280efe5f19c1c86385bf8e15c146d8ac31135198
[cascardo/linux.git] / net / ipv4 / tcp_ipv4.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Implementation of the Transmission Control Protocol(TCP).
7  *
8  *              IPv4 specific functions
9  *
10  *
11  *              code split from:
12  *              linux/ipv4/tcp.c
13  *              linux/ipv4/tcp_input.c
14  *              linux/ipv4/tcp_output.c
15  *
16  *              See tcp.c for author information
17  *
18  *      This program is free software; you can redistribute it and/or
19  *      modify it under the terms of the GNU General Public License
20  *      as published by the Free Software Foundation; either version
21  *      2 of the License, or (at your option) any later version.
22  */
23
24 /*
25  * Changes:
26  *              David S. Miller :       New socket lookup architecture.
27  *                                      This code is dedicated to John Dyson.
28  *              David S. Miller :       Change semantics of established hash,
29  *                                      half is devoted to TIME_WAIT sockets
30  *                                      and the rest go in the other half.
31  *              Andi Kleen :            Add support for syncookies and fixed
32  *                                      some bugs: ip options weren't passed to
33  *                                      the TCP layer, missed a check for an
34  *                                      ACK bit.
35  *              Andi Kleen :            Implemented fast path mtu discovery.
36  *                                      Fixed many serious bugs in the
37  *                                      request_sock handling and moved
38  *                                      most of it into the af independent code.
39  *                                      Added tail drop and some other bugfixes.
40  *                                      Added new listen semantics.
41  *              Mike McLagan    :       Routing by source
42  *      Juan Jose Ciarlante:            ip_dynaddr bits
43  *              Andi Kleen:             various fixes.
44  *      Vitaly E. Lavrov        :       Transparent proxy revived after year
45  *                                      coma.
46  *      Andi Kleen              :       Fix new listen.
47  *      Andi Kleen              :       Fix accept error reporting.
48  *      YOSHIFUJI Hideaki @USAGI and:   Support IPV6_V6ONLY socket option, which
49  *      Alexey Kuznetsov                allow both IPv4 and IPv6 sockets to bind
50  *                                      a single port at the same time.
51  */
52
53 #define pr_fmt(fmt) "TCP: " fmt
54
55 #include <linux/bottom_half.h>
56 #include <linux/types.h>
57 #include <linux/fcntl.h>
58 #include <linux/module.h>
59 #include <linux/random.h>
60 #include <linux/cache.h>
61 #include <linux/jhash.h>
62 #include <linux/init.h>
63 #include <linux/times.h>
64 #include <linux/slab.h>
65
66 #include <net/net_namespace.h>
67 #include <net/icmp.h>
68 #include <net/inet_hashtables.h>
69 #include <net/tcp.h>
70 #include <net/transp_v6.h>
71 #include <net/ipv6.h>
72 #include <net/inet_common.h>
73 #include <net/timewait_sock.h>
74 #include <net/xfrm.h>
75 #include <net/netdma.h>
76 #include <net/secure_seq.h>
77 #include <net/tcp_memcontrol.h>
78 #include <net/busy_poll.h>
79
80 #include <linux/inet.h>
81 #include <linux/ipv6.h>
82 #include <linux/stddef.h>
83 #include <linux/proc_fs.h>
84 #include <linux/seq_file.h>
85
86 #include <linux/crypto.h>
87 #include <linux/scatterlist.h>
88
89 int sysctl_tcp_tw_reuse __read_mostly;
90 int sysctl_tcp_low_latency __read_mostly;
91 EXPORT_SYMBOL(sysctl_tcp_low_latency);
92
93
94 #ifdef CONFIG_TCP_MD5SIG
95 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
96                                __be32 daddr, __be32 saddr, const struct tcphdr *th);
97 #endif
98
99 struct inet_hashinfo tcp_hashinfo;
100 EXPORT_SYMBOL(tcp_hashinfo);
101
102 static inline __u32 tcp_v4_init_sequence(const struct sk_buff *skb)
103 {
104         return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
105                                           ip_hdr(skb)->saddr,
106                                           tcp_hdr(skb)->dest,
107                                           tcp_hdr(skb)->source);
108 }
109
110 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
111 {
112         const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
113         struct tcp_sock *tp = tcp_sk(sk);
114
115         /* With PAWS, it is safe from the viewpoint
116            of data integrity. Even without PAWS it is safe provided sequence
117            spaces do not overlap i.e. at data rates <= 80Mbit/sec.
118
119            Actually, the idea is close to VJ's one, only timestamp cache is
120            held not per host, but per port pair and TW bucket is used as state
121            holder.
122
123            If TW bucket has been already destroyed we fall back to VJ's scheme
124            and use initial timestamp retrieved from peer table.
125          */
126         if (tcptw->tw_ts_recent_stamp &&
127             (twp == NULL || (sysctl_tcp_tw_reuse &&
128                              get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
129                 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
130                 if (tp->write_seq == 0)
131                         tp->write_seq = 1;
132                 tp->rx_opt.ts_recent       = tcptw->tw_ts_recent;
133                 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
134                 sock_hold(sktw);
135                 return 1;
136         }
137
138         return 0;
139 }
140 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
141
142 /* This will initiate an outgoing connection. */
143 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
144 {
145         struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
146         struct inet_sock *inet = inet_sk(sk);
147         struct tcp_sock *tp = tcp_sk(sk);
148         __be16 orig_sport, orig_dport;
149         __be32 daddr, nexthop;
150         struct flowi4 *fl4;
151         struct rtable *rt;
152         int err;
153         struct ip_options_rcu *inet_opt;
154
155         if (addr_len < sizeof(struct sockaddr_in))
156                 return -EINVAL;
157
158         if (usin->sin_family != AF_INET)
159                 return -EAFNOSUPPORT;
160
161         nexthop = daddr = usin->sin_addr.s_addr;
162         inet_opt = rcu_dereference_protected(inet->inet_opt,
163                                              sock_owned_by_user(sk));
164         if (inet_opt && inet_opt->opt.srr) {
165                 if (!daddr)
166                         return -EINVAL;
167                 nexthop = inet_opt->opt.faddr;
168         }
169
170         orig_sport = inet->inet_sport;
171         orig_dport = usin->sin_port;
172         fl4 = &inet->cork.fl.u.ip4;
173         rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
174                               RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
175                               IPPROTO_TCP,
176                               orig_sport, orig_dport, sk, true);
177         if (IS_ERR(rt)) {
178                 err = PTR_ERR(rt);
179                 if (err == -ENETUNREACH)
180                         IP_INC_STATS_BH(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
181                 return err;
182         }
183
184         if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
185                 ip_rt_put(rt);
186                 return -ENETUNREACH;
187         }
188
189         if (!inet_opt || !inet_opt->opt.srr)
190                 daddr = fl4->daddr;
191
192         if (!inet->inet_saddr)
193                 inet->inet_saddr = fl4->saddr;
194         inet->inet_rcv_saddr = inet->inet_saddr;
195
196         if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
197                 /* Reset inherited state */
198                 tp->rx_opt.ts_recent       = 0;
199                 tp->rx_opt.ts_recent_stamp = 0;
200                 if (likely(!tp->repair))
201                         tp->write_seq      = 0;
202         }
203
204         if (tcp_death_row.sysctl_tw_recycle &&
205             !tp->rx_opt.ts_recent_stamp && fl4->daddr == daddr)
206                 tcp_fetch_timewait_stamp(sk, &rt->dst);
207
208         inet->inet_dport = usin->sin_port;
209         inet->inet_daddr = daddr;
210
211         inet_csk(sk)->icsk_ext_hdr_len = 0;
212         if (inet_opt)
213                 inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
214
215         tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
216
217         /* Socket identity is still unknown (sport may be zero).
218          * However we set state to SYN-SENT and not releasing socket
219          * lock select source port, enter ourselves into the hash tables and
220          * complete initialization after this.
221          */
222         tcp_set_state(sk, TCP_SYN_SENT);
223         err = inet_hash_connect(&tcp_death_row, sk);
224         if (err)
225                 goto failure;
226
227         rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
228                                inet->inet_sport, inet->inet_dport, sk);
229         if (IS_ERR(rt)) {
230                 err = PTR_ERR(rt);
231                 rt = NULL;
232                 goto failure;
233         }
234         /* OK, now commit destination to socket.  */
235         sk->sk_gso_type = SKB_GSO_TCPV4;
236         sk_setup_caps(sk, &rt->dst);
237
238         if (!tp->write_seq && likely(!tp->repair))
239                 tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr,
240                                                            inet->inet_daddr,
241                                                            inet->inet_sport,
242                                                            usin->sin_port);
243
244         inet->inet_id = tp->write_seq ^ jiffies;
245
246         err = tcp_connect(sk);
247
248         rt = NULL;
249         if (err)
250                 goto failure;
251
252         return 0;
253
254 failure:
255         /*
256          * This unhashes the socket and releases the local port,
257          * if necessary.
258          */
259         tcp_set_state(sk, TCP_CLOSE);
260         ip_rt_put(rt);
261         sk->sk_route_caps = 0;
262         inet->inet_dport = 0;
263         return err;
264 }
265 EXPORT_SYMBOL(tcp_v4_connect);
266
267 /*
268  * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191.
269  * It can be called through tcp_release_cb() if socket was owned by user
270  * at the time tcp_v4_err() was called to handle ICMP message.
271  */
272 static void tcp_v4_mtu_reduced(struct sock *sk)
273 {
274         struct dst_entry *dst;
275         struct inet_sock *inet = inet_sk(sk);
276         u32 mtu = tcp_sk(sk)->mtu_info;
277
278         dst = inet_csk_update_pmtu(sk, mtu);
279         if (!dst)
280                 return;
281
282         /* Something is about to be wrong... Remember soft error
283          * for the case, if this connection will not able to recover.
284          */
285         if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
286                 sk->sk_err_soft = EMSGSIZE;
287
288         mtu = dst_mtu(dst);
289
290         if (inet->pmtudisc != IP_PMTUDISC_DONT &&
291             inet_csk(sk)->icsk_pmtu_cookie > mtu) {
292                 tcp_sync_mss(sk, mtu);
293
294                 /* Resend the TCP packet because it's
295                  * clear that the old packet has been
296                  * dropped. This is the new "fast" path mtu
297                  * discovery.
298                  */
299                 tcp_simple_retransmit(sk);
300         } /* else let the usual retransmit timer handle it */
301 }
302
303 static void do_redirect(struct sk_buff *skb, struct sock *sk)
304 {
305         struct dst_entry *dst = __sk_dst_check(sk, 0);
306
307         if (dst)
308                 dst->ops->redirect(dst, sk, skb);
309 }
310
311 /*
312  * This routine is called by the ICMP module when it gets some
313  * sort of error condition.  If err < 0 then the socket should
314  * be closed and the error returned to the user.  If err > 0
315  * it's just the icmp type << 8 | icmp code.  After adjustment
316  * header points to the first 8 bytes of the tcp header.  We need
317  * to find the appropriate port.
318  *
319  * The locking strategy used here is very "optimistic". When
320  * someone else accesses the socket the ICMP is just dropped
321  * and for some paths there is no check at all.
322  * A more general error queue to queue errors for later handling
323  * is probably better.
