iwlwifi: pcie: extend device reset delay
[cascardo/linux.git] / net / core / dev.c
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *              This program is free software; you can redistribute it and/or
5  *              modify it under the terms of the GNU General Public License
6  *              as published by the Free Software Foundation; either version
7  *              2 of the License, or (at your option) any later version.
8  *
9  *      Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:        Ross Biro
11  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *      Additional Authors:
15  *              Florian la Roche <rzsfl@rz.uni-sb.de>
16  *              Alan Cox <gw4pts@gw4pts.ampr.org>
17  *              David Hinds <dahinds@users.sourceforge.net>
18  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *              Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *      Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *              Alan Cox        :       device private ioctl copies fields back.
28  *              Alan Cox        :       Transmit queue code does relevant
29  *                                      stunts to keep the queue safe.
30  *              Alan Cox        :       Fixed double lock.
31  *              Alan Cox        :       Fixed promisc NULL pointer trap
32  *              ????????        :       Support the full private ioctl range
33  *              Alan Cox        :       Moved ioctl permission check into
34  *                                      drivers
35  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
36  *              Alan Cox        :       100 backlog just doesn't cut it when
37  *                                      you start doing multicast video 8)
38  *              Alan Cox        :       Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *              Alan Cox        :       Took out transmit every packet pass
41  *                                      Saved a few bytes in the ioctl handler
42  *              Alan Cox        :       Network driver sets packet type before
43  *                                      calling netif_rx. Saves a function
44  *                                      call a packet.
45  *              Alan Cox        :       Hashed net_bh()
46  *              Richard Kooijman:       Timestamp fixes.
47  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
48  *              Alan Cox        :       Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *                                      changes.
51  *              Rudi Cilibrasi  :       Pass the right thing to
52  *                                      set_mac_address()
53  *              Dave Miller     :       32bit quantity for the device lock to
54  *                                      make it work out on a Sparc.
55  *              Bjorn Ekwall    :       Added KERNELD hack.
56  *              Alan Cox        :       Cleaned up the backlog initialise.
57  *              Craig Metz      :       SIOCGIFCONF fix if space for under
58  *                                      1 device.
59  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
60  *                                      is no device open function.
61  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
62  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
63  *              Cyrus Durgin    :       Cleaned for KMOD
64  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
65  *                                      A network device unload needs to purge
66  *                                      the backlog queue.
67  *      Paul Rusty Russell      :       SIOCSIFNAME
68  *              Pekka Riikonen  :       Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *                                      - netif_rx() feedback
73  */
74
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dst.h>
103 #include <net/dst_metadata.h>
104 #include <net/pkt_sched.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/module.h>
110 #include <linux/netpoll.h>
111 #include <linux/rcupdate.h>
112 #include <linux/delay.h>
113 #include <net/iw_handler.h>
114 #include <asm/current.h>
115 #include <linux/audit.h>
116 #include <linux/dmaengine.h>
117 #include <linux/err.h>
118 #include <linux/ctype.h>
119 #include <linux/if_arp.h>
120 #include <linux/if_vlan.h>
121 #include <linux/ip.h>
122 #include <net/ip.h>
123 #include <net/mpls.h>
124 #include <linux/ipv6.h>
125 #include <linux/in.h>
126 #include <linux/jhash.h>
127 #include <linux/random.h>
128 #include <trace/events/napi.h>
129 #include <trace/events/net.h>
130 #include <trace/events/skb.h>
131 #include <linux/pci.h>
132 #include <linux/inetdevice.h>
133 #include <linux/cpu_rmap.h>
134 #include <linux/static_key.h>
135 #include <linux/hashtable.h>
136 #include <linux/vmalloc.h>
137 #include <linux/if_macvlan.h>
138 #include <linux/errqueue.h>
139 #include <linux/hrtimer.h>
140 #include <linux/netfilter_ingress.h>
141 #include <linux/sctp.h>
142
143 #include "net-sysfs.h"
144
145 /* Instead of increasing this, you should create a hash table. */
146 #define MAX_GRO_SKBS 8
147
148 /* This should be increased if a protocol with a bigger head is added. */
149 #define GRO_MAX_HEAD (MAX_HEADER + 128)
150
151 static DEFINE_SPINLOCK(ptype_lock);
152 static DEFINE_SPINLOCK(offload_lock);
153 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
154 struct list_head ptype_all __read_mostly;       /* Taps */
155 static struct list_head offload_base __read_mostly;
156
157 static int netif_rx_internal(struct sk_buff *skb);
158 static int call_netdevice_notifiers_info(unsigned long val,
159                                          struct net_device *dev,
160                                          struct netdev_notifier_info *info);
161
162 /*
163  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
164  * semaphore.
165  *
166  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
167  *
168  * Writers must hold the rtnl semaphore while they loop through the
169  * dev_base_head list, and hold dev_base_lock for writing when they do the
170  * actual updates.  This allows pure readers to access the list even
171  * while a writer is preparing to update it.
172  *
173  * To put it another way, dev_base_lock is held for writing only to
174  * protect against pure readers; the rtnl semaphore provides the
175  * protection against other writers.
176  *
177  * See, for example usages, register_netdevice() and
178  * unregister_netdevice(), which must be called with the rtnl
179  * semaphore held.
180  */
181 DEFINE_RWLOCK(dev_base_lock);
182 EXPORT_SYMBOL(dev_base_lock);
183
184 /* protects napi_hash addition/deletion and napi_gen_id */
185 static DEFINE_SPINLOCK(napi_hash_lock);
186
187 static unsigned int napi_gen_id = NR_CPUS;
188 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
189
190 static seqcount_t devnet_rename_seq;
191
192 static inline void dev_base_seq_inc(struct net *net)
193 {
194         while (++net->dev_base_seq == 0);
195 }
196
197 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
198 {
199         unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
200
201         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
202 }
203
204 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
205 {
206         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
207 }
208
209 static inline void rps_lock(struct softnet_data *sd)
210 {
211 #ifdef CONFIG_RPS
212         spin_lock(&sd->input_pkt_queue.lock);
213 #endif
214 }
215
216 static inline void rps_unlock(struct softnet_data *sd)
217 {
218 #ifdef CONFIG_RPS
219         spin_unlock(&sd->input_pkt_queue.lock);
220 #endif
221 }
222
223 /* Device list insertion */
224 static void list_netdevice(struct net_device *dev)
225 {
226         struct net *net = dev_net(dev);
227
228         ASSERT_RTNL();
229
230         write_lock_bh(&dev_base_lock);
231         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
232         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
233         hlist_add_head_rcu(&dev->index_hlist,
234                            dev_index_hash(net, dev->ifindex));
235         write_unlock_bh(&dev_base_lock);
236
237         dev_base_seq_inc(net);
238 }
239
240 /* Device list removal
241  * caller must respect a RCU grace period before freeing/reusing dev
242  */
243 static void unlist_netdevice(struct net_device *dev)
244 {
245         ASSERT_RTNL();
246
247         /* Unlink dev from the device chain */
248         write_lock_bh(&dev_base_lock);
249         list_del_rcu(&dev->dev_list);
250         hlist_del_rcu(&dev->name_hlist);
251         hlist_del_rcu(&dev->index_hlist);
252         write_unlock_bh(&dev_base_lock);
253
254         dev_base_seq_inc(dev_net(dev));
255 }
256
257 /*
258  *      Our notifier list
259  */
260
261 static RAW_NOTIFIER_HEAD(netdev_chain);
262
263 /*
264  *      Device drivers call our routines to queue packets here. We empty the
265  *      queue in the local softnet handler.
266  */
267
268 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
269 EXPORT_PER_CPU_SYMBOL(softnet_data);
270
271 #ifdef CONFIG_LOCKDEP
272 /*
273  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
274  * according to dev->type
275  */
276 static const unsigned short netdev_lock_type[] =
277         {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
278          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
279          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
280          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
281          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
282          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
283          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
284          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
285          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
286          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
287          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
288          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
289          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
290          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
291          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
292
293 static const char *const netdev_lock_name[] =
294         {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
295          "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
296          "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
297          "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
298          "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
299          "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
300          "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
301          "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
302          "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
303          "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
304          "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
305          "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
306          "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
307          "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
308          "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
309
310 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
311 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
312
313 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
314 {
315         int i;
316
317         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
318                 if (netdev_lock_type[i] == dev_type)
319                         return i;
320         /* the last key is used by default */
321         return ARRAY_SIZE(netdev_lock_type) - 1;
322 }
323
324 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
325                                                  unsigned short dev_type)
326 {
327         int i;
328
329         i = netdev_lock_pos(dev_type);
330         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
331                                    netdev_lock_name[i]);
332 }
333
334 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
335 {
336         int i;
337
338         i = netdev_lock_pos(dev->type);
339         lockdep_set_class_and_name(&dev->addr_list_lock,
340                                    &netdev_addr_lock_key[i],
341                                    netdev_lock_name[i]);
342 }
343 #else
344 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
345                                                  unsigned short dev_type)
346 {
347 }
348 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
349 {
350 }
351 #endif
352
353 /*******************************************************************************
354
355                 Protocol management and registration routines
356
357 *******************************************************************************/
358
359 /*
360  *      Add a protocol ID to the list. Now that the input handler is
361  *      smarter we can dispense with all the messy stuff that used to be
362  *      here.
363  *
364  *      BEWARE!!! Protocol handlers, mangling input packets,
365  *      MUST BE last in hash buckets and checking protocol handlers
366  *      MUST start from promiscuous ptype_all chain in net_bh.
367  *      It is true now, do not change it.
368  *      Explanation follows: if protocol handler, mangling packet, will
369  *      be the first on list, it is not able to sense, that packet
370  *      is cloned and should be copied-on-write, so that it will
371  *      change it and subsequent readers will get broken packet.
372  *                                                      --ANK (980803)
373  */
374
375 static inline struct list_head *ptype_head(const struct packet_type *pt)
376 {
377         if (pt->type == htons(ETH_P_ALL))
378                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
379         else
380                 return pt->dev ? &pt->dev->ptype_specific :
381                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
382 }
383
384 /**
385  *      dev_add_pack - add packet handler
386  *      @pt: packet type declaration
387  *
388  *      Add a protocol handler to the networking stack. The passed &packet_type
389  *      is linked into kernel lists and may not be freed until it has been
390  *      removed from the kernel lists.
391  *
392  *      This call does not sleep therefore it can not
393  *      guarantee all CPU's that are in middle of receiving packets
394  *      will see the new packet type (until the next received packet).
395  */
396
397 void dev_add_pack(struct packet_type *pt)
398 {
399         struct list_head *head = ptype_head(pt);
400
401         spin_lock(&ptype_lock);
402         list_add_rcu(&pt->list, head);
403         spin_unlock(&ptype_lock);
404 }
405 EXPORT_SYMBOL(dev_add_pack);
406
407 /**
408  *      __dev_remove_pack        - remove packet handler
409  *      @pt: packet type declaration
410  *
411  *      Remove a protocol handler that was previously added to the kernel
412  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
413  *      from the kernel lists and can be freed or reused once this function
414  *      returns.
415  *
416  *      The packet type might still be in use by receivers
417  *      and must not be freed until after all the CPU's have gone
418  *      through a quiescent state.
419  */
420 void __dev_remove_pack(struct packet_type *pt)
421 {
422         struct list_head *head = ptype_head(pt);
423         struct packet_type *pt1;
424
425         spin_lock(&ptype_lock);
426
427         list_for_each_entry(pt1, head, list) {
428                 if (pt == pt1) {
429                         list_del_rcu(&pt->list);
430                         goto out;
431                 }
432         }
433
434         pr_warn("dev_remove_pack: %p not found\n", pt);
435 out:
436         spin_unlock(&ptype_lock);
437 }
438 EXPORT_SYMBOL(__dev_remove_pack);
439
440 /**
441  *      dev_remove_pack  - remove packet handler
442  *      @pt: packet type declaration
443  *
444  *      Remove a protocol handler that was previously added to the kernel
445  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
446  *      from the kernel lists and can be freed or reused once this function
447  *      returns.
448  *
449  *      This call sleeps to guarantee that no CPU is looking at the packet
450  *      type after return.
451  */
452 void dev_remove_pack(struct packet_type *pt)
453 {
454         __dev_remove_pack(pt);
455
456         synchronize_net();
457 }
458 EXPORT_SYMBOL(dev_remove_pack);
459
460
461 /**
462  *      dev_add_offload - register offload handlers
463  *      @po: protocol offload declaration
464  *
465  *      Add protocol offload handlers to the networking stack. The passed
466  *      &proto_offload is linked into kernel lists and may not be freed until
467  *      it has been removed from the kernel lists.
468  *
469  *      This call does not sleep therefore it can not
470  *      guarantee all CPU's that are in middle of receiving packets
471  *      will see the new offload handlers (until the next received packet).
472  */
473 void dev_add_offload(struct packet_offload *po)
474 {
475         struct packet_offload *elem;
476
477         spin_lock(&offload_lock);
478         list_for_each_entry(elem, &offload_base, list) {
479                 if (po->priority < elem->priority)
480                         break;
481         }
482         list_add_rcu(&po->list, elem->list.prev);
483         spin_unlock(&offload_lock);
484 }
485 EXPORT_SYMBOL(dev_add_offload);
486
487 /**
488  *      __dev_remove_offload     - remove offload handler
489  *      @po: packet offload declaration
490  *
491  *      Remove a protocol offload handler that was previously added to the
492  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
493  *      is removed from the kernel lists and can be freed or reused once this
494  *      function returns.
495  *
496  *      The packet type might still be in use by receivers
497  *      and must not be freed until after all the CPU's have gone
498  *      through a quiescent state.
499  */
500 static void __dev_remove_offload(struct packet_offload *po)
501 {
502         struct list_head *head = &offload_base;
503         struct packet_offload *po1;
504
505         spin_lock(&offload_lock);
506
507         list_for_each_entry(po1, head, list) {
508                 if (po == po1) {
509                         list_del_rcu(&po->list);
510                         goto out;
511                 }
512         }
513
514         pr_warn("dev_remove_offload: %p not found\n", po);
515 out:
516         spin_unlock(&offload_lock);
517 }
518
519 /**
520  *      dev_remove_offload       - remove packet offload handler
521  *      @po: packet offload declaration
522  *
523  *      Remove a packet offload handler that was previously added to the kernel
524  *      offload handlers by dev_add_offload(). The passed &offload_type is
525  *      removed from the kernel lists and can be freed or reused once this
526  *      function returns.
527  *
528  *      This call sleeps to guarantee that no CPU is looking at the packet
529  *      type after return.
530  */
531 void dev_remove_offload(struct packet_offload *po)
532 {
533         __dev_remove_offload(po);
534
535         synchronize_net();
536 }
537 EXPORT_SYMBOL(dev_remove_offload);
538
539 /******************************************************************************
540
541                       Device Boot-time Settings Routines
542
543 *******************************************************************************/
544
545 /* Boot time configuration table */
546 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
547
548 /**
549  *      netdev_boot_setup_add   - add new setup entry
550  *      @name: name of the device
551  *      @map: configured settings for the device
552  *
553  *      Adds new setup entry to the dev_boot_setup list.  The function
554  *      returns 0 on error and 1 on success.  This is a generic routine to
555  *      all netdevices.
556  */
557 static int netdev_boot_setup_add(char *name, struct ifmap *map)
558 {
559         struct netdev_boot_setup *s;
560         int i;
561
562         s = dev_boot_setup;
563         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
564                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
565                         memset(s[i].name, 0, sizeof(s[i].name));
566                         strlcpy(s[i].name, name, IFNAMSIZ);
567                         memcpy(&s[i].map, map, sizeof(s[i].map));
568                         break;
569                 }
570         }
571
572         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
573 }
574
575 /**
576  *      netdev_boot_setup_check - check boot time settings
577  *      @dev: the netdevice
578  *
579  *      Check boot time settings for the device.
580  *      The found settings are set for the device to be used
581  *      later in the device probing.
582  *      Returns 0 if no settings found, 1 if they are.
583  */
584 int netdev_boot_setup_check(struct net_device *dev)
585 {
586         struct netdev_boot_setup *s = dev_boot_setup;
587         int i;
588
589         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
590                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
591                     !strcmp(dev->name, s[i].name)) {
592                         dev->irq        = s[i].map.irq;
593                         dev->base_addr  = s[i].map.base_addr;
594                         dev->mem_start  = s[i].map.mem_start;
595                         dev->mem_end    = s[i].map.mem_end;
596                         return 1;
597                 }
598         }
599         return 0;
600 }
601 EXPORT_SYMBOL(netdev_boot_setup_check);
602
603
604 /**
605  *      netdev_boot_base        - get address from boot time settings
606  *      @prefix: prefix for network device
607  *      @unit: id for network device
608  *
609  *      Check boot time settings for the base address of device.
610  *      The found settings are set for the device to be used
611  *      later in the device probing.
612  *      Returns 0 if no settings found.
613  */
614 unsigned long netdev_boot_base(const char *prefix, int unit)
615 {
616         const struct netdev_boot_setup *s = dev_boot_setup;
617         char name[IFNAMSIZ];
618         int i;
619
620         sprintf(name, "%s%d", prefix, unit);
621
622         /*
623          * If device already registered then return base of 1
624          * to indicate not to probe for this interface
625          */
626         if (__dev_get_by_name(&init_net, name))
627                 return 1;
628
629         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
630                 if (!strcmp(name, s[i].name))
631                         return s[i].map.base_addr;
632         return 0;
633 }
634
635 /*
636  * Saves at boot time configured settings for any netdevice.
637  */
638 int __init netdev_boot_setup(char *str)
639 {
640         int ints[5];
641         struct ifmap map;
642
643         str = get_options(str, ARRAY_SIZE(ints), ints);
644         if (!str || !*str)
645                 return 0;
646
647         /* Save settings */
648         memset(&map, 0, sizeof(map));
649         if (ints[0] > 0)
650                 map.irq = ints[1];
651         if (ints[0] > 1)
652                 map.base_addr = ints[2];
653         if (ints[0] > 2)
654                 map.mem_start = ints[3];
655         if (ints[0] > 3)
656                 map.mem_end = ints[4];
657
658         /* Add new entry to the list */
659         return netdev_boot_setup_add(str, &map);
660 }
661
662 __setup("netdev=", netdev_boot_setup);
663
664 /*******************************************************************************
665
666                             Device Interface Subroutines
667
668 *******************************************************************************/
669
670 /**
671  *      dev_get_iflink  - get 'iflink' value of a interface
672  *      @dev: targeted interface
673  *
674  *      Indicates the ifindex the interface is linked to.
675  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
676  */
677
678 int dev_get_iflink(const struct net_device *dev)
679 {
680         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
681                 return dev->netdev_ops->ndo_get_iflink(dev);
682
683         return dev->ifindex;
684 }
685 EXPORT_SYMBOL(dev_get_iflink);
686
687 /**
688  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
689  *      @dev: targeted interface
690  *      @skb: The packet.
691  *
692  *      For better visibility of tunnel traffic OVS needs to retrieve
693  *      egress tunnel information for a packet. Following API allows
694  *      user to get this info.
695  */
696 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
697 {
698         struct ip_tunnel_info *info;
699
700         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
701                 return -EINVAL;
702
703         info = skb_tunnel_info_unclone(skb);
704         if (!info)
705                 return -ENOMEM;
706         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
707                 return -EINVAL;
708
709         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
710 }
711 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
712
713 /**
714  *      __dev_get_by_name       - find a device by its name
715  *      @net: the applicable net namespace
716  *      @name: name to find
717  *
718  *      Find an interface by name. Must be called under RTNL semaphore
719  *      or @dev_base_lock. If the name is found a pointer to the device
720  *      is returned. If the name is not found then %NULL is returned. The
721  *      reference counters are not incremented so the caller must be
722  *      careful with locks.
723  */
724
725 struct net_device *__dev_get_by_name(struct net *net, const char *name)
726 {
727         struct net_device *dev;
728         struct hlist_head *head = dev_name_hash(net, name);
729
730         hlist_for_each_entry(dev, head, name_hlist)
731                 if (!strncmp(dev->name, name, IFNAMSIZ))
732                         return dev;
733
734         return NULL;
735 }
736 EXPORT_SYMBOL(__dev_get_by_name);
737
738 /**
739  *      dev_get_by_name_rcu     - find a device by its name
740  *      @net: the applicable net namespace
741  *      @name: name to find
742  *
743  *      Find an interface by name.
744  *      If the name is found a pointer to the device is returned.
745  *      If the name is not found then %NULL is returned.
746  *      The reference counters are not incremented so the caller must be
747  *      careful with locks. The caller must hold RCU lock.
748  */
749
750 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
751 {
752         struct net_device *dev;
753         struct hlist_head *head = dev_name_hash(net, name);
754
755         hlist_for_each_entry_rcu(dev, head, name_hlist)
756                 if (!strncmp(dev->name, name, IFNAMSIZ))
757                         return dev;
758
759         return NULL;
760 }
761 EXPORT_SYMBOL(dev_get_by_name_rcu);
762
763 /**
764  *      dev_get_by_name         - find a device by its name
765  *      @net: the applicable net namespace
766  *      @name: name to find
767  *
768  *      Find an interface by name. This can be called from any
769  *      context and does its own locking. The returned handle has
770  *      the usage count incremented and the caller must use dev_put() to
771  *      release it when it is no longer needed. %NULL is returned if no
772  *      matching device is found.
773  */
774
775 struct net_device *dev_get_by_name(struct net *net, const char *name)
776 {
777         struct net_device *dev;
778
779         rcu_read_lock();
780         dev = dev_get_by_name_rcu(net, name);
781         if (dev)
782                 dev_hold(dev);
783         rcu_read_unlock();
784         return dev;
785 }
786 EXPORT_SYMBOL(dev_get_by_name);
787
788 /**
789  *      __dev_get_by_index - find a device by its ifindex
790  *      @net: the applicable net namespace
791  *      @ifindex: index of device
792  *
793  *      Search for an interface by index. Returns %NULL if the device
794  *      is not found or a pointer to the device. The device has not
795  *      had its reference counter increased so the caller must be careful
796  *      about locking. The caller must hold either the RTNL semaphore
797  *      or @dev_base_lock.
798  */
799
800 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
801 {
802         struct net_device *dev;
803         struct hlist_head *head = dev_index_hash(net, ifindex);
804
805         hlist_for_each_entry(dev, head, index_hlist)
806                 if (dev->ifindex == ifindex)
807                         return dev;
808
809         return NULL;
810 }
811 EXPORT_SYMBOL(__dev_get_by_index);
812
813 /**
814  *      dev_get_by_index_rcu - find a device by its ifindex
815  *      @net: the applicable net namespace
816  *      @ifindex: index of device
817  *
818  *      Search for an interface by index. Returns %NULL if the device
819  *      is not found or a pointer to the device. The device has not
820  *      had its reference counter increased so the caller must be careful
821  *      about locking. The caller must hold RCU lock.
822  */
823
824 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
825 {
826         struct net_device *dev;
827         struct hlist_head *head = dev_index_hash(net, ifindex);
828
829         hlist_for_each_entry_rcu(dev, head, index_hlist)
830                 if (dev->ifindex == ifindex)
831                         return dev;
832
833         return NULL;
834 }
835 EXPORT_SYMBOL(dev_get_by_index_rcu);
836
837
838 /**
839  *      dev_get_by_index - find a device by its ifindex
840  *      @net: the applicable net namespace
841  *      @ifindex: index of device
842  *
843  *      Search for an interface by index. Returns NULL if the device
844  *      is not found or a pointer to the device. The device returned has
845  *      had a reference added and the pointer is safe until the user calls
846  *      dev_put to indicate they have finished with it.
847  */
848
849 struct net_device *dev_get_by_index(struct net *net, int ifindex)
850 {
851         struct net_device *dev;
852
853         rcu_read_lock();
854         dev = dev_get_by_index_rcu(net, ifindex);
855         if (dev)
856                 dev_hold(dev);
857         rcu_read_unlock();
858         return dev;
859 }
860 EXPORT_SYMBOL(dev_get_by_index);
861
862 /**
863  *      netdev_get_name - get a netdevice name, knowing its ifindex.
864  *      @net: network namespace
865  *      @name: a pointer to the buffer where the name will be stored.
866  *      @ifindex: the ifindex of the interface to get the name from.
867  *
868  *      The use of raw_seqcount_begin() and cond_resched() before
869  *      retrying is required as we want to give the writers a chance
870  *      to complete when CONFIG_PREEMPT is not set.
871  */
872 int netdev_get_name(struct net *net, char *name, int ifindex)
873 {
874         struct net_device *dev;
875         unsigned int seq;
876
877 retry:
878         seq = raw_seqcount_begin(&devnet_rename_seq);
879         rcu_read_lock();
880         dev = dev_get_by_index_rcu(net, ifindex);
881         if (!dev) {
882                 rcu_read_unlock();
883                 return -ENODEV;
884         }
885
886         strcpy(name, dev->name);
887         rcu_read_unlock();
888         if (read_seqcount_retry(&devnet_rename_seq, seq)) {
889                 cond_resched();
890                 goto retry;
891         }
892
893         return 0;
894 }
895
896 /**
897  *      dev_getbyhwaddr_rcu - find a device by its hardware address
898  *      @net: the applicable net namespace
899  *      @type: media type of device
900  *      @ha: hardware address
901  *
902  *      Search for an interface by MAC address. Returns NULL if the device
903  *      is not found or a pointer to the device.
904  *      The caller must hold RCU or RTNL.
905  *      The returned device has not had its ref count increased
906  *      and the caller must therefore be careful about locking
907  *
908  */
909
910 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
911                                        const char *ha)
912 {
913         struct net_device *dev;
914
915         for_each_netdev_rcu(net, dev)
916                 if (dev->type == type &&
917                     !memcmp(dev->dev_addr, ha, dev->addr_len))
918                         return dev;
919
920         return NULL;
921 }
922 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
923
924 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
925 {
926         struct net_device *dev;
927
928         ASSERT_RTNL();
929         for_each_netdev(net, dev)
930                 if (dev->type == type)
931                         return dev;
932
933         return NULL;
934 }
935 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
936
937 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
938 {
939         struct net_device *dev, *ret = NULL;
940
941         rcu_read_lock();
942         for_each_netdev_rcu(net, dev)
943                 if (dev->type == type) {
944                         dev_hold(dev);
945                         ret = dev;
946                         break;
947                 }
948         rcu_read_unlock();
949         return ret;
950 }
951 EXPORT_SYMBOL(dev_getfirstbyhwtype);
952
953 /**
954  *      __dev_get_by_flags - find any device with given flags
955  *      @net: the applicable net namespace
956  *      @if_flags: IFF_* values
957  *      @mask: bitmask of bits in if_flags to check
958  *
959  *      Search for any interface with the given flags. Returns NULL if a device
960  *      is not found or a pointer to the device. Must be called inside
961  *      rtnl_lock(), and result refcount is unchanged.
962  */
963
964 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
965                                       unsigned short mask)
966 {
967         struct net_device *dev, *ret;
968
969         ASSERT_RTNL();
970
971         ret = NULL;
972         for_each_netdev(net, dev) {
973                 if (((dev->flags ^ if_flags) & mask) == 0) {
974                         ret = dev;
975                         break;
976                 }
977         }
978         return ret;
979 }
980 EXPORT_SYMBOL(__dev_get_by_flags);
981
982 /**
983  *      dev_valid_name - check if name is okay for network device
984  *      @name: name string
985  *
986  *      Network device names need to be valid file names to
987  *      to allow sysfs to work.  We also disallow any kind of
988  *      whitespace.
989  */
990 bool dev_valid_name(const char *name)
991 {
992         if (*name == '\0')
993                 return false;
994         if (strlen(name) >= IFNAMSIZ)
995                 return false;
996         if (!strcmp(name, ".") || !strcmp(name, ".."))
997                 return false;
998
999         while (*name) {
1000                 if (*name == '/' || *name == ':' || isspace(*name))
1001                         return false;
1002                 name++;
1003         }
1004         return true;
1005 }
1006 EXPORT_SYMBOL(dev_valid_name);
1007
1008 /**
1009  *      __dev_alloc_name - allocate a name for a device
1010  *      @net: network namespace to allocate the device name in
1011  *      @name: name format string
1012  *      @buf:  scratch buffer and result name string
1013  *
1014  *      Passed a format string - eg "lt%d" it will try and find a suitable
1015  *      id. It scans list of devices to build up a free map, then chooses
1016  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1017  *      while allocating the name and adding the device in order to avoid
1018  *      duplicates.
1019  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1020  *      Returns the number of the unit assigned or a negative errno code.
1021  */
1022
1023 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1024 {
1025         int i = 0;
1026         const char *p;
1027         const int max_netdevices = 8*PAGE_SIZE;
1028         unsigned long *inuse;
1029         struct net_device *d;
1030
1031         p = strnchr(name, IFNAMSIZ-1, '%');
1032         if (p) {
1033                 /*
1034                  * Verify the string as this thing may have come from
1035                  * the user.  There must be either one "%d" and no other "%"
1036                  * characters.
1037                  */
1038                 if (p[1] != 'd' || strchr(p + 2, '%'))
1039                         return -EINVAL;
1040
1041                 /* Use one page as a bit array of possible slots */
1042                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1043                 if (!inuse)
1044                         return -ENOMEM;
1045
1046                 for_each_netdev(net, d) {
1047                         if (!sscanf(d->name, name, &i))
1048                                 continue;
1049                         if (i < 0 || i >= max_netdevices)
1050                                 continue;
1051
1052                         /*  avoid cases where sscanf is not exact inverse of printf */
1053                         snprintf(buf, IFNAMSIZ, name, i);
1054                         if (!strncmp(buf, d->name, IFNAMSIZ))
1055                                 set_bit(i, inuse);
1056                 }
1057
1058                 i = find_first_zero_bit(inuse, max_netdevices);
1059                 free_page((unsigned long) inuse);
1060         }
1061
1062         if (buf != name)
1063                 snprintf(buf, IFNAMSIZ, name, i);
1064         if (!__dev_get_by_name(net, buf))
1065                 return i;
1066
1067         /* It is possible to run out of possible slots
1068          * when the name is long and there isn't enough space left
1069          * for the digits, or if all bits are used.
1070          */
1071         return -ENFILE;
1072 }
1073
1074 /**
1075  *      dev_alloc_name - allocate a name for a device
1076  *      @dev: device
1077  *      @name: name format string
1078  *
1079  *      Passed a format string - eg "lt%d" it will try and find a suitable
1080  *      id. It scans list of devices to build up a free map, then chooses
1081  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1082  *      while allocating the name and adding the device in order to avoid
1083  *      duplicates.
1084  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1085  *      Returns the number of the unit assigned or a negative errno code.
