tcp/dccp: add SLAB_DESTROY_BY_RCU flag for request sockets
[cascardo/linux.git] / net / core / dev.c
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *              This program is free software; you can redistribute it and/or
5  *              modify it under the terms of the GNU General Public License
6  *              as published by the Free Software Foundation; either version
7  *              2 of the License, or (at your option) any later version.
8  *
9  *      Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:        Ross Biro
11  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *      Additional Authors:
15  *              Florian la Roche <rzsfl@rz.uni-sb.de>
16  *              Alan Cox <gw4pts@gw4pts.ampr.org>
17  *              David Hinds <dahinds@users.sourceforge.net>
18  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *              Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *      Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *              Alan Cox        :       device private ioctl copies fields back.
28  *              Alan Cox        :       Transmit queue code does relevant
29  *                                      stunts to keep the queue safe.
30  *              Alan Cox        :       Fixed double lock.
31  *              Alan Cox        :       Fixed promisc NULL pointer trap
32  *              ????????        :       Support the full private ioctl range
33  *              Alan Cox        :       Moved ioctl permission check into
34  *                                      drivers
35  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
36  *              Alan Cox        :       100 backlog just doesn't cut it when
37  *                                      you start doing multicast video 8)
38  *              Alan Cox        :       Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *              Alan Cox        :       Took out transmit every packet pass
41  *                                      Saved a few bytes in the ioctl handler
42  *              Alan Cox        :       Network driver sets packet type before
43  *                                      calling netif_rx. Saves a function
44  *                                      call a packet.
45  *              Alan Cox        :       Hashed net_bh()
46  *              Richard Kooijman:       Timestamp fixes.
47  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
48  *              Alan Cox        :       Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *                                      changes.
51  *              Rudi Cilibrasi  :       Pass the right thing to
52  *                                      set_mac_address()
53  *              Dave Miller     :       32bit quantity for the device lock to
54  *                                      make it work out on a Sparc.
55  *              Bjorn Ekwall    :       Added KERNELD hack.
56  *              Alan Cox        :       Cleaned up the backlog initialise.
57  *              Craig Metz      :       SIOCGIFCONF fix if space for under
58  *                                      1 device.
59  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
60  *                                      is no device open function.
61  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
62  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
63  *              Cyrus Durgin    :       Cleaned for KMOD
64  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
65  *                                      A network device unload needs to purge
66  *                                      the backlog queue.
67  *      Paul Rusty Russell      :       SIOCSIFNAME
68  *              Pekka Riikonen  :       Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *                                      - netif_rx() feedback
73  */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <net/xfrm.h>
105 #include <linux/highmem.h>
106 #include <linux/init.h>
107 #include <linux/module.h>
108 #include <linux/netpoll.h>
109 #include <linux/rcupdate.h>
110 #include <linux/delay.h>
111 #include <net/iw_handler.h>
112 #include <asm/current.h>
113 #include <linux/audit.h>
114 #include <linux/dmaengine.h>
115 #include <linux/err.h>
116 #include <linux/ctype.h>
117 #include <linux/if_arp.h>
118 #include <linux/if_vlan.h>
119 #include <linux/ip.h>
120 #include <net/ip.h>
121 #include <net/mpls.h>
122 #include <linux/ipv6.h>
123 #include <linux/in.h>
124 #include <linux/jhash.h>
125 #include <linux/random.h>
126 #include <trace/events/napi.h>
127 #include <trace/events/net.h>
128 #include <trace/events/skb.h>
129 #include <linux/pci.h>
130 #include <linux/inetdevice.h>
131 #include <linux/cpu_rmap.h>
132 #include <linux/static_key.h>
133 #include <linux/hashtable.h>
134 #include <linux/vmalloc.h>
135 #include <linux/if_macvlan.h>
136 #include <linux/errqueue.h>
137 #include <linux/hrtimer.h>
138 #include <linux/netfilter_ingress.h>
139
140 #include "net-sysfs.h"
141
142 /* Instead of increasing this, you should create a hash table. */
143 #define MAX_GRO_SKBS 8
144
145 /* This should be increased if a protocol with a bigger head is added. */
146 #define GRO_MAX_HEAD (MAX_HEADER + 128)
147
148 static DEFINE_SPINLOCK(ptype_lock);
149 static DEFINE_SPINLOCK(offload_lock);
150 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
151 struct list_head ptype_all __read_mostly;       /* Taps */
152 static struct list_head offload_base __read_mostly;
153
154 static int netif_rx_internal(struct sk_buff *skb);
155 static int call_netdevice_notifiers_info(unsigned long val,
156                                          struct net_device *dev,
157                                          struct netdev_notifier_info *info);
158
159 /*
160  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
161  * semaphore.
162  *
163  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
164  *
165  * Writers must hold the rtnl semaphore while they loop through the
166  * dev_base_head list, and hold dev_base_lock for writing when they do the
167  * actual updates.  This allows pure readers to access the list even
168  * while a writer is preparing to update it.
169  *
170  * To put it another way, dev_base_lock is held for writing only to
171  * protect against pure readers; the rtnl semaphore provides the
172  * protection against other writers.
173  *
174  * See, for example usages, register_netdevice() and
175  * unregister_netdevice(), which must be called with the rtnl
176  * semaphore held.
177  */
178 DEFINE_RWLOCK(dev_base_lock);
179 EXPORT_SYMBOL(dev_base_lock);
180
181 /* protects napi_hash addition/deletion and napi_gen_id */
182 static DEFINE_SPINLOCK(napi_hash_lock);
183
184 static unsigned int napi_gen_id;
185 static DEFINE_HASHTABLE(napi_hash, 8);
186
187 static seqcount_t devnet_rename_seq;
188
189 static inline void dev_base_seq_inc(struct net *net)
190 {
191         while (++net->dev_base_seq == 0);
192 }
193
194 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
195 {
196         unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
197
198         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
199 }
200
201 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
202 {
203         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
204 }
205
206 static inline void rps_lock(struct softnet_data *sd)
207 {
208 #ifdef CONFIG_RPS
209         spin_lock(&sd->input_pkt_queue.lock);
210 #endif
211 }
212
213 static inline void rps_unlock(struct softnet_data *sd)
214 {
215 #ifdef CONFIG_RPS
216         spin_unlock(&sd->input_pkt_queue.lock);
217 #endif
218 }
219
220 /* Device list insertion */
221 static void list_netdevice(struct net_device *dev)
222 {
223         struct net *net = dev_net(dev);
224
225         ASSERT_RTNL();
226
227         write_lock_bh(&dev_base_lock);
228         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
229         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
230         hlist_add_head_rcu(&dev->index_hlist,
231                            dev_index_hash(net, dev->ifindex));
232         write_unlock_bh(&dev_base_lock);
233
234         dev_base_seq_inc(net);
235 }
236
237 /* Device list removal
238  * caller must respect a RCU grace period before freeing/reusing dev
239  */
240 static void unlist_netdevice(struct net_device *dev)
241 {
242         ASSERT_RTNL();
243
244         /* Unlink dev from the device chain */
245         write_lock_bh(&dev_base_lock);
246         list_del_rcu(&dev->dev_list);
247         hlist_del_rcu(&dev->name_hlist);
248         hlist_del_rcu(&dev->index_hlist);
249         write_unlock_bh(&dev_base_lock);
250
251         dev_base_seq_inc(dev_net(dev));
252 }
253
254 /*
255  *      Our notifier list
256  */
257
258 static RAW_NOTIFIER_HEAD(netdev_chain);
259
260 /*
261  *      Device drivers call our routines to queue packets here. We empty the
262  *      queue in the local softnet handler.
263  */
264
265 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
266 EXPORT_PER_CPU_SYMBOL(softnet_data);
267
268 #ifdef CONFIG_LOCKDEP
269 /*
270  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
271  * according to dev->type
272  */
273 static const unsigned short netdev_lock_type[] =
274         {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
275          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
276          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
277          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
278          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
279          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
280          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
281          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
282          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
283          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
284          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
285          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
286          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
287          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
288          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
289
290 static const char *const netdev_lock_name[] =
291         {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
292          "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
293          "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
294          "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
295          "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
296          "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
297          "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
298          "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
299          "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
300          "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
301          "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
302          "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
303          "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
304          "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
305          "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
306
307 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
308 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
309
310 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
311 {
312         int i;
313
314         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
315                 if (netdev_lock_type[i] == dev_type)
316                         return i;
317         /* the last key is used by default */
318         return ARRAY_SIZE(netdev_lock_type) - 1;
319 }
320
321 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
322                                                  unsigned short dev_type)
323 {
324         int i;
325
326         i = netdev_lock_pos(dev_type);
327         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
328                                    netdev_lock_name[i]);
329 }
330
331 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
332 {
333         int i;
334
335         i = netdev_lock_pos(dev->type);
336         lockdep_set_class_and_name(&dev->addr_list_lock,
337                                    &netdev_addr_lock_key[i],
338                                    netdev_lock_name[i]);
339 }
340 #else
341 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
342                                                  unsigned short dev_type)
343 {
344 }
345 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
346 {
347 }
348 #endif
349
350 /*******************************************************************************
351
352                 Protocol management and registration routines
353
354 *******************************************************************************/
355
356 /*
357  *      Add a protocol ID to the list. Now that the input handler is
358  *      smarter we can dispense with all the messy stuff that used to be
359  *      here.
360  *
361  *      BEWARE!!! Protocol handlers, mangling input packets,
362  *      MUST BE last in hash buckets and checking protocol handlers
363  *      MUST start from promiscuous ptype_all chain in net_bh.
364  *      It is true now, do not change it.
365  *      Explanation follows: if protocol handler, mangling packet, will
366  *      be the first on list, it is not able to sense, that packet
367  *      is cloned and should be copied-on-write, so that it will
368  *      change it and subsequent readers will get broken packet.
369  *                                                      --ANK (980803)
370  */
371
372 static inline struct list_head *ptype_head(const struct packet_type *pt)
373 {
374         if (pt->type == htons(ETH_P_ALL))
375                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
376         else
377                 return pt->dev ? &pt->dev->ptype_specific :
378                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
379 }
380
381 /**
382  *      dev_add_pack - add packet handler
383  *      @pt: packet type declaration
384  *
385  *      Add a protocol handler to the networking stack. The passed &packet_type
386  *      is linked into kernel lists and may not be freed until it has been
387  *      removed from the kernel lists.
388  *
389  *      This call does not sleep therefore it can not
390  *      guarantee all CPU's that are in middle of receiving packets
391  *      will see the new packet type (until the next received packet).
392  */
393
394 void dev_add_pack(struct packet_type *pt)
395 {
396         struct list_head *head = ptype_head(pt);
397
398         spin_lock(&ptype_lock);
399         list_add_rcu(&pt->list, head);
400         spin_unlock(&ptype_lock);
401 }
402 EXPORT_SYMBOL(dev_add_pack);
403
404 /**
405  *      __dev_remove_pack        - remove packet handler
406  *      @pt: packet type declaration
407  *
408  *      Remove a protocol handler that was previously added to the kernel
409  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
410  *      from the kernel lists and can be freed or reused once this function
411  *      returns.
412  *
413  *      The packet type might still be in use by receivers
414  *      and must not be freed until after all the CPU's have gone
415  *      through a quiescent state.
416  */
417 void __dev_remove_pack(struct packet_type *pt)
418 {
419         struct list_head *head = ptype_head(pt);
420         struct packet_type *pt1;
421
422         spin_lock(&ptype_lock);
423
424         list_for_each_entry(pt1, head, list) {
425                 if (pt == pt1) {
426                         list_del_rcu(&pt->list);
427                         goto out;
428                 }
429         }
430
431         pr_warn("dev_remove_pack: %p not found\n", pt);
432 out:
433         spin_unlock(&ptype_lock);
434 }
435 EXPORT_SYMBOL(__dev_remove_pack);
436
437 /**
438  *      dev_remove_pack  - remove packet handler
439  *      @pt: packet type declaration
440  *
441  *      Remove a protocol handler that was previously added to the kernel
442  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
443  *      from the kernel lists and can be freed or reused once this function
444  *      returns.
445  *
446  *      This call sleeps to guarantee that no CPU is looking at the packet
447  *      type after return.
448  */
449 void dev_remove_pack(struct packet_type *pt)
450 {
451         __dev_remove_pack(pt);
452
453         synchronize_net();
454 }
455 EXPORT_SYMBOL(dev_remove_pack);
456
457
458 /**
459  *      dev_add_offload - register offload handlers
460  *      @po: protocol offload declaration
461  *
462  *      Add protocol offload handlers to the networking stack. The passed
463  *      &proto_offload is linked into kernel lists and may not be freed until
464  *      it has been removed from the kernel lists.
465  *
466  *      This call does not sleep therefore it can not
467  *      guarantee all CPU's that are in middle of receiving packets
468  *      will see the new offload handlers (until the next received packet).
469  */
470 void dev_add_offload(struct packet_offload *po)
471 {
472         struct packet_offload *elem;
473
474         spin_lock(&offload_lock);
475         list_for_each_entry(elem, &offload_base, list) {
476                 if (po->priority < elem->priority)
477                         break;
478         }
479         list_add_rcu(&po->list, elem->list.prev);
480         spin_unlock(&offload_lock);
481 }
482 EXPORT_SYMBOL(dev_add_offload);
483
484 /**
485  *      __dev_remove_offload     - remove offload handler
486  *      @po: packet offload declaration
487  *
488  *      Remove a protocol offload handler that was previously added to the
489  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
490  *      is removed from the kernel lists and can be freed or reused once this
491  *      function returns.
492  *
493  *      The packet type might still be in use by receivers
494  *      and must not be freed until after all the CPU's have gone
495  *      through a quiescent state.
496  */
497 static void __dev_remove_offload(struct packet_offload *po)
498 {
499         struct list_head *head = &offload_base;
500         struct packet_offload *po1;
501
502         spin_lock(&offload_lock);
503
504         list_for_each_entry(po1, head, list) {
505                 if (po == po1) {
506                         list_del_rcu(&po->list);
507                         goto out;
508                 }
509         }
510
511         pr_warn("dev_remove_offload: %p not found\n", po);
512 out:
513         spin_unlock(&offload_lock);
514 }
515
516 /**
517  *      dev_remove_offload       - remove packet offload handler
518  *      @po: packet offload declaration
519  *
520  *      Remove a packet offload handler that was previously added to the kernel
521  *      offload handlers by dev_add_offload(). The passed &offload_type is
522  *      removed from the kernel lists and can be freed or reused once this
523  *      function returns.
524  *
525  *      This call sleeps to guarantee that no CPU is looking at the packet
526  *      type after return.
527  */
528 void dev_remove_offload(struct packet_offload *po)
529 {
530         __dev_remove_offload(po);
531
532         synchronize_net();
533 }
534 EXPORT_SYMBOL(dev_remove_offload);
535
536 /******************************************************************************
537
538                       Device Boot-time Settings Routines
539
540 *******************************************************************************/
541
542 /* Boot time configuration table */
543 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
544
545 /**
546  *      netdev_boot_setup_add   - add new setup entry
547  *      @name: name of the device
548  *      @map: configured settings for the device
549  *
550  *      Adds new setup entry to the dev_boot_setup list.  The function
551  *      returns 0 on error and 1 on success.  This is a generic routine to
552  *      all netdevices.
553  */
554 static int netdev_boot_setup_add(char *name, struct ifmap *map)
555 {
556         struct netdev_boot_setup *s;
557         int i;
558
559         s = dev_boot_setup;
560         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
561                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
562                         memset(s[i].name, 0, sizeof(s[i].name));
563                         strlcpy(s[i].name, name, IFNAMSIZ);
564                         memcpy(&s[i].map, map, sizeof(s[i].map));
565                         break;
566                 }
567         }
568
569         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
570 }
571
572 /**
573  *      netdev_boot_setup_check - check boot time settings
574  *      @dev: the netdevice
575  *
576  *      Check boot time settings for the device.
577  *      The found settings are set for the device to be used
578  *      later in the device probing.
579  *      Returns 0 if no settings found, 1 if they are.
580  */
581 int netdev_boot_setup_check(struct net_device *dev)
582 {
583         struct netdev_boot_setup *s = dev_boot_setup;
584         int i;
585
586         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
587                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
588                     !strcmp(dev->name, s[i].name)) {
589                         dev->irq        = s[i].map.irq;
590                         dev->base_addr  = s[i].map.base_addr;
591                         dev->mem_start  = s[i].map.mem_start;
592                         dev->mem_end    = s[i].map.mem_end;
593                         return 1;
594                 }
595         }
596         return 0;
597 }
598 EXPORT_SYMBOL(netdev_boot_setup_check);
599
600
601 /**
602  *      netdev_boot_base        - get address from boot time settings
603  *      @prefix: prefix for network device
604  *      @unit: id for network device
605  *
606  *      Check boot time settings for the base address of device.
607  *      The found settings are set for the device to be used
608  *      later in the device probing.
609  *      Returns 0 if no settings found.
610  */
611 unsigned long netdev_boot_base(const char *prefix, int unit)
612 {
613         const struct netdev_boot_setup *s = dev_boot_setup;
614         char name[IFNAMSIZ];
615         int i;
616
617         sprintf(name, "%s%d", prefix, unit);
618
619         /*
620          * If device already registered then return base of 1
621          * to indicate not to probe for this interface
622          */
623         if (__dev_get_by_name(&init_net, name))
624                 return 1;
625
626         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
627                 if (!strcmp(name, s[i].name))
628                         return s[i].map.base_addr;
629         return 0;
630 }
631
632 /*
633  * Saves at boot time configured settings for any netdevice.
634  */
635 int __init netdev_boot_setup(char *str)
636 {
637         int ints[5];
638         struct ifmap map;
639
640         str = get_options(str, ARRAY_SIZE(ints), ints);
641         if (!str || !*str)
642                 return 0;
643
644         /* Save settings */
645         memset(&map, 0, sizeof(map));
646         if (ints[0] > 0)
647                 map.irq = ints[1];
648         if (ints[0] > 1)
649                 map.base_addr = ints[2];
650         if (ints[0] > 2)
651                 map.mem_start = ints[3];
652         if (ints[0] > 3)
653                 map.mem_end = ints[4];
654
655         /* Add new entry to the list */
656         return netdev_boot_setup_add(str, &map);
657 }
658
659 __setup("netdev=", netdev_boot_setup);
660
661 /*******************************************************************************
662
663                             Device Interface Subroutines
664
665 *******************************************************************************/
666
667 /**
668  *      dev_get_iflink  - get 'iflink' value of a interface
669  *      @dev: targeted interface
670  *
671  *      Indicates the ifindex the interface is linked to.
672  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
673  */
674
675 int dev_get_iflink(const struct net_device *dev)
676 {
677         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
678                 return dev->netdev_ops->ndo_get_iflink(dev);
679
680         return dev->ifindex;
681 }
682 EXPORT_SYMBOL(dev_get_iflink);
683
684 /**
685  *      __dev_get_by_name       - find a device by its name
686  *      @net: the applicable net namespace
687  *      @name: name to find
688  *
689  *      Find an interface by name. Must be called under RTNL semaphore
690  *      or @dev_base_lock. If the name is found a pointer to the device
691  *      is returned. If the name is not found then %NULL is returned. The
692  *      reference counters are not incremented so the caller must be
693  *      careful with locks.
694  */
695
696 struct net_device *__dev_get_by_name(struct net *net, const char *name)
697 {
698         struct net_device *dev;
699         struct hlist_head *head = dev_name_hash(net, name);
700
701         hlist_for_each_entry(dev, head, name_hlist)
702                 if (!strncmp(dev->name, name, IFNAMSIZ))
703                         return dev;
704
705         return NULL;
706 }
707 EXPORT_SYMBOL(__dev_get_by_name);
708
709 /**
710  *      dev_get_by_name_rcu     - find a device by its name
711  *      @net: the applicable net namespace
712  *      @name: name to find
713  *
714  *      Find an interface by name.
715  *      If the name is found a pointer to the device is returned.
716  *      If the name is not found then %NULL is returned.
717  *      The reference counters are not incremented so the caller must be
718  *      careful with locks. The caller must hold RCU lock.
719  */
720
721 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
722 {
723         struct net_device *dev;
724         struct hlist_head *head = dev_name_hash(net, name);
725
726         hlist_for_each_entry_rcu(dev, head, name_hlist)
727                 if (!strncmp(dev->name, name, IFNAMSIZ))
728                         return dev;
729
730         return NULL;
731 }
732 EXPORT_SYMBOL(dev_get_by_name_rcu);
733
734 /**
735  *      dev_get_by_name         - find a device by its name
736  *      @net: the applicable net namespace
737  *      @name: name to find
738  *
739  *      Find an interface by name. This can be called from any
740  *      context and does its own locking. The returned handle has
741  *      the usage count incremented and the caller must use dev_put() to
742  *      release it when it is no longer needed. %NULL is returned if no
743  *      matching device is found.
744  */
745
746 struct net_device *dev_get_by_name(struct net *net, const char *name)
747 {
748         struct net_device *dev;
749
750         rcu_read_lock();
751         dev = dev_get_by_name_rcu(net, name);
752         if (dev)
753                 dev_hold(dev);
754         rcu_read_unlock();
755         return dev;
756 }
757 EXPORT_SYMBOL(dev_get_by_name);
758
759 /**
760  *      __dev_get_by_index - find a device by its ifindex
761  *      @net: the applicable net namespace
762  *      @ifindex: index of device
763  *
764  *      Search for an interface by index. Returns %NULL if the device
765  *      is not found or a pointer to the device. The device has not
766  *      had its reference counter increased so the caller must be careful
767  *      about locking. The caller must hold either the RTNL semaphore
768  *      or @dev_base_lock.
769  */
770
771 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
772 {
773         struct net_device *dev;
774         struct hlist_head *head = dev_index_hash(net, ifindex);
775
776         hlist_for_each_entry(dev, head, index_hlist)
777                 if (dev->ifindex == ifindex)
778                         return dev;
779
780         return NULL;
781 }
782 EXPORT_SYMBOL(__dev_get_by_index);
783
784 /**
785  *      dev_get_by_index_rcu - find a device by its ifindex
786  *      @net: the applicable net namespace
787  *      @ifindex: index of device
788  *
789  *      Search for an interface by index. Returns %NULL if the device
790  *      is not found or a pointer to the device. The device has not
791  *      had its reference counter increased so the caller must be careful
792  *      about locking. The caller must hold RCU lock.
793  */
794
795 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
796 {
797         struct net_device *dev;
798         struct hlist_head *head = dev_index_hash(net, ifindex);
799
800         hlist_for_each_entry_rcu(dev, head, index_hlist)
801                 if (dev->ifindex == ifindex)
802                         return dev;
803
804         return NULL;
805 }
806 EXPORT_SYMBOL(dev_get_by_index_rcu);
807
808
809 /**
810  *      dev_get_by_index - find a device by its ifindex
811  *      @net: the applicable net namespace
812  *      @ifindex: index of device
813  *
814  *      Search for an interface by index. Returns NULL if the device
815  *      is not found or a pointer to the device. The device returned has
816  *      had a reference added and the pointer is safe until the user calls
817  *      dev_put to indicate they have finished with it.
818  */
819
820 struct net_device *dev_get_by_index(struct net *net, int ifindex)
821 {
822         struct net_device *dev;
823
824         rcu_read_lock();
825         dev = dev_get_by_index_rcu(net, ifindex);
826         if (dev)
827                 dev_hold(dev);
828         rcu_read_unlock();
829         return dev;
830 }
831 EXPORT_SYMBOL(dev_get_by_index);
832
833 /**
834  *      netdev_get_name - get a netdevice name, knowing its ifindex.
835  *      @net: network namespace
836  *      @name: a pointer to the buffer where the name will be stored.
837  *      @ifindex: the ifindex of the interface to get the name from.
838  *
839  *      The use of raw_seqcount_begin() and cond_resched() before
840  *      retrying is required as we want to give the writers a chance
841  *      to complete when CONFIG_PREEMPT is not set.
842  */
843 int netdev_get_name(struct net *net, char *name, int ifindex)
844 {
845         struct net_device *dev;
846         unsigned int seq;
847
848 retry:
849         seq = raw_seqcount_begin(&devnet_rename_seq);
850         rcu_read_lock();
851         dev = dev_get_by_index_rcu(net, ifindex);
852         if (!dev) {
853                 rcu_read_unlock();
854                 return -ENODEV;
855         }
856
857         strcpy(name, dev->name);
858         rcu_read_unlock();
859         if (read_seqcount_retry(&devnet_rename_seq, seq)) {
860                 cond_resched();
861                 goto retry;
862         }
863
864         return 0;
865 }
866
867 /**
868  *      dev_getbyhwaddr_rcu - find a device by its hardware address
869  *      @net: the applicable net namespace
870  *      @type: media type of device
871  *      @ha: hardware address
872  *
873  *      Search for an interface by MAC address. Returns NULL if the device
874  *      is not found or a pointer to the device.
875  *      The caller must hold RCU or RTNL.
876  *      The returned device has not had its ref count increased
877  *      and the caller must therefore be careful about locking
878  *
879  */
880
881 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
882                                        const char *ha)
883 {
884         struct net_device *dev;
885
886         for_each_netdev_rcu(net, dev)
887                 if (dev->type == type &&
888                     !memcmp(dev->dev_addr, ha, dev->addr_len))
889                         return dev;
890
891         return NULL;
892 }
893 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
894
895 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
896 {
897         struct net_device *dev;
898
899         ASSERT_RTNL();
900         for_each_netdev(net, dev)
901                 if (dev->type == type)
902                         return dev;
903
904         return NULL;
905 }
906 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
907
908 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
909 {
910         struct net_device *dev, *ret = NULL;
911
912         rcu_read_lock();
913         for_each_netdev_rcu(net, dev)
914                 if (dev->type == type) {
915                         dev_hold(dev);
916                         ret = dev;
917                         break;
918                 }
919         rcu_read_unlock();
920         return ret;
921 }
922 EXPORT_SYMBOL(dev_getfirstbyhwtype);
923
924 /**
925  *      __dev_get_by_flags - find any device with given flags
926  *      @net: the applicable net namespace
927  *      @if_flags: IFF_* values
928  *      @mask: bitmask of bits in if_flags to check
929  *
930  *      Search for any interface with the given flags. Returns NULL if a device
931  *      is not found or a pointer to the device. Must be called inside
932  *      rtnl_lock(), and result refcount is unchanged.
933  */
934
935 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
936                                       unsigned short mask)
937 {
938         struct net_device *dev, *ret;
939
940         ASSERT_RTNL();
941
942         ret = NULL;
943         for_each_netdev(net, dev) {
944                 if (((dev->flags ^ if_flags) & mask) == 0) {
945                         ret = dev;
946                         break;
947                 }
948         }
949         return ret;
950 }
951 EXPORT_SYMBOL(__dev_get_by_flags);
952
953 /**
954  *      dev_valid_name - check if name is okay for network device
955  *      @name: name string
956  *
957  *      Network device names need to be valid file names to
958  *      to allow sysfs to work.  We also disallow any kind of
959  *      whitespace.
960  */
961 bool dev_valid_name(const char *name)
962 {
963         if (*name == '\0')
964                 return false;
965         if (strlen(name) >= IFNAMSIZ)
966                 return false;
967         if (!strcmp(name, ".") || !strcmp(name, ".."))
968                 return false;
969
970         while (*name) {
971                 if (*name == '/' || *name == ':' || isspace(*name))
972                         return false;
973                 name++;
974         }
975         return true;
976 }
977 EXPORT_SYMBOL(dev_valid_name);
978
979 /**
980  *      __dev_alloc_name - allocate a name for a device
981  *      @net: network namespace to allocate the device name in
982  *      @name: name format string
983  *      @buf:  scratch buffer and result name string
984  *
985  *      Passed a format string - eg "lt%d" it will try and find a suitable
986  *      id. It scans list of devices to build up a free map, then chooses
987  *      the first empty slot. The caller must hold the dev_base or rtnl lock
988  *      while allocating the name and adding the device in order to avoid
989  *      duplicates.
990  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
991  *      Returns the number of the unit assigned or a negative errno code.
992  */
993
994 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
995 {
996         int i = 0;
997         const char *p;
998         const int max_netdevices = 8*PAGE_SIZE;
999         unsigned long *inuse;
1000         struct net_device *d;
1001
1002         p = strnchr(name, IFNAMSIZ-1, '%');
1003         if (p) {
1004                 /*
1005                  * Verify the string as this thing may have come from
1006                  * the user.  There must be either one "%d" and no other "%"
1007                  * characters.
1008                  */
1009                 if (p[1] != 'd' || strchr(p + 2, '%'))
1010                         return -EINVAL;
1011
1012                 /* Use one page as a bit array of possible slots */
1013                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1014                 if (!inuse)
1015                         return -ENOMEM;
1016
1017                 for_each_netdev(net, d) {
1018                         if (!sscanf(d->name, name, &i))
1019                                 continue;
1020                         if (i < 0 || i >= max_netdevices)
1021                                 continue;
1022
1023                         /*  avoid cases where sscanf is not exact inverse of printf */
1024                         snprintf(buf, IFNAMSIZ, name, i);
1025                         if (!strncmp(buf, d->name, IFNAMSIZ))
1026                                 set_bit(i, inuse);
1027                 }
1028
1029                 i = find_first_zero_bit(inuse, max_netdevices);
1030                 free_page((unsigned long) inuse);
1031         }
1032
1033         if (buf != name)
1034                 snprintf(buf, IFNAMSIZ, name, i);
1035         if (!__dev_get_by_name(net, buf))
1036                 return i;
1037
1038         /* It is possible to run out of possible slots
1039          * when the name is long and there isn't enough space left
1040          * for the digits, or if all bits are used.