324  *
325  */
326
327 void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
328 {
329         const struct iphdr *iph = (const struct iphdr *)icmp_skb->data;
330         struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
331         struct inet_connection_sock *icsk;
332         struct tcp_sock *tp;
333         struct inet_sock *inet;
334         const int type = icmp_hdr(icmp_skb)->type;
335         const int code = icmp_hdr(icmp_skb)->code;
336         struct sock *sk;
337         struct sk_buff *skb;
338         struct request_sock *req;
339         __u32 seq;
340         __u32 remaining;
341         int err;
342         struct net *net = dev_net(icmp_skb->dev);
343
344         if (icmp_skb->len < (iph->ihl << 2) + 8) {
345                 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
346                 return;
347         }
348
349         sk = inet_lookup(net, &tcp_hashinfo, iph->daddr, th->dest,
350                         iph->saddr, th->source, inet_iif(icmp_skb));
351         if (!sk) {
352                 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
353                 return;
354         }
355         if (sk->sk_state == TCP_TIME_WAIT) {
356                 inet_twsk_put(inet_twsk(sk));
357                 return;
358         }
359
360         bh_lock_sock(sk);
361         /* If too many ICMPs get dropped on busy
362          * servers this needs to be solved differently.
363          * We do take care of PMTU discovery (RFC1191) special case :
364          * we can receive locally generated ICMP messages while socket is held.
365          */
366         if (sock_owned_by_user(sk)) {
367                 if (!(type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED))
368                         NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
369         }
370         if (sk->sk_state == TCP_CLOSE)
371                 goto out;
372
373         if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
374                 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
375                 goto out;
376         }
377
378         icsk = inet_csk(sk);
379         tp = tcp_sk(sk);
380         req = tp->fastopen_rsk;
381         seq = ntohl(th->seq);
382         if (sk->sk_state != TCP_LISTEN &&
383             !between(seq, tp->snd_una, tp->snd_nxt) &&
384             (req == NULL || seq != tcp_rsk(req)->snt_isn)) {
385                 /* For a Fast Open socket, allow seq to be snt_isn. */
386                 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
387                 goto out;
388         }
389
390         switch (type) {
391         case ICMP_REDIRECT:
392                 do_redirect(icmp_skb, sk);
393                 goto out;
394         case ICMP_SOURCE_QUENCH:
395                 /* Just silently ignore these. */
396                 goto out;
397         case ICMP_PARAMETERPROB:
398                 err = EPROTO;
399                 break;
400         case ICMP_DEST_UNREACH:
401                 if (code > NR_ICMP_UNREACH)
402                         goto out;
403
404                 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
405                         /* We are not interested in TCP_LISTEN and open_requests
406                          * (SYN-ACKs send out by Linux are always <576bytes so
407                          * they should go through unfragmented).
408                          */
409                         if (sk->sk_state == TCP_LISTEN)
410                                 goto out;
411
412                         tp->mtu_info = info;
413                         if (!sock_owned_by_user(sk)) {
414                                 tcp_v4_mtu_reduced(sk);
415                         } else {
416                                 if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &tp->tsq_flags))
417                                         sock_hold(sk);
418                         }
419                         goto out;
420                 }
421
422                 err = icmp_err_convert[code].errno;
423                 /* check if icmp_skb allows revert of backoff
424                  * (see draft-zimmermann-tcp-lcd) */
425                 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
426                         break;
427                 if (seq != tp->snd_una  || !icsk->icsk_retransmits ||
428                     !icsk->icsk_backoff)
429                         break;
430
431                 /* XXX (TFO) - revisit the following logic for TFO */
432
433                 if (sock_owned_by_user(sk))
434                         break;
435
436                 icsk->icsk_backoff--;
437                 inet_csk(sk)->icsk_rto = (tp->srtt ? __tcp_set_rto(tp) :
438                         TCP_TIMEOUT_INIT) << icsk->icsk_backoff;
439                 tcp_bound_rto(sk);
440
441                 skb = tcp_write_queue_head(sk);
442                 BUG_ON(!skb);
443
444                 remaining = icsk->icsk_rto - min(icsk->icsk_rto,
445                                 tcp_time_stamp - TCP_SKB_CB(skb)->when);
446
447                 if (remaining) {
448                         inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
449                                                   remaining, TCP_RTO_MAX);
450                 } else {
451                         /* RTO revert clocked out retransmission.
452                          * Will retransmit now */
453                         tcp_retransmit_timer(sk);
454                 }
455
456                 break;
457         case ICMP_TIME_EXCEEDED:
458                 err = EHOSTUNREACH;
459                 break;
460         default:
461                 goto out;
462         }
463
464         /* XXX (TFO) - if it's a TFO socket and has been accepted, rather
465          * than following the TCP_SYN_RECV case and closing the socket,
466          * we ignore the ICMP error and keep trying like a fully established
467          * socket. Is this the right thing to do?
468          */
469         if (req && req->sk == NULL)
470                 goto out;
471
472         switch (sk->sk_state) {
473                 struct request_sock *req, **prev;
474         case TCP_LISTEN:
475                 if (sock_owned_by_user(sk))
476                         goto out;
477
478                 req = inet_csk_search_req(sk, &prev, th->dest,
479                                           iph->daddr, iph->saddr);
480                 if (!req)
481                         goto out;
482
483                 /* ICMPs are not backlogged, hence we cannot get
484                    an established socket here.
485                  */
486                 WARN_ON(req->sk);
487
488                 if (seq != tcp_rsk(req)->snt_isn) {
489                         NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
490                         goto out;
491                 }
492
493                 /*
494                  * Still in SYN_RECV, just remove it silently.
495                  * There is no good way to pass the error to the newly
496                  * created socket, and POSIX does not want network
497                  * errors returned from accept().
498                  */
499                 inet_csk_reqsk_queue_drop(sk, req, prev);
500                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
501                 goto out;
502
503         case TCP_SYN_SENT:
504         case TCP_SYN_RECV:  /* Cannot happen.
505                                It can f.e. if SYNs crossed,
506                                or Fast Open.
507                              */
508                 if (!sock_owned_by_user(sk)) {
509                         sk->sk_err = err;
510
511                         sk->sk_error_report(sk);
512
513                         tcp_done(sk);
514                 } else {
515                         sk->sk_err_soft = err;
516                 }
517                 goto out;
518         }
519
520         /* If we've already connected we will keep trying
521          * until we time out, or the user gives up.
522          *
523          * rfc1122 4.2.3.9 allows to consider as hard errors
524          * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
525          * but it is obsoleted by pmtu discovery).
526          *
527          * Note, that in modern internet, where routing is unreliable
528          * and in each dark corner broken firewalls sit, sending random
529          * errors ordered by their masters even this two messages finally lose
530          * their original sense (even Linux sends invalid PORT_UNREACHs)
531          *
532          * Now we are in compliance with RFCs.
533          *                                                      --ANK (980905)
534          */
535
536         inet = inet_sk(sk);
537         if (!sock_owned_by_user(sk) && inet->recverr) {
538                 sk->sk_err = err;
539                 sk->sk_error_report(sk);
540         } else  { /* Only an error on timeout */
541                 sk->sk_err_soft = err;
542         }
543
544 out:
545         bh_unlock_sock(sk);
546         sock_put(sk);
547 }
548
549 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr)
550 {
551         struct tcphdr *th = tcp_hdr(skb);
552
553         if (skb->ip_summed == CHECKSUM_PARTIAL) {
554                 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
555                 skb->csum_start = skb_transport_header(skb) - skb->head;
556                 skb->csum_offset = offsetof(struct tcphdr, check);
557         } else {
558                 th->check = tcp_v4_check(skb->len, saddr, daddr,
559                                          csum_partial(th,
560                                                       th->doff << 2,
561                                                       skb->csum));
562         }
563 }
564
565 /* This routine computes an IPv4 TCP checksum. */
566 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
567 {
568         const struct inet_sock *inet = inet_sk(sk);
569
570         __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
571 }
572 EXPORT_SYMBOL(tcp_v4_send_check);
573
574 /*
575  *      This routine will send an RST to the other tcp.
576  *
577  *      Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
578  *                    for reset.
579  *      Answer: if a packet caused RST, it is not for a socket
580  *              existing in our system, if it is matched to a socket,
581  *              it is just duplicate segment or bug in other side's TCP.
582  *              So that we build reply only basing on parameters
583  *              arrived with segment.
584  *      Exception: precedence violation. We do not implement it in any case.
585  */
586
587 static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
588 {
589         const struct tcphdr *th = tcp_hdr(skb);
590         struct {
591                 struct tcphdr th;
592 #ifdef CONFIG_TCP_MD5SIG
593                 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
594 #endif
595         } rep;
596         struct ip_reply_arg arg;
597 #ifdef CONFIG_TCP_MD5SIG
598         struct tcp_md5sig_key *key;
599         const __u8 *hash_location = NULL;
600         unsigned char newhash[16];
601         int genhash;
602         struct sock *sk1 = NULL;
603 #endif
604         struct net *net;
605
606         /* Never send a reset in response to a reset. */
607         if (th->rst)
608                 return;
609
610         if (skb_rtable(skb)->rt_type != RTN_LOCAL)
611                 return;
612
613         /* Swap the send and the receive. */
614         memset(&rep, 0, sizeof(rep));
615         rep.th.dest   = th->source;
616         rep.th.source = th->dest;
617         rep.th.doff   = sizeof(struct tcphdr) / 4;
618         rep.th.rst    = 1;
619
620         if (th->ack) {
621                 rep.th.seq = th->ack_seq;
622         } else {
623                 rep.th.ack = 1;
624                 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
625                                        skb->len - (th->doff << 2));
626         }
627
628         memset(&arg, 0, sizeof(arg));
629         arg.iov[0].iov_base = (unsigned char *)&rep;
630         arg.iov[0].iov_len  = sizeof(rep.th);
631
632 #ifdef CONFIG_TCP_MD5SIG
633         hash_location = tcp_parse_md5sig_option(th);
634         if (!sk && hash_location) {
635                 /*
636                  * active side is lost. Try to find listening socket through
637                  * source port, and then find md5 key through listening socket.
638                  * we are not loose security here:
639                  * Incoming packet is checked with md5 hash with finding key,
640                  * no RST generated if md5 hash doesn't match.
641                  */
642                 sk1 = __inet_lookup_listener(dev_net(skb_dst(skb)->dev),
643                                              &tcp_hashinfo, ip_hdr(skb)->saddr,
644                                              th->source, ip_hdr(skb)->daddr,
645                                              ntohs(th->source), inet_iif(skb));
646                 /* don't send rst if it can't find key */
647                 if (!sk1)
648                         return;
649                 rcu_read_lock();
650                 key = tcp_md5_do_lookup(sk1, (union tcp_md5_addr *)
651                                         &ip_hdr(skb)->saddr, AF_INET);
652                 if (!key)
653                         goto release_sk1;
654
655                 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, NULL, skb);
656                 if (genhash || memcmp(hash_location, newhash, 16) != 0)
657                         goto release_sk1;
658         } else {
659                 key = sk ? tcp_md5_do_lookup(sk, (union tcp_md5_addr *)
660                                              &ip_hdr(skb)->saddr,
661                                              AF_INET) : NULL;
662         }
663
664         if (key) {
665                 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
666                                    (TCPOPT_NOP << 16) |
667                                    (TCPOPT_MD5SIG << 8) |
668                                    TCPOLEN_MD5SIG);
669                 /* Update length and the length the header thinks exists */
670                 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
671                 rep.th.doff = arg.iov[0].iov_len / 4;
672
673                 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
674                                      key, ip_hdr(skb)->saddr,
675                                      ip_hdr(skb)->daddr, &rep.th);
676         }
677 #endif
678         arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
679                                       ip_hdr(skb)->saddr, /* XXX */
680                                       arg.iov[0].iov_len, IPPROTO_TCP, 0);
681         arg.csumoffset = offsetof(struct tcphdr, check) / 2;
682         arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0;
683         /* When socket is gone, all binding information is lost.
684          * routing might fail in this case. No choice here, if we choose to force
685          * input interface, we will misroute in case of asymmetric route.