1086  */
1087
1088 int dev_alloc_name(struct net_device *dev, const char *name)
1089 {
1090         char buf[IFNAMSIZ];
1091         struct net *net;
1092         int ret;
1093
1094         BUG_ON(!dev_net(dev));
1095         net = dev_net(dev);
1096         ret = __dev_alloc_name(net, name, buf);
1097         if (ret >= 0)
1098                 strlcpy(dev->name, buf, IFNAMSIZ);
1099         return ret;
1100 }
1101 EXPORT_SYMBOL(dev_alloc_name);
1102
1103 static int dev_alloc_name_ns(struct net *net,
1104                              struct net_device *dev,
1105                              const char *name)
1106 {
1107         char buf[IFNAMSIZ];
1108         int ret;
1109
1110         ret = __dev_alloc_name(net, name, buf);
1111         if (ret >= 0)
1112                 strlcpy(dev->name, buf, IFNAMSIZ);
1113         return ret;
1114 }
1115
1116 static int dev_get_valid_name(struct net *net,
1117                               struct net_device *dev,
1118                               const char *name)
1119 {
1120         BUG_ON(!net);
1121
1122         if (!dev_valid_name(name))
1123                 return -EINVAL;
1124
1125         if (strchr(name, '%'))
1126                 return dev_alloc_name_ns(net, dev, name);
1127         else if (__dev_get_by_name(net, name))
1128                 return -EEXIST;
1129         else if (dev->name != name)
1130                 strlcpy(dev->name, name, IFNAMSIZ);
1131
1132         return 0;
1133 }
1134
1135 /**
1136  *      dev_change_name - change name of a device
1137  *      @dev: device
1138  *      @newname: name (or format string) must be at least IFNAMSIZ
1139  *
1140  *      Change name of a device, can pass format strings "eth%d".
1141  *      for wildcarding.
1142  */
1143 int dev_change_name(struct net_device *dev, const char *newname)
1144 {
1145         unsigned char old_assign_type;
1146         char oldname[IFNAMSIZ];
1147         int err = 0;
1148         int ret;
1149         struct net *net;
1150
1151         ASSERT_RTNL();
1152         BUG_ON(!dev_net(dev));
1153
1154         net = dev_net(dev);
1155         if (dev->flags & IFF_UP)
1156                 return -EBUSY;
1157
1158         write_seqcount_begin(&devnet_rename_seq);
1159
1160         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1161                 write_seqcount_end(&devnet_rename_seq);
1162                 return 0;
1163         }
1164
1165         memcpy(oldname, dev->name, IFNAMSIZ);
1166
1167         err = dev_get_valid_name(net, dev, newname);
1168         if (err < 0) {
1169                 write_seqcount_end(&devnet_rename_seq);
1170                 return err;
1171         }
1172
1173         if (oldname[0] && !strchr(oldname, '%'))
1174                 netdev_info(dev, "renamed from %s\n", oldname);
1175
1176         old_assign_type = dev->name_assign_type;
1177         dev->name_assign_type = NET_NAME_RENAMED;
1178
1179 rollback:
1180         ret = device_rename(&dev->dev, dev->name);
1181         if (ret) {
1182                 memcpy(dev->name, oldname, IFNAMSIZ);
1183                 dev->name_assign_type = old_assign_type;
1184                 write_seqcount_end(&devnet_rename_seq);
1185                 return ret;
1186         }
1187
1188         write_seqcount_end(&devnet_rename_seq);
1189
1190         netdev_adjacent_rename_links(dev, oldname);
1191
1192         write_lock_bh(&dev_base_lock);
1193         hlist_del_rcu(&dev->name_hlist);
1194         write_unlock_bh(&dev_base_lock);
1195
1196         synchronize_rcu();
1197
1198         write_lock_bh(&dev_base_lock);
1199         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1200         write_unlock_bh(&dev_base_lock);
1201
1202         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1203         ret = notifier_to_errno(ret);
1204
1205         if (ret) {
1206                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1207                 if (err >= 0) {
1208                         err = ret;
1209                         write_seqcount_begin(&devnet_rename_seq);
1210                         memcpy(dev->name, oldname, IFNAMSIZ);
1211                         memcpy(oldname, newname, IFNAMSIZ);
1212                         dev->name_assign_type = old_assign_type;
1213                         old_assign_type = NET_NAME_RENAMED;
1214                         goto rollback;
1215                 } else {
1216                         pr_err("%s: name change rollback failed: %d\n",
1217                                dev->name, ret);
1218                 }
1219         }
1220
1221         return err;
1222 }
1223
1224 /**
1225  *      dev_set_alias - change ifalias of a device
1226  *      @dev: device
1227  *      @alias: name up to IFALIASZ
1228  *      @len: limit of bytes to copy from info
1229  *
1230  *      Set ifalias for a device,
1231  */
1232 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1233 {
1234         char *new_ifalias;
1235
1236         ASSERT_RTNL();
1237
1238         if (len >= IFALIASZ)
1239                 return -EINVAL;
1240
1241         if (!len) {
1242                 kfree(dev->ifalias);
1243                 dev->ifalias = NULL;
1244                 return 0;
1245         }
1246
1247         new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1248         if (!new_ifalias)
1249                 return -ENOMEM;
1250         dev->ifalias = new_ifalias;
1251
1252         strlcpy(dev->ifalias, alias, len+1);
1253         return len;
1254 }
1255
1256
1257 /**
1258  *      netdev_features_change - device changes features
1259  *      @dev: device to cause notification
1260  *
1261  *      Called to indicate a device has changed features.
1262  */
1263 void netdev_features_change(struct net_device *dev)
1264 {
1265         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1266 }
1267 EXPORT_SYMBOL(netdev_features_change);
1268
1269 /**
1270  *      netdev_state_change - device changes state
1271  *      @dev: device to cause notification
1272  *
1273  *      Called to indicate a device has changed state. This function calls
1274  *      the notifier chains for netdev_chain and sends a NEWLINK message
1275  *      to the routing socket.
1276  */
1277 void netdev_state_change(struct net_device *dev)
1278 {
1279         if (dev->flags & IFF_UP) {
1280                 struct netdev_notifier_change_info change_info;
1281
1282                 change_info.flags_changed = 0;
1283                 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1284                                               &change_info.info);
1285                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1286         }
1287 }
1288 EXPORT_SYMBOL(netdev_state_change);
1289
1290 /**
1291  *      netdev_notify_peers - notify network peers about existence of @dev
1292  *      @dev: network device
1293  *
1294  * Generate traffic such that interested network peers are aware of
1295  * @dev, such as by generating a gratuitous ARP. This may be used when
1296  * a device wants to inform the rest of the network about some sort of
1297  * reconfiguration such as a failover event or virtual machine
1298  * migration.
1299  */
1300 void netdev_notify_peers(struct net_device *dev)
1301 {
1302         rtnl_lock();
1303         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1304         rtnl_unlock();
1305 }
1306 EXPORT_SYMBOL(netdev_notify_peers);
1307
1308 static int __dev_open(struct net_device *dev)
1309 {
1310         const struct net_device_ops *ops = dev->netdev_ops;
1311         int ret;
1312
1313         ASSERT_RTNL();
1314
1315         if (!netif_device_present(dev))
1316                 return -ENODEV;
1317
1318         /* Block netpoll from trying to do any rx path servicing.
1319          * If we don't do this there is a chance ndo_poll_controller
1320          * or ndo_poll may be running while we open the device
1321          */
1322         netpoll_poll_disable(dev);
1323
1324         ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1325         ret = notifier_to_errno(ret);
1326         if (ret)
1327                 return ret;
1328
1329         set_bit(__LINK_STATE_START, &dev->state);
1330
1331         if (ops->ndo_validate_addr)
1332                 ret = ops->ndo_validate_addr(dev);
1333
1334         if (!ret && ops->ndo_open)
1335                 ret = ops->ndo_open(dev);
1336
1337         netpoll_poll_enable(dev);
1338
1339         if (ret)
1340                 clear_bit(__LINK_STATE_START, &dev->state);
1341         else {
1342                 dev->flags |= IFF_UP;
1343                 dev_set_rx_mode(dev);
1344                 dev_activate(dev);
1345                 add_device_randomness(dev->dev_addr, dev->addr_len);
1346         }
1347
1348         return ret;
1349 }
1350
1351 /**
1352  *      dev_open        - prepare an interface for use.
1353  *      @dev:   device to open
1354  *
1355  *      Takes a device from down to up state. The device's private open
1356  *      function is invoked and then the multicast lists are loaded. Finally
1357  *      the device is moved into the up state and a %NETDEV_UP message is
1358  *      sent to the netdev notifier chain.
1359  *
1360  *      Calling this function on an active interface is a nop. On a failure
1361  *      a negative errno code is returned.
1362  */
1363 int dev_open(struct net_device *dev)
1364 {
1365         int ret;
1366
1367         if (dev->flags & IFF_UP)
1368                 return 0;
1369
1370         ret = __dev_open(dev);
1371         if (ret < 0)
1372                 return ret;
1373
1374         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1375         call_netdevice_notifiers(NETDEV_UP, dev);
1376
1377         return ret;
1378 }
1379 EXPORT_SYMBOL(dev_open);
1380
1381 static int __dev_close_many(struct list_head *head)
1382 {
1383         struct net_device *dev;
1384
1385         ASSERT_RTNL();
1386         might_sleep();
1387
1388         list_for_each_entry(dev, head, close_list) {
1389                 /* Temporarily disable netpoll until the interface is down */
1390                 netpoll_poll_disable(dev);
1391
1392                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1393
1394                 clear_bit(__LINK_STATE_START, &dev->state);
1395
1396                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1397                  * can be even on different cpu. So just clear netif_running().
1398                  *
1399                  * dev->stop() will invoke napi_disable() on all of it's
1400                  * napi_struct instances on this device.
1401                  */
1402                 smp_mb__after_atomic(); /* Commit netif_running(). */
1403         }
1404
1405         dev_deactivate_many(head);
1406
1407         list_for_each_entry(dev, head, close_list) {
1408                 const struct net_device_ops *ops = dev->netdev_ops;
1409
1410                 /*
1411                  *      Call the device specific close. This cannot fail.
1412                  *      Only if device is UP
1413                  *
1414                  *      We allow it to be called even after a DETACH hot-plug
1415                  *      event.
1416                  */
1417                 if (ops->ndo_stop)
1418                         ops->ndo_stop(dev);
1419
1420                 dev->flags &= ~IFF_UP;
1421                 netpoll_poll_enable(dev);
1422         }
1423
1424         return 0;
1425 }
1426
1427 static int __dev_close(struct net_device *dev)
1428 {
1429         int retval;
1430         LIST_HEAD(single);
1431
1432         list_add(&dev->close_list, &single);
1433         retval = __dev_close_many(&single);
1434         list_del(&single);
1435
1436         return retval;
1437 }
1438
1439 int dev_close_many(struct list_head *head, bool unlink)
1440 {
1441         struct net_device *dev, *tmp;
1442
1443         /* Remove the devices that don't need to be closed */
1444         list_for_each_entry_safe(dev, tmp, head, close_list)
1445                 if (!(dev->flags & IFF_UP))
1446                         list_del_init(&dev->close_list);
1447
1448         __dev_close_many(head);
1449
1450         list_for_each_entry_safe(dev, tmp, head, close_list) {
1451                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1452                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1453                 if (unlink)
1454                         list_del_init(&dev->close_list);
1455         }
1456
1457         return 0;
1458 }
1459 EXPORT_SYMBOL(dev_close_many);
1460
1461 /**
1462  *      dev_close - shutdown an interface.
1463  *      @dev: device to shutdown
1464  *
1465  *      This function moves an active device into down state. A
1466  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1467  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1468  *      chain.
1469  */
1470 int dev_close(struct net_device *dev)
1471 {
1472         if (dev->flags & IFF_UP) {
1473                 LIST_HEAD(single);
1474
1475                 list_add(&dev->close_list, &single);
1476                 dev_close_many(&single, true);
1477                 list_del(&single);
1478         }
1479         return 0;
1480 }
1481 EXPORT_SYMBOL(dev_close);
1482
1483
1484 /**
1485  *      dev_disable_lro - disable Large Receive Offload on a device
1486  *      @dev: device
1487  *
1488  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1489  *      called under RTNL.  This is needed if received packets may be
1490  *      forwarded to another interface.
1491  */
1492 void dev_disable_lro(struct net_device *dev)
1493 {
1494         struct net_device *lower_dev;
1495         struct list_head *iter;
1496
1497         dev->wanted_features &= ~NETIF_F_LRO;
1498         netdev_update_features(dev);
1499
1500         if (unlikely(dev->features & NETIF_F_LRO))
1501                 netdev_WARN(dev, "failed to disable LRO!\n");
1502
1503         netdev_for_each_lower_dev(dev, lower_dev, iter)
1504                 dev_disable_lro(lower_dev);
1505 }
1506 EXPORT_SYMBOL(dev_disable_lro);
1507
1508 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1509                                    struct net_device *dev)
1510 {
1511         struct netdev_notifier_info info;
1512
1513         netdev_notifier_info_init(&info, dev);
1514         return nb->notifier_call(nb, val, &info);
1515 }
1516
1517 static int dev_boot_phase = 1;
1518
1519 /**
1520  *      register_netdevice_notifier - register a network notifier block
1521  *      @nb: notifier
1522  *
1523  *      Register a notifier to be called when network device events occur.
1524  *      The notifier passed is linked into the kernel structures and must
1525  *      not be reused until it has been unregistered. A negative errno code
1526  *      is returned on a failure.
1527  *
1528  *      When registered all registration and up events are replayed
1529  *      to the new notifier to allow device to have a race free
1530  *      view of the network device list.
1531  */
1532
1533 int register_netdevice_notifier(struct notifier_block *nb)
1534 {
1535         struct net_device *dev;
1536         struct net_device *last;
1537         struct net *net;
1538         int err;
1539
1540         rtnl_lock();
1541         err = raw_notifier_chain_register(&netdev_chain, nb);
1542         if (err)
1543                 goto unlock;
1544         if (dev_boot_phase)
1545                 goto unlock;
1546         for_each_net(net) {
1547                 for_each_netdev(net, dev) {
1548                         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1549                         err = notifier_to_errno(err);
1550                         if (err)
1551                                 goto rollback;
1552
1553                         if (!(dev->flags & IFF_UP))
1554                                 continue;
1555
1556                         call_netdevice_notifier(nb, NETDEV_UP, dev);
1557                 }
1558         }
1559
1560 unlock:
1561         rtnl_unlock();
1562         return err;
1563
1564 rollback:
1565         last = dev;
1566         for_each_net(net) {
1567                 for_each_netdev(net, dev) {
1568                         if (dev == last)
1569                                 goto outroll;
1570
1571                         if (dev->flags & IFF_UP) {
1572                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1573                                                         dev);
1574                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1575                         }
1576                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1577                 }
1578         }
1579
1580 outroll:
1581         raw_notifier_chain_unregister(&netdev_chain, nb);
1582         goto unlock;
1583 }
1584 EXPORT_SYMBOL(register_netdevice_notifier);
1585
1586 /**
1587  *      unregister_netdevice_notifier - unregister a network notifier block
1588  *      @nb: notifier
1589  *
1590  *      Unregister a notifier previously registered by
1591  *      register_netdevice_notifier(). The notifier is unlinked into the
1592  *      kernel structures and may then be reused. A negative errno code
1593  *      is returned on a failure.
1594  *
1595  *      After unregistering unregister and down device events are synthesized
1596  *      for all devices on the device list to the removed notifier to remove
1597  *      the need for special case cleanup code.
1598  */
1599
1600 int unregister_netdevice_notifier(struct notifier_block *nb)
1601 {
1602         struct net_device *dev;
1603         struct net *net;
1604         int err;
1605
1606         rtnl_lock();
1607         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1608         if (err)
1609                 goto unlock;
1610
1611         for_each_net(net) {
1612                 for_each_netdev(net, dev) {
1613                         if (dev->flags & IFF_UP) {
1614                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1615                                                         dev);
1616                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1617                         }
1618                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1619                 }
1620         }
1621 unlock:
1622         rtnl_unlock();
1623         return err;
1624 }
1625 EXPORT_SYMBOL(unregister_netdevice_notifier);
1626
1627 /**
1628  *      call_netdevice_notifiers_info - call all network notifier blocks
1629  *      @val: value passed unmodified to notifier function
1630  *      @dev: net_device pointer passed unmodified to notifier function
1631  *      @info: notifier information data
1632  *
1633  *      Call all network notifier blocks.  Parameters and return value
1634  *      are as for raw_notifier_call_chain().
1635  */
1636
1637 static int call_netdevice_notifiers_info(unsigned long val,
1638                                          struct net_device *dev,
1639                                          struct netdev_notifier_info *info)
1640 {
1641         ASSERT_RTNL();
1642         netdev_notifier_info_init(info, dev);
1643         return raw_notifier_call_chain(&netdev_chain, val, info);
1644 }
1645
1646 /**
1647  *      call_netdevice_notifiers - call all network notifier blocks
1648  *      @val: value passed unmodified to notifier function
1649  *      @dev: net_device pointer passed unmodified to notifier function
1650  *
1651  *      Call all network notifier blocks.  Parameters and return value
1652  *      are as for raw_notifier_call_chain().
1653  */
1654
1655 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1656 {
1657         struct netdev_notifier_info info;
1658
1659         return call_netdevice_notifiers_info(val, dev, &info);
1660 }
1661 EXPORT_SYMBOL(call_netdevice_notifiers);
1662
1663 #ifdef CONFIG_NET_INGRESS
1664 static struct static_key ingress_needed __read_mostly;
1665
1666 void net_inc_ingress_queue(void)
1667 {
1668         static_key_slow_inc(&ingress_needed);
1669 }
1670 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1671
1672 void net_dec_ingress_queue(void)
1673 {
1674         static_key_slow_dec(&ingress_needed);
1675 }
1676 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1677 #endif
1678
1679 #ifdef CONFIG_NET_EGRESS
1680 static struct static_key egress_needed __read_mostly;
1681
1682 void net_inc_egress_queue(void)
1683 {
1684         static_key_slow_inc(&egress_needed);
1685 }
1686 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1687
1688 void net_dec_egress_queue(void)
1689 {
1690         static_key_slow_dec(&egress_needed);
1691 }
1692 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1693 #endif
1694
1695 static struct static_key netstamp_needed __read_mostly;
1696 #ifdef HAVE_JUMP_LABEL
1697 /* We are not allowed to call static_key_slow_dec() from irq context
1698  * If net_disable_timestamp() is called from irq context, defer the
1699  * static_key_slow_dec() calls.
1700  */
1701 static atomic_t netstamp_needed_deferred;
1702 #endif
1703
1704 void net_enable_timestamp(void)
1705 {
1706 #ifdef HAVE_JUMP_LABEL
1707         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1708
1709         if (deferred) {
1710                 while (--deferred)
1711                         static_key_slow_dec(&netstamp_needed);
1712                 return;
1713         }
1714 #endif
1715         static_key_slow_inc(&netstamp_needed);
1716 }
1717 EXPORT_SYMBOL(net_enable_timestamp);
1718
1719 void net_disable_timestamp(void)
1720 {
1721 #ifdef HAVE_JUMP_LABEL
1722         if (in_interrupt()) {
1723                 atomic_inc(&netstamp_needed_deferred);
1724                 return;
1725         }
1726 #endif
1727         static_key_slow_dec(&netstamp_needed);
1728 }
1729 EXPORT_SYMBOL(net_disable_timestamp);
1730
1731 static inline void net_timestamp_set(struct sk_buff *skb)
1732 {
1733         skb->tstamp.tv64 = 0;
1734         if (static_key_false(&netstamp_needed))
1735                 __net_timestamp(skb);
1736 }
1737
1738 #define net_timestamp_check(COND, SKB)                  \
1739         if (static_key_false(&netstamp_needed)) {               \
1740                 if ((COND) && !(SKB)->tstamp.tv64)      \
1741                         __net_timestamp(SKB);           \
1742         }                                               \
1743
1744 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
1745 {
1746         unsigned int len;
1747
1748         if (!(dev->flags & IFF_UP))
1749                 return false;
1750
1751         len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1752         if (skb->len <= len)
1753                 return true;
1754
1755         /* if TSO is enabled, we don't care about the length as the packet
1756          * could be forwarded without being segmented before
1757          */
1758         if (skb_is_gso(skb))
1759                 return true;
1760
1761         return false;
1762 }
1763 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1764
1765 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1766 {
1767         if (skb_orphan_frags(skb, GFP_ATOMIC) ||
1768             unlikely(!is_skb_forwardable(dev, skb))) {
1769                 atomic_long_inc(&dev->rx_dropped);
1770                 kfree_skb(skb);
1771                 return NET_RX_DROP;
1772         }
1773
1774         skb_scrub_packet(skb, true);
1775         skb->priority = 0;
1776         skb->protocol = eth_type_trans(skb, dev);
1777         skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1778
1779         return 0;
1780 }
1781 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1782
1783 /**
1784  * dev_forward_skb - loopback an skb to another netif
1785  *
1786  * @dev: destination network device
1787  * @skb: buffer to forward
1788  *
1789  * return values:
1790  *      NET_RX_SUCCESS  (no congestion)
1791  *      NET_RX_DROP     (packet was dropped, but freed)
1792  *
1793  * dev_forward_skb can be used for injecting an skb from the
1794  * start_xmit function of one device into the receive queue
1795  * of another device.
1796  *
1797  * The receiving device may be in another namespace, so
1798  * we have to clear all information in the skb that could
1799  * impact namespace isolation.
1800  */
1801 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1802 {
1803         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1804 }
1805 EXPORT_SYMBOL_GPL(dev_forward_skb);
1806
1807 static inline int deliver_skb(struct sk_buff *skb,
1808                               struct packet_type *pt_prev,
1809                               struct net_device *orig_dev)
1810 {
1811         if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1812                 return -ENOMEM;
1813         atomic_inc(&skb->users);
1814         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1815 }
1816
1817 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1818                                           struct packet_type **pt,
1819                                           struct net_device *orig_dev,
1820                                           __be16 type,
1821                                           struct list_head *ptype_list)
1822 {
1823         struct packet_type *ptype, *pt_prev = *pt;
1824
1825         list_for_each_entry_rcu(ptype, ptype_list, list) {
1826                 if (ptype->type != type)
1827                         continue;
1828                 if (pt_prev)
1829                         deliver_skb(skb, pt_prev, orig_dev);
1830                 pt_prev = ptype;
1831         }
1832         *pt = pt_prev;
1833 }
1834
1835 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1836 {
1837         if (!ptype->af_packet_priv || !skb->sk)
1838                 return false;
1839
1840         if (ptype->id_match)
1841                 return ptype->id_match(ptype, skb->sk);
1842         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1843                 return true;
1844
1845         return false;
1846 }
1847
1848 /*
1849  *      Support routine. Sends outgoing frames to any network
1850  *      taps currently in use.
1851  */
1852
1853 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1854 {
1855         struct packet_type *ptype;
1856         struct sk_buff *skb2 = NULL;
1857         struct packet_type *pt_prev = NULL;
1858         struct list_head *ptype_list = &ptype_all;
1859
1860         rcu_read_lock();
1861 again:
1862         list_for_each_entry_rcu(ptype, ptype_list, list) {
1863                 /* Never send packets back to the socket
1864                  * they originated from - MvS (miquels@drinkel.ow.org)
1865                  */
1866                 if (skb_loop_sk(ptype, skb))
1867                         continue;
1868
1869                 if (pt_prev) {
1870                         deliver_skb(skb2, pt_prev, skb->dev);
1871                         pt_prev = ptype;
1872                         continue;
1873                 }
1874
1875                 /* need to clone skb, done only once */
1876                 skb2 = skb_clone(skb, GFP_ATOMIC);
1877                 if (!skb2)
1878                         goto out_unlock;
1879
1880                 net_timestamp_set(skb2);
1881
1882                 /* skb->nh should be correctly
1883                  * set by sender, so that the second statement is
1884                  * just protection against buggy protocols.
1885                  */
1886                 skb_reset_mac_header(skb2);
1887
1888                 if (skb_network_header(skb2) < skb2->data ||
1889                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1890                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1891                                              ntohs(skb2->protocol),
1892                                              dev->name);
1893                         skb_reset_network_header(skb2);
1894                 }
1895
1896                 skb2->transport_header = skb2->network_header;
1897                 skb2->pkt_type = PACKET_OUTGOING;
1898                 pt_prev = ptype;
1899         }
1900
1901         if (ptype_list == &ptype_all) {
1902                 ptype_list = &dev->ptype_all;
1903                 goto again;
1904         }
1905 out_unlock:
1906         if (pt_prev)
1907                 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1908         rcu_read_unlock();
1909 }
1910
1911 /**
1912  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1913  * @dev: Network device
1914  * @txq: number of queues available
1915  *
1916  * If real_num_tx_queues is changed the tc mappings may no longer be
1917  * valid. To resolve this verify the tc mapping remains valid and if
1918  * not NULL the mapping. With no priorities mapping to this
1919  * offset/count pair it will no longer be used. In the worst case TC0
1920  * is invalid nothing can be done so disable priority mappings. If is
1921  * expected that drivers will fix this mapping if they can before
1922  * calling netif_set_real_num_tx_queues.
1923  */
1924 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1925 {
1926         int i;
1927         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1928
1929         /* If TC0 is invalidated disable TC mapping */
1930         if (tc->offset + tc->count > txq) {
1931                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1932                 dev->num_tc = 0;
1933                 return;
1934         }
1935
1936         /* Invalidated prio to tc mappings set to TC0 */
1937         for (i = 1; i < TC_BITMASK + 1; i++) {
1938                 int q = netdev_get_prio_tc_map(dev, i);
1939
1940                 tc = &dev->tc_to_txq[q];
1941                 if (tc->offset + tc->count > txq) {
1942                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1943                                 i, q);
1944                         netdev_set_prio_tc_map(dev, i, 0);
1945                 }
1946         }
1947 }
1948
1949 #ifdef CONFIG_XPS
1950 static DEFINE_MUTEX(xps_map_mutex);
1951 #define xmap_dereference(P)             \
1952         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1953
1954 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1955                                         int cpu, u16 index)
1956 {
1957         struct xps_map *map = NULL;
1958         int pos;
1959
1960         if (dev_maps)
1961                 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1962
1963         for (pos = 0; map && pos < map->len; pos++) {
1964                 if (map->queues[pos] == index) {
1965                         if (map->len > 1) {
1966                                 map->queues[pos] = map->queues[--map->len];
1967                         } else {
1968                                 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1969                                 kfree_rcu(map, rcu);
1970                                 map = NULL;
1971                         }
1972                         break;
1973                 }
1974         }
1975
1976         return map;
1977 }
1978
1979 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1980 {
1981         struct xps_dev_maps *dev_maps;
1982         int cpu, i;
1983         bool active = false;
1984
1985         mutex_lock(&xps_map_mutex);
1986         dev_maps = xmap_dereference(dev->xps_maps);
1987
1988         if (!dev_maps)
1989                 goto out_no_maps;
1990
1991         for_each_possible_cpu(cpu) {
1992                 for (i = index; i < dev->num_tx_queues; i++) {
1993                         if (!remove_xps_queue(dev_maps, cpu, i))
1994                                 break;
1995                 }
1996                 if (i == dev->num_tx_queues)
1997                         active = true;
1998         }
1999
2000         if (!active) {
2001                 RCU_INIT_POINTER(dev->xps_maps, NULL);
2002                 kfree_rcu(dev_maps, rcu);
2003         }
2004
2005         for (i = index; i < dev->num_tx_queues; i++)
2006                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2007                                              NUMA_NO_NODE);
2008
2009 out_no_maps:
2010         mutex_unlock(&xps_map_mutex);
2011 }
2012
2013 static struct xps_map *expand_xps_map(struct xps_map *map,
2014                                       int cpu, u16 index)
2015 {
2016         struct xps_map *new_map;
2017         int alloc_len = XPS_MIN_MAP_ALLOC;
2018         int i, pos;
2019
2020         for (pos = 0; map && pos < map->len; pos++) {
2021                 if (map->queues[pos] != index)
2022                         continue;
2023                 return map;
2024         }
2025
2026         /* Need to add queue to this CPU's existing map */
2027         if (map) {
2028                 if (pos < map->alloc_len)
2029                         return map;
2030
2031                 alloc_len = map->alloc_len * 2;
2032         }
2033
2034         /* Need to allocate new map to store queue on this CPU's map */
2035         new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2036                                cpu_to_node(cpu));
2037         if (!new_map)
2038                 return NULL;
2039
2040         for (i = 0; i < pos; i++)
2041                 new_map->queues[i] = map->queues[i];
2042         new_map->alloc_len = alloc_len;
2043         new_map->len = pos;
2044
2045         return new_map;
2046 }
2047
2048 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2049                         u16 index)
2050 {
2051         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2052         struct xps_map *map, *new_map;
2053         int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
2054         int cpu, numa_node_id = -2;
2055         bool active = false;
2056
2057         mutex_lock(&xps_map_mutex);
2058
2059         dev_maps = xmap_dereference(dev->xps_maps);
2060
2061         /* allocate memory for queue storage */
2062         for_each_online_cpu(cpu) {
2063                 if (!cpumask_test_cpu(cpu, mask))
2064                         continue;
2065
2066                 if (!new_dev_maps)
2067                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2068                 if (!new_dev_maps) {
2069                         mutex_unlock(&xps_map_mutex);
2070                         return -ENOMEM;
2071                 }
2072
2073                 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2074                                  NULL;
2075
2076                 map = expand_xps_map(map, cpu, index);
2077                 if (!map)
2078                         goto error;
2079
2080                 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2081         }
2082
2083         if (!new_dev_maps)
2084                 goto out_no_new_maps;
2085
2086         for_each_possible_cpu(cpu) {
2087                 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2088                         /* add queue to CPU maps */
2089                         int pos = 0;
2090
2091                         map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2092                         while ((pos < map->len) && (map->queues[pos] != index))
2093                                 pos++;
2094
2095                         if (pos == map->len)
2096                                 map->queues[map->len++] = index;
2097 #ifdef CONFIG_NUMA
2098                         if (numa_node_id == -2)
2099                                 numa_node_id = cpu_to_node(cpu);
2100                         else if (numa_node_id != cpu_to_node(cpu))
2101                                 numa_node_id = -1;
2102 #endif
2103                 } else if (dev_maps) {
2104                         /* fill in the new device map from the old device map */
2105                         map = xmap_dereference(dev_maps->cpu_map[cpu]);
2106                         RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2107                 }
2108
2109         }
2110
2111         rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2112
2113         /* Cleanup old maps */
2114         if (dev_maps) {
2115                 for_each_possible_cpu(cpu) {
2116                         new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2117                         map = xmap_dereference(dev_maps->cpu_map[cpu]);
2118                         if (map && map != new_map)
2119                                 kfree_rcu(map, rcu);
2120                 }
2121
2122                 kfree_rcu(dev_maps, rcu);
2123         }
2124
2125         dev_maps = new_dev_maps;
2126         active = true;
2127
2128 out_no_new_maps:
2129         /* update Tx queue numa node */
2130         netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2131                                      (numa_node_id >= 0) ? numa_node_id :
2132                                      NUMA_NO_NODE);
2133
2134         if (!dev_maps)
2135                 goto out_no_maps;
2136
2137         /* removes queue from unused CPUs */
2138         for_each_possible_cpu(cpu) {
2139                 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2140                         continue;
2141
2142                 if (remove_xps_queue(dev_maps, cpu, index))
2143                         active = true;
2144         }
2145
2146         /* free map if not active */
2147         if (!active) {
2148                 RCU_INIT_POINTER(dev->xps_maps, NULL);
2149                 kfree_rcu(dev_maps, rcu);
2150         }
2151
2152 out_no_maps:
2153         mutex_unlock(&xps_map_mutex);
2154
2155         return 0;
2156 error:
2157         /* remove any maps that we added */
2158         for_each_possible_cpu(cpu) {
2159                 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2160                 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2161                                  NULL;
2162                 if (new_map && new_map != map)
2163                         kfree(new_map);
2164         }
2165
2166         mutex_unlock(&xps_map_mutex);
2167
2168         kfree(new_dev_maps);
2169         return -ENOMEM;
2170 }
2171 EXPORT_SYMBOL(netif_set_xps_queue);
2172
2173 #endif
2174 /*
2175  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2176  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2177  */
2178 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2179 {
2180         int rc;
2181
2182         if (txq < 1 || txq > dev->num_tx_queues)
2183                 return -EINVAL;
2184
2185         if (dev->reg_state == NETREG_REGISTERED ||
2186             dev->reg_state == NETREG_UNREGISTERING) {
2187                 ASSERT_RTNL();
2188
2189                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2190                                                   txq);
2191                 if (rc)
2192                         return rc;
2193
2194                 if (dev->num_tc)
2195                         netif_setup_tc(dev, txq);
2196
2197                 if (txq < dev->real_num_tx_queues) {
2198                         qdisc_reset_all_tx_gt(dev, txq);
2199 #ifdef CONFIG_XPS
2200                         netif_reset_xps_queues_gt(dev, txq);
2201 #endif
2202                 }
2203         }
2204
2205         dev->real_num_tx_queues = txq;
2206         return 0;
2207 }
2208 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2209
2210 #ifdef CONFIG_SYSFS
2211 /**
2212  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2213  *      @dev: Network device
2214  *      @rxq: Actual number of RX queues
2215  *
2216  *      This must be called either with the rtnl_lock held or before
2217  *      registration of the net device.  Returns 0 on success, or a
2218  *      negative error code.  If called before registration, it always
2219  *      succeeds.