1041          */
1042         return -ENFILE;
1043 }
1044
1045 /**
1046  *      dev_alloc_name - allocate a name for a device
1047  *      @dev: device
1048  *      @name: name format string
1049  *
1050  *      Passed a format string - eg "lt%d" it will try and find a suitable
1051  *      id. It scans list of devices to build up a free map, then chooses
1052  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1053  *      while allocating the name and adding the device in order to avoid
1054  *      duplicates.
1055  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1056  *      Returns the number of the unit assigned or a negative errno code.
1057  */
1058
1059 int dev_alloc_name(struct net_device *dev, const char *name)
1060 {
1061         char buf[IFNAMSIZ];
1062         struct net *net;
1063         int ret;
1064
1065         BUG_ON(!dev_net(dev));
1066         net = dev_net(dev);
1067         ret = __dev_alloc_name(net, name, buf);
1068         if (ret >= 0)
1069                 strlcpy(dev->name, buf, IFNAMSIZ);
1070         return ret;
1071 }
1072 EXPORT_SYMBOL(dev_alloc_name);
1073
1074 static int dev_alloc_name_ns(struct net *net,
1075                              struct net_device *dev,
1076                              const char *name)
1077 {
1078         char buf[IFNAMSIZ];
1079         int ret;
1080
1081         ret = __dev_alloc_name(net, name, buf);
1082         if (ret >= 0)
1083                 strlcpy(dev->name, buf, IFNAMSIZ);
1084         return ret;
1085 }
1086
1087 static int dev_get_valid_name(struct net *net,
1088                               struct net_device *dev,
1089                               const char *name)
1090 {
1091         BUG_ON(!net);
1092
1093         if (!dev_valid_name(name))
1094                 return -EINVAL;
1095
1096         if (strchr(name, '%'))
1097                 return dev_alloc_name_ns(net, dev, name);
1098         else if (__dev_get_by_name(net, name))
1099                 return -EEXIST;
1100         else if (dev->name != name)
1101                 strlcpy(dev->name, name, IFNAMSIZ);
1102
1103         return 0;
1104 }
1105
1106 /**
1107  *      dev_change_name - change name of a device
1108  *      @dev: device
1109  *      @newname: name (or format string) must be at least IFNAMSIZ
1110  *
1111  *      Change name of a device, can pass format strings "eth%d".
1112  *      for wildcarding.
1113  */
1114 int dev_change_name(struct net_device *dev, const char *newname)
1115 {
1116         unsigned char old_assign_type;
1117         char oldname[IFNAMSIZ];
1118         int err = 0;
1119         int ret;
1120         struct net *net;
1121
1122         ASSERT_RTNL();
1123         BUG_ON(!dev_net(dev));
1124
1125         net = dev_net(dev);
1126         if (dev->flags & IFF_UP)
1127                 return -EBUSY;
1128
1129         write_seqcount_begin(&devnet_rename_seq);
1130
1131         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1132                 write_seqcount_end(&devnet_rename_seq);
1133                 return 0;
1134         }
1135
1136         memcpy(oldname, dev->name, IFNAMSIZ);
1137
1138         err = dev_get_valid_name(net, dev, newname);
1139         if (err < 0) {
1140                 write_seqcount_end(&devnet_rename_seq);
1141                 return err;
1142         }
1143
1144         if (oldname[0] && !strchr(oldname, '%'))
1145                 netdev_info(dev, "renamed from %s\n", oldname);
1146
1147         old_assign_type = dev->name_assign_type;
1148         dev->name_assign_type = NET_NAME_RENAMED;
1149
1150 rollback:
1151         ret = device_rename(&dev->dev, dev->name);
1152         if (ret) {
1153                 memcpy(dev->name, oldname, IFNAMSIZ);
1154                 dev->name_assign_type = old_assign_type;
1155                 write_seqcount_end(&devnet_rename_seq);
1156                 return ret;
1157         }
1158
1159         write_seqcount_end(&devnet_rename_seq);
1160
1161         netdev_adjacent_rename_links(dev, oldname);
1162
1163         write_lock_bh(&dev_base_lock);
1164         hlist_del_rcu(&dev->name_hlist);
1165         write_unlock_bh(&dev_base_lock);
1166
1167         synchronize_rcu();
1168
1169         write_lock_bh(&dev_base_lock);
1170         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1171         write_unlock_bh(&dev_base_lock);
1172
1173         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1174         ret = notifier_to_errno(ret);
1175
1176         if (ret) {
1177                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1178                 if (err >= 0) {
1179                         err = ret;
1180                         write_seqcount_begin(&devnet_rename_seq);
1181                         memcpy(dev->name, oldname, IFNAMSIZ);
1182                         memcpy(oldname, newname, IFNAMSIZ);
1183                         dev->name_assign_type = old_assign_type;
1184                         old_assign_type = NET_NAME_RENAMED;
1185                         goto rollback;
1186                 } else {
1187                         pr_err("%s: name change rollback failed: %d\n",
1188                                dev->name, ret);
1189                 }
1190         }
1191
1192         return err;
1193 }
1194
1195 /**
1196  *      dev_set_alias - change ifalias of a device
1197  *      @dev: device
1198  *      @alias: name up to IFALIASZ
1199  *      @len: limit of bytes to copy from info
1200  *
1201  *      Set ifalias for a device,
1202  */
1203 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1204 {
1205         char *new_ifalias;
1206
1207         ASSERT_RTNL();
1208
1209         if (len >= IFALIASZ)
1210                 return -EINVAL;
1211
1212         if (!len) {
1213                 kfree(dev->ifalias);
1214                 dev->ifalias = NULL;
1215                 return 0;
1216         }
1217
1218         new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1219         if (!new_ifalias)
1220                 return -ENOMEM;
1221         dev->ifalias = new_ifalias;
1222
1223         strlcpy(dev->ifalias, alias, len+1);
1224         return len;
1225 }
1226
1227
1228 /**
1229  *      netdev_features_change - device changes features
1230  *      @dev: device to cause notification
1231  *
1232  *      Called to indicate a device has changed features.
1233  */
1234 void netdev_features_change(struct net_device *dev)
1235 {
1236         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1237 }
1238 EXPORT_SYMBOL(netdev_features_change);
1239
1240 /**
1241  *      netdev_state_change - device changes state
1242  *      @dev: device to cause notification
1243  *
1244  *      Called to indicate a device has changed state. This function calls
1245  *      the notifier chains for netdev_chain and sends a NEWLINK message
1246  *      to the routing socket.
1247  */
1248 void netdev_state_change(struct net_device *dev)
1249 {
1250         if (dev->flags & IFF_UP) {
1251                 struct netdev_notifier_change_info change_info;
1252
1253                 change_info.flags_changed = 0;
1254                 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1255                                               &change_info.info);
1256                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1257         }
1258 }
1259 EXPORT_SYMBOL(netdev_state_change);
1260
1261 /**
1262  *      netdev_notify_peers - notify network peers about existence of @dev
1263  *      @dev: network device
1264  *
1265  * Generate traffic such that interested network peers are aware of
1266  * @dev, such as by generating a gratuitous ARP. This may be used when
1267  * a device wants to inform the rest of the network about some sort of
1268  * reconfiguration such as a failover event or virtual machine
1269  * migration.
1270  */
1271 void netdev_notify_peers(struct net_device *dev)
1272 {
1273         rtnl_lock();
1274         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1275         rtnl_unlock();
1276 }
1277 EXPORT_SYMBOL(netdev_notify_peers);
1278
1279 static int __dev_open(struct net_device *dev)
1280 {
1281         const struct net_device_ops *ops = dev->netdev_ops;
1282         int ret;
1283
1284         ASSERT_RTNL();
1285
1286         if (!netif_device_present(dev))
1287                 return -ENODEV;
1288
1289         /* Block netpoll from trying to do any rx path servicing.
1290          * If we don't do this there is a chance ndo_poll_controller
1291          * or ndo_poll may be running while we open the device
1292          */
1293         netpoll_poll_disable(dev);
1294
1295         ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1296         ret = notifier_to_errno(ret);
1297         if (ret)
1298                 return ret;
1299
1300         set_bit(__LINK_STATE_START, &dev->state);
1301
1302         if (ops->ndo_validate_addr)
1303                 ret = ops->ndo_validate_addr(dev);
1304
1305         if (!ret && ops->ndo_open)
1306                 ret = ops->ndo_open(dev);
1307
1308         netpoll_poll_enable(dev);
1309
1310         if (ret)
1311                 clear_bit(__LINK_STATE_START, &dev->state);
1312         else {
1313                 dev->flags |= IFF_UP;
1314                 dev_set_rx_mode(dev);
1315                 dev_activate(dev);
1316                 add_device_randomness(dev->dev_addr, dev->addr_len);
1317         }
1318
1319         return ret;
1320 }
1321
1322 /**
1323  *      dev_open        - prepare an interface for use.
1324  *      @dev:   device to open
1325  *
1326  *      Takes a device from down to up state. The device's private open
1327  *      function is invoked and then the multicast lists are loaded. Finally
1328  *      the device is moved into the up state and a %NETDEV_UP message is
1329  *      sent to the netdev notifier chain.
1330  *
1331  *      Calling this function on an active interface is a nop. On a failure
1332  *      a negative errno code is returned.
1333  */
1334 int dev_open(struct net_device *dev)
1335 {
1336         int ret;
1337
1338         if (dev->flags & IFF_UP)
1339                 return 0;
1340
1341         ret = __dev_open(dev);
1342         if (ret < 0)
1343                 return ret;
1344
1345         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1346         call_netdevice_notifiers(NETDEV_UP, dev);
1347
1348         return ret;
1349 }
1350 EXPORT_SYMBOL(dev_open);
1351
1352 static int __dev_close_many(struct list_head *head)
1353 {
1354         struct net_device *dev;
1355
1356         ASSERT_RTNL();
1357         might_sleep();
1358
1359         list_for_each_entry(dev, head, close_list) {
1360                 /* Temporarily disable netpoll until the interface is down */
1361                 netpoll_poll_disable(dev);
1362
1363                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1364
1365                 clear_bit(__LINK_STATE_START, &dev->state);
1366
1367                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1368                  * can be even on different cpu. So just clear netif_running().
1369                  *
1370                  * dev->stop() will invoke napi_disable() on all of it's
1371                  * napi_struct instances on this device.
1372                  */
1373                 smp_mb__after_atomic(); /* Commit netif_running(). */
1374         }
1375
1376         dev_deactivate_many(head);
1377
1378         list_for_each_entry(dev, head, close_list) {
1379                 const struct net_device_ops *ops = dev->netdev_ops;
1380
1381                 /*
1382                  *      Call the device specific close. This cannot fail.
1383                  *      Only if device is UP
1384                  *
1385                  *      We allow it to be called even after a DETACH hot-plug
1386                  *      event.
1387                  */
1388                 if (ops->ndo_stop)
1389                         ops->ndo_stop(dev);
1390
1391                 dev->flags &= ~IFF_UP;
1392                 netpoll_poll_enable(dev);
1393         }
1394
1395         return 0;
1396 }
1397
1398 static int __dev_close(struct net_device *dev)
1399 {
1400         int retval;
1401         LIST_HEAD(single);
1402
1403         list_add(&dev->close_list, &single);
1404         retval = __dev_close_many(&single);
1405         list_del(&single);
1406
1407         return retval;
1408 }
1409
1410 int dev_close_many(struct list_head *head, bool unlink)
1411 {
1412         struct net_device *dev, *tmp;
1413
1414         /* Remove the devices that don't need to be closed */
1415         list_for_each_entry_safe(dev, tmp, head, close_list)
1416                 if (!(dev->flags & IFF_UP))
1417                         list_del_init(&dev->close_list);
1418
1419         __dev_close_many(head);
1420
1421         list_for_each_entry_safe(dev, tmp, head, close_list) {
1422                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1423                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1424                 if (unlink)
1425                         list_del_init(&dev->close_list);
1426         }
1427
1428         return 0;
1429 }
1430 EXPORT_SYMBOL(dev_close_many);
1431
1432 /**
1433  *      dev_close - shutdown an interface.
1434  *      @dev: device to shutdown
1435  *
1436  *      This function moves an active device into down state. A
1437  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1438  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1439  *      chain.
1440  */
1441 int dev_close(struct net_device *dev)
1442 {
1443         if (dev->flags & IFF_UP) {
1444                 LIST_HEAD(single);
1445
1446                 list_add(&dev->close_list, &single);
1447                 dev_close_many(&single, true);
1448                 list_del(&single);
1449         }
1450         return 0;
1451 }
1452 EXPORT_SYMBOL(dev_close);
1453
1454
1455 /**
1456  *      dev_disable_lro - disable Large Receive Offload on a device
1457  *      @dev: device
1458  *
1459  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1460  *      called under RTNL.  This is needed if received packets may be
1461  *      forwarded to another interface.
1462  */
1463 void dev_disable_lro(struct net_device *dev)
1464 {
1465         struct net_device *lower_dev;
1466         struct list_head *iter;
1467
1468         dev->wanted_features &= ~NETIF_F_LRO;
1469         netdev_update_features(dev);
1470
1471         if (unlikely(dev->features & NETIF_F_LRO))
1472                 netdev_WARN(dev, "failed to disable LRO!\n");
1473
1474         netdev_for_each_lower_dev(dev, lower_dev, iter)
1475                 dev_disable_lro(lower_dev);
1476 }
1477 EXPORT_SYMBOL(dev_disable_lro);
1478
1479 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1480                                    struct net_device *dev)
1481 {
1482         struct netdev_notifier_info info;
1483
1484         netdev_notifier_info_init(&info, dev);
1485         return nb->notifier_call(nb, val, &info);
1486 }
1487
1488 static int dev_boot_phase = 1;
1489
1490 /**
1491  *      register_netdevice_notifier - register a network notifier block
1492  *      @nb: notifier
1493  *
1494  *      Register a notifier to be called when network device events occur.
1495  *      The notifier passed is linked into the kernel structures and must
1496  *      not be reused until it has been unregistered. A negative errno code
1497  *      is returned on a failure.
1498  *
1499  *      When registered all registration and up events are replayed
1500  *      to the new notifier to allow device to have a race free
1501  *      view of the network device list.
1502  */
1503
1504 int register_netdevice_notifier(struct notifier_block *nb)
1505 {
1506         struct net_device *dev;
1507         struct net_device *last;
1508         struct net *net;
1509         int err;
1510
1511         rtnl_lock();
1512         err = raw_notifier_chain_register(&netdev_chain, nb);
1513         if (err)
1514                 goto unlock;
1515         if (dev_boot_phase)
1516                 goto unlock;
1517         for_each_net(net) {
1518                 for_each_netdev(net, dev) {
1519                         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1520                         err = notifier_to_errno(err);
1521                         if (err)
1522                                 goto rollback;
1523
1524                         if (!(dev->flags & IFF_UP))
1525                                 continue;
1526
1527                         call_netdevice_notifier(nb, NETDEV_UP, dev);
1528                 }
1529         }
1530
1531 unlock:
1532         rtnl_unlock();
1533         return err;
1534
1535 rollback:
1536         last = dev;
1537         for_each_net(net) {
1538                 for_each_netdev(net, dev) {
1539                         if (dev == last)
1540                                 goto outroll;
1541
1542                         if (dev->flags & IFF_UP) {
1543                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1544                                                         dev);
1545                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1546                         }
1547                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1548                 }
1549         }
1550
1551 outroll:
1552         raw_notifier_chain_unregister(&netdev_chain, nb);
1553         goto unlock;
1554 }
1555 EXPORT_SYMBOL(register_netdevice_notifier);
1556
1557 /**
1558  *      unregister_netdevice_notifier - unregister a network notifier block
1559  *      @nb: notifier
1560  *
1561  *      Unregister a notifier previously registered by
1562  *      register_netdevice_notifier(). The notifier is unlinked into the
1563  *      kernel structures and may then be reused. A negative errno code
1564  *      is returned on a failure.
1565  *
1566  *      After unregistering unregister and down device events are synthesized
1567  *      for all devices on the device list to the removed notifier to remove
1568  *      the need for special case cleanup code.
1569  */
1570
1571 int unregister_netdevice_notifier(struct notifier_block *nb)
1572 {
1573         struct net_device *dev;
1574         struct net *net;
1575         int err;
1576
1577         rtnl_lock();
1578         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1579         if (err)
1580                 goto unlock;
1581
1582         for_each_net(net) {
1583                 for_each_netdev(net, dev) {
1584                         if (dev->flags & IFF_UP) {
1585                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1586                                                         dev);
1587                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1588                         }
1589                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1590                 }
1591         }
1592 unlock:
1593         rtnl_unlock();
1594         return err;
1595 }
1596 EXPORT_SYMBOL(unregister_netdevice_notifier);
1597
1598 /**
1599  *      call_netdevice_notifiers_info - call all network notifier blocks
1600  *      @val: value passed unmodified to notifier function
1601  *      @dev: net_device pointer passed unmodified to notifier function
1602  *      @info: notifier information data
1603  *
1604  *      Call all network notifier blocks.  Parameters and return value
1605  *      are as for raw_notifier_call_chain().
1606  */
1607
1608 static int call_netdevice_notifiers_info(unsigned long val,
1609                                          struct net_device *dev,
1610                                          struct netdev_notifier_info *info)
1611 {
1612         ASSERT_RTNL();
1613         netdev_notifier_info_init(info, dev);
1614         return raw_notifier_call_chain(&netdev_chain, val, info);
1615 }
1616
1617 /**
1618  *      call_netdevice_notifiers - call all network notifier blocks
1619  *      @val: value passed unmodified to notifier function
1620  *      @dev: net_device pointer passed unmodified to notifier function
1621  *
1622  *      Call all network notifier blocks.  Parameters and return value
1623  *      are as for raw_notifier_call_chain().
1624  */
1625
1626 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1627 {
1628         struct netdev_notifier_info info;
1629
1630         return call_netdevice_notifiers_info(val, dev, &info);
1631 }
1632 EXPORT_SYMBOL(call_netdevice_notifiers);
1633
1634 #ifdef CONFIG_NET_INGRESS
1635 static struct static_key ingress_needed __read_mostly;
1636
1637 void net_inc_ingress_queue(void)
1638 {
1639         static_key_slow_inc(&ingress_needed);
1640 }
1641 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1642
1643 void net_dec_ingress_queue(void)
1644 {
1645         static_key_slow_dec(&ingress_needed);
1646 }
1647 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1648 #endif
1649
1650 static struct static_key netstamp_needed __read_mostly;
1651 #ifdef HAVE_JUMP_LABEL
1652 /* We are not allowed to call static_key_slow_dec() from irq context
1653  * If net_disable_timestamp() is called from irq context, defer the
1654  * static_key_slow_dec() calls.
1655  */
1656 static atomic_t netstamp_needed_deferred;
1657 #endif
1658
1659 void net_enable_timestamp(void)
1660 {
1661 #ifdef HAVE_JUMP_LABEL
1662         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1663
1664         if (deferred) {
1665                 while (--deferred)
1666                         static_key_slow_dec(&netstamp_needed);
1667                 return;
1668         }
1669 #endif
1670         static_key_slow_inc(&netstamp_needed);
1671 }
1672 EXPORT_SYMBOL(net_enable_timestamp);
1673
1674 void net_disable_timestamp(void)
1675 {
1676 #ifdef HAVE_JUMP_LABEL
1677         if (in_interrupt()) {
1678                 atomic_inc(&netstamp_needed_deferred);
1679                 return;
1680         }
1681 #endif
1682         static_key_slow_dec(&netstamp_needed);
1683 }
1684 EXPORT_SYMBOL(net_disable_timestamp);
1685
1686 static inline void net_timestamp_set(struct sk_buff *skb)
1687 {
1688         skb->tstamp.tv64 = 0;
1689         if (static_key_false(&netstamp_needed))
1690                 __net_timestamp(skb);
1691 }
1692
1693 #define net_timestamp_check(COND, SKB)                  \
1694         if (static_key_false(&netstamp_needed)) {               \
1695                 if ((COND) && !(SKB)->tstamp.tv64)      \
1696                         __net_timestamp(SKB);           \
1697         }                                               \
1698
1699 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
1700 {
1701         unsigned int len;
1702
1703         if (!(dev->flags & IFF_UP))
1704                 return false;
1705
1706         len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1707         if (skb->len <= len)
1708                 return true;
1709
1710         /* if TSO is enabled, we don't care about the length as the packet
1711          * could be forwarded without being segmented before
1712          */
1713         if (skb_is_gso(skb))
1714                 return true;
1715
1716         return false;
1717 }
1718 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1719
1720 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1721 {
1722         if (skb_orphan_frags(skb, GFP_ATOMIC) ||
1723             unlikely(!is_skb_forwardable(dev, skb))) {
1724                 atomic_long_inc(&dev->rx_dropped);
1725                 kfree_skb(skb);
1726                 return NET_RX_DROP;
1727         }
1728
1729         skb_scrub_packet(skb, true);
1730         skb->priority = 0;
1731         skb->protocol = eth_type_trans(skb, dev);
1732         skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1733
1734         return 0;
1735 }
1736 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1737
1738 /**
1739  * dev_forward_skb - loopback an skb to another netif
1740  *
1741  * @dev: destination network device
1742  * @skb: buffer to forward
1743  *
1744  * return values:
1745  *      NET_RX_SUCCESS  (no congestion)
1746  *      NET_RX_DROP     (packet was dropped, but freed)
1747  *
1748  * dev_forward_skb can be used for injecting an skb from the
1749  * start_xmit function of one device into the receive queue
1750  * of another device.
1751  *
1752  * The receiving device may be in another namespace, so
1753  * we have to clear all information in the skb that could
1754  * impact namespace isolation.
1755  */
1756 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1757 {
1758         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1759 }
1760 EXPORT_SYMBOL_GPL(dev_forward_skb);
1761
1762 static inline int deliver_skb(struct sk_buff *skb,
1763                               struct packet_type *pt_prev,
1764                               struct net_device *orig_dev)
1765 {
1766         if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1767                 return -ENOMEM;
1768         atomic_inc(&skb->users);
1769         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1770 }
1771
1772 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1773                                           struct packet_type **pt,
1774                                           struct net_device *orig_dev,
1775                                           __be16 type,
1776                                           struct list_head *ptype_list)
1777 {
1778         struct packet_type *ptype, *pt_prev = *pt;
1779
1780         list_for_each_entry_rcu(ptype, ptype_list, list) {
1781                 if (ptype->type != type)
1782                         continue;
1783                 if (pt_prev)
1784                         deliver_skb(skb, pt_prev, orig_dev);
1785                 pt_prev = ptype;
1786         }
1787         *pt = pt_prev;
1788 }
1789
1790 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1791 {
1792         if (!ptype->af_packet_priv || !skb->sk)
1793                 return false;
1794
1795         if (ptype->id_match)
1796                 return ptype->id_match(ptype, skb->sk);
1797         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1798                 return true;
1799
1800         return false;
1801 }
1802
1803 /*
1804  *      Support routine. Sends outgoing frames to any network
1805  *      taps currently in use.
1806  */
1807
1808 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1809 {
1810         struct packet_type *ptype;
1811         struct sk_buff *skb2 = NULL;
1812         struct packet_type *pt_prev = NULL;
1813         struct list_head *ptype_list = &ptype_all;
1814
1815         rcu_read_lock();
1816 again:
1817         list_for_each_entry_rcu(ptype, ptype_list, list) {
1818                 /* Never send packets back to the socket
1819                  * they originated from - MvS (miquels@drinkel.ow.org)
1820                  */
1821                 if (skb_loop_sk(ptype, skb))
1822                         continue;
1823
1824                 if (pt_prev) {
1825                         deliver_skb(skb2, pt_prev, skb->dev);
1826                         pt_prev = ptype;
1827                         continue;
1828                 }
1829
1830                 /* need to clone skb, done only once */
1831                 skb2 = skb_clone(skb, GFP_ATOMIC);
1832                 if (!skb2)
1833                         goto out_unlock;
1834
1835                 net_timestamp_set(skb2);
1836
1837                 /* skb->nh should be correctly
1838                  * set by sender, so that the second statement is
1839                  * just protection against buggy protocols.
1840                  */
1841                 skb_reset_mac_header(skb2);
1842
1843                 if (skb_network_header(skb2) < skb2->data ||
1844                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1845                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1846                                              ntohs(skb2->protocol),
1847                                              dev->name);
1848                         skb_reset_network_header(skb2);
1849                 }
1850
1851                 skb2->transport_header = skb2->network_header;
1852                 skb2->pkt_type = PACKET_OUTGOING;
1853                 pt_prev = ptype;
1854         }
1855
1856         if (ptype_list == &ptype_all) {
1857                 ptype_list = &dev->ptype_all;
1858                 goto again;
1859         }
1860 out_unlock:
1861         if (pt_prev)
1862                 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1863         rcu_read_unlock();
1864 }
1865
1866 /**
1867  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1868  * @dev: Network device
1869  * @txq: number of queues available
1870  *
1871  * If real_num_tx_queues is changed the tc mappings may no longer be
1872  * valid. To resolve this verify the tc mapping remains valid and if
1873  * not NULL the mapping. With no priorities mapping to this
1874  * offset/count pair it will no longer be used. In the worst case TC0
1875  * is invalid nothing can be done so disable priority mappings. If is
1876  * expected that drivers will fix this mapping if they can before
1877  * calling netif_set_real_num_tx_queues.