686          */
687         if (sk)
688                 arg.bound_dev_if = sk->sk_bound_dev_if;
689
690         net = dev_net(skb_dst(skb)->dev);
691         arg.tos = ip_hdr(skb)->tos;
692         ip_send_unicast_reply(net, skb, ip_hdr(skb)->saddr,
693                               ip_hdr(skb)->daddr, &arg, arg.iov[0].iov_len);
694
695         TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
696         TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
697
698 #ifdef CONFIG_TCP_MD5SIG
699 release_sk1:
700         if (sk1) {
701                 rcu_read_unlock();
702                 sock_put(sk1);
703         }
704 #endif
705 }
706
707 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
708    outside socket context is ugly, certainly. What can I do?
709  */
710
711 static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
712                             u32 win, u32 tsval, u32 tsecr, int oif,
713                             struct tcp_md5sig_key *key,
714                             int reply_flags, u8 tos)
715 {
716         const struct tcphdr *th = tcp_hdr(skb);
717         struct {
718                 struct tcphdr th;
719                 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
720 #ifdef CONFIG_TCP_MD5SIG
721                            + (TCPOLEN_MD5SIG_ALIGNED >> 2)
722 #endif
723                         ];
724         } rep;
725         struct ip_reply_arg arg;
726         struct net *net = dev_net(skb_dst(skb)->dev);
727
728         memset(&rep.th, 0, sizeof(struct tcphdr));
729         memset(&arg, 0, sizeof(arg));
730
731         arg.iov[0].iov_base = (unsigned char *)&rep;
732         arg.iov[0].iov_len  = sizeof(rep.th);
733         if (tsecr) {
734                 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
735                                    (TCPOPT_TIMESTAMP << 8) |
736                                    TCPOLEN_TIMESTAMP);
737                 rep.opt[1] = htonl(tsval);
738                 rep.opt[2] = htonl(tsecr);
739                 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
740         }
741
742         /* Swap the send and the receive. */
743         rep.th.dest    = th->source;
744         rep.th.source  = th->dest;
745         rep.th.doff    = arg.iov[0].iov_len / 4;
746         rep.th.seq     = htonl(seq);
747         rep.th.ack_seq = htonl(ack);
748         rep.th.ack     = 1;
749         rep.th.window  = htons(win);
750
751 #ifdef CONFIG_TCP_MD5SIG
752         if (key) {
753                 int offset = (tsecr) ? 3 : 0;
754
755                 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
756                                           (TCPOPT_NOP << 16) |
757                                           (TCPOPT_MD5SIG << 8) |
758                                           TCPOLEN_MD5SIG);
759                 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
760                 rep.th.doff = arg.iov[0].iov_len/4;
761
762                 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
763                                     key, ip_hdr(skb)->saddr,
764                                     ip_hdr(skb)->daddr, &rep.th);
765         }
766 #endif
767         arg.flags = reply_flags;
768         arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
769                                       ip_hdr(skb)->saddr, /* XXX */
770                                       arg.iov[0].iov_len, IPPROTO_TCP, 0);
771         arg.csumoffset = offsetof(struct tcphdr, check) / 2;
772         if (oif)
773                 arg.bound_dev_if = oif;
774         arg.tos = tos;
775         ip_send_unicast_reply(net, skb, ip_hdr(skb)->saddr,
776                               ip_hdr(skb)->daddr, &arg, arg.iov[0].iov_len);
777
778         TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
779 }
780
781 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
782 {
783         struct inet_timewait_sock *tw = inet_twsk(sk);
784         struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
785
786         tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
787                         tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
788                         tcp_time_stamp + tcptw->tw_ts_offset,
789                         tcptw->tw_ts_recent,
790                         tw->tw_bound_dev_if,
791                         tcp_twsk_md5_key(tcptw),
792                         tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
793                         tw->tw_tos
794                         );
795
796         inet_twsk_put(tw);
797 }
798
799 static void tcp_v4_reqsk_send_ack(struct sock *sk, struct sk_buff *skb,
800                                   struct request_sock *req)
801 {
802         /* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV
803          * sk->sk_state == TCP_SYN_RECV -> for Fast Open.
804          */
805         tcp_v4_send_ack(skb, (sk->sk_state == TCP_LISTEN) ?
806                         tcp_rsk(req)->snt_isn + 1 : tcp_sk(sk)->snd_nxt,
807                         tcp_rsk(req)->rcv_nxt, req->rcv_wnd,
808                         tcp_time_stamp,
809                         req->ts_recent,
810                         0,
811                         tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&ip_hdr(skb)->daddr,
812                                           AF_INET),
813                         inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
814                         ip_hdr(skb)->tos);
815 }
816
817 /*
818  *      Send a SYN-ACK after having received a SYN.
819  *      This still operates on a request_sock only, not on a big
820  *      socket.
821  */
822 static int tcp_v4_send_synack(struct sock *sk, struct dst_entry *dst,
823                               struct request_sock *req,
824                               u16 queue_mapping,
825                               bool nocache)
826 {
827         const struct inet_request_sock *ireq = inet_rsk(req);
828         struct flowi4 fl4;
829         int err = -1;
830         struct sk_buff * skb;
831
832         /* First, grab a route. */
833         if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
834                 return -1;
835
836         skb = tcp_make_synack(sk, dst, req, NULL);
837
838         if (skb) {
839                 __tcp_v4_send_check(skb, ireq->loc_addr, ireq->rmt_addr);
840
841                 skb_set_queue_mapping(skb, queue_mapping);
842                 err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr,
843                                             ireq->rmt_addr,
844                                             ireq->opt);
845                 err = net_xmit_eval(err);
846                 if (!tcp_rsk(req)->snt_synack && !err)
847                         tcp_rsk(req)->snt_synack = tcp_time_stamp;
848         }
849
850         return err;
851 }
852
853 static int tcp_v4_rtx_synack(struct sock *sk, struct request_sock *req)
854 {
855         int res = tcp_v4_send_synack(sk, NULL, req, 0, false);
856
857         if (!res)
858                 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS);
859         return res;
860 }
861
862 /*
863  *      IPv4 request_sock destructor.
864  */
865 static void tcp_v4_reqsk_destructor(struct request_sock *req)
866 {
867         kfree(inet_rsk(req)->opt);
868 }
869
870 /*
871  * Return true if a syncookie should be sent
872  */
873 bool tcp_syn_flood_action(struct sock *sk,
874                          const struct sk_buff *skb,
875                          const char *proto)
876 {
877         const char *msg = "Dropping request";
878         bool want_cookie = false;
879         struct listen_sock *lopt;
880
881
882
883 #ifdef CONFIG_SYN_COOKIES
884         if (sysctl_tcp_syncookies) {
885                 msg = "Sending cookies";
886                 want_cookie = true;
887                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
888         } else
889 #endif
890                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
891
892         lopt = inet_csk(sk)->icsk_accept_queue.listen_opt;
893         if (!lopt->synflood_warned && sysctl_tcp_syncookies != 2) {
894                 lopt->synflood_warned = 1;
895                 pr_info("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
896                         proto, ntohs(tcp_hdr(skb)->dest), msg);
897         }
898         return want_cookie;
899 }
900 EXPORT_SYMBOL(tcp_syn_flood_action);
901
902 /*
903  * Save and compile IPv4 options into the request_sock if needed.
904  */
905 static struct ip_options_rcu *tcp_v4_save_options(struct sk_buff *skb)
906 {
907         const struct ip_options *opt = &(IPCB(skb)->opt);
908         struct ip_options_rcu *dopt = NULL;
909
910         if (opt && opt->optlen) {
911                 int opt_size = sizeof(*dopt) + opt->optlen;
912
913                 dopt = kmalloc(opt_size, GFP_ATOMIC);
914                 if (dopt) {
915                         if (ip_options_echo(&dopt->opt, skb)) {
916                                 kfree(dopt);
917                                 dopt = NULL;
918                         }
919                 }
920         }
921         return dopt;
922 }
923
924 #ifdef CONFIG_TCP_MD5SIG
925 /*
926  * RFC2385 MD5 checksumming requires a mapping of
927  * IP address->MD5 Key.
928  * We need to maintain these in the sk structure.
929  */
930
931 /* Find the Key structure for an address.  */
932 struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
933                                          const union tcp_md5_addr *addr,
934                                          int family)
935 {
936         struct tcp_sock *tp = tcp_sk(sk);
937         struct tcp_md5sig_key *key;
938         unsigned int size = sizeof(struct in_addr);
939         struct tcp_md5sig_info *md5sig;
940
941         /* caller either holds rcu_read_lock() or socket lock */
942         md5sig = rcu_dereference_check(tp->md5sig_info,
943                                        sock_owned_by_user(sk) ||
944                                        lockdep_is_held(&sk->sk_lock.slock));
945         if (!md5sig)
946                 return NULL;
947 #if IS_ENABLED(CONFIG_IPV6)
948         if (family == AF_INET6)
949                 size = sizeof(struct in6_addr);
950 #endif
951         hlist_for_each_entry_rcu(key, &md5sig->head, node) {
952                 if (key->family != family)
953                         continue;
954                 if (!memcmp(&key->addr, addr, size))
955                         return key;
956         }
957         return NULL;
958 }
959 EXPORT_SYMBOL(tcp_md5_do_lookup);
960
961 struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
962                                          struct sock *addr_sk)
963 {
964         union tcp_md5_addr *addr;
965
966         addr = (union tcp_md5_addr *)&inet_sk(addr_sk)->inet_daddr;
967         return tcp_md5_do_lookup(sk, addr, AF_INET);
968 }
969 EXPORT_SYMBOL(tcp_v4_md5_lookup);
970
971 static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
972                                                       struct request_sock *req)
973 {
974         union tcp_md5_addr *addr;
975
976         addr = (union tcp_md5_addr *)&inet_rsk(req)->rmt_addr;
977         return tcp_md5_do_lookup(sk, addr, AF_INET);
978 }
979
980 /* This can be called on a newly created socket, from other files */
981 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
982                    int family, const u8 *newkey, u8 newkeylen, gfp_t gfp)
983 {
984         /* Add Key to the list */
985         struct tcp_md5sig_key *key;
986         struct tcp_sock *tp = tcp_sk(sk);
987         struct tcp_md5sig_info *md5sig;
988
989         key = tcp_md5_do_lookup(sk, addr, family);
990         if (key) {
991                 /* Pre-existing entry - just update that one. */
992                 memcpy(key->key, newkey, newkeylen);
993                 key->keylen = newkeylen;
994                 return 0;
995         }
996
997         md5sig = rcu_dereference_protected(tp->md5sig_info,
998                                            sock_owned_by_user(sk));
999         if (!md5sig) {
1000                 md5sig = kmalloc(sizeof(*md5sig), gfp);
1001                 if (!md5sig)
1002                         return -ENOMEM;
1003
1004                 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1005                 INIT_HLIST_HEAD(&md5sig->head);
1006                 rcu_assign_pointer(tp->md5sig_info, md5sig);
1007         }
1008
1009         key = sock_kmalloc(sk, sizeof(*key), gfp);
1010         if (!key)
1011                 return -ENOMEM;
1012         if (!tcp_alloc_md5sig_pool()) {
1013                 sock_kfree_s(sk, key, sizeof(*key));
1014                 return -ENOMEM;
1015         }
1016
1017         memcpy(key->key, newkey, newkeylen);
1018         key->keylen = newkeylen;
1019         key->family = family;
1020         memcpy(&key->addr, addr,
1021                (family == AF_INET6) ? sizeof(struct in6_addr) :
