
913         return *(unsigned long *)handle;
914 }
915
916 static unsigned long obj_to_head(struct page *page, void *obj)
917 {
918         if (unlikely(PageHugeObject(page))) {
919                 VM_BUG_ON_PAGE(!is_first_page(page), page);
920                 return page->index;
921         } else
922                 return *(unsigned long *)obj;
923 }
924
925 static inline int testpin_tag(unsigned long handle)
926 {
927         return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle);
928 }
929
930 static inline int trypin_tag(unsigned long handle)
931 {
932         return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle);
933 }
934
935 static void pin_tag(unsigned long handle)
936 {
937         bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle);
938 }
939
940 static void unpin_tag(unsigned long handle)
941 {
942         bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle);
943 }
944
945 static void reset_page(struct page *page)
946 {
947         __ClearPageMovable(page);
948         clear_bit(PG_private, &page->flags);
949         clear_bit(PG_private_2, &page->flags);
950         set_page_private(page, 0);
951         page_mapcount_reset(page);
952         ClearPageHugeObject(page);
953         page->freelist = NULL;
954 }
955
956 /*
957  * To prevent zspage destroy during migration, zspage freeing should
958  * hold locks of all pages in the zspage.
959  */
960 void lock_zspage(struct zspage *zspage)
961 {
962         struct page *page = get_first_page(zspage);
963
964         do {
965                 lock_page(page);
966         } while ((page = get_next_page(page)) != NULL);
967 }
968
969 int trylock_zspage(struct zspage *zspage)
970 {
971         struct page *cursor, *fail;
972
973         for (cursor = get_first_page(zspage); cursor != NULL; cursor =
974                                         get_next_page(cursor)) {
975                 if (!trylock_page(cursor)) {
976                         fail = cursor;
977                         goto unlock;
978                 }
979         }
980
981         return 1;
982 unlock:
983         for (cursor = get_first_page(zspage); cursor != fail; cursor =
984                                         get_next_page(cursor))
985                 unlock_page(cursor);
986
987         return 0;
988 }
989
990 static void __free_zspage(struct zs_pool *pool, struct size_class *class,
991                                 struct zspage *zspage)
992 {
993         struct page *page, *next;
994         enum fullness_group fg;
995         unsigned int class_idx;
996
997         get_zspage_mapping(zspage, &class_idx, &fg);
998
999         assert_spin_locked(&class->lock);
1000
1001         VM_BUG_ON(get_zspage_inuse(zspage));
1002         VM_BUG_ON(fg != ZS_EMPTY);
1003
1004         next = page = get_first_page(zspage);
1005         do {
1006                 VM_BUG_ON_PAGE(!PageLocked(page), page);
1007                 next = get_next_page(page);
1008                 reset_page(page);
1009                 unlock_page(page);
1010                 put_page(page);
1011                 page = next;
1012         } while (page != NULL);
1013
1014         cache_free_zspage(pool, zspage);
1015
1016         zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1017                         class->size, class->pages_per_zspage));
1018         atomic_long_sub(class->pages_per_zspage,
1019                                         &pool->pages_allocated);
1020 }
1021
1022 static void free_zspage(struct zs_pool *pool, struct size_class *class,
1023                                 struct zspage *zspage)
1024 {
1025         VM_BUG_ON(get_zspage_inuse(zspage));
1026         VM_BUG_ON(list_empty(&zspage->list));
1027
1028         if (!trylock_zspage(zspage)) {
1029                 kick_deferred_free(pool);
1030                 return;
1031         }
1032
1033         remove_zspage(class, zspage, ZS_EMPTY);
1034         __free_zspage(pool, class, zspage);
1035 }
1036
1037 /* Initialize a newly allocated zspage */
1038 static void init_zspage(struct size_class *class, struct zspage *zspage)
1039 {
1040         unsigned int freeobj = 1;
1041         unsigned long off = 0;
1042         struct page *page = get_first_page(zspage);
1043
1044         while (page) {
1045                 struct page *next_page;
1046                 struct link_free *link;
1047                 void *vaddr;
1048
1049                 set_first_obj_offset(page, off);
1050
1051                 vaddr = kmap_atomic(page);
1052                 link = (struct link_free *)vaddr + off / sizeof(*link);
1053
1054                 while ((off += class->size) < PAGE_SIZE) {
1055                         link->next = freeobj++ << OBJ_TAG_BITS;
1056                         link += class->size / sizeof(*link);
1057                 }
1058
1059                 /*
1060                  * We now come to the last (full or partial) object on this
1061                  * page, which must point to the first object on the next
1062                  * page (if present)
1063                  */
1064                 next_page = get_next_page(page);
1065                 if (next_page) {
1066                         link->next = freeobj++ << OBJ_TAG_BITS;
1067                 } else {
1068                         /*
1069                          * Reset OBJ_TAG_BITS bit to last link to tell
1070                          * whether it's allocated object or not.
1071                          */
1072                         link->next = -1 << OBJ_TAG_BITS;
1073                 }
1074                 kunmap_atomic(vaddr);
1075                 page = next_page;
1076                 off %= PAGE_SIZE;
1077         }
1078
1079         set_freeobj(zspage, 0);
1080 }
1081
1082 static void create_page_chain(struct size_class *class, struct zspage *zspage,
1083                                 struct page *pages[])
1084 {
1085         int i;
1086         struct page *page;
1087         struct page *prev_page = NULL;
1088         int nr_pages = class->pages_per_zspage;
1089
1090         /*
1091          * Allocate individual pages and link them together as:
1092          * 1. all pages are linked together using page->freelist
1093          * 2. each sub-page point to zspage using page->private
1094          *
1095          * we set PG_private to identify the first page (i.e. no other sub-page
1096          * has this flag set) and PG_private_2 to identify the last page.