2220  */
2221 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2222 {
2223         int rc;
2224
2225         if (rxq < 1 || rxq > dev->num_rx_queues)
2226                 return -EINVAL;
2227
2228         if (dev->reg_state == NETREG_REGISTERED) {
2229                 ASSERT_RTNL();
2230
2231                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2232                                                   rxq);
2233                 if (rc)
2234                         return rc;
2235         }
2236
2237         dev->real_num_rx_queues = rxq;
2238         return 0;
2239 }
2240 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2241 #endif
2242
2243 /**
2244  * netif_get_num_default_rss_queues - default number of RSS queues
2245  *
2246  * This routine should set an upper limit on the number of RSS queues
2247  * used by default by multiqueue devices.
2248  */
2249 int netif_get_num_default_rss_queues(void)
2250 {
2251         return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2252 }
2253 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2254
2255 static inline void __netif_reschedule(struct Qdisc *q)
2256 {
2257         struct softnet_data *sd;
2258         unsigned long flags;
2259
2260         local_irq_save(flags);
2261         sd = this_cpu_ptr(&softnet_data);
2262         q->next_sched = NULL;
2263         *sd->output_queue_tailp = q;
2264         sd->output_queue_tailp = &q->next_sched;
2265         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2266         local_irq_restore(flags);
2267 }
2268
2269 void __netif_schedule(struct Qdisc *q)
2270 {
2271         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2272                 __netif_reschedule(q);
2273 }
2274 EXPORT_SYMBOL(__netif_schedule);
2275
2276 struct dev_kfree_skb_cb {
2277         enum skb_free_reason reason;
2278 };
2279
2280 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2281 {
2282         return (struct dev_kfree_skb_cb *)skb->cb;
2283 }
2284
2285 void netif_schedule_queue(struct netdev_queue *txq)
2286 {
2287         rcu_read_lock();
2288         if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2289                 struct Qdisc *q = rcu_dereference(txq->qdisc);
2290
2291                 __netif_schedule(q);
2292         }
2293         rcu_read_unlock();
2294 }
2295 EXPORT_SYMBOL(netif_schedule_queue);
2296
2297 /**
2298  *      netif_wake_subqueue - allow sending packets on subqueue
2299  *      @dev: network device
2300  *      @queue_index: sub queue index
2301  *
2302  * Resume individual transmit queue of a device with multiple transmit queues.
2303  */
2304 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2305 {
2306         struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2307
2308         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2309                 struct Qdisc *q;
2310
2311                 rcu_read_lock();
2312                 q = rcu_dereference(txq->qdisc);
2313                 __netif_schedule(q);
2314                 rcu_read_unlock();
2315         }
2316 }
2317 EXPORT_SYMBOL(netif_wake_subqueue);
2318
2319 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2320 {
2321         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2322                 struct Qdisc *q;
2323
2324                 rcu_read_lock();
2325                 q = rcu_dereference(dev_queue->qdisc);
2326                 __netif_schedule(q);
2327                 rcu_read_unlock();
2328         }
2329 }
2330 EXPORT_SYMBOL(netif_tx_wake_queue);
2331
2332 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2333 {
2334         unsigned long flags;
2335
2336         if (likely(atomic_read(&skb->users) == 1)) {
2337                 smp_rmb();
2338                 atomic_set(&skb->users, 0);
2339         } else if (likely(!atomic_dec_and_test(&skb->users))) {
2340                 return;
2341         }
2342         get_kfree_skb_cb(skb)->reason = reason;
2343         local_irq_save(flags);
2344         skb->next = __this_cpu_read(softnet_data.completion_queue);
2345         __this_cpu_write(softnet_data.completion_queue, skb);
2346         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2347         local_irq_restore(flags);
2348 }
2349 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2350
2351 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2352 {
2353         if (in_irq() || irqs_disabled())
2354                 __dev_kfree_skb_irq(skb, reason);
2355         else
2356                 dev_kfree_skb(skb);
2357 }
2358 EXPORT_SYMBOL(__dev_kfree_skb_any);
2359
2360
2361 /**
2362  * netif_device_detach - mark device as removed
2363  * @dev: network device
2364  *
2365  * Mark device as removed from system and therefore no longer available.
2366  */
2367 void netif_device_detach(struct net_device *dev)
2368 {
2369         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2370             netif_running(dev)) {
2371                 netif_tx_stop_all_queues(dev);
2372         }
2373 }
2374 EXPORT_SYMBOL(netif_device_detach);
2375
2376 /**
2377  * netif_device_attach - mark device as attached
2378  * @dev: network device
2379  *
2380  * Mark device as attached from system and restart if needed.
2381  */
2382 void netif_device_attach(struct net_device *dev)
2383 {
2384         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2385             netif_running(dev)) {
2386                 netif_tx_wake_all_queues(dev);
2387                 __netdev_watchdog_up(dev);
2388         }
2389 }
2390 EXPORT_SYMBOL(netif_device_attach);
2391
2392 /*
2393  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2394  * to be used as a distribution range.
2395  */
2396 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2397                   unsigned int num_tx_queues)
2398 {
2399         u32 hash;
2400         u16 qoffset = 0;
2401         u16 qcount = num_tx_queues;
2402
2403         if (skb_rx_queue_recorded(skb)) {
2404                 hash = skb_get_rx_queue(skb);
2405                 while (unlikely(hash >= num_tx_queues))
2406                         hash -= num_tx_queues;
2407                 return hash;
2408         }
2409
2410         if (dev->num_tc) {
2411                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2412                 qoffset = dev->tc_to_txq[tc].offset;
2413                 qcount = dev->tc_to_txq[tc].count;
2414         }
2415
2416         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2417 }
2418 EXPORT_SYMBOL(__skb_tx_hash);
2419
2420 static void skb_warn_bad_offload(const struct sk_buff *skb)
2421 {
2422         static const netdev_features_t null_features = 0;
2423         struct net_device *dev = skb->dev;
2424         const char *name = "";
2425
2426         if (!net_ratelimit())
2427                 return;
2428
2429         if (dev) {
2430                 if (dev->dev.parent)
2431                         name = dev_driver_string(dev->dev.parent);
2432                 else
2433                         name = netdev_name(dev);
2434         }
2435         WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2436              "gso_type=%d ip_summed=%d\n",
2437              name, dev ? &dev->features : &null_features,
2438              skb->sk ? &skb->sk->sk_route_caps : &null_features,
2439              skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2440              skb_shinfo(skb)->gso_type, skb->ip_summed);
2441 }
2442
2443 /*
2444  * Invalidate hardware checksum when packet is to be mangled, and
2445  * complete checksum manually on outgoing path.
2446  */
2447 int skb_checksum_help(struct sk_buff *skb)
2448 {
2449         __wsum csum;
2450         int ret = 0, offset;
2451
2452         if (skb->ip_summed == CHECKSUM_COMPLETE)
2453                 goto out_set_summed;
2454
2455         if (unlikely(skb_shinfo(skb)->gso_size)) {
2456                 skb_warn_bad_offload(skb);
2457                 return -EINVAL;
2458         }
2459
2460         /* Before computing a checksum, we should make sure no frag could
2461          * be modified by an external entity : checksum could be wrong.
2462          */
2463         if (skb_has_shared_frag(skb)) {
2464                 ret = __skb_linearize(skb);
2465                 if (ret)
2466                         goto out;
2467         }
2468
2469         offset = skb_checksum_start_offset(skb);
2470         BUG_ON(offset >= skb_headlen(skb));
2471         csum = skb_checksum(skb, offset, skb->len - offset, 0);
2472
2473         offset += skb->csum_offset;
2474         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2475
2476         if (skb_cloned(skb) &&
2477             !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2478                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2479                 if (ret)
2480                         goto out;
2481         }
2482
2483         *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2484 out_set_summed:
2485         skb->ip_summed = CHECKSUM_NONE;
2486 out:
2487         return ret;
2488 }
2489 EXPORT_SYMBOL(skb_checksum_help);
2490
2491 /* skb_csum_offload_check - Driver helper function to determine if a device
2492  * with limited checksum offload capabilities is able to offload the checksum
2493  * for a given packet.
2494  *
2495  * Arguments:
2496  *   skb - sk_buff for the packet in question
2497  *   spec - contains the description of what device can offload
2498  *   csum_encapped - returns true if the checksum being offloaded is
2499  *            encpasulated. That is it is checksum for the transport header
2500  *            in the inner headers.
2501  *   checksum_help - when set indicates that helper function should
2502  *            call skb_checksum_help if offload checks fail
2503  *
2504  * Returns:
2505  *   true: Packet has passed the checksum checks and should be offloadable to
2506  *         the device (a driver may still need to check for additional
2507  *         restrictions of its device)
2508  *   false: Checksum is not offloadable. If checksum_help was set then
2509  *         skb_checksum_help was called to resolve checksum for non-GSO
2510  *         packets and when IP protocol is not SCTP
2511  */
2512 bool __skb_csum_offload_chk(struct sk_buff *skb,
2513                             const struct skb_csum_offl_spec *spec,
2514                             bool *csum_encapped,
2515                             bool csum_help)
2516 {
2517         struct iphdr *iph;
2518         struct ipv6hdr *ipv6;
2519         void *nhdr;
2520         int protocol;
2521         u8 ip_proto;
2522
2523         if (skb->protocol == htons(ETH_P_8021Q) ||
2524             skb->protocol == htons(ETH_P_8021AD)) {
2525                 if (!spec->vlan_okay)
2526                         goto need_help;
2527         }
2528
2529         /* We check whether the checksum refers to a transport layer checksum in
2530          * the outermost header or an encapsulated transport layer checksum that
2531          * corresponds to the inner headers of the skb. If the checksum is for
2532          * something else in the packet we need help.
2533          */
2534         if (skb_checksum_start_offset(skb) == skb_transport_offset(skb)) {
2535                 /* Non-encapsulated checksum */
2536                 protocol = eproto_to_ipproto(vlan_get_protocol(skb));
2537                 nhdr = skb_network_header(skb);
2538                 *csum_encapped = false;
2539                 if (spec->no_not_encapped)
2540                         goto need_help;
2541         } else if (skb->encapsulation && spec->encap_okay &&
2542                    skb_checksum_start_offset(skb) ==
2543                    skb_inner_transport_offset(skb)) {
2544                 /* Encapsulated checksum */
2545                 *csum_encapped = true;
2546                 switch (skb->inner_protocol_type) {
2547                 case ENCAP_TYPE_ETHER:
2548                         protocol = eproto_to_ipproto(skb->inner_protocol);
2549                         break;
2550                 case ENCAP_TYPE_IPPROTO:
2551                         protocol = skb->inner_protocol;
2552                         break;
2553                 }
2554                 nhdr = skb_inner_network_header(skb);
2555         } else {
2556                 goto need_help;
2557         }
2558
2559         switch (protocol) {
2560         case IPPROTO_IP:
2561                 if (!spec->ipv4_okay)
2562                         goto need_help;
2563                 iph = nhdr;
2564                 ip_proto = iph->protocol;
2565                 if (iph->ihl != 5 && !spec->ip_options_okay)
2566                         goto need_help;
2567                 break;
2568         case IPPROTO_IPV6:
2569                 if (!spec->ipv6_okay)
2570                         goto need_help;
2571                 if (spec->no_encapped_ipv6 && *csum_encapped)
2572                         goto need_help;
2573                 ipv6 = nhdr;
2574                 nhdr += sizeof(*ipv6);
2575                 ip_proto = ipv6->nexthdr;
2576                 break;
2577         default:
2578                 goto need_help;
2579         }
2580
2581 ip_proto_again:
2582         switch (ip_proto) {
2583         case IPPROTO_TCP:
2584                 if (!spec->tcp_okay ||
2585                     skb->csum_offset != offsetof(struct tcphdr, check))
2586                         goto need_help;
2587                 break;
2588         case IPPROTO_UDP:
2589                 if (!spec->udp_okay ||
2590                     skb->csum_offset != offsetof(struct udphdr, check))
2591                         goto need_help;
2592                 break;
2593         case IPPROTO_SCTP:
2594                 if (!spec->sctp_okay ||
2595                     skb->csum_offset != offsetof(struct sctphdr, checksum))
2596                         goto cant_help;
2597                 break;
2598         case NEXTHDR_HOP:
2599         case NEXTHDR_ROUTING:
2600         case NEXTHDR_DEST: {
2601                 u8 *opthdr = nhdr;
2602
2603                 if (protocol != IPPROTO_IPV6 || !spec->ext_hdrs_okay)
2604                         goto need_help;
2605
2606                 ip_proto = opthdr[0];
2607                 nhdr += (opthdr[1] + 1) << 3;
2608
2609                 goto ip_proto_again;
2610         }
2611         default:
2612                 goto need_help;
2613         }
2614
2615         /* Passed the tests for offloading checksum */
2616         return true;
2617
2618 need_help:
2619         if (csum_help && !skb_shinfo(skb)->gso_size)
2620                 skb_checksum_help(skb);
2621 cant_help:
2622         return false;
2623 }
2624 EXPORT_SYMBOL(__skb_csum_offload_chk);
2625
2626 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2627 {
2628         __be16 type = skb->protocol;
2629
2630         /* Tunnel gso handlers can set protocol to ethernet. */
2631         if (type == htons(ETH_P_TEB)) {
2632                 struct ethhdr *eth;
2633
2634                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2635                         return 0;
2636
2637                 eth = (struct ethhdr *)skb_mac_header(skb);
2638                 type = eth->h_proto;
2639         }
2640
2641         return __vlan_get_protocol(skb, type, depth);
2642 }
2643
2644 /**
2645  *      skb_mac_gso_segment - mac layer segmentation handler.
2646  *      @skb: buffer to segment
2647  *      @features: features for the output path (see dev->features)
2648  */
2649 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2650                                     netdev_features_t features)
2651 {
2652         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2653         struct packet_offload *ptype;
2654         int vlan_depth = skb->mac_len;
2655         __be16 type = skb_network_protocol(skb, &vlan_depth);
2656
2657         if (unlikely(!type))
2658                 return ERR_PTR(-EINVAL);
2659
2660         __skb_pull(skb, vlan_depth);
2661
2662         rcu_read_lock();
2663         list_for_each_entry_rcu(ptype, &offload_base, list) {
2664                 if (ptype->type == type && ptype->callbacks.gso_segment) {
2665                         segs = ptype->callbacks.gso_segment(skb, features);
2666                         break;
2667                 }
2668         }
2669         rcu_read_unlock();
2670
2671         __skb_push(skb, skb->data - skb_mac_header(skb));
2672
2673         return segs;
2674 }
2675 EXPORT_SYMBOL(skb_mac_gso_segment);
2676
2677
2678 /* openvswitch calls this on rx path, so we need a different check.
2679  */
2680 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2681 {
2682         if (tx_path)
2683                 return skb->ip_summed != CHECKSUM_PARTIAL;
2684         else
2685                 return skb->ip_summed == CHECKSUM_NONE;
2686 }
2687
2688 /**
2689  *      __skb_gso_segment - Perform segmentation on skb.
2690  *      @skb: buffer to segment
2691  *      @features: features for the output path (see dev->features)
2692  *      @tx_path: whether it is called in TX path
2693  *
2694  *      This function segments the given skb and returns a list of segments.
2695  *
2696  *      It may return NULL if the skb requires no segmentation.  This is
2697  *      only possible when GSO is used for verifying header integrity.
2698  *
2699  *      Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2700  */
2701 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2702                                   netdev_features_t features, bool tx_path)
2703 {
2704         if (unlikely(skb_needs_check(skb, tx_path))) {
2705                 int err;
2706
2707                 skb_warn_bad_offload(skb);
2708
2709                 err = skb_cow_head(skb, 0);
2710                 if (err < 0)
2711                         return ERR_PTR(err);
2712         }
2713
2714         BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2715                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2716
2717         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2718         SKB_GSO_CB(skb)->encap_level = 0;
2719
2720         skb_reset_mac_header(skb);
2721         skb_reset_mac_len(skb);
2722
2723         return skb_mac_gso_segment(skb, features);
2724 }
2725 EXPORT_SYMBOL(__skb_gso_segment);
2726
2727 /* Take action when hardware reception checksum errors are detected. */
2728 #ifdef CONFIG_BUG
2729 void netdev_rx_csum_fault(struct net_device *dev)
2730 {
2731         if (net_ratelimit()) {
2732                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2733                 dump_stack();
2734         }
2735 }
2736 EXPORT_SYMBOL(netdev_rx_csum_fault);
2737 #endif
2738
2739 /* Actually, we should eliminate this check as soon as we know, that:
2740  * 1. IOMMU is present and allows to map all the memory.
2741  * 2. No high memory really exists on this machine.
2742  */
2743
2744 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2745 {
2746 #ifdef CONFIG_HIGHMEM
2747         int i;
2748         if (!(dev->features & NETIF_F_HIGHDMA)) {
2749                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2750                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2751                         if (PageHighMem(skb_frag_page(frag)))
2752                                 return 1;
2753                 }
2754         }
2755
2756         if (PCI_DMA_BUS_IS_PHYS) {
2757                 struct device *pdev = dev->dev.parent;
2758
2759                 if (!pdev)
2760                         return 0;
2761                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2762                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2763                         dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2764                         if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2765                                 return 1;
2766                 }
2767         }
2768 #endif
2769         return 0;
2770 }
2771
2772 /* If MPLS offload request, verify we are testing hardware MPLS features
2773  * instead of standard features for the netdev.
2774  */
2775 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2776 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2777                                            netdev_features_t features,
2778                                            __be16 type)
2779 {
2780         if (eth_p_mpls(type))
2781                 features &= skb->dev->mpls_features;
2782
2783         return features;
2784 }
2785 #else
2786 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2787                                            netdev_features_t features,
2788                                            __be16 type)
2789 {
2790         return features;
2791 }
2792 #endif
2793
2794 static netdev_features_t harmonize_features(struct sk_buff *skb,
2795         netdev_features_t features)
2796 {
2797         int tmp;
2798         __be16 type;
2799
2800         type = skb_network_protocol(skb, &tmp);
2801         features = net_mpls_features(skb, features, type);
2802
2803         if (skb->ip_summed != CHECKSUM_NONE &&
2804             !can_checksum_protocol(features, type)) {
2805                 features &= ~NETIF_F_CSUM_MASK;
2806         } else if (illegal_highdma(skb->dev, skb)) {
2807                 features &= ~NETIF_F_SG;
2808         }
2809
2810         return features;
2811 }
2812
2813 netdev_features_t passthru_features_check(struct sk_buff *skb,
2814                                           struct net_device *dev,
2815                                           netdev_features_t features)
2816 {
2817         return features;
2818 }
2819 EXPORT_SYMBOL(passthru_features_check);
2820
2821 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2822                                              struct net_device *dev,
2823                                              netdev_features_t features)
2824 {
2825         return vlan_features_check(skb, features);
2826 }
2827
2828 netdev_features_t netif_skb_features(struct sk_buff *skb)
2829 {
2830         struct net_device *dev = skb->dev;
2831         netdev_features_t features = dev->features;
2832         u16 gso_segs = skb_shinfo(skb)->gso_segs;
2833
2834         if (gso_segs > dev->gso_max_segs || gso_segs < dev->gso_min_segs)
2835                 features &= ~NETIF_F_GSO_MASK;
2836
2837         /* If encapsulation offload request, verify we are testing
2838          * hardware encapsulation features instead of standard
2839          * features for the netdev
2840          */
2841         if (skb->encapsulation)
2842                 features &= dev->hw_enc_features;
2843
2844         if (skb_vlan_tagged(skb))
2845                 features = netdev_intersect_features(features,
2846                                                      dev->vlan_features |
2847                                                      NETIF_F_HW_VLAN_CTAG_TX |
2848                                                      NETIF_F_HW_VLAN_STAG_TX);
2849
2850         if (dev->netdev_ops->ndo_features_check)
2851                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2852                                                                 features);
2853         else
2854                 features &= dflt_features_check(skb, dev, features);
2855
2856         return harmonize_features(skb, features);
2857 }
2858 EXPORT_SYMBOL(netif_skb_features);
2859
2860 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2861                     struct netdev_queue *txq, bool more)
2862 {
2863         unsigned int len;
2864         int rc;
2865
2866         if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2867                 dev_queue_xmit_nit(skb, dev);
2868
2869         len = skb->len;
2870         trace_net_dev_start_xmit(skb, dev);
2871         rc = netdev_start_xmit(skb, dev, txq, more);
2872         trace_net_dev_xmit(skb, rc, dev, len);
2873
2874         return rc;
2875 }
2876
2877 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2878                                     struct netdev_queue *txq, int *ret)
2879 {
2880         struct sk_buff *skb = first;
2881         int rc = NETDEV_TX_OK;
2882
2883         while (skb) {
2884                 struct sk_buff *next = skb->next;
2885
2886                 skb->next = NULL;
2887                 rc = xmit_one(skb, dev, txq, next != NULL);
2888                 if (unlikely(!dev_xmit_complete(rc))) {
2889                         skb->next = next;
2890                         goto out;
2891                 }
2892
2893                 skb = next;
2894                 if (netif_xmit_stopped(txq) && skb) {
2895                         rc = NETDEV_TX_BUSY;
2896                         break;
2897                 }
2898         }
2899
2900 out:
2901         *ret = rc;
2902         return skb;
2903 }
2904
2905 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2906                                           netdev_features_t features)
2907 {
2908         if (skb_vlan_tag_present(skb) &&
2909             !vlan_hw_offload_capable(features, skb->vlan_proto))
2910                 skb = __vlan_hwaccel_push_inside(skb);
2911         return skb;
2912 }
2913
2914 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2915 {
2916         netdev_features_t features;
2917
2918         if (skb->next)
2919                 return skb;
2920
2921         features = netif_skb_features(skb);
2922         skb = validate_xmit_vlan(skb, features);
2923         if (unlikely(!skb))
2924                 goto out_null;
2925
2926         if (netif_needs_gso(skb, features)) {
2927                 struct sk_buff *segs;
2928
2929                 segs = skb_gso_segment(skb, features);
2930                 if (IS_ERR(segs)) {
2931                         goto out_kfree_skb;
2932                 } else if (segs) {
2933                         consume_skb(skb);
2934                         skb = segs;
2935                 }
2936         } else {
2937                 if (skb_needs_linearize(skb, features) &&
2938                     __skb_linearize(skb))
2939                         goto out_kfree_skb;
2940
2941                 /* If packet is not checksummed and device does not
2942                  * support checksumming for this protocol, complete
2943                  * checksumming here.
2944                  */
2945                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2946                         if (skb->encapsulation)
2947                                 skb_set_inner_transport_header(skb,
2948                                                                skb_checksum_start_offset(skb));
2949                         else
2950                                 skb_set_transport_header(skb,
2951                                                          skb_checksum_start_offset(skb));
2952                         if (!(features & NETIF_F_CSUM_MASK) &&
2953                             skb_checksum_help(skb))
2954                                 goto out_kfree_skb;
2955                 }
2956         }
2957
2958         return skb;
2959
2960 out_kfree_skb:
2961         kfree_skb(skb);
2962 out_null:
2963         return NULL;
2964 }
2965
2966 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2967 {
2968         struct sk_buff *next, *head = NULL, *tail;
2969
2970         for (; skb != NULL; skb = next) {
2971                 next = skb->next;
2972                 skb->next = NULL;
2973
2974                 /* in case skb wont be segmented, point to itself */
2975                 skb->prev = skb;
2976
2977                 skb = validate_xmit_skb(skb, dev);
2978                 if (!skb)
2979                         continue;
2980
2981                 if (!head)
2982                         head = skb;
2983                 else
2984                         tail->next = skb;
2985                 /* If skb was segmented, skb->prev points to
2986                  * the last segment. If not, it still contains skb.
2987                  */
2988                 tail = skb->prev;
2989         }
2990         return head;
2991 }
2992
2993 static void qdisc_pkt_len_init(struct sk_buff *skb)
2994 {
2995         const struct skb_shared_info *shinfo = skb_shinfo(skb);
2996
2997         qdisc_skb_cb(skb)->pkt_len = skb->len;
2998
2999         /* To get more precise estimation of bytes sent on wire,
3000          * we add to pkt_len the headers size of all segments
3001          */
3002         if (shinfo->gso_size)  {
3003                 unsigned int hdr_len;
3004                 u16 gso_segs = shinfo->gso_segs;
3005
3006                 /* mac layer + network layer */
3007                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3008
3009                 /* + transport layer */
3010                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3011                         hdr_len += tcp_hdrlen(skb);
3012                 else
3013                         hdr_len += sizeof(struct udphdr);
3014
3015                 if (shinfo->gso_type & SKB_GSO_DODGY)
3016                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3017                                                 shinfo->gso_size);
3018
3019                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3020         }
3021 }
3022
3023 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3024                                  struct net_device *dev,
3025                                  struct netdev_queue *txq)
3026 {
3027         spinlock_t *root_lock = qdisc_lock(q);
3028         bool contended;
3029         int rc;
3030
3031         qdisc_calculate_pkt_len(skb, q);
3032         /*
3033          * Heuristic to force contended enqueues to serialize on a
3034          * separate lock before trying to get qdisc main lock.
3035          * This permits __QDISC___STATE_RUNNING owner to get the lock more
3036          * often and dequeue packets faster.
3037          */
3038         contended = qdisc_is_running(q);
3039         if (unlikely(contended))
3040                 spin_lock(&q->busylock);
3041
3042         spin_lock(root_lock);
3043         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3044                 kfree_skb(skb);
3045                 rc = NET_XMIT_DROP;
3046         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3047                    qdisc_run_begin(q)) {
3048                 /*
3049                  * This is a work-conserving queue; there are no old skbs
3050                  * waiting to be sent out; and the qdisc is not running -
3051                  * xmit the skb directly.
3052                  */
3053
3054                 qdisc_bstats_update(q, skb);
3055
3056                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3057                         if (unlikely(contended)) {
3058                                 spin_unlock(&q->busylock);
3059                                 contended = false;
3060                         }
3061                         __qdisc_run(q);
3062                 } else
3063                         qdisc_run_end(q);
3064
3065                 rc = NET_XMIT_SUCCESS;
3066         } else {
3067                 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
3068                 if (qdisc_run_begin(q)) {
3069                         if (unlikely(contended)) {
3070                                 spin_unlock(&q->busylock);
3071                                 contended = false;
3072                         }
3073                         __qdisc_run(q);
3074                 }
3075         }
3076         spin_unlock(root_lock);
3077         if (unlikely(contended))
3078                 spin_unlock(&q->busylock);
3079         return rc;
3080 }
3081
3082 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3083 static void skb_update_prio(struct sk_buff *skb)
3084 {
3085         struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
3086
3087         if (!skb->priority && skb->sk && map) {
3088                 unsigned int prioidx =
3089                         sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
3090
3091                 if (prioidx < map->priomap_len)
3092                         skb->priority = map->priomap[prioidx];
3093         }
3094 }
3095 #else
3096 #define skb_update_prio(skb)
3097 #endif
3098
3099 DEFINE_PER_CPU(int, xmit_recursion);
3100 EXPORT_SYMBOL(xmit_recursion);
3101
3102 #define RECURSION_LIMIT 10
3103
3104 /**
3105  *      dev_loopback_xmit - loop back @skb
3106  *      @net: network namespace this loopback is happening in
3107  *      @sk:  sk needed to be a netfilter okfn
3108  *      @skb: buffer to transmit
3109  */
3110 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3111 {
3112         skb_reset_mac_header(skb);
3113         __skb_pull(skb, skb_network_offset(skb));
3114         skb->pkt_type = PACKET_LOOPBACK;
3115         skb->ip_summed = CHECKSUM_UNNECESSARY;
3116         WARN_ON(!skb_dst(skb));
3117         skb_dst_force(skb);
3118         netif_rx_ni(skb);
3119         return 0;
3120 }
3121 EXPORT_SYMBOL(dev_loopback_xmit);
3122
3123 #ifdef CONFIG_NET_EGRESS
3124 static struct sk_buff *
3125 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3126 {
3127         struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3128         struct tcf_result cl_res;
3129
3130         if (!cl)
3131                 return skb;
3132
3133         /* skb->tc_verd and qdisc_skb_cb(skb)->pkt_len were already set
3134          * earlier by the caller.
