net: Rename NETIF_F_ALL_CSUM to NETIF_F_CSUM_MASK
[cascardo/linux.git] / net / core / dev.c
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *              This program is free software; you can redistribute it and/or
5  *              modify it under the terms of the GNU General Public License
6  *              as published by the Free Software Foundation; either version
7  *              2 of the License, or (at your option) any later version.
8  *
9  *      Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:        Ross Biro
11  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *      Additional Authors:
15  *              Florian la Roche <rzsfl@rz.uni-sb.de>
16  *              Alan Cox <gw4pts@gw4pts.ampr.org>
17  *              David Hinds <dahinds@users.sourceforge.net>
18  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *              Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *      Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *              Alan Cox        :       device private ioctl copies fields back.
28  *              Alan Cox        :       Transmit queue code does relevant
29  *                                      stunts to keep the queue safe.
30  *              Alan Cox        :       Fixed double lock.
31  *              Alan Cox        :       Fixed promisc NULL pointer trap
32  *              ????????        :       Support the full private ioctl range
33  *              Alan Cox        :       Moved ioctl permission check into
34  *                                      drivers
35  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
36  *              Alan Cox        :       100 backlog just doesn't cut it when
37  *                                      you start doing multicast video 8)
38  *              Alan Cox        :       Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *              Alan Cox        :       Took out transmit every packet pass
41  *                                      Saved a few bytes in the ioctl handler
42  *              Alan Cox        :       Network driver sets packet type before
43  *                                      calling netif_rx. Saves a function
44  *                                      call a packet.
45  *              Alan Cox        :       Hashed net_bh()
46  *              Richard Kooijman:       Timestamp fixes.
47  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
48  *              Alan Cox        :       Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *                                      changes.
51  *              Rudi Cilibrasi  :       Pass the right thing to
52  *                                      set_mac_address()
53  *              Dave Miller     :       32bit quantity for the device lock to
54  *                                      make it work out on a Sparc.
55  *              Bjorn Ekwall    :       Added KERNELD hack.
56  *              Alan Cox        :       Cleaned up the backlog initialise.
57  *              Craig Metz      :       SIOCGIFCONF fix if space for under
58  *                                      1 device.
59  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
60  *                                      is no device open function.
61  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
62  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
63  *              Cyrus Durgin    :       Cleaned for KMOD
64  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
65  *                                      A network device unload needs to purge
66  *                                      the backlog queue.
67  *      Paul Rusty Russell      :       SIOCSIFNAME
68  *              Pekka Riikonen  :       Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *                                      - netif_rx() feedback
73  */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dst.h>
103 #include <net/dst_metadata.h>
104 #include <net/pkt_sched.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/module.h>
110 #include <linux/netpoll.h>
111 #include <linux/rcupdate.h>
112 #include <linux/delay.h>
113 #include <net/iw_handler.h>
114 #include <asm/current.h>
115 #include <linux/audit.h>
116 #include <linux/dmaengine.h>
117 #include <linux/err.h>
118 #include <linux/ctype.h>
119 #include <linux/if_arp.h>
120 #include <linux/if_vlan.h>
121 #include <linux/ip.h>
122 #include <net/ip.h>
123 #include <net/mpls.h>
124 #include <linux/ipv6.h>
125 #include <linux/in.h>
126 #include <linux/jhash.h>
127 #include <linux/random.h>
128 #include <trace/events/napi.h>
129 #include <trace/events/net.h>
130 #include <trace/events/skb.h>
131 #include <linux/pci.h>
132 #include <linux/inetdevice.h>
133 #include <linux/cpu_rmap.h>
134 #include <linux/static_key.h>
135 #include <linux/hashtable.h>
136 #include <linux/vmalloc.h>
137 #include <linux/if_macvlan.h>
138 #include <linux/errqueue.h>
139 #include <linux/hrtimer.h>
140 #include <linux/netfilter_ingress.h>
141
142 #include "net-sysfs.h"
143
144 /* Instead of increasing this, you should create a hash table. */
145 #define MAX_GRO_SKBS 8
146
147 /* This should be increased if a protocol with a bigger head is added. */
148 #define GRO_MAX_HEAD (MAX_HEADER + 128)
149
150 static DEFINE_SPINLOCK(ptype_lock);
151 static DEFINE_SPINLOCK(offload_lock);
152 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
153 struct list_head ptype_all __read_mostly;       /* Taps */
154 static struct list_head offload_base __read_mostly;
155
156 static int netif_rx_internal(struct sk_buff *skb);
157 static int call_netdevice_notifiers_info(unsigned long val,
158                                          struct net_device *dev,
159                                          struct netdev_notifier_info *info);
160
161 /*
162  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
163  * semaphore.
164  *
165  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
166  *
167  * Writers must hold the rtnl semaphore while they loop through the
168  * dev_base_head list, and hold dev_base_lock for writing when they do the
169  * actual updates.  This allows pure readers to access the list even
170  * while a writer is preparing to update it.
171  *
172  * To put it another way, dev_base_lock is held for writing only to
173  * protect against pure readers; the rtnl semaphore provides the
174  * protection against other writers.
175  *
176  * See, for example usages, register_netdevice() and
177  * unregister_netdevice(), which must be called with the rtnl
178  * semaphore held.
179  */
180 DEFINE_RWLOCK(dev_base_lock);
181 EXPORT_SYMBOL(dev_base_lock);
182
183 /* protects napi_hash addition/deletion and napi_gen_id */
184 static DEFINE_SPINLOCK(napi_hash_lock);
185
186 static unsigned int napi_gen_id = NR_CPUS;
187 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
188
189 static seqcount_t devnet_rename_seq;
190
191 static inline void dev_base_seq_inc(struct net *net)
192 {
193         while (++net->dev_base_seq == 0);
194 }
195
196 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
197 {
198         unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
199
200         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
201 }
202
203 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
204 {
205         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
206 }
207
208 static inline void rps_lock(struct softnet_data *sd)
209 {
210 #ifdef CONFIG_RPS
211         spin_lock(&sd->input_pkt_queue.lock);
212 #endif
213 }
214
215 static inline void rps_unlock(struct softnet_data *sd)
216 {
217 #ifdef CONFIG_RPS
218         spin_unlock(&sd->input_pkt_queue.lock);
219 #endif
220 }
221
222 /* Device list insertion */
223 static void list_netdevice(struct net_device *dev)
224 {
225         struct net *net = dev_net(dev);
226
227         ASSERT_RTNL();
228
229         write_lock_bh(&dev_base_lock);
230         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
231         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
232         hlist_add_head_rcu(&dev->index_hlist,
233                            dev_index_hash(net, dev->ifindex));
234         write_unlock_bh(&dev_base_lock);
235
236         dev_base_seq_inc(net);
237 }
238
239 /* Device list removal
240  * caller must respect a RCU grace period before freeing/reusing dev
241  */
242 static void unlist_netdevice(struct net_device *dev)
243 {
244         ASSERT_RTNL();
245
246         /* Unlink dev from the device chain */
247         write_lock_bh(&dev_base_lock);
248         list_del_rcu(&dev->dev_list);
249         hlist_del_rcu(&dev->name_hlist);
250         hlist_del_rcu(&dev->index_hlist);
251         write_unlock_bh(&dev_base_lock);
252
253         dev_base_seq_inc(dev_net(dev));
254 }
255
256 /*
257  *      Our notifier list
258  */
259
260 static RAW_NOTIFIER_HEAD(netdev_chain);
261
262 /*
263  *      Device drivers call our routines to queue packets here. We empty the
264  *      queue in the local softnet handler.
265  */
266
267 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
268 EXPORT_PER_CPU_SYMBOL(softnet_data);
269
270 #ifdef CONFIG_LOCKDEP
271 /*
272  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
273  * according to dev->type
274  */
275 static const unsigned short netdev_lock_type[] =
276         {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
277          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
278          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
279          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
280          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
281          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
282          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
283          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
284          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
285          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
286          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
287          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
288          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
289          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
290          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
291
292 static const char *const netdev_lock_name[] =
293         {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
294          "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
295          "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
296          "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
297          "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
298          "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
299          "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
300          "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
301          "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
302          "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
303          "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
304          "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
305          "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
306          "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
307          "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
308
309 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
310 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
311
312 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
313 {
314         int i;
315
316         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
317                 if (netdev_lock_type[i] == dev_type)
318                         return i;
319         /* the last key is used by default */
320         return ARRAY_SIZE(netdev_lock_type) - 1;
321 }
322
323 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
324                                                  unsigned short dev_type)
325 {
326         int i;
327
328         i = netdev_lock_pos(dev_type);
329         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
330                                    netdev_lock_name[i]);
331 }
332
333 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
334 {
335         int i;
336
337         i = netdev_lock_pos(dev->type);
338         lockdep_set_class_and_name(&dev->addr_list_lock,
339                                    &netdev_addr_lock_key[i],
340                                    netdev_lock_name[i]);
341 }
342 #else
343 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
344                                                  unsigned short dev_type)
345 {
346 }
347 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
348 {
349 }
350 #endif
351
352 /*******************************************************************************
353
354                 Protocol management and registration routines
355
356 *******************************************************************************/
357
358 /*
359  *      Add a protocol ID to the list. Now that the input handler is
360  *      smarter we can dispense with all the messy stuff that used to be
361  *      here.
362  *
363  *      BEWARE!!! Protocol handlers, mangling input packets,
364  *      MUST BE last in hash buckets and checking protocol handlers
365  *      MUST start from promiscuous ptype_all chain in net_bh.
366  *      It is true now, do not change it.
367  *      Explanation follows: if protocol handler, mangling packet, will
368  *      be the first on list, it is not able to sense, that packet
369  *      is cloned and should be copied-on-write, so that it will
370  *      change it and subsequent readers will get broken packet.
371  *                                                      --ANK (980803)
372  */
373
374 static inline struct list_head *ptype_head(const struct packet_type *pt)
375 {
376         if (pt->type == htons(ETH_P_ALL))
377                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
378         else
379                 return pt->dev ? &pt->dev->ptype_specific :
380                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
381 }
382
383 /**
384  *      dev_add_pack - add packet handler
385  *      @pt: packet type declaration
386  *
387  *      Add a protocol handler to the networking stack. The passed &packet_type
388  *      is linked into kernel lists and may not be freed until it has been
389  *      removed from the kernel lists.
390  *
391  *      This call does not sleep therefore it can not
392  *      guarantee all CPU's that are in middle of receiving packets
393  *      will see the new packet type (until the next received packet).
394  */
395
396 void dev_add_pack(struct packet_type *pt)
397 {
398         struct list_head *head = ptype_head(pt);
399
400         spin_lock(&ptype_lock);
401         list_add_rcu(&pt->list, head);
402         spin_unlock(&ptype_lock);
403 }
404 EXPORT_SYMBOL(dev_add_pack);
405
406 /**
407  *      __dev_remove_pack        - remove packet handler
408  *      @pt: packet type declaration
409  *
410  *      Remove a protocol handler that was previously added to the kernel
411  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
412  *      from the kernel lists and can be freed or reused once this function
413  *      returns.
414  *
415  *      The packet type might still be in use by receivers
416  *      and must not be freed until after all the CPU's have gone
417  *      through a quiescent state.
418  */
419 void __dev_remove_pack(struct packet_type *pt)
420 {
421         struct list_head *head = ptype_head(pt);
422         struct packet_type *pt1;
423
424         spin_lock(&ptype_lock);
425
426         list_for_each_entry(pt1, head, list) {
427                 if (pt == pt1) {
428                         list_del_rcu(&pt->list);
429                         goto out;
430                 }
431         }
432
433         pr_warn("dev_remove_pack: %p not found\n", pt);
434 out:
435         spin_unlock(&ptype_lock);
436 }
437 EXPORT_SYMBOL(__dev_remove_pack);
438
439 /**
440  *      dev_remove_pack  - remove packet handler
441  *      @pt: packet type declaration
442  *
443  *      Remove a protocol handler that was previously added to the kernel
444  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
445  *      from the kernel lists and can be freed or reused once this function
446  *      returns.
447  *
448  *      This call sleeps to guarantee that no CPU is looking at the packet
449  *      type after return.
450  */
451 void dev_remove_pack(struct packet_type *pt)
452 {
453         __dev_remove_pack(pt);
454
455         synchronize_net();
456 }
457 EXPORT_SYMBOL(dev_remove_pack);
458
459
460 /**
461  *      dev_add_offload - register offload handlers
462  *      @po: protocol offload declaration
463  *
464  *      Add protocol offload handlers to the networking stack. The passed
465  *      &proto_offload is linked into kernel lists and may not be freed until
466  *      it has been removed from the kernel lists.
467  *
468  *      This call does not sleep therefore it can not
469  *      guarantee all CPU's that are in middle of receiving packets
470  *      will see the new offload handlers (until the next received packet).
471  */
472 void dev_add_offload(struct packet_offload *po)
473 {
474         struct packet_offload *elem;
475
476         spin_lock(&offload_lock);
477         list_for_each_entry(elem, &offload_base, list) {
478                 if (po->priority < elem->priority)
479                         break;
480         }
481         list_add_rcu(&po->list, elem->list.prev);
482         spin_unlock(&offload_lock);
483 }
484 EXPORT_SYMBOL(dev_add_offload);
485
486 /**
487  *      __dev_remove_offload     - remove offload handler
488  *      @po: packet offload declaration
489  *
490  *      Remove a protocol offload handler that was previously added to the
491  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
492  *      is removed from the kernel lists and can be freed or reused once this
493  *      function returns.
494  *
495  *      The packet type might still be in use by receivers
496  *      and must not be freed until after all the CPU's have gone
497  *      through a quiescent state.
498  */
499 static void __dev_remove_offload(struct packet_offload *po)
500 {
501         struct list_head *head = &offload_base;
502         struct packet_offload *po1;
503
504         spin_lock(&offload_lock);
505
506         list_for_each_entry(po1, head, list) {
507                 if (po == po1) {
508                         list_del_rcu(&po->list);
509                         goto out;
510                 }
511         }
512
513         pr_warn("dev_remove_offload: %p not found\n", po);
514 out:
515         spin_unlock(&offload_lock);
516 }
517
518 /**
519  *      dev_remove_offload       - remove packet offload handler
520  *      @po: packet offload declaration
521  *
522  *      Remove a packet offload handler that was previously added to the kernel
523  *      offload handlers by dev_add_offload(). The passed &offload_type is
524  *      removed from the kernel lists and can be freed or reused once this
525  *      function returns.
526  *
527  *      This call sleeps to guarantee that no CPU is looking at the packet
528  *      type after return.
529  */
530 void dev_remove_offload(struct packet_offload *po)
531 {
532         __dev_remove_offload(po);
533
534         synchronize_net();
535 }
536 EXPORT_SYMBOL(dev_remove_offload);
537
538 /******************************************************************************
539
540                       Device Boot-time Settings Routines
541
542 *******************************************************************************/
543
544 /* Boot time configuration table */
545 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
546
547 /**
548  *      netdev_boot_setup_add   - add new setup entry
549  *      @name: name of the device
550  *      @map: configured settings for the device
551  *
552  *      Adds new setup entry to the dev_boot_setup list.  The function
553  *      returns 0 on error and 1 on success.  This is a generic routine to
554  *      all netdevices.
555  */
556 static int netdev_boot_setup_add(char *name, struct ifmap *map)
557 {
558         struct netdev_boot_setup *s;
559         int i;
560
561         s = dev_boot_setup;
562         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
563                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
564                         memset(s[i].name, 0, sizeof(s[i].name));
565                         strlcpy(s[i].name, name, IFNAMSIZ);
566                         memcpy(&s[i].map, map, sizeof(s[i].map));
567                         break;
568                 }
569         }
570
571         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
572 }
573
574 /**
575  *      netdev_boot_setup_check - check boot time settings
576  *      @dev: the netdevice
577  *
578  *      Check boot time settings for the device.
579  *      The found settings are set for the device to be used
580  *      later in the device probing.
581  *      Returns 0 if no settings found, 1 if they are.
582  */
583 int netdev_boot_setup_check(struct net_device *dev)
584 {
585         struct netdev_boot_setup *s = dev_boot_setup;
586         int i;
587
588         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
589                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
590                     !strcmp(dev->name, s[i].name)) {
591                         dev->irq        = s[i].map.irq;
592                         dev->base_addr  = s[i].map.base_addr;
593                         dev->mem_start  = s[i].map.mem_start;
594                         dev->mem_end    = s[i].map.mem_end;
595                         return 1;
596                 }
597         }
598         return 0;
599 }
600 EXPORT_SYMBOL(netdev_boot_setup_check);
601
602
603 /**
604  *      netdev_boot_base        - get address from boot time settings
605  *      @prefix: prefix for network device
606  *      @unit: id for network device
607  *
608  *      Check boot time settings for the base address of device.
609  *      The found settings are set for the device to be used
610  *      later in the device probing.
611  *      Returns 0 if no settings found.
612  */
613 unsigned long netdev_boot_base(const char *prefix, int unit)
614 {
615         const struct netdev_boot_setup *s = dev_boot_setup;
616         char name[IFNAMSIZ];
617         int i;
618
619         sprintf(name, "%s%d", prefix, unit);
620
621         /*
622          * If device already registered then return base of 1
623          * to indicate not to probe for this interface
624          */
625         if (__dev_get_by_name(&init_net, name))
626                 return 1;
627
628         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
629                 if (!strcmp(name, s[i].name))
630                         return s[i].map.base_addr;
631         return 0;
632 }
633
634 /*
635  * Saves at boot time configured settings for any netdevice.
636  */
637 int __init netdev_boot_setup(char *str)
638 {
639         int ints[5];
640         struct ifmap map;
641
642         str = get_options(str, ARRAY_SIZE(ints), ints);
643         if (!str || !*str)
644                 return 0;
645
646         /* Save settings */
647         memset(&map, 0, sizeof(map));
648         if (ints[0] > 0)
649                 map.irq = ints[1];
650         if (ints[0] > 1)
651                 map.base_addr = ints[2];
652         if (ints[0] > 2)
653                 map.mem_start = ints[3];
654         if (ints[0] > 3)
655                 map.mem_end = ints[4];
656
657         /* Add new entry to the list */
658         return netdev_boot_setup_add(str, &map);
659 }
660
661 __setup("netdev=", netdev_boot_setup);
662
663 /*******************************************************************************
664
665                             Device Interface Subroutines
666
667 *******************************************************************************/
668
669 /**
670  *      dev_get_iflink  - get 'iflink' value of a interface
671  *      @dev: targeted interface
672  *
673  *      Indicates the ifindex the interface is linked to.
674  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
675  */
676
677 int dev_get_iflink(const struct net_device *dev)
678 {
679         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
680                 return dev->netdev_ops->ndo_get_iflink(dev);
681
682         return dev->ifindex;
683 }
684 EXPORT_SYMBOL(dev_get_iflink);
685
686 /**
687  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
688  *      @dev: targeted interface
689  *      @skb: The packet.
690  *
691  *      For better visibility of tunnel traffic OVS needs to retrieve
692  *      egress tunnel information for a packet. Following API allows
693  *      user to get this info.
694  */
695 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
696 {
697         struct ip_tunnel_info *info;
698
699         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
700                 return -EINVAL;
701
702         info = skb_tunnel_info_unclone(skb);
703         if (!info)
704                 return -ENOMEM;
705         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
706                 return -EINVAL;
707
708         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
709 }
710 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
711
712 /**
713  *      __dev_get_by_name       - find a device by its name
714  *      @net: the applicable net namespace
715  *      @name: name to find
716  *
717  *      Find an interface by name. Must be called under RTNL semaphore
718  *      or @dev_base_lock. If the name is found a pointer to the device
719  *      is returned. If the name is not found then %NULL is returned. The
720  *      reference counters are not incremented so the caller must be
721  *      careful with locks.
722  */
723
724 struct net_device *__dev_get_by_name(struct net *net, const char *name)
725 {
726         struct net_device *dev;
727         struct hlist_head *head = dev_name_hash(net, name);
728
729         hlist_for_each_entry(dev, head, name_hlist)
730                 if (!strncmp(dev->name, name, IFNAMSIZ))
731                         return dev;
732
733         return NULL;
734 }
735 EXPORT_SYMBOL(__dev_get_by_name);
736
737 /**
738  *      dev_get_by_name_rcu     - find a device by its name
739  *      @net: the applicable net namespace
740  *      @name: name to find
741  *
742  *      Find an interface by name.
743  *      If the name is found a pointer to the device is returned.
744  *      If the name is not found then %NULL is returned.
745  *      The reference counters are not incremented so the caller must be
746  *      careful with locks. The caller must hold RCU lock.
747  */
748
749 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
750 {
751         struct net_device *dev;
752         struct hlist_head *head = dev_name_hash(net, name);
753
754         hlist_for_each_entry_rcu(dev, head, name_hlist)
755                 if (!strncmp(dev->name, name, IFNAMSIZ))
756                         return dev;
757
758         return NULL;
759 }
760 EXPORT_SYMBOL(dev_get_by_name_rcu);
761
762 /**
763  *      dev_get_by_name         - find a device by its name
764  *      @net: the applicable net namespace
765  *      @name: name to find
766  *
767  *      Find an interface by name. This can be called from any
768  *      context and does its own locking. The returned handle has
769  *      the usage count incremented and the caller must use dev_put() to
770  *      release it when it is no longer needed. %NULL is returned if no
771  *      matching device is found.
772  */
773
774 struct net_device *dev_get_by_name(struct net *net, const char *name)
775 {
776         struct net_device *dev;
777
778         rcu_read_lock();
779         dev = dev_get_by_name_rcu(net, name);
780         if (dev)
781                 dev_hold(dev);
782         rcu_read_unlock();
783         return dev;
784 }
785 EXPORT_SYMBOL(dev_get_by_name);
786
787 /**
788  *      __dev_get_by_index - find a device by its ifindex
789  *      @net: the applicable net namespace
790  *      @ifindex: index of device
791  *
792  *      Search for an interface by index. Returns %NULL if the device
793  *      is not found or a pointer to the device. The device has not
794  *      had its reference counter increased so the caller must be careful
795  *      about locking. The caller must hold either the RTNL semaphore
796  *      or @dev_base_lock.
797  */
798
799 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
800 {
801         struct net_device *dev;
802         struct hlist_head *head = dev_index_hash(net, ifindex);
803
804         hlist_for_each_entry(dev, head, index_hlist)
805                 if (dev->ifindex == ifindex)
806                         return dev;
807
808         return NULL;
809 }
810 EXPORT_SYMBOL(__dev_get_by_index);
811
812 /**
813  *      dev_get_by_index_rcu - find a device by its ifindex
814  *      @net: the applicable net namespace
815  *      @ifindex: index of device
816  *
817  *      Search for an interface by index. Returns %NULL if the device
818  *      is not found or a pointer to the device. The device has not
819  *      had its reference counter increased so the caller must be careful
820  *      about locking. The caller must hold RCU lock.
821  */
822
823 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
824 {
825         struct net_device *dev;
826         struct hlist_head *head = dev_index_hash(net, ifindex);
827
828         hlist_for_each_entry_rcu(dev, head, index_hlist)
829                 if (dev->ifindex == ifindex)
830                         return dev;
831
832         return NULL;
833 }
834 EXPORT_SYMBOL(dev_get_by_index_rcu);
835
836
837 /**
838  *      dev_get_by_index - find a device by its ifindex
839  *      @net: the applicable net namespace
840  *      @ifindex: index of device
841  *
842  *      Search for an interface by index. Returns NULL if the device
843  *      is not found or a pointer to the device. The device returned has
844  *      had a reference added and the pointer is safe until the user calls
845  *      dev_put to indicate they have finished with it.
846  */
847
848 struct net_device *dev_get_by_index(struct net *net, int ifindex)
849 {
850         struct net_device *dev;
851
852         rcu_read_lock();
853         dev = dev_get_by_index_rcu(net, ifindex);
854         if (dev)
855                 dev_hold(dev);
856         rcu_read_unlock();
857         return dev;
858 }
859 EXPORT_SYMBOL(dev_get_by_index);
860
861 /**
862  *      netdev_get_name - get a netdevice name, knowing its ifindex.
863  *      @net: network namespace
864  *      @name: a pointer to the buffer where the name will be stored.
865  *      @ifindex: the ifindex of the interface to get the name from.
866  *
867  *      The use of raw_seqcount_begin() and cond_resched() before
868  *      retrying is required as we want to give the writers a chance
869  *      to complete when CONFIG_PREEMPT is not set.
870  */
871 int netdev_get_name(struct net *net, char *name, int ifindex)
872 {
873         struct net_device *dev;
874         unsigned int seq;
875
876 retry:
877         seq = raw_seqcount_begin(&devnet_rename_seq);
878         rcu_read_lock();
879         dev = dev_get_by_index_rcu(net, ifindex);
880         if (!dev) {
881                 rcu_read_unlock();
882                 return -ENODEV;
883         }
884
885         strcpy(name, dev->name);
886         rcu_read_unlock();
887         if (read_seqcount_retry(&devnet_rename_seq, seq)) {
888                 cond_resched();
889                 goto retry;
890         }
891
892         return 0;
893 }
894
895 /**
896  *      dev_getbyhwaddr_rcu - find a device by its hardware address
897  *      @net: the applicable net namespace
898  *      @type: media type of device
899  *      @ha: hardware address
900  *
901  *      Search for an interface by MAC address. Returns NULL if the device
902  *      is not found or a pointer to the device.
903  *      The caller must hold RCU or RTNL.
904  *      The returned device has not had its ref count increased
905  *      and the caller must therefore be careful about locking
906  *
907  */
908
909 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
910                                        const char *ha)
911 {
912         struct net_device *dev;
913
914         for_each_netdev_rcu(net, dev)
915                 if (dev->type == type &&
916                     !memcmp(dev->dev_addr, ha, dev->addr_len))
917                         return dev;
918
919         return NULL;
920 }
921 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
922
923 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
924 {
925         struct net_device *dev;
926
927         ASSERT_RTNL();
928         for_each_netdev(net, dev)
929                 if (dev->type == type)
930                         return dev;
931
932         return NULL;
933 }
934 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
935
936 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
937 {
938         struct net_device *dev, *ret = NULL;
939
940         rcu_read_lock();
941         for_each_netdev_rcu(net, dev)
942                 if (dev->type == type) {
943                         dev_hold(dev);
944                         ret = dev;
945                         break;
946                 }
947         rcu_read_unlock();
948         return ret;
949 }
950 EXPORT_SYMBOL(dev_getfirstbyhwtype);
951
952 /**
953  *      __dev_get_by_flags - find any device with given flags
954  *      @net: the applicable net namespace
955  *      @if_flags: IFF_* values
956  *      @mask: bitmask of bits in if_flags to check
957  *
958  *      Search for any interface with the given flags. Returns NULL if a device
959  *      is not found or a pointer to the device. Must be called inside
960  *      rtnl_lock(), and result refcount is unchanged.
961  */
962
963 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
964                                       unsigned short mask)
965 {
966         struct net_device *dev, *ret;
967
968         ASSERT_RTNL();
969
970         ret = NULL;
971         for_each_netdev(net, dev) {
972                 if (((dev->flags ^ if_flags) & mask) == 0) {
973                         ret = dev;
974                         break;
975                 }
976         }
977         return ret;
978 }
979 EXPORT_SYMBOL(__dev_get_by_flags);
980
981 /**
982  *      dev_valid_name - check if name is okay for network device
983  *      @name: name string
984  *
985  *      Network device names need to be valid file names to
986  *      to allow sysfs to work.  We also disallow any kind of
987  *      whitespace.
988  */
989 bool dev_valid_name(const char *name)
990 {
991         if (*name == '\0')
992                 return false;
993         if (strlen(name) >= IFNAMSIZ)
994                 return false;
995         if (!strcmp(name, ".") || !strcmp(name, ".."))
996                 return false;
997
998         while (*name) {
999                 if (*name == '/' || *name == ':' || isspace(*name))
1000                         return false;
1001                 name++;
1002         }
1003         return true;
1004 }
1005 EXPORT_SYMBOL(dev_valid_name);
1006
1007 /**
1008  *      __dev_alloc_name - allocate a name for a device
1009  *      @net: network namespace to allocate the device name in
1010  *      @name: name format string
1011  *      @buf:  scratch buffer and result name string
1012  *
1013  *      Passed a format string - eg "lt%d" it will try and find a suitable
1014  *      id. It scans list of devices to build up a free map, then chooses
1015  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1016  *      while allocating the name and adding the device in order to avoid
1017  *      duplicates.
1018  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1019  *      Returns the number of the unit assigned or a negative errno code.
1020  */
1021
1022 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1023 {
1024         int i = 0;
1025         const char *p;
1026         const int max_netdevices = 8*PAGE_SIZE;
1027         unsigned long *inuse;
1028         struct net_device *d;
1029
1030         p = strnchr(name, IFNAMSIZ-1, '%');
1031         if (p) {
1032                 /*
1033                  * Verify the string as this thing may have come from
1034                  * the user.  There must be either one "%d" and no other "%"
1035                  * characters.
1036                  */
1037                 if (p[1] != 'd' || strchr(p + 2, '%'))
1038                         return -EINVAL;
1039
1040                 /* Use one page as a bit array of possible slots */
1041                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1042                 if (!inuse)
1043                         return -ENOMEM;
1044
1045                 for_each_netdev(net, d) {
1046                         if (!sscanf(d->name, name, &i))
1047                                 continue;
1048                         if (i < 0 || i >= max_netdevices)
1049                                 continue;
1050
1051                         /*  avoid cases where sscanf is not exact inverse of printf */
1052                         snprintf(buf, IFNAMSIZ, name, i);
1053                         if (!strncmp(buf, d->name, IFNAMSIZ))
1054                                 set_bit(i, inuse);
1055                 }
1056
1057                 i = find_first_zero_bit(inuse, max_netdevices);
1058                 free_page((unsigned long) inuse);
1059         }
1060
1061         if (buf != name)
1062                 snprintf(buf, IFNAMSIZ, name, i);
1063         if (!__dev_get_by_name(net, buf))
1064                 return i;
1065
1066         /* It is possible to run out of possible slots
1067          * when the name is long and there isn't enough space left
1068          * for the digits, or if all bits are used.