1097          */
1098         for (i = 0; i < nr_pages; i++) {
1099                 page = pages[i];
1100                 set_page_private(page, (unsigned long)zspage);
1101                 page->freelist = NULL;
1102                 if (i == 0) {
1103                         zspage->first_page = page;
1104                         SetPagePrivate(page);
1105                         if (unlikely(class->objs_per_zspage == 1 &&
1106                                         class->pages_per_zspage == 1))
1107                                 SetPageHugeObject(page);
1108                 } else {
1109                         prev_page->freelist = page;
1110                 }
1111                 if (i == nr_pages - 1)
1112                         SetPagePrivate2(page);
1113                 prev_page = page;
1114         }
1115 }
1116
1117 /*
1118  * Allocate a zspage for the given size class
1119  */
1120 static struct zspage *alloc_zspage(struct zs_pool *pool,
1121                                         struct size_class *class,
1122                                         gfp_t gfp)
1123 {
1124         int i;
1125         struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
1126         struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1127
1128         if (!zspage)
1129                 return NULL;
1130
1131         memset(zspage, 0, sizeof(struct zspage));
1132         zspage->magic = ZSPAGE_MAGIC;
1133         migrate_lock_init(zspage);
1134
1135         for (i = 0; i < class->pages_per_zspage; i++) {
1136                 struct page *page;
1137
1138                 page = alloc_page(gfp);
1139                 if (!page) {
1140                         while (--i >= 0)
1141                                 __free_page(pages[i]);
1142                         cache_free_zspage(pool, zspage);
1143                         return NULL;
1144                 }
1145                 pages[i] = page;
1146         }
1147
1148         create_page_chain(class, zspage, pages);
1149         init_zspage(class, zspage);
1150
1151         return zspage;
1152 }
1153
1154 static struct zspage *find_get_zspage(struct size_class *class)
1155 {
1156         int i;
1157         struct zspage *zspage;
1158
1159         for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
1160                 zspage = list_first_entry_or_null(&class->fullness_list[i],
1161                                 struct zspage, list);
1162                 if (zspage)
1163                         break;
1164         }
1165
1166         return zspage;
1167 }
1168
1169 #ifdef CONFIG_PGTABLE_MAPPING
1170 static inline int __zs_cpu_up(struct mapping_area *area)
1171 {
1172         /*
1173          * Make sure we don't leak memory if a cpu UP notification
1174          * and zs_init() race and both call zs_cpu_up() on the same cpu
1175          */
1176         if (area->vm)
1177                 return 0;
1178         area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
1179         if (!area->vm)
1180                 return -ENOMEM;
1181         return 0;
1182 }
1183
1184 static inline void __zs_cpu_down(struct mapping_area *area)
1185 {
1186         if (area->vm)
1187                 free_vm_area(area->vm);
1188         area->vm = NULL;
1189 }
1190
1191 static inline void *__zs_map_object(struct mapping_area *area,
1192                                 struct page *pages[2], int off, int size)
1193 {
1194         BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
1195         area->vm_addr = area->vm->addr;
1196         return area->vm_addr + off;
1197 }
1198
1199 static inline void __zs_unmap_object(struct mapping_area *area,
1200                                 struct page *pages[2], int off, int size)
1201 {
1202         unsigned long addr = (unsigned long)area->vm_addr;
1203
1204         unmap_kernel_range(addr, PAGE_SIZE * 2);
1205 }
1206
1207 #else /* CONFIG_PGTABLE_MAPPING */
1208
1209 static inline int __zs_cpu_up(struct mapping_area *area)
1210 {
1211         /*
1212          * Make sure we don't leak memory if a cpu UP notification
1213          * and zs_init() race and both call zs_cpu_up() on the same cpu
1214          */
1215         if (area->vm_buf)
1216                 return 0;
1217         area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1218         if (!area->vm_buf)
1219                 return -ENOMEM;
1220         return 0;
1221 }
1222
1223 static inline void __zs_cpu_down(struct mapping_area *area)
1224 {
1225         kfree(area->vm_buf);
1226         area->vm_buf = NULL;
1227 }
1228
1229 static void *__zs_map_object(struct mapping_area *area,
1230                         struct page *pages[2], int off, int size)
1231 {
1232         int sizes[2];
1233         void *addr;
1234         char *buf = area->vm_buf;
1235
1236         /* disable page faults to match kmap_atomic() return conditions */
1237         pagefault_disable();
1238
1239         /* no read fastpath */
1240         if (area->vm_mm == ZS_MM_WO)
1241                 goto out;
1242
1243         sizes[0] = PAGE_SIZE - off;
1244         sizes[1] = size - sizes[0];
1245
1246         /* copy object to per-cpu buffer */
1247         addr = kmap_atomic(pages[0]);
1248         memcpy(buf, addr + off, sizes[0]);
1249         kunmap_atomic(addr);
1250         addr = kmap_atomic(pages[1]);
1251         memcpy(buf + sizes[0], addr, sizes[1]);
1252         kunmap_atomic(addr);
1253 out:
1254         return area->vm_buf;
1255 }
1256
1257 static void __zs_unmap_object(struct mapping_area *area,
1258                         struct page *pages[2], int off, int size)
1259 {
1260         int sizes[2];
1261         void *addr;
1262         char *buf;
1263
1264         /* no write fastpath */
1265         if (area->vm_mm == ZS_MM_RO)
1266                 goto out;
1267
1268         buf = area->vm_buf;
1269         buf = buf + ZS_HANDLE_SIZE;
1270         size -= ZS_HANDLE_SIZE;
1271         off += ZS_HANDLE_SIZE;
1272
1273         sizes[0] = PAGE_SIZE - off;
1274         sizes[1] = size - sizes[0];
1275
1276         /* copy per-cpu buffer to object */
1277         addr = kmap_atomic(pages[0]);
1278         memcpy(addr + off, buf, sizes[0]);
1279         kunmap_atomic(addr);
1280         addr = kmap_atomic(pages[1]);
1281         memcpy(addr, buf + sizes[0], sizes[1]);
1282         kunmap_atomic(addr);
1283
1284 out:
1285         /* enable page faults to match kunmap_atomic() return conditions */
1286         pagefault_enable();
1287 }
1288
1289 #endif /* CONFIG_PGTABLE_MAPPING */
1290
1291 static int zs_cpu_notifier(struct notifier_block *nb, unsigned long action,
1292                                 void *pcpu)
1293 {
1294         int ret, cpu = (long)pcpu;
1295         struct mapping_area *area;
1296
1297         switch (action) {
1298         case CPU_UP_PREPARE:
1299                 area = &per_cpu(zs_map_area, cpu);
1300                 ret = __zs_cpu_up(area);
1301                 if (ret)
1302                         return notifier_from_errno(ret);
1303                 break;
1304         case CPU_DEAD:
1305         case CPU_UP_CANCELED:
1306                 area = &per_cpu(zs_map_area, cpu);
1307                 __zs_cpu_down(area);
1308                 break;
1309         }
1310
1311         return NOTIFY_OK;
1312 }
1313
1314 static struct notifier_block zs_cpu_nb = {
1315         .notifier_call = zs_cpu_notifier
1316 };
1317
1318 static int zs_register_cpu_notifier(void)
1319 {
1320         int cpu, uninitialized_var(ret);
1321
1322         cpu_notifier_register_begin();
1323
1324         __register_cpu_notifier(&zs_cpu_nb);
1325         for_each_online_cpu(cpu) {
1326                 ret = zs_cpu_notifier(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
1327                 if (notifier_to_errno(ret))
1328                         break;
1329         }
1330
1331         cpu_notifier_register_done();
1332         return notifier_to_errno(ret);
1333 }
1334
1335 static void zs_unregister_cpu_notifier(void)
1336 {
1337         int cpu;
1338
1339         cpu_notifier_register_begin();
1340
1341         for_each_online_cpu(cpu)
1342                 zs_cpu_notifier(NULL, CPU_DEAD, (void *)(long)cpu);
1343         __unregister_cpu_notifier(&zs_cpu_nb);
1344
1345         cpu_notifier_register_done();
1346 }
1347
1348 static void init_zs_size_classes(void)
1349 {
1350         int nr;
1351
1352         nr = (ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / ZS_SIZE_CLASS_DELTA + 1;
1353         if ((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) % ZS_SIZE_CLASS_DELTA)
1354                 nr += 1;
1355
1356         zs_size_classes = nr;
1357 }
1358
1359 static bool can_merge(struct size_class *prev, int size, int pages_per_zspage)
1360 {
1361         if (prev->pages_per_zspage != pages_per_zspage)
1362                 return false;
1363
1364         if (get_maxobj_per_zspage(prev->size, prev->pages_per_zspage)
1365                 != get_maxobj_per_zspage(size, pages_per_zspage))
1366                 return false;
1367
1368         return true;
1369 }
1370
1371 static bool zspage_full(struct size_class *class, struct zspage *zspage)
1372 {
1373         return get_zspage_inuse(zspage) == class->objs_per_zspage;
1374 }
1375
1376 unsigned long zs_get_total_pages(struct zs_pool *pool)
1377 {
1378         return atomic_long_read(&pool->pages_allocated);
1379 }
1380 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1381
1382 /**
1383  * zs_map_object - get address of allocated object from handle.