1878  */
1879 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1880 {
1881         int i;
1882         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1883
1884         /* If TC0 is invalidated disable TC mapping */
1885         if (tc->offset + tc->count > txq) {
1886                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1887                 dev->num_tc = 0;
1888                 return;
1889         }
1890
1891         /* Invalidated prio to tc mappings set to TC0 */
1892         for (i = 1; i < TC_BITMASK + 1; i++) {
1893                 int q = netdev_get_prio_tc_map(dev, i);
1894
1895                 tc = &dev->tc_to_txq[q];
1896                 if (tc->offset + tc->count > txq) {
1897                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1898                                 i, q);
1899                         netdev_set_prio_tc_map(dev, i, 0);
1900                 }
1901         }
1902 }
1903
1904 #ifdef CONFIG_XPS
1905 static DEFINE_MUTEX(xps_map_mutex);
1906 #define xmap_dereference(P)             \
1907         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1908
1909 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1910                                         int cpu, u16 index)
1911 {
1912         struct xps_map *map = NULL;
1913         int pos;
1914
1915         if (dev_maps)
1916                 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1917
1918         for (pos = 0; map && pos < map->len; pos++) {
1919                 if (map->queues[pos] == index) {
1920                         if (map->len > 1) {
1921                                 map->queues[pos] = map->queues[--map->len];
1922                         } else {
1923                                 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1924                                 kfree_rcu(map, rcu);
1925                                 map = NULL;
1926                         }
1927                         break;
1928                 }
1929         }
1930
1931         return map;
1932 }
1933
1934 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1935 {
1936         struct xps_dev_maps *dev_maps;
1937         int cpu, i;
1938         bool active = false;
1939
1940         mutex_lock(&xps_map_mutex);
1941         dev_maps = xmap_dereference(dev->xps_maps);
1942
1943         if (!dev_maps)
1944                 goto out_no_maps;
1945
1946         for_each_possible_cpu(cpu) {
1947                 for (i = index; i < dev->num_tx_queues; i++) {
1948                         if (!remove_xps_queue(dev_maps, cpu, i))
1949                                 break;
1950                 }
1951                 if (i == dev->num_tx_queues)
1952                         active = true;
1953         }
1954
1955         if (!active) {
1956                 RCU_INIT_POINTER(dev->xps_maps, NULL);
1957                 kfree_rcu(dev_maps, rcu);
1958         }
1959
1960         for (i = index; i < dev->num_tx_queues; i++)
1961                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1962                                              NUMA_NO_NODE);
1963
1964 out_no_maps:
1965         mutex_unlock(&xps_map_mutex);
1966 }
1967
1968 static struct xps_map *expand_xps_map(struct xps_map *map,
1969                                       int cpu, u16 index)
1970 {
1971         struct xps_map *new_map;
1972         int alloc_len = XPS_MIN_MAP_ALLOC;
1973         int i, pos;
1974
1975         for (pos = 0; map && pos < map->len; pos++) {
1976                 if (map->queues[pos] != index)
1977                         continue;
1978                 return map;
1979         }
1980
1981         /* Need to add queue to this CPU's existing map */
1982         if (map) {
1983                 if (pos < map->alloc_len)
1984                         return map;
1985
1986                 alloc_len = map->alloc_len * 2;
1987         }
1988
1989         /* Need to allocate new map to store queue on this CPU's map */
1990         new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1991                                cpu_to_node(cpu));
1992         if (!new_map)
1993                 return NULL;
1994
1995         for (i = 0; i < pos; i++)
1996                 new_map->queues[i] = map->queues[i];
1997         new_map->alloc_len = alloc_len;
1998         new_map->len = pos;
1999
2000         return new_map;
2001 }
2002
2003 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2004                         u16 index)
2005 {
2006         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2007         struct xps_map *map, *new_map;
2008         int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
2009         int cpu, numa_node_id = -2;
2010         bool active = false;
2011
2012         mutex_lock(&xps_map_mutex);
2013
2014         dev_maps = xmap_dereference(dev->xps_maps);
2015
2016         /* allocate memory for queue storage */
2017         for_each_online_cpu(cpu) {
2018                 if (!cpumask_test_cpu(cpu, mask))
2019                         continue;
2020
2021                 if (!new_dev_maps)
2022                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2023                 if (!new_dev_maps) {
2024                         mutex_unlock(&xps_map_mutex);
2025                         return -ENOMEM;
2026                 }
2027
2028                 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2029                                  NULL;
2030
2031                 map = expand_xps_map(map, cpu, index);
2032                 if (!map)
2033                         goto error;
2034
2035                 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2036         }
2037
2038         if (!new_dev_maps)
2039                 goto out_no_new_maps;
2040
2041         for_each_possible_cpu(cpu) {
2042                 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2043                         /* add queue to CPU maps */
2044                         int pos = 0;
2045
2046                         map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2047                         while ((pos < map->len) && (map->queues[pos] != index))
2048                                 pos++;
2049
2050                         if (pos == map->len)
2051                                 map->queues[map->len++] = index;
2052 #ifdef CONFIG_NUMA
2053                         if (numa_node_id == -2)
2054                                 numa_node_id = cpu_to_node(cpu);
2055                         else if (numa_node_id != cpu_to_node(cpu))
2056                                 numa_node_id = -1;
2057 #endif
2058                 } else if (dev_maps) {
2059                         /* fill in the new device map from the old device map */
2060                         map = xmap_dereference(dev_maps->cpu_map[cpu]);
2061                         RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2062                 }
2063
2064         }
2065
2066         rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2067
2068         /* Cleanup old maps */
2069         if (dev_maps) {
2070                 for_each_possible_cpu(cpu) {
2071                         new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2072                         map = xmap_dereference(dev_maps->cpu_map[cpu]);
2073                         if (map && map != new_map)
2074                                 kfree_rcu(map, rcu);
2075                 }
2076
2077                 kfree_rcu(dev_maps, rcu);
2078         }
2079
2080         dev_maps = new_dev_maps;
2081         active = true;
2082
2083 out_no_new_maps:
2084         /* update Tx queue numa node */
2085         netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2086                                      (numa_node_id >= 0) ? numa_node_id :
2087                                      NUMA_NO_NODE);
2088
2089         if (!dev_maps)
2090                 goto out_no_maps;
2091
2092         /* removes queue from unused CPUs */
2093         for_each_possible_cpu(cpu) {
2094                 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2095                         continue;
2096
2097                 if (remove_xps_queue(dev_maps, cpu, index))
2098                         active = true;
2099         }
2100
2101         /* free map if not active */
2102         if (!active) {
2103                 RCU_INIT_POINTER(dev->xps_maps, NULL);
2104                 kfree_rcu(dev_maps, rcu);
2105         }
2106
2107 out_no_maps:
2108         mutex_unlock(&xps_map_mutex);
2109
2110         return 0;
2111 error:
2112         /* remove any maps that we added */
2113         for_each_possible_cpu(cpu) {
2114                 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2115                 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2116                                  NULL;
2117                 if (new_map && new_map != map)
2118                         kfree(new_map);
2119         }
2120
2121         mutex_unlock(&xps_map_mutex);
2122
2123         kfree(new_dev_maps);
2124         return -ENOMEM;
2125 }
2126 EXPORT_SYMBOL(netif_set_xps_queue);
2127
2128 #endif
2129 /*
2130  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2131  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2132  */
2133 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2134 {
2135         int rc;
2136
2137         if (txq < 1 || txq > dev->num_tx_queues)
2138                 return -EINVAL;
2139
2140         if (dev->reg_state == NETREG_REGISTERED ||
2141             dev->reg_state == NETREG_UNREGISTERING) {
2142                 ASSERT_RTNL();
2143
2144                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2145                                                   txq);
2146                 if (rc)
2147                         return rc;
2148
2149                 if (dev->num_tc)
2150                         netif_setup_tc(dev, txq);
2151
2152                 if (txq < dev->real_num_tx_queues) {
2153                         qdisc_reset_all_tx_gt(dev, txq);
2154 #ifdef CONFIG_XPS
2155                         netif_reset_xps_queues_gt(dev, txq);
2156 #endif
2157                 }
2158         }
2159
2160         dev->real_num_tx_queues = txq;
2161         return 0;
2162 }
2163 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2164
2165 #ifdef CONFIG_SYSFS
2166 /**
2167  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2168  *      @dev: Network device
2169  *      @rxq: Actual number of RX queues
2170  *
2171  *      This must be called either with the rtnl_lock held or before
2172  *      registration of the net device.  Returns 0 on success, or a
2173  *      negative error code.  If called before registration, it always
2174  *      succeeds.
2175  */
2176 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2177 {
2178         int rc;
2179
2180         if (rxq < 1 || rxq > dev->num_rx_queues)
2181                 return -EINVAL;
2182
2183         if (dev->reg_state == NETREG_REGISTERED) {
2184                 ASSERT_RTNL();
2185
2186                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2187                                                   rxq);
2188                 if (rc)
2189                         return rc;
2190         }
2191
2192         dev->real_num_rx_queues = rxq;
2193         return 0;
2194 }
2195 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2196 #endif
2197
2198 /**
2199  * netif_get_num_default_rss_queues - default number of RSS queues
2200  *
2201  * This routine should set an upper limit on the number of RSS queues
2202  * used by default by multiqueue devices.
2203  */
2204 int netif_get_num_default_rss_queues(void)
2205 {
2206         return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2207 }
2208 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2209
2210 static inline void __netif_reschedule(struct Qdisc *q)
2211 {
2212         struct softnet_data *sd;
2213         unsigned long flags;
2214
2215         local_irq_save(flags);
2216         sd = this_cpu_ptr(&softnet_data);
2217         q->next_sched = NULL;
2218         *sd->output_queue_tailp = q;
2219         sd->output_queue_tailp = &q->next_sched;
2220         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2221         local_irq_restore(flags);
2222 }
2223
2224 void __netif_schedule(struct Qdisc *q)
2225 {
2226         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2227                 __netif_reschedule(q);
2228 }
2229 EXPORT_SYMBOL(__netif_schedule);
2230
2231 struct dev_kfree_skb_cb {
2232         enum skb_free_reason reason;
2233 };
2234
2235 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2236 {
2237         return (struct dev_kfree_skb_cb *)skb->cb;
2238 }
2239
2240 void netif_schedule_queue(struct netdev_queue *txq)
2241 {
2242         rcu_read_lock();
2243         if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2244                 struct Qdisc *q = rcu_dereference(txq->qdisc);
2245
2246                 __netif_schedule(q);
2247         }
2248         rcu_read_unlock();
2249 }
2250 EXPORT_SYMBOL(netif_schedule_queue);
2251
2252 /**
2253  *      netif_wake_subqueue - allow sending packets on subqueue
2254  *      @dev: network device
2255  *      @queue_index: sub queue index
2256  *
2257  * Resume individual transmit queue of a device with multiple transmit queues.
2258  */
2259 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2260 {
2261         struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2262
2263         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2264                 struct Qdisc *q;
2265
2266                 rcu_read_lock();
2267                 q = rcu_dereference(txq->qdisc);
2268                 __netif_schedule(q);
2269                 rcu_read_unlock();
2270         }
2271 }
2272 EXPORT_SYMBOL(netif_wake_subqueue);
2273
2274 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2275 {
2276         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2277                 struct Qdisc *q;
2278
2279                 rcu_read_lock();
2280                 q = rcu_dereference(dev_queue->qdisc);
2281                 __netif_schedule(q);
2282                 rcu_read_unlock();
2283         }
2284 }
2285 EXPORT_SYMBOL(netif_tx_wake_queue);
2286
2287 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2288 {
2289         unsigned long flags;
2290
2291         if (likely(atomic_read(&skb->users) == 1)) {
2292                 smp_rmb();
2293                 atomic_set(&skb->users, 0);
2294         } else if (likely(!atomic_dec_and_test(&skb->users))) {
2295                 return;
2296         }
2297         get_kfree_skb_cb(skb)->reason = reason;
2298         local_irq_save(flags);
2299         skb->next = __this_cpu_read(softnet_data.completion_queue);
2300         __this_cpu_write(softnet_data.completion_queue, skb);
2301         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2302         local_irq_restore(flags);
2303 }
2304 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2305
2306 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2307 {
2308         if (in_irq() || irqs_disabled())
2309                 __dev_kfree_skb_irq(skb, reason);
2310         else
2311                 dev_kfree_skb(skb);
2312 }
2313 EXPORT_SYMBOL(__dev_kfree_skb_any);
2314
2315
2316 /**
2317  * netif_device_detach - mark device as removed
2318  * @dev: network device
2319  *
2320  * Mark device as removed from system and therefore no longer available.
2321  */
2322 void netif_device_detach(struct net_device *dev)
2323 {
2324         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2325             netif_running(dev)) {
2326                 netif_tx_stop_all_queues(dev);
2327         }
2328 }
2329 EXPORT_SYMBOL(netif_device_detach);
2330
2331 /**
2332  * netif_device_attach - mark device as attached
2333  * @dev: network device
2334  *
2335  * Mark device as attached from system and restart if needed.
2336  */
2337 void netif_device_attach(struct net_device *dev)
2338 {
2339         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2340             netif_running(dev)) {
2341                 netif_tx_wake_all_queues(dev);
2342                 __netdev_watchdog_up(dev);
2343         }
2344 }
2345 EXPORT_SYMBOL(netif_device_attach);
2346
2347 /*
2348  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2349  * to be used as a distribution range.
2350  */
2351 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2352                   unsigned int num_tx_queues)
2353 {
2354         u32 hash;
2355         u16 qoffset = 0;
2356         u16 qcount = num_tx_queues;
2357
2358         if (skb_rx_queue_recorded(skb)) {
2359                 hash = skb_get_rx_queue(skb);
2360                 while (unlikely(hash >= num_tx_queues))
2361                         hash -= num_tx_queues;
2362                 return hash;
2363         }
2364
2365         if (dev->num_tc) {
2366                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2367                 qoffset = dev->tc_to_txq[tc].offset;
2368                 qcount = dev->tc_to_txq[tc].count;
2369         }
2370
2371         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2372 }
2373 EXPORT_SYMBOL(__skb_tx_hash);
2374
2375 static void skb_warn_bad_offload(const struct sk_buff *skb)
2376 {
2377         static const netdev_features_t null_features = 0;
2378         struct net_device *dev = skb->dev;
2379         const char *driver = "";
2380
2381         if (!net_ratelimit())
2382                 return;
2383
2384         if (dev && dev->dev.parent)
2385                 driver = dev_driver_string(dev->dev.parent);
2386
2387         WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2388              "gso_type=%d ip_summed=%d\n",
2389              driver, dev ? &dev->features : &null_features,
2390              skb->sk ? &skb->sk->sk_route_caps : &null_features,
2391              skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2392              skb_shinfo(skb)->gso_type, skb->ip_summed);
2393 }
2394
2395 /*
2396  * Invalidate hardware checksum when packet is to be mangled, and
2397  * complete checksum manually on outgoing path.
2398  */
2399 int skb_checksum_help(struct sk_buff *skb)
2400 {
2401         __wsum csum;
2402         int ret = 0, offset;
2403
2404         if (skb->ip_summed == CHECKSUM_COMPLETE)
2405                 goto out_set_summed;
2406
2407         if (unlikely(skb_shinfo(skb)->gso_size)) {
2408                 skb_warn_bad_offload(skb);
2409                 return -EINVAL;
2410         }
2411
2412         /* Before computing a checksum, we should make sure no frag could
2413          * be modified by an external entity : checksum could be wrong.
2414          */
2415         if (skb_has_shared_frag(skb)) {
2416                 ret = __skb_linearize(skb);
2417                 if (ret)
2418                         goto out;
2419         }
2420
2421         offset = skb_checksum_start_offset(skb);
2422         BUG_ON(offset >= skb_headlen(skb));
2423         csum = skb_checksum(skb, offset, skb->len - offset, 0);
2424
2425         offset += skb->csum_offset;
2426         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2427
2428         if (skb_cloned(skb) &&
2429             !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2430                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2431                 if (ret)
2432                         goto out;
2433         }
2434
2435         *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2436 out_set_summed:
2437         skb->ip_summed = CHECKSUM_NONE;
2438 out:
2439         return ret;
2440 }
2441 EXPORT_SYMBOL(skb_checksum_help);
2442
2443 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2444 {
2445         __be16 type = skb->protocol;
2446
2447         /* Tunnel gso handlers can set protocol to ethernet. */
2448         if (type == htons(ETH_P_TEB)) {
2449                 struct ethhdr *eth;
2450
2451                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2452                         return 0;
2453
2454                 eth = (struct ethhdr *)skb_mac_header(skb);
2455                 type = eth->h_proto;
2456         }
2457
2458         return __vlan_get_protocol(skb, type, depth);
2459 }
2460
2461 /**
2462  *      skb_mac_gso_segment - mac layer segmentation handler.
2463  *      @skb: buffer to segment
2464  *      @features: features for the output path (see dev->features)
2465  */
2466 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2467                                     netdev_features_t features)
2468 {
2469         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2470         struct packet_offload *ptype;
2471         int vlan_depth = skb->mac_len;
2472         __be16 type = skb_network_protocol(skb, &vlan_depth);
2473
2474         if (unlikely(!type))
2475                 return ERR_PTR(-EINVAL);
2476
2477         __skb_pull(skb, vlan_depth);
2478
2479         rcu_read_lock();
2480         list_for_each_entry_rcu(ptype, &offload_base, list) {
2481                 if (ptype->type == type && ptype->callbacks.gso_segment) {
2482                         segs = ptype->callbacks.gso_segment(skb, features);
2483                         break;
2484                 }
2485         }
2486         rcu_read_unlock();
2487
2488         __skb_push(skb, skb->data - skb_mac_header(skb));
2489
2490         return segs;
2491 }
2492 EXPORT_SYMBOL(skb_mac_gso_segment);
2493
2494
2495 /* openvswitch calls this on rx path, so we need a different check.
2496  */
2497 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2498 {
2499         if (tx_path)
2500                 return skb->ip_summed != CHECKSUM_PARTIAL;
2501         else
2502                 return skb->ip_summed == CHECKSUM_NONE;
2503 }
2504
2505 /**
2506  *      __skb_gso_segment - Perform segmentation on skb.
2507  *      @skb: buffer to segment
2508  *      @features: features for the output path (see dev->features)
2509  *      @tx_path: whether it is called in TX path
2510  *
2511  *      This function segments the given skb and returns a list of segments.
2512  *
2513  *      It may return NULL if the skb requires no segmentation.  This is
2514  *      only possible when GSO is used for verifying header integrity.
2515  */
2516 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2517                                   netdev_features_t features, bool tx_path)
2518 {
2519         if (unlikely(skb_needs_check(skb, tx_path))) {
2520                 int err;
2521
2522                 skb_warn_bad_offload(skb);
2523
2524                 err = skb_cow_head(skb, 0);
2525                 if (err < 0)
2526                         return ERR_PTR(err);
2527         }
2528
2529         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2530         SKB_GSO_CB(skb)->encap_level = 0;
2531
2532         skb_reset_mac_header(skb);
2533         skb_reset_mac_len(skb);
2534
2535         return skb_mac_gso_segment(skb, features);
2536 }
2537 EXPORT_SYMBOL(__skb_gso_segment);
2538
2539 /* Take action when hardware reception checksum errors are detected. */
2540 #ifdef CONFIG_BUG
2541 void netdev_rx_csum_fault(struct net_device *dev)
2542 {
2543         if (net_ratelimit()) {
2544                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2545                 dump_stack();
2546         }
2547 }
2548 EXPORT_SYMBOL(netdev_rx_csum_fault);
2549 #endif
2550
2551 /* Actually, we should eliminate this check as soon as we know, that:
2552  * 1. IOMMU is present and allows to map all the memory.
2553  * 2. No high memory really exists on this machine.
2554  */
2555
2556 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2557 {
2558 #ifdef CONFIG_HIGHMEM
2559         int i;
2560         if (!(dev->features & NETIF_F_HIGHDMA)) {
2561                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2562                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2563                         if (PageHighMem(skb_frag_page(frag)))
2564                                 return 1;
2565                 }
2566         }
2567
2568         if (PCI_DMA_BUS_IS_PHYS) {
2569                 struct device *pdev = dev->dev.parent;
2570
2571                 if (!pdev)
2572                         return 0;
2573                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2574                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2575                         dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2576                         if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2577                                 return 1;
2578                 }
2579         }
2580 #endif
2581         return 0;
2582 }
2583
2584 /* If MPLS offload request, verify we are testing hardware MPLS features
2585  * instead of standard features for the netdev.
2586  */
2587 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2588 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2589                                            netdev_features_t features,
2590                                            __be16 type)
2591 {
2592         if (eth_p_mpls(type))
2593                 features &= skb->dev->mpls_features;
2594
2595         return features;
2596 }
2597 #else
2598 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2599                                            netdev_features_t features,
2600                                            __be16 type)
2601 {
2602         return features;
2603 }
2604 #endif
2605
2606 static netdev_features_t harmonize_features(struct sk_buff *skb,
2607         netdev_features_t features)
2608 {
2609         int tmp;
2610         __be16 type;
2611
2612         type = skb_network_protocol(skb, &tmp);
2613         features = net_mpls_features(skb, features, type);
2614
2615         if (skb->ip_summed != CHECKSUM_NONE &&
2616             !can_checksum_protocol(features, type)) {
2617                 features &= ~NETIF_F_ALL_CSUM;
2618         } else if (illegal_highdma(skb->dev, skb)) {
2619                 features &= ~NETIF_F_SG;
2620         }
2621
2622         return features;
2623 }
2624
2625 netdev_features_t passthru_features_check(struct sk_buff *skb,
2626                                           struct net_device *dev,
2627                                           netdev_features_t features)
2628 {
2629         return features;
2630 }
2631 EXPORT_SYMBOL(passthru_features_check);
2632
2633 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2634                                              struct net_device *dev,
2635                                              netdev_features_t features)
2636 {
2637         return vlan_features_check(skb, features);
2638 }
2639
2640 netdev_features_t netif_skb_features(struct sk_buff *skb)
2641 {
2642         struct net_device *dev = skb->dev;
2643         netdev_features_t features = dev->features;
2644         u16 gso_segs = skb_shinfo(skb)->gso_segs;
2645
2646         if (gso_segs > dev->gso_max_segs || gso_segs < dev->gso_min_segs)
2647                 features &= ~NETIF_F_GSO_MASK;
2648
2649         /* If encapsulation offload request, verify we are testing
2650          * hardware encapsulation features instead of standard
2651          * features for the netdev
2652          */
2653         if (skb->encapsulation)
2654                 features &= dev->hw_enc_features;
2655
2656         if (skb_vlan_tagged(skb))
2657                 features = netdev_intersect_features(features,
2658                                                      dev->vlan_features |
2659                                                      NETIF_F_HW_VLAN_CTAG_TX |
2660                                                      NETIF_F_HW_VLAN_STAG_TX);
2661
2662         if (dev->netdev_ops->ndo_features_check)
2663                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2664                                                                 features);
2665         else
2666                 features &= dflt_features_check(skb, dev, features);
2667
2668         return harmonize_features(skb, features);
2669 }
2670 EXPORT_SYMBOL(netif_skb_features);
2671
2672 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2673                     struct netdev_queue *txq, bool more)
2674 {
2675         unsigned int len;
2676         int rc;
2677
2678         if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2679                 dev_queue_xmit_nit(skb, dev);
2680
2681         len = skb->len;
2682         trace_net_dev_start_xmit(skb, dev);
2683         rc = netdev_start_xmit(skb, dev, txq, more);
2684         trace_net_dev_xmit(skb, rc, dev, len);
2685
2686         return rc;
2687 }
2688
2689 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2690                                     struct netdev_queue *txq, int *ret)
2691 {
2692         struct sk_buff *skb = first;
2693         int rc = NETDEV_TX_OK;
2694
2695         while (skb) {
2696                 struct sk_buff *next = skb->next;
2697
2698                 skb->next = NULL;
2699                 rc = xmit_one(skb, dev, txq, next != NULL);
2700                 if (unlikely(!dev_xmit_complete(rc))) {
2701                         skb->next = next;
2702                         goto out;
2703                 }
2704
2705                 skb = next;
2706                 if (netif_xmit_stopped(txq) && skb) {
2707                         rc = NETDEV_TX_BUSY;
2708                         break;
2709                 }
2710         }
2711
2712 out:
2713         *ret = rc;
2714         return skb;
2715 }
2716
2717 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2718                                           netdev_features_t features)
2719 {
2720         if (skb_vlan_tag_present(skb) &&
2721             !vlan_hw_offload_capable(features, skb->vlan_proto))
2722                 skb = __vlan_hwaccel_push_inside(skb);
2723         return skb;
2724 }
2725
2726 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2727 {
2728         netdev_features_t features;
2729
2730         if (skb->next)
2731                 return skb;
2732
2733         features = netif_skb_features(skb);
2734         skb = validate_xmit_vlan(skb, features);
2735         if (unlikely(!skb))
2736                 goto out_null;
2737
2738         if (netif_needs_gso(skb, features)) {
2739                 struct sk_buff *segs;
2740
2741                 segs = skb_gso_segment(skb, features);
2742                 if (IS_ERR(segs)) {
2743                         goto out_kfree_skb;
2744                 } else if (segs) {
2745                         consume_skb(skb);
2746                         skb = segs;
2747                 }
2748         } else {
2749                 if (skb_needs_linearize(skb, features) &&
2750                     __skb_linearize(skb))
2751                         goto out_kfree_skb;
2752
2753                 /* If packet is not checksummed and device does not
2754                  * support checksumming for this protocol, complete
2755                  * checksumming here.
2756                  */
2757                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2758                         if (skb->encapsulation)
2759                                 skb_set_inner_transport_header(skb,
2760                                                                skb_checksum_start_offset(skb));
2761                         else
2762                                 skb_set_transport_header(skb,
2763                                                          skb_checksum_start_offset(skb));
2764                         if (!(features & NETIF_F_ALL_CSUM) &&
2765                             skb_checksum_help(skb))
2766                                 goto out_kfree_skb;
2767                 }
2768         }
2769
2770         return skb;
2771
2772 out_kfree_skb:
2773         kfree_skb(skb);
2774 out_null:
2775         return NULL;
2776 }
2777
2778 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2779 {
2780         struct sk_buff *next, *head = NULL, *tail;
2781
2782         for (; skb != NULL; skb = next) {
2783                 next = skb->next;
2784                 skb->next = NULL;
2785
2786                 /* in case skb wont be segmented, point to itself */
2787                 skb->prev = skb;
2788
2789                 skb = validate_xmit_skb(skb, dev);
2790                 if (!skb)
2791                         continue;
2792
2793                 if (!head)
2794                         head = skb;
2795                 else
2796                         tail->next = skb;
2797                 /* If skb was segmented, skb->prev points to
2798                  * the last segment. If not, it still contains skb.
2799                  */
2800                 tail = skb->prev;
2801         }
2802         return head;
2803 }
2804
2805 static void qdisc_pkt_len_init(struct sk_buff *skb)
2806 {
2807         const struct skb_shared_info *shinfo = skb_shinfo(skb);
2808
2809         qdisc_skb_cb(skb)->pkt_len = skb->len;
2810
2811         /* To get more precise estimation of bytes sent on wire,
2812          * we add to pkt_len the headers size of all segments
2813          */
2814         if (shinfo->gso_size)  {
2815                 unsigned int hdr_len;
2816                 u16 gso_segs = shinfo->gso_segs;
2817
2818                 /* mac layer + network layer */
2819                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2820
2821                 /* + transport layer */
2822                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2823                         hdr_len += tcp_hdrlen(skb);
2824                 else
2825                         hdr_len += sizeof(struct udphdr);
2826
2827                 if (shinfo->gso_type & SKB_GSO_DODGY)
2828                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2829                                                 shinfo->gso_size);
2830
2831                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2832         }
2833 }
2834
2835 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2836                                  struct net_device *dev,
2837                                  struct netdev_queue *txq)
2838 {
2839         spinlock_t *root_lock = qdisc_lock(q);
2840         bool contended;
2841         int rc;
2842
2843         qdisc_pkt_len_init(skb);
2844         qdisc_calculate_pkt_len(skb, q);
2845         /*
2846          * Heuristic to force contended enqueues to serialize on a
2847          * separate lock before trying to get qdisc main lock.
2848          * This permits __QDISC___STATE_RUNNING owner to get the lock more
2849          * often and dequeue packets faster.
2850          */
2851         contended = qdisc_is_running(q);
2852         if (unlikely(contended))
2853                 spin_lock(&q->busylock);
2854
2855         spin_lock(root_lock);
2856         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2857                 kfree_skb(skb);
2858                 rc = NET_XMIT_DROP;
2859         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2860                    qdisc_run_begin(q)) {
2861                 /*
2862                  * This is a work-conserving queue; there are no old skbs
2863                  * waiting to be sent out; and the qdisc is not running -
2864                  * xmit the skb directly.
2865                  */
2866
2867                 qdisc_bstats_update(q, skb);
2868
2869                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
2870                         if (unlikely(contended)) {
2871                                 spin_unlock(&q->busylock);
2872                                 contended = false;
2873                         }
2874                         __qdisc_run(q);
2875                 } else
2876                         qdisc_run_end(q);
2877
2878                 rc = NET_XMIT_SUCCESS;
2879         } else {
2880                 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2881                 if (qdisc_run_begin(q)) {
2882                         if (unlikely(contended)) {
2883                                 spin_unlock(&q->busylock);
2884                                 contended = false;
2885                         }
2886                         __qdisc_run(q);
2887                 }
2888         }
2889         spin_unlock(root_lock);
2890         if (unlikely(contended))
2891                 spin_unlock(&q->busylock);
2892         return rc;
2893 }
2894
2895 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2896 static void skb_update_prio(struct sk_buff *skb)
2897 {
2898         struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2899
2900         if (!skb->priority && skb->sk && map) {
2901                 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2902
2903                 if (prioidx < map->priomap_len)
2904                         skb->priority = map->priomap[prioidx];
2905         }
2906 }
2907 #else
2908 #define skb_update_prio(skb)
2909 #endif
2910
2911 DEFINE_PER_CPU(int, xmit_recursion);
2912 EXPORT_SYMBOL(xmit_recursion);
2913
2914 #define RECURSION_LIMIT 10
2915
2916 /**
2917  *      dev_loopback_xmit - loop back @skb
2918  *      @net: network namespace this loopback is happening in
2919  *      @sk:  sk needed to be a netfilter okfn
2920  *      @skb: buffer to transmit
2921  */
2922 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
2923 {
2924         skb_reset_mac_header(skb);
2925         __skb_pull(skb, skb_network_offset(skb));
2926         skb->pkt_type = PACKET_LOOPBACK;
2927         skb->ip_summed = CHECKSUM_UNNECESSARY;
2928         WARN_ON(!skb_dst(skb));
2929         skb_dst_force(skb);
2930         netif_rx_ni(skb);
2931         return 0;
2932 }
2933 EXPORT_SYMBOL(dev_loopback_xmit);
2934
2935 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2936 {
2937 #ifdef CONFIG_XPS
2938         struct xps_dev_maps *dev_maps;
2939         struct xps_map *map;
2940         int queue_index = -1;
2941
2942         rcu_read_lock();
2943         dev_maps = rcu_dereference(dev->xps_maps);
2944         if (dev_maps) {
2945                 map = rcu_dereference(
2946                     dev_maps->cpu_map[skb->sender_cpu - 1]);
2947                 if (map) {
2948                         if (map->len == 1)
2949                                 queue_index = map->queues[0];
2950                         else
2951                                 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
2952                                                                            map->len)];
2953                         if (unlikely(queue_index >= dev->real_num_tx_queues))
2954                                 queue_index = -1;
2955                 }
2956         }
2957         rcu_read_unlock();
2958
2959         return queue_index;
2960 #else
2961         return -1;
2962 #endif
2963 }
2964
2965 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
2966 {
2967         struct sock *sk = skb->sk;
2968         int queue_index = sk_tx_queue_get(sk);
2969
2970         if (queue_index < 0 || skb->ooo_okay ||
2971             queue_index >= dev->real_num_tx_queues) {
2972                 int new_index = get_xps_queue(dev, skb);
2973                 if (new_index < 0)
2974                         new_index = skb_tx_hash(dev, skb);
2975
2976                 if (queue_index != new_index && sk &&
2977                     rcu_access_pointer(sk->sk_dst_cache))
2978                         sk_tx_queue_set(sk, new_index);
2979
2980                 queue_index = new_index;
2981         }
2982
2983         return queue_index;
2984 }
2985
2986 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
2987                                     struct sk_buff *skb,
2988                                     void *accel_priv)
2989 {
2990         int queue_index = 0;
2991
2992 #ifdef CONFIG_XPS
2993         if (skb->sender_cpu == 0)
2994                 skb->sender_cpu = raw_smp_processor_id() + 1;
2995 #endif
2996
2997         if (dev->real_num_tx_queues != 1) {
2998                 const struct net_device_ops *ops = dev->netdev_ops;
2999                 if (ops->ndo_select_queue)
3000                         queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3001                                                             __netdev_pick_tx);
3002                 else
3003                         queue_index = __netdev_pick_tx(dev, skb);
3004
3005                 if (!accel_priv)
3006                         queue_index = netdev_cap_txqueue(dev, queue_index);
3007         }
3008
3009         skb_set_queue_mapping(skb, queue_index);
3010         return netdev_get_tx_queue(dev, queue_index);
3011 }
3012
3013 /**
3014  *      __dev_queue_xmit - transmit a buffer
3015  *      @skb: buffer to transmit
3016  *      @accel_priv: private data used for L2 forwarding offload
3017  *
3018  *      Queue a buffer for transmission to a network device. The caller must
3019  *      have set the device and priority and built the buffer before calling
3020  *      this function. The function can be called from an interrupt.