1069          */
1070         return -ENFILE;
1071 }
1072
1073 /**
1074  *      dev_alloc_name - allocate a name for a device
1075  *      @dev: device
1076  *      @name: name format string
1077  *
1078  *      Passed a format string - eg "lt%d" it will try and find a suitable
1079  *      id. It scans list of devices to build up a free map, then chooses
1080  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1081  *      while allocating the name and adding the device in order to avoid
1082  *      duplicates.
1083  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1084  *      Returns the number of the unit assigned or a negative errno code.
1085  */
1086
1087 int dev_alloc_name(struct net_device *dev, const char *name)
1088 {
1089         char buf[IFNAMSIZ];
1090         struct net *net;
1091         int ret;
1092
1093         BUG_ON(!dev_net(dev));
1094         net = dev_net(dev);
1095         ret = __dev_alloc_name(net, name, buf);
1096         if (ret >= 0)
1097                 strlcpy(dev->name, buf, IFNAMSIZ);
1098         return ret;
1099 }
1100 EXPORT_SYMBOL(dev_alloc_name);
1101
1102 static int dev_alloc_name_ns(struct net *net,
1103                              struct net_device *dev,
1104                              const char *name)
1105 {
1106         char buf[IFNAMSIZ];
1107         int ret;
1108
1109         ret = __dev_alloc_name(net, name, buf);
1110         if (ret >= 0)
1111                 strlcpy(dev->name, buf, IFNAMSIZ);
1112         return ret;
1113 }
1114
1115 static int dev_get_valid_name(struct net *net,
1116                               struct net_device *dev,
1117                               const char *name)
1118 {
1119         BUG_ON(!net);
1120
1121         if (!dev_valid_name(name))
1122                 return -EINVAL;
1123
1124         if (strchr(name, '%'))
1125                 return dev_alloc_name_ns(net, dev, name);
1126         else if (__dev_get_by_name(net, name))
1127                 return -EEXIST;
1128         else if (dev->name != name)
1129                 strlcpy(dev->name, name, IFNAMSIZ);
1130
1131         return 0;
1132 }
1133
1134 /**
1135  *      dev_change_name - change name of a device
1136  *      @dev: device
1137  *      @newname: name (or format string) must be at least IFNAMSIZ
1138  *
1139  *      Change name of a device, can pass format strings "eth%d".
1140  *      for wildcarding.
1141  */
1142 int dev_change_name(struct net_device *dev, const char *newname)
1143 {
1144         unsigned char old_assign_type;
1145         char oldname[IFNAMSIZ];
1146         int err = 0;
1147         int ret;
1148         struct net *net;
1149
1150         ASSERT_RTNL();
1151         BUG_ON(!dev_net(dev));
1152
1153         net = dev_net(dev);
1154         if (dev->flags & IFF_UP)
1155                 return -EBUSY;
1156
1157         write_seqcount_begin(&devnet_rename_seq);
1158
1159         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1160                 write_seqcount_end(&devnet_rename_seq);
1161                 return 0;
1162         }
1163
1164         memcpy(oldname, dev->name, IFNAMSIZ);
1165
1166         err = dev_get_valid_name(net, dev, newname);
1167         if (err < 0) {
1168                 write_seqcount_end(&devnet_rename_seq);
1169                 return err;
1170         }
1171
1172         if (oldname[0] && !strchr(oldname, '%'))
1173                 netdev_info(dev, "renamed from %s\n", oldname);
1174
1175         old_assign_type = dev->name_assign_type;
1176         dev->name_assign_type = NET_NAME_RENAMED;
1177
1178 rollback:
1179         ret = device_rename(&dev->dev, dev->name);
1180         if (ret) {
1181                 memcpy(dev->name, oldname, IFNAMSIZ);
1182                 dev->name_assign_type = old_assign_type;
1183                 write_seqcount_end(&devnet_rename_seq);
1184                 return ret;
1185         }
1186
1187         write_seqcount_end(&devnet_rename_seq);
1188
1189         netdev_adjacent_rename_links(dev, oldname);
1190
1191         write_lock_bh(&dev_base_lock);
1192         hlist_del_rcu(&dev->name_hlist);
1193         write_unlock_bh(&dev_base_lock);
1194
1195         synchronize_rcu();
1196
1197         write_lock_bh(&dev_base_lock);
1198         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1199         write_unlock_bh(&dev_base_lock);
1200
1201         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1202         ret = notifier_to_errno(ret);
1203
1204         if (ret) {
1205                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1206                 if (err >= 0) {
1207                         err = ret;
1208                         write_seqcount_begin(&devnet_rename_seq);
1209                         memcpy(dev->name, oldname, IFNAMSIZ);
1210                         memcpy(oldname, newname, IFNAMSIZ);
1211                         dev->name_assign_type = old_assign_type;
1212                         old_assign_type = NET_NAME_RENAMED;
1213                         goto rollback;
1214                 } else {
1215                         pr_err("%s: name change rollback failed: %d\n",
1216                                dev->name, ret);
1217                 }
1218         }
1219
1220         return err;
1221 }
1222
1223 /**
1224  *      dev_set_alias - change ifalias of a device
1225  *      @dev: device
1226  *      @alias: name up to IFALIASZ
1227  *      @len: limit of bytes to copy from info
1228  *
1229  *      Set ifalias for a device,
1230  */
1231 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1232 {
1233         char *new_ifalias;
1234
1235         ASSERT_RTNL();
1236
1237         if (len >= IFALIASZ)
1238                 return -EINVAL;
1239
1240         if (!len) {
1241                 kfree(dev->ifalias);
1242                 dev->ifalias = NULL;
1243                 return 0;
1244         }
1245
1246         new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1247         if (!new_ifalias)
1248                 return -ENOMEM;
1249         dev->ifalias = new_ifalias;
1250
1251         strlcpy(dev->ifalias, alias, len+1);
1252         return len;
1253 }
1254
1255
1256 /**
1257  *      netdev_features_change - device changes features
1258  *      @dev: device to cause notification
1259  *
1260  *      Called to indicate a device has changed features.
1261  */
1262 void netdev_features_change(struct net_device *dev)
1263 {
1264         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1265 }
1266 EXPORT_SYMBOL(netdev_features_change);
1267
1268 /**
1269  *      netdev_state_change - device changes state
1270  *      @dev: device to cause notification
1271  *
1272  *      Called to indicate a device has changed state. This function calls
1273  *      the notifier chains for netdev_chain and sends a NEWLINK message
1274  *      to the routing socket.
1275  */
1276 void netdev_state_change(struct net_device *dev)
1277 {
1278         if (dev->flags & IFF_UP) {
1279                 struct netdev_notifier_change_info change_info;
1280
1281                 change_info.flags_changed = 0;
1282                 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1283                                               &change_info.info);
1284                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1285         }
1286 }
1287 EXPORT_SYMBOL(netdev_state_change);
1288
1289 /**
1290  *      netdev_notify_peers - notify network peers about existence of @dev
1291  *      @dev: network device
1292  *
1293  * Generate traffic such that interested network peers are aware of
1294  * @dev, such as by generating a gratuitous ARP. This may be used when
1295  * a device wants to inform the rest of the network about some sort of
1296  * reconfiguration such as a failover event or virtual machine
1297  * migration.
1298  */
1299 void netdev_notify_peers(struct net_device *dev)
1300 {
1301         rtnl_lock();
1302         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1303         rtnl_unlock();
1304 }
1305 EXPORT_SYMBOL(netdev_notify_peers);
1306
1307 static int __dev_open(struct net_device *dev)
1308 {
1309         const struct net_device_ops *ops = dev->netdev_ops;
1310         int ret;
1311
1312         ASSERT_RTNL();
1313
1314         if (!netif_device_present(dev))
1315                 return -ENODEV;
1316
1317         /* Block netpoll from trying to do any rx path servicing.
1318          * If we don't do this there is a chance ndo_poll_controller
1319          * or ndo_poll may be running while we open the device
1320          */
1321         netpoll_poll_disable(dev);
1322
1323         ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1324         ret = notifier_to_errno(ret);
1325         if (ret)
1326                 return ret;
1327
1328         set_bit(__LINK_STATE_START, &dev->state);
1329
1330         if (ops->ndo_validate_addr)
1331                 ret = ops->ndo_validate_addr(dev);
1332
1333         if (!ret && ops->ndo_open)
1334                 ret = ops->ndo_open(dev);
1335
1336         netpoll_poll_enable(dev);
1337
1338         if (ret)
1339                 clear_bit(__LINK_STATE_START, &dev->state);
1340         else {
1341                 dev->flags |= IFF_UP;
1342                 dev_set_rx_mode(dev);
1343                 dev_activate(dev);
1344                 add_device_randomness(dev->dev_addr, dev->addr_len);
1345         }
1346
1347         return ret;
1348 }
1349
1350 /**
1351  *      dev_open        - prepare an interface for use.
1352  *      @dev:   device to open
1353  *
1354  *      Takes a device from down to up state. The device's private open
1355  *      function is invoked and then the multicast lists are loaded. Finally
1356  *      the device is moved into the up state and a %NETDEV_UP message is
1357  *      sent to the netdev notifier chain.
1358  *
1359  *      Calling this function on an active interface is a nop. On a failure
1360  *      a negative errno code is returned.
1361  */
1362 int dev_open(struct net_device *dev)
1363 {
1364         int ret;
1365
1366         if (dev->flags & IFF_UP)
1367                 return 0;
1368
1369         ret = __dev_open(dev);
1370         if (ret < 0)
1371                 return ret;
1372
1373         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1374         call_netdevice_notifiers(NETDEV_UP, dev);
1375
1376         return ret;
1377 }
1378 EXPORT_SYMBOL(dev_open);
1379
1380 static int __dev_close_many(struct list_head *head)
1381 {
1382         struct net_device *dev;
1383
1384         ASSERT_RTNL();
1385         might_sleep();
1386
1387         list_for_each_entry(dev, head, close_list) {
1388                 /* Temporarily disable netpoll until the interface is down */
1389                 netpoll_poll_disable(dev);
1390
1391                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1392
1393                 clear_bit(__LINK_STATE_START, &dev->state);
1394
1395                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1396                  * can be even on different cpu. So just clear netif_running().
1397                  *
1398                  * dev->stop() will invoke napi_disable() on all of it's
1399                  * napi_struct instances on this device.
1400                  */
1401                 smp_mb__after_atomic(); /* Commit netif_running(). */
1402         }
1403
1404         dev_deactivate_many(head);
1405
1406         list_for_each_entry(dev, head, close_list) {
1407                 const struct net_device_ops *ops = dev->netdev_ops;
1408
1409                 /*
1410                  *      Call the device specific close. This cannot fail.
1411                  *      Only if device is UP
1412                  *
1413                  *      We allow it to be called even after a DETACH hot-plug
1414                  *      event.
1415                  */
1416                 if (ops->ndo_stop)
1417                         ops->ndo_stop(dev);
1418
1419                 dev->flags &= ~IFF_UP;
1420                 netpoll_poll_enable(dev);
1421         }
1422
1423         return 0;
1424 }
1425
1426 static int __dev_close(struct net_device *dev)
1427 {
1428         int retval;
1429         LIST_HEAD(single);
1430
1431         list_add(&dev->close_list, &single);
1432         retval = __dev_close_many(&single);
1433         list_del(&single);
1434
1435         return retval;
1436 }
1437
1438 int dev_close_many(struct list_head *head, bool unlink)
1439 {
1440         struct net_device *dev, *tmp;
1441
1442         /* Remove the devices that don't need to be closed */
1443         list_for_each_entry_safe(dev, tmp, head, close_list)
1444                 if (!(dev->flags & IFF_UP))
1445                         list_del_init(&dev->close_list);
1446
1447         __dev_close_many(head);
1448
1449         list_for_each_entry_safe(dev, tmp, head, close_list) {
1450                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1451                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1452                 if (unlink)
1453                         list_del_init(&dev->close_list);
1454         }
1455
1456         return 0;
1457 }
1458 EXPORT_SYMBOL(dev_close_many);
1459
1460 /**
1461  *      dev_close - shutdown an interface.
1462  *      @dev: device to shutdown
1463  *
1464  *      This function moves an active device into down state. A
1465  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1466  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1467  *      chain.
1468  */
1469 int dev_close(struct net_device *dev)
1470 {
1471         if (dev->flags & IFF_UP) {
1472                 LIST_HEAD(single);
1473
1474                 list_add(&dev->close_list, &single);
1475                 dev_close_many(&single, true);
1476                 list_del(&single);
1477         }
1478         return 0;
1479 }
1480 EXPORT_SYMBOL(dev_close);
1481
1482
1483 /**
1484  *      dev_disable_lro - disable Large Receive Offload on a device
1485  *      @dev: device
1486  *
1487  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1488  *      called under RTNL.  This is needed if received packets may be
1489  *      forwarded to another interface.
1490  */
1491 void dev_disable_lro(struct net_device *dev)
1492 {
1493         struct net_device *lower_dev;
1494         struct list_head *iter;
1495
1496         dev->wanted_features &= ~NETIF_F_LRO;
1497         netdev_update_features(dev);
1498
1499         if (unlikely(dev->features & NETIF_F_LRO))
1500                 netdev_WARN(dev, "failed to disable LRO!\n");
1501
1502         netdev_for_each_lower_dev(dev, lower_dev, iter)
1503                 dev_disable_lro(lower_dev);
1504 }
1505 EXPORT_SYMBOL(dev_disable_lro);
1506
1507 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1508                                    struct net_device *dev)
1509 {
1510         struct netdev_notifier_info info;
1511
1512         netdev_notifier_info_init(&info, dev);
1513         return nb->notifier_call(nb, val, &info);
1514 }
1515
1516 static int dev_boot_phase = 1;
1517
1518 /**
1519  *      register_netdevice_notifier - register a network notifier block
1520  *      @nb: notifier
1521  *
1522  *      Register a notifier to be called when network device events occur.
1523  *      The notifier passed is linked into the kernel structures and must
1524  *      not be reused until it has been unregistered. A negative errno code
1525  *      is returned on a failure.
1526  *
1527  *      When registered all registration and up events are replayed
1528  *      to the new notifier to allow device to have a race free
1529  *      view of the network device list.
1530  */
1531
1532 int register_netdevice_notifier(struct notifier_block *nb)
1533 {
1534         struct net_device *dev;
1535         struct net_device *last;
1536         struct net *net;
1537         int err;
1538
1539         rtnl_lock();
1540         err = raw_notifier_chain_register(&netdev_chain, nb);
1541         if (err)
1542                 goto unlock;
1543         if (dev_boot_phase)
1544                 goto unlock;
1545         for_each_net(net) {
1546                 for_each_netdev(net, dev) {
1547                         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1548                         err = notifier_to_errno(err);
1549                         if (err)
1550                                 goto rollback;
1551
1552                         if (!(dev->flags & IFF_UP))
1553                                 continue;
1554
1555                         call_netdevice_notifier(nb, NETDEV_UP, dev);
1556                 }
1557         }
1558
1559 unlock:
1560         rtnl_unlock();
1561         return err;
1562
1563 rollback:
1564         last = dev;
1565         for_each_net(net) {
1566                 for_each_netdev(net, dev) {
1567                         if (dev == last)
1568                                 goto outroll;
1569
1570                         if (dev->flags & IFF_UP) {
1571                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1572                                                         dev);
1573                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1574                         }
1575                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1576                 }
1577         }
1578
1579 outroll:
1580         raw_notifier_chain_unregister(&netdev_chain, nb);
1581         goto unlock;
1582 }
1583 EXPORT_SYMBOL(register_netdevice_notifier);
1584
1585 /**
1586  *      unregister_netdevice_notifier - unregister a network notifier block
1587  *      @nb: notifier
1588  *
1589  *      Unregister a notifier previously registered by
1590  *      register_netdevice_notifier(). The notifier is unlinked into the
1591  *      kernel structures and may then be reused. A negative errno code
1592  *      is returned on a failure.
1593  *
1594  *      After unregistering unregister and down device events are synthesized
1595  *      for all devices on the device list to the removed notifier to remove
1596  *      the need for special case cleanup code.
1597  */
1598
1599 int unregister_netdevice_notifier(struct notifier_block *nb)
1600 {
1601         struct net_device *dev;
1602         struct net *net;
1603         int err;
1604
1605         rtnl_lock();
1606         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1607         if (err)
1608                 goto unlock;
1609
1610         for_each_net(net) {
1611                 for_each_netdev(net, dev) {
1612                         if (dev->flags & IFF_UP) {
1613                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1614                                                         dev);
1615                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1616                         }
1617                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1618                 }
1619         }
1620 unlock:
1621         rtnl_unlock();
1622         return err;
1623 }
1624 EXPORT_SYMBOL(unregister_netdevice_notifier);
1625
1626 /**
1627  *      call_netdevice_notifiers_info - call all network notifier blocks
1628  *      @val: value passed unmodified to notifier function
1629  *      @dev: net_device pointer passed unmodified to notifier function
1630  *      @info: notifier information data
1631  *
1632  *      Call all network notifier blocks.  Parameters and return value
1633  *      are as for raw_notifier_call_chain().
1634  */
1635
1636 static int call_netdevice_notifiers_info(unsigned long val,
1637                                          struct net_device *dev,
1638                                          struct netdev_notifier_info *info)
1639 {
1640         ASSERT_RTNL();
1641         netdev_notifier_info_init(info, dev);
1642         return raw_notifier_call_chain(&netdev_chain, val, info);
1643 }
1644
1645 /**
1646  *      call_netdevice_notifiers - call all network notifier blocks
1647  *      @val: value passed unmodified to notifier function
1648  *      @dev: net_device pointer passed unmodified to notifier function
1649  *
1650  *      Call all network notifier blocks.  Parameters and return value
1651  *      are as for raw_notifier_call_chain().
1652  */
1653
1654 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1655 {
1656         struct netdev_notifier_info info;
1657
1658         return call_netdevice_notifiers_info(val, dev, &info);
1659 }
1660 EXPORT_SYMBOL(call_netdevice_notifiers);
1661
1662 #ifdef CONFIG_NET_INGRESS
1663 static struct static_key ingress_needed __read_mostly;
1664
1665 void net_inc_ingress_queue(void)
1666 {
1667         static_key_slow_inc(&ingress_needed);
1668 }
1669 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1670
1671 void net_dec_ingress_queue(void)
1672 {
1673         static_key_slow_dec(&ingress_needed);
1674 }
1675 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1676 #endif
1677
1678 static struct static_key netstamp_needed __read_mostly;
1679 #ifdef HAVE_JUMP_LABEL
1680 /* We are not allowed to call static_key_slow_dec() from irq context
1681  * If net_disable_timestamp() is called from irq context, defer the
1682  * static_key_slow_dec() calls.
1683  */
1684 static atomic_t netstamp_needed_deferred;
1685 #endif
1686
1687 void net_enable_timestamp(void)
1688 {
1689 #ifdef HAVE_JUMP_LABEL
1690         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1691
1692         if (deferred) {
1693                 while (--deferred)
1694                         static_key_slow_dec(&netstamp_needed);
1695                 return;
1696         }
1697 #endif
1698         static_key_slow_inc(&netstamp_needed);
1699 }
1700 EXPORT_SYMBOL(net_enable_timestamp);
1701
1702 void net_disable_timestamp(void)
1703 {
1704 #ifdef HAVE_JUMP_LABEL
1705         if (in_interrupt()) {
1706                 atomic_inc(&netstamp_needed_deferred);
1707                 return;
1708         }
1709 #endif
1710         static_key_slow_dec(&netstamp_needed);
1711 }
1712 EXPORT_SYMBOL(net_disable_timestamp);
1713
1714 static inline void net_timestamp_set(struct sk_buff *skb)
1715 {
1716         skb->tstamp.tv64 = 0;
1717         if (static_key_false(&netstamp_needed))
1718                 __net_timestamp(skb);
1719 }
1720
1721 #define net_timestamp_check(COND, SKB)                  \
1722         if (static_key_false(&netstamp_needed)) {               \
1723                 if ((COND) && !(SKB)->tstamp.tv64)      \
1724                         __net_timestamp(SKB);           \
1725         }                                               \
1726
1727 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
1728 {
1729         unsigned int len;
1730
1731         if (!(dev->flags & IFF_UP))
1732                 return false;
1733
1734         len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1735         if (skb->len <= len)
1736                 return true;
1737
1738         /* if TSO is enabled, we don't care about the length as the packet
1739          * could be forwarded without being segmented before
1740          */
1741         if (skb_is_gso(skb))
1742                 return true;
1743
1744         return false;
1745 }
1746 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1747
1748 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1749 {
1750         if (skb_orphan_frags(skb, GFP_ATOMIC) ||
1751             unlikely(!is_skb_forwardable(dev, skb))) {
1752                 atomic_long_inc(&dev->rx_dropped);
1753                 kfree_skb(skb);
1754                 return NET_RX_DROP;
1755         }
1756
1757         skb_scrub_packet(skb, true);
1758         skb->priority = 0;
1759         skb->protocol = eth_type_trans(skb, dev);
1760         skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1761
1762         return 0;
1763 }
1764 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1765
1766 /**
1767  * dev_forward_skb - loopback an skb to another netif
1768  *
1769  * @dev: destination network device
1770  * @skb: buffer to forward
1771  *
1772  * return values:
1773  *      NET_RX_SUCCESS  (no congestion)
1774  *      NET_RX_DROP     (packet was dropped, but freed)
1775  *
1776  * dev_forward_skb can be used for injecting an skb from the
1777  * start_xmit function of one device into the receive queue
1778  * of another device.
1779  *
1780  * The receiving device may be in another namespace, so
1781  * we have to clear all information in the skb that could
1782  * impact namespace isolation.
1783  */
1784 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1785 {
1786         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1787 }
1788 EXPORT_SYMBOL_GPL(dev_forward_skb);
1789
1790 static inline int deliver_skb(struct sk_buff *skb,
1791                               struct packet_type *pt_prev,
1792                               struct net_device *orig_dev)
1793 {
1794         if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1795                 return -ENOMEM;
1796         atomic_inc(&skb->users);
1797         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1798 }
1799
1800 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1801                                           struct packet_type **pt,
1802                                           struct net_device *orig_dev,
1803                                           __be16 type,
1804                                           struct list_head *ptype_list)
1805 {
1806         struct packet_type *ptype, *pt_prev = *pt;
1807
1808         list_for_each_entry_rcu(ptype, ptype_list, list) {
1809                 if (ptype->type != type)
1810                         continue;
1811                 if (pt_prev)
1812                         deliver_skb(skb, pt_prev, orig_dev);
1813                 pt_prev = ptype;
1814         }
1815         *pt = pt_prev;
1816 }
1817
1818 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1819 {
1820         if (!ptype->af_packet_priv || !skb->sk)
1821                 return false;
1822
1823         if (ptype->id_match)
1824                 return ptype->id_match(ptype, skb->sk);
1825         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1826                 return true;
1827
1828         return false;
1829 }
1830
1831 /*
1832  *      Support routine. Sends outgoing frames to any network
1833  *      taps currently in use.
1834  */
1835
1836 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1837 {
1838         struct packet_type *ptype;
1839         struct sk_buff *skb2 = NULL;
1840         struct packet_type *pt_prev = NULL;
1841         struct list_head *ptype_list = &ptype_all;
1842
1843         rcu_read_lock();
1844 again:
1845         list_for_each_entry_rcu(ptype, ptype_list, list) {
1846                 /* Never send packets back to the socket
1847                  * they originated from - MvS (miquels@drinkel.ow.org)
1848                  */
1849                 if (skb_loop_sk(ptype, skb))
1850                         continue;
1851
1852                 if (pt_prev) {
1853                         deliver_skb(skb2, pt_prev, skb->dev);
1854                         pt_prev = ptype;
1855                         continue;
1856                 }
1857
1858                 /* need to clone skb, done only once */
1859                 skb2 = skb_clone(skb, GFP_ATOMIC);
1860                 if (!skb2)
1861                         goto out_unlock;
1862
1863                 net_timestamp_set(skb2);
1864
1865                 /* skb->nh should be correctly
1866                  * set by sender, so that the second statement is
1867                  * just protection against buggy protocols.
1868                  */
1869                 skb_reset_mac_header(skb2);
1870
1871                 if (skb_network_header(skb2) < skb2->data ||
1872                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1873                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1874                                              ntohs(skb2->protocol),
1875                                              dev->name);
1876                         skb_reset_network_header(skb2);
1877                 }
1878
1879                 skb2->transport_header = skb2->network_header;
1880                 skb2->pkt_type = PACKET_OUTGOING;
1881                 pt_prev = ptype;
1882         }
1883
1884         if (ptype_list == &ptype_all) {
1885                 ptype_list = &dev->ptype_all;
1886                 goto again;
1887         }
1888 out_unlock:
1889         if (pt_prev)
1890                 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1891         rcu_read_unlock();
1892 }
1893
1894 /**
1895  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1896  * @dev: Network device
1897  * @txq: number of queues available
1898  *
1899  * If real_num_tx_queues is changed the tc mappings may no longer be
1900  * valid. To resolve this verify the tc mapping remains valid and if
1901  * not NULL the mapping. With no priorities mapping to this
1902  * offset/count pair it will no longer be used. In the worst case TC0
1903  * is invalid nothing can be done so disable priority mappings. If is
1904  * expected that drivers will fix this mapping if they can before
1905  * calling netif_set_real_num_tx_queues.
1906  */
1907 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1908 {
1909         int i;
1910         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1911
1912         /* If TC0 is invalidated disable TC mapping */
1913         if (tc->offset + tc->count > txq) {
1914                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1915                 dev->num_tc = 0;
1916                 return;
1917         }
1918
1919         /* Invalidated prio to tc mappings set to TC0 */
1920         for (i = 1; i < TC_BITMASK + 1; i++) {
1921                 int q = netdev_get_prio_tc_map(dev, i);
1922
1923                 tc = &dev->tc_to_txq[q];
1924                 if (tc->offset + tc->count > txq) {
1925                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1926                                 i, q);
1927                         netdev_set_prio_tc_map(dev, i, 0);
1928                 }
1929         }
1930 }
1931
1932 #ifdef CONFIG_XPS
1933 static DEFINE_MUTEX(xps_map_mutex);
1934 #define xmap_dereference(P)             \
1935         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1936
1937 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1938                                         int cpu, u16 index)
1939 {
1940         struct xps_map *map = NULL;
1941         int pos;
1942
1943         if (dev_maps)
1944                 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1945
1946         for (pos = 0; map && pos < map->len; pos++) {
1947                 if (map->queues[pos] == index) {
1948                         if (map->len > 1) {
1949                                 map->queues[pos] = map->queues[--map->len];
1950                         } else {
1951                                 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1952                                 kfree_rcu(map, rcu);
1953                                 map = NULL;
1954                         }
1955                         break;
1956                 }
1957         }
1958
1959         return map;
1960 }
1961
1962 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1963 {
1964         struct xps_dev_maps *dev_maps;
1965         int cpu, i;
1966         bool active = false;
1967
1968         mutex_lock(&xps_map_mutex);
1969         dev_maps = xmap_dereference(dev->xps_maps);
1970
1971         if (!dev_maps)
1972                 goto out_no_maps;
1973
1974         for_each_possible_cpu(cpu) {
1975                 for (i = index; i < dev->num_tx_queues; i++) {
1976                         if (!remove_xps_queue(dev_maps, cpu, i))
1977                                 break;
1978                 }
1979                 if (i == dev->num_tx_queues)
1980                         active = true;
1981         }
1982
1983         if (!active) {
1984                 RCU_INIT_POINTER(dev->xps_maps, NULL);
1985                 kfree_rcu(dev_maps, rcu);
1986         }
1987
1988         for (i = index; i < dev->num_tx_queues; i++)
1989                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1990                                              NUMA_NO_NODE);
1991
1992 out_no_maps:
1993         mutex_unlock(&xps_map_mutex);
1994 }
1995
1996 static struct xps_map *expand_xps_map(struct xps_map *map,
1997                                       int cpu, u16 index)
1998 {
1999         struct xps_map *new_map;
2000         int alloc_len = XPS_MIN_MAP_ALLOC;
2001         int i, pos;
2002
2003         for (pos = 0; map && pos < map->len; pos++) {
2004                 if (map->queues[pos] != index)
2005                         continue;
2006                 return map;
2007         }
2008
2009         /* Need to add queue to this CPU's existing map */
2010         if (map) {
2011                 if (pos < map->alloc_len)
2012                         return map;
2013
2014                 alloc_len = map->alloc_len * 2;
2015         }
2016
2017         /* Need to allocate new map to store queue on this CPU's map */
2018         new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2019                                cpu_to_node(cpu));
2020         if (!new_map)
2021                 return NULL;
2022
2023         for (i = 0; i < pos; i++)
2024                 new_map->queues[i] = map->queues[i];
2025         new_map->alloc_len = alloc_len;
2026         new_map->len = pos;
2027
2028         return new_map;
2029 }
2030
2031 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2032                         u16 index)
2033 {
2034         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2035         struct xps_map *map, *new_map;
2036         int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
2037         int cpu, numa_node_id = -2;
2038         bool active = false;
2039
2040         mutex_lock(&xps_map_mutex);
2041
2042         dev_maps = xmap_dereference(dev->xps_maps);
2043
2044         /* allocate memory for queue storage */
2045         for_each_online_cpu(cpu) {
2046                 if (!cpumask_test_cpu(cpu, mask))
2047                         continue;
2048
2049                 if (!new_dev_maps)
2050                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2051                 if (!new_dev_maps) {
2052                         mutex_unlock(&xps_map_mutex);
2053                         return -ENOMEM;
2054                 }
2055
2056                 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2057                                  NULL;
2058
2059                 map = expand_xps_map(map, cpu, index);
2060                 if (!map)
2061                         goto error;
2062
2063                 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2064         }
2065
2066         if (!new_dev_maps)
2067                 goto out_no_new_maps;
2068
2069         for_each_possible_cpu(cpu) {
2070                 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2071                         /* add queue to CPU maps */
2072                         int pos = 0;
2073
2074                         map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2075                         while ((pos < map->len) && (map->queues[pos] != index))
2076                                 pos++;
2077
2078                         if (pos == map->len)
2079                                 map->queues[map->len++] = index;
2080 #ifdef CONFIG_NUMA
2081                         if (numa_node_id == -2)
2082                                 numa_node_id = cpu_to_node(cpu);
2083                         else if (numa_node_id != cpu_to_node(cpu))
2084                                 numa_node_id = -1;
2085 #endif
2086                 } else if (dev_maps) {
2087                         /* fill in the new device map from the old device map */
2088                         map = xmap_dereference(dev_maps->cpu_map[cpu]);
2089                         RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2090                 }
2091
2092         }
2093
2094         rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2095
2096         /* Cleanup old maps */
2097         if (dev_maps) {
2098                 for_each_possible_cpu(cpu) {
2099                         new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2100                         map = xmap_dereference(dev_maps->cpu_map[cpu]);
2101                         if (map && map != new_map)
2102                                 kfree_rcu(map, rcu);
2103                 }
2104
2105                 kfree_rcu(dev_maps, rcu);
2106         }
2107
2108         dev_maps = new_dev_maps;
2109         active = true;
2110
2111 out_no_new_maps:
2112         /* update Tx queue numa node */
2113         netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2114                                      (numa_node_id >= 0) ? numa_node_id :
2115                                      NUMA_NO_NODE);
2116
2117         if (!dev_maps)
2118                 goto out_no_maps;
2119
2120         /* removes queue from unused CPUs */
2121         for_each_possible_cpu(cpu) {
2122                 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2123                         continue;
2124
2125                 if (remove_xps_queue(dev_maps, cpu, index))
2126                         active = true;
2127         }
2128
2129         /* free map if not active */
2130         if (!active) {
2131                 RCU_INIT_POINTER(dev->xps_maps, NULL);
2132                 kfree_rcu(dev_maps, rcu);
2133         }
2134
2135 out_no_maps:
2136         mutex_unlock(&xps_map_mutex);
2137
2138         return 0;
2139 error:
2140         /* remove any maps that we added */
2141         for_each_possible_cpu(cpu) {
2142                 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2143                 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2144                                  NULL;
2145                 if (new_map && new_map != map)
2146                         kfree(new_map);
2147         }
2148
2149         mutex_unlock(&xps_map_mutex);
2150
2151         kfree(new_dev_maps);
2152         return -ENOMEM;
2153 }
2154 EXPORT_SYMBOL(netif_set_xps_queue);
2155
2156 #endif
2157 /*
2158  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2159  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2160  */
2161 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2162 {
2163         int rc;
2164
2165         if (txq < 1 || txq > dev->num_tx_queues)
2166                 return -EINVAL;
2167
2168         if (dev->reg_state == NETREG_REGISTERED ||
2169             dev->reg_state == NETREG_UNREGISTERING) {
2170                 ASSERT_RTNL();
2171
2172                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2173                                                   txq);
2174                 if (rc)
2175                         return rc;
2176
2177                 if (dev->num_tc)
2178                         netif_setup_tc(dev, txq);
2179
2180                 if (txq < dev->real_num_tx_queues) {
2181                         qdisc_reset_all_tx_gt(dev, txq);
2182 #ifdef CONFIG_XPS
2183                         netif_reset_xps_queues_gt(dev, txq);
2184 #endif
2185                 }
2186         }
2187
2188         dev->real_num_tx_queues = txq;
2189         return 0;
2190 }
2191 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2192
2193 #ifdef CONFIG_SYSFS
2194 /**
2195  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2196  *      @dev: Network device
2197  *      @rxq: Actual number of RX queues
2198  *
2199  *      This must be called either with the rtnl_lock held or before
2200  *      registration of the net device.  Returns 0 on success, or a
2201  *      negative error code.  If called before registration, it always
2202  *      succeeds.