1384  * @pool: pool from which the object was allocated
1385  * @handle: handle returned from zs_malloc
1386  *
1387  * Before using an object allocated from zs_malloc, it must be mapped using
1388  * this function. When done with the object, it must be unmapped using
1389  * zs_unmap_object.
1390  *
1391  * Only one object can be mapped per cpu at a time. There is no protection
1392  * against nested mappings.
1393  *
1394  * This function returns with preemption and page faults disabled.
1395  */
1396 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1397                         enum zs_mapmode mm)
1398 {
1399         struct zspage *zspage;
1400         struct page *page;
1401         unsigned long obj, off;
1402         unsigned int obj_idx;
1403
1404         unsigned int class_idx;
1405         enum fullness_group fg;
1406         struct size_class *class;
1407         struct mapping_area *area;
1408         struct page *pages[2];
1409         void *ret;
1410
1411         /*
1412          * Because we use per-cpu mapping areas shared among the
1413          * pools/users, we can't allow mapping in interrupt context
1414          * because it can corrupt another users mappings.
1415          */
1416         WARN_ON_ONCE(in_interrupt());
1417
1418         /* From now on, migration cannot move the object */
1419         pin_tag(handle);
1420
1421         obj = handle_to_obj(handle);
1422         obj_to_location(obj, &page, &obj_idx);
1423         zspage = get_zspage(page);
1424
1425         /* migration cannot move any subpage in this zspage */
1426         migrate_read_lock(zspage);
1427
1428         get_zspage_mapping(zspage, &class_idx, &fg);
1429         class = pool->size_class[class_idx];
1430         off = (class->size * obj_idx) & ~PAGE_MASK;
1431
1432         area = &get_cpu_var(zs_map_area);
1433         area->vm_mm = mm;
1434         if (off + class->size <= PAGE_SIZE) {
1435                 /* this object is contained entirely within a page */
1436                 area->vm_addr = kmap_atomic(page);
1437                 ret = area->vm_addr + off;
1438                 goto out;
1439         }
1440
1441         /* this object spans two pages */
1442         pages[0] = page;
1443         pages[1] = get_next_page(page);
1444         BUG_ON(!pages[1]);
1445
1446         ret = __zs_map_object(area, pages, off, class->size);
1447 out:
1448         if (likely(!PageHugeObject(page)))
1449                 ret += ZS_HANDLE_SIZE;
1450
1451         return ret;
1452 }
1453 EXPORT_SYMBOL_GPL(zs_map_object);
1454
1455 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1456 {
1457         struct zspage *zspage;
1458         struct page *page;
1459         unsigned long obj, off;
1460         unsigned int obj_idx;
1461
1462         unsigned int class_idx;
1463         enum fullness_group fg;
1464         struct size_class *class;
1465         struct mapping_area *area;
1466
1467         obj = handle_to_obj(handle);
1468         obj_to_location(obj, &page, &obj_idx);
1469         zspage = get_zspage(page);
1470         get_zspage_mapping(zspage, &class_idx, &fg);
1471         class = pool->size_class[class_idx];
1472         off = (class->size * obj_idx) & ~PAGE_MASK;
1473
1474         area = this_cpu_ptr(&zs_map_area);
1475         if (off + class->size <= PAGE_SIZE)
1476                 kunmap_atomic(area->vm_addr);
1477         else {
1478                 struct page *pages[2];
1479
1480                 pages[0] = page;
1481                 pages[1] = get_next_page(page);
1482                 BUG_ON(!pages[1]);
1483
1484                 __zs_unmap_object(area, pages, off, class->size);
1485         }
1486         put_cpu_var(zs_map_area);
1487
1488         migrate_read_unlock(zspage);
1489         unpin_tag(handle);
1490 }
1491 EXPORT_SYMBOL_GPL(zs_unmap_object);
1492
1493 static unsigned long obj_malloc(struct size_class *class,
1494                                 struct zspage *zspage, unsigned long handle)
1495 {
1496         int i, nr_page, offset;
1497         unsigned long obj;
1498         struct link_free *link;
1499
1500         struct page *m_page;
1501         unsigned long m_offset;
1502         void *vaddr;
1503
1504         handle |= OBJ_ALLOCATED_TAG;
1505         obj = get_freeobj(zspage);
1506
1507         offset = obj * class->size;
1508         nr_page = offset >> PAGE_SHIFT;
1509         m_offset = offset & ~PAGE_MASK;
1510         m_page = get_first_page(zspage);
1511
1512         for (i = 0; i < nr_page; i++)
1513                 m_page = get_next_page(m_page);
1514
1515         vaddr = kmap_atomic(m_page);
1516         link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1517         set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1518         if (likely(!PageHugeObject(m_page)))
1519                 /* record handle in the header of allocated chunk */
1520                 link->handle = handle;
1521         else
1522                 /* record handle to page->index */
1523                 zspage->first_page->index = handle;
1524
1525         kunmap_atomic(vaddr);
1526         mod_zspage_inuse(zspage, 1);
1527         zs_stat_inc(class, OBJ_USED, 1);
1528
1529         obj = location_to_obj(m_page, obj);
1530
1531         return obj;
1532 }
1533
1534
1535 /**
1536  * zs_malloc - Allocate block of given size from pool.