1022                                       sizeof(struct in_addr));
1023         hlist_add_head_rcu(&key->node, &md5sig->head);
1024         return 0;
1025 }
1026 EXPORT_SYMBOL(tcp_md5_do_add);
1027
1028 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family)
1029 {
1030         struct tcp_md5sig_key *key;
1031
1032         key = tcp_md5_do_lookup(sk, addr, family);
1033         if (!key)
1034                 return -ENOENT;
1035         hlist_del_rcu(&key->node);
1036         atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1037         kfree_rcu(key, rcu);
1038         return 0;
1039 }
1040 EXPORT_SYMBOL(tcp_md5_do_del);
1041
1042 static void tcp_clear_md5_list(struct sock *sk)
1043 {
1044         struct tcp_sock *tp = tcp_sk(sk);
1045         struct tcp_md5sig_key *key;
1046         struct hlist_node *n;
1047         struct tcp_md5sig_info *md5sig;
1048
1049         md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
1050
1051         hlist_for_each_entry_safe(key, n, &md5sig->head, node) {
1052                 hlist_del_rcu(&key->node);
1053                 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1054                 kfree_rcu(key, rcu);
1055         }
1056 }
1057
1058 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
1059                                  int optlen)
1060 {
1061         struct tcp_md5sig cmd;
1062         struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1063
1064         if (optlen < sizeof(cmd))
1065                 return -EINVAL;
1066
1067         if (copy_from_user(&cmd, optval, sizeof(cmd)))
1068                 return -EFAULT;
1069
1070         if (sin->sin_family != AF_INET)
1071                 return -EINVAL;
1072
1073         if (!cmd.tcpm_key || !cmd.tcpm_keylen)
1074                 return tcp_md5_do_del(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1075                                       AF_INET);
1076
1077         if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1078                 return -EINVAL;
1079
1080         return tcp_md5_do_add(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1081                               AF_INET, cmd.tcpm_key, cmd.tcpm_keylen,
1082                               GFP_KERNEL);
1083 }
1084
1085 static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
1086                                         __be32 daddr, __be32 saddr, int nbytes)
1087 {
1088         struct tcp4_pseudohdr *bp;
1089         struct scatterlist sg;
1090
1091         bp = &hp->md5_blk.ip4;
1092
1093         /*
1094          * 1. the TCP pseudo-header (in the order: source IP address,
1095          * destination IP address, zero-padded protocol number, and
1096          * segment length)
1097          */
1098         bp->saddr = saddr;
1099         bp->daddr = daddr;
1100         bp->pad = 0;
1101         bp->protocol = IPPROTO_TCP;
1102         bp->len = cpu_to_be16(nbytes);
1103
1104         sg_init_one(&sg, bp, sizeof(*bp));
1105         return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp));
1106 }
1107
1108 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1109                                __be32 daddr, __be32 saddr, const struct tcphdr *th)
1110 {
1111         struct tcp_md5sig_pool *hp;
1112         struct hash_desc *desc;
1113
1114         hp = tcp_get_md5sig_pool();
1115         if (!hp)
1116                 goto clear_hash_noput;
1117         desc = &hp->md5_desc;
1118
1119         if (crypto_hash_init(desc))
1120                 goto clear_hash;
1121         if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1122                 goto clear_hash;
1123         if (tcp_md5_hash_header(hp, th))
1124                 goto clear_hash;
1125         if (tcp_md5_hash_key(hp, key))
1126                 goto clear_hash;
1127         if (crypto_hash_final(desc, md5_hash))
1128                 goto clear_hash;
1129
1130         tcp_put_md5sig_pool();
1131         return 0;
1132
1133 clear_hash:
1134         tcp_put_md5sig_pool();
1135 clear_hash_noput:
1136         memset(md5_hash, 0, 16);
1137         return 1;
1138 }
1139
1140 int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1141                         const struct sock *sk, const struct request_sock *req,
1142                         const struct sk_buff *skb)
1143 {
1144         struct tcp_md5sig_pool *hp;
1145         struct hash_desc *desc;
1146         const struct tcphdr *th = tcp_hdr(skb);
1147         __be32 saddr, daddr;
1148
1149         if (sk) {
1150                 saddr = inet_sk(sk)->inet_saddr;
1151                 daddr = inet_sk(sk)->inet_daddr;
1152         } else if (req) {
1153                 saddr = inet_rsk(req)->loc_addr;
1154                 daddr = inet_rsk(req)->rmt_addr;
1155         } else {
1156                 const struct iphdr *iph = ip_hdr(skb);
1157                 saddr = iph->saddr;
1158                 daddr = iph->daddr;
1159         }
1160
1161         hp = tcp_get_md5sig_pool();
1162         if (!hp)
1163                 goto clear_hash_noput;
1164         desc = &hp->md5_desc;
1165
1166         if (crypto_hash_init(desc))
1167                 goto clear_hash;
1168
1169         if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1170                 goto clear_hash;
1171         if (tcp_md5_hash_header(hp, th))
1172                 goto clear_hash;
1173         if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1174                 goto clear_hash;
1175         if (tcp_md5_hash_key(hp, key))
1176                 goto clear_hash;
1177         if (crypto_hash_final(desc, md5_hash))
1178                 goto clear_hash;
1179
1180         tcp_put_md5sig_pool();
1181         return 0;
1182
1183 clear_hash:
1184         tcp_put_md5sig_pool();
1185 clear_hash_noput:
1186         memset(md5_hash, 0, 16);
1187         return 1;
1188 }
1189 EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1190
1191 static bool tcp_v4_inbound_md5_hash(struct sock *sk, const struct sk_buff *skb)
1192 {
1193         /*
1194          * This gets called for each TCP segment that arrives
1195          * so we want to be efficient.
1196          * We have 3 drop cases:
1197          * o No MD5 hash and one expected.
1198          * o MD5 hash and we're not expecting one.
1199          * o MD5 hash and its wrong.
1200          */
1201         const __u8 *hash_location = NULL;
1202         struct tcp_md5sig_key *hash_expected;
1203         const struct iphdr *iph = ip_hdr(skb);
1204         const struct tcphdr *th = tcp_hdr(skb);
1205         int genhash;
1206         unsigned char newhash[16];
1207
1208         hash_expected = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&iph->saddr,
1209                                           AF_INET);
1210         hash_location = tcp_parse_md5sig_option(th);
1211
1212         /* We've parsed the options - do we have a hash? */
1213         if (!hash_expected && !hash_location)
1214                 return false;
1215
1216         if (hash_expected && !hash_location) {
1217                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1218                 return true;
1219         }
1220
1221         if (!hash_expected && hash_location) {
1222                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1223                 return true;
1224         }
1225
1226         /* Okay, so this is hash_expected and hash_location -
1227          * so we need to calculate the checksum.
1228          */
1229         genhash = tcp_v4_md5_hash_skb(newhash,
1230                                       hash_expected,
1231                                       NULL, NULL, skb);
1232
1233         if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1234                 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1235                                      &iph->saddr, ntohs(th->source),
1236                                      &iph->daddr, ntohs(th->dest),
1237                                      genhash ? " tcp_v4_calc_md5_hash failed"
1238                                      : "");
1239                 return true;
1240         }
1241         return false;
1242 }
1243
1244 #endif
1245
1246 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1247         .family         =       PF_INET,
1248         .obj_size       =       sizeof(struct tcp_request_sock),
1249         .rtx_syn_ack    =       tcp_v4_rtx_synack,
1250         .send_ack       =       tcp_v4_reqsk_send_ack,
1251         .destructor     =       tcp_v4_reqsk_destructor,
1252         .send_reset     =       tcp_v4_send_reset,
1253         .syn_ack_timeout =      tcp_syn_ack_timeout,
1254 };
1255
1256 #ifdef CONFIG_TCP_MD5SIG
1257 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1258         .md5_lookup     =       tcp_v4_reqsk_md5_lookup,
1259         .calc_md5_hash  =       tcp_v4_md5_hash_skb,
1260 };
1261 #endif
1262
1263 static bool tcp_fastopen_check(struct sock *sk, struct sk_buff *skb,
1264                                struct request_sock *req,
1265                                struct tcp_fastopen_cookie *foc,
1266                                struct tcp_fastopen_cookie *valid_foc)
1267 {
1268         bool skip_cookie = false;
1269         struct fastopen_queue *fastopenq;
1270
1271         if (likely(!fastopen_cookie_present(foc))) {
1272                 /* See include/net/tcp.h for the meaning of these knobs */
1273                 if ((sysctl_tcp_fastopen & TFO_SERVER_ALWAYS) ||
1274                     ((sysctl_tcp_fastopen & TFO_SERVER_COOKIE_NOT_REQD) &&
1275                     (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq + 1)))
1276                         skip_cookie = true; /* no cookie to validate */
1277                 else
1278                         return false;
1279         }
1280         fastopenq = inet_csk(sk)->icsk_accept_queue.fastopenq;
1281         /* A FO option is present; bump the counter. */
1282         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENPASSIVE);
1283
1284         /* Make sure the listener has enabled fastopen, and we don't
1285          * exceed the max # of pending TFO requests allowed before trying
1286          * to validating the cookie in order to avoid burning CPU cycles
1287          * unnecessarily.
1288          *
1289          * XXX (TFO) - The implication of checking the max_qlen before
1290          * processing a cookie request is that clients can't differentiate
1291          * between qlen overflow causing Fast Open to be disabled
1292          * temporarily vs a server not supporting Fast Open at all.
1293          */
1294         if ((sysctl_tcp_fastopen & TFO_SERVER_ENABLE) == 0 ||
1295             fastopenq == NULL || fastopenq->max_qlen == 0)
1296                 return false;
1297
1298         if (fastopenq->qlen >= fastopenq->max_qlen) {
1299                 struct request_sock *req1;
1300                 spin_lock(&fastopenq->lock);
1301                 req1 = fastopenq->rskq_rst_head;
1302                 if ((req1 == NULL) || time_after(req1->expires, jiffies)) {
1303                         spin_unlock(&fastopenq->lock);
1304                         NET_INC_STATS_BH(sock_net(sk),
1305                             LINUX_MIB_TCPFASTOPENLISTENOVERFLOW);
1306                         /* Avoid bumping LINUX_MIB_TCPFASTOPENPASSIVEFAIL*/
1307                         foc->len = -1;
1308                         return false;
1309                 }
1310                 fastopenq->rskq_rst_head = req1->dl_next;
1311                 fastopenq->qlen--;
1312                 spin_unlock(&fastopenq->lock);
1313                 reqsk_free(req1);
1314         }
1315         if (skip_cookie) {
1316                 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1317                 return true;
1318         }
1319         if (foc->len == TCP_FASTOPEN_COOKIE_SIZE) {
1320                 if ((sysctl_tcp_fastopen & TFO_SERVER_COOKIE_NOT_CHKED) == 0) {
1321                         tcp_fastopen_cookie_gen(ip_hdr(skb)->saddr, valid_foc);
1322                         if ((valid_foc->len != TCP_FASTOPEN_COOKIE_SIZE) ||
1323                             memcmp(&foc->val[0], &valid_foc->val[0],
1324                             TCP_FASTOPEN_COOKIE_SIZE) != 0)
1325                                 return false;
1326                         valid_foc->len = -1;
1327                 }
1328                 /* Acknowledge the data received from the peer. */
1329                 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1330                 return true;
1331         } else if (foc->len == 0) { /* Client requesting a cookie */
1332                 tcp_fastopen_cookie_gen(ip_hdr(skb)->saddr, valid_foc);
1333                 NET_INC_STATS_BH(sock_net(sk),
1334                     LINUX_MIB_TCPFASTOPENCOOKIEREQD);
1335         } else {
1336                 /* Client sent a cookie with wrong size. Treat it
1337                  * the same as invalid and return a valid one.