3135          */
3136         qdisc_bstats_cpu_update(cl->q, skb);
3137
3138         switch (tc_classify(skb, cl, &cl_res, false)) {
3139         case TC_ACT_OK:
3140         case TC_ACT_RECLASSIFY:
3141                 skb->tc_index = TC_H_MIN(cl_res.classid);
3142                 break;
3143         case TC_ACT_SHOT:
3144                 qdisc_qstats_cpu_drop(cl->q);
3145                 *ret = NET_XMIT_DROP;
3146                 goto drop;
3147         case TC_ACT_STOLEN:
3148         case TC_ACT_QUEUED:
3149                 *ret = NET_XMIT_SUCCESS;
3150 drop:
3151                 kfree_skb(skb);
3152                 return NULL;
3153         case TC_ACT_REDIRECT:
3154                 /* No need to push/pop skb's mac_header here on egress! */
3155                 skb_do_redirect(skb);
3156                 *ret = NET_XMIT_SUCCESS;
3157                 return NULL;
3158         default:
3159                 break;
3160         }
3161
3162         return skb;
3163 }
3164 #endif /* CONFIG_NET_EGRESS */
3165
3166 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3167 {
3168 #ifdef CONFIG_XPS
3169         struct xps_dev_maps *dev_maps;
3170         struct xps_map *map;
3171         int queue_index = -1;
3172
3173         rcu_read_lock();
3174         dev_maps = rcu_dereference(dev->xps_maps);
3175         if (dev_maps) {
3176                 map = rcu_dereference(
3177                     dev_maps->cpu_map[skb->sender_cpu - 1]);
3178                 if (map) {
3179                         if (map->len == 1)
3180                                 queue_index = map->queues[0];
3181                         else
3182                                 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3183                                                                            map->len)];
3184                         if (unlikely(queue_index >= dev->real_num_tx_queues))
3185                                 queue_index = -1;
3186                 }
3187         }
3188         rcu_read_unlock();
3189
3190         return queue_index;
3191 #else
3192         return -1;
3193 #endif
3194 }
3195
3196 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3197 {
3198         struct sock *sk = skb->sk;
3199         int queue_index = sk_tx_queue_get(sk);
3200
3201         if (queue_index < 0 || skb->ooo_okay ||
3202             queue_index >= dev->real_num_tx_queues) {
3203                 int new_index = get_xps_queue(dev, skb);
3204                 if (new_index < 0)
3205                         new_index = skb_tx_hash(dev, skb);
3206
3207                 if (queue_index != new_index && sk &&
3208                     sk_fullsock(sk) &&
3209                     rcu_access_pointer(sk->sk_dst_cache))
3210                         sk_tx_queue_set(sk, new_index);
3211
3212                 queue_index = new_index;
3213         }
3214
3215         return queue_index;
3216 }
3217
3218 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3219                                     struct sk_buff *skb,
3220                                     void *accel_priv)
3221 {
3222         int queue_index = 0;
3223
3224 #ifdef CONFIG_XPS
3225         u32 sender_cpu = skb->sender_cpu - 1;
3226
3227         if (sender_cpu >= (u32)NR_CPUS)
3228                 skb->sender_cpu = raw_smp_processor_id() + 1;
3229 #endif
3230
3231         if (dev->real_num_tx_queues != 1) {
3232                 const struct net_device_ops *ops = dev->netdev_ops;
3233                 if (ops->ndo_select_queue)
3234                         queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3235                                                             __netdev_pick_tx);
3236                 else
3237                         queue_index = __netdev_pick_tx(dev, skb);
3238
3239                 if (!accel_priv)
3240                         queue_index = netdev_cap_txqueue(dev, queue_index);
3241         }
3242
3243         skb_set_queue_mapping(skb, queue_index);
3244         return netdev_get_tx_queue(dev, queue_index);
3245 }
3246
3247 /**
3248  *      __dev_queue_xmit - transmit a buffer
3249  *      @skb: buffer to transmit
3250  *      @accel_priv: private data used for L2 forwarding offload
3251  *
3252  *      Queue a buffer for transmission to a network device. The caller must
3253  *      have set the device and priority and built the buffer before calling
3254  *      this function. The function can be called from an interrupt.
3255  *
3256  *      A negative errno code is returned on a failure. A success does not
3257  *      guarantee the frame will be transmitted as it may be dropped due
3258  *      to congestion or traffic shaping.
3259  *
3260  * -----------------------------------------------------------------------------------
3261  *      I notice this method can also return errors from the queue disciplines,
3262  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3263  *      be positive.
3264  *
3265  *      Regardless of the return value, the skb is consumed, so it is currently
3266  *      difficult to retry a send to this method.  (You can bump the ref count
3267  *      before sending to hold a reference for retry if you are careful.)
3268  *
3269  *      When calling this method, interrupts MUST be enabled.  This is because
3270  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3271  *          --BLG
3272  */
3273 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3274 {
3275         struct net_device *dev = skb->dev;
3276         struct netdev_queue *txq;
3277         struct Qdisc *q;
3278         int rc = -ENOMEM;
3279
3280         skb_reset_mac_header(skb);
3281
3282         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3283                 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3284
3285         /* Disable soft irqs for various locks below. Also
3286          * stops preemption for RCU.
3287          */
3288         rcu_read_lock_bh();
3289
3290         skb_update_prio(skb);
3291
3292         qdisc_pkt_len_init(skb);
3293 #ifdef CONFIG_NET_CLS_ACT
3294         skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
3295 # ifdef CONFIG_NET_EGRESS
3296         if (static_key_false(&egress_needed)) {
3297                 skb = sch_handle_egress(skb, &rc, dev);
3298                 if (!skb)
3299                         goto out;
3300         }
3301 # endif
3302 #endif
3303         /* If device/qdisc don't need skb->dst, release it right now while
3304          * its hot in this cpu cache.
3305          */
3306         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3307                 skb_dst_drop(skb);
3308         else
3309                 skb_dst_force(skb);
3310
3311 #ifdef CONFIG_NET_SWITCHDEV
3312         /* Don't forward if offload device already forwarded */
3313         if (skb->offload_fwd_mark &&
3314             skb->offload_fwd_mark == dev->offload_fwd_mark) {
3315                 consume_skb(skb);
3316                 rc = NET_XMIT_SUCCESS;
3317                 goto out;
3318         }
3319 #endif
3320
3321         txq = netdev_pick_tx(dev, skb, accel_priv);
3322         q = rcu_dereference_bh(txq->qdisc);
3323
3324         trace_net_dev_queue(skb);
3325         if (q->enqueue) {
3326                 rc = __dev_xmit_skb(skb, q, dev, txq);
3327                 goto out;
3328         }
3329
3330         /* The device has no queue. Common case for software devices:
3331            loopback, all the sorts of tunnels...
3332
3333            Really, it is unlikely that netif_tx_lock protection is necessary
3334            here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3335            counters.)
3336            However, it is possible, that they rely on protection
3337            made by us here.
3338
3339            Check this and shot the lock. It is not prone from deadlocks.
3340            Either shot noqueue qdisc, it is even simpler 8)
3341          */
3342         if (dev->flags & IFF_UP) {
3343                 int cpu = smp_processor_id(); /* ok because BHs are off */
3344
3345                 if (txq->xmit_lock_owner != cpu) {
3346
3347                         if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
3348                                 goto recursion_alert;
3349
3350                         skb = validate_xmit_skb(skb, dev);
3351                         if (!skb)
3352                                 goto drop;
3353
3354                         HARD_TX_LOCK(dev, txq, cpu);
3355
3356                         if (!netif_xmit_stopped(txq)) {
3357                                 __this_cpu_inc(xmit_recursion);
3358                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3359                                 __this_cpu_dec(xmit_recursion);
3360                                 if (dev_xmit_complete(rc)) {
3361                                         HARD_TX_UNLOCK(dev, txq);
3362                                         goto out;
3363                                 }
3364                         }
3365                         HARD_TX_UNLOCK(dev, txq);
3366                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3367                                              dev->name);
3368                 } else {
3369                         /* Recursion is detected! It is possible,
3370                          * unfortunately
3371                          */
3372 recursion_alert:
3373                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3374                                              dev->name);
3375                 }
3376         }
3377
3378         rc = -ENETDOWN;
3379 drop:
3380         rcu_read_unlock_bh();
3381
3382         atomic_long_inc(&dev->tx_dropped);
3383         kfree_skb_list(skb);
3384         return rc;
3385 out:
3386         rcu_read_unlock_bh();
3387         return rc;
3388 }
3389
3390 int dev_queue_xmit(struct sk_buff *skb)
3391 {
3392         return __dev_queue_xmit(skb, NULL);
3393 }
3394 EXPORT_SYMBOL(dev_queue_xmit);
3395
3396 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3397 {
3398         return __dev_queue_xmit(skb, accel_priv);
3399 }
3400 EXPORT_SYMBOL(dev_queue_xmit_accel);
3401
3402
3403 /*=======================================================================
3404                         Receiver routines
3405   =======================================================================*/
3406
3407 int netdev_max_backlog __read_mostly = 1000;
3408 EXPORT_SYMBOL(netdev_max_backlog);
3409
3410 int netdev_tstamp_prequeue __read_mostly = 1;
3411 int netdev_budget __read_mostly = 300;
3412 int weight_p __read_mostly = 64;            /* old backlog weight */
3413
3414 /* Called with irq disabled */
3415 static inline void ____napi_schedule(struct softnet_data *sd,
3416                                      struct napi_struct *napi)
3417 {
3418         list_add_tail(&napi->poll_list, &sd->poll_list);
3419         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3420 }
3421
3422 #ifdef CONFIG_RPS
3423
3424 /* One global table that all flow-based protocols share. */
3425 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3426 EXPORT_SYMBOL(rps_sock_flow_table);
3427 u32 rps_cpu_mask __read_mostly;
3428 EXPORT_SYMBOL(rps_cpu_mask);
3429
3430 struct static_key rps_needed __read_mostly;
3431
3432 static struct rps_dev_flow *
3433 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3434             struct rps_dev_flow *rflow, u16 next_cpu)
3435 {
3436         if (next_cpu < nr_cpu_ids) {
3437 #ifdef CONFIG_RFS_ACCEL
3438                 struct netdev_rx_queue *rxqueue;
3439                 struct rps_dev_flow_table *flow_table;
3440                 struct rps_dev_flow *old_rflow;
3441                 u32 flow_id;
3442                 u16 rxq_index;
3443                 int rc;
3444
3445                 /* Should we steer this flow to a different hardware queue? */
3446                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3447                     !(dev->features & NETIF_F_NTUPLE))
3448                         goto out;
3449                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3450                 if (rxq_index == skb_get_rx_queue(skb))
3451                         goto out;
3452
3453                 rxqueue = dev->_rx + rxq_index;
3454                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3455                 if (!flow_table)
3456                         goto out;
3457                 flow_id = skb_get_hash(skb) & flow_table->mask;
3458                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3459                                                         rxq_index, flow_id);
3460                 if (rc < 0)
3461                         goto out;
3462                 old_rflow = rflow;
3463                 rflow = &flow_table->flows[flow_id];
3464                 rflow->filter = rc;
3465                 if (old_rflow->filter == rflow->filter)
3466                         old_rflow->filter = RPS_NO_FILTER;
3467         out:
3468 #endif
3469                 rflow->last_qtail =
3470                         per_cpu(softnet_data, next_cpu).input_queue_head;
3471         }
3472
3473         rflow->cpu = next_cpu;
3474         return rflow;
3475 }
3476
3477 /*
3478  * get_rps_cpu is called from netif_receive_skb and returns the target
3479  * CPU from the RPS map of the receiving queue for a given skb.
3480  * rcu_read_lock must be held on entry.
3481  */
3482 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3483                        struct rps_dev_flow **rflowp)
3484 {
3485         const struct rps_sock_flow_table *sock_flow_table;
3486         struct netdev_rx_queue *rxqueue = dev->_rx;
3487         struct rps_dev_flow_table *flow_table;
3488         struct rps_map *map;
3489         int cpu = -1;
3490         u32 tcpu;
3491         u32 hash;
3492
3493         if (skb_rx_queue_recorded(skb)) {
3494                 u16 index = skb_get_rx_queue(skb);
3495
3496                 if (unlikely(index >= dev->real_num_rx_queues)) {
3497                         WARN_ONCE(dev->real_num_rx_queues > 1,
3498                                   "%s received packet on queue %u, but number "
3499                                   "of RX queues is %u\n",
3500                                   dev->name, index, dev->real_num_rx_queues);
3501                         goto done;
3502                 }
3503                 rxqueue += index;
3504         }
3505
3506         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3507
3508         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3509         map = rcu_dereference(rxqueue->rps_map);
3510         if (!flow_table && !map)
3511                 goto done;
3512
3513         skb_reset_network_header(skb);
3514         hash = skb_get_hash(skb);
3515         if (!hash)
3516                 goto done;
3517
3518         sock_flow_table = rcu_dereference(rps_sock_flow_table);
3519         if (flow_table && sock_flow_table) {
3520                 struct rps_dev_flow *rflow;
3521                 u32 next_cpu;
3522                 u32 ident;
3523
3524                 /* First check into global flow table if there is a match */
3525                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3526                 if ((ident ^ hash) & ~rps_cpu_mask)
3527                         goto try_rps;
3528
3529                 next_cpu = ident & rps_cpu_mask;
3530
3531                 /* OK, now we know there is a match,
3532                  * we can look at the local (per receive queue) flow table
3533                  */
3534                 rflow = &flow_table->flows[hash & flow_table->mask];
3535                 tcpu = rflow->cpu;
3536
3537                 /*
3538                  * If the desired CPU (where last recvmsg was done) is
3539                  * different from current CPU (one in the rx-queue flow
3540                  * table entry), switch if one of the following holds:
3541                  *   - Current CPU is unset (>= nr_cpu_ids).
3542                  *   - Current CPU is offline.
3543                  *   - The current CPU's queue tail has advanced beyond the
3544                  *     last packet that was enqueued using this table entry.
3545                  *     This guarantees that all previous packets for the flow
3546                  *     have been dequeued, thus preserving in order delivery.
3547                  */
3548                 if (unlikely(tcpu != next_cpu) &&
3549                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3550                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3551                       rflow->last_qtail)) >= 0)) {
3552                         tcpu = next_cpu;
3553                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3554                 }
3555
3556                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3557                         *rflowp = rflow;
3558                         cpu = tcpu;
3559                         goto done;
3560                 }
3561         }
3562
3563 try_rps:
3564
3565         if (map) {
3566                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3567                 if (cpu_online(tcpu)) {
3568                         cpu = tcpu;
3569                         goto done;
3570                 }
3571         }
3572
3573 done:
3574         return cpu;
3575 }
3576
3577 #ifdef CONFIG_RFS_ACCEL
3578
3579 /**
3580  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3581  * @dev: Device on which the filter was set
3582  * @rxq_index: RX queue index
3583  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3584  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3585  *
3586  * Drivers that implement ndo_rx_flow_steer() should periodically call
3587  * this function for each installed filter and remove the filters for
3588  * which it returns %true.
3589  */
3590 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3591                          u32 flow_id, u16 filter_id)
3592 {
3593         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3594         struct rps_dev_flow_table *flow_table;
3595         struct rps_dev_flow *rflow;
3596         bool expire = true;
3597         unsigned int cpu;
3598
3599         rcu_read_lock();
3600         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3601         if (flow_table && flow_id <= flow_table->mask) {
3602                 rflow = &flow_table->flows[flow_id];
3603                 cpu = ACCESS_ONCE(rflow->cpu);
3604                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3605                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3606                            rflow->last_qtail) <
3607                      (int)(10 * flow_table->mask)))
3608                         expire = false;
3609         }
3610         rcu_read_unlock();
3611         return expire;
3612 }
3613 EXPORT_SYMBOL(rps_may_expire_flow);
3614
3615 #endif /* CONFIG_RFS_ACCEL */
3616
3617 /* Called from hardirq (IPI) context */
3618 static void rps_trigger_softirq(void *data)
3619 {
3620         struct softnet_data *sd = data;
3621
3622         ____napi_schedule(sd, &sd->backlog);
3623         sd->received_rps++;
3624 }
3625
3626 #endif /* CONFIG_RPS */
3627
3628 /*
3629  * Check if this softnet_data structure is another cpu one
3630  * If yes, queue it to our IPI list and return 1
3631  * If no, return 0
3632  */
3633 static int rps_ipi_queued(struct softnet_data *sd)
3634 {
3635 #ifdef CONFIG_RPS
3636         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3637
3638         if (sd != mysd) {
3639                 sd->rps_ipi_next = mysd->rps_ipi_list;
3640                 mysd->rps_ipi_list = sd;
3641
3642                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3643                 return 1;
3644         }
3645 #endif /* CONFIG_RPS */
3646         return 0;
3647 }
3648
3649 #ifdef CONFIG_NET_FLOW_LIMIT
3650 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3651 #endif
3652
3653 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3654 {
3655 #ifdef CONFIG_NET_FLOW_LIMIT
3656         struct sd_flow_limit *fl;
3657         struct softnet_data *sd;
3658         unsigned int old_flow, new_flow;
3659
3660         if (qlen < (netdev_max_backlog >> 1))
3661                 return false;
3662
3663         sd = this_cpu_ptr(&softnet_data);
3664
3665         rcu_read_lock();
3666         fl = rcu_dereference(sd->flow_limit);
3667         if (fl) {
3668                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3669                 old_flow = fl->history[fl->history_head];
3670                 fl->history[fl->history_head] = new_flow;
3671
3672                 fl->history_head++;
3673                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3674
3675                 if (likely(fl->buckets[old_flow]))
3676                         fl->buckets[old_flow]--;
3677
3678                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3679                         fl->count++;
3680                         rcu_read_unlock();
3681                         return true;
3682                 }
3683         }
3684         rcu_read_unlock();
3685 #endif
3686         return false;
3687 }
3688
3689 /*
3690  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3691  * queue (may be a remote CPU queue).
3692  */
3693 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3694                               unsigned int *qtail)
3695 {
3696         struct softnet_data *sd;
3697         unsigned long flags;
3698         unsigned int qlen;
3699
3700         sd = &per_cpu(softnet_data, cpu);
3701
3702         local_irq_save(flags);
3703
3704         rps_lock(sd);
3705         if (!netif_running(skb->dev))
3706                 goto drop;
3707         qlen = skb_queue_len(&sd->input_pkt_queue);
3708         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3709                 if (qlen) {
3710 enqueue:
3711                         __skb_queue_tail(&sd->input_pkt_queue, skb);
3712                         input_queue_tail_incr_save(sd, qtail);
3713                         rps_unlock(sd);
3714                         local_irq_restore(flags);
3715                         return NET_RX_SUCCESS;
3716                 }
3717
3718                 /* Schedule NAPI for backlog device
3719                  * We can use non atomic operation since we own the queue lock
3720                  */
3721                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3722                         if (!rps_ipi_queued(sd))
3723                                 ____napi_schedule(sd, &sd->backlog);
3724                 }
3725                 goto enqueue;
3726         }
3727
3728 drop:
3729         sd->dropped++;
3730         rps_unlock(sd);
3731
3732         local_irq_restore(flags);
3733
3734         atomic_long_inc(&skb->dev->rx_dropped);
3735         kfree_skb(skb);
3736         return NET_RX_DROP;
3737 }
3738
3739 static int netif_rx_internal(struct sk_buff *skb)
3740 {
3741         int ret;
3742
3743         net_timestamp_check(netdev_tstamp_prequeue, skb);
3744
3745         trace_netif_rx(skb);
3746 #ifdef CONFIG_RPS
3747         if (static_key_false(&rps_needed)) {
3748                 struct rps_dev_flow voidflow, *rflow = &voidflow;
3749                 int cpu;
3750
3751                 preempt_disable();
3752                 rcu_read_lock();
3753
3754                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3755                 if (cpu < 0)
3756                         cpu = smp_processor_id();
3757
3758                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3759
3760                 rcu_read_unlock();
3761                 preempt_enable();
3762         } else
3763 #endif
3764         {
3765                 unsigned int qtail;
3766                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3767                 put_cpu();
3768         }
3769         return ret;
3770 }
3771
3772 /**
3773  *      netif_rx        -       post buffer to the network code
3774  *      @skb: buffer to post
3775  *
3776  *      This function receives a packet from a device driver and queues it for
3777  *      the upper (protocol) levels to process.  It always succeeds. The buffer
3778  *      may be dropped during processing for congestion control or by the
3779  *      protocol layers.
3780  *
3781  *      return values:
3782  *      NET_RX_SUCCESS  (no congestion)
3783  *      NET_RX_DROP     (packet was dropped)
3784  *
3785  */
3786
3787 int netif_rx(struct sk_buff *skb)
3788 {
3789         trace_netif_rx_entry(skb);
3790
3791         return netif_rx_internal(skb);
3792 }
3793 EXPORT_SYMBOL(netif_rx);
3794
3795 int netif_rx_ni(struct sk_buff *skb)
3796 {
3797         int err;
3798
3799         trace_netif_rx_ni_entry(skb);
3800
3801         preempt_disable();
3802         err = netif_rx_internal(skb);
3803         if (local_softirq_pending())
3804                 do_softirq();
3805         preempt_enable();
3806
3807         return err;
3808 }
3809 EXPORT_SYMBOL(netif_rx_ni);
3810
3811 static void net_tx_action(struct softirq_action *h)
3812 {
3813         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3814
3815         if (sd->completion_queue) {
3816                 struct sk_buff *clist;
3817
3818                 local_irq_disable();
3819                 clist = sd->completion_queue;
3820                 sd->completion_queue = NULL;
3821                 local_irq_enable();
3822
3823                 while (clist) {
3824                         struct sk_buff *skb = clist;
3825                         clist = clist->next;
3826
3827                         WARN_ON(atomic_read(&skb->users));
3828                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3829                                 trace_consume_skb(skb);
3830                         else
3831                                 trace_kfree_skb(skb, net_tx_action);
3832
3833                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
3834                                 __kfree_skb(skb);
3835                         else
3836                                 __kfree_skb_defer(skb);
3837                 }
3838
3839                 __kfree_skb_flush();
3840         }
3841
3842         if (sd->output_queue) {
3843                 struct Qdisc *head;
3844
3845                 local_irq_disable();
3846                 head = sd->output_queue;
3847                 sd->output_queue = NULL;
3848                 sd->output_queue_tailp = &sd->output_queue;
3849                 local_irq_enable();
3850
3851                 while (head) {
3852                         struct Qdisc *q = head;
3853                         spinlock_t *root_lock;
3854
3855                         head = head->next_sched;
3856
3857                         root_lock = qdisc_lock(q);
3858                         if (spin_trylock(root_lock)) {
3859                                 smp_mb__before_atomic();
3860                                 clear_bit(__QDISC_STATE_SCHED,
3861                                           &q->state);
3862                                 qdisc_run(q);
3863                                 spin_unlock(root_lock);
3864                         } else {
3865                                 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3866                                               &q->state)) {
3867                                         __netif_reschedule(q);
3868                                 } else {
3869                                         smp_mb__before_atomic();
3870                                         clear_bit(__QDISC_STATE_SCHED,
3871                                                   &q->state);
3872                                 }
3873                         }
3874                 }
3875         }
3876 }
3877
3878 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3879     (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3880 /* This hook is defined here for ATM LANE */
3881 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3882                              unsigned char *addr) __read_mostly;
3883 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3884 #endif
3885
3886 static inline struct sk_buff *
3887 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3888                    struct net_device *orig_dev)
3889 {
3890 #ifdef CONFIG_NET_CLS_ACT
3891         struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3892         struct tcf_result cl_res;
3893
3894         /* If there's at least one ingress present somewhere (so
3895          * we get here via enabled static key), remaining devices
3896          * that are not configured with an ingress qdisc will bail
3897          * out here.
3898          */
3899         if (!cl)
3900                 return skb;
3901         if (*pt_prev) {
3902                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3903                 *pt_prev = NULL;
3904         }
3905
3906         qdisc_skb_cb(skb)->pkt_len = skb->len;
3907         skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3908         qdisc_bstats_cpu_update(cl->q, skb);
3909
3910         switch (tc_classify(skb, cl, &cl_res, false)) {
3911         case TC_ACT_OK:
3912         case TC_ACT_RECLASSIFY:
3913                 skb->tc_index = TC_H_MIN(cl_res.classid);
3914                 break;
3915         case TC_ACT_SHOT:
3916                 qdisc_qstats_cpu_drop(cl->q);
3917         case TC_ACT_STOLEN:
3918         case TC_ACT_QUEUED:
3919                 kfree_skb(skb);
3920                 return NULL;
3921         case TC_ACT_REDIRECT:
3922                 /* skb_mac_header check was done by cls/act_bpf, so
3923                  * we can safely push the L2 header back before
3924                  * redirecting to another netdev
3925                  */
3926                 __skb_push(skb, skb->mac_len);
3927                 skb_do_redirect(skb);
3928                 return NULL;
3929         default:
3930                 break;
3931         }
3932 #endif /* CONFIG_NET_CLS_ACT */
3933         return skb;
3934 }
3935
3936 /**
3937  *      netdev_rx_handler_register - register receive handler
3938  *      @dev: device to register a handler for
3939  *      @rx_handler: receive handler to register
3940  *      @rx_handler_data: data pointer that is used by rx handler
3941  *
3942  *      Register a receive handler for a device. This handler will then be
3943  *      called from __netif_receive_skb. A negative errno code is returned
3944  *      on a failure.
3945  *
3946  *      The caller must hold the rtnl_mutex.
3947  *
3948  *      For a general description of rx_handler, see enum rx_handler_result.
3949  */
3950 int netdev_rx_handler_register(struct net_device *dev,
3951                                rx_handler_func_t *rx_handler,
3952                                void *rx_handler_data)
3953 {
3954         ASSERT_RTNL();
3955
3956         if (dev->rx_handler)
3957                 return -EBUSY;
3958
3959         /* Note: rx_handler_data must be set before rx_handler */
3960         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3961         rcu_assign_pointer(dev->rx_handler, rx_handler);
3962
3963         return 0;
3964 }
3965 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3966
3967 /**
3968  *      netdev_rx_handler_unregister - unregister receive handler
3969  *      @dev: device to unregister a handler from
3970  *
3971  *      Unregister a receive handler from a device.
3972  *
3973  *      The caller must hold the rtnl_mutex.
3974  */
3975 void netdev_rx_handler_unregister(struct net_device *dev)
3976 {
3977
3978         ASSERT_RTNL();
3979         RCU_INIT_POINTER(dev->rx_handler, NULL);
3980         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3981          * section has a guarantee to see a non NULL rx_handler_data
3982          * as well.
3983          */
3984         synchronize_net();
3985         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3986 }
3987 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3988
3989 /*
3990  * Limit the use of PFMEMALLOC reserves to those protocols that implement
3991  * the special handling of PFMEMALLOC skbs.
3992  */
3993 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3994 {
3995         switch (skb->protocol) {
3996         case htons(ETH_P_ARP):
3997         case htons(ETH_P_IP):
3998         case htons(ETH_P_IPV6):
3999         case htons(ETH_P_8021Q):
4000         case htons(ETH_P_8021AD):
4001                 return true;
4002         default:
4003                 return false;
4004         }
4005 }
4006
4007 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4008                              int *ret, struct net_device *orig_dev)
4009 {
4010 #ifdef CONFIG_NETFILTER_INGRESS
4011         if (nf_hook_ingress_active(skb)) {
4012                 if (*pt_prev) {
4013                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
4014                         *pt_prev = NULL;
4015                 }
4016
4017                 return nf_hook_ingress(skb);
4018         }
4019 #endif /* CONFIG_NETFILTER_INGRESS */
4020         return 0;
4021 }
4022
4023 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4024 {
4025         struct packet_type *ptype, *pt_prev;
4026         rx_handler_func_t *rx_handler;
4027         struct net_device *orig_dev;
4028         bool deliver_exact = false;
4029         int ret = NET_RX_DROP;
4030         __be16 type;
4031
4032         net_timestamp_check(!netdev_tstamp_prequeue, skb);
4033
4034         trace_netif_receive_skb(skb);
4035
4036         orig_dev = skb->dev;
4037
4038         skb_reset_network_header(skb);
4039         if (!skb_transport_header_was_set(skb))
4040                 skb_reset_transport_header(skb);
4041         skb_reset_mac_len(skb);
4042
4043         pt_prev = NULL;
4044
4045 another_round:
4046         skb->skb_iif = skb->dev->ifindex;
4047
4048         __this_cpu_inc(softnet_data.processed);
4049
4050         if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4051             skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4052                 skb = skb_vlan_untag(skb);
4053                 if (unlikely(!skb))
4054                         goto out;
4055         }
4056
4057 #ifdef CONFIG_NET_CLS_ACT
4058         if (skb->tc_verd & TC_NCLS) {
4059                 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
4060                 goto ncls;
4061         }
4062 #endif
4063
4064         if (pfmemalloc)
4065                 goto skip_taps;
4066
4067         list_for_each_entry_rcu(ptype, &ptype_all, list) {
4068                 if (pt_prev)
4069                         ret = deliver_skb(skb, pt_prev, orig_dev);
4070                 pt_prev = ptype;
4071         }
4072
4073         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4074                 if (pt_prev)
4075                         ret = deliver_skb(skb, pt_prev, orig_dev);
4076                 pt_prev = ptype;
4077         }
4078
4079 skip_taps:
4080 #ifdef CONFIG_NET_INGRESS
4081         if (static_key_false(&ingress_needed)) {
4082                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4083                 if (!skb)
4084                         goto out;
4085
4086                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4087                         goto out;
4088         }
4089 #endif
4090 #ifdef CONFIG_NET_CLS_ACT
4091         skb->tc_verd = 0;
4092 ncls:
4093 #endif
4094         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4095                 goto drop;
4096
4097         if (skb_vlan_tag_present(skb)) {
4098                 if (pt_prev) {
4099                         ret = deliver_skb(skb, pt_prev, orig_dev);
4100                         pt_prev = NULL;
4101                 }
4102                 if (vlan_do_receive(&skb))
4103                         goto another_round;
4104                 else if (unlikely(!skb))
4105                         goto out;
4106         }
4107
4108         rx_handler = rcu_dereference(skb->dev->rx_handler);
4109         if (rx_handler) {
4110                 if (pt_prev) {
4111                         ret = deliver_skb(skb, pt_prev, orig_dev);
4112                         pt_prev = NULL;
4113                 }
4114                 switch (rx_handler(&skb)) {
4115                 case RX_HANDLER_CONSUMED:
4116                         ret = NET_RX_SUCCESS;
4117                         goto out;
4118                 case RX_HANDLER_ANOTHER:
4119                         goto another_round;
4120                 case RX_HANDLER_EXACT:
4121                         deliver_exact = true;
4122                 case RX_HANDLER_PASS:
4123                         break;
4124                 default:
4125                         BUG();
4126                 }
4127         }
4128
4129         if (unlikely(skb_vlan_tag_present(skb))) {
4130                 if (skb_vlan_tag_get_id(skb))
4131                         skb->pkt_type = PACKET_OTHERHOST;
4132                 /* Note: we might in the future use prio bits
4133                  * and set skb->priority like in vlan_do_receive()
4134                  * For the time being, just ignore Priority Code Point
4135                  */
4136                 skb->vlan_tci = 0;
4137         }
4138
4139         type = skb->protocol;
4140
4141         /* deliver only exact match when indicated */
4142         if (likely(!deliver_exact)) {
4143                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4144                                        &ptype_base[ntohs(type) &
4145                                                    PTYPE_HASH_MASK]);
4146         }
4147
4148         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4149                                &orig_dev->ptype_specific);
4150
4151         if (unlikely(skb->dev != orig_dev)) {
4152                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4153                                        &skb->dev->ptype_specific);
4154         }
4155
4156         if (pt_prev) {
4157                 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
4158                         goto drop;
4159                 else
4160                         ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4161         } else {
4162 drop:
4163                 if (!deliver_exact)
4164                         atomic_long_inc(&skb->dev->rx_dropped);
4165                 else
4166                         atomic_long_inc(&skb->dev->rx_nohandler);
4167                 kfree_skb(skb);
4168                 /* Jamal, now you will not able to escape explaining
4169                  * me how you were going to use this. :-)
4170                  */
4171                 ret = NET_RX_DROP;
4172         }
4173
4174 out:
4175         return ret;
4176 }
4177
4178 static int __netif_receive_skb(struct sk_buff *skb)
4179 {
4180         int ret;
4181
4182         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4183                 unsigned long pflags = current->flags;
4184
4185                 /*
4186                  * PFMEMALLOC skbs are special, they should
4187                  * - be delivered to SOCK_MEMALLOC sockets only
4188                  * - stay away from userspace
4189                  * - have bounded memory usage
4190                  *
4191                  * Use PF_MEMALLOC as this saves us from propagating the allocation
4192                  * context down to all allocation sites.