2203  */
2204 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2205 {
2206         int rc;
2207
2208         if (rxq < 1 || rxq > dev->num_rx_queues)
2209                 return -EINVAL;
2210
2211         if (dev->reg_state == NETREG_REGISTERED) {
2212                 ASSERT_RTNL();
2213
2214                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2215                                                   rxq);
2216                 if (rc)
2217                         return rc;
2218         }
2219
2220         dev->real_num_rx_queues = rxq;
2221         return 0;
2222 }
2223 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2224 #endif
2225
2226 /**
2227  * netif_get_num_default_rss_queues - default number of RSS queues
2228  *
2229  * This routine should set an upper limit on the number of RSS queues
2230  * used by default by multiqueue devices.
2231  */
2232 int netif_get_num_default_rss_queues(void)
2233 {
2234         return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2235 }
2236 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2237
2238 static inline void __netif_reschedule(struct Qdisc *q)
2239 {
2240         struct softnet_data *sd;
2241         unsigned long flags;
2242
2243         local_irq_save(flags);
2244         sd = this_cpu_ptr(&softnet_data);
2245         q->next_sched = NULL;
2246         *sd->output_queue_tailp = q;
2247         sd->output_queue_tailp = &q->next_sched;
2248         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2249         local_irq_restore(flags);
2250 }
2251
2252 void __netif_schedule(struct Qdisc *q)
2253 {
2254         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2255                 __netif_reschedule(q);
2256 }
2257 EXPORT_SYMBOL(__netif_schedule);
2258
2259 struct dev_kfree_skb_cb {
2260         enum skb_free_reason reason;
2261 };
2262
2263 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2264 {
2265         return (struct dev_kfree_skb_cb *)skb->cb;
2266 }
2267
2268 void netif_schedule_queue(struct netdev_queue *txq)
2269 {
2270         rcu_read_lock();
2271         if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2272                 struct Qdisc *q = rcu_dereference(txq->qdisc);
2273
2274                 __netif_schedule(q);
2275         }
2276         rcu_read_unlock();
2277 }
2278 EXPORT_SYMBOL(netif_schedule_queue);
2279
2280 /**
2281  *      netif_wake_subqueue - allow sending packets on subqueue
2282  *      @dev: network device
2283  *      @queue_index: sub queue index
2284  *
2285  * Resume individual transmit queue of a device with multiple transmit queues.
2286  */
2287 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2288 {
2289         struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2290
2291         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2292                 struct Qdisc *q;
2293
2294                 rcu_read_lock();
2295                 q = rcu_dereference(txq->qdisc);
2296                 __netif_schedule(q);
2297                 rcu_read_unlock();
2298         }
2299 }
2300 EXPORT_SYMBOL(netif_wake_subqueue);
2301
2302 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2303 {
2304         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2305                 struct Qdisc *q;
2306
2307                 rcu_read_lock();
2308                 q = rcu_dereference(dev_queue->qdisc);
2309                 __netif_schedule(q);
2310                 rcu_read_unlock();
2311         }
2312 }
2313 EXPORT_SYMBOL(netif_tx_wake_queue);
2314
2315 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2316 {
2317         unsigned long flags;
2318
2319         if (likely(atomic_read(&skb->users) == 1)) {
2320                 smp_rmb();
2321                 atomic_set(&skb->users, 0);
2322         } else if (likely(!atomic_dec_and_test(&skb->users))) {
2323                 return;
2324         }
2325         get_kfree_skb_cb(skb)->reason = reason;
2326         local_irq_save(flags);
2327         skb->next = __this_cpu_read(softnet_data.completion_queue);
2328         __this_cpu_write(softnet_data.completion_queue, skb);
2329         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2330         local_irq_restore(flags);
2331 }
2332 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2333
2334 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2335 {
2336         if (in_irq() || irqs_disabled())
2337                 __dev_kfree_skb_irq(skb, reason);
2338         else
2339                 dev_kfree_skb(skb);
2340 }
2341 EXPORT_SYMBOL(__dev_kfree_skb_any);
2342
2343
2344 /**
2345  * netif_device_detach - mark device as removed
2346  * @dev: network device
2347  *
2348  * Mark device as removed from system and therefore no longer available.
2349  */
2350 void netif_device_detach(struct net_device *dev)
2351 {
2352         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2353             netif_running(dev)) {
2354                 netif_tx_stop_all_queues(dev);
2355         }
2356 }
2357 EXPORT_SYMBOL(netif_device_detach);
2358
2359 /**
2360  * netif_device_attach - mark device as attached
2361  * @dev: network device
2362  *
2363  * Mark device as attached from system and restart if needed.
2364  */
2365 void netif_device_attach(struct net_device *dev)
2366 {
2367         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2368             netif_running(dev)) {
2369                 netif_tx_wake_all_queues(dev);
2370                 __netdev_watchdog_up(dev);
2371         }
2372 }
2373 EXPORT_SYMBOL(netif_device_attach);
2374
2375 /*
2376  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2377  * to be used as a distribution range.
2378  */
2379 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2380                   unsigned int num_tx_queues)
2381 {
2382         u32 hash;
2383         u16 qoffset = 0;
2384         u16 qcount = num_tx_queues;
2385
2386         if (skb_rx_queue_recorded(skb)) {
2387                 hash = skb_get_rx_queue(skb);
2388                 while (unlikely(hash >= num_tx_queues))
2389                         hash -= num_tx_queues;
2390                 return hash;
2391         }
2392
2393         if (dev->num_tc) {
2394                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2395                 qoffset = dev->tc_to_txq[tc].offset;
2396                 qcount = dev->tc_to_txq[tc].count;
2397         }
2398
2399         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2400 }
2401 EXPORT_SYMBOL(__skb_tx_hash);
2402
2403 static void skb_warn_bad_offload(const struct sk_buff *skb)
2404 {
2405         static const netdev_features_t null_features = 0;
2406         struct net_device *dev = skb->dev;
2407         const char *name = "";
2408
2409         if (!net_ratelimit())
2410                 return;
2411
2412         if (dev) {
2413                 if (dev->dev.parent)
2414                         name = dev_driver_string(dev->dev.parent);
2415                 else
2416                         name = netdev_name(dev);
2417         }
2418         WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2419              "gso_type=%d ip_summed=%d\n",
2420              name, dev ? &dev->features : &null_features,
2421              skb->sk ? &skb->sk->sk_route_caps : &null_features,
2422              skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2423              skb_shinfo(skb)->gso_type, skb->ip_summed);
2424 }
2425
2426 /*
2427  * Invalidate hardware checksum when packet is to be mangled, and
2428  * complete checksum manually on outgoing path.
2429  */
2430 int skb_checksum_help(struct sk_buff *skb)
2431 {
2432         __wsum csum;
2433         int ret = 0, offset;
2434
2435         if (skb->ip_summed == CHECKSUM_COMPLETE)
2436                 goto out_set_summed;
2437
2438         if (unlikely(skb_shinfo(skb)->gso_size)) {
2439                 skb_warn_bad_offload(skb);
2440                 return -EINVAL;
2441         }
2442
2443         /* Before computing a checksum, we should make sure no frag could
2444          * be modified by an external entity : checksum could be wrong.
2445          */
2446         if (skb_has_shared_frag(skb)) {
2447                 ret = __skb_linearize(skb);
2448                 if (ret)
2449                         goto out;
2450         }
2451
2452         offset = skb_checksum_start_offset(skb);
2453         BUG_ON(offset >= skb_headlen(skb));
2454         csum = skb_checksum(skb, offset, skb->len - offset, 0);
2455
2456         offset += skb->csum_offset;
2457         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2458
2459         if (skb_cloned(skb) &&
2460             !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2461                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2462                 if (ret)
2463                         goto out;
2464         }
2465
2466         *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2467 out_set_summed:
2468         skb->ip_summed = CHECKSUM_NONE;
2469 out:
2470         return ret;
2471 }
2472 EXPORT_SYMBOL(skb_checksum_help);
2473
2474 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2475 {
2476         __be16 type = skb->protocol;
2477
2478         /* Tunnel gso handlers can set protocol to ethernet. */
2479         if (type == htons(ETH_P_TEB)) {
2480                 struct ethhdr *eth;
2481
2482                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2483                         return 0;
2484
2485                 eth = (struct ethhdr *)skb_mac_header(skb);
2486                 type = eth->h_proto;
2487         }
2488
2489         return __vlan_get_protocol(skb, type, depth);
2490 }
2491
2492 /**
2493  *      skb_mac_gso_segment - mac layer segmentation handler.
2494  *      @skb: buffer to segment
2495  *      @features: features for the output path (see dev->features)
2496  */
2497 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2498                                     netdev_features_t features)
2499 {
2500         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2501         struct packet_offload *ptype;
2502         int vlan_depth = skb->mac_len;
2503         __be16 type = skb_network_protocol(skb, &vlan_depth);
2504
2505         if (unlikely(!type))
2506                 return ERR_PTR(-EINVAL);
2507
2508         __skb_pull(skb, vlan_depth);
2509
2510         rcu_read_lock();
2511         list_for_each_entry_rcu(ptype, &offload_base, list) {
2512                 if (ptype->type == type && ptype->callbacks.gso_segment) {
2513                         segs = ptype->callbacks.gso_segment(skb, features);
2514                         break;
2515                 }
2516         }
2517         rcu_read_unlock();
2518
2519         __skb_push(skb, skb->data - skb_mac_header(skb));
2520
2521         return segs;
2522 }
2523 EXPORT_SYMBOL(skb_mac_gso_segment);
2524
2525
2526 /* openvswitch calls this on rx path, so we need a different check.
2527  */
2528 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2529 {
2530         if (tx_path)
2531                 return skb->ip_summed != CHECKSUM_PARTIAL;
2532         else
2533                 return skb->ip_summed == CHECKSUM_NONE;
2534 }
2535
2536 /**
2537  *      __skb_gso_segment - Perform segmentation on skb.
2538  *      @skb: buffer to segment
2539  *      @features: features for the output path (see dev->features)
2540  *      @tx_path: whether it is called in TX path
2541  *
2542  *      This function segments the given skb and returns a list of segments.
2543  *
2544  *      It may return NULL if the skb requires no segmentation.  This is
2545  *      only possible when GSO is used for verifying header integrity.
2546  */
2547 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2548                                   netdev_features_t features, bool tx_path)
2549 {
2550         if (unlikely(skb_needs_check(skb, tx_path))) {
2551                 int err;
2552
2553                 skb_warn_bad_offload(skb);
2554
2555                 err = skb_cow_head(skb, 0);
2556                 if (err < 0)
2557                         return ERR_PTR(err);
2558         }
2559
2560         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2561         SKB_GSO_CB(skb)->encap_level = 0;
2562
2563         skb_reset_mac_header(skb);
2564         skb_reset_mac_len(skb);
2565
2566         return skb_mac_gso_segment(skb, features);
2567 }
2568 EXPORT_SYMBOL(__skb_gso_segment);
2569
2570 /* Take action when hardware reception checksum errors are detected. */
2571 #ifdef CONFIG_BUG
2572 void netdev_rx_csum_fault(struct net_device *dev)
2573 {
2574         if (net_ratelimit()) {
2575                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2576                 dump_stack();
2577         }
2578 }
2579 EXPORT_SYMBOL(netdev_rx_csum_fault);
2580 #endif
2581
2582 /* Actually, we should eliminate this check as soon as we know, that:
2583  * 1. IOMMU is present and allows to map all the memory.
2584  * 2. No high memory really exists on this machine.
2585  */
2586
2587 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2588 {
2589 #ifdef CONFIG_HIGHMEM
2590         int i;
2591         if (!(dev->features & NETIF_F_HIGHDMA)) {
2592                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2593                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2594                         if (PageHighMem(skb_frag_page(frag)))
2595                                 return 1;
2596                 }
2597         }
2598
2599         if (PCI_DMA_BUS_IS_PHYS) {
2600                 struct device *pdev = dev->dev.parent;
2601
2602                 if (!pdev)
2603                         return 0;
2604                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2605                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2606                         dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2607                         if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2608                                 return 1;
2609                 }
2610         }
2611 #endif
2612         return 0;
2613 }
2614
2615 /* If MPLS offload request, verify we are testing hardware MPLS features
2616  * instead of standard features for the netdev.
2617  */
2618 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2619 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2620                                            netdev_features_t features,
2621                                            __be16 type)
2622 {
2623         if (eth_p_mpls(type))
2624                 features &= skb->dev->mpls_features;
2625
2626         return features;
2627 }
2628 #else
2629 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2630                                            netdev_features_t features,
2631                                            __be16 type)
2632 {
2633         return features;
2634 }
2635 #endif
2636
2637 static netdev_features_t harmonize_features(struct sk_buff *skb,
2638         netdev_features_t features)
2639 {
2640         int tmp;
2641         __be16 type;
2642
2643         type = skb_network_protocol(skb, &tmp);
2644         features = net_mpls_features(skb, features, type);
2645
2646         if (skb->ip_summed != CHECKSUM_NONE &&
2647             !can_checksum_protocol(features, type)) {
2648                 features &= ~NETIF_F_CSUM_MASK;
2649         } else if (illegal_highdma(skb->dev, skb)) {
2650                 features &= ~NETIF_F_SG;
2651         }
2652
2653         return features;
2654 }
2655
2656 netdev_features_t passthru_features_check(struct sk_buff *skb,
2657                                           struct net_device *dev,
2658                                           netdev_features_t features)
2659 {
2660         return features;
2661 }
2662 EXPORT_SYMBOL(passthru_features_check);
2663
2664 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2665                                              struct net_device *dev,
2666                                              netdev_features_t features)
2667 {
2668         return vlan_features_check(skb, features);
2669 }
2670
2671 netdev_features_t netif_skb_features(struct sk_buff *skb)
2672 {
2673         struct net_device *dev = skb->dev;
2674         netdev_features_t features = dev->features;
2675         u16 gso_segs = skb_shinfo(skb)->gso_segs;
2676
2677         if (gso_segs > dev->gso_max_segs || gso_segs < dev->gso_min_segs)
2678                 features &= ~NETIF_F_GSO_MASK;
2679
2680         /* If encapsulation offload request, verify we are testing
2681          * hardware encapsulation features instead of standard
2682          * features for the netdev
2683          */
2684         if (skb->encapsulation)
2685                 features &= dev->hw_enc_features;
2686
2687         if (skb_vlan_tagged(skb))
2688                 features = netdev_intersect_features(features,
2689                                                      dev->vlan_features |
2690                                                      NETIF_F_HW_VLAN_CTAG_TX |
2691                                                      NETIF_F_HW_VLAN_STAG_TX);
2692
2693         if (dev->netdev_ops->ndo_features_check)
2694                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2695                                                                 features);
2696         else
2697                 features &= dflt_features_check(skb, dev, features);
2698
2699         return harmonize_features(skb, features);
2700 }
2701 EXPORT_SYMBOL(netif_skb_features);
2702
2703 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2704                     struct netdev_queue *txq, bool more)
2705 {
2706         unsigned int len;
2707         int rc;
2708
2709         if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2710                 dev_queue_xmit_nit(skb, dev);
2711
2712         len = skb->len;
2713         trace_net_dev_start_xmit(skb, dev);
2714         rc = netdev_start_xmit(skb, dev, txq, more);
2715         trace_net_dev_xmit(skb, rc, dev, len);
2716
2717         return rc;
2718 }
2719
2720 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2721                                     struct netdev_queue *txq, int *ret)
2722 {
2723         struct sk_buff *skb = first;
2724         int rc = NETDEV_TX_OK;
2725
2726         while (skb) {
2727                 struct sk_buff *next = skb->next;
2728
2729                 skb->next = NULL;
2730                 rc = xmit_one(skb, dev, txq, next != NULL);
2731                 if (unlikely(!dev_xmit_complete(rc))) {
2732                         skb->next = next;
2733                         goto out;
2734                 }
2735
2736                 skb = next;
2737                 if (netif_xmit_stopped(txq) && skb) {
2738                         rc = NETDEV_TX_BUSY;
2739                         break;
2740                 }
2741         }
2742
2743 out:
2744         *ret = rc;
2745         return skb;
2746 }
2747
2748 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2749                                           netdev_features_t features)
2750 {
2751         if (skb_vlan_tag_present(skb) &&
2752             !vlan_hw_offload_capable(features, skb->vlan_proto))
2753                 skb = __vlan_hwaccel_push_inside(skb);
2754         return skb;
2755 }
2756
2757 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2758 {
2759         netdev_features_t features;
2760
2761         if (skb->next)
2762                 return skb;
2763
2764         features = netif_skb_features(skb);
2765         skb = validate_xmit_vlan(skb, features);
2766         if (unlikely(!skb))
2767                 goto out_null;
2768
2769         if (netif_needs_gso(skb, features)) {
2770                 struct sk_buff *segs;
2771
2772                 segs = skb_gso_segment(skb, features);
2773                 if (IS_ERR(segs)) {
2774                         goto out_kfree_skb;
2775                 } else if (segs) {
2776                         consume_skb(skb);
2777                         skb = segs;
2778                 }
2779         } else {
2780                 if (skb_needs_linearize(skb, features) &&
2781                     __skb_linearize(skb))
2782                         goto out_kfree_skb;
2783
2784                 /* If packet is not checksummed and device does not
2785                  * support checksumming for this protocol, complete
2786                  * checksumming here.
2787                  */
2788                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2789                         if (skb->encapsulation)
2790                                 skb_set_inner_transport_header(skb,
2791                                                                skb_checksum_start_offset(skb));
2792                         else
2793                                 skb_set_transport_header(skb,
2794                                                          skb_checksum_start_offset(skb));
2795                         if (!(features & NETIF_F_CSUM_MASK) &&
2796                             skb_checksum_help(skb))
2797                                 goto out_kfree_skb;
2798                 }
2799         }
2800
2801         return skb;
2802
2803 out_kfree_skb:
2804         kfree_skb(skb);
2805 out_null:
2806         return NULL;
2807 }
2808
2809 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2810 {
2811         struct sk_buff *next, *head = NULL, *tail;
2812
2813         for (; skb != NULL; skb = next) {
2814                 next = skb->next;
2815                 skb->next = NULL;
2816
2817                 /* in case skb wont be segmented, point to itself */
2818                 skb->prev = skb;
2819
2820                 skb = validate_xmit_skb(skb, dev);
2821                 if (!skb)
2822                         continue;
2823
2824                 if (!head)
2825                         head = skb;
2826                 else
2827                         tail->next = skb;
2828                 /* If skb was segmented, skb->prev points to
2829                  * the last segment. If not, it still contains skb.
2830                  */
2831                 tail = skb->prev;
2832         }
2833         return head;
2834 }
2835
2836 static void qdisc_pkt_len_init(struct sk_buff *skb)
2837 {
2838         const struct skb_shared_info *shinfo = skb_shinfo(skb);
2839
2840         qdisc_skb_cb(skb)->pkt_len = skb->len;
2841
2842         /* To get more precise estimation of bytes sent on wire,
2843          * we add to pkt_len the headers size of all segments
2844          */
2845         if (shinfo->gso_size)  {
2846                 unsigned int hdr_len;
2847                 u16 gso_segs = shinfo->gso_segs;
2848
2849                 /* mac layer + network layer */
2850                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2851
2852                 /* + transport layer */
2853                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2854                         hdr_len += tcp_hdrlen(skb);
2855                 else
2856                         hdr_len += sizeof(struct udphdr);
2857
2858                 if (shinfo->gso_type & SKB_GSO_DODGY)
2859                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2860                                                 shinfo->gso_size);
2861
2862                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2863         }
2864 }
2865
2866 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2867                                  struct net_device *dev,
2868                                  struct netdev_queue *txq)
2869 {
2870         spinlock_t *root_lock = qdisc_lock(q);
2871         bool contended;
2872         int rc;
2873
2874         qdisc_pkt_len_init(skb);
2875         qdisc_calculate_pkt_len(skb, q);
2876         /*
2877          * Heuristic to force contended enqueues to serialize on a
2878          * separate lock before trying to get qdisc main lock.
2879          * This permits __QDISC___STATE_RUNNING owner to get the lock more
2880          * often and dequeue packets faster.
2881          */
2882         contended = qdisc_is_running(q);
2883         if (unlikely(contended))
2884                 spin_lock(&q->busylock);
2885
2886         spin_lock(root_lock);
2887         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2888                 kfree_skb(skb);
2889                 rc = NET_XMIT_DROP;
2890         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2891                    qdisc_run_begin(q)) {
2892                 /*
2893                  * This is a work-conserving queue; there are no old skbs
2894                  * waiting to be sent out; and the qdisc is not running -
2895                  * xmit the skb directly.
2896                  */
2897
2898                 qdisc_bstats_update(q, skb);
2899
2900                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
2901                         if (unlikely(contended)) {
2902                                 spin_unlock(&q->busylock);
2903                                 contended = false;
2904                         }
2905                         __qdisc_run(q);
2906                 } else
2907                         qdisc_run_end(q);
2908
2909                 rc = NET_XMIT_SUCCESS;
2910         } else {
2911                 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2912                 if (qdisc_run_begin(q)) {
2913                         if (unlikely(contended)) {
2914                                 spin_unlock(&q->busylock);
2915                                 contended = false;
2916                         }
2917                         __qdisc_run(q);
2918                 }
2919         }
2920         spin_unlock(root_lock);
2921         if (unlikely(contended))
2922                 spin_unlock(&q->busylock);
2923         return rc;
2924 }
2925
2926 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2927 static void skb_update_prio(struct sk_buff *skb)
2928 {
2929         struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2930
2931         if (!skb->priority && skb->sk && map) {
2932                 unsigned int prioidx =
2933                         sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
2934
2935                 if (prioidx < map->priomap_len)
2936                         skb->priority = map->priomap[prioidx];
2937         }
2938 }
2939 #else
2940 #define skb_update_prio(skb)
2941 #endif
2942
2943 DEFINE_PER_CPU(int, xmit_recursion);
2944 EXPORT_SYMBOL(xmit_recursion);
2945
2946 #define RECURSION_LIMIT 10
2947
2948 /**
2949  *      dev_loopback_xmit - loop back @skb
2950  *      @net: network namespace this loopback is happening in
2951  *      @sk:  sk needed to be a netfilter okfn
2952  *      @skb: buffer to transmit
2953  */
2954 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
2955 {
2956         skb_reset_mac_header(skb);
2957         __skb_pull(skb, skb_network_offset(skb));
2958         skb->pkt_type = PACKET_LOOPBACK;
2959         skb->ip_summed = CHECKSUM_UNNECESSARY;
2960         WARN_ON(!skb_dst(skb));
2961         skb_dst_force(skb);
2962         netif_rx_ni(skb);
2963         return 0;
2964 }
2965 EXPORT_SYMBOL(dev_loopback_xmit);
2966
2967 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2968 {
2969 #ifdef CONFIG_XPS
2970         struct xps_dev_maps *dev_maps;
2971         struct xps_map *map;
2972         int queue_index = -1;
2973
2974         rcu_read_lock();
2975         dev_maps = rcu_dereference(dev->xps_maps);
2976         if (dev_maps) {
2977                 map = rcu_dereference(
2978                     dev_maps->cpu_map[skb->sender_cpu - 1]);
2979                 if (map) {
2980                         if (map->len == 1)
2981                                 queue_index = map->queues[0];
2982                         else
2983                                 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
2984                                                                            map->len)];
2985                         if (unlikely(queue_index >= dev->real_num_tx_queues))
2986                                 queue_index = -1;
2987                 }
2988         }
2989         rcu_read_unlock();
2990
2991         return queue_index;
2992 #else
2993         return -1;
2994 #endif
2995 }
2996
2997 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
2998 {
2999         struct sock *sk = skb->sk;
3000         int queue_index = sk_tx_queue_get(sk);
3001
3002         if (queue_index < 0 || skb->ooo_okay ||
3003             queue_index >= dev->real_num_tx_queues) {
3004                 int new_index = get_xps_queue(dev, skb);
3005                 if (new_index < 0)
3006                         new_index = skb_tx_hash(dev, skb);
3007
3008                 if (queue_index != new_index && sk &&
3009                     sk_fullsock(sk) &&
3010                     rcu_access_pointer(sk->sk_dst_cache))
3011                         sk_tx_queue_set(sk, new_index);
3012
3013                 queue_index = new_index;
3014         }
3015
3016         return queue_index;
3017 }
3018
3019 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3020                                     struct sk_buff *skb,
3021                                     void *accel_priv)
3022 {
3023         int queue_index = 0;
3024
3025 #ifdef CONFIG_XPS
3026         u32 sender_cpu = skb->sender_cpu - 1;
3027
3028         if (sender_cpu >= (u32)NR_CPUS)
3029                 skb->sender_cpu = raw_smp_processor_id() + 1;
3030 #endif
3031
3032         if (dev->real_num_tx_queues != 1) {
3033                 const struct net_device_ops *ops = dev->netdev_ops;
3034                 if (ops->ndo_select_queue)
3035                         queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3036                                                             __netdev_pick_tx);
3037                 else
3038                         queue_index = __netdev_pick_tx(dev, skb);
3039
3040                 if (!accel_priv)
3041                         queue_index = netdev_cap_txqueue(dev, queue_index);
3042         }
3043
3044         skb_set_queue_mapping(skb, queue_index);
3045         return netdev_get_tx_queue(dev, queue_index);
3046 }
3047
3048 /**
3049  *      __dev_queue_xmit - transmit a buffer
3050  *      @skb: buffer to transmit
3051  *      @accel_priv: private data used for L2 forwarding offload
3052  *
3053  *      Queue a buffer for transmission to a network device. The caller must
3054  *      have set the device and priority and built the buffer before calling
3055  *      this function. The function can be called from an interrupt.
3056  *
3057  *      A negative errno code is returned on a failure. A success does not
3058  *      guarantee the frame will be transmitted as it may be dropped due
3059  *      to congestion or traffic shaping.