1537  * @pool: pool to allocate from
1538  * @size: size of block to allocate
1539  *
1540  * On success, handle to the allocated object is returned,
1541  * otherwise 0.
1542  * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1543  */
1544 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1545 {
1546         unsigned long handle, obj;
1547         struct size_class *class;
1548         enum fullness_group newfg;
1549         struct zspage *zspage;
1550
1551         if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1552                 return 0;
1553
1554         handle = cache_alloc_handle(pool, gfp);
1555         if (!handle)
1556                 return 0;
1557
1558         /* extra space in chunk to keep the handle */
1559         size += ZS_HANDLE_SIZE;
1560         class = pool->size_class[get_size_class_index(size)];
1561
1562         spin_lock(&class->lock);
1563         zspage = find_get_zspage(class);
1564         if (likely(zspage)) {
1565                 obj = obj_malloc(class, zspage, handle);
1566                 /* Now move the zspage to another fullness group, if required */
1567                 fix_fullness_group(class, zspage);
1568                 record_obj(handle, obj);
1569                 spin_unlock(&class->lock);
1570
1571                 return handle;
1572         }
1573
1574         spin_unlock(&class->lock);
1575
1576         zspage = alloc_zspage(pool, class, gfp);
1577         if (!zspage) {
1578                 cache_free_handle(pool, handle);
1579                 return 0;
1580         }
1581
1582         spin_lock(&class->lock);
1583         obj = obj_malloc(class, zspage, handle);
1584         newfg = get_fullness_group(class, zspage);
1585         insert_zspage(class, zspage, newfg);
1586         set_zspage_mapping(zspage, class->index, newfg);
1587         record_obj(handle, obj);
1588         atomic_long_add(class->pages_per_zspage,
1589                                 &pool->pages_allocated);
1590         zs_stat_inc(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1591                         class->size, class->pages_per_zspage));
1592
1593         /* We completely set up zspage so mark them as movable */
1594         SetZsPageMovable(pool, zspage);
1595         spin_unlock(&class->lock);
1596
1597         return handle;
1598 }
1599 EXPORT_SYMBOL_GPL(zs_malloc);
1600
1601 static void obj_free(struct size_class *class, unsigned long obj)
1602 {
1603         struct link_free *link;
1604         struct zspage *zspage;
1605         struct page *f_page;
1606         unsigned long f_offset;
1607         unsigned int f_objidx;
1608         void *vaddr;
1609
1610         obj &= ~OBJ_ALLOCATED_TAG;
1611         obj_to_location(obj, &f_page, &f_objidx);
1612         f_offset = (class->size * f_objidx) & ~PAGE_MASK;
1613         zspage = get_zspage(f_page);
1614
1615         vaddr = kmap_atomic(f_page);
1616
1617         /* Insert this object in containing zspage's freelist */
1618         link = (struct link_free *)(vaddr + f_offset);
1619         link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1620         kunmap_atomic(vaddr);
1621         set_freeobj(zspage, f_objidx);
1622         mod_zspage_inuse(zspage, -1);
1623         zs_stat_dec(class, OBJ_USED, 1);
1624 }
1625
1626 void zs_free(struct zs_pool *pool, unsigned long handle)
1627 {
1628         struct zspage *zspage;
1629         struct page *f_page;
1630         unsigned long obj;
1631         unsigned int f_objidx;
1632         int class_idx;
1633         struct size_class *class;
1634         enum fullness_group fullness;
1635         bool isolated;
1636
1637         if (unlikely(!handle))
1638                 return;
1639
1640         pin_tag(handle);
1641         obj = handle_to_obj(handle);
1642         obj_to_location(obj, &f_page, &f_objidx);
1643         zspage = get_zspage(f_page);
1644
1645         migrate_read_lock(zspage);
1646
1647         get_zspage_mapping(zspage, &class_idx, &fullness);
1648         class = pool->size_class[class_idx];
1649
1650         spin_lock(&class->lock);
1651         obj_free(class, obj);
1652         fullness = fix_fullness_group(class, zspage);
1653         if (fullness != ZS_EMPTY) {
1654                 migrate_read_unlock(zspage);
1655                 goto out;
1656         }
1657
1658         isolated = is_zspage_isolated(zspage);
1659         migrate_read_unlock(zspage);
1660         /* If zspage is isolated, zs_page_putback will free the zspage */
1661         if (likely(!isolated))
1662                 free_zspage(pool, class, zspage);
1663 out:
1664
1665         spin_unlock(&class->lock);
1666         unpin_tag(handle);
1667         cache_free_handle(pool, handle);
1668 }
1669 EXPORT_SYMBOL_GPL(zs_free);
1670
1671 static void zs_object_copy(struct size_class *class, unsigned long dst,
1672                                 unsigned long src)
1673 {
1674         struct page *s_page, *d_page;
1675         unsigned int s_objidx, d_objidx;
1676         unsigned long s_off, d_off;
1677         void *s_addr, *d_addr;
1678         int s_size, d_size, size;
1679         int written = 0;
1680
1681         s_size = d_size = class->size;
1682
1683         obj_to_location(src, &s_page, &s_objidx);
1684         obj_to_location(dst, &d_page, &d_objidx);
1685
1686         s_off = (class->size * s_objidx) & ~PAGE_MASK;
1687         d_off = (class->size * d_objidx) & ~PAGE_MASK;
1688
1689         if (s_off + class->size > PAGE_SIZE)
1690                 s_size = PAGE_SIZE - s_off;
1691
1692         if (d_off + class->size > PAGE_SIZE)
1693                 d_size = PAGE_SIZE - d_off;
1694
1695         s_addr = kmap_atomic(s_page);
1696         d_addr = kmap_atomic(d_page);
1697
1698         while (1) {
1699                 size = min(s_size, d_size);
1700                 memcpy(d_addr + d_off, s_addr + s_off, size);
1701                 written += size;
1702
1703                 if (written == class->size)
1704                         break;
1705
1706                 s_off += size;
1707                 s_size -= size;
1708                 d_off += size;
1709                 d_size -= size;
1710
1711                 if (s_off >= PAGE_SIZE) {
1712                         kunmap_atomic(d_addr);
1713                         kunmap_atomic(s_addr);
1714                         s_page = get_next_page(s_page);
1715                         s_addr = kmap_atomic(s_page);
1716                         d_addr = kmap_atomic(d_page);
1717                         s_size = class->size - written;
1718                         s_off = 0;
1719                 }
1720
1721                 if (d_off >= PAGE_SIZE) {
1722                         kunmap_atomic(d_addr);
1723                         d_page = get_next_page(d_page);
1724                         d_addr = kmap_atomic(d_page);
1725                         d_size = class->size - written;
1726                         d_off = 0;
1727                 }
1728         }
1729
1730         kunmap_atomic(d_addr);
1731         kunmap_atomic(s_addr);
1732 }
1733
1734 /*
1735  * Find alloced object in zspage from index object and
1736  * return handle.