4193                  */
4194                 current->flags |= PF_MEMALLOC;
4195                 ret = __netif_receive_skb_core(skb, true);
4196                 tsk_restore_flags(current, pflags, PF_MEMALLOC);
4197         } else
4198                 ret = __netif_receive_skb_core(skb, false);
4199
4200         return ret;
4201 }
4202
4203 static int netif_receive_skb_internal(struct sk_buff *skb)
4204 {
4205         int ret;
4206
4207         net_timestamp_check(netdev_tstamp_prequeue, skb);
4208
4209         if (skb_defer_rx_timestamp(skb))
4210                 return NET_RX_SUCCESS;
4211
4212         rcu_read_lock();
4213
4214 #ifdef CONFIG_RPS
4215         if (static_key_false(&rps_needed)) {
4216                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4217                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4218
4219                 if (cpu >= 0) {
4220                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4221                         rcu_read_unlock();
4222                         return ret;
4223                 }
4224         }
4225 #endif
4226         ret = __netif_receive_skb(skb);
4227         rcu_read_unlock();
4228         return ret;
4229 }
4230
4231 /**
4232  *      netif_receive_skb - process receive buffer from network
4233  *      @skb: buffer to process
4234  *
4235  *      netif_receive_skb() is the main receive data processing function.
4236  *      It always succeeds. The buffer may be dropped during processing
4237  *      for congestion control or by the protocol layers.
4238  *
4239  *      This function may only be called from softirq context and interrupts
4240  *      should be enabled.
4241  *
4242  *      Return values (usually ignored):
4243  *      NET_RX_SUCCESS: no congestion
4244  *      NET_RX_DROP: packet was dropped
4245  */
4246 int netif_receive_skb(struct sk_buff *skb)
4247 {
4248         trace_netif_receive_skb_entry(skb);
4249
4250         return netif_receive_skb_internal(skb);
4251 }
4252 EXPORT_SYMBOL(netif_receive_skb);
4253
4254 /* Network device is going away, flush any packets still pending
4255  * Called with irqs disabled.
4256  */
4257 static void flush_backlog(void *arg)
4258 {
4259         struct net_device *dev = arg;
4260         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4261         struct sk_buff *skb, *tmp;
4262
4263         rps_lock(sd);
4264         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4265                 if (skb->dev == dev) {
4266                         __skb_unlink(skb, &sd->input_pkt_queue);
4267                         kfree_skb(skb);
4268                         input_queue_head_incr(sd);
4269                 }
4270         }
4271         rps_unlock(sd);
4272
4273         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4274                 if (skb->dev == dev) {
4275                         __skb_unlink(skb, &sd->process_queue);
4276                         kfree_skb(skb);
4277                         input_queue_head_incr(sd);
4278                 }
4279         }
4280 }
4281
4282 static int napi_gro_complete(struct sk_buff *skb)
4283 {
4284         struct packet_offload *ptype;
4285         __be16 type = skb->protocol;
4286         struct list_head *head = &offload_base;
4287         int err = -ENOENT;
4288
4289         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4290
4291         if (NAPI_GRO_CB(skb)->count == 1) {
4292                 skb_shinfo(skb)->gso_size = 0;
4293                 goto out;
4294         }
4295
4296         rcu_read_lock();
4297         list_for_each_entry_rcu(ptype, head, list) {
4298                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4299                         continue;
4300
4301                 err = ptype->callbacks.gro_complete(skb, 0);
4302                 break;
4303         }
4304         rcu_read_unlock();
4305
4306         if (err) {
4307                 WARN_ON(&ptype->list == head);
4308                 kfree_skb(skb);
4309                 return NET_RX_SUCCESS;
4310         }
4311
4312 out:
4313         return netif_receive_skb_internal(skb);
4314 }
4315
4316 /* napi->gro_list contains packets ordered by age.
4317  * youngest packets at the head of it.
4318  * Complete skbs in reverse order to reduce latencies.
4319  */
4320 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4321 {
4322         struct sk_buff *skb, *prev = NULL;
4323
4324         /* scan list and build reverse chain */
4325         for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4326                 skb->prev = prev;
4327                 prev = skb;
4328         }
4329
4330         for (skb = prev; skb; skb = prev) {
4331                 skb->next = NULL;
4332
4333                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4334                         return;
4335
4336                 prev = skb->prev;
4337                 napi_gro_complete(skb);
4338                 napi->gro_count--;
4339         }
4340
4341         napi->gro_list = NULL;
4342 }
4343 EXPORT_SYMBOL(napi_gro_flush);
4344
4345 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4346 {
4347         struct sk_buff *p;
4348         unsigned int maclen = skb->dev->hard_header_len;
4349         u32 hash = skb_get_hash_raw(skb);
4350
4351         for (p = napi->gro_list; p; p = p->next) {
4352                 unsigned long diffs;
4353
4354                 NAPI_GRO_CB(p)->flush = 0;
4355
4356                 if (hash != skb_get_hash_raw(p)) {
4357                         NAPI_GRO_CB(p)->same_flow = 0;
4358                         continue;
4359                 }
4360
4361                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4362                 diffs |= p->vlan_tci ^ skb->vlan_tci;
4363                 diffs |= skb_metadata_dst_cmp(p, skb);
4364                 if (maclen == ETH_HLEN)
4365                         diffs |= compare_ether_header(skb_mac_header(p),
4366                                                       skb_mac_header(skb));
4367                 else if (!diffs)
4368                         diffs = memcmp(skb_mac_header(p),
4369                                        skb_mac_header(skb),
4370                                        maclen);
4371                 NAPI_GRO_CB(p)->same_flow = !diffs;
4372         }
4373 }
4374
4375 static void skb_gro_reset_offset(struct sk_buff *skb)
4376 {
4377         const struct skb_shared_info *pinfo = skb_shinfo(skb);
4378         const skb_frag_t *frag0 = &pinfo->frags[0];
4379
4380         NAPI_GRO_CB(skb)->data_offset = 0;
4381         NAPI_GRO_CB(skb)->frag0 = NULL;
4382         NAPI_GRO_CB(skb)->frag0_len = 0;
4383
4384         if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4385             pinfo->nr_frags &&
4386             !PageHighMem(skb_frag_page(frag0))) {
4387                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4388                 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
4389         }
4390 }
4391
4392 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4393 {
4394         struct skb_shared_info *pinfo = skb_shinfo(skb);
4395
4396         BUG_ON(skb->end - skb->tail < grow);
4397
4398         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4399
4400         skb->data_len -= grow;
4401         skb->tail += grow;
4402
4403         pinfo->frags[0].page_offset += grow;
4404         skb_frag_size_sub(&pinfo->frags[0], grow);
4405
4406         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4407                 skb_frag_unref(skb, 0);
4408                 memmove(pinfo->frags, pinfo->frags + 1,
4409                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4410         }
4411 }
4412
4413 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4414 {
4415         struct sk_buff **pp = NULL;
4416         struct packet_offload *ptype;
4417         __be16 type = skb->protocol;
4418         struct list_head *head = &offload_base;
4419         int same_flow;
4420         enum gro_result ret;
4421         int grow;
4422
4423         if (!(skb->dev->features & NETIF_F_GRO))
4424                 goto normal;
4425
4426         if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
4427                 goto normal;
4428
4429         gro_list_prepare(napi, skb);
4430
4431         rcu_read_lock();
4432         list_for_each_entry_rcu(ptype, head, list) {
4433                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4434                         continue;
4435
4436                 skb_set_network_header(skb, skb_gro_offset(skb));
4437                 skb_reset_mac_len(skb);
4438                 NAPI_GRO_CB(skb)->same_flow = 0;
4439                 NAPI_GRO_CB(skb)->flush = 0;
4440                 NAPI_GRO_CB(skb)->free = 0;
4441                 NAPI_GRO_CB(skb)->encap_mark = 0;
4442                 NAPI_GRO_CB(skb)->is_fou = 0;
4443                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4444
4445                 /* Setup for GRO checksum validation */
4446                 switch (skb->ip_summed) {
4447                 case CHECKSUM_COMPLETE:
4448                         NAPI_GRO_CB(skb)->csum = skb->csum;
4449                         NAPI_GRO_CB(skb)->csum_valid = 1;
4450                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4451                         break;
4452                 case CHECKSUM_UNNECESSARY:
4453                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4454                         NAPI_GRO_CB(skb)->csum_valid = 0;
4455                         break;
4456                 default:
4457                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4458                         NAPI_GRO_CB(skb)->csum_valid = 0;
4459                 }
4460
4461                 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4462                 break;
4463         }
4464         rcu_read_unlock();
4465
4466         if (&ptype->list == head)
4467                 goto normal;
4468
4469         same_flow = NAPI_GRO_CB(skb)->same_flow;
4470         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4471
4472         if (pp) {
4473                 struct sk_buff *nskb = *pp;
4474
4475                 *pp = nskb->next;
4476                 nskb->next = NULL;
4477                 napi_gro_complete(nskb);
4478                 napi->gro_count--;
4479         }
4480
4481         if (same_flow)
4482                 goto ok;
4483
4484         if (NAPI_GRO_CB(skb)->flush)
4485                 goto normal;
4486
4487         if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4488                 struct sk_buff *nskb = napi->gro_list;
4489
4490                 /* locate the end of the list to select the 'oldest' flow */
4491                 while (nskb->next) {
4492                         pp = &nskb->next;
4493                         nskb = *pp;
4494                 }
4495                 *pp = NULL;
4496                 nskb->next = NULL;
4497                 napi_gro_complete(nskb);
4498         } else {
4499                 napi->gro_count++;
4500         }
4501         NAPI_GRO_CB(skb)->count = 1;
4502         NAPI_GRO_CB(skb)->age = jiffies;
4503         NAPI_GRO_CB(skb)->last = skb;
4504         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4505         skb->next = napi->gro_list;
4506         napi->gro_list = skb;
4507         ret = GRO_HELD;
4508
4509 pull:
4510         grow = skb_gro_offset(skb) - skb_headlen(skb);
4511         if (grow > 0)
4512                 gro_pull_from_frag0(skb, grow);
4513 ok:
4514         return ret;
4515
4516 normal:
4517         ret = GRO_NORMAL;
4518         goto pull;
4519 }
4520
4521 struct packet_offload *gro_find_receive_by_type(__be16 type)
4522 {
4523         struct list_head *offload_head = &offload_base;
4524         struct packet_offload *ptype;
4525
4526         list_for_each_entry_rcu(ptype, offload_head, list) {
4527                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4528                         continue;
4529                 return ptype;
4530         }
4531         return NULL;
4532 }
4533 EXPORT_SYMBOL(gro_find_receive_by_type);
4534
4535 struct packet_offload *gro_find_complete_by_type(__be16 type)
4536 {
4537         struct list_head *offload_head = &offload_base;
4538         struct packet_offload *ptype;
4539
4540         list_for_each_entry_rcu(ptype, offload_head, list) {
4541                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4542                         continue;
4543                 return ptype;
4544         }
4545         return NULL;
4546 }
4547 EXPORT_SYMBOL(gro_find_complete_by_type);
4548
4549 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4550 {
4551         switch (ret) {
4552         case GRO_NORMAL:
4553                 if (netif_receive_skb_internal(skb))
4554                         ret = GRO_DROP;
4555                 break;
4556
4557         case GRO_DROP:
4558                 kfree_skb(skb);
4559                 break;
4560
4561         case GRO_MERGED_FREE:
4562                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) {
4563                         skb_dst_drop(skb);
4564                         kmem_cache_free(skbuff_head_cache, skb);
4565                 } else {
4566                         __kfree_skb(skb);
4567                 }
4568                 break;
4569
4570         case GRO_HELD:
4571         case GRO_MERGED:
4572                 break;
4573         }
4574
4575         return ret;
4576 }
4577
4578 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4579 {
4580         skb_mark_napi_id(skb, napi);
4581         trace_napi_gro_receive_entry(skb);
4582
4583         skb_gro_reset_offset(skb);
4584
4585         return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4586 }
4587 EXPORT_SYMBOL(napi_gro_receive);
4588
4589 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4590 {
4591         if (unlikely(skb->pfmemalloc)) {
4592                 consume_skb(skb);
4593                 return;
4594         }
4595         __skb_pull(skb, skb_headlen(skb));
4596         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4597         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4598         skb->vlan_tci = 0;
4599         skb->dev = napi->dev;
4600         skb->skb_iif = 0;
4601         skb->encapsulation = 0;
4602         skb_shinfo(skb)->gso_type = 0;
4603         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4604
4605         napi->skb = skb;
4606 }
4607
4608 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4609 {
4610         struct sk_buff *skb = napi->skb;
4611
4612         if (!skb) {
4613                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4614                 if (skb) {
4615                         napi->skb = skb;
4616                         skb_mark_napi_id(skb, napi);
4617                 }
4618         }
4619         return skb;
4620 }
4621 EXPORT_SYMBOL(napi_get_frags);
4622
4623 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4624                                       struct sk_buff *skb,
4625                                       gro_result_t ret)
4626 {
4627         switch (ret) {
4628         case GRO_NORMAL:
4629         case GRO_HELD:
4630                 __skb_push(skb, ETH_HLEN);
4631                 skb->protocol = eth_type_trans(skb, skb->dev);
4632                 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4633                         ret = GRO_DROP;
4634                 break;
4635
4636         case GRO_DROP:
4637         case GRO_MERGED_FREE:
4638                 napi_reuse_skb(napi, skb);
4639                 break;
4640
4641         case GRO_MERGED:
4642                 break;
4643         }
4644
4645         return ret;
4646 }
4647
4648 /* Upper GRO stack assumes network header starts at gro_offset=0
4649  * Drivers could call both napi_gro_frags() and napi_gro_receive()
4650  * We copy ethernet header into skb->data to have a common layout.
4651  */
4652 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4653 {
4654         struct sk_buff *skb = napi->skb;
4655         const struct ethhdr *eth;
4656         unsigned int hlen = sizeof(*eth);
4657
4658         napi->skb = NULL;
4659
4660         skb_reset_mac_header(skb);
4661         skb_gro_reset_offset(skb);
4662
4663         eth = skb_gro_header_fast(skb, 0);
4664         if (unlikely(skb_gro_header_hard(skb, hlen))) {
4665                 eth = skb_gro_header_slow(skb, hlen, 0);
4666                 if (unlikely(!eth)) {
4667                         net_warn_ratelimited("%s: dropping impossible skb from %s\n",
4668                                              __func__, napi->dev->name);
4669                         napi_reuse_skb(napi, skb);
4670                         return NULL;
4671                 }
4672         } else {
4673                 gro_pull_from_frag0(skb, hlen);
4674                 NAPI_GRO_CB(skb)->frag0 += hlen;
4675                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4676         }
4677         __skb_pull(skb, hlen);
4678
4679         /*
4680          * This works because the only protocols we care about don't require
4681          * special handling.
4682          * We'll fix it up properly in napi_frags_finish()
4683          */
4684         skb->protocol = eth->h_proto;
4685
4686         return skb;
4687 }
4688
4689 gro_result_t napi_gro_frags(struct napi_struct *napi)
4690 {
4691         struct sk_buff *skb = napi_frags_skb(napi);
4692
4693         if (!skb)
4694                 return GRO_DROP;
4695
4696         trace_napi_gro_frags_entry(skb);
4697
4698         return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4699 }
4700 EXPORT_SYMBOL(napi_gro_frags);
4701
4702 /* Compute the checksum from gro_offset and return the folded value
4703  * after adding in any pseudo checksum.
4704  */
4705 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4706 {
4707         __wsum wsum;
4708         __sum16 sum;
4709
4710         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4711
4712         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4713         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4714         if (likely(!sum)) {
4715                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4716                     !skb->csum_complete_sw)
4717                         netdev_rx_csum_fault(skb->dev);
4718         }
4719
4720         NAPI_GRO_CB(skb)->csum = wsum;
4721         NAPI_GRO_CB(skb)->csum_valid = 1;
4722
4723         return sum;
4724 }
4725 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4726
4727 /*
4728  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4729  * Note: called with local irq disabled, but exits with local irq enabled.
4730  */
4731 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4732 {
4733 #ifdef CONFIG_RPS
4734         struct softnet_data *remsd = sd->rps_ipi_list;
4735
4736         if (remsd) {
4737                 sd->rps_ipi_list = NULL;
4738
4739                 local_irq_enable();
4740
4741                 /* Send pending IPI's to kick RPS processing on remote cpus. */
4742                 while (remsd) {
4743                         struct softnet_data *next = remsd->rps_ipi_next;
4744
4745                         if (cpu_online(remsd->cpu))
4746                                 smp_call_function_single_async(remsd->cpu,
4747                                                            &remsd->csd);
4748                         remsd = next;
4749                 }
4750         } else
4751 #endif
4752                 local_irq_enable();
4753 }
4754
4755 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4756 {
4757 #ifdef CONFIG_RPS
4758         return sd->rps_ipi_list != NULL;
4759 #else
4760         return false;
4761 #endif
4762 }
4763
4764 static int process_backlog(struct napi_struct *napi, int quota)
4765 {
4766         int work = 0;
4767         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4768
4769         /* Check if we have pending ipi, its better to send them now,
4770          * not waiting net_rx_action() end.
4771          */
4772         if (sd_has_rps_ipi_waiting(sd)) {
4773                 local_irq_disable();
4774                 net_rps_action_and_irq_enable(sd);
4775         }
4776
4777         napi->weight = weight_p;
4778         local_irq_disable();
4779         while (1) {
4780                 struct sk_buff *skb;
4781
4782                 while ((skb = __skb_dequeue(&sd->process_queue))) {
4783                         rcu_read_lock();
4784                         local_irq_enable();
4785                         __netif_receive_skb(skb);
4786                         rcu_read_unlock();
4787                         local_irq_disable();
4788                         input_queue_head_incr(sd);
4789                         if (++work >= quota) {
4790                                 local_irq_enable();
4791                                 return work;
4792                         }
4793                 }
4794
4795                 rps_lock(sd);
4796                 if (skb_queue_empty(&sd->input_pkt_queue)) {
4797                         /*
4798                          * Inline a custom version of __napi_complete().
4799                          * only current cpu owns and manipulates this napi,
4800                          * and NAPI_STATE_SCHED is the only possible flag set
4801                          * on backlog.
4802                          * We can use a plain write instead of clear_bit(),
4803                          * and we dont need an smp_mb() memory barrier.
4804                          */
4805                         napi->state = 0;
4806                         rps_unlock(sd);
4807
4808                         break;
4809                 }
4810
4811                 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4812                                            &sd->process_queue);
4813                 rps_unlock(sd);
4814         }
4815         local_irq_enable();
4816
4817         return work;
4818 }
4819
4820 /**
4821  * __napi_schedule - schedule for receive
4822  * @n: entry to schedule
4823  *
4824  * The entry's receive function will be scheduled to run.
4825  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4826  */
4827 void __napi_schedule(struct napi_struct *n)
4828 {
4829         unsigned long flags;
4830
4831         local_irq_save(flags);
4832         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4833         local_irq_restore(flags);
4834 }
4835 EXPORT_SYMBOL(__napi_schedule);
4836
4837 /**
4838  * __napi_schedule_irqoff - schedule for receive
4839  * @n: entry to schedule
4840  *
4841  * Variant of __napi_schedule() assuming hard irqs are masked
4842  */
4843 void __napi_schedule_irqoff(struct napi_struct *n)
4844 {
4845         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4846 }
4847 EXPORT_SYMBOL(__napi_schedule_irqoff);
4848
4849 void __napi_complete(struct napi_struct *n)
4850 {
4851         BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4852
4853         list_del_init(&n->poll_list);
4854         smp_mb__before_atomic();
4855         clear_bit(NAPI_STATE_SCHED, &n->state);
4856 }
4857 EXPORT_SYMBOL(__napi_complete);
4858
4859 void napi_complete_done(struct napi_struct *n, int work_done)
4860 {
4861         unsigned long flags;
4862
4863         /*
4864          * don't let napi dequeue from the cpu poll list
4865          * just in case its running on a different cpu
4866          */
4867         if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4868                 return;
4869
4870         if (n->gro_list) {
4871                 unsigned long timeout = 0;
4872
4873                 if (work_done)
4874                         timeout = n->dev->gro_flush_timeout;
4875
4876                 if (timeout)
4877                         hrtimer_start(&n->timer, ns_to_ktime(timeout),
4878                                       HRTIMER_MODE_REL_PINNED);
4879                 else
4880                         napi_gro_flush(n, false);
4881         }
4882         if (likely(list_empty(&n->poll_list))) {
4883                 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4884         } else {
4885                 /* If n->poll_list is not empty, we need to mask irqs */
4886                 local_irq_save(flags);
4887                 __napi_complete(n);
4888                 local_irq_restore(flags);
4889         }
4890 }
4891 EXPORT_SYMBOL(napi_complete_done);
4892
4893 /* must be called under rcu_read_lock(), as we dont take a reference */
4894 static struct napi_struct *napi_by_id(unsigned int napi_id)
4895 {
4896         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4897         struct napi_struct *napi;
4898
4899         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4900                 if (napi->napi_id == napi_id)
4901                         return napi;
4902
4903         return NULL;
4904 }
4905
4906 #if defined(CONFIG_NET_RX_BUSY_POLL)
4907 #define BUSY_POLL_BUDGET 8
4908 bool sk_busy_loop(struct sock *sk, int nonblock)
4909 {
4910         unsigned long end_time = !nonblock ? sk_busy_loop_end_time(sk) : 0;
4911         int (*busy_poll)(struct napi_struct *dev);
4912         struct napi_struct *napi;
4913         int rc = false;
4914
4915         rcu_read_lock();
4916
4917         napi = napi_by_id(sk->sk_napi_id);
4918         if (!napi)
4919                 goto out;
4920
4921         /* Note: ndo_busy_poll method is optional in linux-4.5 */
4922         busy_poll = napi->dev->netdev_ops->ndo_busy_poll;
4923
4924         do {
4925                 rc = 0;
4926                 local_bh_disable();
4927                 if (busy_poll) {
4928                         rc = busy_poll(napi);
4929                 } else if (napi_schedule_prep(napi)) {
4930                         void *have = netpoll_poll_lock(napi);
4931
4932                         if (test_bit(NAPI_STATE_SCHED, &napi->state)) {
4933                                 rc = napi->poll(napi, BUSY_POLL_BUDGET);
4934                                 trace_napi_poll(napi);
4935                                 if (rc == BUSY_POLL_BUDGET) {
4936                                         napi_complete_done(napi, rc);
4937                                         napi_schedule(napi);
4938                                 }
4939                         }
4940                         netpoll_poll_unlock(have);
4941                 }
4942                 if (rc > 0)
4943                         NET_ADD_STATS_BH(sock_net(sk),
4944                                          LINUX_MIB_BUSYPOLLRXPACKETS, rc);
4945                 local_bh_enable();
4946
4947                 if (rc == LL_FLUSH_FAILED)
4948                         break; /* permanent failure */
4949
4950                 cpu_relax();
4951         } while (!nonblock && skb_queue_empty(&sk->sk_receive_queue) &&
4952                  !need_resched() && !busy_loop_timeout(end_time));
4953
4954         rc = !skb_queue_empty(&sk->sk_receive_queue);
4955 out:
4956         rcu_read_unlock();
4957         return rc;
4958 }
4959 EXPORT_SYMBOL(sk_busy_loop);
4960
4961 #endif /* CONFIG_NET_RX_BUSY_POLL */
4962
4963 void napi_hash_add(struct napi_struct *napi)
4964 {
4965         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
4966             test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
4967                 return;
4968
4969         spin_lock(&napi_hash_lock);
4970
4971         /* 0..NR_CPUS+1 range is reserved for sender_cpu use */
4972         do {
4973                 if (unlikely(++napi_gen_id < NR_CPUS + 1))
4974                         napi_gen_id = NR_CPUS + 1;
4975         } while (napi_by_id(napi_gen_id));
4976         napi->napi_id = napi_gen_id;
4977
4978         hlist_add_head_rcu(&napi->napi_hash_node,
4979                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4980
4981         spin_unlock(&napi_hash_lock);
4982 }
4983 EXPORT_SYMBOL_GPL(napi_hash_add);
4984
4985 /* Warning : caller is responsible to make sure rcu grace period
4986  * is respected before freeing memory containing @napi
4987  */
4988 bool napi_hash_del(struct napi_struct *napi)
4989 {
4990         bool rcu_sync_needed = false;
4991
4992         spin_lock(&napi_hash_lock);
4993
4994         if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
4995                 rcu_sync_needed = true;
4996                 hlist_del_rcu(&napi->napi_hash_node);
4997         }
4998         spin_unlock(&napi_hash_lock);
4999         return rcu_sync_needed;
5000 }
5001 EXPORT_SYMBOL_GPL(napi_hash_del);
5002
5003 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5004 {
5005         struct napi_struct *napi;
5006
5007         napi = container_of(timer, struct napi_struct, timer);
5008         if (napi->gro_list)
5009                 napi_schedule(napi);
5010
5011         return HRTIMER_NORESTART;
5012 }
5013
5014 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5015                     int (*poll)(struct napi_struct *, int), int weight)
5016 {
5017         INIT_LIST_HEAD(&napi->poll_list);
5018         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5019         napi->timer.function = napi_watchdog;
5020         napi->gro_count = 0;
5021         napi->gro_list = NULL;
5022         napi->skb = NULL;
5023         napi->poll = poll;
5024         if (weight > NAPI_POLL_WEIGHT)
5025                 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5026                             weight, dev->name);
5027         napi->weight = weight;
5028         list_add(&napi->dev_list, &dev->napi_list);
5029         napi->dev = dev;
5030 #ifdef CONFIG_NETPOLL
5031         spin_lock_init(&napi->poll_lock);
5032         napi->poll_owner = -1;
5033 #endif
5034         set_bit(NAPI_STATE_SCHED, &napi->state);
5035         napi_hash_add(napi);
5036 }
5037 EXPORT_SYMBOL(netif_napi_add);
5038
5039 void napi_disable(struct napi_struct *n)
5040 {
5041         might_sleep();
5042         set_bit(NAPI_STATE_DISABLE, &n->state);
5043
5044         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5045                 msleep(1);
5046         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5047                 msleep(1);
5048
5049         hrtimer_cancel(&n->timer);
5050
5051         clear_bit(NAPI_STATE_DISABLE, &n->state);
5052 }
5053 EXPORT_SYMBOL(napi_disable);
5054
5055 /* Must be called in process context */
5056 void netif_napi_del(struct napi_struct *napi)
5057 {
5058         might_sleep();
5059         if (napi_hash_del(napi))
5060                 synchronize_net();
5061         list_del_init(&napi->dev_list);
5062         napi_free_frags(napi);
5063
5064         kfree_skb_list(napi->gro_list);
5065         napi->gro_list = NULL;
5066         napi->gro_count = 0;
5067 }
5068 EXPORT_SYMBOL(netif_napi_del);
5069
5070 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5071 {
5072         void *have;
5073         int work, weight;
5074
5075         list_del_init(&n->poll_list);
5076
5077         have = netpoll_poll_lock(n);
5078
5079         weight = n->weight;
5080
5081         /* This NAPI_STATE_SCHED test is for avoiding a race
5082          * with netpoll's poll_napi().  Only the entity which
5083          * obtains the lock and sees NAPI_STATE_SCHED set will
5084          * actually make the ->poll() call.  Therefore we avoid
5085          * accidentally calling ->poll() when NAPI is not scheduled.
5086          */
5087         work = 0;
5088         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5089                 work = n->poll(n, weight);
5090                 trace_napi_poll(n);
5091         }
5092
5093         WARN_ON_ONCE(work > weight);
5094
5095         if (likely(work < weight))
5096                 goto out_unlock;
5097
5098         /* Drivers must not modify the NAPI state if they
5099          * consume the entire weight.  In such cases this code
5100          * still "owns" the NAPI instance and therefore can
5101          * move the instance around on the list at-will.
5102          */
5103         if (unlikely(napi_disable_pending(n))) {
5104                 napi_complete(n);
5105                 goto out_unlock;
5106         }
5107
5108         if (n->gro_list) {
5109                 /* flush too old packets
5110                  * If HZ < 1000, flush all packets.
5111                  */
5112                 napi_gro_flush(n, HZ >= 1000);
5113         }
5114
5115         /* Some drivers may have called napi_schedule
5116          * prior to exhausting their budget.
5117          */
5118         if (unlikely(!list_empty(&n->poll_list))) {
5119                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5120                              n->dev ? n->dev->name : "backlog");
5121                 goto out_unlock;
5122         }
5123
5124         list_add_tail(&n->poll_list, repoll);
5125
5126 out_unlock:
5127         netpoll_poll_unlock(have);
5128
5129         return work;
5130 }
5131
5132 static void net_rx_action(struct softirq_action *h)
5133 {
5134         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5135         unsigned long time_limit = jiffies + 2;
5136         int budget = netdev_budget;
5137         LIST_HEAD(list);
5138         LIST_HEAD(repoll);
5139
5140         local_irq_disable();
5141         list_splice_init(&sd->poll_list, &list);
5142         local_irq_enable();
5143
5144         for (;;) {
5145                 struct napi_struct *n;
5146
5147                 if (list_empty(&list)) {
5148                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5149                                 return;
5150                         break;
5151                 }
5152
5153                 n = list_first_entry(&list, struct napi_struct, poll_list);
5154                 budget -= napi_poll(n, &repoll);
5155
5156                 /* If softirq window is exhausted then punt.
5157                  * Allow this to run for 2 jiffies since which will allow
5158                  * an average latency of 1.5/HZ.