3060  *
3061  * -----------------------------------------------------------------------------------
3062  *      I notice this method can also return errors from the queue disciplines,
3063  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3064  *      be positive.
3065  *
3066  *      Regardless of the return value, the skb is consumed, so it is currently
3067  *      difficult to retry a send to this method.  (You can bump the ref count
3068  *      before sending to hold a reference for retry if you are careful.)
3069  *
3070  *      When calling this method, interrupts MUST be enabled.  This is because
3071  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3072  *          --BLG
3073  */
3074 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3075 {
3076         struct net_device *dev = skb->dev;
3077         struct netdev_queue *txq;
3078         struct Qdisc *q;
3079         int rc = -ENOMEM;
3080
3081         skb_reset_mac_header(skb);
3082
3083         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3084                 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3085
3086         /* Disable soft irqs for various locks below. Also
3087          * stops preemption for RCU.
3088          */
3089         rcu_read_lock_bh();
3090
3091         skb_update_prio(skb);
3092
3093         /* If device/qdisc don't need skb->dst, release it right now while
3094          * its hot in this cpu cache.
3095          */
3096         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3097                 skb_dst_drop(skb);
3098         else
3099                 skb_dst_force(skb);
3100
3101 #ifdef CONFIG_NET_SWITCHDEV
3102         /* Don't forward if offload device already forwarded */
3103         if (skb->offload_fwd_mark &&
3104             skb->offload_fwd_mark == dev->offload_fwd_mark) {
3105                 consume_skb(skb);
3106                 rc = NET_XMIT_SUCCESS;
3107                 goto out;
3108         }
3109 #endif
3110
3111         txq = netdev_pick_tx(dev, skb, accel_priv);
3112         q = rcu_dereference_bh(txq->qdisc);
3113
3114 #ifdef CONFIG_NET_CLS_ACT
3115         skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
3116 #endif
3117         trace_net_dev_queue(skb);
3118         if (q->enqueue) {
3119                 rc = __dev_xmit_skb(skb, q, dev, txq);
3120                 goto out;
3121         }
3122
3123         /* The device has no queue. Common case for software devices:
3124            loopback, all the sorts of tunnels...
3125
3126            Really, it is unlikely that netif_tx_lock protection is necessary
3127            here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3128            counters.)
3129            However, it is possible, that they rely on protection
3130            made by us here.
3131
3132            Check this and shot the lock. It is not prone from deadlocks.
3133            Either shot noqueue qdisc, it is even simpler 8)
3134          */
3135         if (dev->flags & IFF_UP) {
3136                 int cpu = smp_processor_id(); /* ok because BHs are off */
3137
3138                 if (txq->xmit_lock_owner != cpu) {
3139
3140                         if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
3141                                 goto recursion_alert;
3142
3143                         skb = validate_xmit_skb(skb, dev);
3144                         if (!skb)
3145                                 goto drop;
3146
3147                         HARD_TX_LOCK(dev, txq, cpu);
3148
3149                         if (!netif_xmit_stopped(txq)) {
3150                                 __this_cpu_inc(xmit_recursion);
3151                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3152                                 __this_cpu_dec(xmit_recursion);
3153                                 if (dev_xmit_complete(rc)) {
3154                                         HARD_TX_UNLOCK(dev, txq);
3155                                         goto out;
3156                                 }
3157                         }
3158                         HARD_TX_UNLOCK(dev, txq);
3159                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3160                                              dev->name);
3161                 } else {
3162                         /* Recursion is detected! It is possible,
3163                          * unfortunately
3164                          */
3165 recursion_alert:
3166                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3167                                              dev->name);
3168                 }
3169         }
3170
3171         rc = -ENETDOWN;
3172 drop:
3173         rcu_read_unlock_bh();
3174
3175         atomic_long_inc(&dev->tx_dropped);
3176         kfree_skb_list(skb);
3177         return rc;
3178 out:
3179         rcu_read_unlock_bh();
3180         return rc;
3181 }
3182
3183 int dev_queue_xmit(struct sk_buff *skb)
3184 {
3185         return __dev_queue_xmit(skb, NULL);
3186 }
3187 EXPORT_SYMBOL(dev_queue_xmit);
3188
3189 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3190 {
3191         return __dev_queue_xmit(skb, accel_priv);
3192 }
3193 EXPORT_SYMBOL(dev_queue_xmit_accel);
3194
3195
3196 /*=======================================================================
3197                         Receiver routines
3198   =======================================================================*/
3199
3200 int netdev_max_backlog __read_mostly = 1000;
3201 EXPORT_SYMBOL(netdev_max_backlog);
3202
3203 int netdev_tstamp_prequeue __read_mostly = 1;
3204 int netdev_budget __read_mostly = 300;
3205 int weight_p __read_mostly = 64;            /* old backlog weight */
3206
3207 /* Called with irq disabled */
3208 static inline void ____napi_schedule(struct softnet_data *sd,
3209                                      struct napi_struct *napi)
3210 {
3211         list_add_tail(&napi->poll_list, &sd->poll_list);
3212         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3213 }
3214
3215 #ifdef CONFIG_RPS
3216
3217 /* One global table that all flow-based protocols share. */
3218 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3219 EXPORT_SYMBOL(rps_sock_flow_table);
3220 u32 rps_cpu_mask __read_mostly;
3221 EXPORT_SYMBOL(rps_cpu_mask);
3222
3223 struct static_key rps_needed __read_mostly;
3224
3225 static struct rps_dev_flow *
3226 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3227             struct rps_dev_flow *rflow, u16 next_cpu)
3228 {
3229         if (next_cpu < nr_cpu_ids) {
3230 #ifdef CONFIG_RFS_ACCEL
3231                 struct netdev_rx_queue *rxqueue;
3232                 struct rps_dev_flow_table *flow_table;
3233                 struct rps_dev_flow *old_rflow;
3234                 u32 flow_id;
3235                 u16 rxq_index;
3236                 int rc;
3237
3238                 /* Should we steer this flow to a different hardware queue? */
3239                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3240                     !(dev->features & NETIF_F_NTUPLE))
3241                         goto out;
3242                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3243                 if (rxq_index == skb_get_rx_queue(skb))
3244                         goto out;
3245
3246                 rxqueue = dev->_rx + rxq_index;
3247                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3248                 if (!flow_table)
3249                         goto out;
3250                 flow_id = skb_get_hash(skb) & flow_table->mask;
3251                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3252                                                         rxq_index, flow_id);
3253                 if (rc < 0)
3254                         goto out;
3255                 old_rflow = rflow;
3256                 rflow = &flow_table->flows[flow_id];
3257                 rflow->filter = rc;
3258                 if (old_rflow->filter == rflow->filter)
3259                         old_rflow->filter = RPS_NO_FILTER;
3260         out:
3261 #endif
3262                 rflow->last_qtail =
3263                         per_cpu(softnet_data, next_cpu).input_queue_head;
3264         }
3265
3266         rflow->cpu = next_cpu;
3267         return rflow;
3268 }
3269
3270 /*
3271  * get_rps_cpu is called from netif_receive_skb and returns the target
3272  * CPU from the RPS map of the receiving queue for a given skb.
3273  * rcu_read_lock must be held on entry.
3274  */
3275 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3276                        struct rps_dev_flow **rflowp)
3277 {
3278         const struct rps_sock_flow_table *sock_flow_table;
3279         struct netdev_rx_queue *rxqueue = dev->_rx;
3280         struct rps_dev_flow_table *flow_table;
3281         struct rps_map *map;
3282         int cpu = -1;
3283         u32 tcpu;
3284         u32 hash;
3285
3286         if (skb_rx_queue_recorded(skb)) {
3287                 u16 index = skb_get_rx_queue(skb);
3288
3289                 if (unlikely(index >= dev->real_num_rx_queues)) {
3290                         WARN_ONCE(dev->real_num_rx_queues > 1,
3291                                   "%s received packet on queue %u, but number "
3292                                   "of RX queues is %u\n",
3293                                   dev->name, index, dev->real_num_rx_queues);
3294                         goto done;
3295                 }
3296                 rxqueue += index;
3297         }
3298
3299         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3300
3301         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3302         map = rcu_dereference(rxqueue->rps_map);
3303         if (!flow_table && !map)
3304                 goto done;
3305
3306         skb_reset_network_header(skb);
3307         hash = skb_get_hash(skb);
3308         if (!hash)
3309                 goto done;
3310
3311         sock_flow_table = rcu_dereference(rps_sock_flow_table);
3312         if (flow_table && sock_flow_table) {
3313                 struct rps_dev_flow *rflow;
3314                 u32 next_cpu;
3315                 u32 ident;
3316
3317                 /* First check into global flow table if there is a match */
3318                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3319                 if ((ident ^ hash) & ~rps_cpu_mask)
3320                         goto try_rps;
3321
3322                 next_cpu = ident & rps_cpu_mask;
3323
3324                 /* OK, now we know there is a match,
3325                  * we can look at the local (per receive queue) flow table
3326                  */
3327                 rflow = &flow_table->flows[hash & flow_table->mask];
3328                 tcpu = rflow->cpu;
3329
3330                 /*
3331                  * If the desired CPU (where last recvmsg was done) is
3332                  * different from current CPU (one in the rx-queue flow
3333                  * table entry), switch if one of the following holds:
3334                  *   - Current CPU is unset (>= nr_cpu_ids).
3335                  *   - Current CPU is offline.
3336                  *   - The current CPU's queue tail has advanced beyond the
3337                  *     last packet that was enqueued using this table entry.
3338                  *     This guarantees that all previous packets for the flow
3339                  *     have been dequeued, thus preserving in order delivery.
3340                  */
3341                 if (unlikely(tcpu != next_cpu) &&
3342                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3343                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3344                       rflow->last_qtail)) >= 0)) {
3345                         tcpu = next_cpu;
3346                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3347                 }
3348
3349                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3350                         *rflowp = rflow;
3351                         cpu = tcpu;
3352                         goto done;
3353                 }
3354         }
3355
3356 try_rps:
3357
3358         if (map) {
3359                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3360                 if (cpu_online(tcpu)) {
3361                         cpu = tcpu;
3362                         goto done;
3363                 }
3364         }
3365
3366 done:
3367         return cpu;
3368 }
3369
3370 #ifdef CONFIG_RFS_ACCEL
3371
3372 /**
3373  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3374  * @dev: Device on which the filter was set
3375  * @rxq_index: RX queue index
3376  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3377  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3378  *
3379  * Drivers that implement ndo_rx_flow_steer() should periodically call
3380  * this function for each installed filter and remove the filters for
3381  * which it returns %true.
3382  */
3383 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3384                          u32 flow_id, u16 filter_id)
3385 {
3386         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3387         struct rps_dev_flow_table *flow_table;
3388         struct rps_dev_flow *rflow;
3389         bool expire = true;
3390         unsigned int cpu;
3391
3392         rcu_read_lock();
3393         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3394         if (flow_table && flow_id <= flow_table->mask) {
3395                 rflow = &flow_table->flows[flow_id];
3396                 cpu = ACCESS_ONCE(rflow->cpu);
3397                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3398                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3399                            rflow->last_qtail) <
3400                      (int)(10 * flow_table->mask)))
3401                         expire = false;
3402         }
3403         rcu_read_unlock();
3404         return expire;
3405 }
3406 EXPORT_SYMBOL(rps_may_expire_flow);
3407
3408 #endif /* CONFIG_RFS_ACCEL */
3409
3410 /* Called from hardirq (IPI) context */
3411 static void rps_trigger_softirq(void *data)
3412 {
3413         struct softnet_data *sd = data;
3414
3415         ____napi_schedule(sd, &sd->backlog);
3416         sd->received_rps++;
3417 }
3418
3419 #endif /* CONFIG_RPS */
3420
3421 /*
3422  * Check if this softnet_data structure is another cpu one
3423  * If yes, queue it to our IPI list and return 1
3424  * If no, return 0
3425  */
3426 static int rps_ipi_queued(struct softnet_data *sd)
3427 {
3428 #ifdef CONFIG_RPS
3429         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3430
3431         if (sd != mysd) {
3432                 sd->rps_ipi_next = mysd->rps_ipi_list;
3433                 mysd->rps_ipi_list = sd;
3434
3435                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3436                 return 1;
3437         }
3438 #endif /* CONFIG_RPS */
3439         return 0;
3440 }
3441
3442 #ifdef CONFIG_NET_FLOW_LIMIT
3443 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3444 #endif
3445
3446 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3447 {
3448 #ifdef CONFIG_NET_FLOW_LIMIT
3449         struct sd_flow_limit *fl;
3450         struct softnet_data *sd;
3451         unsigned int old_flow, new_flow;
3452
3453         if (qlen < (netdev_max_backlog >> 1))
3454                 return false;
3455
3456         sd = this_cpu_ptr(&softnet_data);
3457
3458         rcu_read_lock();
3459         fl = rcu_dereference(sd->flow_limit);
3460         if (fl) {
3461                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3462                 old_flow = fl->history[fl->history_head];
3463                 fl->history[fl->history_head] = new_flow;
3464
3465                 fl->history_head++;
3466                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3467
3468                 if (likely(fl->buckets[old_flow]))
3469                         fl->buckets[old_flow]--;
3470
3471                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3472                         fl->count++;
3473                         rcu_read_unlock();
3474                         return true;
3475                 }
3476         }
3477         rcu_read_unlock();
3478 #endif
3479         return false;
3480 }
3481
3482 /*
3483  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3484  * queue (may be a remote CPU queue).
3485  */
3486 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3487                               unsigned int *qtail)
3488 {
3489         struct softnet_data *sd;
3490         unsigned long flags;
3491         unsigned int qlen;
3492
3493         sd = &per_cpu(softnet_data, cpu);
3494
3495         local_irq_save(flags);
3496
3497         rps_lock(sd);
3498         if (!netif_running(skb->dev))
3499                 goto drop;
3500         qlen = skb_queue_len(&sd->input_pkt_queue);
3501         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3502                 if (qlen) {
3503 enqueue:
3504                         __skb_queue_tail(&sd->input_pkt_queue, skb);
3505                         input_queue_tail_incr_save(sd, qtail);
3506                         rps_unlock(sd);
3507                         local_irq_restore(flags);
3508                         return NET_RX_SUCCESS;
3509                 }
3510
3511                 /* Schedule NAPI for backlog device
3512                  * We can use non atomic operation since we own the queue lock
3513                  */
3514                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3515                         if (!rps_ipi_queued(sd))
3516                                 ____napi_schedule(sd, &sd->backlog);
3517                 }
3518                 goto enqueue;
3519         }
3520
3521 drop:
3522         sd->dropped++;
3523         rps_unlock(sd);
3524
3525         local_irq_restore(flags);
3526
3527         atomic_long_inc(&skb->dev->rx_dropped);
3528         kfree_skb(skb);
3529         return NET_RX_DROP;
3530 }
3531
3532 static int netif_rx_internal(struct sk_buff *skb)
3533 {
3534         int ret;
3535
3536         net_timestamp_check(netdev_tstamp_prequeue, skb);
3537
3538         trace_netif_rx(skb);
3539 #ifdef CONFIG_RPS
3540         if (static_key_false(&rps_needed)) {
3541                 struct rps_dev_flow voidflow, *rflow = &voidflow;
3542                 int cpu;
3543
3544                 preempt_disable();
3545                 rcu_read_lock();
3546
3547                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3548                 if (cpu < 0)
3549                         cpu = smp_processor_id();
3550
3551                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3552
3553                 rcu_read_unlock();
3554                 preempt_enable();
3555         } else
3556 #endif
3557         {
3558                 unsigned int qtail;
3559                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3560                 put_cpu();
3561         }
3562         return ret;
3563 }
3564
3565 /**
3566  *      netif_rx        -       post buffer to the network code
3567  *      @skb: buffer to post
3568  *
3569  *      This function receives a packet from a device driver and queues it for
3570  *      the upper (protocol) levels to process.  It always succeeds. The buffer
3571  *      may be dropped during processing for congestion control or by the
3572  *      protocol layers.
3573  *
3574  *      return values:
3575  *      NET_RX_SUCCESS  (no congestion)
3576  *      NET_RX_DROP     (packet was dropped)
3577  *
3578  */
3579
3580 int netif_rx(struct sk_buff *skb)
3581 {
3582         trace_netif_rx_entry(skb);
3583
3584         return netif_rx_internal(skb);
3585 }
3586 EXPORT_SYMBOL(netif_rx);
3587
3588 int netif_rx_ni(struct sk_buff *skb)
3589 {
3590         int err;
3591
3592         trace_netif_rx_ni_entry(skb);
3593
3594         preempt_disable();
3595         err = netif_rx_internal(skb);
3596         if (local_softirq_pending())
3597                 do_softirq();
3598         preempt_enable();
3599
3600         return err;
3601 }
3602 EXPORT_SYMBOL(netif_rx_ni);
3603
3604 static void net_tx_action(struct softirq_action *h)
3605 {
3606         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3607
3608         if (sd->completion_queue) {
3609                 struct sk_buff *clist;
3610
3611                 local_irq_disable();
3612                 clist = sd->completion_queue;
3613                 sd->completion_queue = NULL;
3614                 local_irq_enable();
3615
3616                 while (clist) {
3617                         struct sk_buff *skb = clist;
3618                         clist = clist->next;
3619
3620                         WARN_ON(atomic_read(&skb->users));
3621                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3622                                 trace_consume_skb(skb);
3623                         else
3624                                 trace_kfree_skb(skb, net_tx_action);
3625                         __kfree_skb(skb);
3626                 }
3627         }
3628
3629         if (sd->output_queue) {
3630                 struct Qdisc *head;
3631
3632                 local_irq_disable();
3633                 head = sd->output_queue;
3634                 sd->output_queue = NULL;
3635                 sd->output_queue_tailp = &sd->output_queue;
3636                 local_irq_enable();
3637
3638                 while (head) {
3639                         struct Qdisc *q = head;
3640                         spinlock_t *root_lock;
3641
3642                         head = head->next_sched;
3643
3644                         root_lock = qdisc_lock(q);
3645                         if (spin_trylock(root_lock)) {
3646                                 smp_mb__before_atomic();
3647                                 clear_bit(__QDISC_STATE_SCHED,
3648                                           &q->state);
3649                                 qdisc_run(q);
3650                                 spin_unlock(root_lock);
3651                         } else {
3652                                 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3653                                               &q->state)) {
3654                                         __netif_reschedule(q);
3655                                 } else {
3656                                         smp_mb__before_atomic();
3657                                         clear_bit(__QDISC_STATE_SCHED,
3658                                                   &q->state);
3659                                 }
3660                         }
3661                 }
3662         }
3663 }
3664
3665 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3666     (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3667 /* This hook is defined here for ATM LANE */
3668 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3669                              unsigned char *addr) __read_mostly;
3670 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3671 #endif
3672
3673 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3674                                          struct packet_type **pt_prev,
3675                                          int *ret, struct net_device *orig_dev)
3676 {
3677 #ifdef CONFIG_NET_CLS_ACT
3678         struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3679         struct tcf_result cl_res;
3680
3681         /* If there's at least one ingress present somewhere (so
3682          * we get here via enabled static key), remaining devices
3683          * that are not configured with an ingress qdisc will bail
3684          * out here.
3685          */
3686         if (!cl)
3687                 return skb;
3688         if (*pt_prev) {
3689                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3690                 *pt_prev = NULL;
3691         }
3692
3693         qdisc_skb_cb(skb)->pkt_len = skb->len;
3694         skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3695         qdisc_bstats_cpu_update(cl->q, skb);
3696
3697         switch (tc_classify(skb, cl, &cl_res, false)) {
3698         case TC_ACT_OK:
3699         case TC_ACT_RECLASSIFY:
3700                 skb->tc_index = TC_H_MIN(cl_res.classid);
3701                 break;
3702         case TC_ACT_SHOT:
3703                 qdisc_qstats_cpu_drop(cl->q);
3704         case TC_ACT_STOLEN:
3705         case TC_ACT_QUEUED:
3706                 kfree_skb(skb);
3707                 return NULL;
3708         case TC_ACT_REDIRECT:
3709                 /* skb_mac_header check was done by cls/act_bpf, so
3710                  * we can safely push the L2 header back before
3711                  * redirecting to another netdev
3712                  */
3713                 __skb_push(skb, skb->mac_len);
3714                 skb_do_redirect(skb);
3715                 return NULL;
3716         default:
3717                 break;
3718         }
3719 #endif /* CONFIG_NET_CLS_ACT */
3720         return skb;
3721 }
3722
3723 /**
3724  *      netdev_rx_handler_register - register receive handler
3725  *      @dev: device to register a handler for
3726  *      @rx_handler: receive handler to register
3727  *      @rx_handler_data: data pointer that is used by rx handler
3728  *
3729  *      Register a receive handler for a device. This handler will then be
3730  *      called from __netif_receive_skb. A negative errno code is returned
3731  *      on a failure.
3732  *
3733  *      The caller must hold the rtnl_mutex.
3734  *
3735  *      For a general description of rx_handler, see enum rx_handler_result.
3736  */
3737 int netdev_rx_handler_register(struct net_device *dev,
3738                                rx_handler_func_t *rx_handler,
3739                                void *rx_handler_data)
3740 {
3741         ASSERT_RTNL();
3742
3743         if (dev->rx_handler)
3744                 return -EBUSY;
3745
3746         /* Note: rx_handler_data must be set before rx_handler */
3747         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3748         rcu_assign_pointer(dev->rx_handler, rx_handler);
3749
3750         return 0;
3751 }
3752 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3753
3754 /**
3755  *      netdev_rx_handler_unregister - unregister receive handler
3756  *      @dev: device to unregister a handler from
3757  *
3758  *      Unregister a receive handler from a device.
3759  *
3760  *      The caller must hold the rtnl_mutex.
3761  */
3762 void netdev_rx_handler_unregister(struct net_device *dev)
3763 {
3764
3765         ASSERT_RTNL();
3766         RCU_INIT_POINTER(dev->rx_handler, NULL);
3767         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3768          * section has a guarantee to see a non NULL rx_handler_data
3769          * as well.
3770          */
3771         synchronize_net();
3772         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3773 }
3774 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3775
3776 /*
3777  * Limit the use of PFMEMALLOC reserves to those protocols that implement
3778  * the special handling of PFMEMALLOC skbs.
3779  */
3780 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3781 {
3782         switch (skb->protocol) {
3783         case htons(ETH_P_ARP):
3784         case htons(ETH_P_IP):
3785         case htons(ETH_P_IPV6):
3786         case htons(ETH_P_8021Q):
3787         case htons(ETH_P_8021AD):
3788                 return true;
3789         default:
3790                 return false;
3791         }
3792 }
3793
3794 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
3795                              int *ret, struct net_device *orig_dev)
3796 {
3797 #ifdef CONFIG_NETFILTER_INGRESS
3798         if (nf_hook_ingress_active(skb)) {
3799                 if (*pt_prev) {
3800                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
3801                         *pt_prev = NULL;
3802                 }
3803
3804                 return nf_hook_ingress(skb);
3805         }
3806 #endif /* CONFIG_NETFILTER_INGRESS */
3807         return 0;
3808 }
3809
3810 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3811 {
3812         struct packet_type *ptype, *pt_prev;
3813         rx_handler_func_t *rx_handler;
3814         struct net_device *orig_dev;
3815         bool deliver_exact = false;
3816         int ret = NET_RX_DROP;
3817         __be16 type;
3818
3819         net_timestamp_check(!netdev_tstamp_prequeue, skb);
3820
3821         trace_netif_receive_skb(skb);
3822
3823         orig_dev = skb->dev;
3824
3825         skb_reset_network_header(skb);
3826         if (!skb_transport_header_was_set(skb))
3827                 skb_reset_transport_header(skb);
3828         skb_reset_mac_len(skb);
3829
3830         pt_prev = NULL;
3831
3832 another_round:
3833         skb->skb_iif = skb->dev->ifindex;
3834
3835         __this_cpu_inc(softnet_data.processed);
3836
3837         if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3838             skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3839                 skb = skb_vlan_untag(skb);
3840                 if (unlikely(!skb))
3841                         goto out;
3842         }
3843
3844 #ifdef CONFIG_NET_CLS_ACT
3845         if (skb->tc_verd & TC_NCLS) {
3846                 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3847                 goto ncls;
3848         }
3849 #endif
3850
3851         if (pfmemalloc)
3852                 goto skip_taps;
3853
3854         list_for_each_entry_rcu(ptype, &ptype_all, list) {
3855                 if (pt_prev)
3856                         ret = deliver_skb(skb, pt_prev, orig_dev);
3857                 pt_prev = ptype;
3858         }
3859
3860         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
3861                 if (pt_prev)
3862                         ret = deliver_skb(skb, pt_prev, orig_dev);
3863                 pt_prev = ptype;
3864         }
3865
3866 skip_taps:
3867 #ifdef CONFIG_NET_INGRESS
3868         if (static_key_false(&ingress_needed)) {
3869                 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3870                 if (!skb)
3871                         goto out;
3872
3873                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
3874                         goto out;
3875         }
3876 #endif
3877 #ifdef CONFIG_NET_CLS_ACT
3878         skb->tc_verd = 0;
3879 ncls:
3880 #endif
3881         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3882                 goto drop;
3883
3884         if (skb_vlan_tag_present(skb)) {
3885                 if (pt_prev) {
3886                         ret = deliver_skb(skb, pt_prev, orig_dev);
3887                         pt_prev = NULL;
3888                 }
3889                 if (vlan_do_receive(&skb))
3890                         goto another_round;
3891                 else if (unlikely(!skb))
3892                         goto out;
3893         }
3894
3895         rx_handler = rcu_dereference(skb->dev->rx_handler);
3896         if (rx_handler) {
3897                 if (pt_prev) {
3898                         ret = deliver_skb(skb, pt_prev, orig_dev);
3899                         pt_prev = NULL;
3900                 }
3901                 switch (rx_handler(&skb)) {
3902                 case RX_HANDLER_CONSUMED:
3903                         ret = NET_RX_SUCCESS;
3904                         goto out;
3905                 case RX_HANDLER_ANOTHER:
3906                         goto another_round;
3907                 case RX_HANDLER_EXACT:
3908                         deliver_exact = true;
3909                 case RX_HANDLER_PASS:
3910                         break;
3911                 default:
3912                         BUG();
3913                 }
3914         }
3915
3916         if (unlikely(skb_vlan_tag_present(skb))) {
3917                 if (skb_vlan_tag_get_id(skb))
3918                         skb->pkt_type = PACKET_OTHERHOST;
3919                 /* Note: we might in the future use prio bits
3920                  * and set skb->priority like in vlan_do_receive()
3921                  * For the time being, just ignore Priority Code Point
3922                  */
3923                 skb->vlan_tci = 0;
3924         }
3925
3926         type = skb->protocol;
3927
3928         /* deliver only exact match when indicated */
3929         if (likely(!deliver_exact)) {
3930                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3931                                        &ptype_base[ntohs(type) &
3932                                                    PTYPE_HASH_MASK]);
3933         }
3934
3935         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3936                                &orig_dev->ptype_specific);
3937
3938         if (unlikely(skb->dev != orig_dev)) {
3939                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3940                                        &skb->dev->ptype_specific);
3941         }
3942
3943         if (pt_prev) {
3944                 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3945                         goto drop;
3946                 else
3947                         ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3948         } else {
3949 drop:
3950                 atomic_long_inc(&skb->dev->rx_dropped);
3951                 kfree_skb(skb);
3952                 /* Jamal, now you will not able to escape explaining
3953                  * me how you were going to use this. :-)
3954                  */
3955                 ret = NET_RX_DROP;
3956         }
3957
3958 out:
3959         return ret;
3960 }
3961
3962 static int __netif_receive_skb(struct sk_buff *skb)
3963 {
3964         int ret;
3965
3966         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3967                 unsigned long pflags = current->flags;
3968
3969                 /*
3970                  * PFMEMALLOC skbs are special, they should
3971                  * - be delivered to SOCK_MEMALLOC sockets only
3972                  * - stay away from userspace
3973                  * - have bounded memory usage
3974                  *
3975                  * Use PF_MEMALLOC as this saves us from propagating the allocation
3976                  * context down to all allocation sites.
3977                  */
3978                 current->flags |= PF_MEMALLOC;
3979                 ret = __netif_receive_skb_core(skb, true);
3980                 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3981         } else
3982                 ret = __netif_receive_skb_core(skb, false);
3983
3984         return ret;
3985 }
3986
3987 static int netif_receive_skb_internal(struct sk_buff *skb)
3988 {
3989         int ret;
3990
3991         net_timestamp_check(netdev_tstamp_prequeue, skb);
3992
3993         if (skb_defer_rx_timestamp(skb))
3994                 return NET_RX_SUCCESS;
3995
3996         rcu_read_lock();
3997
3998 #ifdef CONFIG_RPS
3999         if (static_key_false(&rps_needed)) {
4000                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4001                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4002
4003                 if (cpu >= 0) {
4004                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4005                         rcu_read_unlock();
4006                         return ret;
4007                 }
4008         }
4009 #endif
4010         ret = __netif_receive_skb(skb);
4011         rcu_read_unlock();
4012         return ret;
4013 }
4014
4015 /**
4016  *      netif_receive_skb - process receive buffer from network
4017  *      @skb: buffer to process
4018  *
4019  *      netif_receive_skb() is the main receive data processing function.
4020  *      It always succeeds. The buffer may be dropped during processing
4021  *      for congestion control or by the protocol layers.
4022  *
4023  *      This function may only be called from softirq context and interrupts
4024  *      should be enabled.
4025  *
4026  *      Return values (usually ignored):
4027  *      NET_RX_SUCCESS: no congestion
4028  *      NET_RX_DROP: packet was dropped
4029  */
4030 int netif_receive_skb(struct sk_buff *skb)
4031 {
4032         trace_netif_receive_skb_entry(skb);
4033
4034         return netif_receive_skb_internal(skb);
4035 }
4036 EXPORT_SYMBOL(netif_receive_skb);
4037
4038 /* Network device is going away, flush any packets still pending
4039  * Called with irqs disabled.