1338                  */
1339                 tcp_fastopen_cookie_gen(ip_hdr(skb)->saddr, valid_foc);
1340         }
1341         return false;
1342 }
1343
1344 static int tcp_v4_conn_req_fastopen(struct sock *sk,
1345                                     struct sk_buff *skb,
1346                                     struct sk_buff *skb_synack,
1347                                     struct request_sock *req)
1348 {
1349         struct tcp_sock *tp = tcp_sk(sk);
1350         struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
1351         const struct inet_request_sock *ireq = inet_rsk(req);
1352         struct sock *child;
1353         int err;
1354
1355         req->num_retrans = 0;
1356         req->num_timeout = 0;
1357         req->sk = NULL;
1358
1359         child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL);
1360         if (child == NULL) {
1361                 NET_INC_STATS_BH(sock_net(sk),
1362                                  LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
1363                 kfree_skb(skb_synack);
1364                 return -1;
1365         }
1366         err = ip_build_and_send_pkt(skb_synack, sk, ireq->loc_addr,
1367                                     ireq->rmt_addr, ireq->opt);
1368         err = net_xmit_eval(err);
1369         if (!err)
1370                 tcp_rsk(req)->snt_synack = tcp_time_stamp;
1371         /* XXX (TFO) - is it ok to ignore error and continue? */
1372
1373         spin_lock(&queue->fastopenq->lock);
1374         queue->fastopenq->qlen++;
1375         spin_unlock(&queue->fastopenq->lock);
1376
1377         /* Initialize the child socket. Have to fix some values to take
1378          * into account the child is a Fast Open socket and is created
1379          * only out of the bits carried in the SYN packet.
1380          */
1381         tp = tcp_sk(child);
1382
1383         tp->fastopen_rsk = req;
1384         /* Do a hold on the listner sk so that if the listener is being
1385          * closed, the child that has been accepted can live on and still
1386          * access listen_lock.
1387          */
1388         sock_hold(sk);
1389         tcp_rsk(req)->listener = sk;
1390
1391         /* RFC1323: The window in SYN & SYN/ACK segments is never
1392          * scaled. So correct it appropriately.
1393          */
1394         tp->snd_wnd = ntohs(tcp_hdr(skb)->window);
1395
1396         /* Activate the retrans timer so that SYNACK can be retransmitted.
1397          * The request socket is not added to the SYN table of the parent
1398          * because it's been added to the accept queue directly.
1399          */
1400         inet_csk_reset_xmit_timer(child, ICSK_TIME_RETRANS,
1401             TCP_TIMEOUT_INIT, TCP_RTO_MAX);
1402
1403         /* Add the child socket directly into the accept queue */
1404         inet_csk_reqsk_queue_add(sk, req, child);
1405
1406         /* Now finish processing the fastopen child socket. */
1407         inet_csk(child)->icsk_af_ops->rebuild_header(child);
1408         tcp_init_congestion_control(child);
1409         tcp_mtup_init(child);
1410         tcp_init_buffer_space(child);
1411         tcp_init_metrics(child);
1412
1413         /* Queue the data carried in the SYN packet. We need to first
1414          * bump skb's refcnt because the caller will attempt to free it.
1415          *
1416          * XXX (TFO) - we honor a zero-payload TFO request for now.
1417          * (Any reason not to?)
1418          */
1419         if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq + 1) {
1420                 /* Don't queue the skb if there is no payload in SYN.
1421                  * XXX (TFO) - How about SYN+FIN?
1422                  */
1423                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1424         } else {
1425                 skb = skb_get(skb);
1426                 skb_dst_drop(skb);
1427                 __skb_pull(skb, tcp_hdr(skb)->doff * 4);
1428                 skb_set_owner_r(skb, child);
1429                 __skb_queue_tail(&child->sk_receive_queue, skb);
1430                 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
1431                 tp->syn_data_acked = 1;
1432         }
1433         sk->sk_data_ready(sk, 0);
1434         bh_unlock_sock(child);
1435         sock_put(child);
1436         WARN_ON(req->sk == NULL);
1437         return 0;
1438 }
1439
1440 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1441 {
1442         struct tcp_options_received tmp_opt;
1443         struct request_sock *req;
1444         struct inet_request_sock *ireq;
1445         struct tcp_sock *tp = tcp_sk(sk);
1446         struct dst_entry *dst = NULL;
1447         __be32 saddr = ip_hdr(skb)->saddr;
1448         __be32 daddr = ip_hdr(skb)->daddr;
1449         __u32 isn = TCP_SKB_CB(skb)->when;
1450         bool want_cookie = false;
1451         struct flowi4 fl4;
1452         struct tcp_fastopen_cookie foc = { .len = -1 };
1453         struct tcp_fastopen_cookie valid_foc = { .len = -1 };
1454         struct sk_buff *skb_synack;
1455         int do_fastopen;
1456
1457         /* Never answer to SYNs send to broadcast or multicast */
1458         if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1459                 goto drop;
1460
1461         /* TW buckets are converted to open requests without
1462          * limitations, they conserve resources and peer is
1463          * evidently real one.
1464          */
1465         if ((sysctl_tcp_syncookies == 2 ||
1466              inet_csk_reqsk_queue_is_full(sk)) && !isn) {
1467                 want_cookie = tcp_syn_flood_action(sk, skb, "TCP");
1468                 if (!want_cookie)
1469                         goto drop;
1470         }
1471
1472         /* Accept backlog is full. If we have already queued enough
1473          * of warm entries in syn queue, drop request. It is better than
1474          * clogging syn queue with openreqs with exponentially increasing
1475          * timeout.
1476          */
1477         if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1) {
1478                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1479                 goto drop;
1480         }
1481
1482         req = inet_reqsk_alloc(&tcp_request_sock_ops);
1483         if (!req)
1484                 goto drop;
1485
1486 #ifdef CONFIG_TCP_MD5SIG
1487         tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops;
1488 #endif
1489
1490         tcp_clear_options(&tmp_opt);
1491         tmp_opt.mss_clamp = TCP_MSS_DEFAULT;
1492         tmp_opt.user_mss  = tp->rx_opt.user_mss;
1493         tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc);
1494
1495         if (want_cookie && !tmp_opt.saw_tstamp)
1496                 tcp_clear_options(&tmp_opt);
1497
1498         tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
1499         tcp_openreq_init(req, &tmp_opt, skb);
1500
1501         ireq = inet_rsk(req);
1502         ireq->loc_addr = daddr;
1503         ireq->rmt_addr = saddr;
1504         ireq->no_srccheck = inet_sk(sk)->transparent;
1505         ireq->opt = tcp_v4_save_options(skb);
1506
1507         if (security_inet_conn_request(sk, skb, req))
1508                 goto drop_and_free;
1509
1510         if (!want_cookie || tmp_opt.tstamp_ok)
1511                 TCP_ECN_create_request(req, skb, sock_net(sk));
1512
1513         if (want_cookie) {
1514                 isn = cookie_v4_init_sequence(sk, skb, &req->mss);
1515                 req->cookie_ts = tmp_opt.tstamp_ok;
1516         } else if (!isn) {
1517                 /* VJ's idea. We save last timestamp seen
1518                  * from the destination in peer table, when entering
1519                  * state TIME-WAIT, and check against it before
1520                  * accepting new connection request.
1521                  *
1522                  * If "isn" is not zero, this request hit alive
1523                  * timewait bucket, so that all the necessary checks
1524                  * are made in the function processing timewait state.
1525                  */
1526                 if (tmp_opt.saw_tstamp &&
1527                     tcp_death_row.sysctl_tw_recycle &&
1528                     (dst = inet_csk_route_req(sk, &fl4, req)) != NULL &&
1529                     fl4.daddr == saddr) {
1530                         if (!tcp_peer_is_proven(req, dst, true)) {
1531                                 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
1532                                 goto drop_and_release;
1533                         }
1534                 }
1535                 /* Kill the following clause, if you dislike this way. */
1536                 else if (!sysctl_tcp_syncookies &&
1537                          (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
1538                           (sysctl_max_syn_backlog >> 2)) &&
1539                          !tcp_peer_is_proven(req, dst, false)) {
1540                         /* Without syncookies last quarter of
1541                          * backlog is filled with destinations,
1542                          * proven to be alive.
1543                          * It means that we continue to communicate
1544                          * to destinations, already remembered
1545                          * to the moment of synflood.
1546                          */
1547                         LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("drop open request from %pI4/%u\n"),
1548                                        &saddr, ntohs(tcp_hdr(skb)->source));
1549                         goto drop_and_release;
1550                 }
1551
1552                 isn = tcp_v4_init_sequence(skb);
1553         }
1554         tcp_rsk(req)->snt_isn = isn;
1555
1556         if (dst == NULL) {
1557                 dst = inet_csk_route_req(sk, &fl4, req);
1558                 if (dst == NULL)
1559                         goto drop_and_free;
1560         }
1561         do_fastopen = tcp_fastopen_check(sk, skb, req, &foc, &valid_foc);
1562
1563         /* We don't call tcp_v4_send_synack() directly because we need
1564          * to make sure a child socket can be created successfully before
1565          * sending back synack!
1566          *
1567          * XXX (TFO) - Ideally one would simply call tcp_v4_send_synack()
1568          * (or better yet, call tcp_send_synack() in the child context
1569          * directly, but will have to fix bunch of other code first)
1570          * after syn_recv_sock() except one will need to first fix the
1571          * latter to remove its dependency on the current implementation
1572          * of tcp_v4_send_synack()->tcp_select_initial_window().
1573          */
1574         skb_synack = tcp_make_synack(sk, dst, req,
1575             fastopen_cookie_present(&valid_foc) ? &valid_foc : NULL);
1576
1577         if (skb_synack) {
1578                 __tcp_v4_send_check(skb_synack, ireq->loc_addr, ireq->rmt_addr);
1579                 skb_set_queue_mapping(skb_synack, skb_get_queue_mapping(skb));
1580         } else
1581                 goto drop_and_free;
1582
1583         if (likely(!do_fastopen)) {
1584                 int err;
1585                 err = ip_build_and_send_pkt(skb_synack, sk, ireq->loc_addr,
1586                      ireq->rmt_addr, ireq->opt);
1587                 err = net_xmit_eval(err);
1588                 if (err || want_cookie)
1589                         goto drop_and_free;
1590
1591                 tcp_rsk(req)->snt_synack = tcp_time_stamp;
1592                 tcp_rsk(req)->listener = NULL;
1593                 /* Add the request_sock to the SYN table */
1594                 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
1595                 if (fastopen_cookie_present(&foc) && foc.len != 0)
1596                         NET_INC_STATS_BH(sock_net(sk),
1597                             LINUX_MIB_TCPFASTOPENPASSIVEFAIL);
1598         } else if (tcp_v4_conn_req_fastopen(sk, skb, skb_synack, req))
1599                 goto drop_and_free;
1600
1601         return 0;
1602
1603 drop_and_release:
1604         dst_release(dst);
1605 drop_and_free:
1606         reqsk_free(req);
1607 drop:
1608         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1609         return 0;
1610 }
1611 EXPORT_SYMBOL(tcp_v4_conn_request);
1612
1613
1614 /*
1615  * The three way handshake has completed - we got a valid synack -
1616  * now create the new socket.