5159                  */
5160                 if (unlikely(budget <= 0 ||
5161                              time_after_eq(jiffies, time_limit))) {
5162                         sd->time_squeeze++;
5163                         break;
5164                 }
5165         }
5166
5167         __kfree_skb_flush();
5168         local_irq_disable();
5169
5170         list_splice_tail_init(&sd->poll_list, &list);
5171         list_splice_tail(&repoll, &list);
5172         list_splice(&list, &sd->poll_list);
5173         if (!list_empty(&sd->poll_list))
5174                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5175
5176         net_rps_action_and_irq_enable(sd);
5177 }
5178
5179 struct netdev_adjacent {
5180         struct net_device *dev;
5181
5182         /* upper master flag, there can only be one master device per list */
5183         bool master;
5184
5185         /* counter for the number of times this device was added to us */
5186         u16 ref_nr;
5187
5188         /* private field for the users */
5189         void *private;
5190
5191         struct list_head list;
5192         struct rcu_head rcu;
5193 };
5194
5195 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5196                                                  struct list_head *adj_list)
5197 {
5198         struct netdev_adjacent *adj;
5199
5200         list_for_each_entry(adj, adj_list, list) {
5201                 if (adj->dev == adj_dev)
5202                         return adj;
5203         }
5204         return NULL;
5205 }
5206
5207 /**
5208  * netdev_has_upper_dev - Check if device is linked to an upper device
5209  * @dev: device
5210  * @upper_dev: upper device to check
5211  *
5212  * Find out if a device is linked to specified upper device and return true
5213  * in case it is. Note that this checks only immediate upper device,
5214  * not through a complete stack of devices. The caller must hold the RTNL lock.
5215  */
5216 bool netdev_has_upper_dev(struct net_device *dev,
5217                           struct net_device *upper_dev)
5218 {
5219         ASSERT_RTNL();
5220
5221         return __netdev_find_adj(upper_dev, &dev->all_adj_list.upper);
5222 }
5223 EXPORT_SYMBOL(netdev_has_upper_dev);
5224
5225 /**
5226  * netdev_has_any_upper_dev - Check if device is linked to some device
5227  * @dev: device
5228  *
5229  * Find out if a device is linked to an upper device and return true in case
5230  * it is. The caller must hold the RTNL lock.
5231  */
5232 static bool netdev_has_any_upper_dev(struct net_device *dev)
5233 {
5234         ASSERT_RTNL();
5235
5236         return !list_empty(&dev->all_adj_list.upper);
5237 }
5238
5239 /**
5240  * netdev_master_upper_dev_get - Get master upper device
5241  * @dev: device
5242  *
5243  * Find a master upper device and return pointer to it or NULL in case
5244  * it's not there. The caller must hold the RTNL lock.
5245  */
5246 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5247 {
5248         struct netdev_adjacent *upper;
5249
5250         ASSERT_RTNL();
5251
5252         if (list_empty(&dev->adj_list.upper))
5253                 return NULL;
5254
5255         upper = list_first_entry(&dev->adj_list.upper,
5256                                  struct netdev_adjacent, list);
5257         if (likely(upper->master))
5258                 return upper->dev;
5259         return NULL;
5260 }
5261 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5262
5263 void *netdev_adjacent_get_private(struct list_head *adj_list)
5264 {
5265         struct netdev_adjacent *adj;
5266
5267         adj = list_entry(adj_list, struct netdev_adjacent, list);
5268
5269         return adj->private;
5270 }
5271 EXPORT_SYMBOL(netdev_adjacent_get_private);
5272
5273 /**
5274  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5275  * @dev: device
5276  * @iter: list_head ** of the current position
5277  *
5278  * Gets the next device from the dev's upper list, starting from iter
5279  * position. The caller must hold RCU read lock.
5280  */
5281 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5282                                                  struct list_head **iter)
5283 {
5284         struct netdev_adjacent *upper;
5285
5286         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5287
5288         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5289
5290         if (&upper->list == &dev->adj_list.upper)
5291                 return NULL;
5292
5293         *iter = &upper->list;
5294
5295         return upper->dev;
5296 }
5297 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5298
5299 /**
5300  * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
5301  * @dev: device
5302  * @iter: list_head ** of the current position
5303  *
5304  * Gets the next device from the dev's upper list, starting from iter
5305  * position. The caller must hold RCU read lock.
5306  */
5307 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
5308                                                      struct list_head **iter)
5309 {
5310         struct netdev_adjacent *upper;
5311
5312         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5313
5314         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5315
5316         if (&upper->list == &dev->all_adj_list.upper)
5317                 return NULL;
5318
5319         *iter = &upper->list;
5320
5321         return upper->dev;
5322 }
5323 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
5324
5325 /**
5326  * netdev_lower_get_next_private - Get the next ->private from the
5327  *                                 lower neighbour list
5328  * @dev: device
5329  * @iter: list_head ** of the current position
5330  *
5331  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5332  * list, starting from iter position. The caller must hold either hold the
5333  * RTNL lock or its own locking that guarantees that the neighbour lower
5334  * list will remain unchanged.
5335  */
5336 void *netdev_lower_get_next_private(struct net_device *dev,
5337                                     struct list_head **iter)
5338 {
5339         struct netdev_adjacent *lower;
5340
5341         lower = list_entry(*iter, struct netdev_adjacent, list);
5342
5343         if (&lower->list == &dev->adj_list.lower)
5344                 return NULL;
5345
5346         *iter = lower->list.next;
5347
5348         return lower->private;
5349 }
5350 EXPORT_SYMBOL(netdev_lower_get_next_private);
5351
5352 /**
5353  * netdev_lower_get_next_private_rcu - Get the next ->private from the
5354  *                                     lower neighbour list, RCU
5355  *                                     variant
5356  * @dev: device
5357  * @iter: list_head ** of the current position
5358  *
5359  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5360  * list, starting from iter position. The caller must hold RCU read lock.
5361  */
5362 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5363                                         struct list_head **iter)
5364 {
5365         struct netdev_adjacent *lower;
5366
5367         WARN_ON_ONCE(!rcu_read_lock_held());
5368
5369         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5370
5371         if (&lower->list == &dev->adj_list.lower)
5372                 return NULL;
5373
5374         *iter = &lower->list;
5375
5376         return lower->private;
5377 }
5378 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5379
5380 /**
5381  * netdev_lower_get_next - Get the next device from the lower neighbour
5382  *                         list
5383  * @dev: device
5384  * @iter: list_head ** of the current position
5385  *
5386  * Gets the next netdev_adjacent from the dev's lower neighbour
5387  * list, starting from iter position. The caller must hold RTNL lock or
5388  * its own locking that guarantees that the neighbour lower
5389  * list will remain unchanged.
5390  */
5391 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5392 {
5393         struct netdev_adjacent *lower;
5394
5395         lower = list_entry(*iter, struct netdev_adjacent, list);
5396
5397         if (&lower->list == &dev->adj_list.lower)
5398                 return NULL;
5399
5400         *iter = lower->list.next;
5401
5402         return lower->dev;
5403 }
5404 EXPORT_SYMBOL(netdev_lower_get_next);
5405
5406 /**
5407  * netdev_lower_get_first_private_rcu - Get the first ->private from the
5408  *                                     lower neighbour list, RCU
5409  *                                     variant
5410  * @dev: device
5411  *
5412  * Gets the first netdev_adjacent->private from the dev's lower neighbour
5413  * list. The caller must hold RCU read lock.
5414  */
5415 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5416 {
5417         struct netdev_adjacent *lower;
5418
5419         lower = list_first_or_null_rcu(&dev->adj_list.lower,
5420                         struct netdev_adjacent, list);
5421         if (lower)
5422                 return lower->private;
5423         return NULL;
5424 }
5425 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5426
5427 /**
5428  * netdev_master_upper_dev_get_rcu - Get master upper device
5429  * @dev: device
5430  *
5431  * Find a master upper device and return pointer to it or NULL in case
5432  * it's not there. The caller must hold the RCU read lock.
5433  */
5434 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5435 {
5436         struct netdev_adjacent *upper;
5437
5438         upper = list_first_or_null_rcu(&dev->adj_list.upper,
5439                                        struct netdev_adjacent, list);
5440         if (upper && likely(upper->master))
5441                 return upper->dev;
5442         return NULL;
5443 }
5444 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5445
5446 static int netdev_adjacent_sysfs_add(struct net_device *dev,
5447                               struct net_device *adj_dev,
5448                               struct list_head *dev_list)
5449 {
5450         char linkname[IFNAMSIZ+7];
5451         sprintf(linkname, dev_list == &dev->adj_list.upper ?
5452                 "upper_%s" : "lower_%s", adj_dev->name);
5453         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5454                                  linkname);
5455 }
5456 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5457                                char *name,
5458                                struct list_head *dev_list)
5459 {
5460         char linkname[IFNAMSIZ+7];
5461         sprintf(linkname, dev_list == &dev->adj_list.upper ?
5462                 "upper_%s" : "lower_%s", name);
5463         sysfs_remove_link(&(dev->dev.kobj), linkname);
5464 }
5465
5466 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5467                                                  struct net_device *adj_dev,
5468                                                  struct list_head *dev_list)
5469 {
5470         return (dev_list == &dev->adj_list.upper ||
5471                 dev_list == &dev->adj_list.lower) &&
5472                 net_eq(dev_net(dev), dev_net(adj_dev));
5473 }
5474
5475 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5476                                         struct net_device *adj_dev,
5477                                         struct list_head *dev_list,
5478                                         void *private, bool master)
5479 {
5480         struct netdev_adjacent *adj;
5481         int ret;
5482
5483         adj = __netdev_find_adj(adj_dev, dev_list);
5484
5485         if (adj) {
5486                 adj->ref_nr++;
5487                 return 0;
5488         }
5489
5490         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5491         if (!adj)
5492                 return -ENOMEM;
5493
5494         adj->dev = adj_dev;
5495         adj->master = master;
5496         adj->ref_nr = 1;
5497         adj->private = private;
5498         dev_hold(adj_dev);
5499
5500         pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5501                  adj_dev->name, dev->name, adj_dev->name);
5502
5503         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5504                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5505                 if (ret)
5506                         goto free_adj;
5507         }
5508
5509         /* Ensure that master link is always the first item in list. */
5510         if (master) {
5511                 ret = sysfs_create_link(&(dev->dev.kobj),
5512                                         &(adj_dev->dev.kobj), "master");
5513                 if (ret)
5514                         goto remove_symlinks;
5515
5516                 list_add_rcu(&adj->list, dev_list);
5517         } else {
5518                 list_add_tail_rcu(&adj->list, dev_list);
5519         }
5520
5521         return 0;
5522
5523 remove_symlinks:
5524         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5525                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5526 free_adj:
5527         kfree(adj);
5528         dev_put(adj_dev);
5529
5530         return ret;
5531 }
5532
5533 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5534                                          struct net_device *adj_dev,
5535                                          struct list_head *dev_list)
5536 {
5537         struct netdev_adjacent *adj;
5538
5539         adj = __netdev_find_adj(adj_dev, dev_list);
5540
5541         if (!adj) {
5542                 pr_err("tried to remove device %s from %s\n",
5543                        dev->name, adj_dev->name);
5544                 BUG();
5545         }
5546
5547         if (adj->ref_nr > 1) {
5548                 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
5549                          adj->ref_nr-1);
5550                 adj->ref_nr--;
5551                 return;
5552         }
5553
5554         if (adj->master)
5555                 sysfs_remove_link(&(dev->dev.kobj), "master");
5556
5557         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5558                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5559
5560         list_del_rcu(&adj->list);
5561         pr_debug("dev_put for %s, because link removed from %s to %s\n",
5562                  adj_dev->name, dev->name, adj_dev->name);
5563         dev_put(adj_dev);
5564         kfree_rcu(adj, rcu);
5565 }
5566
5567 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5568                                             struct net_device *upper_dev,
5569                                             struct list_head *up_list,
5570                                             struct list_head *down_list,
5571                                             void *private, bool master)
5572 {
5573         int ret;
5574
5575         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5576                                            master);
5577         if (ret)
5578                 return ret;
5579
5580         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5581                                            false);
5582         if (ret) {
5583                 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5584                 return ret;
5585         }
5586
5587         return 0;
5588 }
5589
5590 static int __netdev_adjacent_dev_link(struct net_device *dev,
5591                                       struct net_device *upper_dev)
5592 {
5593         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5594                                                 &dev->all_adj_list.upper,
5595                                                 &upper_dev->all_adj_list.lower,
5596                                                 NULL, false);
5597 }
5598
5599 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5600                                                struct net_device *upper_dev,
5601                                                struct list_head *up_list,
5602                                                struct list_head *down_list)
5603 {
5604         __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5605         __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5606 }
5607
5608 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5609                                          struct net_device *upper_dev)
5610 {
5611         __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5612                                            &dev->all_adj_list.upper,
5613                                            &upper_dev->all_adj_list.lower);
5614 }
5615
5616 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5617                                                 struct net_device *upper_dev,
5618                                                 void *private, bool master)
5619 {
5620         int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5621
5622         if (ret)
5623                 return ret;
5624
5625         ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5626                                                &dev->adj_list.upper,
5627                                                &upper_dev->adj_list.lower,
5628                                                private, master);
5629         if (ret) {
5630                 __netdev_adjacent_dev_unlink(dev, upper_dev);
5631                 return ret;
5632         }
5633
5634         return 0;
5635 }
5636
5637 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5638                                                    struct net_device *upper_dev)
5639 {
5640         __netdev_adjacent_dev_unlink(dev, upper_dev);
5641         __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5642                                            &dev->adj_list.upper,
5643                                            &upper_dev->adj_list.lower);
5644 }
5645
5646 static int __netdev_upper_dev_link(struct net_device *dev,
5647                                    struct net_device *upper_dev, bool master,
5648                                    void *upper_priv, void *upper_info)
5649 {
5650         struct netdev_notifier_changeupper_info changeupper_info;
5651         struct netdev_adjacent *i, *j, *to_i, *to_j;
5652         int ret = 0;
5653
5654         ASSERT_RTNL();
5655
5656         if (dev == upper_dev)
5657                 return -EBUSY;
5658
5659         /* To prevent loops, check if dev is not upper device to upper_dev. */
5660         if (__netdev_find_adj(dev, &upper_dev->all_adj_list.upper))
5661                 return -EBUSY;
5662
5663         if (__netdev_find_adj(upper_dev, &dev->adj_list.upper))
5664                 return -EEXIST;
5665
5666         if (master && netdev_master_upper_dev_get(dev))
5667                 return -EBUSY;
5668
5669         changeupper_info.upper_dev = upper_dev;
5670         changeupper_info.master = master;
5671         changeupper_info.linking = true;
5672         changeupper_info.upper_info = upper_info;
5673
5674         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5675                                             &changeupper_info.info);
5676         ret = notifier_to_errno(ret);
5677         if (ret)
5678                 return ret;
5679
5680         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
5681                                                    master);
5682         if (ret)
5683                 return ret;
5684
5685         /* Now that we linked these devs, make all the upper_dev's
5686          * all_adj_list.upper visible to every dev's all_adj_list.lower an
5687          * versa, and don't forget the devices itself. All of these
5688          * links are non-neighbours.
5689          */
5690         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5691                 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5692                         pr_debug("Interlinking %s with %s, non-neighbour\n",
5693                                  i->dev->name, j->dev->name);
5694                         ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5695                         if (ret)
5696                                 goto rollback_mesh;
5697                 }
5698         }
5699
5700         /* add dev to every upper_dev's upper device */
5701         list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5702                 pr_debug("linking %s's upper device %s with %s\n",
5703                          upper_dev->name, i->dev->name, dev->name);
5704                 ret = __netdev_adjacent_dev_link(dev, i->dev);
5705                 if (ret)
5706                         goto rollback_upper_mesh;
5707         }
5708
5709         /* add upper_dev to every dev's lower device */
5710         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5711                 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5712                          i->dev->name, upper_dev->name);
5713                 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5714                 if (ret)
5715                         goto rollback_lower_mesh;
5716         }
5717
5718         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5719                                             &changeupper_info.info);
5720         ret = notifier_to_errno(ret);
5721         if (ret)
5722                 goto rollback_lower_mesh;
5723
5724         return 0;
5725
5726 rollback_lower_mesh:
5727         to_i = i;
5728         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5729                 if (i == to_i)
5730                         break;
5731                 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5732         }
5733
5734         i = NULL;
5735
5736 rollback_upper_mesh:
5737         to_i = i;
5738         list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5739                 if (i == to_i)
5740                         break;
5741                 __netdev_adjacent_dev_unlink(dev, i->dev);
5742         }
5743
5744         i = j = NULL;
5745
5746 rollback_mesh:
5747         to_i = i;
5748         to_j = j;
5749         list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5750                 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5751                         if (i == to_i && j == to_j)
5752                                 break;
5753                         __netdev_adjacent_dev_unlink(i->dev, j->dev);
5754                 }
5755                 if (i == to_i)
5756                         break;
5757         }
5758
5759         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5760
5761         return ret;
5762 }
5763
5764 /**
5765  * netdev_upper_dev_link - Add a link to the upper device
5766  * @dev: device
5767  * @upper_dev: new upper device
5768  *
5769  * Adds a link to device which is upper to this one. The caller must hold
5770  * the RTNL lock. On a failure a negative errno code is returned.
5771  * On success the reference counts are adjusted and the function
5772  * returns zero.
5773  */
5774 int netdev_upper_dev_link(struct net_device *dev,
5775                           struct net_device *upper_dev)
5776 {
5777         return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
5778 }
5779 EXPORT_SYMBOL(netdev_upper_dev_link);
5780
5781 /**
5782  * netdev_master_upper_dev_link - Add a master link to the upper device
5783  * @dev: device
5784  * @upper_dev: new upper device
5785  * @upper_priv: upper device private
5786  * @upper_info: upper info to be passed down via notifier
5787  *
5788  * Adds a link to device which is upper to this one. In this case, only
5789  * one master upper device can be linked, although other non-master devices
5790  * might be linked as well. The caller must hold the RTNL lock.
5791  * On a failure a negative errno code is returned. On success the reference
5792  * counts are adjusted and the function returns zero.
5793  */
5794 int netdev_master_upper_dev_link(struct net_device *dev,
5795                                  struct net_device *upper_dev,
5796                                  void *upper_priv, void *upper_info)
5797 {
5798         return __netdev_upper_dev_link(dev, upper_dev, true,
5799                                        upper_priv, upper_info);
5800 }
5801 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5802
5803 /**
5804  * netdev_upper_dev_unlink - Removes a link to upper device
5805  * @dev: device
5806  * @upper_dev: new upper device
5807  *
5808  * Removes a link to device which is upper to this one. The caller must hold
5809  * the RTNL lock.
5810  */
5811 void netdev_upper_dev_unlink(struct net_device *dev,
5812                              struct net_device *upper_dev)
5813 {
5814         struct netdev_notifier_changeupper_info changeupper_info;
5815         struct netdev_adjacent *i, *j;
5816         ASSERT_RTNL();
5817
5818         changeupper_info.upper_dev = upper_dev;
5819         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5820         changeupper_info.linking = false;
5821
5822         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5823                                       &changeupper_info.info);
5824
5825         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5826
5827         /* Here is the tricky part. We must remove all dev's lower
5828          * devices from all upper_dev's upper devices and vice
5829          * versa, to maintain the graph relationship.
5830          */
5831         list_for_each_entry(i, &dev->all_adj_list.lower, list)
5832                 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5833                         __netdev_adjacent_dev_unlink(i->dev, j->dev);
5834
5835         /* remove also the devices itself from lower/upper device
5836          * list
5837          */
5838         list_for_each_entry(i, &dev->all_adj_list.lower, list)
5839                 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5840
5841         list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5842                 __netdev_adjacent_dev_unlink(dev, i->dev);
5843
5844         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5845                                       &changeupper_info.info);
5846 }
5847 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5848
5849 /**
5850  * netdev_bonding_info_change - Dispatch event about slave change
5851  * @dev: device
5852  * @bonding_info: info to dispatch
5853  *
5854  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5855  * The caller must hold the RTNL lock.
5856  */
5857 void netdev_bonding_info_change(struct net_device *dev,
5858                                 struct netdev_bonding_info *bonding_info)
5859 {
5860         struct netdev_notifier_bonding_info     info;
5861
5862         memcpy(&info.bonding_info, bonding_info,
5863                sizeof(struct netdev_bonding_info));
5864         call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5865                                       &info.info);
5866 }
5867 EXPORT_SYMBOL(netdev_bonding_info_change);
5868
5869 static void netdev_adjacent_add_links(struct net_device *dev)
5870 {
5871         struct netdev_adjacent *iter;
5872
5873         struct net *net = dev_net(dev);
5874
5875         list_for_each_entry(iter, &dev->adj_list.upper, list) {
5876                 if (!net_eq(net,dev_net(iter->dev)))
5877                         continue;
5878                 netdev_adjacent_sysfs_add(iter->dev, dev,
5879                                           &iter->dev->adj_list.lower);
5880                 netdev_adjacent_sysfs_add(dev, iter->dev,
5881                                           &dev->adj_list.upper);
5882         }
5883
5884         list_for_each_entry(iter, &dev->adj_list.lower, list) {
5885                 if (!net_eq(net,dev_net(iter->dev)))
5886                         continue;
5887                 netdev_adjacent_sysfs_add(iter->dev, dev,
5888                                           &iter->dev->adj_list.upper);
5889                 netdev_adjacent_sysfs_add(dev, iter->dev,
5890                                           &dev->adj_list.lower);
5891         }
5892 }
5893
5894 static void netdev_adjacent_del_links(struct net_device *dev)
5895 {
5896         struct netdev_adjacent *iter;
5897
5898         struct net *net = dev_net(dev);
5899
5900         list_for_each_entry(iter, &dev->adj_list.upper, list) {
5901                 if (!net_eq(net,dev_net(iter->dev)))
5902                         continue;
5903                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5904                                           &iter->dev->adj_list.lower);
5905                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5906                                           &dev->adj_list.upper);
5907         }
5908
5909         list_for_each_entry(iter, &dev->adj_list.lower, list) {
5910                 if (!net_eq(net,dev_net(iter->dev)))
5911                         continue;
5912                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5913                                           &iter->dev->adj_list.upper);
5914                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5915                                           &dev->adj_list.lower);
5916         }
5917 }
5918
5919 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5920 {
5921         struct netdev_adjacent *iter;
5922
5923         struct net *net = dev_net(dev);
5924
5925         list_for_each_entry(iter, &dev->adj_list.upper, list) {
5926                 if (!net_eq(net,dev_net(iter->dev)))
5927                         continue;
5928                 netdev_adjacent_sysfs_del(iter->dev, oldname,
5929                                           &iter->dev->adj_list.lower);
5930                 netdev_adjacent_sysfs_add(iter->dev, dev,
5931                                           &iter->dev->adj_list.lower);
5932         }
5933
5934         list_for_each_entry(iter, &dev->adj_list.lower, list) {
5935                 if (!net_eq(net,dev_net(iter->dev)))
5936                         continue;
5937                 netdev_adjacent_sysfs_del(iter->dev, oldname,
5938                                           &iter->dev->adj_list.upper);
5939                 netdev_adjacent_sysfs_add(iter->dev, dev,
5940                                           &iter->dev->adj_list.upper);
5941         }
5942 }
5943
5944 void *netdev_lower_dev_get_private(struct net_device *dev,
5945                                    struct net_device *lower_dev)
5946 {
5947         struct netdev_adjacent *lower;
5948
5949         if (!lower_dev)
5950                 return NULL;
5951         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
5952         if (!lower)
5953                 return NULL;
5954
5955         return lower->private;
5956 }
5957 EXPORT_SYMBOL(netdev_lower_dev_get_private);
5958
5959
5960 int dev_get_nest_level(struct net_device *dev,
5961                        bool (*type_check)(const struct net_device *dev))
5962 {
5963         struct net_device *lower = NULL;
5964         struct list_head *iter;
5965         int max_nest = -1;
5966         int nest;
5967
5968         ASSERT_RTNL();
5969
5970         netdev_for_each_lower_dev(dev, lower, iter) {
5971                 nest = dev_get_nest_level(lower, type_check);
5972                 if (max_nest < nest)
5973                         max_nest = nest;
5974         }
5975
5976         if (type_check(dev))
5977                 max_nest++;
5978
5979         return max_nest;
5980 }
5981 EXPORT_SYMBOL(dev_get_nest_level);
5982
5983 /**
5984  * netdev_lower_change - Dispatch event about lower device state change
5985  * @lower_dev: device
5986  * @lower_state_info: state to dispatch
5987  *
5988  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
5989  * The caller must hold the RTNL lock.
5990  */
5991 void netdev_lower_state_changed(struct net_device *lower_dev,
5992                                 void *lower_state_info)
5993 {
5994         struct netdev_notifier_changelowerstate_info changelowerstate_info;
5995
5996         ASSERT_RTNL();
5997         changelowerstate_info.lower_state_info = lower_state_info;
5998         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
5999                                       &changelowerstate_info.info);
6000 }
6001 EXPORT_SYMBOL(netdev_lower_state_changed);
6002
6003 static void dev_change_rx_flags(struct net_device *dev, int flags)
6004 {
6005         const struct net_device_ops *ops = dev->netdev_ops;
6006
6007         if (ops->ndo_change_rx_flags)
6008                 ops->ndo_change_rx_flags(dev, flags);
6009 }
6010
6011 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6012 {
6013         unsigned int old_flags = dev->flags;
6014         kuid_t uid;
6015         kgid_t gid;
6016
6017         ASSERT_RTNL();
6018
6019         dev->flags |= IFF_PROMISC;
6020         dev->promiscuity += inc;
6021         if (dev->promiscuity == 0) {
6022                 /*
6023                  * Avoid overflow.
6024                  * If inc causes overflow, untouch promisc and return error.
6025                  */
6026                 if (inc < 0)
6027                         dev->flags &= ~IFF_PROMISC;
6028                 else {
6029                         dev->promiscuity -= inc;
6030                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6031                                 dev->name);
6032                         return -EOVERFLOW;
6033                 }
6034         }
6035         if (dev->flags != old_flags) {
6036                 pr_info("device %s %s promiscuous mode\n",
6037                         dev->name,
6038                         dev->flags & IFF_PROMISC ? "entered" : "left");
6039                 if (audit_enabled) {
6040                         current_uid_gid(&uid, &gid);
6041                         audit_log(current->audit_context, GFP_ATOMIC,
6042                                 AUDIT_ANOM_PROMISCUOUS,
6043                                 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6044                                 dev->name, (dev->flags & IFF_PROMISC),
6045                                 (old_flags & IFF_PROMISC),
6046                                 from_kuid(&init_user_ns, audit_get_loginuid(current)),
6047                                 from_kuid(&init_user_ns, uid),
6048                                 from_kgid(&init_user_ns, gid),
6049                                 audit_get_sessionid(current));
6050                 }
6051
6052                 dev_change_rx_flags(dev, IFF_PROMISC);
6053         }
6054         if (notify)
6055                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
6056         return 0;
6057 }
6058
6059 /**
6060  *      dev_set_promiscuity     - update promiscuity count on a device
6061  *      @dev: device
6062  *      @inc: modifier
6063  *
6064  *      Add or remove promiscuity from a device. While the count in the device
6065  *      remains above zero the interface remains promiscuous. Once it hits zero
6066  *      the device reverts back to normal filtering operation. A negative inc
6067  *      value is used to drop promiscuity on the device.
6068  *      Return 0 if successful or a negative errno code on error.
6069  */
6070 int dev_set_promiscuity(struct net_device *dev, int inc)
6071 {
6072         unsigned int old_flags = dev->flags;
6073         int err;
6074
6075         err = __dev_set_promiscuity(dev, inc, true);
6076         if (err < 0)
6077                 return err;
6078         if (dev->flags != old_flags)
6079                 dev_set_rx_mode(dev);
6080         return err;
6081 }
6082 EXPORT_SYMBOL(dev_set_promiscuity);
6083
6084 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6085 {
6086         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6087
6088         ASSERT_RTNL();
6089
6090         dev->flags |= IFF_ALLMULTI;
6091         dev->allmulti += inc;
6092         if (dev->allmulti == 0) {
6093                 /*
6094                  * Avoid overflow.
6095                  * If inc causes overflow, untouch allmulti and return error.
6096                  */
6097                 if (inc < 0)
6098                         dev->flags &= ~IFF_ALLMULTI;
6099                 else {
6100                         dev->allmulti -= inc;
6101                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6102                                 dev->name);
6103                         return -EOVERFLOW;
6104                 }
6105         }
6106         if (dev->flags ^ old_flags) {
6107                 dev_change_rx_flags(dev, IFF_ALLMULTI);
6108                 dev_set_rx_mode(dev);
6109                 if (notify)
6110                         __dev_notify_flags(dev, old_flags,
6111                                            dev->gflags ^ old_gflags);
6112         }
6113         return 0;
6114 }
6115
6116 /**
6117  *      dev_set_allmulti        - update allmulti count on a device
6118  *      @dev: device
6119  *      @inc: modifier
6120  *
6121  *      Add or remove reception of all multicast frames to a device. While the
6122  *      count in the device remains above zero the interface remains listening
6123  *      to all interfaces. Once it hits zero the device reverts back to normal
6124  *      filtering operation. A negative @inc value is used to drop the counter
6125  *      when releasing a resource needing all multicasts.
6126  *      Return 0 if successful or a negative errno code on error.
6127  */
6128
6129 int dev_set_allmulti(struct net_device *dev, int inc)
6130 {
6131         return __dev_set_allmulti(dev, inc, true);
6132 }
6133 EXPORT_SYMBOL(dev_set_allmulti);
6134
6135 /*
6136  *      Upload unicast and multicast address lists to device and
6137  *      configure RX filtering. When the device doesn't support unicast
6138  *      filtering it is put in promiscuous mode while unicast addresses
6139  *      are present.
6140  */
6141 void __dev_set_rx_mode(struct net_device *dev)
6142 {
6143         const struct net_device_ops *ops = dev->netdev_ops;
6144
6145         /* dev_open will call this function so the list will stay sane. */
6146         if (!(dev->flags&IFF_UP))
6147                 return;
6148
6149         if (!netif_device_present(dev))
6150                 return;
6151
6152         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6153                 /* Unicast addresses changes may only happen under the rtnl,
6154                  * therefore calling __dev_set_promiscuity here is safe.
6155                  */
6156                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6157                         __dev_set_promiscuity(dev, 1, false);
6158                         dev->uc_promisc = true;
6159                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6160                         __dev_set_promiscuity(dev, -1, false);
6161                         dev->uc_promisc = false;
6162                 }
6163         }
6164
6165         if (ops->ndo_set_rx_mode)
6166                 ops->ndo_set_rx_mode(dev);
6167 }
6168
6169 void dev_set_rx_mode(struct net_device *dev)
6170 {
6171         netif_addr_lock_bh(dev);
6172         __dev_set_rx_mode(dev);
6173         netif_addr_unlock_bh(dev);
6174 }
6175
6176 /**
6177  *      dev_get_flags - get flags reported to userspace
6178  *      @dev: device
6179  *
6180  *      Get the combination of flag bits exported through APIs to userspace.