1737  */
1738 static unsigned long find_alloced_obj(struct size_class *class,
1739                                         struct page *page, int index)
1740 {
1741         unsigned long head;
1742         int offset = 0;
1743         unsigned long handle = 0;
1744         void *addr = kmap_atomic(page);
1745
1746         offset = get_first_obj_offset(page);
1747         offset += class->size * index;
1748
1749         while (offset < PAGE_SIZE) {
1750                 head = obj_to_head(page, addr + offset);
1751                 if (head & OBJ_ALLOCATED_TAG) {
1752                         handle = head & ~OBJ_ALLOCATED_TAG;
1753                         if (trypin_tag(handle))
1754                                 break;
1755                         handle = 0;
1756                 }
1757
1758                 offset += class->size;
1759                 index++;
1760         }
1761
1762         kunmap_atomic(addr);
1763         return handle;
1764 }
1765
1766 struct zs_compact_control {
1767         /* Source spage for migration which could be a subpage of zspage */
1768         struct page *s_page;
1769         /* Destination page for migration which should be a first page
1770          * of zspage. */
1771         struct page *d_page;
1772          /* Starting object index within @s_page which used for live object
1773           * in the subpage. */
1774         int index;
1775 };
1776
1777 static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1778                                 struct zs_compact_control *cc)
1779 {
1780         unsigned long used_obj, free_obj;
1781         unsigned long handle;
1782         struct page *s_page = cc->s_page;
1783         struct page *d_page = cc->d_page;
1784         unsigned long index = cc->index;
1785         int ret = 0;
1786
1787         while (1) {
1788                 handle = find_alloced_obj(class, s_page, index);
1789                 if (!handle) {
1790                         s_page = get_next_page(s_page);
1791                         if (!s_page)
1792                                 break;
1793                         index = 0;
1794                         continue;
1795                 }
1796
1797                 /* Stop if there is no more space */
1798                 if (zspage_full(class, get_zspage(d_page))) {
1799                         unpin_tag(handle);
1800                         ret = -ENOMEM;
1801                         break;
1802                 }
1803
1804                 used_obj = handle_to_obj(handle);
1805                 free_obj = obj_malloc(class, get_zspage(d_page), handle);
1806                 zs_object_copy(class, free_obj, used_obj);
1807                 index++;
1808                 /*
1809                  * record_obj updates handle's value to free_obj and it will
1810                  * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1811                  * breaks synchronization using pin_tag(e,g, zs_free) so
1812                  * let's keep the lock bit.
1813                  */
1814                 free_obj |= BIT(HANDLE_PIN_BIT);
1815                 record_obj(handle, free_obj);
1816                 unpin_tag(handle);
1817                 obj_free(class, used_obj);
1818         }
1819
1820         /* Remember last position in this iteration */
1821         cc->s_page = s_page;
1822         cc->index = index;
1823
1824         return ret;
1825 }
1826
1827 static struct zspage *isolate_zspage(struct size_class *class, bool source)
1828 {
1829         int i;
1830         struct zspage *zspage;
1831         enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
1832
1833         if (!source) {
1834                 fg[0] = ZS_ALMOST_FULL;
1835                 fg[1] = ZS_ALMOST_EMPTY;
1836         }
1837
1838         for (i = 0; i < 2; i++) {
1839                 zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1840                                                         struct zspage, list);
1841                 if (zspage) {
1842                         VM_BUG_ON(is_zspage_isolated(zspage));
1843                         remove_zspage(class, zspage, fg[i]);
1844                         return zspage;
1845                 }
1846         }
1847
1848         return zspage;
1849 }
1850
1851 /*
1852  * putback_zspage - add @zspage into right class's fullness list
1853  * @class: destination class
1854  * @zspage: target page
1855  *
1856  * Return @zspage's fullness_group
1857  */
1858 static enum fullness_group putback_zspage(struct size_class *class,
1859                         struct zspage *zspage)
1860 {
1861         enum fullness_group fullness;
1862
1863         VM_BUG_ON(is_zspage_isolated(zspage));
1864
1865         fullness = get_fullness_group(class, zspage);
1866         insert_zspage(class, zspage, fullness);
1867         set_zspage_mapping(zspage, class->index, fullness);
1868
1869         return fullness;
1870 }
1871
1872 #ifdef CONFIG_COMPACTION
1873 static struct dentry *zs_mount(struct file_system_type *fs_type,
1874                                 int flags, const char *dev_name, void *data)
1875 {
1876         static const struct dentry_operations ops = {
1877                 .d_dname = simple_dname,
1878         };
1879
1880         return mount_pseudo(fs_type, "zsmalloc:", NULL, &ops, ZSMALLOC_MAGIC);
1881 }
1882
1883 static struct file_system_type zsmalloc_fs = {
1884         .name           = "zsmalloc",
1885         .mount          = zs_mount,
1886         .kill_sb        = kill_anon_super,
1887 };
1888
1889 static int zsmalloc_mount(void)
1890 {
1891         int ret = 0;
1892
1893         zsmalloc_mnt = kern_mount(&zsmalloc_fs);
1894         if (IS_ERR(zsmalloc_mnt))
1895                 ret = PTR_ERR(zsmalloc_mnt);
1896
1897         return ret;
1898 }
1899
1900 static void zsmalloc_unmount(void)
1901 {
1902         kern_unmount(zsmalloc_mnt);
1903 }
1904
1905 static void migrate_lock_init(struct zspage *zspage)
1906 {
1907         rwlock_init(&zspage->lock);
1908 }
1909
1910 static void migrate_read_lock(struct zspage *zspage)
1911 {
1912         read_lock(&zspage->lock);
1913 }
1914
1915 static void migrate_read_unlock(struct zspage *zspage)
1916 {
1917         read_unlock(&zspage->lock);
1918 }
1919
1920 static void migrate_write_lock(struct zspage *zspage)
1921 {
1922         write_lock(&zspage->lock);
1923 }
1924
1925 static void migrate_write_unlock(struct zspage *zspage)
1926 {
1927         write_unlock(&zspage->lock);
1928 }
1929
1930 /* Number of isolated subpage for *page migration* in this zspage */
1931 static void inc_zspage_isolation(struct zspage *zspage)
1932 {
1933         zspage->isolated++;
1934 }
1935
1936 static void dec_zspage_isolation(struct zspage *zspage)
1937 {
1938         zspage->isolated--;
1939 }
1940
1941 static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1942                                 struct page *newpage, struct page *oldpage)
1943 {
1944         struct page *page;
1945         struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1946         int idx = 0;
1947
1948         page = get_first_page(zspage);
1949         do {
1950                 if (page == oldpage)
1951                         pages[idx] = newpage;
1952                 else
1953                         pages[idx] = page;
1954                 idx++;
1955         } while ((page = get_next_page(page)) != NULL);
1956
1957         create_page_chain(class, zspage, pages);
1958         set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1959         if (unlikely(PageHugeObject(oldpage)))
1960                 newpage->index = oldpage->index;
1961         __SetPageMovable(newpage, page_mapping(oldpage));
1962 }
1963
1964 bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1965 {
1966         struct zs_pool *pool;
1967         struct size_class *class;
1968         int class_idx;
1969         enum fullness_group fullness;
1970         struct zspage *zspage;
1971         struct address_space *mapping;
1972
1973         /*
1974          * Page is locked so zspage couldn't be destroyed. For detail, look at
1975          * lock_zspage in free_zspage.