3021  *
3022  *      A negative errno code is returned on a failure. A success does not
3023  *      guarantee the frame will be transmitted as it may be dropped due
3024  *      to congestion or traffic shaping.
3025  *
3026  * -----------------------------------------------------------------------------------
3027  *      I notice this method can also return errors from the queue disciplines,
3028  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3029  *      be positive.
3030  *
3031  *      Regardless of the return value, the skb is consumed, so it is currently
3032  *      difficult to retry a send to this method.  (You can bump the ref count
3033  *      before sending to hold a reference for retry if you are careful.)
3034  *
3035  *      When calling this method, interrupts MUST be enabled.  This is because
3036  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3037  *          --BLG
3038  */
3039 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3040 {
3041         struct net_device *dev = skb->dev;
3042         struct netdev_queue *txq;
3043         struct Qdisc *q;
3044         int rc = -ENOMEM;
3045
3046         skb_reset_mac_header(skb);
3047
3048         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3049                 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3050
3051         /* Disable soft irqs for various locks below. Also
3052          * stops preemption for RCU.
3053          */
3054         rcu_read_lock_bh();
3055
3056         skb_update_prio(skb);
3057
3058         /* If device/qdisc don't need skb->dst, release it right now while
3059          * its hot in this cpu cache.
3060          */
3061         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3062                 skb_dst_drop(skb);
3063         else
3064                 skb_dst_force(skb);
3065
3066 #ifdef CONFIG_NET_SWITCHDEV
3067         /* Don't forward if offload device already forwarded */
3068         if (skb->offload_fwd_mark &&
3069             skb->offload_fwd_mark == dev->offload_fwd_mark) {
3070                 consume_skb(skb);
3071                 rc = NET_XMIT_SUCCESS;
3072                 goto out;
3073         }
3074 #endif
3075
3076         txq = netdev_pick_tx(dev, skb, accel_priv);
3077         q = rcu_dereference_bh(txq->qdisc);
3078
3079 #ifdef CONFIG_NET_CLS_ACT
3080         skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
3081 #endif
3082         trace_net_dev_queue(skb);
3083         if (q->enqueue) {
3084                 rc = __dev_xmit_skb(skb, q, dev, txq);
3085                 goto out;
3086         }
3087
3088         /* The device has no queue. Common case for software devices:
3089            loopback, all the sorts of tunnels...
3090
3091            Really, it is unlikely that netif_tx_lock protection is necessary
3092            here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3093            counters.)
3094            However, it is possible, that they rely on protection
3095            made by us here.
3096
3097            Check this and shot the lock. It is not prone from deadlocks.
3098            Either shot noqueue qdisc, it is even simpler 8)
3099          */
3100         if (dev->flags & IFF_UP) {
3101                 int cpu = smp_processor_id(); /* ok because BHs are off */
3102
3103                 if (txq->xmit_lock_owner != cpu) {
3104
3105                         if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
3106                                 goto recursion_alert;
3107
3108                         skb = validate_xmit_skb(skb, dev);
3109                         if (!skb)
3110                                 goto drop;
3111
3112                         HARD_TX_LOCK(dev, txq, cpu);
3113
3114                         if (!netif_xmit_stopped(txq)) {
3115                                 __this_cpu_inc(xmit_recursion);
3116                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3117                                 __this_cpu_dec(xmit_recursion);
3118                                 if (dev_xmit_complete(rc)) {
3119                                         HARD_TX_UNLOCK(dev, txq);
3120                                         goto out;
3121                                 }
3122                         }
3123                         HARD_TX_UNLOCK(dev, txq);
3124                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3125                                              dev->name);
3126                 } else {
3127                         /* Recursion is detected! It is possible,
3128                          * unfortunately
3129                          */
3130 recursion_alert:
3131                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3132                                              dev->name);
3133                 }
3134         }
3135
3136         rc = -ENETDOWN;
3137 drop:
3138         rcu_read_unlock_bh();
3139
3140         atomic_long_inc(&dev->tx_dropped);
3141         kfree_skb_list(skb);
3142         return rc;
3143 out:
3144         rcu_read_unlock_bh();
3145         return rc;
3146 }
3147
3148 int dev_queue_xmit(struct sk_buff *skb)
3149 {
3150         return __dev_queue_xmit(skb, NULL);
3151 }
3152 EXPORT_SYMBOL(dev_queue_xmit);
3153
3154 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3155 {
3156         return __dev_queue_xmit(skb, accel_priv);
3157 }
3158 EXPORT_SYMBOL(dev_queue_xmit_accel);
3159
3160
3161 /*=======================================================================
3162                         Receiver routines
3163   =======================================================================*/
3164
3165 int netdev_max_backlog __read_mostly = 1000;
3166 EXPORT_SYMBOL(netdev_max_backlog);
3167
3168 int netdev_tstamp_prequeue __read_mostly = 1;
3169 int netdev_budget __read_mostly = 300;
3170 int weight_p __read_mostly = 64;            /* old backlog weight */
3171
3172 /* Called with irq disabled */
3173 static inline void ____napi_schedule(struct softnet_data *sd,
3174                                      struct napi_struct *napi)
3175 {
3176         list_add_tail(&napi->poll_list, &sd->poll_list);
3177         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3178 }
3179
3180 #ifdef CONFIG_RPS
3181
3182 /* One global table that all flow-based protocols share. */
3183 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3184 EXPORT_SYMBOL(rps_sock_flow_table);
3185 u32 rps_cpu_mask __read_mostly;
3186 EXPORT_SYMBOL(rps_cpu_mask);
3187
3188 struct static_key rps_needed __read_mostly;
3189
3190 static struct rps_dev_flow *
3191 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3192             struct rps_dev_flow *rflow, u16 next_cpu)
3193 {
3194         if (next_cpu < nr_cpu_ids) {
3195 #ifdef CONFIG_RFS_ACCEL
3196                 struct netdev_rx_queue *rxqueue;
3197                 struct rps_dev_flow_table *flow_table;
3198                 struct rps_dev_flow *old_rflow;
3199                 u32 flow_id;
3200                 u16 rxq_index;
3201                 int rc;
3202
3203                 /* Should we steer this flow to a different hardware queue? */
3204                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3205                     !(dev->features & NETIF_F_NTUPLE))
3206                         goto out;
3207                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3208                 if (rxq_index == skb_get_rx_queue(skb))
3209                         goto out;
3210
3211                 rxqueue = dev->_rx + rxq_index;
3212                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3213                 if (!flow_table)
3214                         goto out;
3215                 flow_id = skb_get_hash(skb) & flow_table->mask;
3216                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3217                                                         rxq_index, flow_id);
3218                 if (rc < 0)
3219                         goto out;
3220                 old_rflow = rflow;
3221                 rflow = &flow_table->flows[flow_id];
3222                 rflow->filter = rc;
3223                 if (old_rflow->filter == rflow->filter)
3224                         old_rflow->filter = RPS_NO_FILTER;
3225         out:
3226 #endif
3227                 rflow->last_qtail =
3228                         per_cpu(softnet_data, next_cpu).input_queue_head;
3229         }
3230
3231         rflow->cpu = next_cpu;
3232         return rflow;
3233 }
3234
3235 /*
3236  * get_rps_cpu is called from netif_receive_skb and returns the target
3237  * CPU from the RPS map of the receiving queue for a given skb.
3238  * rcu_read_lock must be held on entry.
3239  */
3240 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3241                        struct rps_dev_flow **rflowp)
3242 {
3243         const struct rps_sock_flow_table *sock_flow_table;
3244         struct netdev_rx_queue *rxqueue = dev->_rx;
3245         struct rps_dev_flow_table *flow_table;
3246         struct rps_map *map;
3247         int cpu = -1;
3248         u32 tcpu;
3249         u32 hash;
3250
3251         if (skb_rx_queue_recorded(skb)) {
3252                 u16 index = skb_get_rx_queue(skb);
3253
3254                 if (unlikely(index >= dev->real_num_rx_queues)) {
3255                         WARN_ONCE(dev->real_num_rx_queues > 1,
3256                                   "%s received packet on queue %u, but number "
3257                                   "of RX queues is %u\n",
3258                                   dev->name, index, dev->real_num_rx_queues);
3259                         goto done;
3260                 }
3261                 rxqueue += index;
3262         }
3263
3264         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3265
3266         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3267         map = rcu_dereference(rxqueue->rps_map);
3268         if (!flow_table && !map)
3269                 goto done;
3270
3271         skb_reset_network_header(skb);
3272         hash = skb_get_hash(skb);
3273         if (!hash)
3274                 goto done;
3275
3276         sock_flow_table = rcu_dereference(rps_sock_flow_table);
3277         if (flow_table && sock_flow_table) {
3278                 struct rps_dev_flow *rflow;
3279                 u32 next_cpu;
3280                 u32 ident;
3281
3282                 /* First check into global flow table if there is a match */
3283                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3284                 if ((ident ^ hash) & ~rps_cpu_mask)
3285                         goto try_rps;
3286
3287                 next_cpu = ident & rps_cpu_mask;
3288
3289                 /* OK, now we know there is a match,
3290                  * we can look at the local (per receive queue) flow table
3291                  */
3292                 rflow = &flow_table->flows[hash & flow_table->mask];
3293                 tcpu = rflow->cpu;
3294
3295                 /*
3296                  * If the desired CPU (where last recvmsg was done) is
3297                  * different from current CPU (one in the rx-queue flow
3298                  * table entry), switch if one of the following holds:
3299                  *   - Current CPU is unset (>= nr_cpu_ids).
3300                  *   - Current CPU is offline.
3301                  *   - The current CPU's queue tail has advanced beyond the
3302                  *     last packet that was enqueued using this table entry.
3303                  *     This guarantees that all previous packets for the flow
3304                  *     have been dequeued, thus preserving in order delivery.
3305                  */
3306                 if (unlikely(tcpu != next_cpu) &&
3307                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3308                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3309                       rflow->last_qtail)) >= 0)) {
3310                         tcpu = next_cpu;
3311                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3312                 }
3313
3314                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3315                         *rflowp = rflow;
3316                         cpu = tcpu;
3317                         goto done;
3318                 }
3319         }
3320
3321 try_rps:
3322
3323         if (map) {
3324                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3325                 if (cpu_online(tcpu)) {
3326                         cpu = tcpu;
3327                         goto done;
3328                 }
3329         }
3330
3331 done:
3332         return cpu;
3333 }
3334
3335 #ifdef CONFIG_RFS_ACCEL
3336
3337 /**
3338  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3339  * @dev: Device on which the filter was set
3340  * @rxq_index: RX queue index
3341  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3342  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3343  *
3344  * Drivers that implement ndo_rx_flow_steer() should periodically call
3345  * this function for each installed filter and remove the filters for
3346  * which it returns %true.
3347  */
3348 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3349                          u32 flow_id, u16 filter_id)
3350 {
3351         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3352         struct rps_dev_flow_table *flow_table;
3353         struct rps_dev_flow *rflow;
3354         bool expire = true;
3355         unsigned int cpu;
3356
3357         rcu_read_lock();
3358         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3359         if (flow_table && flow_id <= flow_table->mask) {
3360                 rflow = &flow_table->flows[flow_id];
3361                 cpu = ACCESS_ONCE(rflow->cpu);
3362                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3363                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3364                            rflow->last_qtail) <
3365                      (int)(10 * flow_table->mask)))
3366                         expire = false;
3367         }
3368         rcu_read_unlock();
3369         return expire;
3370 }
3371 EXPORT_SYMBOL(rps_may_expire_flow);
3372
3373 #endif /* CONFIG_RFS_ACCEL */
3374
3375 /* Called from hardirq (IPI) context */
3376 static void rps_trigger_softirq(void *data)
3377 {
3378         struct softnet_data *sd = data;
3379
3380         ____napi_schedule(sd, &sd->backlog);
3381         sd->received_rps++;
3382 }
3383
3384 #endif /* CONFIG_RPS */
3385
3386 /*
3387  * Check if this softnet_data structure is another cpu one
3388  * If yes, queue it to our IPI list and return 1
3389  * If no, return 0
3390  */
3391 static int rps_ipi_queued(struct softnet_data *sd)
3392 {
3393 #ifdef CONFIG_RPS
3394         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3395
3396         if (sd != mysd) {
3397                 sd->rps_ipi_next = mysd->rps_ipi_list;
3398                 mysd->rps_ipi_list = sd;
3399
3400                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3401                 return 1;
3402         }
3403 #endif /* CONFIG_RPS */
3404         return 0;
3405 }
3406
3407 #ifdef CONFIG_NET_FLOW_LIMIT
3408 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3409 #endif
3410
3411 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3412 {
3413 #ifdef CONFIG_NET_FLOW_LIMIT
3414         struct sd_flow_limit *fl;
3415         struct softnet_data *sd;
3416         unsigned int old_flow, new_flow;
3417
3418         if (qlen < (netdev_max_backlog >> 1))
3419                 return false;
3420
3421         sd = this_cpu_ptr(&softnet_data);
3422
3423         rcu_read_lock();
3424         fl = rcu_dereference(sd->flow_limit);
3425         if (fl) {
3426                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3427                 old_flow = fl->history[fl->history_head];
3428                 fl->history[fl->history_head] = new_flow;
3429
3430                 fl->history_head++;
3431                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3432
3433                 if (likely(fl->buckets[old_flow]))
3434                         fl->buckets[old_flow]--;
3435
3436                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3437                         fl->count++;
3438                         rcu_read_unlock();
3439                         return true;
3440                 }
3441         }
3442         rcu_read_unlock();
3443 #endif
3444         return false;
3445 }
3446
3447 /*
3448  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3449  * queue (may be a remote CPU queue).
3450  */
3451 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3452                               unsigned int *qtail)
3453 {
3454         struct softnet_data *sd;
3455         unsigned long flags;
3456         unsigned int qlen;
3457
3458         sd = &per_cpu(softnet_data, cpu);
3459
3460         local_irq_save(flags);
3461
3462         rps_lock(sd);
3463         if (!netif_running(skb->dev))
3464                 goto drop;
3465         qlen = skb_queue_len(&sd->input_pkt_queue);
3466         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3467                 if (qlen) {
3468 enqueue:
3469                         __skb_queue_tail(&sd->input_pkt_queue, skb);
3470                         input_queue_tail_incr_save(sd, qtail);
3471                         rps_unlock(sd);
3472                         local_irq_restore(flags);
3473                         return NET_RX_SUCCESS;
3474                 }
3475
3476                 /* Schedule NAPI for backlog device
3477                  * We can use non atomic operation since we own the queue lock
3478                  */
3479                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3480                         if (!rps_ipi_queued(sd))
3481                                 ____napi_schedule(sd, &sd->backlog);
3482                 }
3483                 goto enqueue;
3484         }
3485
3486 drop:
3487         sd->dropped++;
3488         rps_unlock(sd);
3489
3490         local_irq_restore(flags);
3491
3492         atomic_long_inc(&skb->dev->rx_dropped);
3493         kfree_skb(skb);
3494         return NET_RX_DROP;
3495 }
3496
3497 static int netif_rx_internal(struct sk_buff *skb)
3498 {
3499         int ret;
3500
3501         net_timestamp_check(netdev_tstamp_prequeue, skb);
3502
3503         trace_netif_rx(skb);
3504 #ifdef CONFIG_RPS
3505         if (static_key_false(&rps_needed)) {
3506                 struct rps_dev_flow voidflow, *rflow = &voidflow;
3507                 int cpu;
3508
3509                 preempt_disable();
3510                 rcu_read_lock();
3511
3512                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3513                 if (cpu < 0)
3514                         cpu = smp_processor_id();
3515
3516                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3517
3518                 rcu_read_unlock();
3519                 preempt_enable();
3520         } else
3521 #endif
3522         {
3523                 unsigned int qtail;
3524                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3525                 put_cpu();
3526         }
3527         return ret;
3528 }
3529
3530 /**
3531  *      netif_rx        -       post buffer to the network code
3532  *      @skb: buffer to post
3533  *
3534  *      This function receives a packet from a device driver and queues it for
3535  *      the upper (protocol) levels to process.  It always succeeds. The buffer
3536  *      may be dropped during processing for congestion control or by the
3537  *      protocol layers.
3538  *
3539  *      return values:
3540  *      NET_RX_SUCCESS  (no congestion)
3541  *      NET_RX_DROP     (packet was dropped)
3542  *
3543  */
3544
3545 int netif_rx(struct sk_buff *skb)
3546 {
3547         trace_netif_rx_entry(skb);
3548
3549         return netif_rx_internal(skb);
3550 }
3551 EXPORT_SYMBOL(netif_rx);
3552
3553 int netif_rx_ni(struct sk_buff *skb)
3554 {
3555         int err;
3556
3557         trace_netif_rx_ni_entry(skb);
3558
3559         preempt_disable();
3560         err = netif_rx_internal(skb);
3561         if (local_softirq_pending())
3562                 do_softirq();
3563         preempt_enable();
3564
3565         return err;
3566 }
3567 EXPORT_SYMBOL(netif_rx_ni);
3568
3569 static void net_tx_action(struct softirq_action *h)
3570 {
3571         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3572
3573         if (sd->completion_queue) {
3574                 struct sk_buff *clist;
3575
3576                 local_irq_disable();
3577                 clist = sd->completion_queue;
3578                 sd->completion_queue = NULL;
3579                 local_irq_enable();
3580
3581                 while (clist) {
3582                         struct sk_buff *skb = clist;
3583                         clist = clist->next;
3584
3585                         WARN_ON(atomic_read(&skb->users));
3586                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3587                                 trace_consume_skb(skb);
3588                         else
3589                                 trace_kfree_skb(skb, net_tx_action);
3590                         __kfree_skb(skb);
3591                 }
3592         }
3593
3594         if (sd->output_queue) {
3595                 struct Qdisc *head;
3596
3597                 local_irq_disable();
3598                 head = sd->output_queue;
3599                 sd->output_queue = NULL;
3600                 sd->output_queue_tailp = &sd->output_queue;
3601                 local_irq_enable();
3602
3603                 while (head) {
3604                         struct Qdisc *q = head;
3605                         spinlock_t *root_lock;
3606
3607                         head = head->next_sched;
3608
3609                         root_lock = qdisc_lock(q);
3610                         if (spin_trylock(root_lock)) {
3611                                 smp_mb__before_atomic();
3612                                 clear_bit(__QDISC_STATE_SCHED,
3613                                           &q->state);
3614                                 qdisc_run(q);
3615                                 spin_unlock(root_lock);
3616                         } else {
3617                                 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3618                                               &q->state)) {
3619                                         __netif_reschedule(q);
3620                                 } else {
3621                                         smp_mb__before_atomic();
3622                                         clear_bit(__QDISC_STATE_SCHED,
3623                                                   &q->state);
3624                                 }
3625                         }
3626                 }
3627         }
3628 }
3629
3630 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3631     (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3632 /* This hook is defined here for ATM LANE */
3633 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3634                              unsigned char *addr) __read_mostly;
3635 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3636 #endif
3637
3638 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3639                                          struct packet_type **pt_prev,
3640                                          int *ret, struct net_device *orig_dev)
3641 {
3642 #ifdef CONFIG_NET_CLS_ACT
3643         struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3644         struct tcf_result cl_res;
3645
3646         /* If there's at least one ingress present somewhere (so
3647          * we get here via enabled static key), remaining devices
3648          * that are not configured with an ingress qdisc will bail
3649          * out here.
3650          */
3651         if (!cl)
3652                 return skb;
3653         if (*pt_prev) {
3654                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3655                 *pt_prev = NULL;
3656         }
3657
3658         qdisc_skb_cb(skb)->pkt_len = skb->len;
3659         skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3660         qdisc_bstats_cpu_update(cl->q, skb);
3661
3662         switch (tc_classify(skb, cl, &cl_res, false)) {
3663         case TC_ACT_OK:
3664         case TC_ACT_RECLASSIFY:
3665                 skb->tc_index = TC_H_MIN(cl_res.classid);
3666                 break;
3667         case TC_ACT_SHOT:
3668                 qdisc_qstats_cpu_drop(cl->q);
3669         case TC_ACT_STOLEN:
3670         case TC_ACT_QUEUED:
3671                 kfree_skb(skb);
3672                 return NULL;
3673         case TC_ACT_REDIRECT:
3674                 /* skb_mac_header check was done by cls/act_bpf, so
3675                  * we can safely push the L2 header back before
3676                  * redirecting to another netdev
3677                  */
3678                 __skb_push(skb, skb->mac_len);
3679                 skb_do_redirect(skb);
3680                 return NULL;
3681         default:
3682                 break;
3683         }
3684 #endif /* CONFIG_NET_CLS_ACT */
3685         return skb;
3686 }
3687
3688 /**
3689  *      netdev_rx_handler_register - register receive handler
3690  *      @dev: device to register a handler for
3691  *      @rx_handler: receive handler to register
3692  *      @rx_handler_data: data pointer that is used by rx handler
3693  *
3694  *      Register a receive handler for a device. This handler will then be
3695  *      called from __netif_receive_skb. A negative errno code is returned
3696  *      on a failure.
3697  *
3698  *      The caller must hold the rtnl_mutex.
3699  *
3700  *      For a general description of rx_handler, see enum rx_handler_result.
3701  */
3702 int netdev_rx_handler_register(struct net_device *dev,
3703                                rx_handler_func_t *rx_handler,
3704                                void *rx_handler_data)
3705 {
3706         ASSERT_RTNL();
3707
3708         if (dev->rx_handler)
3709                 return -EBUSY;
3710
3711         /* Note: rx_handler_data must be set before rx_handler */
3712         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3713         rcu_assign_pointer(dev->rx_handler, rx_handler);
3714
3715         return 0;
3716 }
3717 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3718
3719 /**
3720  *      netdev_rx_handler_unregister - unregister receive handler
3721  *      @dev: device to unregister a handler from
3722  *
3723  *      Unregister a receive handler from a device.
3724  *
3725  *      The caller must hold the rtnl_mutex.
3726  */
3727 void netdev_rx_handler_unregister(struct net_device *dev)
3728 {
3729
3730         ASSERT_RTNL();
3731         RCU_INIT_POINTER(dev->rx_handler, NULL);
3732         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3733          * section has a guarantee to see a non NULL rx_handler_data
3734          * as well.
3735          */
3736         synchronize_net();
3737         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3738 }
3739 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3740
3741 /*
3742  * Limit the use of PFMEMALLOC reserves to those protocols that implement
3743  * the special handling of PFMEMALLOC skbs.
3744  */
3745 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3746 {
3747         switch (skb->protocol) {
3748         case htons(ETH_P_ARP):
3749         case htons(ETH_P_IP):
3750         case htons(ETH_P_IPV6):
3751         case htons(ETH_P_8021Q):
3752         case htons(ETH_P_8021AD):
3753                 return true;
3754         default:
3755                 return false;
3756         }
3757 }
3758
3759 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
3760                              int *ret, struct net_device *orig_dev)
3761 {
3762 #ifdef CONFIG_NETFILTER_INGRESS
3763         if (nf_hook_ingress_active(skb)) {
3764                 if (*pt_prev) {
3765                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
3766                         *pt_prev = NULL;
3767                 }
3768
3769                 return nf_hook_ingress(skb);
3770         }
3771 #endif /* CONFIG_NETFILTER_INGRESS */
3772         return 0;
3773 }
3774
3775 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3776 {
3777         struct packet_type *ptype, *pt_prev;
3778         rx_handler_func_t *rx_handler;
3779         struct net_device *orig_dev;
3780         bool deliver_exact = false;
3781         int ret = NET_RX_DROP;
3782         __be16 type;
3783
3784         net_timestamp_check(!netdev_tstamp_prequeue, skb);
3785
3786         trace_netif_receive_skb(skb);
3787
3788         orig_dev = skb->dev;
3789
3790         skb_reset_network_header(skb);
3791         if (!skb_transport_header_was_set(skb))
3792                 skb_reset_transport_header(skb);
3793         skb_reset_mac_len(skb);
3794
3795         pt_prev = NULL;
3796
3797 another_round:
3798         skb->skb_iif = skb->dev->ifindex;
3799
3800         __this_cpu_inc(softnet_data.processed);
3801
3802         if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3803             skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3804                 skb = skb_vlan_untag(skb);
3805                 if (unlikely(!skb))
3806                         goto out;
3807         }
3808
3809 #ifdef CONFIG_NET_CLS_ACT
3810         if (skb->tc_verd & TC_NCLS) {
3811                 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3812                 goto ncls;
3813         }
3814 #endif
3815
3816         if (pfmemalloc)
3817                 goto skip_taps;
3818
3819         list_for_each_entry_rcu(ptype, &ptype_all, list) {
3820                 if (pt_prev)
3821                         ret = deliver_skb(skb, pt_prev, orig_dev);
3822                 pt_prev = ptype;
3823         }
3824
3825         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
3826                 if (pt_prev)
3827                         ret = deliver_skb(skb, pt_prev, orig_dev);
3828                 pt_prev = ptype;
3829         }
3830
3831 skip_taps:
3832 #ifdef CONFIG_NET_INGRESS
3833         if (static_key_false(&ingress_needed)) {
3834                 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3835                 if (!skb)
3836                         goto out;
3837
3838                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
3839                         goto out;
3840         }
3841 #endif
3842 #ifdef CONFIG_NET_CLS_ACT
3843         skb->tc_verd = 0;
3844 ncls:
3845 #endif
3846         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3847                 goto drop;
3848
3849         if (skb_vlan_tag_present(skb)) {
3850                 if (pt_prev) {
3851                         ret = deliver_skb(skb, pt_prev, orig_dev);
3852                         pt_prev = NULL;
3853                 }
3854                 if (vlan_do_receive(&skb))
3855                         goto another_round;
3856                 else if (unlikely(!skb))
3857                         goto out;
3858         }
3859
3860         rx_handler = rcu_dereference(skb->dev->rx_handler);
3861         if (rx_handler) {
3862                 if (pt_prev) {
3863                         ret = deliver_skb(skb, pt_prev, orig_dev);
3864                         pt_prev = NULL;
3865                 }
3866                 switch (rx_handler(&skb)) {
3867                 case RX_HANDLER_CONSUMED:
3868                         ret = NET_RX_SUCCESS;
3869                         goto out;
3870                 case RX_HANDLER_ANOTHER:
3871                         goto another_round;
3872                 case RX_HANDLER_EXACT:
3873                         deliver_exact = true;
3874                 case RX_HANDLER_PASS:
3875                         break;
3876                 default:
3877                         BUG();
3878                 }
3879         }
3880
3881         if (unlikely(skb_vlan_tag_present(skb))) {
3882                 if (skb_vlan_tag_get_id(skb))
3883                         skb->pkt_type = PACKET_OTHERHOST;
3884                 /* Note: we might in the future use prio bits
3885                  * and set skb->priority like in vlan_do_receive()
3886                  * For the time being, just ignore Priority Code Point
3887                  */
3888                 skb->vlan_tci = 0;
3889         }
3890
3891         type = skb->protocol;
3892
3893         /* deliver only exact match when indicated */
3894         if (likely(!deliver_exact)) {
3895                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3896                                        &ptype_base[ntohs(type) &
3897                                                    PTYPE_HASH_MASK]);
3898         }
3899
3900         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3901                                &orig_dev->ptype_specific);
3902
3903         if (unlikely(skb->dev != orig_dev)) {
3904                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3905                                        &skb->dev->ptype_specific);
3906         }
3907
3908         if (pt_prev) {
3909                 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3910                         goto drop;
3911                 else
3912                         ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3913         } else {
3914 drop:
3915                 atomic_long_inc(&skb->dev->rx_dropped);
3916                 kfree_skb(skb);
3917                 /* Jamal, now you will not able to escape explaining
3918                  * me how you were going to use this. :-)
3919                  */
3920                 ret = NET_RX_DROP;
3921         }
3922
3923 out:
3924         return ret;
3925 }
3926
3927 static int __netif_receive_skb(struct sk_buff *skb)
3928 {
3929         int ret;
3930
3931         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3932                 unsigned long pflags = current->flags;
3933
3934                 /*
3935                  * PFMEMALLOC skbs are special, they should
3936                  * - be delivered to SOCK_MEMALLOC sockets only
3937                  * - stay away from userspace
3938                  * - have bounded memory usage
3939                  *
3940                  * Use PF_MEMALLOC as this saves us from propagating the allocation
3941                  * context down to all allocation sites.