1617  */
1618 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1619                                   struct request_sock *req,
1620                                   struct dst_entry *dst)
1621 {
1622         struct inet_request_sock *ireq;
1623         struct inet_sock *newinet;
1624         struct tcp_sock *newtp;
1625         struct sock *newsk;
1626 #ifdef CONFIG_TCP_MD5SIG
1627         struct tcp_md5sig_key *key;
1628 #endif
1629         struct ip_options_rcu *inet_opt;
1630
1631         if (sk_acceptq_is_full(sk))
1632                 goto exit_overflow;
1633
1634         newsk = tcp_create_openreq_child(sk, req, skb);
1635         if (!newsk)
1636                 goto exit_nonewsk;
1637
1638         newsk->sk_gso_type = SKB_GSO_TCPV4;
1639         inet_sk_rx_dst_set(newsk, skb);
1640
1641         newtp                 = tcp_sk(newsk);
1642         newinet               = inet_sk(newsk);
1643         ireq                  = inet_rsk(req);
1644         newinet->inet_daddr   = ireq->rmt_addr;
1645         newinet->inet_rcv_saddr = ireq->loc_addr;
1646         newinet->inet_saddr           = ireq->loc_addr;
1647         inet_opt              = ireq->opt;
1648         rcu_assign_pointer(newinet->inet_opt, inet_opt);
1649         ireq->opt             = NULL;
1650         newinet->mc_index     = inet_iif(skb);
1651         newinet->mc_ttl       = ip_hdr(skb)->ttl;
1652         newinet->rcv_tos      = ip_hdr(skb)->tos;
1653         inet_csk(newsk)->icsk_ext_hdr_len = 0;
1654         if (inet_opt)
1655                 inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1656         newinet->inet_id = newtp->write_seq ^ jiffies;
1657
1658         if (!dst) {
1659                 dst = inet_csk_route_child_sock(sk, newsk, req);
1660                 if (!dst)
1661                         goto put_and_exit;
1662         } else {
1663                 /* syncookie case : see end of cookie_v4_check() */
1664         }
1665         sk_setup_caps(newsk, dst);
1666
1667         tcp_mtup_init(newsk);
1668         tcp_sync_mss(newsk, dst_mtu(dst));
1669         newtp->advmss = dst_metric_advmss(dst);
1670         if (tcp_sk(sk)->rx_opt.user_mss &&
1671             tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1672                 newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1673
1674         tcp_initialize_rcv_mss(newsk);
1675
1676 #ifdef CONFIG_TCP_MD5SIG
1677         /* Copy over the MD5 key from the original socket */
1678         key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&newinet->inet_daddr,
1679                                 AF_INET);
1680         if (key != NULL) {
1681                 /*
1682                  * We're using one, so create a matching key
1683                  * on the newsk structure. If we fail to get
1684                  * memory, then we end up not copying the key
1685                  * across. Shucks.
1686                  */
1687                 tcp_md5_do_add(newsk, (union tcp_md5_addr *)&newinet->inet_daddr,
1688                                AF_INET, key->key, key->keylen, GFP_ATOMIC);
1689                 sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1690         }
1691 #endif
1692
1693         if (__inet_inherit_port(sk, newsk) < 0)
1694                 goto put_and_exit;
1695         __inet_hash_nolisten(newsk, NULL);
1696
1697         return newsk;
1698
1699 exit_overflow:
1700         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1701 exit_nonewsk:
1702         dst_release(dst);
1703 exit:
1704         NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1705         return NULL;
1706 put_and_exit:
1707         inet_csk_prepare_forced_close(newsk);
1708         tcp_done(newsk);
1709         goto exit;
1710 }
1711 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1712
1713 static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1714 {
1715         struct tcphdr *th = tcp_hdr(skb);
1716         const struct iphdr *iph = ip_hdr(skb);
1717         struct sock *nsk;
1718         struct request_sock **prev;
1719         /* Find possible connection requests. */
1720         struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1721                                                        iph->saddr, iph->daddr);
1722         if (req)
1723                 return tcp_check_req(sk, skb, req, prev, false);
1724
1725         nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr,
1726                         th->source, iph->daddr, th->dest, inet_iif(skb));
1727
1728         if (nsk) {
1729                 if (nsk->sk_state != TCP_TIME_WAIT) {
1730                         bh_lock_sock(nsk);
1731                         return nsk;
1732                 }
1733                 inet_twsk_put(inet_twsk(nsk));
1734                 return NULL;
1735         }
1736
1737 #ifdef CONFIG_SYN_COOKIES
1738         if (!th->syn)
1739                 sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1740 #endif
1741         return sk;
1742 }
1743
1744 static __sum16 tcp_v4_checksum_init(struct sk_buff *skb)
1745 {
1746         const struct iphdr *iph = ip_hdr(skb);
1747
1748         if (skb->ip_summed == CHECKSUM_COMPLETE) {
1749                 if (!tcp_v4_check(skb->len, iph->saddr,
1750                                   iph->daddr, skb->csum)) {
1751                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1752                         return 0;
1753                 }
1754         }
1755
1756         skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1757                                        skb->len, IPPROTO_TCP, 0);
1758
1759         if (skb->len <= 76) {
1760                 return __skb_checksum_complete(skb);
1761         }
1762         return 0;
1763 }
1764
1765
1766 /* The socket must have it's spinlock held when we get
1767  * here.
1768  *
1769  * We have a potential double-lock case here, so even when
1770  * doing backlog processing we use the BH locking scheme.
1771  * This is because we cannot sleep with the original spinlock
1772  * held.
1773  */
1774 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1775 {
1776         struct sock *rsk;
1777 #ifdef CONFIG_TCP_MD5SIG
1778         /*
1779          * We really want to reject the packet as early as possible
1780          * if:
1781          *  o We're expecting an MD5'd packet and this is no MD5 tcp option
1782          *  o There is an MD5 option and we're not expecting one
1783          */
1784         if (tcp_v4_inbound_md5_hash(sk, skb))
1785                 goto discard;
1786 #endif
1787
1788         if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1789                 struct dst_entry *dst = sk->sk_rx_dst;
1790
1791                 sock_rps_save_rxhash(sk, skb);
1792                 if (dst) {
1793                         if (inet_sk(sk)->rx_dst_ifindex != skb->skb_iif ||
1794                             dst->ops->check(dst, 0) == NULL) {
1795                                 dst_release(dst);
1796                                 sk->sk_rx_dst = NULL;
1797                         }
1798                 }
1799                 if (tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len)) {
1800                         rsk = sk;
1801                         goto reset;
1802                 }
1803                 return 0;
1804         }
1805
1806         if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb))
1807                 goto csum_err;
1808
1809         if (sk->sk_state == TCP_LISTEN) {
1810                 struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1811                 if (!nsk)
1812                         goto discard;
1813
1814                 if (nsk != sk) {
1815                         sock_rps_save_rxhash(nsk, skb);
1816                         if (tcp_child_process(sk, nsk, skb)) {
1817                                 rsk = nsk;
1818                                 goto reset;
1819                         }
1820                         return 0;
1821                 }
1822         } else
1823                 sock_rps_save_rxhash(sk, skb);
1824
1825         if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
1826                 rsk = sk;
1827                 goto reset;
1828         }
1829         return 0;
1830
1831 reset:
1832         tcp_v4_send_reset(rsk, skb);
1833 discard:
1834         kfree_skb(skb);
1835         /* Be careful here. If this function gets more complicated and
1836          * gcc suffers from register pressure on the x86, sk (in %ebx)
1837          * might be destroyed here. This current version compiles correctly,
1838          * but you have been warned.
1839          */
1840         return 0;
1841
1842 csum_err:
1843         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS);
1844         TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
1845         goto discard;
1846 }
1847 EXPORT_SYMBOL(tcp_v4_do_rcv);
1848
1849 void tcp_v4_early_demux(struct sk_buff *skb)
1850 {
1851         const struct iphdr *iph;
1852         const struct tcphdr *th;
1853         struct sock *sk;
1854
1855         if (skb->pkt_type != PACKET_HOST)
1856                 return;
1857
1858         if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr)))
1859                 return;
1860
1861         iph = ip_hdr(skb);
1862         th = tcp_hdr(skb);
1863
1864         if (th->doff < sizeof(struct tcphdr) / 4)
1865                 return;
1866
1867         sk = __inet_lookup_established(dev_net(skb->dev), &tcp_hashinfo,
1868                                        iph->saddr, th->source,
1869                                        iph->daddr, ntohs(th->dest),
1870                                        skb->skb_iif);
1871         if (sk) {
1872                 skb->sk = sk;
1873                 skb->destructor = sock_edemux;
1874                 if (sk->sk_state != TCP_TIME_WAIT) {
1875                         struct dst_entry *dst = sk->sk_rx_dst;
1876
1877                         if (dst)
1878                                 dst = dst_check(dst, 0);
1879                         if (dst &&
1880                             inet_sk(sk)->rx_dst_ifindex == skb->skb_iif)
1881                                 skb_dst_set_noref(skb, dst);
1882                 }
1883         }
1884 }
1885
1886 /* Packet is added to VJ-style prequeue for processing in process
1887  * context, if a reader task is waiting. Apparently, this exciting
1888  * idea (VJ's mail "Re: query about TCP header on tcp-ip" of 07 Sep 93)
1889  * failed somewhere. Latency? Burstiness? Well, at least now we will
1890  * see, why it failed. 8)8)                               --ANK
1891  *
1892  */
1893 bool tcp_prequeue(struct sock *sk, struct sk_buff *skb)
1894 {
1895         struct tcp_sock *tp = tcp_sk(sk);
1896
1897         if (sysctl_tcp_low_latency || !tp->ucopy.task)
1898                 return false;
1899
1900         if (skb->len <= tcp_hdrlen(skb) &&
1901             skb_queue_len(&tp->ucopy.prequeue) == 0)
1902                 return false;
1903
1904         skb_dst_force(skb);
1905         __skb_queue_tail(&tp->ucopy.prequeue, skb);
1906         tp->ucopy.memory += skb->truesize;
1907         if (tp->ucopy.memory > sk->sk_rcvbuf) {
1908                 struct sk_buff *skb1;
1909
1910                 BUG_ON(sock_owned_by_user(sk));
1911
1912                 while ((skb1 = __skb_dequeue(&tp->ucopy.prequeue)) != NULL) {
1913                         sk_backlog_rcv(sk, skb1);
1914                         NET_INC_STATS_BH(sock_net(sk),
1915                                          LINUX_MIB_TCPPREQUEUEDROPPED);
1916                 }
1917
1918                 tp->ucopy.memory = 0;
1919         } else if (skb_queue_len(&tp->ucopy.prequeue) == 1) {
1920                 wake_up_interruptible_sync_poll(sk_sleep(sk),
1921                                            POLLIN | POLLRDNORM | POLLRDBAND);
1922                 if (!inet_csk_ack_scheduled(sk))
1923                         inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
1924                                                   (3 * tcp_rto_min(sk)) / 4,
1925                                                   TCP_RTO_MAX);
1926         }
1927         return true;
1928 }
1929 EXPORT_SYMBOL(tcp_prequeue);
1930
1931 /*
1932  *      From tcp_input.c
1933  */
1934
1935 int tcp_v4_rcv(struct sk_buff *skb)
1936 {
1937         const struct iphdr *iph;
1938         const struct tcphdr *th;
1939         struct sock *sk;
1940         int ret;
1941         struct net *net = dev_net(skb->dev);
1942
1943         if (skb->pkt_type != PACKET_HOST)
1944                 goto discard_it;
1945
1946         /* Count it even if it's bad */
1947         TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1948
1949         if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1950                 goto discard_it;
1951
1952         th = tcp_hdr(skb);
1953
1954         if (th->doff < sizeof(struct tcphdr) / 4)
1955                 goto bad_packet;
1956         if (!pskb_may_pull(skb, th->doff * 4))
1957                 goto discard_it;
1958
1959         /* An explanation is required here, I think.
1960          * Packet length and doff are validated by header prediction,
1961          * provided case of th->doff==0 is eliminated.