1976          */
1977         VM_BUG_ON_PAGE(!PageMovable(page), page);
1978         VM_BUG_ON_PAGE(PageIsolated(page), page);
1979
1980         zspage = get_zspage(page);
1981
1982         /*
1983          * Without class lock, fullness could be stale while class_idx is okay
1984          * because class_idx is constant unless page is freed so we should get
1985          * fullness again under class lock.
1986          */
1987         get_zspage_mapping(zspage, &class_idx, &fullness);
1988         mapping = page_mapping(page);
1989         pool = mapping->private_data;
1990         class = pool->size_class[class_idx];
1991
1992         spin_lock(&class->lock);
1993         if (get_zspage_inuse(zspage) == 0) {
1994                 spin_unlock(&class->lock);
1995                 return false;
1996         }
1997
1998         /* zspage is isolated for object migration */
1999         if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
2000                 spin_unlock(&class->lock);
2001                 return false;
2002         }
2003
2004         /*
2005          * If this is first time isolation for the zspage, isolate zspage from
2006          * size_class to prevent further object allocation from the zspage.
2007          */
2008         if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
2009                 get_zspage_mapping(zspage, &class_idx, &fullness);
2010                 remove_zspage(class, zspage, fullness);
2011         }
2012
2013         inc_zspage_isolation(zspage);
2014         spin_unlock(&class->lock);
2015
2016         return true;
2017 }
2018
2019 int zs_page_migrate(struct address_space *mapping, struct page *newpage,
2020                 struct page *page, enum migrate_mode mode)
2021 {
2022         struct zs_pool *pool;
2023         struct size_class *class;
2024         int class_idx;
2025         enum fullness_group fullness;
2026         struct zspage *zspage;
2027         struct page *dummy;
2028         void *s_addr, *d_addr, *addr;
2029         int offset, pos;
2030         unsigned long handle, head;
2031         unsigned long old_obj, new_obj;
2032         unsigned int obj_idx;
2033         int ret = -EAGAIN;
2034
2035         VM_BUG_ON_PAGE(!PageMovable(page), page);
2036         VM_BUG_ON_PAGE(!PageIsolated(page), page);
2037
2038         zspage = get_zspage(page);
2039
2040         /* Concurrent compactor cannot migrate any subpage in zspage */
2041         migrate_write_lock(zspage);
2042         get_zspage_mapping(zspage, &class_idx, &fullness);
2043         pool = mapping->private_data;
2044         class = pool->size_class[class_idx];
2045         offset = get_first_obj_offset(page);
2046
2047         spin_lock(&class->lock);
2048         if (!get_zspage_inuse(zspage)) {
2049                 ret = -EBUSY;
2050                 goto unlock_class;
2051         }
2052
2053         pos = offset;
2054         s_addr = kmap_atomic(page);
2055         while (pos < PAGE_SIZE) {
2056                 head = obj_to_head(page, s_addr + pos);
2057                 if (head & OBJ_ALLOCATED_TAG) {
2058                         handle = head & ~OBJ_ALLOCATED_TAG;
2059                         if (!trypin_tag(handle))
2060                                 goto unpin_objects;
2061                 }
2062                 pos += class->size;
2063         }
2064
2065         /*
2066          * Here, any user cannot access all objects in the zspage so let's move.
2067          */
2068         d_addr = kmap_atomic(newpage);
2069         memcpy(d_addr, s_addr, PAGE_SIZE);
2070         kunmap_atomic(d_addr);
2071
2072         for (addr = s_addr + offset; addr < s_addr + pos;
2073                                         addr += class->size) {
2074                 head = obj_to_head(page, addr);
2075                 if (head & OBJ_ALLOCATED_TAG) {
2076                         handle = head & ~OBJ_ALLOCATED_TAG;
2077                         if (!testpin_tag(handle))
2078                                 BUG();
2079
2080                         old_obj = handle_to_obj(handle);
2081                         obj_to_location(old_obj, &dummy, &obj_idx);
2082                         new_obj = (unsigned long)location_to_obj(newpage,
2083                                                                 obj_idx);
2084                         new_obj |= BIT(HANDLE_PIN_BIT);
2085                         record_obj(handle, new_obj);
2086                 }
2087         }
2088
2089         replace_sub_page(class, zspage, newpage, page);
2090         get_page(newpage);
2091
2092         dec_zspage_isolation(zspage);
2093
2094         /*
2095          * Page migration is done so let's putback isolated zspage to
2096          * the list if @page is final isolated subpage in the zspage.
2097          */
2098         if (!is_zspage_isolated(zspage))
2099                 putback_zspage(class, zspage);
2100
2101         reset_page(page);
2102         put_page(page);
2103         page = newpage;
2104
2105         ret = 0;
2106 unpin_objects:
2107         for (addr = s_addr + offset; addr < s_addr + pos;
2108                                                 addr += class->size) {
2109                 head = obj_to_head(page, addr);
2110                 if (head & OBJ_ALLOCATED_TAG) {
2111                         handle = head & ~OBJ_ALLOCATED_TAG;
2112                         if (!testpin_tag(handle))
2113                                 BUG();
2114                         unpin_tag(handle);
2115                 }
2116         }
2117         kunmap_atomic(s_addr);
2118 unlock_class:
2119         spin_unlock(&class->lock);
2120         migrate_write_unlock(zspage);
2121
2122         return ret;
2123 }
2124
2125 void zs_page_putback(struct page *page)
2126 {
2127         struct zs_pool *pool;
2128         struct size_class *class;
2129         int class_idx;
2130         enum fullness_group fg;
2131         struct address_space *mapping;
2132         struct zspage *zspage;
2133
2134         VM_BUG_ON_PAGE(!PageMovable(page), page);
2135         VM_BUG_ON_PAGE(!PageIsolated(page), page);
2136
2137         zspage = get_zspage(page);
2138         get_zspage_mapping(zspage, &class_idx, &fg);
2139         mapping = page_mapping(page);
2140         pool = mapping->private_data;
2141         class = pool->size_class[class_idx];
2142
2143         spin_lock(&class->lock);
2144         dec_zspage_isolation(zspage);
2145         if (!is_zspage_isolated(zspage)) {
2146                 fg = putback_zspage(class, zspage);
2147                 /*
2148                  * Due to page_lock, we cannot free zspage immediately
2149                  * so let's defer.