4040  */
4041 static void flush_backlog(void *arg)
4042 {
4043         struct net_device *dev = arg;
4044         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4045         struct sk_buff *skb, *tmp;
4046
4047         rps_lock(sd);
4048         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4049                 if (skb->dev == dev) {
4050                         __skb_unlink(skb, &sd->input_pkt_queue);
4051                         kfree_skb(skb);
4052                         input_queue_head_incr(sd);
4053                 }
4054         }
4055         rps_unlock(sd);
4056
4057         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4058                 if (skb->dev == dev) {
4059                         __skb_unlink(skb, &sd->process_queue);
4060                         kfree_skb(skb);
4061                         input_queue_head_incr(sd);
4062                 }
4063         }
4064 }
4065
4066 static int napi_gro_complete(struct sk_buff *skb)
4067 {
4068         struct packet_offload *ptype;
4069         __be16 type = skb->protocol;
4070         struct list_head *head = &offload_base;
4071         int err = -ENOENT;
4072
4073         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4074
4075         if (NAPI_GRO_CB(skb)->count == 1) {
4076                 skb_shinfo(skb)->gso_size = 0;
4077                 goto out;
4078         }
4079
4080         rcu_read_lock();
4081         list_for_each_entry_rcu(ptype, head, list) {
4082                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4083                         continue;
4084
4085                 err = ptype->callbacks.gro_complete(skb, 0);
4086                 break;
4087         }
4088         rcu_read_unlock();
4089
4090         if (err) {
4091                 WARN_ON(&ptype->list == head);
4092                 kfree_skb(skb);
4093                 return NET_RX_SUCCESS;
4094         }
4095
4096 out:
4097         return netif_receive_skb_internal(skb);
4098 }
4099
4100 /* napi->gro_list contains packets ordered by age.
4101  * youngest packets at the head of it.
4102  * Complete skbs in reverse order to reduce latencies.
4103  */
4104 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4105 {
4106         struct sk_buff *skb, *prev = NULL;
4107
4108         /* scan list and build reverse chain */
4109         for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4110                 skb->prev = prev;
4111                 prev = skb;
4112         }
4113
4114         for (skb = prev; skb; skb = prev) {
4115                 skb->next = NULL;
4116
4117                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4118                         return;
4119
4120                 prev = skb->prev;
4121                 napi_gro_complete(skb);
4122                 napi->gro_count--;
4123         }
4124
4125         napi->gro_list = NULL;
4126 }
4127 EXPORT_SYMBOL(napi_gro_flush);
4128
4129 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4130 {
4131         struct sk_buff *p;
4132         unsigned int maclen = skb->dev->hard_header_len;
4133         u32 hash = skb_get_hash_raw(skb);
4134
4135         for (p = napi->gro_list; p; p = p->next) {
4136                 unsigned long diffs;
4137
4138                 NAPI_GRO_CB(p)->flush = 0;
4139
4140                 if (hash != skb_get_hash_raw(p)) {
4141                         NAPI_GRO_CB(p)->same_flow = 0;
4142                         continue;
4143                 }
4144
4145                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4146                 diffs |= p->vlan_tci ^ skb->vlan_tci;
4147                 if (maclen == ETH_HLEN)
4148                         diffs |= compare_ether_header(skb_mac_header(p),
4149                                                       skb_mac_header(skb));
4150                 else if (!diffs)
4151                         diffs = memcmp(skb_mac_header(p),
4152                                        skb_mac_header(skb),
4153                                        maclen);
4154                 NAPI_GRO_CB(p)->same_flow = !diffs;
4155         }
4156 }
4157
4158 static void skb_gro_reset_offset(struct sk_buff *skb)
4159 {
4160         const struct skb_shared_info *pinfo = skb_shinfo(skb);
4161         const skb_frag_t *frag0 = &pinfo->frags[0];
4162
4163         NAPI_GRO_CB(skb)->data_offset = 0;
4164         NAPI_GRO_CB(skb)->frag0 = NULL;
4165         NAPI_GRO_CB(skb)->frag0_len = 0;
4166
4167         if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4168             pinfo->nr_frags &&
4169             !PageHighMem(skb_frag_page(frag0))) {
4170                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4171                 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
4172         }
4173 }
4174
4175 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4176 {
4177         struct skb_shared_info *pinfo = skb_shinfo(skb);
4178
4179         BUG_ON(skb->end - skb->tail < grow);
4180
4181         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4182
4183         skb->data_len -= grow;
4184         skb->tail += grow;
4185
4186         pinfo->frags[0].page_offset += grow;
4187         skb_frag_size_sub(&pinfo->frags[0], grow);
4188
4189         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4190                 skb_frag_unref(skb, 0);
4191                 memmove(pinfo->frags, pinfo->frags + 1,
4192                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4193         }
4194 }
4195
4196 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4197 {
4198         struct sk_buff **pp = NULL;
4199         struct packet_offload *ptype;
4200         __be16 type = skb->protocol;
4201         struct list_head *head = &offload_base;
4202         int same_flow;
4203         enum gro_result ret;
4204         int grow;
4205
4206         if (!(skb->dev->features & NETIF_F_GRO))
4207                 goto normal;
4208
4209         if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
4210                 goto normal;
4211
4212         gro_list_prepare(napi, skb);
4213
4214         rcu_read_lock();
4215         list_for_each_entry_rcu(ptype, head, list) {
4216                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4217                         continue;
4218
4219                 skb_set_network_header(skb, skb_gro_offset(skb));
4220                 skb_reset_mac_len(skb);
4221                 NAPI_GRO_CB(skb)->same_flow = 0;
4222                 NAPI_GRO_CB(skb)->flush = 0;
4223                 NAPI_GRO_CB(skb)->free = 0;
4224                 NAPI_GRO_CB(skb)->udp_mark = 0;
4225                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4226
4227                 /* Setup for GRO checksum validation */
4228                 switch (skb->ip_summed) {
4229                 case CHECKSUM_COMPLETE:
4230                         NAPI_GRO_CB(skb)->csum = skb->csum;
4231                         NAPI_GRO_CB(skb)->csum_valid = 1;
4232                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4233                         break;
4234                 case CHECKSUM_UNNECESSARY:
4235                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4236                         NAPI_GRO_CB(skb)->csum_valid = 0;
4237                         break;
4238                 default:
4239                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4240                         NAPI_GRO_CB(skb)->csum_valid = 0;
4241                 }
4242
4243                 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4244                 break;
4245         }
4246         rcu_read_unlock();
4247
4248         if (&ptype->list == head)
4249                 goto normal;
4250
4251         same_flow = NAPI_GRO_CB(skb)->same_flow;
4252         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4253
4254         if (pp) {
4255                 struct sk_buff *nskb = *pp;
4256
4257                 *pp = nskb->next;
4258                 nskb->next = NULL;
4259                 napi_gro_complete(nskb);
4260                 napi->gro_count--;
4261         }
4262
4263         if (same_flow)
4264                 goto ok;
4265
4266         if (NAPI_GRO_CB(skb)->flush)
4267                 goto normal;
4268
4269         if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4270                 struct sk_buff *nskb = napi->gro_list;
4271
4272                 /* locate the end of the list to select the 'oldest' flow */
4273                 while (nskb->next) {
4274                         pp = &nskb->next;
4275                         nskb = *pp;
4276                 }
4277                 *pp = NULL;
4278                 nskb->next = NULL;
4279                 napi_gro_complete(nskb);
4280         } else {
4281                 napi->gro_count++;
4282         }
4283         NAPI_GRO_CB(skb)->count = 1;
4284         NAPI_GRO_CB(skb)->age = jiffies;
4285         NAPI_GRO_CB(skb)->last = skb;
4286         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4287         skb->next = napi->gro_list;
4288         napi->gro_list = skb;
4289         ret = GRO_HELD;
4290
4291 pull:
4292         grow = skb_gro_offset(skb) - skb_headlen(skb);
4293         if (grow > 0)
4294                 gro_pull_from_frag0(skb, grow);
4295 ok:
4296         return ret;
4297
4298 normal:
4299         ret = GRO_NORMAL;
4300         goto pull;
4301 }
4302
4303 struct packet_offload *gro_find_receive_by_type(__be16 type)
4304 {
4305         struct list_head *offload_head = &offload_base;
4306         struct packet_offload *ptype;
4307
4308         list_for_each_entry_rcu(ptype, offload_head, list) {
4309                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4310                         continue;
4311                 return ptype;
4312         }
4313         return NULL;
4314 }
4315 EXPORT_SYMBOL(gro_find_receive_by_type);
4316
4317 struct packet_offload *gro_find_complete_by_type(__be16 type)
4318 {
4319         struct list_head *offload_head = &offload_base;
4320         struct packet_offload *ptype;
4321
4322         list_for_each_entry_rcu(ptype, offload_head, list) {
4323                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4324                         continue;
4325                 return ptype;
4326         }
4327         return NULL;
4328 }
4329 EXPORT_SYMBOL(gro_find_complete_by_type);
4330
4331 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4332 {
4333         switch (ret) {
4334         case GRO_NORMAL:
4335                 if (netif_receive_skb_internal(skb))
4336                         ret = GRO_DROP;
4337                 break;
4338
4339         case GRO_DROP:
4340                 kfree_skb(skb);
4341                 break;
4342
4343         case GRO_MERGED_FREE:
4344                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4345                         kmem_cache_free(skbuff_head_cache, skb);
4346                 else
4347                         __kfree_skb(skb);
4348                 break;
4349
4350         case GRO_HELD:
4351         case GRO_MERGED:
4352                 break;
4353         }
4354
4355         return ret;
4356 }
4357
4358 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4359 {
4360         skb_mark_napi_id(skb, napi);
4361         trace_napi_gro_receive_entry(skb);
4362
4363         skb_gro_reset_offset(skb);
4364
4365         return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4366 }
4367 EXPORT_SYMBOL(napi_gro_receive);
4368
4369 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4370 {
4371         if (unlikely(skb->pfmemalloc)) {
4372                 consume_skb(skb);
4373                 return;
4374         }
4375         __skb_pull(skb, skb_headlen(skb));
4376         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4377         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4378         skb->vlan_tci = 0;
4379         skb->dev = napi->dev;
4380         skb->skb_iif = 0;
4381         skb->encapsulation = 0;
4382         skb_shinfo(skb)->gso_type = 0;
4383         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4384
4385         napi->skb = skb;
4386 }
4387
4388 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4389 {
4390         struct sk_buff *skb = napi->skb;
4391
4392         if (!skb) {
4393                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4394                 if (skb) {
4395                         napi->skb = skb;
4396                         skb_mark_napi_id(skb, napi);
4397                 }
4398         }
4399         return skb;
4400 }
4401 EXPORT_SYMBOL(napi_get_frags);
4402
4403 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4404                                       struct sk_buff *skb,
4405                                       gro_result_t ret)
4406 {
4407         switch (ret) {
4408         case GRO_NORMAL:
4409         case GRO_HELD:
4410                 __skb_push(skb, ETH_HLEN);
4411                 skb->protocol = eth_type_trans(skb, skb->dev);
4412                 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4413                         ret = GRO_DROP;
4414                 break;
4415
4416         case GRO_DROP:
4417         case GRO_MERGED_FREE:
4418                 napi_reuse_skb(napi, skb);
4419                 break;
4420
4421         case GRO_MERGED:
4422                 break;
4423         }
4424
4425         return ret;
4426 }
4427
4428 /* Upper GRO stack assumes network header starts at gro_offset=0
4429  * Drivers could call both napi_gro_frags() and napi_gro_receive()
4430  * We copy ethernet header into skb->data to have a common layout.
4431  */
4432 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4433 {
4434         struct sk_buff *skb = napi->skb;
4435         const struct ethhdr *eth;
4436         unsigned int hlen = sizeof(*eth);
4437
4438         napi->skb = NULL;
4439
4440         skb_reset_mac_header(skb);
4441         skb_gro_reset_offset(skb);
4442
4443         eth = skb_gro_header_fast(skb, 0);
4444         if (unlikely(skb_gro_header_hard(skb, hlen))) {
4445                 eth = skb_gro_header_slow(skb, hlen, 0);
4446                 if (unlikely(!eth)) {
4447                         napi_reuse_skb(napi, skb);
4448                         return NULL;
4449                 }
4450         } else {
4451                 gro_pull_from_frag0(skb, hlen);
4452                 NAPI_GRO_CB(skb)->frag0 += hlen;
4453                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4454         }
4455         __skb_pull(skb, hlen);
4456
4457         /*
4458          * This works because the only protocols we care about don't require
4459          * special handling.
4460          * We'll fix it up properly in napi_frags_finish()
4461          */
4462         skb->protocol = eth->h_proto;
4463
4464         return skb;
4465 }
4466
4467 gro_result_t napi_gro_frags(struct napi_struct *napi)
4468 {
4469         struct sk_buff *skb = napi_frags_skb(napi);
4470
4471         if (!skb)
4472                 return GRO_DROP;
4473
4474         trace_napi_gro_frags_entry(skb);
4475
4476         return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4477 }
4478 EXPORT_SYMBOL(napi_gro_frags);
4479
4480 /* Compute the checksum from gro_offset and return the folded value
4481  * after adding in any pseudo checksum.
4482  */
4483 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4484 {
4485         __wsum wsum;
4486         __sum16 sum;
4487
4488         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4489
4490         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4491         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4492         if (likely(!sum)) {
4493                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4494                     !skb->csum_complete_sw)
4495                         netdev_rx_csum_fault(skb->dev);
4496         }
4497
4498         NAPI_GRO_CB(skb)->csum = wsum;
4499         NAPI_GRO_CB(skb)->csum_valid = 1;
4500
4501         return sum;
4502 }
4503 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4504
4505 /*
4506  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4507  * Note: called with local irq disabled, but exits with local irq enabled.
4508  */
4509 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4510 {
4511 #ifdef CONFIG_RPS
4512         struct softnet_data *remsd = sd->rps_ipi_list;
4513
4514         if (remsd) {
4515                 sd->rps_ipi_list = NULL;
4516
4517                 local_irq_enable();
4518
4519                 /* Send pending IPI's to kick RPS processing on remote cpus. */
4520                 while (remsd) {
4521                         struct softnet_data *next = remsd->rps_ipi_next;
4522
4523                         if (cpu_online(remsd->cpu))
4524                                 smp_call_function_single_async(remsd->cpu,
4525                                                            &remsd->csd);
4526                         remsd = next;
4527                 }
4528         } else
4529 #endif
4530                 local_irq_enable();
4531 }
4532
4533 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4534 {
4535 #ifdef CONFIG_RPS
4536         return sd->rps_ipi_list != NULL;
4537 #else
4538         return false;
4539 #endif
4540 }
4541
4542 static int process_backlog(struct napi_struct *napi, int quota)
4543 {
4544         int work = 0;
4545         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4546
4547         /* Check if we have pending ipi, its better to send them now,
4548          * not waiting net_rx_action() end.
4549          */
4550         if (sd_has_rps_ipi_waiting(sd)) {
4551                 local_irq_disable();
4552                 net_rps_action_and_irq_enable(sd);
4553         }
4554
4555         napi->weight = weight_p;
4556         local_irq_disable();
4557         while (1) {
4558                 struct sk_buff *skb;
4559
4560                 while ((skb = __skb_dequeue(&sd->process_queue))) {
4561                         rcu_read_lock();
4562                         local_irq_enable();
4563                         __netif_receive_skb(skb);
4564                         rcu_read_unlock();
4565                         local_irq_disable();
4566                         input_queue_head_incr(sd);
4567                         if (++work >= quota) {
4568                                 local_irq_enable();
4569                                 return work;
4570                         }
4571                 }
4572
4573                 rps_lock(sd);
4574                 if (skb_queue_empty(&sd->input_pkt_queue)) {
4575                         /*
4576                          * Inline a custom version of __napi_complete().
4577                          * only current cpu owns and manipulates this napi,
4578                          * and NAPI_STATE_SCHED is the only possible flag set
4579                          * on backlog.
4580                          * We can use a plain write instead of clear_bit(),
4581                          * and we dont need an smp_mb() memory barrier.
4582                          */
4583                         napi->state = 0;
4584                         rps_unlock(sd);
4585
4586                         break;
4587                 }
4588
4589                 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4590                                            &sd->process_queue);
4591                 rps_unlock(sd);
4592         }
4593         local_irq_enable();
4594
4595         return work;
4596 }
4597
4598 /**
4599  * __napi_schedule - schedule for receive
4600  * @n: entry to schedule
4601  *
4602  * The entry's receive function will be scheduled to run.
4603  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4604  */
4605 void __napi_schedule(struct napi_struct *n)
4606 {
4607         unsigned long flags;
4608
4609         local_irq_save(flags);
4610         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4611         local_irq_restore(flags);
4612 }
4613 EXPORT_SYMBOL(__napi_schedule);
4614
4615 /**
4616  * __napi_schedule_irqoff - schedule for receive
4617  * @n: entry to schedule
4618  *
4619  * Variant of __napi_schedule() assuming hard irqs are masked
4620  */
4621 void __napi_schedule_irqoff(struct napi_struct *n)
4622 {
4623         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4624 }
4625 EXPORT_SYMBOL(__napi_schedule_irqoff);
4626
4627 void __napi_complete(struct napi_struct *n)
4628 {
4629         BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4630
4631         list_del_init(&n->poll_list);
4632         smp_mb__before_atomic();
4633         clear_bit(NAPI_STATE_SCHED, &n->state);
4634 }
4635 EXPORT_SYMBOL(__napi_complete);
4636
4637 void napi_complete_done(struct napi_struct *n, int work_done)
4638 {
4639         unsigned long flags;
4640
4641         /*
4642          * don't let napi dequeue from the cpu poll list
4643          * just in case its running on a different cpu
4644          */
4645         if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4646                 return;
4647
4648         if (n->gro_list) {
4649                 unsigned long timeout = 0;
4650
4651                 if (work_done)
4652                         timeout = n->dev->gro_flush_timeout;
4653
4654                 if (timeout)
4655                         hrtimer_start(&n->timer, ns_to_ktime(timeout),
4656                                       HRTIMER_MODE_REL_PINNED);
4657                 else
4658                         napi_gro_flush(n, false);
4659         }
4660         if (likely(list_empty(&n->poll_list))) {
4661                 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4662         } else {
4663                 /* If n->poll_list is not empty, we need to mask irqs */
4664                 local_irq_save(flags);
4665                 __napi_complete(n);
4666                 local_irq_restore(flags);
4667         }
4668 }
4669 EXPORT_SYMBOL(napi_complete_done);
4670
4671 /* must be called under rcu_read_lock(), as we dont take a reference */
4672 static struct napi_struct *napi_by_id(unsigned int napi_id)
4673 {
4674         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4675         struct napi_struct *napi;
4676
4677         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4678                 if (napi->napi_id == napi_id)
4679                         return napi;
4680
4681         return NULL;
4682 }
4683
4684 #if defined(CONFIG_NET_RX_BUSY_POLL)
4685 #define BUSY_POLL_BUDGET 8
4686 bool sk_busy_loop(struct sock *sk, int nonblock)
4687 {
4688         unsigned long end_time = !nonblock ? sk_busy_loop_end_time(sk) : 0;
4689         int (*busy_poll)(struct napi_struct *dev);
4690         struct napi_struct *napi;
4691         int rc = false;
4692
4693         rcu_read_lock();
4694
4695         napi = napi_by_id(sk->sk_napi_id);
4696         if (!napi)
4697                 goto out;
4698
4699         /* Note: ndo_busy_poll method is optional in linux-4.5 */
4700         busy_poll = napi->dev->netdev_ops->ndo_busy_poll;
4701
4702         do {
4703                 rc = 0;
4704                 local_bh_disable();
4705                 if (busy_poll) {
4706                         rc = busy_poll(napi);
4707                 } else if (napi_schedule_prep(napi)) {
4708                         void *have = netpoll_poll_lock(napi);
4709
4710                         if (test_bit(NAPI_STATE_SCHED, &napi->state)) {
4711                                 rc = napi->poll(napi, BUSY_POLL_BUDGET);
4712                                 trace_napi_poll(napi);
4713                                 if (rc == BUSY_POLL_BUDGET) {
4714                                         napi_complete_done(napi, rc);
4715                                         napi_schedule(napi);
4716                                 }
4717                         }
4718                         netpoll_poll_unlock(have);
4719                 }
4720                 if (rc > 0)
4721                         NET_ADD_STATS_BH(sock_net(sk),
4722                                          LINUX_MIB_BUSYPOLLRXPACKETS, rc);
4723                 local_bh_enable();
4724
4725                 if (rc == LL_FLUSH_FAILED)
4726                         break; /* permanent failure */
4727
4728                 cpu_relax();
4729         } while (!nonblock && skb_queue_empty(&sk->sk_receive_queue) &&
4730                  !need_resched() && !busy_loop_timeout(end_time));
4731
4732         rc = !skb_queue_empty(&sk->sk_receive_queue);
4733 out:
4734         rcu_read_unlock();
4735         return rc;
4736 }
4737 EXPORT_SYMBOL(sk_busy_loop);
4738
4739 #endif /* CONFIG_NET_RX_BUSY_POLL */
4740
4741 void napi_hash_add(struct napi_struct *napi)
4742 {
4743         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
4744             test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
4745                 return;
4746
4747         spin_lock(&napi_hash_lock);
4748
4749         /* 0..NR_CPUS+1 range is reserved for sender_cpu use */
4750         do {
4751                 if (unlikely(++napi_gen_id < NR_CPUS + 1))
4752                         napi_gen_id = NR_CPUS + 1;
4753         } while (napi_by_id(napi_gen_id));
4754         napi->napi_id = napi_gen_id;
4755
4756         hlist_add_head_rcu(&napi->napi_hash_node,
4757                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4758
4759         spin_unlock(&napi_hash_lock);
4760 }
4761 EXPORT_SYMBOL_GPL(napi_hash_add);
4762
4763 /* Warning : caller is responsible to make sure rcu grace period
4764  * is respected before freeing memory containing @napi
4765  */
4766 bool napi_hash_del(struct napi_struct *napi)
4767 {
4768         bool rcu_sync_needed = false;
4769
4770         spin_lock(&napi_hash_lock);
4771
4772         if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
4773                 rcu_sync_needed = true;
4774                 hlist_del_rcu(&napi->napi_hash_node);
4775         }
4776         spin_unlock(&napi_hash_lock);
4777         return rcu_sync_needed;
4778 }
4779 EXPORT_SYMBOL_GPL(napi_hash_del);
4780
4781 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
4782 {
4783         struct napi_struct *napi;
4784
4785         napi = container_of(timer, struct napi_struct, timer);
4786         if (napi->gro_list)
4787                 napi_schedule(napi);
4788
4789         return HRTIMER_NORESTART;
4790 }
4791
4792 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4793                     int (*poll)(struct napi_struct *, int), int weight)
4794 {
4795         INIT_LIST_HEAD(&napi->poll_list);
4796         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
4797         napi->timer.function = napi_watchdog;
4798         napi->gro_count = 0;
4799         napi->gro_list = NULL;
4800         napi->skb = NULL;
4801         napi->poll = poll;
4802         if (weight > NAPI_POLL_WEIGHT)
4803                 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4804                             weight, dev->name);
4805         napi->weight = weight;
4806         list_add(&napi->dev_list, &dev->napi_list);
4807         napi->dev = dev;
4808 #ifdef CONFIG_NETPOLL
4809         spin_lock_init(&napi->poll_lock);
4810         napi->poll_owner = -1;
4811 #endif
4812         set_bit(NAPI_STATE_SCHED, &napi->state);
4813         napi_hash_add(napi);
4814 }
4815 EXPORT_SYMBOL(netif_napi_add);
4816
4817 void napi_disable(struct napi_struct *n)
4818 {
4819         might_sleep();
4820         set_bit(NAPI_STATE_DISABLE, &n->state);
4821
4822         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
4823                 msleep(1);
4824         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
4825                 msleep(1);
4826
4827         hrtimer_cancel(&n->timer);
4828
4829         clear_bit(NAPI_STATE_DISABLE, &n->state);
4830 }
4831 EXPORT_SYMBOL(napi_disable);
4832
4833 /* Must be called in process context */
4834 void netif_napi_del(struct napi_struct *napi)
4835 {
4836         might_sleep();
4837         if (napi_hash_del(napi))
4838                 synchronize_net();
4839         list_del_init(&napi->dev_list);
4840         napi_free_frags(napi);
4841
4842         kfree_skb_list(napi->gro_list);
4843         napi->gro_list = NULL;
4844         napi->gro_count = 0;
4845 }
4846 EXPORT_SYMBOL(netif_napi_del);
4847
4848 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
4849 {
4850         void *have;
4851         int work, weight;
4852
4853         list_del_init(&n->poll_list);
4854
4855         have = netpoll_poll_lock(n);
4856
4857         weight = n->weight;
4858
4859         /* This NAPI_STATE_SCHED test is for avoiding a race
4860          * with netpoll's poll_napi().  Only the entity which
4861          * obtains the lock and sees NAPI_STATE_SCHED set will
4862          * actually make the ->poll() call.  Therefore we avoid
4863          * accidentally calling ->poll() when NAPI is not scheduled.
4864          */
4865         work = 0;
4866         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4867                 work = n->poll(n, weight);
4868                 trace_napi_poll(n);
4869         }
4870
4871         WARN_ON_ONCE(work > weight);
4872
4873         if (likely(work < weight))
4874                 goto out_unlock;
4875
4876         /* Drivers must not modify the NAPI state if they
4877          * consume the entire weight.  In such cases this code
4878          * still "owns" the NAPI instance and therefore can
4879          * move the instance around on the list at-will.
4880          */
4881         if (unlikely(napi_disable_pending(n))) {
4882                 napi_complete(n);
4883                 goto out_unlock;
4884         }
4885
4886         if (n->gro_list) {
4887                 /* flush too old packets
4888                  * If HZ < 1000, flush all packets.
4889                  */
4890                 napi_gro_flush(n, HZ >= 1000);
4891         }
4892
4893         /* Some drivers may have called napi_schedule
4894          * prior to exhausting their budget.
4895          */
4896         if (unlikely(!list_empty(&n->poll_list))) {
4897                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
4898                              n->dev ? n->dev->name : "backlog");
4899                 goto out_unlock;
4900         }
4901
4902         list_add_tail(&n->poll_list, repoll);
4903
4904 out_unlock:
4905         netpoll_poll_unlock(have);
4906
4907         return work;
4908 }
4909
4910 static void net_rx_action(struct softirq_action *h)
4911 {
4912         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4913         unsigned long time_limit = jiffies + 2;
4914         int budget = netdev_budget;
4915         LIST_HEAD(list);
4916         LIST_HEAD(repoll);
4917
4918         local_irq_disable();
4919         list_splice_init(&sd->poll_list, &list);
4920         local_irq_enable();
4921
4922         for (;;) {
4923                 struct napi_struct *n;
4924
4925                 if (list_empty(&list)) {
4926                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
4927                                 return;
4928                         break;
4929                 }
4930
4931                 n = list_first_entry(&list, struct napi_struct, poll_list);
4932                 budget -= napi_poll(n, &repoll);
4933
4934                 /* If softirq window is exhausted then punt.
4935                  * Allow this to run for 2 jiffies since which will allow
4936                  * an average latency of 1.5/HZ.
4937                  */
4938                 if (unlikely(budget <= 0 ||
4939                              time_after_eq(jiffies, time_limit))) {
4940                         sd->time_squeeze++;
4941                         break;
4942                 }
4943         }
4944
4945         local_irq_disable();
4946
4947         list_splice_tail_init(&sd->poll_list, &list);
4948         list_splice_tail(&repoll, &list);
4949         list_splice(&list, &sd->poll_list);
4950         if (!list_empty(&sd->poll_list))
4951                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4952
4953         net_rps_action_and_irq_enable(sd);
4954 }
4955
4956 struct netdev_adjacent {
4957         struct net_device *dev;
4958
4959         /* upper master flag, there can only be one master device per list */
4960         bool master;
4961
4962         /* counter for the number of times this device was added to us */
4963         u16 ref_nr;
4964
4965         /* private field for the users */
4966         void *private;
4967
4968         struct list_head list;
4969         struct rcu_head rcu;
4970 };
4971
4972 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
4973                                                  struct list_head *adj_list)
4974 {
4975         struct netdev_adjacent *adj;
4976
4977         list_for_each_entry(adj, adj_list, list) {
4978                 if (adj->dev == adj_dev)
4979                         return adj;
4980         }
4981         return NULL;
4982 }
4983
4984 /**
4985  * netdev_has_upper_dev - Check if device is linked to an upper device
4986  * @dev: device
4987  * @upper_dev: upper device to check
4988  *
4989  * Find out if a device is linked to specified upper device and return true
4990  * in case it is. Note that this checks only immediate upper device,
4991  * not through a complete stack of devices. The caller must hold the RTNL lock.
4992  */
4993 bool netdev_has_upper_dev(struct net_device *dev,
4994                           struct net_device *upper_dev)
4995 {
4996         ASSERT_RTNL();
4997
4998         return __netdev_find_adj(upper_dev, &dev->all_adj_list.upper);
4999 }
5000 EXPORT_SYMBOL(netdev_has_upper_dev);
5001
5002 /**
5003  * netdev_has_any_upper_dev - Check if device is linked to some device
5004  * @dev: device
5005  *
5006  * Find out if a device is linked to an upper device and return true in case
5007  * it is. The caller must hold the RTNL lock.
5008  */
5009 static bool netdev_has_any_upper_dev(struct net_device *dev)
5010 {
5011         ASSERT_RTNL();
5012
5013         return !list_empty(&dev->all_adj_list.upper);
5014 }
5015
5016 /**
5017  * netdev_master_upper_dev_get - Get master upper device
5018  * @dev: device
5019  *
5020  * Find a master upper device and return pointer to it or NULL in case
5021  * it's not there. The caller must hold the RTNL lock.