6181  */
6182 unsigned int dev_get_flags(const struct net_device *dev)
6183 {
6184         unsigned int flags;
6185
6186         flags = (dev->flags & ~(IFF_PROMISC |
6187                                 IFF_ALLMULTI |
6188                                 IFF_RUNNING |
6189                                 IFF_LOWER_UP |
6190                                 IFF_DORMANT)) |
6191                 (dev->gflags & (IFF_PROMISC |
6192                                 IFF_ALLMULTI));
6193
6194         if (netif_running(dev)) {
6195                 if (netif_oper_up(dev))
6196                         flags |= IFF_RUNNING;
6197                 if (netif_carrier_ok(dev))
6198                         flags |= IFF_LOWER_UP;
6199                 if (netif_dormant(dev))
6200                         flags |= IFF_DORMANT;
6201         }
6202
6203         return flags;
6204 }
6205 EXPORT_SYMBOL(dev_get_flags);
6206
6207 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6208 {
6209         unsigned int old_flags = dev->flags;
6210         int ret;
6211
6212         ASSERT_RTNL();
6213
6214         /*
6215          *      Set the flags on our device.
6216          */
6217
6218         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6219                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6220                                IFF_AUTOMEDIA)) |
6221                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6222                                     IFF_ALLMULTI));
6223
6224         /*
6225          *      Load in the correct multicast list now the flags have changed.
6226          */
6227
6228         if ((old_flags ^ flags) & IFF_MULTICAST)
6229                 dev_change_rx_flags(dev, IFF_MULTICAST);
6230
6231         dev_set_rx_mode(dev);
6232
6233         /*
6234          *      Have we downed the interface. We handle IFF_UP ourselves
6235          *      according to user attempts to set it, rather than blindly
6236          *      setting it.
6237          */
6238
6239         ret = 0;
6240         if ((old_flags ^ flags) & IFF_UP)
6241                 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
6242
6243         if ((flags ^ dev->gflags) & IFF_PROMISC) {
6244                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
6245                 unsigned int old_flags = dev->flags;
6246
6247                 dev->gflags ^= IFF_PROMISC;
6248
6249                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6250                         if (dev->flags != old_flags)
6251                                 dev_set_rx_mode(dev);
6252         }
6253
6254         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6255            is important. Some (broken) drivers set IFF_PROMISC, when
6256            IFF_ALLMULTI is requested not asking us and not reporting.
6257          */
6258         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6259                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6260
6261                 dev->gflags ^= IFF_ALLMULTI;
6262                 __dev_set_allmulti(dev, inc, false);
6263         }
6264
6265         return ret;
6266 }
6267
6268 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6269                         unsigned int gchanges)
6270 {
6271         unsigned int changes = dev->flags ^ old_flags;
6272
6273         if (gchanges)
6274                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6275
6276         if (changes & IFF_UP) {
6277                 if (dev->flags & IFF_UP)
6278                         call_netdevice_notifiers(NETDEV_UP, dev);
6279                 else
6280                         call_netdevice_notifiers(NETDEV_DOWN, dev);
6281         }
6282
6283         if (dev->flags & IFF_UP &&
6284             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6285                 struct netdev_notifier_change_info change_info;
6286
6287                 change_info.flags_changed = changes;
6288                 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6289                                               &change_info.info);
6290         }
6291 }
6292
6293 /**
6294  *      dev_change_flags - change device settings
6295  *      @dev: device
6296  *      @flags: device state flags
6297  *
6298  *      Change settings on device based state flags. The flags are
6299  *      in the userspace exported format.
6300  */
6301 int dev_change_flags(struct net_device *dev, unsigned int flags)
6302 {
6303         int ret;
6304         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6305
6306         ret = __dev_change_flags(dev, flags);
6307         if (ret < 0)
6308                 return ret;
6309
6310         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6311         __dev_notify_flags(dev, old_flags, changes);
6312         return ret;
6313 }
6314 EXPORT_SYMBOL(dev_change_flags);
6315
6316 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6317 {
6318         const struct net_device_ops *ops = dev->netdev_ops;
6319
6320         if (ops->ndo_change_mtu)
6321                 return ops->ndo_change_mtu(dev, new_mtu);
6322
6323         dev->mtu = new_mtu;
6324         return 0;
6325 }
6326
6327 /**
6328  *      dev_set_mtu - Change maximum transfer unit
6329  *      @dev: device
6330  *      @new_mtu: new transfer unit
6331  *
6332  *      Change the maximum transfer size of the network device.
6333  */
6334 int dev_set_mtu(struct net_device *dev, int new_mtu)
6335 {
6336         int err, orig_mtu;
6337
6338         if (new_mtu == dev->mtu)
6339                 return 0;
6340
6341         /*      MTU must be positive.    */
6342         if (new_mtu < 0)
6343                 return -EINVAL;
6344
6345         if (!netif_device_present(dev))
6346                 return -ENODEV;
6347
6348         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6349         err = notifier_to_errno(err);
6350         if (err)
6351                 return err;
6352
6353         orig_mtu = dev->mtu;
6354         err = __dev_set_mtu(dev, new_mtu);
6355
6356         if (!err) {
6357                 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6358                 err = notifier_to_errno(err);
6359                 if (err) {
6360                         /* setting mtu back and notifying everyone again,
6361                          * so that they have a chance to revert changes.
6362                          */
6363                         __dev_set_mtu(dev, orig_mtu);
6364                         call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6365                 }
6366         }
6367         return err;
6368 }
6369 EXPORT_SYMBOL(dev_set_mtu);
6370
6371 /**
6372  *      dev_set_group - Change group this device belongs to
6373  *      @dev: device
6374  *      @new_group: group this device should belong to
6375  */
6376 void dev_set_group(struct net_device *dev, int new_group)
6377 {
6378         dev->group = new_group;
6379 }
6380 EXPORT_SYMBOL(dev_set_group);
6381
6382 /**
6383  *      dev_set_mac_address - Change Media Access Control Address
6384  *      @dev: device
6385  *      @sa: new address
6386  *
6387  *      Change the hardware (MAC) address of the device
6388  */
6389 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6390 {
6391         const struct net_device_ops *ops = dev->netdev_ops;
6392         int err;
6393
6394         if (!ops->ndo_set_mac_address)
6395                 return -EOPNOTSUPP;
6396         if (sa->sa_family != dev->type)
6397                 return -EINVAL;
6398         if (!netif_device_present(dev))
6399                 return -ENODEV;
6400         err = ops->ndo_set_mac_address(dev, sa);
6401         if (err)
6402                 return err;
6403         dev->addr_assign_type = NET_ADDR_SET;
6404         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6405         add_device_randomness(dev->dev_addr, dev->addr_len);
6406         return 0;
6407 }
6408 EXPORT_SYMBOL(dev_set_mac_address);
6409
6410 /**
6411  *      dev_change_carrier - Change device carrier
6412  *      @dev: device
6413  *      @new_carrier: new value
6414  *
6415  *      Change device carrier
6416  */
6417 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6418 {
6419         const struct net_device_ops *ops = dev->netdev_ops;
6420
6421         if (!ops->ndo_change_carrier)
6422                 return -EOPNOTSUPP;
6423         if (!netif_device_present(dev))
6424                 return -ENODEV;
6425         return ops->ndo_change_carrier(dev, new_carrier);
6426 }
6427 EXPORT_SYMBOL(dev_change_carrier);
6428
6429 /**
6430  *      dev_get_phys_port_id - Get device physical port ID
6431  *      @dev: device
6432  *      @ppid: port ID
6433  *
6434  *      Get device physical port ID
6435  */
6436 int dev_get_phys_port_id(struct net_device *dev,
6437                          struct netdev_phys_item_id *ppid)
6438 {
6439         const struct net_device_ops *ops = dev->netdev_ops;
6440
6441         if (!ops->ndo_get_phys_port_id)
6442                 return -EOPNOTSUPP;
6443         return ops->ndo_get_phys_port_id(dev, ppid);
6444 }
6445 EXPORT_SYMBOL(dev_get_phys_port_id);
6446
6447 /**
6448  *      dev_get_phys_port_name - Get device physical port name
6449  *      @dev: device
6450  *      @name: port name
6451  *      @len: limit of bytes to copy to name
6452  *
6453  *      Get device physical port name
6454  */
6455 int dev_get_phys_port_name(struct net_device *dev,
6456                            char *name, size_t len)
6457 {
6458         const struct net_device_ops *ops = dev->netdev_ops;
6459
6460         if (!ops->ndo_get_phys_port_name)
6461                 return -EOPNOTSUPP;
6462         return ops->ndo_get_phys_port_name(dev, name, len);
6463 }
6464 EXPORT_SYMBOL(dev_get_phys_port_name);
6465
6466 /**
6467  *      dev_change_proto_down - update protocol port state information
6468  *      @dev: device
6469  *      @proto_down: new value
6470  *
6471  *      This info can be used by switch drivers to set the phys state of the
6472  *      port.
6473  */
6474 int dev_change_proto_down(struct net_device *dev, bool proto_down)
6475 {
6476         const struct net_device_ops *ops = dev->netdev_ops;
6477
6478         if (!ops->ndo_change_proto_down)
6479                 return -EOPNOTSUPP;
6480         if (!netif_device_present(dev))
6481                 return -ENODEV;
6482         return ops->ndo_change_proto_down(dev, proto_down);
6483 }
6484 EXPORT_SYMBOL(dev_change_proto_down);
6485
6486 /**
6487  *      dev_new_index   -       allocate an ifindex
6488  *      @net: the applicable net namespace
6489  *
6490  *      Returns a suitable unique value for a new device interface
6491  *      number.  The caller must hold the rtnl semaphore or the
6492  *      dev_base_lock to be sure it remains unique.
6493  */
6494 static int dev_new_index(struct net *net)
6495 {
6496         int ifindex = net->ifindex;
6497         for (;;) {
6498                 if (++ifindex <= 0)
6499                         ifindex = 1;
6500                 if (!__dev_get_by_index(net, ifindex))
6501                         return net->ifindex = ifindex;
6502         }
6503 }
6504
6505 /* Delayed registration/unregisteration */
6506 static LIST_HEAD(net_todo_list);
6507 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6508
6509 static void net_set_todo(struct net_device *dev)
6510 {
6511         list_add_tail(&dev->todo_list, &net_todo_list);
6512         dev_net(dev)->dev_unreg_count++;
6513 }
6514
6515 static void rollback_registered_many(struct list_head *head)
6516 {
6517         struct net_device *dev, *tmp;
6518         LIST_HEAD(close_head);
6519
6520         BUG_ON(dev_boot_phase);
6521         ASSERT_RTNL();
6522
6523         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6524                 /* Some devices call without registering
6525                  * for initialization unwind. Remove those
6526                  * devices and proceed with the remaining.
6527                  */
6528                 if (dev->reg_state == NETREG_UNINITIALIZED) {
6529                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6530                                  dev->name, dev);
6531
6532                         WARN_ON(1);
6533                         list_del(&dev->unreg_list);
6534                         continue;
6535                 }
6536                 dev->dismantle = true;
6537                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
6538         }
6539
6540         /* If device is running, close it first. */
6541         list_for_each_entry(dev, head, unreg_list)
6542                 list_add_tail(&dev->close_list, &close_head);
6543         dev_close_many(&close_head, true);
6544
6545         list_for_each_entry(dev, head, unreg_list) {
6546                 /* And unlink it from device chain. */
6547                 unlist_netdevice(dev);
6548
6549                 dev->reg_state = NETREG_UNREGISTERING;
6550                 on_each_cpu(flush_backlog, dev, 1);
6551         }
6552
6553         synchronize_net();
6554
6555         list_for_each_entry(dev, head, unreg_list) {
6556                 struct sk_buff *skb = NULL;
6557
6558                 /* Shutdown queueing discipline. */
6559                 dev_shutdown(dev);
6560
6561
6562                 /* Notify protocols, that we are about to destroy
6563                    this device. They should clean all the things.
6564                 */
6565                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6566
6567                 if (!dev->rtnl_link_ops ||
6568                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6569                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6570                                                      GFP_KERNEL);
6571
6572                 /*
6573                  *      Flush the unicast and multicast chains
6574                  */
6575                 dev_uc_flush(dev);
6576                 dev_mc_flush(dev);
6577
6578                 if (dev->netdev_ops->ndo_uninit)
6579                         dev->netdev_ops->ndo_uninit(dev);
6580
6581                 if (skb)
6582                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6583
6584                 /* Notifier chain MUST detach us all upper devices. */
6585                 WARN_ON(netdev_has_any_upper_dev(dev));
6586
6587                 /* Remove entries from kobject tree */
6588                 netdev_unregister_kobject(dev);
6589 #ifdef CONFIG_XPS
6590                 /* Remove XPS queueing entries */
6591                 netif_reset_xps_queues_gt(dev, 0);
6592 #endif
6593         }
6594
6595         synchronize_net();
6596
6597         list_for_each_entry(dev, head, unreg_list)
6598                 dev_put(dev);
6599 }
6600
6601 static void rollback_registered(struct net_device *dev)
6602 {
6603         LIST_HEAD(single);
6604
6605         list_add(&dev->unreg_list, &single);
6606         rollback_registered_many(&single);
6607         list_del(&single);
6608 }
6609
6610 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6611         struct net_device *upper, netdev_features_t features)
6612 {
6613         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6614         netdev_features_t feature;
6615         int feature_bit;
6616
6617         for_each_netdev_feature(&upper_disables, feature_bit) {
6618                 feature = __NETIF_F_BIT(feature_bit);
6619                 if (!(upper->wanted_features & feature)
6620                     && (features & feature)) {
6621                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6622                                    &feature, upper->name);
6623                         features &= ~feature;
6624                 }
6625         }
6626
6627         return features;
6628 }
6629
6630 static void netdev_sync_lower_features(struct net_device *upper,
6631         struct net_device *lower, netdev_features_t features)
6632 {
6633         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6634         netdev_features_t feature;
6635         int feature_bit;
6636
6637         for_each_netdev_feature(&upper_disables, feature_bit) {
6638                 feature = __NETIF_F_BIT(feature_bit);
6639                 if (!(features & feature) && (lower->features & feature)) {
6640                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6641                                    &feature, lower->name);
6642                         lower->wanted_features &= ~feature;
6643                         netdev_update_features(lower);
6644
6645                         if (unlikely(lower->features & feature))
6646                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6647                                             &feature, lower->name);
6648                 }
6649         }
6650 }
6651
6652 static netdev_features_t netdev_fix_features(struct net_device *dev,
6653         netdev_features_t features)
6654 {
6655         /* Fix illegal checksum combinations */
6656         if ((features & NETIF_F_HW_CSUM) &&
6657             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6658                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6659                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6660         }
6661
6662         /* TSO requires that SG is present as well. */
6663         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6664                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6665                 features &= ~NETIF_F_ALL_TSO;
6666         }
6667
6668         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6669                                         !(features & NETIF_F_IP_CSUM)) {
6670                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6671                 features &= ~NETIF_F_TSO;
6672                 features &= ~NETIF_F_TSO_ECN;
6673         }
6674
6675         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6676                                          !(features & NETIF_F_IPV6_CSUM)) {
6677                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6678                 features &= ~NETIF_F_TSO6;
6679         }
6680
6681         /* TSO ECN requires that TSO is present as well. */
6682         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6683                 features &= ~NETIF_F_TSO_ECN;
6684
6685         /* Software GSO depends on SG. */
6686         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6687                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6688                 features &= ~NETIF_F_GSO;
6689         }
6690
6691         /* UFO needs SG and checksumming */
6692         if (features & NETIF_F_UFO) {
6693                 /* maybe split UFO into V4 and V6? */
6694                 if (!(features & NETIF_F_HW_CSUM) &&
6695                     ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
6696                      (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
6697                         netdev_dbg(dev,
6698                                 "Dropping NETIF_F_UFO since no checksum offload features.\n");
6699                         features &= ~NETIF_F_UFO;
6700                 }
6701
6702                 if (!(features & NETIF_F_SG)) {
6703                         netdev_dbg(dev,
6704                                 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6705                         features &= ~NETIF_F_UFO;
6706                 }
6707         }
6708
6709 #ifdef CONFIG_NET_RX_BUSY_POLL
6710         if (dev->netdev_ops->ndo_busy_poll)
6711                 features |= NETIF_F_BUSY_POLL;
6712         else
6713 #endif
6714                 features &= ~NETIF_F_BUSY_POLL;
6715
6716         return features;
6717 }
6718
6719 int __netdev_update_features(struct net_device *dev)
6720 {
6721         struct net_device *upper, *lower;
6722         netdev_features_t features;
6723         struct list_head *iter;
6724         int err = -1;
6725
6726         ASSERT_RTNL();
6727
6728         features = netdev_get_wanted_features(dev);
6729
6730         if (dev->netdev_ops->ndo_fix_features)
6731                 features = dev->netdev_ops->ndo_fix_features(dev, features);
6732
6733         /* driver might be less strict about feature dependencies */
6734         features = netdev_fix_features(dev, features);
6735
6736         /* some features can't be enabled if they're off an an upper device */
6737         netdev_for_each_upper_dev_rcu(dev, upper, iter)
6738                 features = netdev_sync_upper_features(dev, upper, features);
6739
6740         if (dev->features == features)
6741                 goto sync_lower;
6742
6743         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6744                 &dev->features, &features);
6745
6746         if (dev->netdev_ops->ndo_set_features)
6747                 err = dev->netdev_ops->ndo_set_features(dev, features);
6748         else
6749                 err = 0;
6750
6751         if (unlikely(err < 0)) {
6752                 netdev_err(dev,
6753                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
6754                         err, &features, &dev->features);
6755                 /* return non-0 since some features might have changed and
6756                  * it's better to fire a spurious notification than miss it
6757                  */
6758                 return -1;
6759         }
6760
6761 sync_lower:
6762         /* some features must be disabled on lower devices when disabled
6763          * on an upper device (think: bonding master or bridge)
6764          */
6765         netdev_for_each_lower_dev(dev, lower, iter)
6766                 netdev_sync_lower_features(dev, lower, features);
6767
6768         if (!err)
6769                 dev->features = features;
6770
6771         return err < 0 ? 0 : 1;
6772 }
6773
6774 /**
6775  *      netdev_update_features - recalculate device features
6776  *      @dev: the device to check
6777  *
6778  *      Recalculate dev->features set and send notifications if it
6779  *      has changed. Should be called after driver or hardware dependent
6780  *      conditions might have changed that influence the features.
6781  */
6782 void netdev_update_features(struct net_device *dev)
6783 {
6784         if (__netdev_update_features(dev))
6785                 netdev_features_change(dev);
6786 }
6787 EXPORT_SYMBOL(netdev_update_features);
6788
6789 /**
6790  *      netdev_change_features - recalculate device features
6791  *      @dev: the device to check
6792  *
6793  *      Recalculate dev->features set and send notifications even
6794  *      if they have not changed. Should be called instead of
6795  *      netdev_update_features() if also dev->vlan_features might
6796  *      have changed to allow the changes to be propagated to stacked
6797  *      VLAN devices.
6798  */
6799 void netdev_change_features(struct net_device *dev)
6800 {
6801         __netdev_update_features(dev);
6802         netdev_features_change(dev);
6803 }
6804 EXPORT_SYMBOL(netdev_change_features);
6805
6806 /**
6807  *      netif_stacked_transfer_operstate -      transfer operstate
6808  *      @rootdev: the root or lower level device to transfer state from
6809  *      @dev: the device to transfer operstate to
6810  *
6811  *      Transfer operational state from root to device. This is normally
6812  *      called when a stacking relationship exists between the root
6813  *      device and the device(a leaf device).
6814  */
6815 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6816                                         struct net_device *dev)
6817 {
6818         if (rootdev->operstate == IF_OPER_DORMANT)
6819                 netif_dormant_on(dev);
6820         else
6821                 netif_dormant_off(dev);
6822
6823         if (netif_carrier_ok(rootdev)) {
6824                 if (!netif_carrier_ok(dev))
6825                         netif_carrier_on(dev);
6826         } else {
6827                 if (netif_carrier_ok(dev))
6828                         netif_carrier_off(dev);
6829         }
6830 }
6831 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6832
6833 #ifdef CONFIG_SYSFS
6834 static int netif_alloc_rx_queues(struct net_device *dev)
6835 {
6836         unsigned int i, count = dev->num_rx_queues;
6837         struct netdev_rx_queue *rx;
6838         size_t sz = count * sizeof(*rx);
6839
6840         BUG_ON(count < 1);
6841
6842         rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6843         if (!rx) {
6844                 rx = vzalloc(sz);
6845                 if (!rx)
6846                         return -ENOMEM;
6847         }
6848         dev->_rx = rx;
6849
6850         for (i = 0; i < count; i++)
6851                 rx[i].dev = dev;
6852         return 0;
6853 }
6854 #endif
6855
6856 static void netdev_init_one_queue(struct net_device *dev,
6857                                   struct netdev_queue *queue, void *_unused)
6858 {
6859         /* Initialize queue lock */
6860         spin_lock_init(&queue->_xmit_lock);
6861         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6862         queue->xmit_lock_owner = -1;
6863         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
6864         queue->dev = dev;
6865 #ifdef CONFIG_BQL
6866         dql_init(&queue->dql, HZ);
6867 #endif
6868 }
6869
6870 static void netif_free_tx_queues(struct net_device *dev)
6871 {
6872         kvfree(dev->_tx);
6873 }
6874
6875 static int netif_alloc_netdev_queues(struct net_device *dev)
6876 {
6877         unsigned int count = dev->num_tx_queues;
6878         struct netdev_queue *tx;
6879         size_t sz = count * sizeof(*tx);
6880
6881         if (count < 1 || count > 0xffff)
6882                 return -EINVAL;
6883
6884         tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6885         if (!tx) {
6886                 tx = vzalloc(sz);
6887                 if (!tx)
6888                         return -ENOMEM;
6889         }
6890         dev->_tx = tx;
6891
6892         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6893         spin_lock_init(&dev->tx_global_lock);
6894
6895         return 0;
6896 }
6897
6898 void netif_tx_stop_all_queues(struct net_device *dev)
6899 {
6900         unsigned int i;
6901
6902         for (i = 0; i < dev->num_tx_queues; i++) {
6903                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
6904                 netif_tx_stop_queue(txq);
6905         }
6906 }
6907 EXPORT_SYMBOL(netif_tx_stop_all_queues);
6908
6909 /**
6910  *      register_netdevice      - register a network device
6911  *      @dev: device to register
6912  *
6913  *      Take a completed network device structure and add it to the kernel
6914  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6915  *      chain. 0 is returned on success. A negative errno code is returned
6916  *      on a failure to set up the device, or if the name is a duplicate.
6917  *
6918  *      Callers must hold the rtnl semaphore. You may want
6919  *      register_netdev() instead of this.
6920  *
6921  *      BUGS:
6922  *      The locking appears insufficient to guarantee two parallel registers
6923  *      will not get the same name.
6924  */
6925
6926 int register_netdevice(struct net_device *dev)
6927 {
6928         int ret;
6929         struct net *net = dev_net(dev);
6930
6931         BUG_ON(dev_boot_phase);
6932         ASSERT_RTNL();
6933
6934         might_sleep();
6935
6936         /* When net_device's are persistent, this will be fatal. */
6937         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
6938         BUG_ON(!net);
6939
6940         spin_lock_init(&dev->addr_list_lock);
6941         netdev_set_addr_lockdep_class(dev);
6942
6943         ret = dev_get_valid_name(net, dev, dev->name);
6944         if (ret < 0)
6945                 goto out;
6946
6947         /* Init, if this function is available */
6948         if (dev->netdev_ops->ndo_init) {
6949                 ret = dev->netdev_ops->ndo_init(dev);
6950                 if (ret) {
6951                         if (ret > 0)
6952                                 ret = -EIO;
6953                         goto out;
6954                 }
6955         }
6956
6957         if (((dev->hw_features | dev->features) &
6958              NETIF_F_HW_VLAN_CTAG_FILTER) &&
6959             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6960              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6961                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6962                 ret = -EINVAL;
6963                 goto err_uninit;
6964         }
6965
6966         ret = -EBUSY;
6967         if (!dev->ifindex)
6968                 dev->ifindex = dev_new_index(net);
6969         else if (__dev_get_by_index(net, dev->ifindex))
6970                 goto err_uninit;
6971
6972         /* Transfer changeable features to wanted_features and enable
6973          * software offloads (GSO and GRO).
6974          */
6975         dev->hw_features |= NETIF_F_SOFT_FEATURES;
6976         dev->features |= NETIF_F_SOFT_FEATURES;
6977         dev->wanted_features = dev->features & dev->hw_features;
6978
6979         if (!(dev->flags & IFF_LOOPBACK)) {
6980                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
6981         }
6982
6983         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
6984          */
6985         dev->vlan_features |= NETIF_F_HIGHDMA;
6986
6987         /* Make NETIF_F_SG inheritable to tunnel devices.
6988          */
6989         dev->hw_enc_features |= NETIF_F_SG;
6990
6991         /* Make NETIF_F_SG inheritable to MPLS.
6992          */
6993         dev->mpls_features |= NETIF_F_SG;
6994
6995         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6996         ret = notifier_to_errno(ret);
6997         if (ret)
6998                 goto err_uninit;
6999
7000         ret = netdev_register_kobject(dev);
7001         if (ret)
7002                 goto err_uninit;
7003         dev->reg_state = NETREG_REGISTERED;
7004
7005         __netdev_update_features(dev);
7006
7007         /*
7008          *      Default initial state at registry is that the
7009          *      device is present.
7010          */
7011
7012         set_bit(__LINK_STATE_PRESENT, &dev->state);
7013
7014         linkwatch_init_dev(dev);
7015
7016         dev_init_scheduler(dev);
7017         dev_hold(dev);
7018         list_netdevice(dev);
7019         add_device_randomness(dev->dev_addr, dev->addr_len);
7020
7021         /* If the device has permanent device address, driver should
7022          * set dev_addr and also addr_assign_type should be set to
7023          * NET_ADDR_PERM (default value).
7024          */
7025         if (dev->addr_assign_type == NET_ADDR_PERM)
7026                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7027
7028         /* Notify protocols, that a new device appeared. */
7029         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7030         ret = notifier_to_errno(ret);
7031         if (ret) {
7032                 rollback_registered(dev);
7033                 dev->reg_state = NETREG_UNREGISTERED;
7034         }
7035         /*
7036          *      Prevent userspace races by waiting until the network
7037          *      device is fully setup before sending notifications.
7038          */
7039         if (!dev->rtnl_link_ops ||
7040             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7041                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7042
7043 out:
7044         return ret;
7045
7046 err_uninit:
7047         if (dev->netdev_ops->ndo_uninit)
7048                 dev->netdev_ops->ndo_uninit(dev);
7049         goto out;
7050 }
7051 EXPORT_SYMBOL(register_netdevice);
7052
7053 /**
7054  *      init_dummy_netdev       - init a dummy network device for NAPI
7055  *      @dev: device to init
7056  *
7057  *      This takes a network device structure and initialize the minimum
7058  *      amount of fields so it can be used to schedule NAPI polls without
7059  *      registering a full blown interface. This is to be used by drivers
7060  *      that need to tie several hardware interfaces to a single NAPI
7061  *      poll scheduler due to HW limitations.
7062  */
7063 int init_dummy_netdev(struct net_device *dev)
7064 {
7065         /* Clear everything. Note we don't initialize spinlocks
7066          * are they aren't supposed to be taken by any of the
7067          * NAPI code and this dummy netdev is supposed to be
7068          * only ever used for NAPI polls
7069          */
7070         memset(dev, 0, sizeof(struct net_device));
7071
7072         /* make sure we BUG if trying to hit standard
7073          * register/unregister code path
7074          */
7075         dev->reg_state = NETREG_DUMMY;
7076
7077         /* NAPI wants this */
7078         INIT_LIST_HEAD(&dev->napi_list);
7079
7080         /* a dummy interface is started by default */
7081         set_bit(__LINK_STATE_PRESENT, &dev->state);
7082         set_bit(__LINK_STATE_START, &dev->state);
7083
7084         /* Note : We dont allocate pcpu_refcnt for dummy devices,
7085          * because users of this 'device' dont need to change
7086          * its refcount.
7087          */
7088
7089         return 0;
7090 }
7091 EXPORT_SYMBOL_GPL(init_dummy_netdev);
7092
7093
7094 /**
7095  *      register_netdev - register a network device
7096  *      @dev: device to register
7097  *
7098  *      Take a completed network device structure and add it to the kernel
7099  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7100  *      chain. 0 is returned on success. A negative errno code is returned
7101  *      on a failure to set up the device, or if the name is a duplicate.
7102  *
7103  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
7104  *      and expands the device name if you passed a format string to
7105  *      alloc_netdev.
7106  */
7107 int register_netdev(struct net_device *dev)
7108 {
7109         int err;
7110
7111         rtnl_lock();
7112         err = register_netdevice(dev);
7113         rtnl_unlock();
7114         return err;
7115 }
7116 EXPORT_SYMBOL(register_netdev);
7117
7118 int netdev_refcnt_read(const struct net_device *dev)
7119 {
7120         int i, refcnt = 0;
7121
7122         for_each_possible_cpu(i)
7123                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7124         return refcnt;
7125 }
7126 EXPORT_SYMBOL(netdev_refcnt_read);
7127
7128 /**
7129  * netdev_wait_allrefs - wait until all references are gone.
7130  * @dev: target net_device
7131  *
7132  * This is called when unregistering network devices.
7133  *
7134  * Any protocol or device that holds a reference should register
7135  * for netdevice notification, and cleanup and put back the
7136  * reference if they receive an UNREGISTER event.
7137  * We can get stuck here if buggy protocols don't correctly
7138  * call dev_put.
7139  */
7140 static void netdev_wait_allrefs(struct net_device *dev)
7141 {
7142         unsigned long rebroadcast_time, warning_time;
7143         int refcnt;
7144
7145         linkwatch_forget_dev(dev);
7146
7147         rebroadcast_time = warning_time = jiffies;
7148         refcnt = netdev_refcnt_read(dev);
7149
7150         while (refcnt != 0) {
7151                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
7152                         rtnl_lock();
7153
7154                         /* Rebroadcast unregister notification */
7155                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7156
7157                         __rtnl_unlock();
7158                         rcu_barrier();
7159                         rtnl_lock();
7160
7161                         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7162                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7163                                      &dev->state)) {
7164                                 /* We must not have linkwatch events
7165                                  * pending on unregister. If this
7166                                  * happens, we simply run the queue
7167                                  * unscheduled, resulting in a noop
7168                                  * for this device.