2150                  */
2151                 if (fg == ZS_EMPTY)
2152                         schedule_work(&pool->free_work);
2153         }
2154         spin_unlock(&class->lock);
2155 }
2156
2157 const struct address_space_operations zsmalloc_aops = {
2158         .isolate_page = zs_page_isolate,
2159         .migratepage = zs_page_migrate,
2160         .putback_page = zs_page_putback,
2161 };
2162
2163 static int zs_register_migration(struct zs_pool *pool)
2164 {
2165         pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb);
2166         if (IS_ERR(pool->inode)) {
2167                 pool->inode = NULL;
2168                 return 1;
2169         }
2170
2171         pool->inode->i_mapping->private_data = pool;
2172         pool->inode->i_mapping->a_ops = &zsmalloc_aops;
2173         return 0;
2174 }
2175
2176 static void zs_unregister_migration(struct zs_pool *pool)
2177 {
2178         flush_work(&pool->free_work);
2179         if (pool->inode)
2180                 iput(pool->inode);
2181 }
2182
2183 /*
2184  * Caller should hold page_lock of all pages in the zspage
2185  * In here, we cannot use zspage meta data.
2186  */
2187 static void async_free_zspage(struct work_struct *work)
2188 {
2189         int i;
2190         struct size_class *class;
2191         unsigned int class_idx;
2192         enum fullness_group fullness;
2193         struct zspage *zspage, *tmp;
2194         LIST_HEAD(free_pages);
2195         struct zs_pool *pool = container_of(work, struct zs_pool,
2196                                         free_work);
2197
2198         for (i = 0; i < zs_size_classes; i++) {
2199                 class = pool->size_class[i];
2200                 if (class->index != i)
2201                         continue;
2202
2203                 spin_lock(&class->lock);
2204                 list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
2205                 spin_unlock(&class->lock);
2206         }
2207
2208
2209         list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
2210                 list_del(&zspage->list);
2211                 lock_zspage(zspage);
2212
2213                 get_zspage_mapping(zspage, &class_idx, &fullness);
2214                 VM_BUG_ON(fullness != ZS_EMPTY);
2215                 class = pool->size_class[class_idx];
2216                 spin_lock(&class->lock);
2217                 __free_zspage(pool, pool->size_class[class_idx], zspage);
2218                 spin_unlock(&class->lock);
2219         }
2220 };
2221
2222 static void kick_deferred_free(struct zs_pool *pool)
2223 {
2224         schedule_work(&pool->free_work);
2225 }
2226
2227 static void init_deferred_free(struct zs_pool *pool)
2228 {
2229         INIT_WORK(&pool->free_work, async_free_zspage);
2230 }
2231
2232 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2233 {
2234         struct page *page = get_first_page(zspage);
2235
2236         do {
2237                 WARN_ON(!trylock_page(page));
2238                 __SetPageMovable(page, pool->inode->i_mapping);
2239                 unlock_page(page);
2240         } while ((page = get_next_page(page)) != NULL);
2241 }
2242 #endif
2243
2244 /*
2245  *
2246  * Based on the number of unused allocated objects calculate
2247  * and return the number of pages that we can free.
2248  */
2249 static unsigned long zs_can_compact(struct size_class *class)
2250 {
2251         unsigned long obj_wasted;
2252         unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2253         unsigned long obj_used = zs_stat_get(class, OBJ_USED);
2254
2255         if (obj_allocated <= obj_used)
2256                 return 0;
2257
2258         obj_wasted = obj_allocated - obj_used;
2259         obj_wasted /= get_maxobj_per_zspage(class->size,
2260                         class->pages_per_zspage);
2261
2262         return obj_wasted * class->pages_per_zspage;
2263 }
2264
2265 static void __zs_compact(struct zs_pool *pool, struct size_class *class)
2266 {
2267         struct zs_compact_control cc;
2268         struct zspage *src_zspage;
2269         struct zspage *dst_zspage = NULL;
2270
2271         spin_lock(&class->lock);
2272         while ((src_zspage = isolate_zspage(class, true))) {
2273
2274                 if (!zs_can_compact(class))
2275                         break;
2276
2277                 cc.index = 0;
2278                 cc.s_page = get_first_page(src_zspage);
2279
2280                 while ((dst_zspage = isolate_zspage(class, false))) {
2281                         cc.d_page = get_first_page(dst_zspage);
2282                         /*
2283                          * If there is no more space in dst_page, resched
2284                          * and see if anyone had allocated another zspage.
2285                          */
2286                         if (!migrate_zspage(pool, class, &cc))
2287                                 break;
2288
2289                         putback_zspage(class, dst_zspage);
2290                 }
2291
2292                 /* Stop if we couldn't find slot */
2293                 if (dst_zspage == NULL)
2294                         break;
2295
2296                 putback_zspage(class, dst_zspage);
2297                 if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
2298                         free_zspage(pool, class, src_zspage);
2299                         pool->stats.pages_compacted += class->pages_per_zspage;
2300                 }
2301                 spin_unlock(&class->lock);
2302                 cond_resched();
2303                 spin_lock(&class->lock);
2304         }
2305
2306         if (src_zspage)
2307                 putback_zspage(class, src_zspage);
2308
2309         spin_unlock(&class->lock);
2310 }
2311
2312 unsigned long zs_compact(struct zs_pool *pool)
2313 {
2314         int i;
2315         struct size_class *class;
2316
2317         for (i = zs_size_classes - 1; i >= 0; i--) {
2318                 class = pool->size_class[i];
2319                 if (!class)
2320                         continue;
2321                 if (class->index != i)
2322                         continue;
2323                 __zs_compact(pool, class);
2324         }
2325
2326         return pool->stats.pages_compacted;
2327 }
2328 EXPORT_SYMBOL_GPL(zs_compact);
2329
2330 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2331 {
2332         memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2333 }
2334 EXPORT_SYMBOL_GPL(zs_pool_stats);
2335
2336 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2337                 struct shrink_control *sc)
2338 {
2339         unsigned long pages_freed;
2340         struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2341                         shrinker);
2342
2343         pages_freed = pool->stats.pages_compacted;
2344         /*
2345          * Compact classes and calculate compaction delta.
2346          * Can run concurrently with a manually triggered
2347          * (by user) compaction.