5022  */
5023 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5024 {
5025         struct netdev_adjacent *upper;
5026
5027         ASSERT_RTNL();
5028
5029         if (list_empty(&dev->adj_list.upper))
5030                 return NULL;
5031
5032         upper = list_first_entry(&dev->adj_list.upper,
5033                                  struct netdev_adjacent, list);
5034         if (likely(upper->master))
5035                 return upper->dev;
5036         return NULL;
5037 }
5038 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5039
5040 void *netdev_adjacent_get_private(struct list_head *adj_list)
5041 {
5042         struct netdev_adjacent *adj;
5043
5044         adj = list_entry(adj_list, struct netdev_adjacent, list);
5045
5046         return adj->private;
5047 }
5048 EXPORT_SYMBOL(netdev_adjacent_get_private);
5049
5050 /**
5051  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5052  * @dev: device
5053  * @iter: list_head ** of the current position
5054  *
5055  * Gets the next device from the dev's upper list, starting from iter
5056  * position. The caller must hold RCU read lock.
5057  */
5058 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5059                                                  struct list_head **iter)
5060 {
5061         struct netdev_adjacent *upper;
5062
5063         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5064
5065         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5066
5067         if (&upper->list == &dev->adj_list.upper)
5068                 return NULL;
5069
5070         *iter = &upper->list;
5071
5072         return upper->dev;
5073 }
5074 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5075
5076 /**
5077  * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
5078  * @dev: device
5079  * @iter: list_head ** of the current position
5080  *
5081  * Gets the next device from the dev's upper list, starting from iter
5082  * position. The caller must hold RCU read lock.
5083  */
5084 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
5085                                                      struct list_head **iter)
5086 {
5087         struct netdev_adjacent *upper;
5088
5089         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5090
5091         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5092
5093         if (&upper->list == &dev->all_adj_list.upper)
5094                 return NULL;
5095
5096         *iter = &upper->list;
5097
5098         return upper->dev;
5099 }
5100 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
5101
5102 /**
5103  * netdev_lower_get_next_private - Get the next ->private from the
5104  *                                 lower neighbour list
5105  * @dev: device
5106  * @iter: list_head ** of the current position
5107  *
5108  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5109  * list, starting from iter position. The caller must hold either hold the
5110  * RTNL lock or its own locking that guarantees that the neighbour lower
5111  * list will remain unchanged.
5112  */
5113 void *netdev_lower_get_next_private(struct net_device *dev,
5114                                     struct list_head **iter)
5115 {
5116         struct netdev_adjacent *lower;
5117
5118         lower = list_entry(*iter, struct netdev_adjacent, list);
5119
5120         if (&lower->list == &dev->adj_list.lower)
5121                 return NULL;
5122
5123         *iter = lower->list.next;
5124
5125         return lower->private;
5126 }
5127 EXPORT_SYMBOL(netdev_lower_get_next_private);
5128
5129 /**
5130  * netdev_lower_get_next_private_rcu - Get the next ->private from the
5131  *                                     lower neighbour list, RCU
5132  *                                     variant
5133  * @dev: device
5134  * @iter: list_head ** of the current position
5135  *
5136  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5137  * list, starting from iter position. The caller must hold RCU read lock.
5138  */
5139 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5140                                         struct list_head **iter)
5141 {
5142         struct netdev_adjacent *lower;
5143
5144         WARN_ON_ONCE(!rcu_read_lock_held());
5145
5146         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5147
5148         if (&lower->list == &dev->adj_list.lower)
5149                 return NULL;
5150
5151         *iter = &lower->list;
5152
5153         return lower->private;
5154 }
5155 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5156
5157 /**
5158  * netdev_lower_get_next - Get the next device from the lower neighbour
5159  *                         list
5160  * @dev: device
5161  * @iter: list_head ** of the current position
5162  *
5163  * Gets the next netdev_adjacent from the dev's lower neighbour
5164  * list, starting from iter position. The caller must hold RTNL lock or
5165  * its own locking that guarantees that the neighbour lower
5166  * list will remain unchanged.
5167  */
5168 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5169 {
5170         struct netdev_adjacent *lower;
5171
5172         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
5173
5174         if (&lower->list == &dev->adj_list.lower)
5175                 return NULL;
5176
5177         *iter = &lower->list;
5178
5179         return lower->dev;
5180 }
5181 EXPORT_SYMBOL(netdev_lower_get_next);
5182
5183 /**
5184  * netdev_lower_get_first_private_rcu - Get the first ->private from the
5185  *                                     lower neighbour list, RCU
5186  *                                     variant
5187  * @dev: device
5188  *
5189  * Gets the first netdev_adjacent->private from the dev's lower neighbour
5190  * list. The caller must hold RCU read lock.
5191  */
5192 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5193 {
5194         struct netdev_adjacent *lower;
5195
5196         lower = list_first_or_null_rcu(&dev->adj_list.lower,
5197                         struct netdev_adjacent, list);
5198         if (lower)
5199                 return lower->private;
5200         return NULL;
5201 }
5202 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5203
5204 /**
5205  * netdev_master_upper_dev_get_rcu - Get master upper device
5206  * @dev: device
5207  *
5208  * Find a master upper device and return pointer to it or NULL in case
5209  * it's not there. The caller must hold the RCU read lock.
5210  */
5211 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5212 {
5213         struct netdev_adjacent *upper;
5214
5215         upper = list_first_or_null_rcu(&dev->adj_list.upper,
5216                                        struct netdev_adjacent, list);
5217         if (upper && likely(upper->master))
5218                 return upper->dev;
5219         return NULL;
5220 }
5221 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5222
5223 static int netdev_adjacent_sysfs_add(struct net_device *dev,
5224                               struct net_device *adj_dev,
5225                               struct list_head *dev_list)
5226 {
5227         char linkname[IFNAMSIZ+7];
5228         sprintf(linkname, dev_list == &dev->adj_list.upper ?
5229                 "upper_%s" : "lower_%s", adj_dev->name);
5230         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5231                                  linkname);
5232 }
5233 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5234                                char *name,
5235                                struct list_head *dev_list)
5236 {
5237         char linkname[IFNAMSIZ+7];
5238         sprintf(linkname, dev_list == &dev->adj_list.upper ?
5239                 "upper_%s" : "lower_%s", name);
5240         sysfs_remove_link(&(dev->dev.kobj), linkname);
5241 }
5242
5243 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5244                                                  struct net_device *adj_dev,
5245                                                  struct list_head *dev_list)
5246 {
5247         return (dev_list == &dev->adj_list.upper ||
5248                 dev_list == &dev->adj_list.lower) &&
5249                 net_eq(dev_net(dev), dev_net(adj_dev));
5250 }
5251
5252 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5253                                         struct net_device *adj_dev,
5254                                         struct list_head *dev_list,
5255                                         void *private, bool master)
5256 {
5257         struct netdev_adjacent *adj;
5258         int ret;
5259
5260         adj = __netdev_find_adj(adj_dev, dev_list);
5261
5262         if (adj) {
5263                 adj->ref_nr++;
5264                 return 0;
5265         }
5266
5267         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5268         if (!adj)
5269                 return -ENOMEM;
5270
5271         adj->dev = adj_dev;
5272         adj->master = master;
5273         adj->ref_nr = 1;
5274         adj->private = private;
5275         dev_hold(adj_dev);
5276
5277         pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5278                  adj_dev->name, dev->name, adj_dev->name);
5279
5280         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5281                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5282                 if (ret)
5283                         goto free_adj;
5284         }
5285
5286         /* Ensure that master link is always the first item in list. */
5287         if (master) {
5288                 ret = sysfs_create_link(&(dev->dev.kobj),
5289                                         &(adj_dev->dev.kobj), "master");
5290                 if (ret)
5291                         goto remove_symlinks;
5292
5293                 list_add_rcu(&adj->list, dev_list);
5294         } else {
5295                 list_add_tail_rcu(&adj->list, dev_list);
5296         }
5297
5298         return 0;
5299
5300 remove_symlinks:
5301         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5302                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5303 free_adj:
5304         kfree(adj);
5305         dev_put(adj_dev);
5306
5307         return ret;
5308 }
5309
5310 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5311                                          struct net_device *adj_dev,
5312                                          struct list_head *dev_list)
5313 {
5314         struct netdev_adjacent *adj;
5315
5316         adj = __netdev_find_adj(adj_dev, dev_list);
5317
5318         if (!adj) {
5319                 pr_err("tried to remove device %s from %s\n",
5320                        dev->name, adj_dev->name);
5321                 BUG();
5322         }
5323
5324         if (adj->ref_nr > 1) {
5325                 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
5326                          adj->ref_nr-1);
5327                 adj->ref_nr--;
5328                 return;
5329         }
5330
5331         if (adj->master)
5332                 sysfs_remove_link(&(dev->dev.kobj), "master");
5333
5334         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5335                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5336
5337         list_del_rcu(&adj->list);
5338         pr_debug("dev_put for %s, because link removed from %s to %s\n",
5339                  adj_dev->name, dev->name, adj_dev->name);
5340         dev_put(adj_dev);
5341         kfree_rcu(adj, rcu);
5342 }
5343
5344 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5345                                             struct net_device *upper_dev,
5346                                             struct list_head *up_list,
5347                                             struct list_head *down_list,
5348                                             void *private, bool master)
5349 {
5350         int ret;
5351
5352         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5353                                            master);
5354         if (ret)
5355                 return ret;
5356
5357         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5358                                            false);
5359         if (ret) {
5360                 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5361                 return ret;
5362         }
5363
5364         return 0;
5365 }
5366
5367 static int __netdev_adjacent_dev_link(struct net_device *dev,
5368                                       struct net_device *upper_dev)
5369 {
5370         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5371                                                 &dev->all_adj_list.upper,
5372                                                 &upper_dev->all_adj_list.lower,
5373                                                 NULL, false);
5374 }
5375
5376 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5377                                                struct net_device *upper_dev,
5378                                                struct list_head *up_list,
5379                                                struct list_head *down_list)
5380 {
5381         __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5382         __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5383 }
5384
5385 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5386                                          struct net_device *upper_dev)
5387 {
5388         __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5389                                            &dev->all_adj_list.upper,
5390                                            &upper_dev->all_adj_list.lower);
5391 }
5392
5393 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5394                                                 struct net_device *upper_dev,
5395                                                 void *private, bool master)
5396 {
5397         int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5398
5399         if (ret)
5400                 return ret;
5401
5402         ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5403                                                &dev->adj_list.upper,
5404                                                &upper_dev->adj_list.lower,
5405                                                private, master);
5406         if (ret) {
5407                 __netdev_adjacent_dev_unlink(dev, upper_dev);
5408                 return ret;
5409         }
5410
5411         return 0;
5412 }
5413
5414 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5415                                                    struct net_device *upper_dev)
5416 {
5417         __netdev_adjacent_dev_unlink(dev, upper_dev);
5418         __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5419                                            &dev->adj_list.upper,
5420                                            &upper_dev->adj_list.lower);
5421 }
5422
5423 static int __netdev_upper_dev_link(struct net_device *dev,
5424                                    struct net_device *upper_dev, bool master,
5425                                    void *upper_priv, void *upper_info)
5426 {
5427         struct netdev_notifier_changeupper_info changeupper_info;
5428         struct netdev_adjacent *i, *j, *to_i, *to_j;
5429         int ret = 0;
5430
5431         ASSERT_RTNL();
5432
5433         if (dev == upper_dev)
5434                 return -EBUSY;
5435
5436         /* To prevent loops, check if dev is not upper device to upper_dev. */
5437         if (__netdev_find_adj(dev, &upper_dev->all_adj_list.upper))
5438                 return -EBUSY;
5439
5440         if (__netdev_find_adj(upper_dev, &dev->adj_list.upper))
5441                 return -EEXIST;
5442
5443         if (master && netdev_master_upper_dev_get(dev))
5444                 return -EBUSY;
5445
5446         changeupper_info.upper_dev = upper_dev;
5447         changeupper_info.master = master;
5448         changeupper_info.linking = true;
5449         changeupper_info.upper_info = upper_info;
5450
5451         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5452                                             &changeupper_info.info);
5453         ret = notifier_to_errno(ret);
5454         if (ret)
5455                 return ret;
5456
5457         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
5458                                                    master);
5459         if (ret)
5460                 return ret;
5461
5462         /* Now that we linked these devs, make all the upper_dev's
5463          * all_adj_list.upper visible to every dev's all_adj_list.lower an
5464          * versa, and don't forget the devices itself. All of these
5465          * links are non-neighbours.
5466          */
5467         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5468                 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5469                         pr_debug("Interlinking %s with %s, non-neighbour\n",
5470                                  i->dev->name, j->dev->name);
5471                         ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5472                         if (ret)
5473                                 goto rollback_mesh;
5474                 }
5475         }
5476
5477         /* add dev to every upper_dev's upper device */
5478         list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5479                 pr_debug("linking %s's upper device %s with %s\n",
5480                          upper_dev->name, i->dev->name, dev->name);
5481                 ret = __netdev_adjacent_dev_link(dev, i->dev);
5482                 if (ret)
5483                         goto rollback_upper_mesh;
5484         }
5485
5486         /* add upper_dev to every dev's lower device */
5487         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5488                 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5489                          i->dev->name, upper_dev->name);
5490                 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5491                 if (ret)
5492                         goto rollback_lower_mesh;
5493         }
5494
5495         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5496                                             &changeupper_info.info);
5497         ret = notifier_to_errno(ret);
5498         if (ret)
5499                 goto rollback_lower_mesh;
5500
5501         return 0;
5502
5503 rollback_lower_mesh:
5504         to_i = i;
5505         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5506                 if (i == to_i)
5507                         break;
5508                 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5509         }
5510
5511         i = NULL;
5512
5513 rollback_upper_mesh:
5514         to_i = i;
5515         list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5516                 if (i == to_i)
5517                         break;
5518                 __netdev_adjacent_dev_unlink(dev, i->dev);
5519         }
5520
5521         i = j = NULL;
5522
5523 rollback_mesh:
5524         to_i = i;
5525         to_j = j;
5526         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5527                 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5528                         if (i == to_i && j == to_j)
5529                                 break;
5530                         __netdev_adjacent_dev_unlink(i->dev, j->dev);
5531                 }
5532                 if (i == to_i)
5533                         break;
5534         }
5535
5536         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5537
5538         return ret;
5539 }
5540
5541 /**
5542  * netdev_upper_dev_link - Add a link to the upper device
5543  * @dev: device
5544  * @upper_dev: new upper device
5545  *
5546  * Adds a link to device which is upper to this one. The caller must hold
5547  * the RTNL lock. On a failure a negative errno code is returned.
5548  * On success the reference counts are adjusted and the function
5549  * returns zero.
5550  */
5551 int netdev_upper_dev_link(struct net_device *dev,
5552                           struct net_device *upper_dev)
5553 {
5554         return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
5555 }
5556 EXPORT_SYMBOL(netdev_upper_dev_link);
5557
5558 /**
5559  * netdev_master_upper_dev_link - Add a master link to the upper device
5560  * @dev: device
5561  * @upper_dev: new upper device
5562  * @upper_priv: upper device private
5563  * @upper_info: upper info to be passed down via notifier
5564  *
5565  * Adds a link to device which is upper to this one. In this case, only
5566  * one master upper device can be linked, although other non-master devices
5567  * might be linked as well. The caller must hold the RTNL lock.
5568  * On a failure a negative errno code is returned. On success the reference
5569  * counts are adjusted and the function returns zero.
5570  */
5571 int netdev_master_upper_dev_link(struct net_device *dev,
5572                                  struct net_device *upper_dev,
5573                                  void *upper_priv, void *upper_info)
5574 {
5575         return __netdev_upper_dev_link(dev, upper_dev, true,
5576                                        upper_priv, upper_info);
5577 }
5578 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5579
5580 /**
5581  * netdev_upper_dev_unlink - Removes a link to upper device
5582  * @dev: device
5583  * @upper_dev: new upper device
5584  *
5585  * Removes a link to device which is upper to this one. The caller must hold
5586  * the RTNL lock.
5587  */
5588 void netdev_upper_dev_unlink(struct net_device *dev,
5589                              struct net_device *upper_dev)
5590 {
5591         struct netdev_notifier_changeupper_info changeupper_info;
5592         struct netdev_adjacent *i, *j;
5593         ASSERT_RTNL();
5594
5595         changeupper_info.upper_dev = upper_dev;
5596         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5597         changeupper_info.linking = false;
5598
5599         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5600                                       &changeupper_info.info);
5601
5602         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5603
5604         /* Here is the tricky part. We must remove all dev's lower
5605          * devices from all upper_dev's upper devices and vice
5606          * versa, to maintain the graph relationship.
5607          */
5608         list_for_each_entry(i, &dev->all_adj_list.lower, list)
5609                 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5610                         __netdev_adjacent_dev_unlink(i->dev, j->dev);
5611
5612         /* remove also the devices itself from lower/upper device
5613          * list
5614          */
5615         list_for_each_entry(i, &dev->all_adj_list.lower, list)
5616                 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5617
5618         list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5619                 __netdev_adjacent_dev_unlink(dev, i->dev);
5620
5621         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5622                                       &changeupper_info.info);
5623 }
5624 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5625
5626 /**
5627  * netdev_bonding_info_change - Dispatch event about slave change
5628  * @dev: device
5629  * @bonding_info: info to dispatch
5630  *
5631  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5632  * The caller must hold the RTNL lock.
5633  */
5634 void netdev_bonding_info_change(struct net_device *dev,
5635                                 struct netdev_bonding_info *bonding_info)
5636 {
5637         struct netdev_notifier_bonding_info     info;
5638
5639         memcpy(&info.bonding_info, bonding_info,
5640                sizeof(struct netdev_bonding_info));
5641         call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5642                                       &info.info);
5643 }
5644 EXPORT_SYMBOL(netdev_bonding_info_change);
5645
5646 static void netdev_adjacent_add_links(struct net_device *dev)
5647 {
5648         struct netdev_adjacent *iter;
5649
5650         struct net *net = dev_net(dev);
5651
5652         list_for_each_entry(iter, &dev->adj_list.upper, list) {
5653                 if (!net_eq(net,dev_net(iter->dev)))
5654                         continue;
5655                 netdev_adjacent_sysfs_add(iter->dev, dev,
5656                                           &iter->dev->adj_list.lower);
5657                 netdev_adjacent_sysfs_add(dev, iter->dev,
5658                                           &dev->adj_list.upper);
5659         }
5660
5661         list_for_each_entry(iter, &dev->adj_list.lower, list) {
5662                 if (!net_eq(net,dev_net(iter->dev)))
5663                         continue;
5664                 netdev_adjacent_sysfs_add(iter->dev, dev,
5665                                           &iter->dev->adj_list.upper);
5666                 netdev_adjacent_sysfs_add(dev, iter->dev,
5667                                           &dev->adj_list.lower);
5668         }
5669 }
5670
5671 static void netdev_adjacent_del_links(struct net_device *dev)
5672 {
5673         struct netdev_adjacent *iter;
5674
5675         struct net *net = dev_net(dev);
5676
5677         list_for_each_entry(iter, &dev->adj_list.upper, list) {
5678                 if (!net_eq(net,dev_net(iter->dev)))
5679                         continue;
5680                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5681                                           &iter->dev->adj_list.lower);
5682                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5683                                           &dev->adj_list.upper);
5684         }
5685
5686         list_for_each_entry(iter, &dev->adj_list.lower, list) {
5687                 if (!net_eq(net,dev_net(iter->dev)))
5688                         continue;
5689                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5690                                           &iter->dev->adj_list.upper);
5691                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5692                                           &dev->adj_list.lower);
5693         }
5694 }
5695
5696 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5697 {
5698         struct netdev_adjacent *iter;
5699
5700         struct net *net = dev_net(dev);
5701
5702         list_for_each_entry(iter, &dev->adj_list.upper, list) {
5703                 if (!net_eq(net,dev_net(iter->dev)))
5704                         continue;
5705                 netdev_adjacent_sysfs_del(iter->dev, oldname,
5706                                           &iter->dev->adj_list.lower);
5707                 netdev_adjacent_sysfs_add(iter->dev, dev,
5708                                           &iter->dev->adj_list.lower);
5709         }
5710
5711         list_for_each_entry(iter, &dev->adj_list.lower, list) {
5712                 if (!net_eq(net,dev_net(iter->dev)))
5713                         continue;
5714                 netdev_adjacent_sysfs_del(iter->dev, oldname,
5715                                           &iter->dev->adj_list.upper);
5716                 netdev_adjacent_sysfs_add(iter->dev, dev,
5717                                           &iter->dev->adj_list.upper);
5718         }
5719 }
5720
5721 void *netdev_lower_dev_get_private(struct net_device *dev,
5722                                    struct net_device *lower_dev)
5723 {
5724         struct netdev_adjacent *lower;
5725
5726         if (!lower_dev)
5727                 return NULL;
5728         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
5729         if (!lower)
5730                 return NULL;
5731
5732         return lower->private;
5733 }
5734 EXPORT_SYMBOL(netdev_lower_dev_get_private);
5735
5736
5737 int dev_get_nest_level(struct net_device *dev,
5738                        bool (*type_check)(const struct net_device *dev))
5739 {
5740         struct net_device *lower = NULL;
5741         struct list_head *iter;
5742         int max_nest = -1;
5743         int nest;
5744
5745         ASSERT_RTNL();
5746
5747         netdev_for_each_lower_dev(dev, lower, iter) {
5748                 nest = dev_get_nest_level(lower, type_check);
5749                 if (max_nest < nest)
5750                         max_nest = nest;
5751         }
5752
5753         if (type_check(dev))
5754                 max_nest++;
5755
5756         return max_nest;
5757 }
5758 EXPORT_SYMBOL(dev_get_nest_level);
5759
5760 /**
5761  * netdev_lower_change - Dispatch event about lower device state change
5762  * @lower_dev: device
5763  * @lower_state_info: state to dispatch
5764  *
5765  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
5766  * The caller must hold the RTNL lock.
5767  */
5768 void netdev_lower_state_changed(struct net_device *lower_dev,
5769                                 void *lower_state_info)
5770 {
5771         struct netdev_notifier_changelowerstate_info changelowerstate_info;
5772
5773         ASSERT_RTNL();
5774         changelowerstate_info.lower_state_info = lower_state_info;
5775         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
5776                                       &changelowerstate_info.info);
5777 }
5778 EXPORT_SYMBOL(netdev_lower_state_changed);
5779
5780 static void dev_change_rx_flags(struct net_device *dev, int flags)
5781 {
5782         const struct net_device_ops *ops = dev->netdev_ops;
5783
5784         if (ops->ndo_change_rx_flags)
5785                 ops->ndo_change_rx_flags(dev, flags);
5786 }
5787
5788 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5789 {
5790         unsigned int old_flags = dev->flags;
5791         kuid_t uid;
5792         kgid_t gid;
5793
5794         ASSERT_RTNL();
5795
5796         dev->flags |= IFF_PROMISC;
5797         dev->promiscuity += inc;
5798         if (dev->promiscuity == 0) {
5799                 /*
5800                  * Avoid overflow.
5801                  * If inc causes overflow, untouch promisc and return error.
5802                  */
5803                 if (inc < 0)
5804                         dev->flags &= ~IFF_PROMISC;
5805                 else {
5806                         dev->promiscuity -= inc;
5807                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5808                                 dev->name);
5809                         return -EOVERFLOW;
5810                 }
5811         }
5812         if (dev->flags != old_flags) {
5813                 pr_info("device %s %s promiscuous mode\n",
5814                         dev->name,
5815                         dev->flags & IFF_PROMISC ? "entered" : "left");
5816                 if (audit_enabled) {
5817                         current_uid_gid(&uid, &gid);
5818                         audit_log(current->audit_context, GFP_ATOMIC,
5819                                 AUDIT_ANOM_PROMISCUOUS,
5820                                 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5821                                 dev->name, (dev->flags & IFF_PROMISC),
5822                                 (old_flags & IFF_PROMISC),
5823                                 from_kuid(&init_user_ns, audit_get_loginuid(current)),
5824                                 from_kuid(&init_user_ns, uid),
5825                                 from_kgid(&init_user_ns, gid),
5826                                 audit_get_sessionid(current));
5827                 }
5828
5829                 dev_change_rx_flags(dev, IFF_PROMISC);
5830         }
5831         if (notify)
5832                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
5833         return 0;
5834 }
5835
5836 /**
5837  *      dev_set_promiscuity     - update promiscuity count on a device
5838  *      @dev: device
5839  *      @inc: modifier
5840  *
5841  *      Add or remove promiscuity from a device. While the count in the device
5842  *      remains above zero the interface remains promiscuous. Once it hits zero
5843  *      the device reverts back to normal filtering operation. A negative inc
5844  *      value is used to drop promiscuity on the device.
5845  *      Return 0 if successful or a negative errno code on error.
5846  */
5847 int dev_set_promiscuity(struct net_device *dev, int inc)
5848 {
5849         unsigned int old_flags = dev->flags;
5850         int err;
5851
5852         err = __dev_set_promiscuity(dev, inc, true);
5853         if (err < 0)
5854                 return err;
5855         if (dev->flags != old_flags)
5856                 dev_set_rx_mode(dev);
5857         return err;
5858 }
5859 EXPORT_SYMBOL(dev_set_promiscuity);
5860
5861 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5862 {
5863         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5864
5865         ASSERT_RTNL();
5866
5867         dev->flags |= IFF_ALLMULTI;
5868         dev->allmulti += inc;
5869         if (dev->allmulti == 0) {
5870                 /*
5871                  * Avoid overflow.
5872                  * If inc causes overflow, untouch allmulti and return error.
5873                  */
5874                 if (inc < 0)
5875                         dev->flags &= ~IFF_ALLMULTI;
5876                 else {
5877                         dev->allmulti -= inc;
5878                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5879                                 dev->name);
5880                         return -EOVERFLOW;
5881                 }
5882         }
5883         if (dev->flags ^ old_flags) {
5884                 dev_change_rx_flags(dev, IFF_ALLMULTI);
5885                 dev_set_rx_mode(dev);
5886                 if (notify)
5887                         __dev_notify_flags(dev, old_flags,
5888                                            dev->gflags ^ old_gflags);
5889         }
5890         return 0;
5891 }
5892
5893 /**
5894  *      dev_set_allmulti        - update allmulti count on a device
5895  *      @dev: device
5896  *      @inc: modifier
5897  *
5898  *      Add or remove reception of all multicast frames to a device. While the
5899  *      count in the device remains above zero the interface remains listening
5900  *      to all interfaces. Once it hits zero the device reverts back to normal
5901  *      filtering operation. A negative @inc value is used to drop the counter
5902  *      when releasing a resource needing all multicasts.
5903  *      Return 0 if successful or a negative errno code on error.
5904  */
5905
5906 int dev_set_allmulti(struct net_device *dev, int inc)
5907 {
5908         return __dev_set_allmulti(dev, inc, true);
5909 }
5910 EXPORT_SYMBOL(dev_set_allmulti);
5911
5912 /*
5913  *      Upload unicast and multicast address lists to device and
5914  *      configure RX filtering. When the device doesn't support unicast
5915  *      filtering it is put in promiscuous mode while unicast addresses
5916  *      are present.
5917  */
5918 void __dev_set_rx_mode(struct net_device *dev)
5919 {
5920         const struct net_device_ops *ops = dev->netdev_ops;
5921
5922         /* dev_open will call this function so the list will stay sane. */
5923         if (!(dev->flags&IFF_UP))
5924                 return;
5925
5926         if (!netif_device_present(dev))
5927                 return;
5928
5929         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5930                 /* Unicast addresses changes may only happen under the rtnl,
5931                  * therefore calling __dev_set_promiscuity here is safe.
5932                  */
5933                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5934                         __dev_set_promiscuity(dev, 1, false);
5935                         dev->uc_promisc = true;
5936                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5937                         __dev_set_promiscuity(dev, -1, false);
5938                         dev->uc_promisc = false;
5939                 }
5940         }
5941
5942         if (ops->ndo_set_rx_mode)
5943                 ops->ndo_set_rx_mode(dev);
5944 }
5945
5946 void dev_set_rx_mode(struct net_device *dev)
5947 {
5948         netif_addr_lock_bh(dev);
5949         __dev_set_rx_mode(dev);
5950         netif_addr_unlock_bh(dev);
5951 }
5952
5953 /**
5954  *      dev_get_flags - get flags reported to userspace
5955  *      @dev: device
5956  *
5957  *      Get the combination of flag bits exported through APIs to userspace.
5958  */
5959 unsigned int dev_get_flags(const struct net_device *dev)
5960 {
5961         unsigned int flags;
5962
5963         flags = (dev->flags & ~(IFF_PROMISC |
5964                                 IFF_ALLMULTI |
5965                                 IFF_RUNNING |
5966                                 IFF_LOWER_UP |
5967                                 IFF_DORMANT)) |
5968                 (dev->gflags & (IFF_PROMISC |
5969                                 IFF_ALLMULTI));
5970
5971         if (netif_running(dev)) {
5972                 if (netif_oper_up(dev))
5973                         flags |= IFF_RUNNING;
5974                 if (netif_carrier_ok(dev))
5975                         flags |= IFF_LOWER_UP;
5976                 if (netif_dormant(dev))
5977                         flags |= IFF_DORMANT;
5978         }
5979
5980         return flags;
5981 }
5982 EXPORT_SYMBOL(dev_get_flags);
5983
5984 int __dev_change_flags(struct net_device *dev, unsigned int flags)
5985 {
5986         unsigned int old_flags = dev->flags;
5987         int ret;
5988
5989         ASSERT_RTNL();
5990
5991         /*
5992          *      Set the flags on our device.
5993          */
5994
5995         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5996                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5997                                IFF_AUTOMEDIA)) |
5998                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5999                                     IFF_ALLMULTI));
6000
6001         /*
6002          *      Load in the correct multicast list now the flags have changed.