7169                                  */
7170                                 linkwatch_run_queue();
7171                         }
7172
7173                         __rtnl_unlock();
7174
7175                         rebroadcast_time = jiffies;
7176                 }
7177
7178                 msleep(250);
7179
7180                 refcnt = netdev_refcnt_read(dev);
7181
7182                 if (time_after(jiffies, warning_time + 10 * HZ)) {
7183                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7184                                  dev->name, refcnt);
7185                         warning_time = jiffies;
7186                 }
7187         }
7188 }
7189
7190 /* The sequence is:
7191  *
7192  *      rtnl_lock();
7193  *      ...
7194  *      register_netdevice(x1);
7195  *      register_netdevice(x2);
7196  *      ...
7197  *      unregister_netdevice(y1);
7198  *      unregister_netdevice(y2);
7199  *      ...
7200  *      rtnl_unlock();
7201  *      free_netdev(y1);
7202  *      free_netdev(y2);
7203  *
7204  * We are invoked by rtnl_unlock().
7205  * This allows us to deal with problems:
7206  * 1) We can delete sysfs objects which invoke hotplug
7207  *    without deadlocking with linkwatch via keventd.
7208  * 2) Since we run with the RTNL semaphore not held, we can sleep
7209  *    safely in order to wait for the netdev refcnt to drop to zero.
7210  *
7211  * We must not return until all unregister events added during
7212  * the interval the lock was held have been completed.
7213  */
7214 void netdev_run_todo(void)
7215 {
7216         struct list_head list;
7217
7218         /* Snapshot list, allow later requests */
7219         list_replace_init(&net_todo_list, &list);
7220
7221         __rtnl_unlock();
7222
7223
7224         /* Wait for rcu callbacks to finish before next phase */
7225         if (!list_empty(&list))
7226                 rcu_barrier();
7227
7228         while (!list_empty(&list)) {
7229                 struct net_device *dev
7230                         = list_first_entry(&list, struct net_device, todo_list);
7231                 list_del(&dev->todo_list);
7232
7233                 rtnl_lock();
7234                 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7235                 __rtnl_unlock();
7236
7237                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7238                         pr_err("network todo '%s' but state %d\n",
7239                                dev->name, dev->reg_state);
7240                         dump_stack();
7241                         continue;
7242                 }
7243
7244                 dev->reg_state = NETREG_UNREGISTERED;
7245
7246                 netdev_wait_allrefs(dev);
7247
7248                 /* paranoia */
7249                 BUG_ON(netdev_refcnt_read(dev));
7250                 BUG_ON(!list_empty(&dev->ptype_all));
7251                 BUG_ON(!list_empty(&dev->ptype_specific));
7252                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7253                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7254                 WARN_ON(dev->dn_ptr);
7255
7256                 if (dev->destructor)
7257                         dev->destructor(dev);
7258
7259                 /* Report a network device has been unregistered */
7260                 rtnl_lock();
7261                 dev_net(dev)->dev_unreg_count--;
7262                 __rtnl_unlock();
7263                 wake_up(&netdev_unregistering_wq);
7264
7265                 /* Free network device */
7266                 kobject_put(&dev->dev.kobj);
7267         }
7268 }
7269
7270 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7271  * all the same fields in the same order as net_device_stats, with only
7272  * the type differing, but rtnl_link_stats64 may have additional fields
7273  * at the end for newer counters.
7274  */
7275 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7276                              const struct net_device_stats *netdev_stats)
7277 {
7278 #if BITS_PER_LONG == 64
7279         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
7280         memcpy(stats64, netdev_stats, sizeof(*stats64));
7281         /* zero out counters that only exist in rtnl_link_stats64 */
7282         memset((char *)stats64 + sizeof(*netdev_stats), 0,
7283                sizeof(*stats64) - sizeof(*netdev_stats));
7284 #else
7285         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
7286         const unsigned long *src = (const unsigned long *)netdev_stats;
7287         u64 *dst = (u64 *)stats64;
7288
7289         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
7290         for (i = 0; i < n; i++)
7291                 dst[i] = src[i];
7292         /* zero out counters that only exist in rtnl_link_stats64 */
7293         memset((char *)stats64 + n * sizeof(u64), 0,
7294                sizeof(*stats64) - n * sizeof(u64));
7295 #endif
7296 }
7297 EXPORT_SYMBOL(netdev_stats_to_stats64);
7298
7299 /**
7300  *      dev_get_stats   - get network device statistics
7301  *      @dev: device to get statistics from
7302  *      @storage: place to store stats
7303  *
7304  *      Get network statistics from device. Return @storage.
7305  *      The device driver may provide its own method by setting
7306  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7307  *      otherwise the internal statistics structure is used.
7308  */
7309 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7310                                         struct rtnl_link_stats64 *storage)
7311 {
7312         const struct net_device_ops *ops = dev->netdev_ops;
7313
7314         if (ops->ndo_get_stats64) {
7315                 memset(storage, 0, sizeof(*storage));
7316                 ops->ndo_get_stats64(dev, storage);
7317         } else if (ops->ndo_get_stats) {
7318                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
7319         } else {
7320                 netdev_stats_to_stats64(storage, &dev->stats);
7321         }
7322         storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
7323         storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
7324         storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler);
7325         return storage;
7326 }
7327 EXPORT_SYMBOL(dev_get_stats);
7328
7329 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
7330 {
7331         struct netdev_queue *queue = dev_ingress_queue(dev);
7332
7333 #ifdef CONFIG_NET_CLS_ACT
7334         if (queue)
7335                 return queue;
7336         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7337         if (!queue)
7338                 return NULL;
7339         netdev_init_one_queue(dev, queue, NULL);
7340         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
7341         queue->qdisc_sleeping = &noop_qdisc;
7342         rcu_assign_pointer(dev->ingress_queue, queue);
7343 #endif
7344         return queue;
7345 }
7346
7347 static const struct ethtool_ops default_ethtool_ops;
7348
7349 void netdev_set_default_ethtool_ops(struct net_device *dev,
7350                                     const struct ethtool_ops *ops)
7351 {
7352         if (dev->ethtool_ops == &default_ethtool_ops)
7353                 dev->ethtool_ops = ops;
7354 }
7355 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7356
7357 void netdev_freemem(struct net_device *dev)
7358 {
7359         char *addr = (char *)dev - dev->padded;
7360
7361         kvfree(addr);
7362 }
7363
7364 /**
7365  *      alloc_netdev_mqs - allocate network device
7366  *      @sizeof_priv:           size of private data to allocate space for
7367  *      @name:                  device name format string
7368  *      @name_assign_type:      origin of device name
7369  *      @setup:                 callback to initialize device
7370  *      @txqs:                  the number of TX subqueues to allocate
7371  *      @rxqs:                  the number of RX subqueues to allocate
7372  *
7373  *      Allocates a struct net_device with private data area for driver use
7374  *      and performs basic initialization.  Also allocates subqueue structs
7375  *      for each queue on the device.
7376  */
7377 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
7378                 unsigned char name_assign_type,
7379                 void (*setup)(struct net_device *),
7380                 unsigned int txqs, unsigned int rxqs)
7381 {
7382         struct net_device *dev;
7383         size_t alloc_size;
7384         struct net_device *p;
7385
7386         BUG_ON(strlen(name) >= sizeof(dev->name));
7387
7388         if (txqs < 1) {
7389                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
7390                 return NULL;
7391         }
7392
7393 #ifdef CONFIG_SYSFS
7394         if (rxqs < 1) {
7395                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
7396                 return NULL;
7397         }
7398 #endif
7399
7400         alloc_size = sizeof(struct net_device);
7401         if (sizeof_priv) {
7402                 /* ensure 32-byte alignment of private area */
7403                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
7404                 alloc_size += sizeof_priv;
7405         }
7406         /* ensure 32-byte alignment of whole construct */
7407         alloc_size += NETDEV_ALIGN - 1;
7408
7409         p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7410         if (!p)
7411                 p = vzalloc(alloc_size);
7412         if (!p)
7413                 return NULL;
7414
7415         dev = PTR_ALIGN(p, NETDEV_ALIGN);
7416         dev->padded = (char *)dev - (char *)p;
7417
7418         dev->pcpu_refcnt = alloc_percpu(int);
7419         if (!dev->pcpu_refcnt)
7420                 goto free_dev;
7421
7422         if (dev_addr_init(dev))
7423                 goto free_pcpu;
7424
7425         dev_mc_init(dev);
7426         dev_uc_init(dev);
7427
7428         dev_net_set(dev, &init_net);
7429
7430         dev->gso_max_size = GSO_MAX_SIZE;
7431         dev->gso_max_segs = GSO_MAX_SEGS;
7432         dev->gso_min_segs = 0;
7433
7434         INIT_LIST_HEAD(&dev->napi_list);
7435         INIT_LIST_HEAD(&dev->unreg_list);
7436         INIT_LIST_HEAD(&dev->close_list);
7437         INIT_LIST_HEAD(&dev->link_watch_list);
7438         INIT_LIST_HEAD(&dev->adj_list.upper);
7439         INIT_LIST_HEAD(&dev->adj_list.lower);
7440         INIT_LIST_HEAD(&dev->all_adj_list.upper);
7441         INIT_LIST_HEAD(&dev->all_adj_list.lower);
7442         INIT_LIST_HEAD(&dev->ptype_all);
7443         INIT_LIST_HEAD(&dev->ptype_specific);
7444         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
7445         setup(dev);
7446
7447         if (!dev->tx_queue_len) {
7448                 dev->priv_flags |= IFF_NO_QUEUE;
7449                 dev->tx_queue_len = 1;
7450         }
7451
7452         dev->num_tx_queues = txqs;
7453         dev->real_num_tx_queues = txqs;
7454         if (netif_alloc_netdev_queues(dev))
7455                 goto free_all;
7456
7457 #ifdef CONFIG_SYSFS
7458         dev->num_rx_queues = rxqs;
7459         dev->real_num_rx_queues = rxqs;
7460         if (netif_alloc_rx_queues(dev))
7461                 goto free_all;
7462 #endif
7463
7464         strcpy(dev->name, name);
7465         dev->name_assign_type = name_assign_type;
7466         dev->group = INIT_NETDEV_GROUP;
7467         if (!dev->ethtool_ops)
7468                 dev->ethtool_ops = &default_ethtool_ops;
7469
7470         nf_hook_ingress_init(dev);
7471
7472         return dev;
7473
7474 free_all:
7475         free_netdev(dev);
7476         return NULL;
7477
7478 free_pcpu:
7479         free_percpu(dev->pcpu_refcnt);
7480 free_dev:
7481         netdev_freemem(dev);
7482         return NULL;
7483 }
7484 EXPORT_SYMBOL(alloc_netdev_mqs);
7485
7486 /**
7487  *      free_netdev - free network device
7488  *      @dev: device
7489  *
7490  *      This function does the last stage of destroying an allocated device
7491  *      interface. The reference to the device object is released.
7492  *      If this is the last reference then it will be freed.
7493  *      Must be called in process context.
7494  */
7495 void free_netdev(struct net_device *dev)
7496 {
7497         struct napi_struct *p, *n;
7498
7499         might_sleep();
7500         netif_free_tx_queues(dev);
7501 #ifdef CONFIG_SYSFS
7502         kvfree(dev->_rx);
7503 #endif
7504
7505         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7506
7507         /* Flush device addresses */
7508         dev_addr_flush(dev);
7509
7510         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7511                 netif_napi_del(p);
7512
7513         free_percpu(dev->pcpu_refcnt);
7514         dev->pcpu_refcnt = NULL;
7515
7516         /*  Compatibility with error handling in drivers */
7517         if (dev->reg_state == NETREG_UNINITIALIZED) {
7518                 netdev_freemem(dev);
7519                 return;
7520         }
7521
7522         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7523         dev->reg_state = NETREG_RELEASED;
7524
7525         /* will free via device release */
7526         put_device(&dev->dev);
7527 }
7528 EXPORT_SYMBOL(free_netdev);
7529
7530 /**
7531  *      synchronize_net -  Synchronize with packet receive processing
7532  *
7533  *      Wait for packets currently being received to be done.
7534  *      Does not block later packets from starting.
7535  */
7536 void synchronize_net(void)
7537 {
7538         might_sleep();
7539         if (rtnl_is_locked())
7540                 synchronize_rcu_expedited();
7541         else
7542                 synchronize_rcu();
7543 }
7544 EXPORT_SYMBOL(synchronize_net);
7545
7546 /**
7547  *      unregister_netdevice_queue - remove device from the kernel
7548  *      @dev: device
7549  *      @head: list
7550  *
7551  *      This function shuts down a device interface and removes it
7552  *      from the kernel tables.
7553  *      If head not NULL, device is queued to be unregistered later.
7554  *
7555  *      Callers must hold the rtnl semaphore.  You may want
7556  *      unregister_netdev() instead of this.
7557  */
7558
7559 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
7560 {
7561         ASSERT_RTNL();
7562
7563         if (head) {
7564                 list_move_tail(&dev->unreg_list, head);
7565         } else {
7566                 rollback_registered(dev);
7567                 /* Finish processing unregister after unlock */
7568                 net_set_todo(dev);
7569         }
7570 }
7571 EXPORT_SYMBOL(unregister_netdevice_queue);
7572
7573 /**
7574  *      unregister_netdevice_many - unregister many devices
7575  *      @head: list of devices
7576  *
7577  *  Note: As most callers use a stack allocated list_head,
7578  *  we force a list_del() to make sure stack wont be corrupted later.
7579  */
7580 void unregister_netdevice_many(struct list_head *head)
7581 {
7582         struct net_device *dev;
7583
7584         if (!list_empty(head)) {
7585                 rollback_registered_many(head);
7586                 list_for_each_entry(dev, head, unreg_list)
7587                         net_set_todo(dev);
7588                 list_del(head);
7589         }
7590 }
7591 EXPORT_SYMBOL(unregister_netdevice_many);
7592
7593 /**
7594  *      unregister_netdev - remove device from the kernel
7595  *      @dev: device
7596  *
7597  *      This function shuts down a device interface and removes it
7598  *      from the kernel tables.
7599  *
7600  *      This is just a wrapper for unregister_netdevice that takes
7601  *      the rtnl semaphore.  In general you want to use this and not
7602  *      unregister_netdevice.
7603  */
7604 void unregister_netdev(struct net_device *dev)
7605 {
7606         rtnl_lock();
7607         unregister_netdevice(dev);
7608         rtnl_unlock();
7609 }
7610 EXPORT_SYMBOL(unregister_netdev);
7611
7612 /**
7613  *      dev_change_net_namespace - move device to different nethost namespace
7614  *      @dev: device
7615  *      @net: network namespace
7616  *      @pat: If not NULL name pattern to try if the current device name
7617  *            is already taken in the destination network namespace.
7618  *
7619  *      This function shuts down a device interface and moves it
7620  *      to a new network namespace. On success 0 is returned, on
7621  *      a failure a netagive errno code is returned.
7622  *
7623  *      Callers must hold the rtnl semaphore.
7624  */
7625
7626 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7627 {
7628         int err;
7629
7630         ASSERT_RTNL();
7631
7632         /* Don't allow namespace local devices to be moved. */
7633         err = -EINVAL;
7634         if (dev->features & NETIF_F_NETNS_LOCAL)
7635                 goto out;
7636
7637         /* Ensure the device has been registrered */
7638         if (dev->reg_state != NETREG_REGISTERED)
7639                 goto out;
7640
7641         /* Get out if there is nothing todo */
7642         err = 0;
7643         if (net_eq(dev_net(dev), net))
7644                 goto out;
7645
7646         /* Pick the destination device name, and ensure
7647          * we can use it in the destination network namespace.
7648          */
7649         err = -EEXIST;
7650         if (__dev_get_by_name(net, dev->name)) {
7651                 /* We get here if we can't use the current device name */
7652                 if (!pat)
7653                         goto out;
7654                 if (dev_get_valid_name(net, dev, pat) < 0)
7655                         goto out;
7656         }
7657
7658         /*
7659          * And now a mini version of register_netdevice unregister_netdevice.
7660          */
7661
7662         /* If device is running close it first. */
7663         dev_close(dev);
7664
7665         /* And unlink it from device chain */
7666         err = -ENODEV;
7667         unlist_netdevice(dev);
7668
7669         synchronize_net();
7670
7671         /* Shutdown queueing discipline. */
7672         dev_shutdown(dev);
7673
7674         /* Notify protocols, that we are about to destroy
7675            this device. They should clean all the things.
7676
7677            Note that dev->reg_state stays at NETREG_REGISTERED.
7678            This is wanted because this way 8021q and macvlan know
7679            the device is just moving and can keep their slaves up.
7680         */
7681         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7682         rcu_barrier();
7683         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7684         rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7685
7686         /*
7687          *      Flush the unicast and multicast chains
7688          */
7689         dev_uc_flush(dev);
7690         dev_mc_flush(dev);
7691
7692         /* Send a netdev-removed uevent to the old namespace */
7693         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7694         netdev_adjacent_del_links(dev);
7695
7696         /* Actually switch the network namespace */
7697         dev_net_set(dev, net);
7698
7699         /* If there is an ifindex conflict assign a new one */
7700         if (__dev_get_by_index(net, dev->ifindex))
7701                 dev->ifindex = dev_new_index(net);
7702
7703         /* Send a netdev-add uevent to the new namespace */
7704         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7705         netdev_adjacent_add_links(dev);
7706
7707         /* Fixup kobjects */
7708         err = device_rename(&dev->dev, dev->name);
7709         WARN_ON(err);
7710
7711         /* Add the device back in the hashes */
7712         list_netdevice(dev);
7713
7714         /* Notify protocols, that a new device appeared. */
7715         call_netdevice_notifiers(NETDEV_REGISTER, dev);
7716
7717         /*
7718          *      Prevent userspace races by waiting until the network
7719          *      device is fully setup before sending notifications.
7720          */
7721         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7722
7723         synchronize_net();
7724         err = 0;
7725 out:
7726         return err;
7727 }
7728 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
7729
7730 static int dev_cpu_callback(struct notifier_block *nfb,
7731                             unsigned long action,
7732                             void *ocpu)
7733 {
7734         struct sk_buff **list_skb;
7735         struct sk_buff *skb;
7736         unsigned int cpu, oldcpu = (unsigned long)ocpu;
7737         struct softnet_data *sd, *oldsd;
7738
7739         if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
7740                 return NOTIFY_OK;
7741
7742         local_irq_disable();
7743         cpu = smp_processor_id();
7744         sd = &per_cpu(softnet_data, cpu);
7745         oldsd = &per_cpu(softnet_data, oldcpu);
7746
7747         /* Find end of our completion_queue. */
7748         list_skb = &sd->completion_queue;
7749         while (*list_skb)
7750                 list_skb = &(*list_skb)->next;
7751         /* Append completion queue from offline CPU. */
7752         *list_skb = oldsd->completion_queue;
7753         oldsd->completion_queue = NULL;
7754
7755         /* Append output queue from offline CPU. */
7756         if (oldsd->output_queue) {
7757                 *sd->output_queue_tailp = oldsd->output_queue;
7758                 sd->output_queue_tailp = oldsd->output_queue_tailp;
7759                 oldsd->output_queue = NULL;
7760                 oldsd->output_queue_tailp = &oldsd->output_queue;
7761         }
7762         /* Append NAPI poll list from offline CPU, with one exception :
7763          * process_backlog() must be called by cpu owning percpu backlog.
7764          * We properly handle process_queue & input_pkt_queue later.
7765          */
7766         while (!list_empty(&oldsd->poll_list)) {
7767                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7768                                                             struct napi_struct,
7769                                                             poll_list);
7770
7771                 list_del_init(&napi->poll_list);
7772                 if (napi->poll == process_backlog)
7773                         napi->state = 0;
7774                 else
7775                         ____napi_schedule(sd, napi);
7776         }
7777
7778         raise_softirq_irqoff(NET_TX_SOFTIRQ);
7779         local_irq_enable();
7780
7781         /* Process offline CPU's input_pkt_queue */
7782         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
7783                 netif_rx_ni(skb);
7784                 input_queue_head_incr(oldsd);
7785         }
7786         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
7787                 netif_rx_ni(skb);
7788                 input_queue_head_incr(oldsd);
7789         }
7790
7791         return NOTIFY_OK;
7792 }
7793
7794
7795 /**
7796  *      netdev_increment_features - increment feature set by one
7797  *      @all: current feature set
7798  *      @one: new feature set
7799  *      @mask: mask feature set
7800  *
7801  *      Computes a new feature set after adding a device with feature set
7802  *      @one to the master device with current feature set @all.  Will not
7803  *      enable anything that is off in @mask. Returns the new feature set.
7804  */
7805 netdev_features_t netdev_increment_features(netdev_features_t all,
7806         netdev_features_t one, netdev_features_t mask)
7807 {
7808         if (mask & NETIF_F_HW_CSUM)
7809                 mask |= NETIF_F_CSUM_MASK;
7810         mask |= NETIF_F_VLAN_CHALLENGED;
7811
7812         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
7813         all &= one | ~NETIF_F_ALL_FOR_ALL;
7814
7815         /* If one device supports hw checksumming, set for all. */
7816         if (all & NETIF_F_HW_CSUM)
7817                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
7818
7819         return all;
7820 }
7821 EXPORT_SYMBOL(netdev_increment_features);
7822
7823 static struct hlist_head * __net_init netdev_create_hash(void)
7824 {
7825         int i;
7826         struct hlist_head *hash;
7827
7828         hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7829         if (hash != NULL)
7830                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
7831                         INIT_HLIST_HEAD(&hash[i]);
7832
7833         return hash;
7834 }
7835
7836 /* Initialize per network namespace state */
7837 static int __net_init netdev_init(struct net *net)
7838 {
7839         if (net != &init_net)
7840                 INIT_LIST_HEAD(&net->dev_base_head);
7841
7842         net->dev_name_head = netdev_create_hash();
7843         if (net->dev_name_head == NULL)
7844                 goto err_name;
7845
7846         net->dev_index_head = netdev_create_hash();
7847         if (net->dev_index_head == NULL)
7848                 goto err_idx;
7849
7850         return 0;
7851
7852 err_idx:
7853         kfree(net->dev_name_head);
7854 err_name:
7855         return -ENOMEM;
7856 }
7857
7858 /**
7859  *      netdev_drivername - network driver for the device
7860  *      @dev: network device
7861  *
7862  *      Determine network driver for device.
7863  */
7864 const char *netdev_drivername(const struct net_device *dev)
7865 {
7866         const struct device_driver *driver;
7867         const struct device *parent;
7868         const char *empty = "";
7869
7870         parent = dev->dev.parent;
7871         if (!parent)
7872                 return empty;
7873
7874         driver = parent->driver;
7875         if (driver && driver->name)
7876                 return driver->name;
7877         return empty;
7878 }
7879
7880 static void __netdev_printk(const char *level, const struct net_device *dev,
7881                             struct va_format *vaf)
7882 {
7883         if (dev && dev->dev.parent) {
7884                 dev_printk_emit(level[1] - '0',
7885                                 dev->dev.parent,
7886                                 "%s %s %s%s: %pV",
7887                                 dev_driver_string(dev->dev.parent),
7888                                 dev_name(dev->dev.parent),
7889                                 netdev_name(dev), netdev_reg_state(dev),
7890                                 vaf);
7891         } else if (dev) {
7892                 printk("%s%s%s: %pV",
7893                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
7894         } else {
7895                 printk("%s(NULL net_device): %pV", level, vaf);
7896         }
7897 }
7898
7899 void netdev_printk(const char *level, const struct net_device *dev,
7900                    const char *format, ...)
7901 {
7902         struct va_format vaf;
7903         va_list args;
7904
7905         va_start(args, format);
7906
7907         vaf.fmt = format;
7908         vaf.va = &args;
7909
7910         __netdev_printk(level, dev, &vaf);
7911
7912         va_end(args);
7913 }
7914 EXPORT_SYMBOL(netdev_printk);
7915
7916 #define define_netdev_printk_level(func, level)                 \
7917 void func(const struct net_device *dev, const char *fmt, ...)   \
7918 {                                                               \
7919         struct va_format vaf;                                   \
7920         va_list args;                                           \
7921                                                                 \
7922         va_start(args, fmt);                                    \
7923                                                                 \
7924         vaf.fmt = fmt;                                          \
7925         vaf.va = &args;                                         \
7926                                                                 \
7927         __netdev_printk(level, dev, &vaf);                      \
7928                                                                 \
7929         va_end(args);                                           \
7930 }                                                               \
7931 EXPORT_SYMBOL(func);
7932
7933 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7934 define_netdev_printk_level(netdev_alert, KERN_ALERT);
7935 define_netdev_printk_level(netdev_crit, KERN_CRIT);
7936 define_netdev_printk_level(netdev_err, KERN_ERR);
7937 define_netdev_printk_level(netdev_warn, KERN_WARNING);
7938 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7939 define_netdev_printk_level(netdev_info, KERN_INFO);
7940
7941 static void __net_exit netdev_exit(struct net *net)
7942 {
7943         kfree(net->dev_name_head);
7944         kfree(net->dev_index_head);
7945 }
7946
7947 static struct pernet_operations __net_initdata netdev_net_ops = {
7948         .init = netdev_init,
7949         .exit = netdev_exit,
7950 };
7951
7952 static void __net_exit default_device_exit(struct net *net)
7953 {
7954         struct net_device *dev, *aux;
7955         /*
7956          * Push all migratable network devices back to the
7957          * initial network namespace
7958          */
7959         rtnl_lock();
7960         for_each_netdev_safe(net, dev, aux) {
7961                 int err;
7962                 char fb_name[IFNAMSIZ];
7963
7964                 /* Ignore unmoveable devices (i.e. loopback) */
7965                 if (dev->features & NETIF_F_NETNS_LOCAL)
7966                         continue;
7967
7968                 /* Leave virtual devices for the generic cleanup */
7969                 if (dev->rtnl_link_ops)
7970                         continue;
7971
7972                 /* Push remaining network devices to init_net */
7973                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7974                 err = dev_change_net_namespace(dev, &init_net, fb_name);
7975                 if (err) {
7976                         pr_emerg("%s: failed to move %s to init_net: %d\n",
7977                                  __func__, dev->name, err);
7978                         BUG();
7979                 }
7980         }
7981         rtnl_unlock();
7982 }
7983
7984 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7985 {
7986         /* Return with the rtnl_lock held when there are no network
7987          * devices unregistering in any network namespace in net_list.
7988          */
7989         struct net *net;
7990         bool unregistering;
7991         DEFINE_WAIT_FUNC(wait, woken_wake_function);
7992
7993         add_wait_queue(&netdev_unregistering_wq, &wait);
7994         for (;;) {
7995                 unregistering = false;
7996                 rtnl_lock();
7997                 list_for_each_entry(net, net_list, exit_list) {
7998                         if (net->dev_unreg_count > 0) {
7999                                 unregistering = true;
8000                                 break;
8001                         }
8002                 }
8003                 if (!unregistering)
8004                         break;
8005                 __rtnl_unlock();
8006
8007                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8008         }
8009         remove_wait_queue(&netdev_unregistering_wq, &wait);
8010 }
8011
8012 static void __net_exit default_device_exit_batch(struct list_head *net_list)
8013 {
8014         /* At exit all network devices most be removed from a network
8015          * namespace.  Do this in the reverse order of registration.
8016          * Do this across as many network namespaces as possible to
8017          * improve batching efficiency.
8018          */
8019         struct net_device *dev;
8020         struct net *net;
8021         LIST_HEAD(dev_kill_list);
8022
8023         /* To prevent network device cleanup code from dereferencing
8024          * loopback devices or network devices that have been freed
8025          * wait here for all pending unregistrations to complete,
8026          * before unregistring the loopback device and allowing the
8027          * network namespace be freed.
8028          *
8029          * The netdev todo list containing all network devices
8030          * unregistrations that happen in default_device_exit_batch
8031          * will run in the rtnl_unlock() at the end of
8032          * default_device_exit_batch.
8033          */
8034         rtnl_lock_unregistering(net_list);
8035         list_for_each_entry(net, net_list, exit_list) {
8036                 for_each_netdev_reverse(net, dev) {
8037                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8038                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8039                         else
8040                                 unregister_netdevice_queue(dev, &dev_kill_list);
8041                 }
8042         }
8043         unregister_netdevice_many(&dev_kill_list);
8044         rtnl_unlock();
8045 }
8046
8047 static struct pernet_operations __net_initdata default_device_ops = {
8048         .exit = default_device_exit,
8049         .exit_batch = default_device_exit_batch,
8050 };
8051
8052 /*
8053  *      Initialize the DEV module. At boot time this walks the device list and
8054  *      unhooks any devices that fail to initialise (normally hardware not
8055  *      present) and leaves us with a valid list of present and active devices.
8056  *
8057  */
8058
8059 /*
8060  *       This is called single threaded during boot, so no need
8061  *       to take the rtnl semaphore.
8062  */
8063 static int __init net_dev_init(void)
8064 {
8065         int i, rc = -ENOMEM;
8066
8067         BUG_ON(!dev_boot_phase);
8068
8069         if (dev_proc_init())
8070                 goto out;
8071
8072         if (netdev_kobject_init())
8073                 goto out;
8074
8075         INIT_LIST_HEAD(&ptype_all);
8076         for (i = 0; i < PTYPE_HASH_SIZE; i++)
8077                 INIT_LIST_HEAD(&ptype_base[i]);
8078
8079         INIT_LIST_HEAD(&offload_base);
8080
8081         if (register_pernet_subsys(&netdev_net_ops))
8082                 goto out;
8083
8084         /*
8085          *      Initialise the packet receive queues.
8086          */
8087
8088         for_each_possible_cpu(i) {
8089                 struct softnet_data *sd = &per_cpu(softnet_data, i);
8090
8091                 skb_queue_head_init(&sd->input_pkt_queue);
8092                 skb_queue_head_init(&sd->process_queue);
8093                 INIT_LIST_HEAD(&sd->poll_list);
8094                 sd->output_queue_tailp = &sd->output_queue;
8095 #ifdef CONFIG_RPS
8096                 sd->csd.func = rps_trigger_softirq;
8097                 sd->csd.info = sd;
8098                 sd->cpu = i;
8099 #endif
8100
8101                 sd->backlog.poll = process_backlog;
8102                 sd->backlog.weight = weight_p;
8103         }
8104
8105         dev_boot_phase = 0;
8106
8107         /* The loopback device is special if any other network devices
8108          * is present in a network namespace the loopback device must
8109          * be present. Since we now dynamically allocate and free the
8110          * loopback device ensure this invariant is maintained by
8111          * keeping the loopback device as the first device on the
8112          * list of network devices.  Ensuring the loopback devices
8113          * is the first device that appears and the last network device
8114          * that disappears.
8115          */
8116         if (register_pernet_device(&loopback_net_ops))
8117                 goto out;
8118
8119         if (register_pernet_device(&default_device_ops))
8120                 goto out;
8121
8122         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8123         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
8124
8125         hotcpu_notifier(dev_cpu_callback, 0);
8126         dst_subsys_init();
8127         rc = 0;
8128 out:
8129         return rc;
8130 }
8131
8132 subsys_initcall(net_dev_init);