3942                  */
3943                 current->flags |= PF_MEMALLOC;
3944                 ret = __netif_receive_skb_core(skb, true);
3945                 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3946         } else
3947                 ret = __netif_receive_skb_core(skb, false);
3948
3949         return ret;
3950 }
3951
3952 static int netif_receive_skb_internal(struct sk_buff *skb)
3953 {
3954         int ret;
3955
3956         net_timestamp_check(netdev_tstamp_prequeue, skb);
3957
3958         if (skb_defer_rx_timestamp(skb))
3959                 return NET_RX_SUCCESS;
3960
3961         rcu_read_lock();
3962
3963 #ifdef CONFIG_RPS
3964         if (static_key_false(&rps_needed)) {
3965                 struct rps_dev_flow voidflow, *rflow = &voidflow;
3966                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
3967
3968                 if (cpu >= 0) {
3969                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3970                         rcu_read_unlock();
3971                         return ret;
3972                 }
3973         }
3974 #endif
3975         ret = __netif_receive_skb(skb);
3976         rcu_read_unlock();
3977         return ret;
3978 }
3979
3980 /**
3981  *      netif_receive_skb - process receive buffer from network
3982  *      @skb: buffer to process
3983  *
3984  *      netif_receive_skb() is the main receive data processing function.
3985  *      It always succeeds. The buffer may be dropped during processing
3986  *      for congestion control or by the protocol layers.
3987  *
3988  *      This function may only be called from softirq context and interrupts
3989  *      should be enabled.
3990  *
3991  *      Return values (usually ignored):
3992  *      NET_RX_SUCCESS: no congestion
3993  *      NET_RX_DROP: packet was dropped
3994  */
3995 int netif_receive_skb(struct sk_buff *skb)
3996 {
3997         trace_netif_receive_skb_entry(skb);
3998
3999         return netif_receive_skb_internal(skb);
4000 }
4001 EXPORT_SYMBOL(netif_receive_skb);
4002
4003 /* Network device is going away, flush any packets still pending
4004  * Called with irqs disabled.
4005  */
4006 static void flush_backlog(void *arg)
4007 {
4008         struct net_device *dev = arg;
4009         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4010         struct sk_buff *skb, *tmp;
4011
4012         rps_lock(sd);
4013         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4014                 if (skb->dev == dev) {
4015                         __skb_unlink(skb, &sd->input_pkt_queue);
4016                         kfree_skb(skb);
4017                         input_queue_head_incr(sd);
4018                 }
4019         }
4020         rps_unlock(sd);
4021
4022         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4023                 if (skb->dev == dev) {
4024                         __skb_unlink(skb, &sd->process_queue);
4025                         kfree_skb(skb);
4026                         input_queue_head_incr(sd);
4027                 }
4028         }
4029 }
4030
4031 static int napi_gro_complete(struct sk_buff *skb)
4032 {
4033         struct packet_offload *ptype;
4034         __be16 type = skb->protocol;
4035         struct list_head *head = &offload_base;
4036         int err = -ENOENT;
4037
4038         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4039
4040         if (NAPI_GRO_CB(skb)->count == 1) {
4041                 skb_shinfo(skb)->gso_size = 0;
4042                 goto out;
4043         }
4044
4045         rcu_read_lock();
4046         list_for_each_entry_rcu(ptype, head, list) {
4047                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4048                         continue;
4049
4050                 err = ptype->callbacks.gro_complete(skb, 0);
4051                 break;
4052         }
4053         rcu_read_unlock();
4054
4055         if (err) {
4056                 WARN_ON(&ptype->list == head);
4057                 kfree_skb(skb);
4058                 return NET_RX_SUCCESS;
4059         }
4060
4061 out:
4062         return netif_receive_skb_internal(skb);
4063 }
4064
4065 /* napi->gro_list contains packets ordered by age.
4066  * youngest packets at the head of it.
4067  * Complete skbs in reverse order to reduce latencies.
4068  */
4069 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4070 {
4071         struct sk_buff *skb, *prev = NULL;
4072
4073         /* scan list and build reverse chain */
4074         for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4075                 skb->prev = prev;
4076                 prev = skb;
4077         }
4078
4079         for (skb = prev; skb; skb = prev) {
4080                 skb->next = NULL;
4081
4082                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4083                         return;
4084
4085                 prev = skb->prev;
4086                 napi_gro_complete(skb);
4087                 napi->gro_count--;
4088         }
4089
4090         napi->gro_list = NULL;
4091 }
4092 EXPORT_SYMBOL(napi_gro_flush);
4093
4094 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4095 {
4096         struct sk_buff *p;
4097         unsigned int maclen = skb->dev->hard_header_len;
4098         u32 hash = skb_get_hash_raw(skb);
4099
4100         for (p = napi->gro_list; p; p = p->next) {
4101                 unsigned long diffs;
4102
4103                 NAPI_GRO_CB(p)->flush = 0;
4104
4105                 if (hash != skb_get_hash_raw(p)) {
4106                         NAPI_GRO_CB(p)->same_flow = 0;
4107                         continue;
4108                 }
4109
4110                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4111                 diffs |= p->vlan_tci ^ skb->vlan_tci;
4112                 if (maclen == ETH_HLEN)
4113                         diffs |= compare_ether_header(skb_mac_header(p),
4114                                                       skb_mac_header(skb));
4115                 else if (!diffs)
4116                         diffs = memcmp(skb_mac_header(p),
4117                                        skb_mac_header(skb),
4118                                        maclen);
4119                 NAPI_GRO_CB(p)->same_flow = !diffs;
4120         }
4121 }
4122
4123 static void skb_gro_reset_offset(struct sk_buff *skb)
4124 {
4125         const struct skb_shared_info *pinfo = skb_shinfo(skb);
4126         const skb_frag_t *frag0 = &pinfo->frags[0];
4127
4128         NAPI_GRO_CB(skb)->data_offset = 0;
4129         NAPI_GRO_CB(skb)->frag0 = NULL;
4130         NAPI_GRO_CB(skb)->frag0_len = 0;
4131
4132         if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4133             pinfo->nr_frags &&
4134             !PageHighMem(skb_frag_page(frag0))) {
4135                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4136                 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
4137         }
4138 }
4139
4140 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4141 {
4142         struct skb_shared_info *pinfo = skb_shinfo(skb);
4143
4144         BUG_ON(skb->end - skb->tail < grow);
4145
4146         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4147
4148         skb->data_len -= grow;
4149         skb->tail += grow;
4150
4151         pinfo->frags[0].page_offset += grow;
4152         skb_frag_size_sub(&pinfo->frags[0], grow);
4153
4154         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4155                 skb_frag_unref(skb, 0);
4156                 memmove(pinfo->frags, pinfo->frags + 1,
4157                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4158         }
4159 }
4160
4161 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4162 {
4163         struct sk_buff **pp = NULL;
4164         struct packet_offload *ptype;
4165         __be16 type = skb->protocol;
4166         struct list_head *head = &offload_base;
4167         int same_flow;
4168         enum gro_result ret;
4169         int grow;
4170
4171         if (!(skb->dev->features & NETIF_F_GRO))
4172                 goto normal;
4173
4174         if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
4175                 goto normal;
4176
4177         gro_list_prepare(napi, skb);
4178
4179         rcu_read_lock();
4180         list_for_each_entry_rcu(ptype, head, list) {
4181                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4182                         continue;
4183
4184                 skb_set_network_header(skb, skb_gro_offset(skb));
4185                 skb_reset_mac_len(skb);
4186                 NAPI_GRO_CB(skb)->same_flow = 0;
4187                 NAPI_GRO_CB(skb)->flush = 0;
4188                 NAPI_GRO_CB(skb)->free = 0;
4189                 NAPI_GRO_CB(skb)->udp_mark = 0;
4190                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4191
4192                 /* Setup for GRO checksum validation */
4193                 switch (skb->ip_summed) {
4194                 case CHECKSUM_COMPLETE:
4195                         NAPI_GRO_CB(skb)->csum = skb->csum;
4196                         NAPI_GRO_CB(skb)->csum_valid = 1;
4197                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4198                         break;
4199                 case CHECKSUM_UNNECESSARY:
4200                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4201                         NAPI_GRO_CB(skb)->csum_valid = 0;
4202                         break;
4203                 default:
4204                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4205                         NAPI_GRO_CB(skb)->csum_valid = 0;
4206                 }
4207
4208                 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4209                 break;
4210         }
4211         rcu_read_unlock();
4212
4213         if (&ptype->list == head)
4214                 goto normal;
4215
4216         same_flow = NAPI_GRO_CB(skb)->same_flow;
4217         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4218
4219         if (pp) {
4220                 struct sk_buff *nskb = *pp;
4221
4222                 *pp = nskb->next;
4223                 nskb->next = NULL;
4224                 napi_gro_complete(nskb);
4225                 napi->gro_count--;
4226         }
4227
4228         if (same_flow)
4229                 goto ok;
4230
4231         if (NAPI_GRO_CB(skb)->flush)
4232                 goto normal;
4233
4234         if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4235                 struct sk_buff *nskb = napi->gro_list;
4236
4237                 /* locate the end of the list to select the 'oldest' flow */
4238                 while (nskb->next) {
4239                         pp = &nskb->next;
4240                         nskb = *pp;
4241                 }
4242                 *pp = NULL;
4243                 nskb->next = NULL;
4244                 napi_gro_complete(nskb);
4245         } else {
4246                 napi->gro_count++;
4247         }
4248         NAPI_GRO_CB(skb)->count = 1;
4249         NAPI_GRO_CB(skb)->age = jiffies;
4250         NAPI_GRO_CB(skb)->last = skb;
4251         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4252         skb->next = napi->gro_list;
4253         napi->gro_list = skb;
4254         ret = GRO_HELD;
4255
4256 pull:
4257         grow = skb_gro_offset(skb) - skb_headlen(skb);
4258         if (grow > 0)
4259                 gro_pull_from_frag0(skb, grow);
4260 ok:
4261         return ret;
4262
4263 normal:
4264         ret = GRO_NORMAL;
4265         goto pull;
4266 }
4267
4268 struct packet_offload *gro_find_receive_by_type(__be16 type)
4269 {
4270         struct list_head *offload_head = &offload_base;
4271         struct packet_offload *ptype;
4272
4273         list_for_each_entry_rcu(ptype, offload_head, list) {
4274                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4275                         continue;
4276                 return ptype;
4277         }
4278         return NULL;
4279 }
4280 EXPORT_SYMBOL(gro_find_receive_by_type);
4281
4282 struct packet_offload *gro_find_complete_by_type(__be16 type)
4283 {
4284         struct list_head *offload_head = &offload_base;
4285         struct packet_offload *ptype;
4286
4287         list_for_each_entry_rcu(ptype, offload_head, list) {
4288                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4289                         continue;
4290                 return ptype;
4291         }
4292         return NULL;
4293 }
4294 EXPORT_SYMBOL(gro_find_complete_by_type);
4295
4296 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4297 {
4298         switch (ret) {
4299         case GRO_NORMAL:
4300                 if (netif_receive_skb_internal(skb))
4301                         ret = GRO_DROP;
4302                 break;
4303
4304         case GRO_DROP:
4305                 kfree_skb(skb);
4306                 break;
4307
4308         case GRO_MERGED_FREE:
4309                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4310                         kmem_cache_free(skbuff_head_cache, skb);
4311                 else
4312                         __kfree_skb(skb);
4313                 break;
4314
4315         case GRO_HELD:
4316         case GRO_MERGED:
4317                 break;
4318         }
4319
4320         return ret;
4321 }
4322
4323 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4324 {
4325         trace_napi_gro_receive_entry(skb);
4326
4327         skb_gro_reset_offset(skb);
4328
4329         return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4330 }
4331 EXPORT_SYMBOL(napi_gro_receive);
4332
4333 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4334 {
4335         if (unlikely(skb->pfmemalloc)) {
4336                 consume_skb(skb);
4337                 return;
4338         }
4339         __skb_pull(skb, skb_headlen(skb));
4340         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4341         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4342         skb->vlan_tci = 0;
4343         skb->dev = napi->dev;
4344         skb->skb_iif = 0;
4345         skb->encapsulation = 0;
4346         skb_shinfo(skb)->gso_type = 0;
4347         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4348
4349         napi->skb = skb;
4350 }
4351
4352 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4353 {
4354         struct sk_buff *skb = napi->skb;
4355
4356         if (!skb) {
4357                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4358                 napi->skb = skb;
4359         }
4360         return skb;
4361 }
4362 EXPORT_SYMBOL(napi_get_frags);
4363
4364 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4365                                       struct sk_buff *skb,
4366                                       gro_result_t ret)
4367 {
4368         switch (ret) {
4369         case GRO_NORMAL:
4370         case GRO_HELD:
4371                 __skb_push(skb, ETH_HLEN);
4372                 skb->protocol = eth_type_trans(skb, skb->dev);
4373                 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4374                         ret = GRO_DROP;
4375                 break;
4376
4377         case GRO_DROP:
4378         case GRO_MERGED_FREE:
4379                 napi_reuse_skb(napi, skb);
4380                 break;
4381
4382         case GRO_MERGED:
4383                 break;
4384         }
4385
4386         return ret;
4387 }
4388
4389 /* Upper GRO stack assumes network header starts at gro_offset=0
4390  * Drivers could call both napi_gro_frags() and napi_gro_receive()
4391  * We copy ethernet header into skb->data to have a common layout.
4392  */
4393 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4394 {
4395         struct sk_buff *skb = napi->skb;
4396         const struct ethhdr *eth;
4397         unsigned int hlen = sizeof(*eth);
4398
4399         napi->skb = NULL;
4400
4401         skb_reset_mac_header(skb);
4402         skb_gro_reset_offset(skb);
4403
4404         eth = skb_gro_header_fast(skb, 0);
4405         if (unlikely(skb_gro_header_hard(skb, hlen))) {
4406                 eth = skb_gro_header_slow(skb, hlen, 0);
4407                 if (unlikely(!eth)) {
4408                         napi_reuse_skb(napi, skb);
4409                         return NULL;
4410                 }
4411         } else {
4412                 gro_pull_from_frag0(skb, hlen);
4413                 NAPI_GRO_CB(skb)->frag0 += hlen;
4414                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4415         }
4416         __skb_pull(skb, hlen);
4417
4418         /*
4419          * This works because the only protocols we care about don't require
4420          * special handling.
4421          * We'll fix it up properly in napi_frags_finish()
4422          */
4423         skb->protocol = eth->h_proto;
4424
4425         return skb;
4426 }
4427
4428 gro_result_t napi_gro_frags(struct napi_struct *napi)
4429 {
4430         struct sk_buff *skb = napi_frags_skb(napi);
4431
4432         if (!skb)
4433                 return GRO_DROP;
4434
4435         trace_napi_gro_frags_entry(skb);
4436
4437         return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4438 }
4439 EXPORT_SYMBOL(napi_gro_frags);
4440
4441 /* Compute the checksum from gro_offset and return the folded value
4442  * after adding in any pseudo checksum.
4443  */
4444 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4445 {
4446         __wsum wsum;
4447         __sum16 sum;
4448
4449         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4450
4451         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4452         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4453         if (likely(!sum)) {
4454                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4455                     !skb->csum_complete_sw)
4456                         netdev_rx_csum_fault(skb->dev);
4457         }
4458
4459         NAPI_GRO_CB(skb)->csum = wsum;
4460         NAPI_GRO_CB(skb)->csum_valid = 1;
4461
4462         return sum;
4463 }
4464 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4465
4466 /*
4467  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4468  * Note: called with local irq disabled, but exits with local irq enabled.
4469  */
4470 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4471 {
4472 #ifdef CONFIG_RPS
4473         struct softnet_data *remsd = sd->rps_ipi_list;
4474
4475         if (remsd) {
4476                 sd->rps_ipi_list = NULL;
4477
4478                 local_irq_enable();
4479
4480                 /* Send pending IPI's to kick RPS processing on remote cpus. */
4481                 while (remsd) {
4482                         struct softnet_data *next = remsd->rps_ipi_next;
4483
4484                         if (cpu_online(remsd->cpu))
4485                                 smp_call_function_single_async(remsd->cpu,
4486                                                            &remsd->csd);
4487                         remsd = next;
4488                 }
4489         } else
4490 #endif
4491                 local_irq_enable();
4492 }
4493
4494 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4495 {
4496 #ifdef CONFIG_RPS
4497         return sd->rps_ipi_list != NULL;
4498 #else
4499         return false;
4500 #endif
4501 }
4502
4503 static int process_backlog(struct napi_struct *napi, int quota)
4504 {
4505         int work = 0;
4506         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4507
4508         /* Check if we have pending ipi, its better to send them now,
4509          * not waiting net_rx_action() end.
4510          */
4511         if (sd_has_rps_ipi_waiting(sd)) {
4512                 local_irq_disable();
4513                 net_rps_action_and_irq_enable(sd);
4514         }
4515
4516         napi->weight = weight_p;
4517         local_irq_disable();
4518         while (1) {
4519                 struct sk_buff *skb;
4520
4521                 while ((skb = __skb_dequeue(&sd->process_queue))) {
4522                         rcu_read_lock();
4523                         local_irq_enable();
4524                         __netif_receive_skb(skb);
4525                         rcu_read_unlock();
4526                         local_irq_disable();
4527                         input_queue_head_incr(sd);
4528                         if (++work >= quota) {
4529                                 local_irq_enable();
4530                                 return work;
4531                         }
4532                 }
4533
4534                 rps_lock(sd);
4535                 if (skb_queue_empty(&sd->input_pkt_queue)) {
4536                         /*
4537                          * Inline a custom version of __napi_complete().
4538                          * only current cpu owns and manipulates this napi,
4539                          * and NAPI_STATE_SCHED is the only possible flag set
4540                          * on backlog.
4541                          * We can use a plain write instead of clear_bit(),
4542                          * and we dont need an smp_mb() memory barrier.
4543                          */
4544                         napi->state = 0;
4545                         rps_unlock(sd);
4546
4547                         break;
4548                 }
4549
4550                 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4551                                            &sd->process_queue);
4552                 rps_unlock(sd);
4553         }
4554         local_irq_enable();
4555
4556         return work;
4557 }
4558
4559 /**
4560  * __napi_schedule - schedule for receive
4561  * @n: entry to schedule
4562  *
4563  * The entry's receive function will be scheduled to run.
4564  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4565  */
4566 void __napi_schedule(struct napi_struct *n)
4567 {
4568         unsigned long flags;
4569
4570         local_irq_save(flags);
4571         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4572         local_irq_restore(flags);
4573 }
4574 EXPORT_SYMBOL(__napi_schedule);
4575
4576 /**
4577  * __napi_schedule_irqoff - schedule for receive
4578  * @n: entry to schedule
4579  *
4580  * Variant of __napi_schedule() assuming hard irqs are masked
4581  */
4582 void __napi_schedule_irqoff(struct napi_struct *n)
4583 {
4584         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4585 }
4586 EXPORT_SYMBOL(__napi_schedule_irqoff);
4587
4588 void __napi_complete(struct napi_struct *n)
4589 {
4590         BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4591
4592         list_del_init(&n->poll_list);
4593         smp_mb__before_atomic();
4594         clear_bit(NAPI_STATE_SCHED, &n->state);
4595 }
4596 EXPORT_SYMBOL(__napi_complete);
4597
4598 void napi_complete_done(struct napi_struct *n, int work_done)
4599 {
4600         unsigned long flags;
4601
4602         /*
4603          * don't let napi dequeue from the cpu poll list
4604          * just in case its running on a different cpu
4605          */
4606         if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4607                 return;
4608
4609         if (n->gro_list) {
4610                 unsigned long timeout = 0;
4611
4612                 if (work_done)
4613                         timeout = n->dev->gro_flush_timeout;
4614
4615                 if (timeout)
4616                         hrtimer_start(&n->timer, ns_to_ktime(timeout),
4617                                       HRTIMER_MODE_REL_PINNED);
4618                 else
4619                         napi_gro_flush(n, false);
4620         }
4621         if (likely(list_empty(&n->poll_list))) {
4622                 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4623         } else {
4624                 /* If n->poll_list is not empty, we need to mask irqs */
4625                 local_irq_save(flags);
4626                 __napi_complete(n);
4627                 local_irq_restore(flags);
4628         }
4629 }
4630 EXPORT_SYMBOL(napi_complete_done);
4631
4632 /* must be called under rcu_read_lock(), as we dont take a reference */
4633 struct napi_struct *napi_by_id(unsigned int napi_id)
4634 {
4635         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4636         struct napi_struct *napi;
4637
4638         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4639                 if (napi->napi_id == napi_id)
4640                         return napi;
4641
4642         return NULL;
4643 }
4644 EXPORT_SYMBOL_GPL(napi_by_id);
4645
4646 void napi_hash_add(struct napi_struct *napi)
4647 {
4648         if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4649
4650                 spin_lock(&napi_hash_lock);
4651
4652                 /* 0 is not a valid id, we also skip an id that is taken
4653                  * we expect both events to be extremely rare
4654                  */
4655                 napi->napi_id = 0;
4656                 while (!napi->napi_id) {
4657                         napi->napi_id = ++napi_gen_id;
4658                         if (napi_by_id(napi->napi_id))
4659                                 napi->napi_id = 0;
4660                 }
4661
4662                 hlist_add_head_rcu(&napi->napi_hash_node,
4663                         &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4664
4665                 spin_unlock(&napi_hash_lock);
4666         }
4667 }
4668 EXPORT_SYMBOL_GPL(napi_hash_add);
4669
4670 /* Warning : caller is responsible to make sure rcu grace period
4671  * is respected before freeing memory containing @napi
4672  */
4673 void napi_hash_del(struct napi_struct *napi)
4674 {
4675         spin_lock(&napi_hash_lock);
4676
4677         if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4678                 hlist_del_rcu(&napi->napi_hash_node);
4679
4680         spin_unlock(&napi_hash_lock);
4681 }
4682 EXPORT_SYMBOL_GPL(napi_hash_del);
4683
4684 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
4685 {
4686         struct napi_struct *napi;
4687
4688         napi = container_of(timer, struct napi_struct, timer);
4689         if (napi->gro_list)
4690                 napi_schedule(napi);
4691
4692         return HRTIMER_NORESTART;
4693 }
4694
4695 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4696                     int (*poll)(struct napi_struct *, int), int weight)
4697 {
4698         INIT_LIST_HEAD(&napi->poll_list);
4699         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
4700         napi->timer.function = napi_watchdog;
4701         napi->gro_count = 0;
4702         napi->gro_list = NULL;
4703         napi->skb = NULL;
4704         napi->poll = poll;
4705         if (weight > NAPI_POLL_WEIGHT)
4706                 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4707                             weight, dev->name);
4708         napi->weight = weight;
4709         list_add(&napi->dev_list, &dev->napi_list);
4710         napi->dev = dev;
4711 #ifdef CONFIG_NETPOLL
4712         spin_lock_init(&napi->poll_lock);
4713         napi->poll_owner = -1;
4714 #endif
4715         set_bit(NAPI_STATE_SCHED, &napi->state);
4716 }
4717 EXPORT_SYMBOL(netif_napi_add);
4718
4719 void napi_disable(struct napi_struct *n)
4720 {
4721         might_sleep();
4722         set_bit(NAPI_STATE_DISABLE, &n->state);
4723
4724         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
4725                 msleep(1);
4726         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
4727                 msleep(1);
4728
4729         hrtimer_cancel(&n->timer);
4730
4731         clear_bit(NAPI_STATE_DISABLE, &n->state);
4732 }
4733 EXPORT_SYMBOL(napi_disable);
4734
4735 void netif_napi_del(struct napi_struct *napi)
4736 {
4737         list_del_init(&napi->dev_list);
4738         napi_free_frags(napi);
4739
4740         kfree_skb_list(napi->gro_list);
4741         napi->gro_list = NULL;
4742         napi->gro_count = 0;
4743 }
4744 EXPORT_SYMBOL(netif_napi_del);
4745
4746 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
4747 {
4748         void *have;
4749         int work, weight;
4750
4751         list_del_init(&n->poll_list);
4752
4753         have = netpoll_poll_lock(n);
4754
4755         weight = n->weight;
4756
4757         /* This NAPI_STATE_SCHED test is for avoiding a race
4758          * with netpoll's poll_napi().  Only the entity which
4759          * obtains the lock and sees NAPI_STATE_SCHED set will
4760          * actually make the ->poll() call.  Therefore we avoid
4761          * accidentally calling ->poll() when NAPI is not scheduled.
4762          */
4763         work = 0;
4764         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4765                 work = n->poll(n, weight);
4766                 trace_napi_poll(n);
4767         }
4768
4769         WARN_ON_ONCE(work > weight);
4770
4771         if (likely(work < weight))
4772                 goto out_unlock;
4773
4774         /* Drivers must not modify the NAPI state if they
4775          * consume the entire weight.  In such cases this code
4776          * still "owns" the NAPI instance and therefore can
4777          * move the instance around on the list at-will.
4778          */
4779         if (unlikely(napi_disable_pending(n))) {
4780                 napi_complete(n);
4781                 goto out_unlock;
4782         }
4783
4784         if (n->gro_list) {
4785                 /* flush too old packets
4786                  * If HZ < 1000, flush all packets.
4787                  */
4788                 napi_gro_flush(n, HZ >= 1000);
4789         }
4790
4791         /* Some drivers may have called napi_schedule
4792          * prior to exhausting their budget.
4793          */
4794         if (unlikely(!list_empty(&n->poll_list))) {
4795                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
4796                              n->dev ? n->dev->name : "backlog");
4797                 goto out_unlock;
4798         }
4799
4800         list_add_tail(&n->poll_list, repoll);
4801
4802 out_unlock:
4803         netpoll_poll_unlock(have);
4804
4805         return work;
4806 }
4807
4808 static void net_rx_action(struct softirq_action *h)
4809 {
4810         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4811         unsigned long time_limit = jiffies + 2;
4812         int budget = netdev_budget;
4813         LIST_HEAD(list);
4814         LIST_HEAD(repoll);
4815
4816         local_irq_disable();
4817         list_splice_init(&sd->poll_list, &list);
4818         local_irq_enable();
4819
4820         for (;;) {
4821                 struct napi_struct *n;
4822
4823                 if (list_empty(&list)) {
4824                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
4825                                 return;
4826                         break;
4827                 }
4828
4829                 n = list_first_entry(&list, struct napi_struct, poll_list);
4830                 budget -= napi_poll(n, &repoll);
4831
4832                 /* If softirq window is exhausted then punt.
4833                  * Allow this to run for 2 jiffies since which will allow
4834                  * an average latency of 1.5/HZ.
4835                  */
4836                 if (unlikely(budget <= 0 ||
4837                              time_after_eq(jiffies, time_limit))) {
4838                         sd->time_squeeze++;
4839                         break;
4840                 }
4841         }
4842
4843         local_irq_disable();
4844
4845         list_splice_tail_init(&sd->poll_list, &list);
4846         list_splice_tail(&repoll, &list);
4847         list_splice(&list, &sd->poll_list);
4848         if (!list_empty(&sd->poll_list))
4849                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4850
4851         net_rps_action_and_irq_enable(sd);
4852 }
4853
4854 struct netdev_adjacent {
4855         struct net_device *dev;
4856
4857         /* upper master flag, there can only be one master device per list */
4858         bool master;
4859
4860         /* counter for the number of times this device was added to us */
4861         u16 ref_nr;
4862
4863         /* private field for the users */
4864         void *private;
4865
4866         struct list_head list;
4867         struct rcu_head rcu;
4868 };
4869
4870 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
4871                                                  struct list_head *adj_list)
4872 {
4873         struct netdev_adjacent *adj;
4874
4875         list_for_each_entry(adj, adj_list, list) {
4876                 if (adj->dev == adj_dev)
4877                         return adj;
4878         }
4879         return NULL;
4880 }
4881
4882 /**
4883  * netdev_has_upper_dev - Check if device is linked to an upper device
4884  * @dev: device
4885  * @upper_dev: upper device to check
4886  *
4887  * Find out if a device is linked to specified upper device and return true
4888  * in case it is. Note that this checks only immediate upper device,
4889  * not through a complete stack of devices. The caller must hold the RTNL lock.
4890  */
4891 bool netdev_has_upper_dev(struct net_device *dev,
4892                           struct net_device *upper_dev)
4893 {
4894         ASSERT_RTNL();
4895
4896         return __netdev_find_adj(upper_dev, &dev->all_adj_list.upper);
4897 }
4898 EXPORT_SYMBOL(netdev_has_upper_dev);
4899
4900 /**
4901  * netdev_has_any_upper_dev - Check if device is linked to some device
4902  * @dev: device
4903  *
4904  * Find out if a device is linked to an upper device and return true in case
4905  * it is. The caller must hold the RTNL lock.