6003          */
6004
6005         if ((old_flags ^ flags) & IFF_MULTICAST)
6006                 dev_change_rx_flags(dev, IFF_MULTICAST);
6007
6008         dev_set_rx_mode(dev);
6009
6010         /*
6011          *      Have we downed the interface. We handle IFF_UP ourselves
6012          *      according to user attempts to set it, rather than blindly
6013          *      setting it.
6014          */
6015
6016         ret = 0;
6017         if ((old_flags ^ flags) & IFF_UP)
6018                 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
6019
6020         if ((flags ^ dev->gflags) & IFF_PROMISC) {
6021                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
6022                 unsigned int old_flags = dev->flags;
6023
6024                 dev->gflags ^= IFF_PROMISC;
6025
6026                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6027                         if (dev->flags != old_flags)
6028                                 dev_set_rx_mode(dev);
6029         }
6030
6031         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6032            is important. Some (broken) drivers set IFF_PROMISC, when
6033            IFF_ALLMULTI is requested not asking us and not reporting.
6034          */
6035         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6036                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6037
6038                 dev->gflags ^= IFF_ALLMULTI;
6039                 __dev_set_allmulti(dev, inc, false);
6040         }
6041
6042         return ret;
6043 }
6044
6045 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6046                         unsigned int gchanges)
6047 {
6048         unsigned int changes = dev->flags ^ old_flags;
6049
6050         if (gchanges)
6051                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6052
6053         if (changes & IFF_UP) {
6054                 if (dev->flags & IFF_UP)
6055                         call_netdevice_notifiers(NETDEV_UP, dev);
6056                 else
6057                         call_netdevice_notifiers(NETDEV_DOWN, dev);
6058         }
6059
6060         if (dev->flags & IFF_UP &&
6061             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6062                 struct netdev_notifier_change_info change_info;
6063
6064                 change_info.flags_changed = changes;
6065                 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6066                                               &change_info.info);
6067         }
6068 }
6069
6070 /**
6071  *      dev_change_flags - change device settings
6072  *      @dev: device
6073  *      @flags: device state flags
6074  *
6075  *      Change settings on device based state flags. The flags are
6076  *      in the userspace exported format.
6077  */
6078 int dev_change_flags(struct net_device *dev, unsigned int flags)
6079 {
6080         int ret;
6081         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6082
6083         ret = __dev_change_flags(dev, flags);
6084         if (ret < 0)
6085                 return ret;
6086
6087         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6088         __dev_notify_flags(dev, old_flags, changes);
6089         return ret;
6090 }
6091 EXPORT_SYMBOL(dev_change_flags);
6092
6093 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6094 {
6095         const struct net_device_ops *ops = dev->netdev_ops;
6096
6097         if (ops->ndo_change_mtu)
6098                 return ops->ndo_change_mtu(dev, new_mtu);
6099
6100         dev->mtu = new_mtu;
6101         return 0;
6102 }
6103
6104 /**
6105  *      dev_set_mtu - Change maximum transfer unit
6106  *      @dev: device
6107  *      @new_mtu: new transfer unit
6108  *
6109  *      Change the maximum transfer size of the network device.
6110  */
6111 int dev_set_mtu(struct net_device *dev, int new_mtu)
6112 {
6113         int err, orig_mtu;
6114
6115         if (new_mtu == dev->mtu)
6116                 return 0;
6117
6118         /*      MTU must be positive.    */
6119         if (new_mtu < 0)
6120                 return -EINVAL;
6121
6122         if (!netif_device_present(dev))
6123                 return -ENODEV;
6124
6125         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6126         err = notifier_to_errno(err);
6127         if (err)
6128                 return err;
6129
6130         orig_mtu = dev->mtu;
6131         err = __dev_set_mtu(dev, new_mtu);
6132
6133         if (!err) {
6134                 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6135                 err = notifier_to_errno(err);
6136                 if (err) {
6137                         /* setting mtu back and notifying everyone again,
6138                          * so that they have a chance to revert changes.
6139                          */
6140                         __dev_set_mtu(dev, orig_mtu);
6141                         call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6142                 }
6143         }
6144         return err;
6145 }
6146 EXPORT_SYMBOL(dev_set_mtu);
6147
6148 /**
6149  *      dev_set_group - Change group this device belongs to
6150  *      @dev: device
6151  *      @new_group: group this device should belong to
6152  */
6153 void dev_set_group(struct net_device *dev, int new_group)
6154 {
6155         dev->group = new_group;
6156 }
6157 EXPORT_SYMBOL(dev_set_group);
6158
6159 /**
6160  *      dev_set_mac_address - Change Media Access Control Address
6161  *      @dev: device
6162  *      @sa: new address
6163  *
6164  *      Change the hardware (MAC) address of the device
6165  */
6166 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6167 {
6168         const struct net_device_ops *ops = dev->netdev_ops;
6169         int err;
6170
6171         if (!ops->ndo_set_mac_address)
6172                 return -EOPNOTSUPP;
6173         if (sa->sa_family != dev->type)
6174                 return -EINVAL;
6175         if (!netif_device_present(dev))
6176                 return -ENODEV;
6177         err = ops->ndo_set_mac_address(dev, sa);
6178         if (err)
6179                 return err;
6180         dev->addr_assign_type = NET_ADDR_SET;
6181         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6182         add_device_randomness(dev->dev_addr, dev->addr_len);
6183         return 0;
6184 }
6185 EXPORT_SYMBOL(dev_set_mac_address);
6186
6187 /**
6188  *      dev_change_carrier - Change device carrier
6189  *      @dev: device
6190  *      @new_carrier: new value
6191  *
6192  *      Change device carrier
6193  */
6194 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6195 {
6196         const struct net_device_ops *ops = dev->netdev_ops;
6197
6198         if (!ops->ndo_change_carrier)
6199                 return -EOPNOTSUPP;
6200         if (!netif_device_present(dev))
6201                 return -ENODEV;
6202         return ops->ndo_change_carrier(dev, new_carrier);
6203 }
6204 EXPORT_SYMBOL(dev_change_carrier);
6205
6206 /**
6207  *      dev_get_phys_port_id - Get device physical port ID
6208  *      @dev: device
6209  *      @ppid: port ID
6210  *
6211  *      Get device physical port ID
6212  */
6213 int dev_get_phys_port_id(struct net_device *dev,
6214                          struct netdev_phys_item_id *ppid)
6215 {
6216         const struct net_device_ops *ops = dev->netdev_ops;
6217
6218         if (!ops->ndo_get_phys_port_id)
6219                 return -EOPNOTSUPP;
6220         return ops->ndo_get_phys_port_id(dev, ppid);
6221 }
6222 EXPORT_SYMBOL(dev_get_phys_port_id);
6223
6224 /**
6225  *      dev_get_phys_port_name - Get device physical port name
6226  *      @dev: device
6227  *      @name: port name
6228  *
6229  *      Get device physical port name
6230  */
6231 int dev_get_phys_port_name(struct net_device *dev,
6232                            char *name, size_t len)
6233 {
6234         const struct net_device_ops *ops = dev->netdev_ops;
6235
6236         if (!ops->ndo_get_phys_port_name)
6237                 return -EOPNOTSUPP;
6238         return ops->ndo_get_phys_port_name(dev, name, len);
6239 }
6240 EXPORT_SYMBOL(dev_get_phys_port_name);
6241
6242 /**
6243  *      dev_change_proto_down - update protocol port state information
6244  *      @dev: device
6245  *      @proto_down: new value
6246  *
6247  *      This info can be used by switch drivers to set the phys state of the
6248  *      port.
6249  */
6250 int dev_change_proto_down(struct net_device *dev, bool proto_down)
6251 {
6252         const struct net_device_ops *ops = dev->netdev_ops;
6253
6254         if (!ops->ndo_change_proto_down)
6255                 return -EOPNOTSUPP;
6256         if (!netif_device_present(dev))
6257                 return -ENODEV;
6258         return ops->ndo_change_proto_down(dev, proto_down);
6259 }
6260 EXPORT_SYMBOL(dev_change_proto_down);
6261
6262 /**
6263  *      dev_new_index   -       allocate an ifindex
6264  *      @net: the applicable net namespace
6265  *
6266  *      Returns a suitable unique value for a new device interface
6267  *      number.  The caller must hold the rtnl semaphore or the
6268  *      dev_base_lock to be sure it remains unique.
6269  */
6270 static int dev_new_index(struct net *net)
6271 {
6272         int ifindex = net->ifindex;
6273         for (;;) {
6274                 if (++ifindex <= 0)
6275                         ifindex = 1;
6276                 if (!__dev_get_by_index(net, ifindex))
6277                         return net->ifindex = ifindex;
6278         }
6279 }
6280
6281 /* Delayed registration/unregisteration */
6282 static LIST_HEAD(net_todo_list);
6283 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6284
6285 static void net_set_todo(struct net_device *dev)
6286 {
6287         list_add_tail(&dev->todo_list, &net_todo_list);
6288         dev_net(dev)->dev_unreg_count++;
6289 }
6290
6291 static void rollback_registered_many(struct list_head *head)
6292 {
6293         struct net_device *dev, *tmp;
6294         LIST_HEAD(close_head);
6295
6296         BUG_ON(dev_boot_phase);
6297         ASSERT_RTNL();
6298
6299         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6300                 /* Some devices call without registering
6301                  * for initialization unwind. Remove those
6302                  * devices and proceed with the remaining.
6303                  */
6304                 if (dev->reg_state == NETREG_UNINITIALIZED) {
6305                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6306                                  dev->name, dev);
6307
6308                         WARN_ON(1);
6309                         list_del(&dev->unreg_list);
6310                         continue;
6311                 }
6312                 dev->dismantle = true;
6313                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
6314         }
6315
6316         /* If device is running, close it first. */
6317         list_for_each_entry(dev, head, unreg_list)
6318                 list_add_tail(&dev->close_list, &close_head);
6319         dev_close_many(&close_head, true);
6320
6321         list_for_each_entry(dev, head, unreg_list) {
6322                 /* And unlink it from device chain. */
6323                 unlist_netdevice(dev);
6324
6325                 dev->reg_state = NETREG_UNREGISTERING;
6326                 on_each_cpu(flush_backlog, dev, 1);
6327         }
6328
6329         synchronize_net();
6330
6331         list_for_each_entry(dev, head, unreg_list) {
6332                 struct sk_buff *skb = NULL;
6333
6334                 /* Shutdown queueing discipline. */
6335                 dev_shutdown(dev);
6336
6337
6338                 /* Notify protocols, that we are about to destroy
6339                    this device. They should clean all the things.
6340                 */
6341                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6342
6343                 if (!dev->rtnl_link_ops ||
6344                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6345                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6346                                                      GFP_KERNEL);
6347
6348                 /*
6349                  *      Flush the unicast and multicast chains
6350                  */
6351                 dev_uc_flush(dev);
6352                 dev_mc_flush(dev);
6353
6354                 if (dev->netdev_ops->ndo_uninit)
6355                         dev->netdev_ops->ndo_uninit(dev);
6356
6357                 if (skb)
6358                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6359
6360                 /* Notifier chain MUST detach us all upper devices. */
6361                 WARN_ON(netdev_has_any_upper_dev(dev));
6362
6363                 /* Remove entries from kobject tree */
6364                 netdev_unregister_kobject(dev);
6365 #ifdef CONFIG_XPS
6366                 /* Remove XPS queueing entries */
6367                 netif_reset_xps_queues_gt(dev, 0);
6368 #endif
6369         }
6370
6371         synchronize_net();
6372
6373         list_for_each_entry(dev, head, unreg_list)
6374                 dev_put(dev);
6375 }
6376
6377 static void rollback_registered(struct net_device *dev)
6378 {
6379         LIST_HEAD(single);
6380
6381         list_add(&dev->unreg_list, &single);
6382         rollback_registered_many(&single);
6383         list_del(&single);
6384 }
6385
6386 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6387         struct net_device *upper, netdev_features_t features)
6388 {
6389         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6390         netdev_features_t feature;
6391         int feature_bit;
6392
6393         for_each_netdev_feature(&upper_disables, feature_bit) {
6394                 feature = __NETIF_F_BIT(feature_bit);
6395                 if (!(upper->wanted_features & feature)
6396                     && (features & feature)) {
6397                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6398                                    &feature, upper->name);
6399                         features &= ~feature;
6400                 }
6401         }
6402
6403         return features;
6404 }
6405
6406 static void netdev_sync_lower_features(struct net_device *upper,
6407         struct net_device *lower, netdev_features_t features)
6408 {
6409         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6410         netdev_features_t feature;
6411         int feature_bit;
6412
6413         for_each_netdev_feature(&upper_disables, feature_bit) {
6414                 feature = __NETIF_F_BIT(feature_bit);
6415                 if (!(features & feature) && (lower->features & feature)) {
6416                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6417                                    &feature, lower->name);
6418                         lower->wanted_features &= ~feature;
6419                         netdev_update_features(lower);
6420
6421                         if (unlikely(lower->features & feature))
6422                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6423                                             &feature, lower->name);
6424                 }
6425         }
6426 }
6427
6428 static netdev_features_t netdev_fix_features(struct net_device *dev,
6429         netdev_features_t features)
6430 {
6431         /* Fix illegal checksum combinations */
6432         if ((features & NETIF_F_HW_CSUM) &&
6433             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6434                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6435                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6436         }
6437
6438         /* TSO requires that SG is present as well. */
6439         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6440                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6441                 features &= ~NETIF_F_ALL_TSO;
6442         }
6443
6444         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6445                                         !(features & NETIF_F_IP_CSUM)) {
6446                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6447                 features &= ~NETIF_F_TSO;
6448                 features &= ~NETIF_F_TSO_ECN;
6449         }
6450
6451         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6452                                          !(features & NETIF_F_IPV6_CSUM)) {
6453                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6454                 features &= ~NETIF_F_TSO6;
6455         }
6456
6457         /* TSO ECN requires that TSO is present as well. */
6458         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6459                 features &= ~NETIF_F_TSO_ECN;
6460
6461         /* Software GSO depends on SG. */
6462         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6463                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6464                 features &= ~NETIF_F_GSO;
6465         }
6466
6467         /* UFO needs SG and checksumming */
6468         if (features & NETIF_F_UFO) {
6469                 /* maybe split UFO into V4 and V6? */
6470                 if (!((features & NETIF_F_GEN_CSUM) ||
6471                     (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
6472                             == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6473                         netdev_dbg(dev,
6474                                 "Dropping NETIF_F_UFO since no checksum offload features.\n");
6475                         features &= ~NETIF_F_UFO;
6476                 }
6477
6478                 if (!(features & NETIF_F_SG)) {
6479                         netdev_dbg(dev,
6480                                 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6481                         features &= ~NETIF_F_UFO;
6482                 }
6483         }
6484
6485 #ifdef CONFIG_NET_RX_BUSY_POLL
6486         if (dev->netdev_ops->ndo_busy_poll)
6487                 features |= NETIF_F_BUSY_POLL;
6488         else
6489 #endif
6490                 features &= ~NETIF_F_BUSY_POLL;
6491
6492         return features;
6493 }
6494
6495 int __netdev_update_features(struct net_device *dev)
6496 {
6497         struct net_device *upper, *lower;
6498         netdev_features_t features;
6499         struct list_head *iter;
6500         int err = -1;
6501
6502         ASSERT_RTNL();
6503
6504         features = netdev_get_wanted_features(dev);
6505
6506         if (dev->netdev_ops->ndo_fix_features)
6507                 features = dev->netdev_ops->ndo_fix_features(dev, features);
6508
6509         /* driver might be less strict about feature dependencies */
6510         features = netdev_fix_features(dev, features);
6511
6512         /* some features can't be enabled if they're off an an upper device */
6513         netdev_for_each_upper_dev_rcu(dev, upper, iter)
6514                 features = netdev_sync_upper_features(dev, upper, features);
6515
6516         if (dev->features == features)
6517                 goto sync_lower;
6518
6519         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6520                 &dev->features, &features);
6521
6522         if (dev->netdev_ops->ndo_set_features)
6523                 err = dev->netdev_ops->ndo_set_features(dev, features);
6524         else
6525                 err = 0;
6526
6527         if (unlikely(err < 0)) {
6528                 netdev_err(dev,
6529                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
6530                         err, &features, &dev->features);
6531                 /* return non-0 since some features might have changed and
6532                  * it's better to fire a spurious notification than miss it
6533                  */
6534                 return -1;
6535         }
6536
6537 sync_lower:
6538         /* some features must be disabled on lower devices when disabled
6539          * on an upper device (think: bonding master or bridge)
6540          */
6541         netdev_for_each_lower_dev(dev, lower, iter)
6542                 netdev_sync_lower_features(dev, lower, features);
6543
6544         if (!err)
6545                 dev->features = features;
6546
6547         return err < 0 ? 0 : 1;
6548 }
6549
6550 /**
6551  *      netdev_update_features - recalculate device features
6552  *      @dev: the device to check
6553  *
6554  *      Recalculate dev->features set and send notifications if it
6555  *      has changed. Should be called after driver or hardware dependent
6556  *      conditions might have changed that influence the features.
6557  */
6558 void netdev_update_features(struct net_device *dev)
6559 {
6560         if (__netdev_update_features(dev))
6561                 netdev_features_change(dev);
6562 }
6563 EXPORT_SYMBOL(netdev_update_features);
6564
6565 /**
6566  *      netdev_change_features - recalculate device features
6567  *      @dev: the device to check
6568  *
6569  *      Recalculate dev->features set and send notifications even
6570  *      if they have not changed. Should be called instead of
6571  *      netdev_update_features() if also dev->vlan_features might
6572  *      have changed to allow the changes to be propagated to stacked
6573  *      VLAN devices.
6574  */
6575 void netdev_change_features(struct net_device *dev)
6576 {
6577         __netdev_update_features(dev);
6578         netdev_features_change(dev);
6579 }
6580 EXPORT_SYMBOL(netdev_change_features);
6581
6582 /**
6583  *      netif_stacked_transfer_operstate -      transfer operstate
6584  *      @rootdev: the root or lower level device to transfer state from
6585  *      @dev: the device to transfer operstate to
6586  *
6587  *      Transfer operational state from root to device. This is normally
6588  *      called when a stacking relationship exists between the root
6589  *      device and the device(a leaf device).
6590  */
6591 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6592                                         struct net_device *dev)
6593 {
6594         if (rootdev->operstate == IF_OPER_DORMANT)
6595                 netif_dormant_on(dev);
6596         else
6597                 netif_dormant_off(dev);
6598
6599         if (netif_carrier_ok(rootdev)) {
6600                 if (!netif_carrier_ok(dev))
6601                         netif_carrier_on(dev);
6602         } else {
6603                 if (netif_carrier_ok(dev))
6604                         netif_carrier_off(dev);
6605         }
6606 }
6607 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6608
6609 #ifdef CONFIG_SYSFS
6610 static int netif_alloc_rx_queues(struct net_device *dev)
6611 {
6612         unsigned int i, count = dev->num_rx_queues;
6613         struct netdev_rx_queue *rx;
6614         size_t sz = count * sizeof(*rx);
6615
6616         BUG_ON(count < 1);
6617
6618         rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6619         if (!rx) {
6620                 rx = vzalloc(sz);
6621                 if (!rx)
6622                         return -ENOMEM;
6623         }
6624         dev->_rx = rx;
6625
6626         for (i = 0; i < count; i++)
6627                 rx[i].dev = dev;
6628         return 0;
6629 }
6630 #endif
6631
6632 static void netdev_init_one_queue(struct net_device *dev,
6633                                   struct netdev_queue *queue, void *_unused)
6634 {
6635         /* Initialize queue lock */
6636         spin_lock_init(&queue->_xmit_lock);
6637         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6638         queue->xmit_lock_owner = -1;
6639         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
6640         queue->dev = dev;
6641 #ifdef CONFIG_BQL
6642         dql_init(&queue->dql, HZ);
6643 #endif
6644 }
6645
6646 static void netif_free_tx_queues(struct net_device *dev)
6647 {
6648         kvfree(dev->_tx);
6649 }
6650
6651 static int netif_alloc_netdev_queues(struct net_device *dev)
6652 {
6653         unsigned int count = dev->num_tx_queues;
6654         struct netdev_queue *tx;
6655         size_t sz = count * sizeof(*tx);
6656
6657         if (count < 1 || count > 0xffff)
6658                 return -EINVAL;
6659
6660         tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6661         if (!tx) {
6662                 tx = vzalloc(sz);
6663                 if (!tx)
6664                         return -ENOMEM;
6665         }
6666         dev->_tx = tx;
6667
6668         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6669         spin_lock_init(&dev->tx_global_lock);
6670
6671         return 0;
6672 }
6673
6674 void netif_tx_stop_all_queues(struct net_device *dev)
6675 {
6676         unsigned int i;
6677
6678         for (i = 0; i < dev->num_tx_queues; i++) {
6679                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
6680                 netif_tx_stop_queue(txq);
6681         }
6682 }
6683 EXPORT_SYMBOL(netif_tx_stop_all_queues);
6684
6685 /**
6686  *      register_netdevice      - register a network device
6687  *      @dev: device to register
6688  *
6689  *      Take a completed network device structure and add it to the kernel
6690  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6691  *      chain. 0 is returned on success. A negative errno code is returned
6692  *      on a failure to set up the device, or if the name is a duplicate.
6693  *
6694  *      Callers must hold the rtnl semaphore. You may want
6695  *      register_netdev() instead of this.
6696  *
6697  *      BUGS:
6698  *      The locking appears insufficient to guarantee two parallel registers
6699  *      will not get the same name.
6700  */
6701
6702 int register_netdevice(struct net_device *dev)
6703 {
6704         int ret;
6705         struct net *net = dev_net(dev);
6706
6707         BUG_ON(dev_boot_phase);
6708         ASSERT_RTNL();
6709
6710         might_sleep();
6711
6712         /* When net_device's are persistent, this will be fatal. */
6713         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
6714         BUG_ON(!net);
6715
6716         spin_lock_init(&dev->addr_list_lock);
6717         netdev_set_addr_lockdep_class(dev);
6718
6719         ret = dev_get_valid_name(net, dev, dev->name);
6720         if (ret < 0)
6721                 goto out;
6722
6723         /* Init, if this function is available */
6724         if (dev->netdev_ops->ndo_init) {
6725                 ret = dev->netdev_ops->ndo_init(dev);
6726                 if (ret) {
6727                         if (ret > 0)
6728                                 ret = -EIO;
6729                         goto out;
6730                 }
6731         }
6732
6733         if (((dev->hw_features | dev->features) &
6734              NETIF_F_HW_VLAN_CTAG_FILTER) &&
6735             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6736              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6737                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6738                 ret = -EINVAL;
6739                 goto err_uninit;
6740         }
6741
6742         ret = -EBUSY;
6743         if (!dev->ifindex)
6744                 dev->ifindex = dev_new_index(net);
6745         else if (__dev_get_by_index(net, dev->ifindex))
6746                 goto err_uninit;
6747
6748         /* Transfer changeable features to wanted_features and enable
6749          * software offloads (GSO and GRO).
6750          */
6751         dev->hw_features |= NETIF_F_SOFT_FEATURES;
6752         dev->features |= NETIF_F_SOFT_FEATURES;
6753         dev->wanted_features = dev->features & dev->hw_features;
6754
6755         if (!(dev->flags & IFF_LOOPBACK)) {
6756                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
6757         }
6758
6759         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
6760          */
6761         dev->vlan_features |= NETIF_F_HIGHDMA;
6762
6763         /* Make NETIF_F_SG inheritable to tunnel devices.
6764          */
6765         dev->hw_enc_features |= NETIF_F_SG;
6766
6767         /* Make NETIF_F_SG inheritable to MPLS.
6768          */
6769         dev->mpls_features |= NETIF_F_SG;
6770
6771         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6772         ret = notifier_to_errno(ret);
6773         if (ret)
6774                 goto err_uninit;
6775
6776         ret = netdev_register_kobject(dev);
6777         if (ret)
6778                 goto err_uninit;
6779         dev->reg_state = NETREG_REGISTERED;
6780
6781         __netdev_update_features(dev);
6782
6783         /*
6784          *      Default initial state at registry is that the
6785          *      device is present.
6786          */
6787
6788         set_bit(__LINK_STATE_PRESENT, &dev->state);
6789
6790         linkwatch_init_dev(dev);
6791
6792         dev_init_scheduler(dev);
6793         dev_hold(dev);
6794         list_netdevice(dev);
6795         add_device_randomness(dev->dev_addr, dev->addr_len);
6796
6797         /* If the device has permanent device address, driver should
6798          * set dev_addr and also addr_assign_type should be set to
6799          * NET_ADDR_PERM (default value).
6800          */
6801         if (dev->addr_assign_type == NET_ADDR_PERM)
6802                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6803
6804         /* Notify protocols, that a new device appeared. */
6805         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
6806         ret = notifier_to_errno(ret);
6807         if (ret) {
6808                 rollback_registered(dev);
6809                 dev->reg_state = NETREG_UNREGISTERED;
6810         }
6811         /*
6812          *      Prevent userspace races by waiting until the network
6813          *      device is fully setup before sending notifications.
6814          */
6815         if (!dev->rtnl_link_ops ||
6816             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6817                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6818
6819 out:
6820         return ret;
6821
6822 err_uninit:
6823         if (dev->netdev_ops->ndo_uninit)
6824                 dev->netdev_ops->ndo_uninit(dev);
6825         goto out;
6826 }
6827 EXPORT_SYMBOL(register_netdevice);
6828
6829 /**
6830  *      init_dummy_netdev       - init a dummy network device for NAPI
6831  *      @dev: device to init
6832  *
6833  *      This takes a network device structure and initialize the minimum
6834  *      amount of fields so it can be used to schedule NAPI polls without
6835  *      registering a full blown interface. This is to be used by drivers
6836  *      that need to tie several hardware interfaces to a single NAPI
6837  *      poll scheduler due to HW limitations.
6838  */
6839 int init_dummy_netdev(struct net_device *dev)
6840 {
6841         /* Clear everything. Note we don't initialize spinlocks
6842          * are they aren't supposed to be taken by any of the
6843          * NAPI code and this dummy netdev is supposed to be
6844          * only ever used for NAPI polls
6845          */
6846         memset(dev, 0, sizeof(struct net_device));
6847
6848         /* make sure we BUG if trying to hit standard
6849          * register/unregister code path
6850          */
6851         dev->reg_state = NETREG_DUMMY;
6852
6853         /* NAPI wants this */
6854         INIT_LIST_HEAD(&dev->napi_list);
6855
6856         /* a dummy interface is started by default */
6857         set_bit(__LINK_STATE_PRESENT, &dev->state);
6858         set_bit(__LINK_STATE_START, &dev->state);
6859
6860         /* Note : We dont allocate pcpu_refcnt for dummy devices,
6861          * because users of this 'device' dont need to change
6862          * its refcount.
6863          */
6864
6865         return 0;
6866 }
6867 EXPORT_SYMBOL_GPL(init_dummy_netdev);
6868
6869
6870 /**
6871  *      register_netdev - register a network device
6872  *      @dev: device to register
6873  *
6874  *      Take a completed network device structure and add it to the kernel
6875  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6876  *      chain. 0 is returned on success. A negative errno code is returned
6877  *      on a failure to set up the device, or if the name is a duplicate.
6878  *
6879  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
6880  *      and expands the device name if you passed a format string to
6881  *      alloc_netdev.
6882  */
6883 int register_netdev(struct net_device *dev)
6884 {
6885         int err;
6886
6887         rtnl_lock();
6888         err = register_netdevice(dev);
6889         rtnl_unlock();
6890         return err;
6891 }
6892 EXPORT_SYMBOL(register_netdev);
6893
6894 int netdev_refcnt_read(const struct net_device *dev)
6895 {
6896         int i, refcnt = 0;
6897
6898         for_each_possible_cpu(i)
6899                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6900         return refcnt;
6901 }
6902 EXPORT_SYMBOL(netdev_refcnt_read);
6903
6904 /**
6905  * netdev_wait_allrefs - wait until all references are gone.
6906  * @dev: target net_device
6907  *
6908  * This is called when unregistering network devices.
6909  *
6910  * Any protocol or device that holds a reference should register
6911  * for netdevice notification, and cleanup and put back the
6912  * reference if they receive an UNREGISTER event.
6913  * We can get stuck here if buggy protocols don't correctly
6914  * call dev_put.
6915  */
6916 static void netdev_wait_allrefs(struct net_device *dev)
6917 {
6918         unsigned long rebroadcast_time, warning_time;
6919         int refcnt;
6920
6921         linkwatch_forget_dev(dev);
6922
6923         rebroadcast_time = warning_time = jiffies;
6924         refcnt = netdev_refcnt_read(dev);
6925
6926         while (refcnt != 0) {
6927                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6928                         rtnl_lock();
6929
6930                         /* Rebroadcast unregister notification */
6931                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6932
6933                         __rtnl_unlock();
6934                         rcu_barrier();
6935                         rtnl_lock();
6936
6937                         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6938                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6939                                      &dev->state)) {
6940                                 /* We must not have linkwatch events
6941                                  * pending on unregister. If this
6942                                  * happens, we simply run the queue
6943                                  * unscheduled, resulting in a noop
6944                                  * for this device.
6945                                  */
6946                                 linkwatch_run_queue();
6947                         }
6948
6949                         __rtnl_unlock();
6950
6951                         rebroadcast_time = jiffies;
6952                 }
6953
6954                 msleep(250);
6955
6956                 refcnt = netdev_refcnt_read(dev);
6957
6958                 if (time_after(jiffies, warning_time + 10 * HZ)) {
6959                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6960                                  dev->name, refcnt);
6961                         warning_time = jiffies;
6962                 }
6963         }
6964 }
6965
6966 /* The sequence is:
6967  *
6968  *      rtnl_lock();
6969  *      ...
6970  *      register_netdevice(x1);
6971  *      register_netdevice(x2);
6972  *      ...
6973  *      unregister_netdevice(y1);
6974  *      unregister_netdevice(y2);
6975  *      ...