1962          * So, we defer the checks. */
1963         if (!skb_csum_unnecessary(skb) && tcp_v4_checksum_init(skb))
1964                 goto csum_error;
1965
1966         th = tcp_hdr(skb);
1967         iph = ip_hdr(skb);
1968         TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1969         TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1970                                     skb->len - th->doff * 4);
1971         TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1972         TCP_SKB_CB(skb)->when    = 0;
1973         TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
1974         TCP_SKB_CB(skb)->sacked  = 0;
1975
1976         sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest);
1977         if (!sk)
1978                 goto no_tcp_socket;
1979
1980 process:
1981         if (sk->sk_state == TCP_TIME_WAIT)
1982                 goto do_time_wait;
1983
1984         if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
1985                 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
1986                 goto discard_and_relse;
1987         }
1988
1989         if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1990                 goto discard_and_relse;
1991         nf_reset(skb);
1992
1993         if (sk_filter(sk, skb))
1994                 goto discard_and_relse;
1995
1996         sk_mark_napi_id(sk, skb);
1997         skb->dev = NULL;
1998
1999         bh_lock_sock_nested(sk);
2000         ret = 0;
2001         if (!sock_owned_by_user(sk)) {
2002 #ifdef CONFIG_NET_DMA
2003                 struct tcp_sock *tp = tcp_sk(sk);
2004                 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
2005                         tp->ucopy.dma_chan = net_dma_find_channel();
2006                 if (tp->ucopy.dma_chan)
2007                         ret = tcp_v4_do_rcv(sk, skb);
2008                 else
2009 #endif
2010                 {
2011                         if (!tcp_prequeue(sk, skb))
2012                                 ret = tcp_v4_do_rcv(sk, skb);
2013                 }
2014         } else if (unlikely(sk_add_backlog(sk, skb,
2015                                            sk->sk_rcvbuf + sk->sk_sndbuf))) {
2016                 bh_unlock_sock(sk);
2017                 NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP);
2018                 goto discard_and_relse;
2019         }
2020         bh_unlock_sock(sk);
2021
2022         sock_put(sk);
2023
2024         return ret;
2025
2026 no_tcp_socket:
2027         if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2028                 goto discard_it;
2029
2030         if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
2031 csum_error:
2032                 TCP_INC_STATS_BH(net, TCP_MIB_CSUMERRORS);
2033 bad_packet:
2034                 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
2035         } else {
2036                 tcp_v4_send_reset(NULL, skb);
2037         }
2038
2039 discard_it:
2040         /* Discard frame. */
2041         kfree_skb(skb);
2042         return 0;
2043
2044 discard_and_relse:
2045         sock_put(sk);
2046         goto discard_it;
2047
2048 do_time_wait:
2049         if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
2050                 inet_twsk_put(inet_twsk(sk));
2051                 goto discard_it;
2052         }
2053
2054         if (skb->len < (th->doff << 2)) {
2055                 inet_twsk_put(inet_twsk(sk));
2056                 goto bad_packet;
2057         }
2058         if (tcp_checksum_complete(skb)) {
2059                 inet_twsk_put(inet_twsk(sk));
2060                 goto csum_error;
2061         }
2062         switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
2063         case TCP_TW_SYN: {
2064                 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
2065                                                         &tcp_hashinfo,
2066                                                         iph->saddr, th->source,
2067                                                         iph->daddr, th->dest,
2068                                                         inet_iif(skb));
2069                 if (sk2) {
2070                         inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
2071                         inet_twsk_put(inet_twsk(sk));
2072                         sk = sk2;
2073                         goto process;
2074                 }
2075                 /* Fall through to ACK */
2076         }
2077         case TCP_TW_ACK:
2078                 tcp_v4_timewait_ack(sk, skb);
2079                 break;
2080         case TCP_TW_RST:
2081                 goto no_tcp_socket;
2082         case TCP_TW_SUCCESS:;
2083         }
2084         goto discard_it;
2085 }
2086
2087 static struct timewait_sock_ops tcp_timewait_sock_ops = {
2088         .twsk_obj_size  = sizeof(struct tcp_timewait_sock),
2089         .twsk_unique    = tcp_twsk_unique,
2090         .twsk_destructor= tcp_twsk_destructor,
2091 };
2092
2093 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb)
2094 {
2095         struct dst_entry *dst = skb_dst(skb);
2096
2097         dst_hold(dst);
2098         sk->sk_rx_dst = dst;
2099         inet_sk(sk)->rx_dst_ifindex = skb->skb_iif;
2100 }
2101 EXPORT_SYMBOL(inet_sk_rx_dst_set);
2102
2103 const struct inet_connection_sock_af_ops ipv4_specific = {
2104         .queue_xmit        = ip_queue_xmit,
2105         .send_check        = tcp_v4_send_check,
2106         .rebuild_header    = inet_sk_rebuild_header,
2107         .sk_rx_dst_set     = inet_sk_rx_dst_set,
2108         .conn_request      = tcp_v4_conn_request,
2109         .syn_recv_sock     = tcp_v4_syn_recv_sock,
2110         .net_header_len    = sizeof(struct iphdr),
2111         .setsockopt        = ip_setsockopt,
2112         .getsockopt        = ip_getsockopt,
2113         .addr2sockaddr     = inet_csk_addr2sockaddr,
2114         .sockaddr_len      = sizeof(struct sockaddr_in),
2115         .bind_conflict     = inet_csk_bind_conflict,
2116 #ifdef CONFIG_COMPAT
2117         .compat_setsockopt = compat_ip_setsockopt,
2118         .compat_getsockopt = compat_ip_getsockopt,
2119 #endif
2120 };
2121 EXPORT_SYMBOL(ipv4_specific);
2122
2123 #ifdef CONFIG_TCP_MD5SIG
2124 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
2125         .md5_lookup             = tcp_v4_md5_lookup,
2126         .calc_md5_hash          = tcp_v4_md5_hash_skb,
2127         .md5_parse              = tcp_v4_parse_md5_keys,
2128 };
2129 #endif
2130
2131 /* NOTE: A lot of things set to zero explicitly by call to
2132  *       sk_alloc() so need not be done here.
2133  */
2134 static int tcp_v4_init_sock(struct sock *sk)
2135 {
2136         struct inet_connection_sock *icsk = inet_csk(sk);
2137
2138         tcp_init_sock(sk);
2139
2140         icsk->icsk_af_ops = &ipv4_specific;
2141
2142 #ifdef CONFIG_TCP_MD5SIG
2143         tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
2144 #endif
2145
2146         return 0;
2147 }
2148
2149 void tcp_v4_destroy_sock(struct sock *sk)
2150 {
2151         struct tcp_sock *tp = tcp_sk(sk);
2152
2153         tcp_clear_xmit_timers(sk);
2154
2155         tcp_cleanup_congestion_control(sk);
2156
2157         /* Cleanup up the write buffer. */
2158         tcp_write_queue_purge(sk);
2159
2160         /* Cleans up our, hopefully empty, out_of_order_queue. */
2161         __skb_queue_purge(&tp->out_of_order_queue);
2162
2163 #ifdef CONFIG_TCP_MD5SIG
2164         /* Clean up the MD5 key list, if any */
2165         if (tp->md5sig_info) {
2166                 tcp_clear_md5_list(sk);
2167                 kfree_rcu(tp->md5sig_info, rcu);
2168                 tp->md5sig_info = NULL;
2169         }
2170 #endif
2171
2172 #ifdef CONFIG_NET_DMA
2173         /* Cleans up our sk_async_wait_queue */
2174         __skb_queue_purge(&sk->sk_async_wait_queue);
2175 #endif
2176
2177         /* Clean prequeue, it must be empty really */
2178         __skb_queue_purge(&tp->ucopy.prequeue);
2179
2180         /* Clean up a referenced TCP bind bucket. */
2181         if (inet_csk(sk)->icsk_bind_hash)
2182                 inet_put_port(sk);
2183
2184         BUG_ON(tp->fastopen_rsk != NULL);
2185
2186         /* If socket is aborted during connect operation */
2187         tcp_free_fastopen_req(tp);
2188
2189         sk_sockets_allocated_dec(sk);
2190         sock_release_memcg(sk);
2191 }
2192 EXPORT_SYMBOL(tcp_v4_destroy_sock);
2193
2194 #ifdef CONFIG_PROC_FS
2195 /* Proc filesystem TCP sock list dumping. */
2196
2197 static inline struct inet_timewait_sock *tw_head(struct hlist_nulls_head *head)
2198 {
2199         return hlist_nulls_empty(head) ? NULL :
2200                 list_entry(head->first, struct inet_timewait_sock, tw_node);
2201 }
2202
2203 static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw)
2204 {
2205         return !is_a_nulls(tw->tw_node.next) ?
2206                 hlist_nulls_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL;
2207 }
2208
2209 /*
2210  * Get next listener socket follow cur.  If cur is NULL, get first socket
2211  * starting from bucket given in st->bucket; when st->bucket is zero the
2212  * very first socket in the hash table is returned.
2213  */
2214 static void *listening_get_next(struct seq_file *seq, void *cur)
2215 {
2216         struct inet_connection_sock *icsk;
2217         struct hlist_nulls_node *node;
2218         struct sock *sk = cur;
2219         struct inet_listen_hashbucket *ilb;
2220         struct tcp_iter_state *st = seq->private;
2221         struct net *net = seq_file_net(seq);
2222
2223         if (!sk) {
2224                 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2225                 spin_lock_bh(&ilb->lock);
2226                 sk = sk_nulls_head(&ilb->head);
2227                 st->offset = 0;
2228                 goto get_sk;
2229         }
2230         ilb = &tcp_hashinfo.listening_hash[st->bucket];
2231         ++st->num;
2232         ++st->offset;
2233
2234         if (st->state == TCP_SEQ_STATE_OPENREQ) {
2235                 struct request_sock *req = cur;
2236
2237                 icsk = inet_csk(st->syn_wait_sk);
2238                 req = req->dl_next;
2239                 while (1) {
2240                         while (req) {
2241                                 if (req->rsk_ops->family == st->family) {
2242                                         cur = req;
2243                                         goto out;
2244                                 }
2245                                 req = req->dl_next;
2246                         }
2247                         if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
2248                                 break;
2249 get_req:
2250                         req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
2251                 }
2252                 sk        = sk_nulls_next(st->syn_wait_sk);
2253                 st->state = TCP_SEQ_STATE_LISTENING;
2254                 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2255         } else {
2256                 icsk = inet_csk(sk);
2257                 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2258                 if (reqsk_queue_len(&icsk->icsk_accept_queue))
2259                         goto start_req;
2260                 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2261                 sk = sk_nulls_next(sk);
2262         }
2263 get_sk:
2264         sk_nulls_for_each_from(sk, node) {
2265                 if (!net_eq(sock_net(sk), net))
2266                         continue;
2267                 if (sk->sk_family == st->family) {
2268                         cur = sk;
2269                         goto out;
2270                 }
2271                 icsk = inet_csk(sk);
2272                 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2273                 if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
2274 start_req:
2275                         st->uid         = sock_i_uid(sk);
2276                         st->syn_wait_sk = sk;
2277                         st->state       = TCP_SEQ_STATE_OPENREQ;
2278                         st->sbucket     = 0;
2279                         goto get_req;
2280                 }
2281                 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2282         }
2283         spin_unlock_bh(&ilb->lock);
2284         st->offset = 0;
2285         if (++st->bucket < INET_LHTABLE_SIZE) {
2286                 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2287                 spin_lock_bh(&ilb->lock);
2288                 sk = sk_nulls_head(&ilb->head);
2289                 goto get_sk;
2290         }
2291         cur = NULL;
2292 out:
2293         return cur;
2294 }
2295
2296 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2297 {
2298         struct tcp_iter_state *st = seq->private;
2299         void *rc;
2300
2301         st->bucket = 0;
2302         st->offset = 0;
2303         rc = listening_get_next(seq, NULL);
2304
2305         while (rc && *pos) {
2306                 rc = listening_get_next(seq, rc);
2307                 --*pos;
2308         }
2309         return rc;
2310 }
2311
2312 static inline bool empty_bucket(struct tcp_iter_state *st)
2313 {
2314         return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain) &&
2315                 hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].twchain);
2316 }
2317
2318 /*
2319  * Get first established socket starting from bucket given in st->bucket.
2320  * If st->bucket is zero, the very first socket in the hash is returned.