4906  */
4907 static bool netdev_has_any_upper_dev(struct net_device *dev)
4908 {
4909         ASSERT_RTNL();
4910
4911         return !list_empty(&dev->all_adj_list.upper);
4912 }
4913
4914 /**
4915  * netdev_master_upper_dev_get - Get master upper device
4916  * @dev: device
4917  *
4918  * Find a master upper device and return pointer to it or NULL in case
4919  * it's not there. The caller must hold the RTNL lock.
4920  */
4921 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4922 {
4923         struct netdev_adjacent *upper;
4924
4925         ASSERT_RTNL();
4926
4927         if (list_empty(&dev->adj_list.upper))
4928                 return NULL;
4929
4930         upper = list_first_entry(&dev->adj_list.upper,
4931                                  struct netdev_adjacent, list);
4932         if (likely(upper->master))
4933                 return upper->dev;
4934         return NULL;
4935 }
4936 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4937
4938 void *netdev_adjacent_get_private(struct list_head *adj_list)
4939 {
4940         struct netdev_adjacent *adj;
4941
4942         adj = list_entry(adj_list, struct netdev_adjacent, list);
4943
4944         return adj->private;
4945 }
4946 EXPORT_SYMBOL(netdev_adjacent_get_private);
4947
4948 /**
4949  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
4950  * @dev: device
4951  * @iter: list_head ** of the current position
4952  *
4953  * Gets the next device from the dev's upper list, starting from iter
4954  * position. The caller must hold RCU read lock.
4955  */
4956 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4957                                                  struct list_head **iter)
4958 {
4959         struct netdev_adjacent *upper;
4960
4961         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4962
4963         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4964
4965         if (&upper->list == &dev->adj_list.upper)
4966                 return NULL;
4967
4968         *iter = &upper->list;
4969
4970         return upper->dev;
4971 }
4972 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
4973
4974 /**
4975  * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
4976  * @dev: device
4977  * @iter: list_head ** of the current position
4978  *
4979  * Gets the next device from the dev's upper list, starting from iter
4980  * position. The caller must hold RCU read lock.
4981  */
4982 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4983                                                      struct list_head **iter)
4984 {
4985         struct netdev_adjacent *upper;
4986
4987         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4988
4989         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4990
4991         if (&upper->list == &dev->all_adj_list.upper)
4992                 return NULL;
4993
4994         *iter = &upper->list;
4995
4996         return upper->dev;
4997 }
4998 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
4999
5000 /**
5001  * netdev_lower_get_next_private - Get the next ->private from the
5002  *                                 lower neighbour list
5003  * @dev: device
5004  * @iter: list_head ** of the current position
5005  *
5006  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5007  * list, starting from iter position. The caller must hold either hold the
5008  * RTNL lock or its own locking that guarantees that the neighbour lower
5009  * list will remain unchanged.
5010  */
5011 void *netdev_lower_get_next_private(struct net_device *dev,
5012                                     struct list_head **iter)
5013 {
5014         struct netdev_adjacent *lower;
5015
5016         lower = list_entry(*iter, struct netdev_adjacent, list);
5017
5018         if (&lower->list == &dev->adj_list.lower)
5019                 return NULL;
5020
5021         *iter = lower->list.next;
5022
5023         return lower->private;
5024 }
5025 EXPORT_SYMBOL(netdev_lower_get_next_private);
5026
5027 /**
5028  * netdev_lower_get_next_private_rcu - Get the next ->private from the
5029  *                                     lower neighbour list, RCU
5030  *                                     variant
5031  * @dev: device
5032  * @iter: list_head ** of the current position
5033  *
5034  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5035  * list, starting from iter position. The caller must hold RCU read lock.
5036  */
5037 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5038                                         struct list_head **iter)
5039 {
5040         struct netdev_adjacent *lower;
5041
5042         WARN_ON_ONCE(!rcu_read_lock_held());
5043
5044         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5045
5046         if (&lower->list == &dev->adj_list.lower)
5047                 return NULL;
5048
5049         *iter = &lower->list;
5050
5051         return lower->private;
5052 }
5053 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5054
5055 /**
5056  * netdev_lower_get_next - Get the next device from the lower neighbour
5057  *                         list
5058  * @dev: device
5059  * @iter: list_head ** of the current position
5060  *
5061  * Gets the next netdev_adjacent from the dev's lower neighbour
5062  * list, starting from iter position. The caller must hold RTNL lock or
5063  * its own locking that guarantees that the neighbour lower
5064  * list will remain unchanged.
5065  */
5066 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5067 {
5068         struct netdev_adjacent *lower;
5069
5070         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
5071
5072         if (&lower->list == &dev->adj_list.lower)
5073                 return NULL;
5074
5075         *iter = &lower->list;
5076
5077         return lower->dev;
5078 }
5079 EXPORT_SYMBOL(netdev_lower_get_next);
5080
5081 /**
5082  * netdev_lower_get_first_private_rcu - Get the first ->private from the
5083  *                                     lower neighbour list, RCU
5084  *                                     variant
5085  * @dev: device
5086  *
5087  * Gets the first netdev_adjacent->private from the dev's lower neighbour
5088  * list. The caller must hold RCU read lock.
5089  */
5090 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5091 {
5092         struct netdev_adjacent *lower;
5093
5094         lower = list_first_or_null_rcu(&dev->adj_list.lower,
5095                         struct netdev_adjacent, list);
5096         if (lower)
5097                 return lower->private;
5098         return NULL;
5099 }
5100 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5101
5102 /**
5103  * netdev_master_upper_dev_get_rcu - Get master upper device
5104  * @dev: device
5105  *
5106  * Find a master upper device and return pointer to it or NULL in case
5107  * it's not there. The caller must hold the RCU read lock.
5108  */
5109 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5110 {
5111         struct netdev_adjacent *upper;
5112
5113         upper = list_first_or_null_rcu(&dev->adj_list.upper,
5114                                        struct netdev_adjacent, list);
5115         if (upper && likely(upper->master))
5116                 return upper->dev;
5117         return NULL;
5118 }
5119 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5120
5121 static int netdev_adjacent_sysfs_add(struct net_device *dev,
5122                               struct net_device *adj_dev,
5123                               struct list_head *dev_list)
5124 {
5125         char linkname[IFNAMSIZ+7];
5126         sprintf(linkname, dev_list == &dev->adj_list.upper ?
5127                 "upper_%s" : "lower_%s", adj_dev->name);
5128         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5129                                  linkname);
5130 }
5131 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5132                                char *name,
5133                                struct list_head *dev_list)
5134 {
5135         char linkname[IFNAMSIZ+7];
5136         sprintf(linkname, dev_list == &dev->adj_list.upper ?
5137                 "upper_%s" : "lower_%s", name);
5138         sysfs_remove_link(&(dev->dev.kobj), linkname);
5139 }
5140
5141 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5142                                                  struct net_device *adj_dev,
5143                                                  struct list_head *dev_list)
5144 {
5145         return (dev_list == &dev->adj_list.upper ||
5146                 dev_list == &dev->adj_list.lower) &&
5147                 net_eq(dev_net(dev), dev_net(adj_dev));
5148 }
5149
5150 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5151                                         struct net_device *adj_dev,
5152                                         struct list_head *dev_list,
5153                                         void *private, bool master)
5154 {
5155         struct netdev_adjacent *adj;
5156         int ret;
5157
5158         adj = __netdev_find_adj(adj_dev, dev_list);
5159
5160         if (adj) {
5161                 adj->ref_nr++;
5162                 return 0;
5163         }
5164
5165         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5166         if (!adj)
5167                 return -ENOMEM;
5168
5169         adj->dev = adj_dev;
5170         adj->master = master;
5171         adj->ref_nr = 1;
5172         adj->private = private;
5173         dev_hold(adj_dev);
5174
5175         pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5176                  adj_dev->name, dev->name, adj_dev->name);
5177
5178         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5179                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5180                 if (ret)
5181                         goto free_adj;
5182         }
5183
5184         /* Ensure that master link is always the first item in list. */
5185         if (master) {
5186                 ret = sysfs_create_link(&(dev->dev.kobj),
5187                                         &(adj_dev->dev.kobj), "master");
5188                 if (ret)
5189                         goto remove_symlinks;
5190
5191                 list_add_rcu(&adj->list, dev_list);
5192         } else {
5193                 list_add_tail_rcu(&adj->list, dev_list);
5194         }
5195
5196         return 0;
5197
5198 remove_symlinks:
5199         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5200                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5201 free_adj:
5202         kfree(adj);
5203         dev_put(adj_dev);
5204
5205         return ret;
5206 }
5207
5208 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5209                                          struct net_device *adj_dev,
5210                                          struct list_head *dev_list)
5211 {
5212         struct netdev_adjacent *adj;
5213
5214         adj = __netdev_find_adj(adj_dev, dev_list);
5215
5216         if (!adj) {
5217                 pr_err("tried to remove device %s from %s\n",
5218                        dev->name, adj_dev->name);
5219                 BUG();
5220         }
5221
5222         if (adj->ref_nr > 1) {
5223                 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
5224                          adj->ref_nr-1);
5225                 adj->ref_nr--;
5226                 return;
5227         }
5228
5229         if (adj->master)
5230                 sysfs_remove_link(&(dev->dev.kobj), "master");
5231
5232         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5233                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5234
5235         list_del_rcu(&adj->list);
5236         pr_debug("dev_put for %s, because link removed from %s to %s\n",
5237                  adj_dev->name, dev->name, adj_dev->name);
5238         dev_put(adj_dev);
5239         kfree_rcu(adj, rcu);
5240 }
5241
5242 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5243                                             struct net_device *upper_dev,
5244                                             struct list_head *up_list,
5245                                             struct list_head *down_list,
5246                                             void *private, bool master)
5247 {
5248         int ret;
5249
5250         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5251                                            master);
5252         if (ret)
5253                 return ret;
5254
5255         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5256                                            false);
5257         if (ret) {
5258                 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5259                 return ret;
5260         }
5261
5262         return 0;
5263 }
5264
5265 static int __netdev_adjacent_dev_link(struct net_device *dev,
5266                                       struct net_device *upper_dev)
5267 {
5268         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5269                                                 &dev->all_adj_list.upper,
5270                                                 &upper_dev->all_adj_list.lower,
5271                                                 NULL, false);
5272 }
5273
5274 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5275                                                struct net_device *upper_dev,
5276                                                struct list_head *up_list,
5277                                                struct list_head *down_list)
5278 {
5279         __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5280         __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5281 }
5282
5283 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5284                                          struct net_device *upper_dev)
5285 {
5286         __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5287                                            &dev->all_adj_list.upper,
5288                                            &upper_dev->all_adj_list.lower);
5289 }
5290
5291 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5292                                                 struct net_device *upper_dev,
5293                                                 void *private, bool master)
5294 {
5295         int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5296
5297         if (ret)
5298                 return ret;
5299
5300         ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5301                                                &dev->adj_list.upper,
5302                                                &upper_dev->adj_list.lower,
5303                                                private, master);
5304         if (ret) {
5305                 __netdev_adjacent_dev_unlink(dev, upper_dev);
5306                 return ret;
5307         }
5308
5309         return 0;
5310 }
5311
5312 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5313                                                    struct net_device *upper_dev)
5314 {
5315         __netdev_adjacent_dev_unlink(dev, upper_dev);
5316         __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5317                                            &dev->adj_list.upper,
5318                                            &upper_dev->adj_list.lower);
5319 }
5320
5321 static int __netdev_upper_dev_link(struct net_device *dev,
5322                                    struct net_device *upper_dev, bool master,
5323                                    void *private)
5324 {
5325         struct netdev_notifier_changeupper_info changeupper_info;
5326         struct netdev_adjacent *i, *j, *to_i, *to_j;
5327         int ret = 0;
5328
5329         ASSERT_RTNL();
5330
5331         if (dev == upper_dev)
5332                 return -EBUSY;
5333
5334         /* To prevent loops, check if dev is not upper device to upper_dev. */
5335         if (__netdev_find_adj(dev, &upper_dev->all_adj_list.upper))
5336                 return -EBUSY;
5337
5338         if (__netdev_find_adj(upper_dev, &dev->adj_list.upper))
5339                 return -EEXIST;
5340
5341         if (master && netdev_master_upper_dev_get(dev))
5342                 return -EBUSY;
5343
5344         changeupper_info.upper_dev = upper_dev;
5345         changeupper_info.master = master;
5346         changeupper_info.linking = true;
5347
5348         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
5349                                                    master);
5350         if (ret)
5351                 return ret;
5352
5353         /* Now that we linked these devs, make all the upper_dev's
5354          * all_adj_list.upper visible to every dev's all_adj_list.lower an
5355          * versa, and don't forget the devices itself. All of these
5356          * links are non-neighbours.
5357          */
5358         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5359                 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5360                         pr_debug("Interlinking %s with %s, non-neighbour\n",
5361                                  i->dev->name, j->dev->name);
5362                         ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5363                         if (ret)
5364                                 goto rollback_mesh;
5365                 }
5366         }
5367
5368         /* add dev to every upper_dev's upper device */
5369         list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5370                 pr_debug("linking %s's upper device %s with %s\n",
5371                          upper_dev->name, i->dev->name, dev->name);
5372                 ret = __netdev_adjacent_dev_link(dev, i->dev);
5373                 if (ret)
5374                         goto rollback_upper_mesh;
5375         }
5376
5377         /* add upper_dev to every dev's lower device */
5378         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5379                 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5380                          i->dev->name, upper_dev->name);
5381                 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5382                 if (ret)
5383                         goto rollback_lower_mesh;
5384         }
5385
5386         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5387                                       &changeupper_info.info);
5388         return 0;
5389
5390 rollback_lower_mesh:
5391         to_i = i;
5392         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5393                 if (i == to_i)
5394                         break;
5395                 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5396         }
5397
5398         i = NULL;
5399
5400 rollback_upper_mesh:
5401         to_i = i;
5402         list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5403                 if (i == to_i)
5404                         break;
5405                 __netdev_adjacent_dev_unlink(dev, i->dev);
5406         }
5407
5408         i = j = NULL;
5409
5410 rollback_mesh:
5411         to_i = i;
5412         to_j = j;
5413         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5414                 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5415                         if (i == to_i && j == to_j)
5416                                 break;
5417                         __netdev_adjacent_dev_unlink(i->dev, j->dev);
5418                 }
5419                 if (i == to_i)
5420                         break;
5421         }
5422
5423         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5424
5425         return ret;
5426 }
5427
5428 /**
5429  * netdev_upper_dev_link - Add a link to the upper device
5430  * @dev: device
5431  * @upper_dev: new upper device
5432  *
5433  * Adds a link to device which is upper to this one. The caller must hold
5434  * the RTNL lock. On a failure a negative errno code is returned.
5435  * On success the reference counts are adjusted and the function
5436  * returns zero.
5437  */
5438 int netdev_upper_dev_link(struct net_device *dev,
5439                           struct net_device *upper_dev)
5440 {
5441         return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
5442 }
5443 EXPORT_SYMBOL(netdev_upper_dev_link);
5444
5445 /**
5446  * netdev_master_upper_dev_link - Add a master link to the upper device
5447  * @dev: device
5448  * @upper_dev: new upper device
5449  *
5450  * Adds a link to device which is upper to this one. In this case, only
5451  * one master upper device can be linked, although other non-master devices
5452  * might be linked as well. The caller must hold the RTNL lock.
5453  * On a failure a negative errno code is returned. On success the reference
5454  * counts are adjusted and the function returns zero.
5455  */
5456 int netdev_master_upper_dev_link(struct net_device *dev,
5457                                  struct net_device *upper_dev)
5458 {
5459         return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
5460 }
5461 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5462
5463 int netdev_master_upper_dev_link_private(struct net_device *dev,
5464                                          struct net_device *upper_dev,
5465                                          void *private)
5466 {
5467         return __netdev_upper_dev_link(dev, upper_dev, true, private);
5468 }
5469 EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5470
5471 /**
5472  * netdev_upper_dev_unlink - Removes a link to upper device
5473  * @dev: device
5474  * @upper_dev: new upper device
5475  *
5476  * Removes a link to device which is upper to this one. The caller must hold
5477  * the RTNL lock.
5478  */
5479 void netdev_upper_dev_unlink(struct net_device *dev,
5480                              struct net_device *upper_dev)
5481 {
5482         struct netdev_notifier_changeupper_info changeupper_info;
5483         struct netdev_adjacent *i, *j;
5484         ASSERT_RTNL();
5485
5486         changeupper_info.upper_dev = upper_dev;
5487         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5488         changeupper_info.linking = false;
5489
5490         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5491
5492         /* Here is the tricky part. We must remove all dev's lower
5493          * devices from all upper_dev's upper devices and vice
5494          * versa, to maintain the graph relationship.
5495          */
5496         list_for_each_entry(i, &dev->all_adj_list.lower, list)
5497                 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5498                         __netdev_adjacent_dev_unlink(i->dev, j->dev);
5499
5500         /* remove also the devices itself from lower/upper device
5501          * list
5502          */
5503         list_for_each_entry(i, &dev->all_adj_list.lower, list)
5504                 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5505
5506         list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5507                 __netdev_adjacent_dev_unlink(dev, i->dev);
5508
5509         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5510                                       &changeupper_info.info);
5511 }
5512 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5513
5514 /**
5515  * netdev_bonding_info_change - Dispatch event about slave change
5516  * @dev: device
5517  * @bonding_info: info to dispatch
5518  *
5519  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5520  * The caller must hold the RTNL lock.
5521  */
5522 void netdev_bonding_info_change(struct net_device *dev,
5523                                 struct netdev_bonding_info *bonding_info)
5524 {
5525         struct netdev_notifier_bonding_info     info;
5526
5527         memcpy(&info.bonding_info, bonding_info,
5528                sizeof(struct netdev_bonding_info));
5529         call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5530                                       &info.info);
5531 }
5532 EXPORT_SYMBOL(netdev_bonding_info_change);
5533
5534 static void netdev_adjacent_add_links(struct net_device *dev)
5535 {
5536         struct netdev_adjacent *iter;
5537
5538         struct net *net = dev_net(dev);
5539
5540         list_for_each_entry(iter, &dev->adj_list.upper, list) {
5541                 if (!net_eq(net,dev_net(iter->dev)))
5542                         continue;
5543                 netdev_adjacent_sysfs_add(iter->dev, dev,
5544                                           &iter->dev->adj_list.lower);
5545                 netdev_adjacent_sysfs_add(dev, iter->dev,
5546                                           &dev->adj_list.upper);
5547         }
5548
5549         list_for_each_entry(iter, &dev->adj_list.lower, list) {
5550                 if (!net_eq(net,dev_net(iter->dev)))
5551                         continue;
5552                 netdev_adjacent_sysfs_add(iter->dev, dev,
5553                                           &iter->dev->adj_list.upper);
5554                 netdev_adjacent_sysfs_add(dev, iter->dev,
5555                                           &dev->adj_list.lower);
5556         }
5557 }
5558
5559 static void netdev_adjacent_del_links(struct net_device *dev)
5560 {
5561         struct netdev_adjacent *iter;
5562
5563         struct net *net = dev_net(dev);
5564
5565         list_for_each_entry(iter, &dev->adj_list.upper, list) {
5566                 if (!net_eq(net,dev_net(iter->dev)))
5567                         continue;
5568                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5569                                           &iter->dev->adj_list.lower);
5570                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5571                                           &dev->adj_list.upper);
5572         }
5573
5574         list_for_each_entry(iter, &dev->adj_list.lower, list) {
5575                 if (!net_eq(net,dev_net(iter->dev)))
5576                         continue;
5577                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5578                                           &iter->dev->adj_list.upper);
5579                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5580                                           &dev->adj_list.lower);
5581         }
5582 }
5583
5584 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5585 {
5586         struct netdev_adjacent *iter;
5587
5588         struct net *net = dev_net(dev);
5589
5590         list_for_each_entry(iter, &dev->adj_list.upper, list) {
5591                 if (!net_eq(net,dev_net(iter->dev)))
5592                         continue;
5593                 netdev_adjacent_sysfs_del(iter->dev, oldname,
5594                                           &iter->dev->adj_list.lower);
5595                 netdev_adjacent_sysfs_add(iter->dev, dev,
5596                                           &iter->dev->adj_list.lower);
5597         }
5598
5599         list_for_each_entry(iter, &dev->adj_list.lower, list) {
5600                 if (!net_eq(net,dev_net(iter->dev)))
5601                         continue;
5602                 netdev_adjacent_sysfs_del(iter->dev, oldname,
5603                                           &iter->dev->adj_list.upper);
5604                 netdev_adjacent_sysfs_add(iter->dev, dev,
5605                                           &iter->dev->adj_list.upper);
5606         }
5607 }
5608
5609 void *netdev_lower_dev_get_private(struct net_device *dev,
5610                                    struct net_device *lower_dev)
5611 {
5612         struct netdev_adjacent *lower;
5613
5614         if (!lower_dev)
5615                 return NULL;
5616         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
5617         if (!lower)
5618                 return NULL;
5619
5620         return lower->private;
5621 }
5622 EXPORT_SYMBOL(netdev_lower_dev_get_private);
5623
5624
5625 int dev_get_nest_level(struct net_device *dev,
5626                        bool (*type_check)(struct net_device *dev))
5627 {
5628         struct net_device *lower = NULL;
5629         struct list_head *iter;
5630         int max_nest = -1;
5631         int nest;
5632
5633         ASSERT_RTNL();
5634
5635         netdev_for_each_lower_dev(dev, lower, iter) {
5636                 nest = dev_get_nest_level(lower, type_check);
5637                 if (max_nest < nest)
5638                         max_nest = nest;
5639         }
5640
5641         if (type_check(dev))
5642                 max_nest++;
5643
5644         return max_nest;
5645 }
5646 EXPORT_SYMBOL(dev_get_nest_level);
5647
5648 static void dev_change_rx_flags(struct net_device *dev, int flags)
5649 {
5650         const struct net_device_ops *ops = dev->netdev_ops;
5651
5652         if (ops->ndo_change_rx_flags)
5653                 ops->ndo_change_rx_flags(dev, flags);
5654 }
5655
5656 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5657 {
5658         unsigned int old_flags = dev->flags;
5659         kuid_t uid;
5660         kgid_t gid;
5661
5662         ASSERT_RTNL();
5663
5664         dev->flags |= IFF_PROMISC;
5665         dev->promiscuity += inc;
5666         if (dev->promiscuity == 0) {
5667                 /*
5668                  * Avoid overflow.
5669                  * If inc causes overflow, untouch promisc and return error.
5670                  */
5671                 if (inc < 0)
5672                         dev->flags &= ~IFF_PROMISC;
5673                 else {
5674                         dev->promiscuity -= inc;
5675                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5676                                 dev->name);
5677                         return -EOVERFLOW;
5678                 }
5679         }
5680         if (dev->flags != old_flags) {
5681                 pr_info("device %s %s promiscuous mode\n",
5682                         dev->name,
5683                         dev->flags & IFF_PROMISC ? "entered" : "left");
5684                 if (audit_enabled) {
5685                         current_uid_gid(&uid, &gid);
5686                         audit_log(current->audit_context, GFP_ATOMIC,
5687                                 AUDIT_ANOM_PROMISCUOUS,
5688                                 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5689                                 dev->name, (dev->flags & IFF_PROMISC),
5690                                 (old_flags & IFF_PROMISC),
5691                                 from_kuid(&init_user_ns, audit_get_loginuid(current)),
5692                                 from_kuid(&init_user_ns, uid),
5693                                 from_kgid(&init_user_ns, gid),
5694                                 audit_get_sessionid(current));
5695                 }
5696
5697                 dev_change_rx_flags(dev, IFF_PROMISC);
5698         }
5699         if (notify)
5700                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
5701         return 0;
5702 }
5703
5704 /**
5705  *      dev_set_promiscuity     - update promiscuity count on a device
5706  *      @dev: device
5707  *      @inc: modifier
5708  *
5709  *      Add or remove promiscuity from a device. While the count in the device
5710  *      remains above zero the interface remains promiscuous. Once it hits zero
5711  *      the device reverts back to normal filtering operation. A negative inc
5712  *      value is used to drop promiscuity on the device.
5713  *      Return 0 if successful or a negative errno code on error.
5714  */
5715 int dev_set_promiscuity(struct net_device *dev, int inc)
5716 {
5717         unsigned int old_flags = dev->flags;
5718         int err;
5719
5720         err = __dev_set_promiscuity(dev, inc, true);
5721         if (err < 0)
5722                 return err;
5723         if (dev->flags != old_flags)
5724                 dev_set_rx_mode(dev);
5725         return err;
5726 }
5727 EXPORT_SYMBOL(dev_set_promiscuity);
5728
5729 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5730 {
5731         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5732
5733         ASSERT_RTNL();
5734
5735         dev->flags |= IFF_ALLMULTI;
5736         dev->allmulti += inc;
5737         if (dev->allmulti == 0) {
5738                 /*
5739                  * Avoid overflow.
5740                  * If inc causes overflow, untouch allmulti and return error.
5741                  */
5742                 if (inc < 0)
5743                         dev->flags &= ~IFF_ALLMULTI;
5744                 else {
5745                         dev->allmulti -= inc;
5746                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5747                                 dev->name);
5748                         return -EOVERFLOW;
5749                 }
5750         }
5751         if (dev->flags ^ old_flags) {
5752                 dev_change_rx_flags(dev, IFF_ALLMULTI);
5753                 dev_set_rx_mode(dev);
5754                 if (notify)
5755                         __dev_notify_flags(dev, old_flags,
5756                                            dev->gflags ^ old_gflags);
5757         }
5758         return 0;
5759 }
5760
5761 /**
5762  *      dev_set_allmulti        - update allmulti count on a device
5763  *      @dev: device
5764  *      @inc: modifier
5765  *
5766  *      Add or remove reception of all multicast frames to a device. While the
5767  *      count in the device remains above zero the interface remains listening
5768  *      to all interfaces. Once it hits zero the device reverts back to normal
5769  *      filtering operation. A negative @inc value is used to drop the counter
5770  *      when releasing a resource needing all multicasts.
5771  *      Return 0 if successful or a negative errno code on error.
5772  */
5773
5774 int dev_set_allmulti(struct net_device *dev, int inc)
5775 {
5776         return __dev_set_allmulti(dev, inc, true);
5777 }
5778 EXPORT_SYMBOL(dev_set_allmulti);
5779
5780 /*
5781  *      Upload unicast and multicast address lists to device and
5782  *      configure RX filtering. When the device doesn't support unicast
5783  *      filtering it is put in promiscuous mode while unicast addresses
5784  *      are present.
5785  */
5786 void __dev_set_rx_mode(struct net_device *dev)
5787 {
5788         const struct net_device_ops *ops = dev->netdev_ops;
5789
5790         /* dev_open will call this function so the list will stay sane. */
5791         if (!(dev->flags&IFF_UP))
5792                 return;
5793
5794         if (!netif_device_present(dev))
5795                 return;
5796
5797         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5798                 /* Unicast addresses changes may only happen under the rtnl,
5799                  * therefore calling __dev_set_promiscuity here is safe.
5800                  */
5801                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5802                         __dev_set_promiscuity(dev, 1, false);
5803                         dev->uc_promisc = true;
5804                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5805                         __dev_set_promiscuity(dev, -1, false);
5806                         dev->uc_promisc = false;
5807                 }
5808         }
5809
5810         if (ops->ndo_set_rx_mode)
5811                 ops->ndo_set_rx_mode(dev);
5812 }
5813
5814 void dev_set_rx_mode(struct net_device *dev)
5815 {
5816         netif_addr_lock_bh(dev);
5817         __dev_set_rx_mode(dev);
5818         netif_addr_unlock_bh(dev);
5819 }
5820
5821 /**
5822  *      dev_get_flags - get flags reported to userspace
5823  *      @dev: device
5824  *
5825  *      Get the combination of flag bits exported through APIs to userspace.
5826  */
5827 unsigned int dev_get_flags(const struct net_device *dev)
5828 {
5829         unsigned int flags;
5830
5831         flags = (dev->flags & ~(IFF_PROMISC |
5832                                 IFF_ALLMULTI |
5833                                 IFF_RUNNING |
5834                                 IFF_LOWER_UP |
5835                                 IFF_DORMANT)) |
5836                 (dev->gflags & (IFF_PROMISC |
5837                                 IFF_ALLMULTI));
5838
5839         if (netif_running(dev)) {
5840                 if (netif_oper_up(dev))
5841                         flags |= IFF_RUNNING;
5842                 if (netif_carrier_ok(dev))
5843                         flags |= IFF_LOWER_UP;
5844                 if (netif_dormant(dev))
5845                         flags |= IFF_DORMANT;
5846         }
5847
5848         return flags;
5849 }
5850 EXPORT_SYMBOL(dev_get_flags);
5851
5852 int __dev_change_flags(struct net_device *dev, unsigned int flags)
5853 {
5854         unsigned int old_flags = dev->flags;
5855         int ret;
5856
5857         ASSERT_RTNL();
5858
5859         /*
5860          *      Set the flags on our device.