6976  *      rtnl_unlock();
6977  *      free_netdev(y1);
6978  *      free_netdev(y2);
6979  *
6980  * We are invoked by rtnl_unlock().
6981  * This allows us to deal with problems:
6982  * 1) We can delete sysfs objects which invoke hotplug
6983  *    without deadlocking with linkwatch via keventd.
6984  * 2) Since we run with the RTNL semaphore not held, we can sleep
6985  *    safely in order to wait for the netdev refcnt to drop to zero.
6986  *
6987  * We must not return until all unregister events added during
6988  * the interval the lock was held have been completed.
6989  */
6990 void netdev_run_todo(void)
6991 {
6992         struct list_head list;
6993
6994         /* Snapshot list, allow later requests */
6995         list_replace_init(&net_todo_list, &list);
6996
6997         __rtnl_unlock();
6998
6999
7000         /* Wait for rcu callbacks to finish before next phase */
7001         if (!list_empty(&list))
7002                 rcu_barrier();
7003
7004         while (!list_empty(&list)) {
7005                 struct net_device *dev
7006                         = list_first_entry(&list, struct net_device, todo_list);
7007                 list_del(&dev->todo_list);
7008
7009                 rtnl_lock();
7010                 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7011                 __rtnl_unlock();
7012
7013                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7014                         pr_err("network todo '%s' but state %d\n",
7015                                dev->name, dev->reg_state);
7016                         dump_stack();
7017                         continue;
7018                 }
7019
7020                 dev->reg_state = NETREG_UNREGISTERED;
7021
7022                 netdev_wait_allrefs(dev);
7023
7024                 /* paranoia */
7025                 BUG_ON(netdev_refcnt_read(dev));
7026                 BUG_ON(!list_empty(&dev->ptype_all));
7027                 BUG_ON(!list_empty(&dev->ptype_specific));
7028                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7029                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7030                 WARN_ON(dev->dn_ptr);
7031
7032                 if (dev->destructor)
7033                         dev->destructor(dev);
7034
7035                 /* Report a network device has been unregistered */
7036                 rtnl_lock();
7037                 dev_net(dev)->dev_unreg_count--;
7038                 __rtnl_unlock();
7039                 wake_up(&netdev_unregistering_wq);
7040
7041                 /* Free network device */
7042                 kobject_put(&dev->dev.kobj);
7043         }
7044 }
7045
7046 /* Convert net_device_stats to rtnl_link_stats64.  They have the same
7047  * fields in the same order, with only the type differing.
7048  */
7049 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7050                              const struct net_device_stats *netdev_stats)
7051 {
7052 #if BITS_PER_LONG == 64
7053         BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
7054         memcpy(stats64, netdev_stats, sizeof(*stats64));
7055 #else
7056         size_t i, n = sizeof(*stats64) / sizeof(u64);
7057         const unsigned long *src = (const unsigned long *)netdev_stats;
7058         u64 *dst = (u64 *)stats64;
7059
7060         BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
7061                      sizeof(*stats64) / sizeof(u64));
7062         for (i = 0; i < n; i++)
7063                 dst[i] = src[i];
7064 #endif
7065 }
7066 EXPORT_SYMBOL(netdev_stats_to_stats64);
7067
7068 /**
7069  *      dev_get_stats   - get network device statistics
7070  *      @dev: device to get statistics from
7071  *      @storage: place to store stats
7072  *
7073  *      Get network statistics from device. Return @storage.
7074  *      The device driver may provide its own method by setting
7075  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7076  *      otherwise the internal statistics structure is used.
7077  */
7078 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7079                                         struct rtnl_link_stats64 *storage)
7080 {
7081         const struct net_device_ops *ops = dev->netdev_ops;
7082
7083         if (ops->ndo_get_stats64) {
7084                 memset(storage, 0, sizeof(*storage));
7085                 ops->ndo_get_stats64(dev, storage);
7086         } else if (ops->ndo_get_stats) {
7087                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
7088         } else {
7089                 netdev_stats_to_stats64(storage, &dev->stats);
7090         }
7091         storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
7092         storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
7093         return storage;
7094 }
7095 EXPORT_SYMBOL(dev_get_stats);
7096
7097 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
7098 {
7099         struct netdev_queue *queue = dev_ingress_queue(dev);
7100
7101 #ifdef CONFIG_NET_CLS_ACT
7102         if (queue)
7103                 return queue;
7104         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7105         if (!queue)
7106                 return NULL;
7107         netdev_init_one_queue(dev, queue, NULL);
7108         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
7109         queue->qdisc_sleeping = &noop_qdisc;
7110         rcu_assign_pointer(dev->ingress_queue, queue);
7111 #endif
7112         return queue;
7113 }
7114
7115 static const struct ethtool_ops default_ethtool_ops;
7116
7117 void netdev_set_default_ethtool_ops(struct net_device *dev,
7118                                     const struct ethtool_ops *ops)
7119 {
7120         if (dev->ethtool_ops == &default_ethtool_ops)
7121                 dev->ethtool_ops = ops;
7122 }
7123 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7124
7125 void netdev_freemem(struct net_device *dev)
7126 {
7127         char *addr = (char *)dev - dev->padded;
7128
7129         kvfree(addr);
7130 }
7131
7132 /**
7133  *      alloc_netdev_mqs - allocate network device
7134  *      @sizeof_priv:           size of private data to allocate space for
7135  *      @name:                  device name format string
7136  *      @name_assign_type:      origin of device name
7137  *      @setup:                 callback to initialize device
7138  *      @txqs:                  the number of TX subqueues to allocate
7139  *      @rxqs:                  the number of RX subqueues to allocate
7140  *
7141  *      Allocates a struct net_device with private data area for driver use
7142  *      and performs basic initialization.  Also allocates subqueue structs
7143  *      for each queue on the device.
7144  */
7145 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
7146                 unsigned char name_assign_type,
7147                 void (*setup)(struct net_device *),
7148                 unsigned int txqs, unsigned int rxqs)
7149 {
7150         struct net_device *dev;
7151         size_t alloc_size;
7152         struct net_device *p;
7153
7154         BUG_ON(strlen(name) >= sizeof(dev->name));
7155
7156         if (txqs < 1) {
7157                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
7158                 return NULL;
7159         }
7160
7161 #ifdef CONFIG_SYSFS
7162         if (rxqs < 1) {
7163                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
7164                 return NULL;
7165         }
7166 #endif
7167
7168         alloc_size = sizeof(struct net_device);
7169         if (sizeof_priv) {
7170                 /* ensure 32-byte alignment of private area */
7171                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
7172                 alloc_size += sizeof_priv;
7173         }
7174         /* ensure 32-byte alignment of whole construct */
7175         alloc_size += NETDEV_ALIGN - 1;
7176
7177         p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7178         if (!p)
7179                 p = vzalloc(alloc_size);
7180         if (!p)
7181                 return NULL;
7182
7183         dev = PTR_ALIGN(p, NETDEV_ALIGN);
7184         dev->padded = (char *)dev - (char *)p;
7185
7186         dev->pcpu_refcnt = alloc_percpu(int);
7187         if (!dev->pcpu_refcnt)
7188                 goto free_dev;
7189
7190         if (dev_addr_init(dev))
7191                 goto free_pcpu;
7192
7193         dev_mc_init(dev);
7194         dev_uc_init(dev);
7195
7196         dev_net_set(dev, &init_net);
7197
7198         dev->gso_max_size = GSO_MAX_SIZE;
7199         dev->gso_max_segs = GSO_MAX_SEGS;
7200         dev->gso_min_segs = 0;
7201
7202         INIT_LIST_HEAD(&dev->napi_list);
7203         INIT_LIST_HEAD(&dev->unreg_list);
7204         INIT_LIST_HEAD(&dev->close_list);
7205         INIT_LIST_HEAD(&dev->link_watch_list);
7206         INIT_LIST_HEAD(&dev->adj_list.upper);
7207         INIT_LIST_HEAD(&dev->adj_list.lower);
7208         INIT_LIST_HEAD(&dev->all_adj_list.upper);
7209         INIT_LIST_HEAD(&dev->all_adj_list.lower);
7210         INIT_LIST_HEAD(&dev->ptype_all);
7211         INIT_LIST_HEAD(&dev->ptype_specific);
7212         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
7213         setup(dev);
7214
7215         if (!dev->tx_queue_len)
7216                 dev->priv_flags |= IFF_NO_QUEUE;
7217
7218         dev->num_tx_queues = txqs;
7219         dev->real_num_tx_queues = txqs;
7220         if (netif_alloc_netdev_queues(dev))
7221                 goto free_all;
7222
7223 #ifdef CONFIG_SYSFS
7224         dev->num_rx_queues = rxqs;
7225         dev->real_num_rx_queues = rxqs;
7226         if (netif_alloc_rx_queues(dev))
7227                 goto free_all;
7228 #endif
7229
7230         strcpy(dev->name, name);
7231         dev->name_assign_type = name_assign_type;
7232         dev->group = INIT_NETDEV_GROUP;
7233         if (!dev->ethtool_ops)
7234                 dev->ethtool_ops = &default_ethtool_ops;
7235
7236         nf_hook_ingress_init(dev);
7237
7238         return dev;
7239
7240 free_all:
7241         free_netdev(dev);
7242         return NULL;
7243
7244 free_pcpu:
7245         free_percpu(dev->pcpu_refcnt);
7246 free_dev:
7247         netdev_freemem(dev);
7248         return NULL;
7249 }
7250 EXPORT_SYMBOL(alloc_netdev_mqs);
7251
7252 /**
7253  *      free_netdev - free network device
7254  *      @dev: device
7255  *
7256  *      This function does the last stage of destroying an allocated device
7257  *      interface. The reference to the device object is released.
7258  *      If this is the last reference then it will be freed.
7259  *      Must be called in process context.
7260  */
7261 void free_netdev(struct net_device *dev)
7262 {
7263         struct napi_struct *p, *n;
7264
7265         might_sleep();
7266         netif_free_tx_queues(dev);
7267 #ifdef CONFIG_SYSFS
7268         kvfree(dev->_rx);
7269 #endif
7270
7271         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7272
7273         /* Flush device addresses */
7274         dev_addr_flush(dev);
7275
7276         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7277                 netif_napi_del(p);
7278
7279         free_percpu(dev->pcpu_refcnt);
7280         dev->pcpu_refcnt = NULL;
7281
7282         /*  Compatibility with error handling in drivers */
7283         if (dev->reg_state == NETREG_UNINITIALIZED) {
7284                 netdev_freemem(dev);
7285                 return;
7286         }
7287
7288         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7289         dev->reg_state = NETREG_RELEASED;
7290
7291         /* will free via device release */
7292         put_device(&dev->dev);
7293 }
7294 EXPORT_SYMBOL(free_netdev);
7295
7296 /**
7297  *      synchronize_net -  Synchronize with packet receive processing
7298  *
7299  *      Wait for packets currently being received to be done.
7300  *      Does not block later packets from starting.
7301  */
7302 void synchronize_net(void)
7303 {
7304         might_sleep();
7305         if (rtnl_is_locked())
7306                 synchronize_rcu_expedited();
7307         else
7308                 synchronize_rcu();
7309 }
7310 EXPORT_SYMBOL(synchronize_net);
7311
7312 /**
7313  *      unregister_netdevice_queue - remove device from the kernel
7314  *      @dev: device
7315  *      @head: list
7316  *
7317  *      This function shuts down a device interface and removes it
7318  *      from the kernel tables.
7319  *      If head not NULL, device is queued to be unregistered later.
7320  *
7321  *      Callers must hold the rtnl semaphore.  You may want
7322  *      unregister_netdev() instead of this.
7323  */
7324
7325 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
7326 {
7327         ASSERT_RTNL();
7328
7329         if (head) {
7330                 list_move_tail(&dev->unreg_list, head);
7331         } else {
7332                 rollback_registered(dev);
7333                 /* Finish processing unregister after unlock */
7334                 net_set_todo(dev);
7335         }
7336 }
7337 EXPORT_SYMBOL(unregister_netdevice_queue);
7338
7339 /**
7340  *      unregister_netdevice_many - unregister many devices
7341  *      @head: list of devices
7342  *
7343  *  Note: As most callers use a stack allocated list_head,
7344  *  we force a list_del() to make sure stack wont be corrupted later.
7345  */
7346 void unregister_netdevice_many(struct list_head *head)
7347 {
7348         struct net_device *dev;
7349
7350         if (!list_empty(head)) {
7351                 rollback_registered_many(head);
7352                 list_for_each_entry(dev, head, unreg_list)
7353                         net_set_todo(dev);
7354                 list_del(head);
7355         }
7356 }
7357 EXPORT_SYMBOL(unregister_netdevice_many);
7358
7359 /**
7360  *      unregister_netdev - remove device from the kernel
7361  *      @dev: device
7362  *
7363  *      This function shuts down a device interface and removes it
7364  *      from the kernel tables.
7365  *
7366  *      This is just a wrapper for unregister_netdevice that takes
7367  *      the rtnl semaphore.  In general you want to use this and not
7368  *      unregister_netdevice.
7369  */
7370 void unregister_netdev(struct net_device *dev)
7371 {
7372         rtnl_lock();
7373         unregister_netdevice(dev);
7374         rtnl_unlock();
7375 }
7376 EXPORT_SYMBOL(unregister_netdev);
7377
7378 /**
7379  *      dev_change_net_namespace - move device to different nethost namespace
7380  *      @dev: device
7381  *      @net: network namespace
7382  *      @pat: If not NULL name pattern to try if the current device name
7383  *            is already taken in the destination network namespace.
7384  *
7385  *      This function shuts down a device interface and moves it
7386  *      to a new network namespace. On success 0 is returned, on
7387  *      a failure a netagive errno code is returned.
7388  *
7389  *      Callers must hold the rtnl semaphore.
7390  */
7391
7392 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7393 {
7394         int err;
7395
7396         ASSERT_RTNL();
7397
7398         /* Don't allow namespace local devices to be moved. */
7399         err = -EINVAL;
7400         if (dev->features & NETIF_F_NETNS_LOCAL)
7401                 goto out;
7402
7403         /* Ensure the device has been registrered */
7404         if (dev->reg_state != NETREG_REGISTERED)
7405                 goto out;
7406
7407         /* Get out if there is nothing todo */
7408         err = 0;
7409         if (net_eq(dev_net(dev), net))
7410                 goto out;
7411
7412         /* Pick the destination device name, and ensure
7413          * we can use it in the destination network namespace.
7414          */
7415         err = -EEXIST;
7416         if (__dev_get_by_name(net, dev->name)) {
7417                 /* We get here if we can't use the current device name */
7418                 if (!pat)
7419                         goto out;
7420                 if (dev_get_valid_name(net, dev, pat) < 0)
7421                         goto out;
7422         }
7423
7424         /*
7425          * And now a mini version of register_netdevice unregister_netdevice.
7426          */
7427
7428         /* If device is running close it first. */
7429         dev_close(dev);
7430
7431         /* And unlink it from device chain */
7432         err = -ENODEV;
7433         unlist_netdevice(dev);
7434
7435         synchronize_net();
7436
7437         /* Shutdown queueing discipline. */
7438         dev_shutdown(dev);
7439
7440         /* Notify protocols, that we are about to destroy
7441            this device. They should clean all the things.
7442
7443            Note that dev->reg_state stays at NETREG_REGISTERED.
7444            This is wanted because this way 8021q and macvlan know
7445            the device is just moving and can keep their slaves up.
7446         */
7447         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7448         rcu_barrier();
7449         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7450         rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7451
7452         /*
7453          *      Flush the unicast and multicast chains
7454          */
7455         dev_uc_flush(dev);
7456         dev_mc_flush(dev);
7457
7458         /* Send a netdev-removed uevent to the old namespace */
7459         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7460         netdev_adjacent_del_links(dev);
7461
7462         /* Actually switch the network namespace */
7463         dev_net_set(dev, net);
7464
7465         /* If there is an ifindex conflict assign a new one */
7466         if (__dev_get_by_index(net, dev->ifindex))
7467                 dev->ifindex = dev_new_index(net);
7468
7469         /* Send a netdev-add uevent to the new namespace */
7470         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7471         netdev_adjacent_add_links(dev);
7472
7473         /* Fixup kobjects */
7474         err = device_rename(&dev->dev, dev->name);
7475         WARN_ON(err);
7476
7477         /* Add the device back in the hashes */
7478         list_netdevice(dev);
7479
7480         /* Notify protocols, that a new device appeared. */
7481         call_netdevice_notifiers(NETDEV_REGISTER, dev);
7482
7483         /*
7484          *      Prevent userspace races by waiting until the network
7485          *      device is fully setup before sending notifications.
7486          */
7487         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7488
7489         synchronize_net();
7490         err = 0;
7491 out:
7492         return err;
7493 }
7494 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
7495
7496 static int dev_cpu_callback(struct notifier_block *nfb,
7497                             unsigned long action,
7498                             void *ocpu)
7499 {
7500         struct sk_buff **list_skb;
7501         struct sk_buff *skb;
7502         unsigned int cpu, oldcpu = (unsigned long)ocpu;
7503         struct softnet_data *sd, *oldsd;
7504
7505         if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
7506                 return NOTIFY_OK;
7507
7508         local_irq_disable();
7509         cpu = smp_processor_id();
7510         sd = &per_cpu(softnet_data, cpu);
7511         oldsd = &per_cpu(softnet_data, oldcpu);
7512
7513         /* Find end of our completion_queue. */
7514         list_skb = &sd->completion_queue;
7515         while (*list_skb)
7516                 list_skb = &(*list_skb)->next;
7517         /* Append completion queue from offline CPU. */
7518         *list_skb = oldsd->completion_queue;
7519         oldsd->completion_queue = NULL;
7520
7521         /* Append output queue from offline CPU. */
7522         if (oldsd->output_queue) {
7523                 *sd->output_queue_tailp = oldsd->output_queue;
7524                 sd->output_queue_tailp = oldsd->output_queue_tailp;
7525                 oldsd->output_queue = NULL;
7526                 oldsd->output_queue_tailp = &oldsd->output_queue;
7527         }
7528         /* Append NAPI poll list from offline CPU, with one exception :
7529          * process_backlog() must be called by cpu owning percpu backlog.
7530          * We properly handle process_queue & input_pkt_queue later.
7531          */
7532         while (!list_empty(&oldsd->poll_list)) {
7533                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7534                                                             struct napi_struct,
7535                                                             poll_list);
7536
7537                 list_del_init(&napi->poll_list);
7538                 if (napi->poll == process_backlog)
7539                         napi->state = 0;
7540                 else
7541                         ____napi_schedule(sd, napi);
7542         }
7543
7544         raise_softirq_irqoff(NET_TX_SOFTIRQ);
7545         local_irq_enable();
7546
7547         /* Process offline CPU's input_pkt_queue */
7548         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
7549                 netif_rx_ni(skb);
7550                 input_queue_head_incr(oldsd);
7551         }
7552         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
7553                 netif_rx_ni(skb);
7554                 input_queue_head_incr(oldsd);
7555         }
7556
7557         return NOTIFY_OK;
7558 }
7559
7560
7561 /**
7562  *      netdev_increment_features - increment feature set by one
7563  *      @all: current feature set
7564  *      @one: new feature set
7565  *      @mask: mask feature set
7566  *
7567  *      Computes a new feature set after adding a device with feature set
7568  *      @one to the master device with current feature set @all.  Will not
7569  *      enable anything that is off in @mask. Returns the new feature set.
7570  */
7571 netdev_features_t netdev_increment_features(netdev_features_t all,
7572         netdev_features_t one, netdev_features_t mask)
7573 {
7574         if (mask & NETIF_F_GEN_CSUM)
7575                 mask |= NETIF_F_CSUM_MASK;
7576         mask |= NETIF_F_VLAN_CHALLENGED;
7577
7578         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
7579         all &= one | ~NETIF_F_ALL_FOR_ALL;
7580
7581         /* If one device supports hw checksumming, set for all. */
7582         if (all & NETIF_F_GEN_CSUM)
7583                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_GEN_CSUM);
7584
7585         return all;
7586 }
7587 EXPORT_SYMBOL(netdev_increment_features);
7588
7589 static struct hlist_head * __net_init netdev_create_hash(void)
7590 {
7591         int i;
7592         struct hlist_head *hash;
7593
7594         hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7595         if (hash != NULL)
7596                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
7597                         INIT_HLIST_HEAD(&hash[i]);
7598
7599         return hash;
7600 }
7601
7602 /* Initialize per network namespace state */
7603 static int __net_init netdev_init(struct net *net)
7604 {
7605         if (net != &init_net)
7606                 INIT_LIST_HEAD(&net->dev_base_head);
7607
7608         net->dev_name_head = netdev_create_hash();
7609         if (net->dev_name_head == NULL)
7610                 goto err_name;
7611
7612         net->dev_index_head = netdev_create_hash();
7613         if (net->dev_index_head == NULL)
7614                 goto err_idx;
7615
7616         return 0;
7617
7618 err_idx:
7619         kfree(net->dev_name_head);
7620 err_name:
7621         return -ENOMEM;
7622 }
7623
7624 /**
7625  *      netdev_drivername - network driver for the device
7626  *      @dev: network device
7627  *
7628  *      Determine network driver for device.
7629  */
7630 const char *netdev_drivername(const struct net_device *dev)
7631 {
7632         const struct device_driver *driver;
7633         const struct device *parent;
7634         const char *empty = "";
7635
7636         parent = dev->dev.parent;
7637         if (!parent)
7638                 return empty;
7639
7640         driver = parent->driver;
7641         if (driver && driver->name)
7642                 return driver->name;
7643         return empty;
7644 }
7645
7646 static void __netdev_printk(const char *level, const struct net_device *dev,
7647                             struct va_format *vaf)
7648 {
7649         if (dev && dev->dev.parent) {
7650                 dev_printk_emit(level[1] - '0',
7651                                 dev->dev.parent,
7652                                 "%s %s %s%s: %pV",
7653                                 dev_driver_string(dev->dev.parent),
7654                                 dev_name(dev->dev.parent),
7655                                 netdev_name(dev), netdev_reg_state(dev),
7656                                 vaf);
7657         } else if (dev) {
7658                 printk("%s%s%s: %pV",
7659                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
7660         } else {
7661                 printk("%s(NULL net_device): %pV", level, vaf);
7662         }
7663 }
7664
7665 void netdev_printk(const char *level, const struct net_device *dev,
7666                    const char *format, ...)
7667 {
7668         struct va_format vaf;
7669         va_list args;
7670
7671         va_start(args, format);
7672
7673         vaf.fmt = format;
7674         vaf.va = &args;
7675
7676         __netdev_printk(level, dev, &vaf);
7677
7678         va_end(args);
7679 }
7680 EXPORT_SYMBOL(netdev_printk);
7681
7682 #define define_netdev_printk_level(func, level)                 \
7683 void func(const struct net_device *dev, const char *fmt, ...)   \
7684 {                                                               \
7685         struct va_format vaf;                                   \
7686         va_list args;                                           \
7687                                                                 \
7688         va_start(args, fmt);                                    \
7689                                                                 \
7690         vaf.fmt = fmt;                                          \
7691         vaf.va = &args;                                         \
7692                                                                 \
7693         __netdev_printk(level, dev, &vaf);                      \
7694                                                                 \
7695         va_end(args);                                           \
7696 }                                                               \
7697 EXPORT_SYMBOL(func);
7698
7699 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7700 define_netdev_printk_level(netdev_alert, KERN_ALERT);
7701 define_netdev_printk_level(netdev_crit, KERN_CRIT);
7702 define_netdev_printk_level(netdev_err, KERN_ERR);
7703 define_netdev_printk_level(netdev_warn, KERN_WARNING);
7704 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7705 define_netdev_printk_level(netdev_info, KERN_INFO);
7706
7707 static void __net_exit netdev_exit(struct net *net)
7708 {
7709         kfree(net->dev_name_head);
7710         kfree(net->dev_index_head);
7711 }
7712
7713 static struct pernet_operations __net_initdata netdev_net_ops = {
7714         .init = netdev_init,
7715         .exit = netdev_exit,
7716 };
7717
7718 static void __net_exit default_device_exit(struct net *net)
7719 {
7720         struct net_device *dev, *aux;
7721         /*
7722          * Push all migratable network devices back to the
7723          * initial network namespace
7724          */
7725         rtnl_lock();
7726         for_each_netdev_safe(net, dev, aux) {
7727                 int err;
7728                 char fb_name[IFNAMSIZ];
7729
7730                 /* Ignore unmoveable devices (i.e. loopback) */
7731                 if (dev->features & NETIF_F_NETNS_LOCAL)
7732                         continue;
7733
7734                 /* Leave virtual devices for the generic cleanup */
7735                 if (dev->rtnl_link_ops)
7736                         continue;
7737
7738                 /* Push remaining network devices to init_net */
7739                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7740                 err = dev_change_net_namespace(dev, &init_net, fb_name);
7741                 if (err) {
7742                         pr_emerg("%s: failed to move %s to init_net: %d\n",
7743                                  __func__, dev->name, err);
7744                         BUG();
7745                 }
7746         }
7747         rtnl_unlock();
7748 }
7749
7750 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7751 {
7752         /* Return with the rtnl_lock held when there are no network
7753          * devices unregistering in any network namespace in net_list.
7754          */
7755         struct net *net;
7756         bool unregistering;
7757         DEFINE_WAIT_FUNC(wait, woken_wake_function);
7758
7759         add_wait_queue(&netdev_unregistering_wq, &wait);
7760         for (;;) {
7761                 unregistering = false;
7762                 rtnl_lock();
7763                 list_for_each_entry(net, net_list, exit_list) {
7764                         if (net->dev_unreg_count > 0) {
7765                                 unregistering = true;
7766                                 break;
7767                         }
7768                 }
7769                 if (!unregistering)
7770                         break;
7771                 __rtnl_unlock();
7772
7773                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
7774         }
7775         remove_wait_queue(&netdev_unregistering_wq, &wait);
7776 }
7777
7778 static void __net_exit default_device_exit_batch(struct list_head *net_list)
7779 {
7780         /* At exit all network devices most be removed from a network
7781          * namespace.  Do this in the reverse order of registration.
7782          * Do this across as many network namespaces as possible to
7783          * improve batching efficiency.
7784          */
7785         struct net_device *dev;
7786         struct net *net;
7787         LIST_HEAD(dev_kill_list);
7788
7789         /* To prevent network device cleanup code from dereferencing
7790          * loopback devices or network devices that have been freed
7791          * wait here for all pending unregistrations to complete,
7792          * before unregistring the loopback device and allowing the
7793          * network namespace be freed.
7794          *
7795          * The netdev todo list containing all network devices
7796          * unregistrations that happen in default_device_exit_batch
7797          * will run in the rtnl_unlock() at the end of
7798          * default_device_exit_batch.
7799          */
7800         rtnl_lock_unregistering(net_list);
7801         list_for_each_entry(net, net_list, exit_list) {
7802                 for_each_netdev_reverse(net, dev) {
7803                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
7804                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7805                         else
7806                                 unregister_netdevice_queue(dev, &dev_kill_list);
7807                 }
7808         }
7809         unregister_netdevice_many(&dev_kill_list);
7810         rtnl_unlock();
7811 }
7812
7813 static struct pernet_operations __net_initdata default_device_ops = {
7814         .exit = default_device_exit,
7815         .exit_batch = default_device_exit_batch,
7816 };
7817
7818 /*
7819  *      Initialize the DEV module. At boot time this walks the device list and
7820  *      unhooks any devices that fail to initialise (normally hardware not
7821  *      present) and leaves us with a valid list of present and active devices.
7822  *
7823  */
7824
7825 /*
7826  *       This is called single threaded during boot, so no need
7827  *       to take the rtnl semaphore.
7828  */
7829 static int __init net_dev_init(void)
7830 {
7831         int i, rc = -ENOMEM;
7832
7833         BUG_ON(!dev_boot_phase);
7834
7835         if (dev_proc_init())
7836                 goto out;
7837
7838         if (netdev_kobject_init())
7839                 goto out;
7840
7841         INIT_LIST_HEAD(&ptype_all);
7842         for (i = 0; i < PTYPE_HASH_SIZE; i++)
7843                 INIT_LIST_HEAD(&ptype_base[i]);
7844
7845         INIT_LIST_HEAD(&offload_base);
7846
7847         if (register_pernet_subsys(&netdev_net_ops))
7848                 goto out;
7849
7850         /*
7851          *      Initialise the packet receive queues.
7852          */
7853
7854         for_each_possible_cpu(i) {
7855                 struct softnet_data *sd = &per_cpu(softnet_data, i);
7856
7857                 skb_queue_head_init(&sd->input_pkt_queue);
7858                 skb_queue_head_init(&sd->process_queue);
7859                 INIT_LIST_HEAD(&sd->poll_list);
7860                 sd->output_queue_tailp = &sd->output_queue;
7861 #ifdef CONFIG_RPS
7862                 sd->csd.func = rps_trigger_softirq;
7863                 sd->csd.info = sd;
7864                 sd->cpu = i;
7865 #endif
7866
7867                 sd->backlog.poll = process_backlog;
7868                 sd->backlog.weight = weight_p;
7869         }
7870
7871         dev_boot_phase = 0;
7872
7873         /* The loopback device is special if any other network devices
7874          * is present in a network namespace the loopback device must
7875          * be present. Since we now dynamically allocate and free the
7876          * loopback device ensure this invariant is maintained by
7877          * keeping the loopback device as the first device on the
7878          * list of network devices.  Ensuring the loopback devices
7879          * is the first device that appears and the last network device
7880          * that disappears.
7881          */
7882         if (register_pernet_device(&loopback_net_ops))
7883                 goto out;
7884
7885         if (register_pernet_device(&default_device_ops))
7886                 goto out;
7887
7888         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7889         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
7890
7891         hotcpu_notifier(dev_cpu_callback, 0);
7892         dst_subsys_init();
7893         rc = 0;
7894 out:
7895         return rc;
7896 }
7897
7898 subsys_initcall(net_dev_init);