2348          */
2349         pages_freed = zs_compact(pool) - pages_freed;
2350
2351         return pages_freed ? pages_freed : SHRINK_STOP;
2352 }
2353
2354 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2355                 struct shrink_control *sc)
2356 {
2357         int i;
2358         struct size_class *class;
2359         unsigned long pages_to_free = 0;
2360         struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2361                         shrinker);
2362
2363         for (i = zs_size_classes - 1; i >= 0; i--) {
2364                 class = pool->size_class[i];
2365                 if (!class)
2366                         continue;
2367                 if (class->index != i)
2368                         continue;
2369
2370                 pages_to_free += zs_can_compact(class);
2371         }
2372
2373         return pages_to_free;
2374 }
2375
2376 static void zs_unregister_shrinker(struct zs_pool *pool)
2377 {
2378         if (pool->shrinker_enabled) {
2379                 unregister_shrinker(&pool->shrinker);
2380                 pool->shrinker_enabled = false;
2381         }
2382 }
2383
2384 static int zs_register_shrinker(struct zs_pool *pool)
2385 {
2386         pool->shrinker.scan_objects = zs_shrinker_scan;
2387         pool->shrinker.count_objects = zs_shrinker_count;
2388         pool->shrinker.batch = 0;
2389         pool->shrinker.seeks = DEFAULT_SEEKS;
2390
2391         return register_shrinker(&pool->shrinker);
2392 }
2393
2394 /**
2395  * zs_create_pool - Creates an allocation pool to work from.
2396  * @flags: allocation flags used to allocate pool metadata
2397  *
2398  * This function must be called before anything when using
2399  * the zsmalloc allocator.
2400  *
2401  * On success, a pointer to the newly created pool is returned,
2402  * otherwise NULL.
2403  */
2404 struct zs_pool *zs_create_pool(const char *name)
2405 {
2406         int i;
2407         struct zs_pool *pool;
2408         struct size_class *prev_class = NULL;
2409
2410         pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2411         if (!pool)
2412                 return NULL;
2413
2414         init_deferred_free(pool);
2415         pool->size_class = kcalloc(zs_size_classes, sizeof(struct size_class *),
2416                         GFP_KERNEL);
2417         if (!pool->size_class) {
2418                 kfree(pool);
2419                 return NULL;
2420         }
2421
2422         pool->name = kstrdup(name, GFP_KERNEL);
2423         if (!pool->name)
2424                 goto err;
2425
2426         if (create_cache(pool))
2427                 goto err;
2428
2429         /*
2430          * Iterate reversly, because, size of size_class that we want to use
2431          * for merging should be larger or equal to current size.
2432          */
2433         for (i = zs_size_classes - 1; i >= 0; i--) {
2434                 int size;
2435                 int pages_per_zspage;
2436                 struct size_class *class;
2437                 int fullness = 0;
2438
2439                 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2440                 if (size > ZS_MAX_ALLOC_SIZE)
2441                         size = ZS_MAX_ALLOC_SIZE;
2442                 pages_per_zspage = get_pages_per_zspage(size);
2443
2444                 /*
2445                  * size_class is used for normal zsmalloc operation such
2446                  * as alloc/free for that size. Although it is natural that we
2447                  * have one size_class for each size, there is a chance that we
2448                  * can get more memory utilization if we use one size_class for
2449                  * many different sizes whose size_class have same
2450                  * characteristics. So, we makes size_class point to
2451                  * previous size_class if possible.
2452                  */
2453                 if (prev_class) {
2454                         if (can_merge(prev_class, size, pages_per_zspage)) {
2455                                 pool->size_class[i] = prev_class;
2456                                 continue;
2457                         }
2458                 }
2459
2460                 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2461                 if (!class)
2462                         goto err;
2463
2464                 class->size = size;
2465                 class->index = i;
2466                 class->pages_per_zspage = pages_per_zspage;
2467                 class->objs_per_zspage = class->pages_per_zspage *
2468                                                 PAGE_SIZE / class->size;
2469                 spin_lock_init(&class->lock);
2470                 pool->size_class[i] = class;
2471                 for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2472                                                         fullness++)
2473                         INIT_LIST_HEAD(&class->fullness_list[fullness]);
2474
2475                 prev_class = class;
2476         }
2477
2478         /* debug only, don't abort if it fails */
2479         zs_pool_stat_create(pool, name);
2480
2481         if (zs_register_migration(pool))
2482                 goto err;
2483
2484         /*
2485          * Not critical, we still can use the pool
2486          * and user can trigger compaction manually.
2487          */
2488         if (zs_register_shrinker(pool) == 0)
2489                 pool->shrinker_enabled = true;
2490         return pool;
2491
2492 err:
2493         zs_destroy_pool(pool);
2494         return NULL;
2495 }
2496 EXPORT_SYMBOL_GPL(zs_create_pool);
2497
2498 void zs_destroy_pool(struct zs_pool *pool)
2499 {
2500         int i;
2501
2502         zs_unregister_shrinker(pool);
2503         zs_unregister_migration(pool);
2504         zs_pool_stat_destroy(pool);
2505
2506         for (i = 0; i < zs_size_classes; i++) {
2507                 int fg;
2508                 struct size_class *class = pool->size_class[i];
2509
2510                 if (!class)
2511                         continue;
2512
2513                 if (class->index != i)
2514                         continue;
2515
2516                 for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
2517                         if (!list_empty(&class->fullness_list[fg])) {
2518                                 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2519                                         class->size, fg);
2520                         }
2521                 }
2522                 kfree(class);
2523         }
2524
2525         destroy_cache(pool);
2526         kfree(pool->size_class);
2527         kfree(pool->name);
2528         kfree(pool);
2529 }
2530 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2531
2532 static int __init zs_init(void)
2533 {
2534         int ret;
2535
2536         ret = zsmalloc_mount();
2537         if (ret)
2538                 goto out;
2539
2540         ret = zs_register_cpu_notifier();
2541
2542         if (ret)
2543                 goto notifier_fail;
2544
2545         init_zs_size_classes();
2546
2547 #ifdef CONFIG_ZPOOL
2548         zpool_register_driver(&zs_zpool_driver);
2549 #endif
2550
2551         zs_stat_init();
2552
2553         return 0;
2554
2555 notifier_fail:
2556         zs_unregister_cpu_notifier();
2557         zsmalloc_unmount();
2558 out:
2559         return ret;
2560 }
2561
2562 static void __exit zs_exit(void)
2563 {
2564 #ifdef CONFIG_ZPOOL
2565         zpool_unregister_driver(&zs_zpool_driver);
2566 #endif
2567         zsmalloc_unmount();
2568         zs_unregister_cpu_notifier();
2569
2570         zs_stat_exit();
2571 }
2572
2573 module_init(zs_init);
2574 module_exit(zs_exit);
2575
2576 MODULE_LICENSE("Dual BSD/GPL");
2577 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");