5861          */
5862
5863         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5864                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5865                                IFF_AUTOMEDIA)) |
5866                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5867                                     IFF_ALLMULTI));
5868
5869         /*
5870          *      Load in the correct multicast list now the flags have changed.
5871          */
5872
5873         if ((old_flags ^ flags) & IFF_MULTICAST)
5874                 dev_change_rx_flags(dev, IFF_MULTICAST);
5875
5876         dev_set_rx_mode(dev);
5877
5878         /*
5879          *      Have we downed the interface. We handle IFF_UP ourselves
5880          *      according to user attempts to set it, rather than blindly
5881          *      setting it.
5882          */
5883
5884         ret = 0;
5885         if ((old_flags ^ flags) & IFF_UP)
5886                 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5887
5888         if ((flags ^ dev->gflags) & IFF_PROMISC) {
5889                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
5890                 unsigned int old_flags = dev->flags;
5891
5892                 dev->gflags ^= IFF_PROMISC;
5893
5894                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
5895                         if (dev->flags != old_flags)
5896                                 dev_set_rx_mode(dev);
5897         }
5898
5899         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5900            is important. Some (broken) drivers set IFF_PROMISC, when
5901            IFF_ALLMULTI is requested not asking us and not reporting.
5902          */
5903         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
5904                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5905
5906                 dev->gflags ^= IFF_ALLMULTI;
5907                 __dev_set_allmulti(dev, inc, false);
5908         }
5909
5910         return ret;
5911 }
5912
5913 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5914                         unsigned int gchanges)
5915 {
5916         unsigned int changes = dev->flags ^ old_flags;
5917
5918         if (gchanges)
5919                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
5920
5921         if (changes & IFF_UP) {
5922                 if (dev->flags & IFF_UP)
5923                         call_netdevice_notifiers(NETDEV_UP, dev);
5924                 else
5925                         call_netdevice_notifiers(NETDEV_DOWN, dev);
5926         }
5927
5928         if (dev->flags & IFF_UP &&
5929             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5930                 struct netdev_notifier_change_info change_info;
5931
5932                 change_info.flags_changed = changes;
5933                 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5934                                               &change_info.info);
5935         }
5936 }
5937
5938 /**
5939  *      dev_change_flags - change device settings
5940  *      @dev: device
5941  *      @flags: device state flags
5942  *
5943  *      Change settings on device based state flags. The flags are
5944  *      in the userspace exported format.
5945  */
5946 int dev_change_flags(struct net_device *dev, unsigned int flags)
5947 {
5948         int ret;
5949         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
5950
5951         ret = __dev_change_flags(dev, flags);
5952         if (ret < 0)
5953                 return ret;
5954
5955         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
5956         __dev_notify_flags(dev, old_flags, changes);
5957         return ret;
5958 }
5959 EXPORT_SYMBOL(dev_change_flags);
5960
5961 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
5962 {
5963         const struct net_device_ops *ops = dev->netdev_ops;
5964
5965         if (ops->ndo_change_mtu)
5966                 return ops->ndo_change_mtu(dev, new_mtu);
5967
5968         dev->mtu = new_mtu;
5969         return 0;
5970 }
5971
5972 /**
5973  *      dev_set_mtu - Change maximum transfer unit
5974  *      @dev: device
5975  *      @new_mtu: new transfer unit
5976  *
5977  *      Change the maximum transfer size of the network device.
5978  */
5979 int dev_set_mtu(struct net_device *dev, int new_mtu)
5980 {
5981         int err, orig_mtu;
5982
5983         if (new_mtu == dev->mtu)
5984                 return 0;
5985
5986         /*      MTU must be positive.    */
5987         if (new_mtu < 0)
5988                 return -EINVAL;
5989
5990         if (!netif_device_present(dev))
5991                 return -ENODEV;
5992
5993         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
5994         err = notifier_to_errno(err);
5995         if (err)
5996                 return err;
5997
5998         orig_mtu = dev->mtu;
5999         err = __dev_set_mtu(dev, new_mtu);
6000
6001         if (!err) {
6002                 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6003                 err = notifier_to_errno(err);
6004                 if (err) {
6005                         /* setting mtu back and notifying everyone again,
6006                          * so that they have a chance to revert changes.
6007                          */
6008                         __dev_set_mtu(dev, orig_mtu);
6009                         call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6010                 }
6011         }
6012         return err;
6013 }
6014 EXPORT_SYMBOL(dev_set_mtu);
6015
6016 /**
6017  *      dev_set_group - Change group this device belongs to
6018  *      @dev: device
6019  *      @new_group: group this device should belong to
6020  */
6021 void dev_set_group(struct net_device *dev, int new_group)
6022 {
6023         dev->group = new_group;
6024 }
6025 EXPORT_SYMBOL(dev_set_group);
6026
6027 /**
6028  *      dev_set_mac_address - Change Media Access Control Address
6029  *      @dev: device
6030  *      @sa: new address
6031  *
6032  *      Change the hardware (MAC) address of the device
6033  */
6034 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6035 {
6036         const struct net_device_ops *ops = dev->netdev_ops;
6037         int err;
6038
6039         if (!ops->ndo_set_mac_address)
6040                 return -EOPNOTSUPP;
6041         if (sa->sa_family != dev->type)
6042                 return -EINVAL;
6043         if (!netif_device_present(dev))
6044                 return -ENODEV;
6045         err = ops->ndo_set_mac_address(dev, sa);
6046         if (err)
6047                 return err;
6048         dev->addr_assign_type = NET_ADDR_SET;
6049         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6050         add_device_randomness(dev->dev_addr, dev->addr_len);
6051         return 0;
6052 }
6053 EXPORT_SYMBOL(dev_set_mac_address);
6054
6055 /**
6056  *      dev_change_carrier - Change device carrier
6057  *      @dev: device
6058  *      @new_carrier: new value
6059  *
6060  *      Change device carrier
6061  */
6062 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6063 {
6064         const struct net_device_ops *ops = dev->netdev_ops;
6065
6066         if (!ops->ndo_change_carrier)
6067                 return -EOPNOTSUPP;
6068         if (!netif_device_present(dev))
6069                 return -ENODEV;
6070         return ops->ndo_change_carrier(dev, new_carrier);
6071 }
6072 EXPORT_SYMBOL(dev_change_carrier);
6073
6074 /**
6075  *      dev_get_phys_port_id - Get device physical port ID
6076  *      @dev: device
6077  *      @ppid: port ID
6078  *
6079  *      Get device physical port ID
6080  */
6081 int dev_get_phys_port_id(struct net_device *dev,
6082                          struct netdev_phys_item_id *ppid)
6083 {
6084         const struct net_device_ops *ops = dev->netdev_ops;
6085
6086         if (!ops->ndo_get_phys_port_id)
6087                 return -EOPNOTSUPP;
6088         return ops->ndo_get_phys_port_id(dev, ppid);
6089 }
6090 EXPORT_SYMBOL(dev_get_phys_port_id);
6091
6092 /**
6093  *      dev_get_phys_port_name - Get device physical port name
6094  *      @dev: device
6095  *      @name: port name
6096  *
6097  *      Get device physical port name
6098  */
6099 int dev_get_phys_port_name(struct net_device *dev,
6100                            char *name, size_t len)
6101 {
6102         const struct net_device_ops *ops = dev->netdev_ops;
6103
6104         if (!ops->ndo_get_phys_port_name)
6105                 return -EOPNOTSUPP;
6106         return ops->ndo_get_phys_port_name(dev, name, len);
6107 }
6108 EXPORT_SYMBOL(dev_get_phys_port_name);
6109
6110 /**
6111  *      dev_change_proto_down - update protocol port state information
6112  *      @dev: device
6113  *      @proto_down: new value
6114  *
6115  *      This info can be used by switch drivers to set the phys state of the
6116  *      port.
6117  */
6118 int dev_change_proto_down(struct net_device *dev, bool proto_down)
6119 {
6120         const struct net_device_ops *ops = dev->netdev_ops;
6121
6122         if (!ops->ndo_change_proto_down)
6123                 return -EOPNOTSUPP;
6124         if (!netif_device_present(dev))
6125                 return -ENODEV;
6126         return ops->ndo_change_proto_down(dev, proto_down);
6127 }
6128 EXPORT_SYMBOL(dev_change_proto_down);
6129
6130 /**
6131  *      dev_new_index   -       allocate an ifindex
6132  *      @net: the applicable net namespace
6133  *
6134  *      Returns a suitable unique value for a new device interface
6135  *      number.  The caller must hold the rtnl semaphore or the
6136  *      dev_base_lock to be sure it remains unique.
6137  */
6138 static int dev_new_index(struct net *net)
6139 {
6140         int ifindex = net->ifindex;
6141         for (;;) {
6142                 if (++ifindex <= 0)
6143                         ifindex = 1;
6144                 if (!__dev_get_by_index(net, ifindex))
6145                         return net->ifindex = ifindex;
6146         }
6147 }
6148
6149 /* Delayed registration/unregisteration */
6150 static LIST_HEAD(net_todo_list);
6151 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6152
6153 static void net_set_todo(struct net_device *dev)
6154 {
6155         list_add_tail(&dev->todo_list, &net_todo_list);
6156         dev_net(dev)->dev_unreg_count++;
6157 }
6158
6159 static void rollback_registered_many(struct list_head *head)
6160 {
6161         struct net_device *dev, *tmp;
6162         LIST_HEAD(close_head);
6163
6164         BUG_ON(dev_boot_phase);
6165         ASSERT_RTNL();
6166
6167         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6168                 /* Some devices call without registering
6169                  * for initialization unwind. Remove those
6170                  * devices and proceed with the remaining.
6171                  */
6172                 if (dev->reg_state == NETREG_UNINITIALIZED) {
6173                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6174                                  dev->name, dev);
6175
6176                         WARN_ON(1);
6177                         list_del(&dev->unreg_list);
6178                         continue;
6179                 }
6180                 dev->dismantle = true;
6181                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
6182         }
6183
6184         /* If device is running, close it first. */
6185         list_for_each_entry(dev, head, unreg_list)
6186                 list_add_tail(&dev->close_list, &close_head);
6187         dev_close_many(&close_head, true);
6188
6189         list_for_each_entry(dev, head, unreg_list) {
6190                 /* And unlink it from device chain. */
6191                 unlist_netdevice(dev);
6192
6193                 dev->reg_state = NETREG_UNREGISTERING;
6194                 on_each_cpu(flush_backlog, dev, 1);
6195         }
6196
6197         synchronize_net();
6198
6199         list_for_each_entry(dev, head, unreg_list) {
6200                 struct sk_buff *skb = NULL;
6201
6202                 /* Shutdown queueing discipline. */
6203                 dev_shutdown(dev);
6204
6205
6206                 /* Notify protocols, that we are about to destroy
6207                    this device. They should clean all the things.
6208                 */
6209                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6210
6211                 if (!dev->rtnl_link_ops ||
6212                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6213                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6214                                                      GFP_KERNEL);
6215
6216                 /*
6217                  *      Flush the unicast and multicast chains
6218                  */
6219                 dev_uc_flush(dev);
6220                 dev_mc_flush(dev);
6221
6222                 if (dev->netdev_ops->ndo_uninit)
6223                         dev->netdev_ops->ndo_uninit(dev);
6224
6225                 if (skb)
6226                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6227
6228                 /* Notifier chain MUST detach us all upper devices. */
6229                 WARN_ON(netdev_has_any_upper_dev(dev));
6230
6231                 /* Remove entries from kobject tree */
6232                 netdev_unregister_kobject(dev);
6233 #ifdef CONFIG_XPS
6234                 /* Remove XPS queueing entries */
6235                 netif_reset_xps_queues_gt(dev, 0);
6236 #endif
6237         }
6238
6239         synchronize_net();
6240
6241         list_for_each_entry(dev, head, unreg_list)
6242                 dev_put(dev);
6243 }
6244
6245 static void rollback_registered(struct net_device *dev)
6246 {
6247         LIST_HEAD(single);
6248
6249         list_add(&dev->unreg_list, &single);
6250         rollback_registered_many(&single);
6251         list_del(&single);
6252 }
6253
6254 static netdev_features_t netdev_fix_features(struct net_device *dev,
6255         netdev_features_t features)
6256 {
6257         /* Fix illegal checksum combinations */
6258         if ((features & NETIF_F_HW_CSUM) &&
6259             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6260                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6261                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6262         }
6263
6264         /* TSO requires that SG is present as well. */
6265         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6266                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6267                 features &= ~NETIF_F_ALL_TSO;
6268         }
6269
6270         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6271                                         !(features & NETIF_F_IP_CSUM)) {
6272                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6273                 features &= ~NETIF_F_TSO;
6274                 features &= ~NETIF_F_TSO_ECN;
6275         }
6276
6277         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6278                                          !(features & NETIF_F_IPV6_CSUM)) {
6279                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6280                 features &= ~NETIF_F_TSO6;
6281         }
6282
6283         /* TSO ECN requires that TSO is present as well. */
6284         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6285                 features &= ~NETIF_F_TSO_ECN;
6286
6287         /* Software GSO depends on SG. */
6288         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6289                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6290                 features &= ~NETIF_F_GSO;
6291         }
6292
6293         /* UFO needs SG and checksumming */
6294         if (features & NETIF_F_UFO) {
6295                 /* maybe split UFO into V4 and V6? */
6296                 if (!((features & NETIF_F_GEN_CSUM) ||
6297                     (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
6298                             == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6299                         netdev_dbg(dev,
6300                                 "Dropping NETIF_F_UFO since no checksum offload features.\n");
6301                         features &= ~NETIF_F_UFO;
6302                 }
6303
6304                 if (!(features & NETIF_F_SG)) {
6305                         netdev_dbg(dev,
6306                                 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6307                         features &= ~NETIF_F_UFO;
6308                 }
6309         }
6310
6311 #ifdef CONFIG_NET_RX_BUSY_POLL
6312         if (dev->netdev_ops->ndo_busy_poll)
6313                 features |= NETIF_F_BUSY_POLL;
6314         else
6315 #endif
6316                 features &= ~NETIF_F_BUSY_POLL;
6317
6318         return features;
6319 }
6320
6321 int __netdev_update_features(struct net_device *dev)
6322 {
6323         netdev_features_t features;
6324         int err = 0;
6325
6326         ASSERT_RTNL();
6327
6328         features = netdev_get_wanted_features(dev);
6329
6330         if (dev->netdev_ops->ndo_fix_features)
6331                 features = dev->netdev_ops->ndo_fix_features(dev, features);
6332
6333         /* driver might be less strict about feature dependencies */
6334         features = netdev_fix_features(dev, features);
6335
6336         if (dev->features == features)
6337                 return 0;
6338
6339         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6340                 &dev->features, &features);
6341
6342         if (dev->netdev_ops->ndo_set_features)
6343                 err = dev->netdev_ops->ndo_set_features(dev, features);
6344
6345         if (unlikely(err < 0)) {
6346                 netdev_err(dev,
6347                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
6348                         err, &features, &dev->features);
6349                 return -1;
6350         }
6351
6352         if (!err)
6353                 dev->features = features;
6354
6355         return 1;
6356 }
6357
6358 /**
6359  *      netdev_update_features - recalculate device features
6360  *      @dev: the device to check
6361  *
6362  *      Recalculate dev->features set and send notifications if it
6363  *      has changed. Should be called after driver or hardware dependent
6364  *      conditions might have changed that influence the features.
6365  */
6366 void netdev_update_features(struct net_device *dev)
6367 {
6368         if (__netdev_update_features(dev))
6369                 netdev_features_change(dev);
6370 }
6371 EXPORT_SYMBOL(netdev_update_features);
6372
6373 /**
6374  *      netdev_change_features - recalculate device features
6375  *      @dev: the device to check
6376  *
6377  *      Recalculate dev->features set and send notifications even
6378  *      if they have not changed. Should be called instead of
6379  *      netdev_update_features() if also dev->vlan_features might
6380  *      have changed to allow the changes to be propagated to stacked
6381  *      VLAN devices.
6382  */
6383 void netdev_change_features(struct net_device *dev)
6384 {
6385         __netdev_update_features(dev);
6386         netdev_features_change(dev);
6387 }
6388 EXPORT_SYMBOL(netdev_change_features);
6389
6390 /**
6391  *      netif_stacked_transfer_operstate -      transfer operstate
6392  *      @rootdev: the root or lower level device to transfer state from
6393  *      @dev: the device to transfer operstate to
6394  *
6395  *      Transfer operational state from root to device. This is normally
6396  *      called when a stacking relationship exists between the root
6397  *      device and the device(a leaf device).
6398  */
6399 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6400                                         struct net_device *dev)
6401 {
6402         if (rootdev->operstate == IF_OPER_DORMANT)
6403                 netif_dormant_on(dev);
6404         else
6405                 netif_dormant_off(dev);
6406
6407         if (netif_carrier_ok(rootdev)) {
6408                 if (!netif_carrier_ok(dev))
6409                         netif_carrier_on(dev);
6410         } else {
6411                 if (netif_carrier_ok(dev))
6412                         netif_carrier_off(dev);
6413         }
6414 }
6415 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6416
6417 #ifdef CONFIG_SYSFS
6418 static int netif_alloc_rx_queues(struct net_device *dev)
6419 {
6420         unsigned int i, count = dev->num_rx_queues;
6421         struct netdev_rx_queue *rx;
6422         size_t sz = count * sizeof(*rx);
6423
6424         BUG_ON(count < 1);
6425
6426         rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6427         if (!rx) {
6428                 rx = vzalloc(sz);
6429                 if (!rx)
6430                         return -ENOMEM;
6431         }
6432         dev->_rx = rx;
6433
6434         for (i = 0; i < count; i++)
6435                 rx[i].dev = dev;
6436         return 0;
6437 }
6438 #endif
6439
6440 static void netdev_init_one_queue(struct net_device *dev,
6441                                   struct netdev_queue *queue, void *_unused)
6442 {
6443         /* Initialize queue lock */
6444         spin_lock_init(&queue->_xmit_lock);
6445         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6446         queue->xmit_lock_owner = -1;
6447         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
6448         queue->dev = dev;
6449 #ifdef CONFIG_BQL
6450         dql_init(&queue->dql, HZ);
6451 #endif
6452 }
6453
6454 static void netif_free_tx_queues(struct net_device *dev)
6455 {
6456         kvfree(dev->_tx);
6457 }
6458
6459 static int netif_alloc_netdev_queues(struct net_device *dev)
6460 {
6461         unsigned int count = dev->num_tx_queues;
6462         struct netdev_queue *tx;
6463         size_t sz = count * sizeof(*tx);
6464
6465         if (count < 1 || count > 0xffff)
6466                 return -EINVAL;
6467
6468         tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6469         if (!tx) {
6470                 tx = vzalloc(sz);
6471                 if (!tx)
6472                         return -ENOMEM;
6473         }
6474         dev->_tx = tx;
6475
6476         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6477         spin_lock_init(&dev->tx_global_lock);
6478
6479         return 0;
6480 }
6481
6482 void netif_tx_stop_all_queues(struct net_device *dev)
6483 {
6484         unsigned int i;
6485
6486         for (i = 0; i < dev->num_tx_queues; i++) {
6487                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
6488                 netif_tx_stop_queue(txq);
6489         }
6490 }
6491 EXPORT_SYMBOL(netif_tx_stop_all_queues);
6492
6493 /**
6494  *      register_netdevice      - register a network device
6495  *      @dev: device to register
6496  *
6497  *      Take a completed network device structure and add it to the kernel
6498  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6499  *      chain. 0 is returned on success. A negative errno code is returned
6500  *      on a failure to set up the device, or if the name is a duplicate.
6501  *
6502  *      Callers must hold the rtnl semaphore. You may want
6503  *      register_netdev() instead of this.
6504  *
6505  *      BUGS:
6506  *      The locking appears insufficient to guarantee two parallel registers
6507  *      will not get the same name.
6508  */
6509
6510 int register_netdevice(struct net_device *dev)
6511 {
6512         int ret;
6513         struct net *net = dev_net(dev);
6514
6515         BUG_ON(dev_boot_phase);
6516         ASSERT_RTNL();
6517
6518         might_sleep();
6519
6520         /* When net_device's are persistent, this will be fatal. */
6521         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
6522         BUG_ON(!net);
6523
6524         spin_lock_init(&dev->addr_list_lock);
6525         netdev_set_addr_lockdep_class(dev);
6526
6527         ret = dev_get_valid_name(net, dev, dev->name);
6528         if (ret < 0)
6529                 goto out;
6530
6531         /* Init, if this function is available */
6532         if (dev->netdev_ops->ndo_init) {
6533                 ret = dev->netdev_ops->ndo_init(dev);
6534                 if (ret) {
6535                         if (ret > 0)
6536                                 ret = -EIO;
6537                         goto out;
6538                 }
6539         }
6540
6541         if (((dev->hw_features | dev->features) &
6542              NETIF_F_HW_VLAN_CTAG_FILTER) &&
6543             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6544              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6545                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6546                 ret = -EINVAL;
6547                 goto err_uninit;
6548         }
6549
6550         ret = -EBUSY;
6551         if (!dev->ifindex)
6552                 dev->ifindex = dev_new_index(net);
6553         else if (__dev_get_by_index(net, dev->ifindex))
6554                 goto err_uninit;
6555
6556         /* Transfer changeable features to wanted_features and enable
6557          * software offloads (GSO and GRO).
6558          */
6559         dev->hw_features |= NETIF_F_SOFT_FEATURES;
6560         dev->features |= NETIF_F_SOFT_FEATURES;
6561         dev->wanted_features = dev->features & dev->hw_features;
6562
6563         if (!(dev->flags & IFF_LOOPBACK)) {
6564                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
6565         }
6566
6567         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
6568          */
6569         dev->vlan_features |= NETIF_F_HIGHDMA;
6570
6571         /* Make NETIF_F_SG inheritable to tunnel devices.
6572          */
6573         dev->hw_enc_features |= NETIF_F_SG;
6574
6575         /* Make NETIF_F_SG inheritable to MPLS.
6576          */
6577         dev->mpls_features |= NETIF_F_SG;
6578
6579         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6580         ret = notifier_to_errno(ret);
6581         if (ret)
6582                 goto err_uninit;
6583
6584         ret = netdev_register_kobject(dev);
6585         if (ret)
6586                 goto err_uninit;
6587         dev->reg_state = NETREG_REGISTERED;
6588
6589         __netdev_update_features(dev);
6590
6591         /*
6592          *      Default initial state at registry is that the
6593          *      device is present.
6594          */
6595
6596         set_bit(__LINK_STATE_PRESENT, &dev->state);
6597
6598         linkwatch_init_dev(dev);
6599
6600         dev_init_scheduler(dev);
6601         dev_hold(dev);
6602         list_netdevice(dev);
6603         add_device_randomness(dev->dev_addr, dev->addr_len);
6604
6605         /* If the device has permanent device address, driver should
6606          * set dev_addr and also addr_assign_type should be set to
6607          * NET_ADDR_PERM (default value).
6608          */
6609         if (dev->addr_assign_type == NET_ADDR_PERM)
6610                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6611
6612         /* Notify protocols, that a new device appeared. */
6613         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
6614         ret = notifier_to_errno(ret);
6615         if (ret) {
6616                 rollback_registered(dev);
6617                 dev->reg_state = NETREG_UNREGISTERED;
6618         }
6619         /*
6620          *      Prevent userspace races by waiting until the network
6621          *      device is fully setup before sending notifications.
6622          */
6623         if (!dev->rtnl_link_ops ||
6624             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6625                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6626
6627 out:
6628         return ret;
6629
6630 err_uninit:
6631         if (dev->netdev_ops->ndo_uninit)
6632                 dev->netdev_ops->ndo_uninit(dev);
6633         goto out;
6634 }
6635 EXPORT_SYMBOL(register_netdevice);
6636
6637 /**
6638  *      init_dummy_netdev       - init a dummy network device for NAPI
6639  *      @dev: device to init
6640  *
6641  *      This takes a network device structure and initialize the minimum
6642  *      amount of fields so it can be used to schedule NAPI polls without
6643  *      registering a full blown interface. This is to be used by drivers
6644  *      that need to tie several hardware interfaces to a single NAPI
6645  *      poll scheduler due to HW limitations.
6646  */
6647 int init_dummy_netdev(struct net_device *dev)
6648 {
6649         /* Clear everything. Note we don't initialize spinlocks
6650          * are they aren't supposed to be taken by any of the
6651          * NAPI code and this dummy netdev is supposed to be
6652          * only ever used for NAPI polls
6653          */
6654         memset(dev, 0, sizeof(struct net_device));
6655
6656         /* make sure we BUG if trying to hit standard
6657          * register/unregister code path
6658          */
6659         dev->reg_state = NETREG_DUMMY;
6660
6661         /* NAPI wants this */
6662         INIT_LIST_HEAD(&dev->napi_list);
6663
6664         /* a dummy interface is started by default */
6665         set_bit(__LINK_STATE_PRESENT, &dev->state);
6666         set_bit(__LINK_STATE_START, &dev->state);
6667
6668         /* Note : We dont allocate pcpu_refcnt for dummy devices,
6669          * because users of this 'device' dont need to change
6670          * its refcount.
6671          */
6672
6673         return 0;
6674 }
6675 EXPORT_SYMBOL_GPL(init_dummy_netdev);
6676
6677
6678 /**
6679  *      register_netdev - register a network device
6680  *      @dev: device to register
6681  *
6682  *      Take a completed network device structure and add it to the kernel
6683  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6684  *      chain. 0 is returned on success. A negative errno code is returned
6685  *      on a failure to set up the device, or if the name is a duplicate.
6686  *
6687  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
6688  *      and expands the device name if you passed a format string to
6689  *      alloc_netdev.
6690  */
6691 int register_netdev(struct net_device *dev)
6692 {
6693         int err;
6694
6695         rtnl_lock();
6696         err = register_netdevice(dev);
6697         rtnl_unlock();
6698         return err;
6699 }
6700 EXPORT_SYMBOL(register_netdev);
6701
6702 int netdev_refcnt_read(const struct net_device *dev)
6703 {
6704         int i, refcnt = 0;
6705
6706         for_each_possible_cpu(i)
6707                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6708         return refcnt;
6709 }
6710 EXPORT_SYMBOL(netdev_refcnt_read);
6711
6712 /**
6713  * netdev_wait_allrefs - wait until all references are gone.
6714  * @dev: target net_device
6715  *
6716  * This is called when unregistering network devices.
6717  *
6718  * Any protocol or device that holds a reference should register
6719  * for netdevice notification, and cleanup and put back the
6720  * reference if they receive an UNREGISTER event.
6721  * We can get stuck here if buggy protocols don't correctly
6722  * call dev_put.
6723  */
6724 static void netdev_wait_allrefs(struct net_device *dev)
6725 {
6726         unsigned long rebroadcast_time, warning_time;
6727         int refcnt;
6728
6729         linkwatch_forget_dev(dev);
6730
6731         rebroadcast_time = warning_time = jiffies;
6732         refcnt = netdev_refcnt_read(dev);
6733
6734         while (refcnt != 0) {
6735                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6736                         rtnl_lock();
6737
6738                         /* Rebroadcast unregister notification */
6739                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6740
6741                         __rtnl_unlock();
6742                         rcu_barrier();
6743                         rtnl_lock();
6744
6745                         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6746                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6747                                      &dev->state)) {
6748                                 /* We must not have linkwatch events
6749                                  * pending on unregister. If this
6750                                  * happens, we simply run the queue
6751                                  * unscheduled, resulting in a noop
6752                                  * for this device.
6753                                  */
6754                                 linkwatch_run_queue();
6755                         }
6756
6757                         __rtnl_unlock();
6758
6759                         rebroadcast_time = jiffies;
6760                 }
6761
6762                 msleep(250);
6763
6764                 refcnt = netdev_refcnt_read(dev);
6765
6766                 if (time_after(jiffies, warning_time + 10 * HZ)) {
6767                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6768                                  dev->name, refcnt);
6769                         warning_time = jiffies;
6770                 }
6771         }
6772 }
6773
6774 /* The sequence is:
6775  *
6776  *      rtnl_lock();
6777  *      ...
6778  *      register_netdevice(x1);
6779  *      register_netdevice(x2);
6780  *      ...
6781  *      unregister_netdevice(y1);
6782  *      unregister_netdevice(y2);
6783  *      ...
6784  *      rtnl_unlock();
6785  *      free_netdev(y1);
6786  *      free_netdev(y2);
6787  *
6788  * We are invoked by rtnl_unlock().
6789  * This allows us to deal with problems:
6790  * 1) We can delete sysfs objects which invoke hotplug
6791  *    without deadlocking with linkwatch via keventd.
6792  * 2) Since we run with the RTNL semaphore not held, we can sleep
6793  *    safely in order to wait for the netdev refcnt to drop to zero.
6794  *
6795  * We must not return until all unregister events added during
6796  * the interval the lock was held have been completed.
6797  */
6798 void netdev_run_todo(void)
6799 {
6800         struct list_head list;
6801
6802         /* Snapshot list, allow later requests */
6803         list_replace_init(&net_todo_list, &list);
6804
6805         __rtnl_unlock();
6806
6807
6808         /* Wait for rcu callbacks to finish before next phase */
6809         if (!list_empty(&list))
6810                 rcu_barrier();
6811
6812         while (!list_empty(&list)) {
6813                 struct net_device *dev
6814                         = list_first_entry(&list, struct net_device, todo_list);
6815                 list_del(&dev->todo_list);
6816
6817                 rtnl_lock();
6818                 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6819                 __rtnl_unlock();
6820
6821                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6822                         pr_err("network todo '%s' but state %d\n",
6823                                dev->name, dev->reg_state);
6824                         dump_stack();
6825                         continue;
6826                 }
6827
6828                 dev->reg_state = NETREG_UNREGISTERED;
6829
6830                 netdev_wait_allrefs(dev);
6831
6832                 /* paranoia */
6833                 BUG_ON(netdev_refcnt_read(dev));
6834                 BUG_ON(!list_empty(&dev->ptype_all));
6835                 BUG_ON(!list_empty(&dev->ptype_specific));
6836                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
6837                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
6838                 WARN_ON(dev->dn_ptr);
6839
6840                 if (dev->destructor)
6841                         dev->destructor(dev);
6842
6843                 /* Report a network device has been unregistered */
6844                 rtnl_lock();
6845                 dev_net(dev)->dev_unreg_count--;
6846                 __rtnl_unlock();
6847                 wake_up(&netdev_unregistering_wq);
6848
6849                 /* Free network device */
6850                 kobject_put(&dev->dev.kobj);
6851         }
6852 }
6853
6854 /* Convert net_device_stats to rtnl_link_stats64.  They have the same
6855  * fields in the same order, with only the type differing.
6856  */
6857 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6858                              const struct net_device_stats *netdev_stats)
6859 {
6860 #if BITS_PER_LONG == 64
6861         BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6862         memcpy(stats64, netdev_stats, sizeof(*stats64));
6863 #else
6864         size_t i, n = sizeof(*stats64) / sizeof(u64);
6865         const unsigned long *src = (const unsigned long *)netdev_stats;
6866         u64 *dst = (u64 *)stats64;
6867
6868         BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6869                      sizeof(*stats64) / sizeof(u64));
6870         for (i = 0; i < n; i++)
6871                 dst[i] = src[i];
6872 #endif
6873 }
6874 EXPORT_SYMBOL(netdev_stats_to_stats64);
6875
6876 /**
6877  *      dev_get_stats   - get network device statistics
6878  *      @dev: device to get statistics from
6879  *      @storage: place to store stats
6880  *
6881  *      Get network statistics from device. Return @storage.
6882  *      The device driver may provide its own method by setting
6883  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6884  *      otherwise the internal statistics structure is used.
6885  */
6886 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6887                                         struct rtnl_link_stats64 *storage)
6888 {
6889         const struct net_device_ops *ops = dev->netdev_ops;
6890
6891         if (ops->ndo_get_stats64) {
6892                 memset(storage, 0, sizeof(*storage));
6893                 ops->ndo_get_stats64(dev, storage);
6894         } else if (ops->ndo_get_stats) {
6895                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
6896         } else {
6897                 netdev_stats_to_stats64(storage, &dev->stats);
6898         }
6899         storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
6900         storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
6901         return storage;
6902 }
6903 EXPORT_SYMBOL(dev_get_stats);
6904
6905 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
6906 {
6907         struct netdev_queue *queue = dev_ingress_queue(dev);
6908
6909 #ifdef CONFIG_NET_CLS_ACT
6910         if (queue)
6911                 return queue;
6912         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6913         if (!queue)
6914                 return NULL;
6915         netdev_init_one_queue(dev, queue, NULL);
6916         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
6917         queue->qdisc_sleeping = &noop_qdisc;
6918         rcu_assign_pointer(dev->ingress_queue, queue);
6919 #endif
6920         return queue;
6921 }
6922
6923 static const struct ethtool_ops default_ethtool_ops;
6924
6925 void netdev_set_default_ethtool_ops(struct net_device *dev,
6926                                     const struct ethtool_ops *ops)
6927 {
6928         if (dev->ethtool_ops == &default_ethtool_ops)
6929                 dev->ethtool_ops = ops;
6930 }
6931 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6932
6933 void netdev_freemem(struct net_device *dev)
6934 {
6935         char *addr = (char *)dev - dev->padded;
6936
6937         kvfree(addr);
6938 }
6939
6940 /**
6941  *      alloc_netdev_mqs - allocate network device
6942  *      @sizeof_priv:           size of private data to allocate space for
6943  *      @name:                  device name format string
6944  *      @name_assign_type:      origin of device name
6945  *      @setup:                 callback to initialize device
6946  *      @txqs:                  the number of TX subqueues to allocate
6947  *      @rxqs:                  the number of RX subqueues to allocate
6948  *
6949  *      Allocates a struct net_device with private data area for driver use
6950  *      and performs basic initialization.  Also allocates subqueue structs
6951  *      for each queue on the device.
6952  */
6953 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
6954                 unsigned char name_assign_type,
6955                 void (*setup)(struct net_device *),
6956                 unsigned int txqs, unsigned int rxqs)
6957 {
6958         struct net_device *dev;
6959         size_t alloc_size;
6960         struct net_device *p;
6961
6962         BUG_ON(strlen(name) >= sizeof(dev->name));
6963
6964         if (txqs < 1) {
6965                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6966                 return NULL;
6967         }
6968
6969 #ifdef CONFIG_SYSFS
6970         if (rxqs < 1) {
6971                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6972                 return NULL;
6973         }
6974 #endif
6975
6976         alloc_size = sizeof(struct net_device);
6977         if (sizeof_priv) {
6978                 /* ensure 32-byte alignment of private area */
6979                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6980                 alloc_size += sizeof_priv;
6981         }
6982         /* ensure 32-byte alignment of whole construct */
6983         alloc_size += NETDEV_ALIGN - 1;
6984
6985         p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6986         if (!p)
6987                 p = vzalloc(alloc_size);
6988         if (!p)
6989                 return NULL;
6990
6991         dev = PTR_ALIGN(p, NETDEV_ALIGN);
6992         dev->padded = (char *)dev - (char *)p;
6993
6994         dev->pcpu_refcnt = alloc_percpu(int);
6995         if (!dev->pcpu_refcnt)
6996                 goto free_dev;
6997
6998         if (dev_addr_init(dev))
6999                 goto free_pcpu;
7000
7001         dev_mc_init(dev);
7002         dev_uc_init(dev);
7003
7004         dev_net_set(dev, &init_net);
7005
7006         dev->gso_max_size = GSO_MAX_SIZE;
7007         dev->gso_max_segs = GSO_MAX_SEGS;
7008         dev->gso_min_segs = 0;
7009
7010         INIT_LIST_HEAD(&dev->napi_list);
7011         INIT_LIST_HEAD(&dev->unreg_list);
7012         INIT_LIST_HEAD(&dev->close_list);
7013         INIT_LIST_HEAD(&dev->link_watch_list);
7014         INIT_LIST_HEAD(&dev->adj_list.upper);
7015         INIT_LIST_HEAD(&dev->adj_list.lower);
7016         INIT_LIST_HEAD(&dev->all_adj_list.upper);
7017         INIT_LIST_HEAD(&dev->all_adj_list.lower);
7018         INIT_LIST_HEAD(&dev->ptype_all);
7019         INIT_LIST_HEAD(&dev->ptype_specific);
7020         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
7021         setup(dev);
7022
7023         if (!dev->tx_queue_len)
7024                 dev->priv_flags |= IFF_NO_QUEUE;
7025
7026         dev->num_tx_queues = txqs;
7027         dev->real_num_tx_queues = txqs;
7028         if (netif_alloc_netdev_queues(dev))
7029                 goto free_all;
7030
7031 #ifdef CONFIG_SYSFS
7032         dev->num_rx_queues = rxqs;
7033         dev->real_num_rx_queues = rxqs;
7034         if (netif_alloc_rx_queues(dev))
7035                 goto free_all;
7036 #endif
7037
7038         strcpy(dev->name, name);
7039         dev->name_assign_type = name_assign_type;
7040         dev->group = INIT_NETDEV_GROUP;
7041         if (!dev->ethtool_ops)
7042                 dev->ethtool_ops = &default_ethtool_ops;
7043
7044         nf_hook_ingress_init(dev);
7045
7046         return dev;
7047
7048 free_all:
7049         free_netdev(dev);
7050         return NULL;
7051
7052 free_pcpu:
7053         free_percpu(dev->pcpu_refcnt);
7054 free_dev:
7055         netdev_freemem(dev);
7056         return NULL;
7057 }
7058 EXPORT_SYMBOL(alloc_netdev_mqs);
7059
7060 /**
7061  *      free_netdev - free network device
7062  *      @dev: device
7063  *
7064  *      This function does the last stage of destroying an allocated device
7065  *      interface. The reference to the device object is released.
7066  *      If this is the last reference then it will be freed.
7067  */
7068 void free_netdev(struct net_device *dev)
7069 {
7070         struct napi_struct *p, *n;
7071
7072         netif_free_tx_queues(dev);
7073 #ifdef CONFIG_SYSFS
7074         kvfree(dev->_rx);
7075 #endif
7076
7077         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7078
7079         /* Flush device addresses */
7080         dev_addr_flush(dev);
7081
7082         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7083                 netif_napi_del(p);
7084
7085         free_percpu(dev->pcpu_refcnt);
7086         dev->pcpu_refcnt = NULL;
7087
7088         /*  Compatibility with error handling in drivers */
7089         if (dev->reg_state == NETREG_UNINITIALIZED) {
7090                 netdev_freemem(dev);
7091                 return;
7092         }
7093
7094         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7095         dev->reg_state = NETREG_RELEASED;
7096
7097         /* will free via device release */
7098         put_device(&dev->dev);
7099 }
7100 EXPORT_SYMBOL(free_netdev);
7101
7102 /**
7103  *      synchronize_net -  Synchronize with packet receive processing
7104  *
7105  *      Wait for packets currently being received to be done.
7106  *      Does not block later packets from starting.
7107  */
7108 void synchronize_net(void)
7109 {
7110         might_sleep();
7111         if (rtnl_is_locked())
7112                 synchronize_rcu_expedited();
7113         else
7114                 synchronize_rcu();
7115 }
7116 EXPORT_SYMBOL(synchronize_net);
7117
7118 /**
7119  *      unregister_netdevice_queue - remove device from the kernel
7120  *      @dev: device
7121  *      @head: list
7122  *
7123  *      This function shuts down a device interface and removes it
7124  *      from the kernel tables.
7125  *      If head not NULL, device is queued to be unregistered later.
7126  *
7127  *      Callers must hold the rtnl semaphore.  You may want
7128  *      unregister_netdev() instead of this.
7129  */
7130
7131 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
7132 {
7133         ASSERT_RTNL();
7134
7135         if (head) {
7136                 list_move_tail(&dev->unreg_list, head);
7137         } else {
7138                 rollback_registered(dev);
7139                 /* Finish processing unregister after unlock */
7140                 net_set_todo(dev);
7141         }
7142 }
7143 EXPORT_SYMBOL(unregister_netdevice_queue);
7144
7145 /**
7146  *      unregister_netdevice_many - unregister many devices
7147  *      @head: list of devices
7148  *
7149  *  Note: As most callers use a stack allocated list_head,
7150  *  we force a list_del() to make sure stack wont be corrupted later.
7151  */
7152 void unregister_netdevice_many(struct list_head *head)
7153 {
7154         struct net_device *dev;
7155
7156         if (!list_empty(head)) {
7157                 rollback_registered_many(head);
7158                 list_for_each_entry(dev, head, unreg_list)
7159                         net_set_todo(dev);
7160                 list_del(head);
7161         }
7162 }
7163 EXPORT_SYMBOL(unregister_netdevice_many);
7164
7165 /**
7166  *      unregister_netdev - remove device from the kernel
7167  *      @dev: device
7168  *
7169  *      This function shuts down a device interface and removes it
7170  *      from the kernel tables.
7171  *
7172  *      This is just a wrapper for unregister_netdevice that takes
7173  *      the rtnl semaphore.  In general you want to use this and not
7174  *      unregister_netdevice.
7175  */
7176 void unregister_netdev(struct net_device *dev)
7177 {
7178         rtnl_lock();
7179         unregister_netdevice(dev);
7180         rtnl_unlock();
7181 }
7182 EXPORT_SYMBOL(unregister_netdev);
7183
7184 /**
7185  *      dev_change_net_namespace - move device to different nethost namespace
7186  *      @dev: device
7187  *      @net: network namespace
7188  *      @pat: If not NULL name pattern to try if the current device name
7189  *            is already taken in the destination network namespace.
7190  *
7191  *      This function shuts down a device interface and moves it
7192  *      to a new network namespace. On success 0 is returned, on
7193  *      a failure a netagive errno code is returned.
7194  *
7195  *      Callers must hold the rtnl semaphore.
7196  */
7197
7198 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7199 {
7200         int err;
7201
7202         ASSERT_RTNL();
7203
7204         /* Don't allow namespace local devices to be moved. */
7205         err = -EINVAL;
7206         if (dev->features & NETIF_F_NETNS_LOCAL)
7207                 goto out;
7208
7209         /* Ensure the device has been registrered */
7210         if (dev->reg_state != NETREG_REGISTERED)
7211                 goto out;
7212
7213         /* Get out if there is nothing todo */
7214         err = 0;
7215         if (net_eq(dev_net(dev), net))
7216                 goto out;
7217
7218         /* Pick the destination device name, and ensure
7219          * we can use it in the destination network namespace.
7220          */
7221         err = -EEXIST;
7222         if (__dev_get_by_name(net, dev->name)) {
7223                 /* We get here if we can't use the current device name */
7224                 if (!pat)
7225                         goto out;
7226                 if (dev_get_valid_name(net, dev, pat) < 0)
7227                         goto out;
7228         }
7229
7230         /*
7231          * And now a mini version of register_netdevice unregister_netdevice.
7232          */
7233
7234         /* If device is running close it first. */
7235         dev_close(dev);
7236
7237         /* And unlink it from device chain */
7238         err = -ENODEV;
7239         unlist_netdevice(dev);
7240
7241         synchronize_net();
7242
7243         /* Shutdown queueing discipline. */
7244         dev_shutdown(dev);
7245
7246         /* Notify protocols, that we are about to destroy
7247            this device. They should clean all the things.
7248
7249            Note that dev->reg_state stays at NETREG_REGISTERED.
7250            This is wanted because this way 8021q and macvlan know
7251            the device is just moving and can keep their slaves up.
7252         */
7253         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7254         rcu_barrier();
7255         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7256         rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7257
7258         /*
7259          *      Flush the unicast and multicast chains
7260          */
7261         dev_uc_flush(dev);
7262         dev_mc_flush(dev);
7263
7264         /* Send a netdev-removed uevent to the old namespace */
7265         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7266         netdev_adjacent_del_links(dev);
7267
7268         /* Actually switch the network namespace */
7269         dev_net_set(dev, net);
7270
7271         /* If there is an ifindex conflict assign a new one */
7272         if (__dev_get_by_index(net, dev->ifindex))
7273                 dev->ifindex = dev_new_index(net);
7274
7275         /* Send a netdev-add uevent to the new namespace */
7276         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7277         netdev_adjacent_add_links(dev);
7278
7279         /* Fixup kobjects */
7280         err = device_rename(&dev->dev, dev->name);
7281         WARN_ON(err);
7282
7283         /* Add the device back in the hashes */
7284         list_netdevice(dev);
7285
7286         /* Notify protocols, that a new device appeared. */
7287         call_netdevice_notifiers(NETDEV_REGISTER, dev);
7288
7289         /*
7290          *      Prevent userspace races by waiting until the network
7291          *      device is fully setup before sending notifications.
7292          */
7293         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7294
7295         synchronize_net();
7296         err = 0;
7297 out:
7298         return err;
7299 }
7300 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
7301
7302 static int dev_cpu_callback(struct notifier_block *nfb,
7303                             unsigned long action,
7304                             void *ocpu)
7305 {
7306         struct sk_buff **list_skb;
7307         struct sk_buff *skb;
7308         unsigned int cpu, oldcpu = (unsigned long)ocpu;
7309         struct softnet_data *sd, *oldsd;
7310
7311         if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
7312                 return NOTIFY_OK;
7313
7314         local_irq_disable();
7315         cpu = smp_processor_id();
7316         sd = &per_cpu(softnet_data, cpu);
7317         oldsd = &per_cpu(softnet_data, oldcpu);
7318
7319         /* Find end of our completion_queue. */
7320         list_skb = &sd->completion_queue;
7321         while (*list_skb)
7322                 list_skb = &(*list_skb)->next;
7323         /* Append completion queue from offline CPU. */
7324         *list_skb = oldsd->completion_queue;
7325         oldsd->completion_queue = NULL;
7326
7327         /* Append output queue from offline CPU. */
7328         if (oldsd->output_queue) {
7329                 *sd->output_queue_tailp = oldsd->output_queue;
7330                 sd->output_queue_tailp = oldsd->output_queue_tailp;
7331                 oldsd->output_queue = NULL;
7332                 oldsd->output_queue_tailp = &oldsd->output_queue;
7333         }
7334         /* Append NAPI poll list from offline CPU, with one exception :
7335          * process_backlog() must be called by cpu owning percpu backlog.
7336          * We properly handle process_queue & input_pkt_queue later.
7337          */
7338         while (!list_empty(&oldsd->poll_list)) {
7339                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7340                                                             struct napi_struct,
7341                                                             poll_list);
7342
7343                 list_del_init(&napi->poll_list);
7344                 if (napi->poll == process_backlog)
7345                         napi->state = 0;
7346                 else
7347                         ____napi_schedule(sd, napi);
7348         }
7349
7350         raise_softirq_irqoff(NET_TX_SOFTIRQ);
7351         local_irq_enable();
7352
7353         /* Process offline CPU's input_pkt_queue */
7354         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
7355                 netif_rx_ni(skb);
7356                 input_queue_head_incr(oldsd);
7357         }
7358         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
7359                 netif_rx_ni(skb);
7360                 input_queue_head_incr(oldsd);
7361         }
7362
7363         return NOTIFY_OK;
7364 }
7365
7366
7367 /**
7368  *      netdev_increment_features - increment feature set by one
7369  *      @all: current feature set
7370  *      @one: new feature set
7371  *      @mask: mask feature set
7372  *
7373  *      Computes a new feature set after adding a device with feature set
7374  *      @one to the master device with current feature set @all.  Will not
7375  *      enable anything that is off in @mask. Returns the new feature set.
7376  */
7377 netdev_features_t netdev_increment_features(netdev_features_t all,
7378         netdev_features_t one, netdev_features_t mask)
7379 {
7380         if (mask & NETIF_F_GEN_CSUM)
7381                 mask |= NETIF_F_ALL_CSUM;
7382         mask |= NETIF_F_VLAN_CHALLENGED;
7383
7384         all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
7385         all &= one | ~NETIF_F_ALL_FOR_ALL;
7386
7387         /* If one device supports hw checksumming, set for all. */
7388         if (all & NETIF_F_GEN_CSUM)
7389                 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
7390
7391         return all;
7392 }
7393 EXPORT_SYMBOL(netdev_increment_features);
7394
7395 static struct hlist_head * __net_init netdev_create_hash(void)
7396 {
7397         int i;
7398         struct hlist_head *hash;
7399
7400         hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7401         if (hash != NULL)
7402                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
7403                         INIT_HLIST_HEAD(&hash[i]);
7404
7405         return hash;
7406 }
7407
7408 /* Initialize per network namespace state */
7409 static int __net_init netdev_init(struct net *net)
7410 {
7411         if (net != &init_net)
7412                 INIT_LIST_HEAD(&net->dev_base_head);
7413
7414         net->dev_name_head = netdev_create_hash();
7415         if (net->dev_name_head == NULL)
7416                 goto err_name;
7417
7418         net->dev_index_head = netdev_create_hash();
7419         if (net->dev_index_head == NULL)
7420                 goto err_idx;
7421
7422         return 0;
7423
7424 err_idx:
7425         kfree(net->dev_name_head);
7426 err_name:
7427         return -ENOMEM;
7428 }
7429
7430 /**
7431  *      netdev_drivername - network driver for the device
7432  *      @dev: network device
7433  *
7434  *      Determine network driver for device.
7435  */
7436 const char *netdev_drivername(const struct net_device *dev)
7437 {
7438         const struct device_driver *driver;
7439         const struct device *parent;
7440         const char *empty = "";
7441
7442         parent = dev->dev.parent;
7443         if (!parent)
7444                 return empty;
7445
7446         driver = parent->driver;
7447         if (driver && driver->name)
7448                 return driver->name;
7449         return empty;
7450 }
7451
7452 static void __netdev_printk(const char *level, const struct net_device *dev,
7453                             struct va_format *vaf)
7454 {
7455         if (dev && dev->dev.parent) {
7456                 dev_printk_emit(level[1] - '0',
7457                                 dev->dev.parent,
7458                                 "%s %s %s%s: %pV",
7459                                 dev_driver_string(dev->dev.parent),
7460                                 dev_name(dev->dev.parent),
7461                                 netdev_name(dev), netdev_reg_state(dev),
7462                                 vaf);
7463         } else if (dev) {
7464                 printk("%s%s%s: %pV",
7465                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
7466         } else {
7467                 printk("%s(NULL net_device): %pV", level, vaf);
7468         }
7469 }
7470
7471 void netdev_printk(const char *level, const struct net_device *dev,
7472                    const char *format, ...)
7473 {
7474         struct va_format vaf;
7475         va_list args;
7476
7477         va_start(args, format);
7478
7479         vaf.fmt = format;
7480         vaf.va = &args;
7481
7482         __netdev_printk(level, dev, &vaf);
7483
7484         va_end(args);
7485 }
7486 EXPORT_SYMBOL(netdev_printk);
7487
7488 #define define_netdev_printk_level(func, level)                 \
7489 void func(const struct net_device *dev, const char *fmt, ...)   \
7490 {                                                               \
7491         struct va_format vaf;                                   \
7492         va_list args;                                           \
7493                                                                 \
7494         va_start(args, fmt);                                    \
7495                                                                 \
7496         vaf.fmt = fmt;                                          \
7497         vaf.va = &args;                                         \
7498                                                                 \
7499         __netdev_printk(level, dev, &vaf);                      \
7500                                                                 \
7501         va_end(args);                                           \
7502 }                                                               \
7503 EXPORT_SYMBOL(func);
7504
7505 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7506 define_netdev_printk_level(netdev_alert, KERN_ALERT);
7507 define_netdev_printk_level(netdev_crit, KERN_CRIT);
7508 define_netdev_printk_level(netdev_err, KERN_ERR);
7509 define_netdev_printk_level(netdev_warn, KERN_WARNING);
7510 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7511 define_netdev_printk_level(netdev_info, KERN_INFO);
7512
7513 static void __net_exit netdev_exit(struct net *net)
7514 {
7515         kfree(net->dev_name_head);
7516         kfree(net->dev_index_head);
7517 }
7518
7519 static struct pernet_operations __net_initdata netdev_net_ops = {
7520         .init = netdev_init,
7521         .exit = netdev_exit,
7522 };
7523
7524 static void __net_exit default_device_exit(struct net *net)
7525 {
7526         struct net_device *dev, *aux;
7527         /*
7528          * Push all migratable network devices back to the
7529          * initial network namespace
7530          */
7531         rtnl_lock();
7532         for_each_netdev_safe(net, dev, aux) {
7533                 int err;
7534                 char fb_name[IFNAMSIZ];
7535
7536                 /* Ignore unmoveable devices (i.e. loopback) */
7537                 if (dev->features & NETIF_F_NETNS_LOCAL)
7538                         continue;
7539
7540                 /* Leave virtual devices for the generic cleanup */
7541                 if (dev->rtnl_link_ops)
7542                         continue;
7543
7544                 /* Push remaining network devices to init_net */
7545                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7546                 err = dev_change_net_namespace(dev, &init_net, fb_name);
7547                 if (err) {
7548                         pr_emerg("%s: failed to move %s to init_net: %d\n",
7549                                  __func__, dev->name, err);
7550                         BUG();
7551                 }
7552         }
7553         rtnl_unlock();
7554 }
7555
7556 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7557 {
7558         /* Return with the rtnl_lock held when there are no network
7559          * devices unregistering in any network namespace in net_list.
7560          */
7561         struct net *net;
7562         bool unregistering;
7563         DEFINE_WAIT_FUNC(wait, woken_wake_function);
7564
7565         add_wait_queue(&netdev_unregistering_wq, &wait);
7566         for (;;) {
7567                 unregistering = false;
7568                 rtnl_lock();
7569                 list_for_each_entry(net, net_list, exit_list) {
7570                         if (net->dev_unreg_count > 0) {
7571                                 unregistering = true;
7572                                 break;
7573                         }
7574                 }
7575                 if (!unregistering)
7576                         break;
7577                 __rtnl_unlock();
7578
7579                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
7580         }
7581         remove_wait_queue(&netdev_unregistering_wq, &wait);
7582 }
7583
7584 static void __net_exit default_device_exit_batch(struct list_head *net_list)
7585 {
7586         /* At exit all network devices most be removed from a network
7587          * namespace.  Do this in the reverse order of registration.
7588          * Do this across as many network namespaces as possible to
7589          * improve batching efficiency.
7590          */
7591         struct net_device *dev;
7592         struct net *net;
7593         LIST_HEAD(dev_kill_list);
7594
7595         /* To prevent network device cleanup code from dereferencing
7596          * loopback devices or network devices that have been freed
7597          * wait here for all pending unregistrations to complete,
7598          * before unregistring the loopback device and allowing the
7599          * network namespace be freed.
7600          *
7601          * The netdev todo list containing all network devices
7602          * unregistrations that happen in default_device_exit_batch
7603          * will run in the rtnl_unlock() at the end of
7604          * default_device_exit_batch.
7605          */
7606         rtnl_lock_unregistering(net_list);
7607         list_for_each_entry(net, net_list, exit_list) {
7608                 for_each_netdev_reverse(net, dev) {
7609                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
7610                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7611                         else
7612                                 unregister_netdevice_queue(dev, &dev_kill_list);
7613                 }
7614         }
7615         unregister_netdevice_many(&dev_kill_list);
7616         rtnl_unlock();
7617 }
7618
7619 static struct pernet_operations __net_initdata default_device_ops = {
7620         .exit = default_device_exit,
7621         .exit_batch = default_device_exit_batch,
7622 };
7623
7624 /*
7625  *      Initialize the DEV module. At boot time this walks the device list and
7626  *      unhooks any devices that fail to initialise (normally hardware not
7627  *      present) and leaves us with a valid list of present and active devices.
7628  *
7629  */
7630
7631 /*
7632  *       This is called single threaded during boot, so no need
7633  *       to take the rtnl semaphore.
7634  */
7635 static int __init net_dev_init(void)
7636 {
7637         int i, rc = -ENOMEM;
7638
7639         BUG_ON(!dev_boot_phase);
7640
7641         if (dev_proc_init())
7642                 goto out;
7643
7644         if (netdev_kobject_init())
7645                 goto out;
7646
7647         INIT_LIST_HEAD(&ptype_all);
7648         for (i = 0; i < PTYPE_HASH_SIZE; i++)
7649                 INIT_LIST_HEAD(&ptype_base[i]);
7650
7651         INIT_LIST_HEAD(&offload_base);
7652
7653         if (register_pernet_subsys(&netdev_net_ops))
7654                 goto out;
7655
7656         /*
7657          *      Initialise the packet receive queues.
7658          */
7659
7660         for_each_possible_cpu(i) {
7661                 struct softnet_data *sd = &per_cpu(softnet_data, i);
7662
7663                 skb_queue_head_init(&sd->input_pkt_queue);
7664                 skb_queue_head_init(&sd->process_queue);
7665                 INIT_LIST_HEAD(&sd->poll_list);
7666                 sd->output_queue_tailp = &sd->output_queue;
7667 #ifdef CONFIG_RPS
7668                 sd->csd.func = rps_trigger_softirq;
7669                 sd->csd.info = sd;
7670                 sd->cpu = i;
7671 #endif
7672
7673                 sd->backlog.poll = process_backlog;
7674                 sd->backlog.weight = weight_p;
7675         }
7676
7677         dev_boot_phase = 0;
7678
7679         /* The loopback device is special if any other network devices
7680          * is present in a network namespace the loopback device must
7681          * be present. Since we now dynamically allocate and free the
7682          * loopback device ensure this invariant is maintained by
7683          * keeping the loopback device as the first device on the
7684          * list of network devices.  Ensuring the loopback devices
7685          * is the first device that appears and the last network device
7686          * that disappears.
7687          */
7688         if (register_pernet_device(&loopback_net_ops))
7689                 goto out;
7690
7691         if (register_pernet_device(&default_device_ops))
7692                 goto out;
7693
7694         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7695         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
7696
7697         hotcpu_notifier(dev_cpu_callback, 0);
7698         dst_subsys_init();
7699         rc = 0;
7700 out:
7701         return rc;
7702 }
7703
7704 subsys_initcall(net_dev_init);