2321  */
2322 static void *established_get_first(struct seq_file *seq)
2323 {
2324         struct tcp_iter_state *st = seq->private;
2325         struct net *net = seq_file_net(seq);
2326         void *rc = NULL;
2327
2328         st->offset = 0;
2329         for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
2330                 struct sock *sk;
2331                 struct hlist_nulls_node *node;
2332                 struct inet_timewait_sock *tw;
2333                 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
2334
2335                 /* Lockless fast path for the common case of empty buckets */
2336                 if (empty_bucket(st))
2337                         continue;
2338
2339                 spin_lock_bh(lock);
2340                 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
2341                         if (sk->sk_family != st->family ||
2342                             !net_eq(sock_net(sk), net)) {
2343                                 continue;
2344                         }
2345                         rc = sk;
2346                         goto out;
2347                 }
2348                 st->state = TCP_SEQ_STATE_TIME_WAIT;
2349                 inet_twsk_for_each(tw, node,
2350                                    &tcp_hashinfo.ehash[st->bucket].twchain) {
2351                         if (tw->tw_family != st->family ||
2352                             !net_eq(twsk_net(tw), net)) {
2353                                 continue;
2354                         }
2355                         rc = tw;
2356                         goto out;
2357                 }
2358                 spin_unlock_bh(lock);
2359                 st->state = TCP_SEQ_STATE_ESTABLISHED;
2360         }
2361 out:
2362         return rc;
2363 }
2364
2365 static void *established_get_next(struct seq_file *seq, void *cur)
2366 {
2367         struct sock *sk = cur;
2368         struct inet_timewait_sock *tw;
2369         struct hlist_nulls_node *node;
2370         struct tcp_iter_state *st = seq->private;
2371         struct net *net = seq_file_net(seq);
2372
2373         ++st->num;
2374         ++st->offset;
2375
2376         if (st->state == TCP_SEQ_STATE_TIME_WAIT) {
2377                 tw = cur;
2378                 tw = tw_next(tw);
2379 get_tw:
2380                 while (tw && (tw->tw_family != st->family || !net_eq(twsk_net(tw), net))) {
2381                         tw = tw_next(tw);
2382                 }
2383                 if (tw) {
2384                         cur = tw;
2385                         goto out;
2386                 }
2387                 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2388                 st->state = TCP_SEQ_STATE_ESTABLISHED;
2389
2390                 /* Look for next non empty bucket */
2391                 st->offset = 0;
2392                 while (++st->bucket <= tcp_hashinfo.ehash_mask &&
2393                                 empty_bucket(st))
2394                         ;
2395                 if (st->bucket > tcp_hashinfo.ehash_mask)
2396                         return NULL;
2397
2398                 spin_lock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2399                 sk = sk_nulls_head(&tcp_hashinfo.ehash[st->bucket].chain);
2400         } else
2401                 sk = sk_nulls_next(sk);
2402
2403         sk_nulls_for_each_from(sk, node) {
2404                 if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
2405                         goto found;
2406         }
2407
2408         st->state = TCP_SEQ_STATE_TIME_WAIT;
2409         tw = tw_head(&tcp_hashinfo.ehash[st->bucket].twchain);
2410         goto get_tw;
2411 found:
2412         cur = sk;
2413 out:
2414         return cur;
2415 }
2416
2417 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2418 {
2419         struct tcp_iter_state *st = seq->private;
2420         void *rc;
2421
2422         st->bucket = 0;
2423         rc = established_get_first(seq);
2424
2425         while (rc && pos) {
2426                 rc = established_get_next(seq, rc);
2427                 --pos;
2428         }
2429         return rc;
2430 }
2431
2432 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2433 {
2434         void *rc;
2435         struct tcp_iter_state *st = seq->private;
2436
2437         st->state = TCP_SEQ_STATE_LISTENING;
2438         rc        = listening_get_idx(seq, &pos);
2439
2440         if (!rc) {
2441                 st->state = TCP_SEQ_STATE_ESTABLISHED;
2442                 rc        = established_get_idx(seq, pos);
2443         }
2444
2445         return rc;
2446 }
2447
2448 static void *tcp_seek_last_pos(struct seq_file *seq)
2449 {
2450         struct tcp_iter_state *st = seq->private;
2451         int offset = st->offset;
2452         int orig_num = st->num;
2453         void *rc = NULL;
2454
2455         switch (st->state) {
2456         case TCP_SEQ_STATE_OPENREQ:
2457         case TCP_SEQ_STATE_LISTENING:
2458                 if (st->bucket >= INET_LHTABLE_SIZE)
2459                         break;
2460                 st->state = TCP_SEQ_STATE_LISTENING;
2461                 rc = listening_get_next(seq, NULL);
2462                 while (offset-- && rc)
2463                         rc = listening_get_next(seq, rc);
2464                 if (rc)
2465                         break;
2466                 st->bucket = 0;
2467                 /* Fallthrough */
2468         case TCP_SEQ_STATE_ESTABLISHED:
2469         case TCP_SEQ_STATE_TIME_WAIT:
2470                 st->state = TCP_SEQ_STATE_ESTABLISHED;
2471                 if (st->bucket > tcp_hashinfo.ehash_mask)
2472                         break;
2473                 rc = established_get_first(seq);
2474                 while (offset-- && rc)
2475                         rc = established_get_next(seq, rc);
2476         }
2477
2478         st->num = orig_num;
2479
2480         return rc;
2481 }
2482
2483 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2484 {
2485         struct tcp_iter_state *st = seq->private;
2486         void *rc;
2487
2488         if (*pos && *pos == st->last_pos) {
2489                 rc = tcp_seek_last_pos(seq);
2490                 if (rc)
2491                         goto out;
2492         }
2493
2494         st->state = TCP_SEQ_STATE_LISTENING;
2495         st->num = 0;
2496         st->bucket = 0;
2497         st->offset = 0;
2498         rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2499
2500 out:
2501         st->last_pos = *pos;
2502         return rc;
2503 }
2504
2505 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2506 {
2507         struct tcp_iter_state *st = seq->private;
2508         void *rc = NULL;
2509
2510         if (v == SEQ_START_TOKEN) {
2511                 rc = tcp_get_idx(seq, 0);
2512                 goto out;
2513         }
2514
2515         switch (st->state) {
2516         case TCP_SEQ_STATE_OPENREQ:
2517         case TCP_SEQ_STATE_LISTENING:
2518                 rc = listening_get_next(seq, v);
2519                 if (!rc) {
2520                         st->state = TCP_SEQ_STATE_ESTABLISHED;
2521                         st->bucket = 0;
2522                         st->offset = 0;
2523                         rc        = established_get_first(seq);
2524                 }
2525                 break;
2526         case TCP_SEQ_STATE_ESTABLISHED:
2527         case TCP_SEQ_STATE_TIME_WAIT:
2528                 rc = established_get_next(seq, v);
2529                 break;
2530         }
2531 out:
2532         ++*pos;
2533         st->last_pos = *pos;
2534         return rc;
2535 }
2536
2537 static void tcp_seq_stop(struct seq_file *seq, void *v)
2538 {
2539         struct tcp_iter_state *st = seq->private;
2540
2541         switch (st->state) {
2542         case TCP_SEQ_STATE_OPENREQ:
2543                 if (v) {
2544                         struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2545                         read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2546                 }
2547         case TCP_SEQ_STATE_LISTENING:
2548                 if (v != SEQ_START_TOKEN)
2549                         spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock);
2550                 break;
2551         case TCP_SEQ_STATE_TIME_WAIT:
2552         case TCP_SEQ_STATE_ESTABLISHED:
2553                 if (v)
2554                         spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2555                 break;
2556         }
2557 }
2558
2559 int tcp_seq_open(struct inode *inode, struct file *file)
2560 {
2561         struct tcp_seq_afinfo *afinfo = PDE_DATA(inode);
2562         struct tcp_iter_state *s;
2563         int err;
2564
2565         err = seq_open_net(inode, file, &afinfo->seq_ops,
2566                           sizeof(struct tcp_iter_state));
2567         if (err < 0)
2568                 return err;
2569
2570         s = ((struct seq_file *)file->private_data)->private;
2571         s->family               = afinfo->family;
2572         s->last_pos             = 0;
2573         return 0;
2574 }
2575 EXPORT_SYMBOL(tcp_seq_open);
2576
2577 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2578 {
2579         int rc = 0;
2580         struct proc_dir_entry *p;
2581
2582         afinfo->seq_ops.start           = tcp_seq_start;
2583         afinfo->seq_ops.next            = tcp_seq_next;
2584         afinfo->seq_ops.stop            = tcp_seq_stop;
2585
2586         p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2587                              afinfo->seq_fops, afinfo);
2588         if (!p)
2589                 rc = -ENOMEM;
2590         return rc;
2591 }
2592 EXPORT_SYMBOL(tcp_proc_register);
2593
2594 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2595 {
2596         remove_proc_entry(afinfo->name, net->proc_net);
2597 }
2598 EXPORT_SYMBOL(tcp_proc_unregister);
2599
2600 static void get_openreq4(const struct sock *sk, const struct request_sock *req,
2601                          struct seq_file *f, int i, kuid_t uid, int *len)
2602 {
2603         const struct inet_request_sock *ireq = inet_rsk(req);
2604         long delta = req->expires - jiffies;
2605
2606         seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2607                 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %pK%n",
2608                 i,
2609                 ireq->loc_addr,
2610                 ntohs(inet_sk(sk)->inet_sport),
2611                 ireq->rmt_addr,
2612                 ntohs(ireq->rmt_port),
2613                 TCP_SYN_RECV,
2614                 0, 0, /* could print option size, but that is af dependent. */
2615                 1,    /* timers active (only the expire timer) */
2616                 jiffies_delta_to_clock_t(delta),
2617                 req->num_timeout,
2618                 from_kuid_munged(seq_user_ns(f), uid),
2619                 0,  /* non standard timer */
2620                 0, /* open_requests have no inode */
2621                 atomic_read(&sk->sk_refcnt),
2622                 req,
2623                 len);
2624 }
2625
2626 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i, int *len)
2627 {
2628         int timer_active;
2629         unsigned long timer_expires;
2630         const struct tcp_sock *tp = tcp_sk(sk);
2631         const struct inet_connection_sock *icsk = inet_csk(sk);
2632         const struct inet_sock *inet = inet_sk(sk);
2633         struct fastopen_queue *fastopenq = icsk->icsk_accept_queue.fastopenq;
2634         __be32 dest = inet->inet_daddr;
2635         __be32 src = inet->inet_rcv_saddr;
2636         __u16 destp = ntohs(inet->inet_dport);
2637         __u16 srcp = ntohs(inet->inet_sport);
2638         int rx_queue;
2639
2640         if (icsk->icsk_pending == ICSK_TIME_RETRANS ||
2641             icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
2642             icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2643                 timer_active    = 1;
2644                 timer_expires   = icsk->icsk_timeout;
2645         } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2646                 timer_active    = 4;
2647                 timer_expires   = icsk->icsk_timeout;
2648         } else if (timer_pending(&sk->sk_timer)) {
2649                 timer_active    = 2;
2650                 timer_expires   = sk->sk_timer.expires;
2651         } else {
2652                 timer_active    = 0;
2653                 timer_expires = jiffies;
2654         }
2655
2656         if (sk->sk_state == TCP_LISTEN)
2657                 rx_queue = sk->sk_ack_backlog;
2658         else
2659                 /*
2660                  * because we dont lock socket, we might find a transient negative value
2661                  */
2662                 rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
2663
2664         seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2665                         "%08X %5d %8d %lu %d %pK %lu %lu %u %u %d%n",
2666                 i, src, srcp, dest, destp, sk->sk_state,
2667                 tp->write_seq - tp->snd_una,
2668                 rx_queue,
2669                 timer_active,
2670                 jiffies_delta_to_clock_t(timer_expires - jiffies),
2671                 icsk->icsk_retransmits,
2672                 from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)),
2673                 icsk->icsk_probes_out,
2674                 sock_i_ino(sk),
2675                 atomic_read(&sk->sk_refcnt), sk,
2676                 jiffies_to_clock_t(icsk->icsk_rto),
2677                 jiffies_to_clock_t(icsk->icsk_ack.ato),
2678                 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2679                 tp->snd_cwnd,
2680                 sk->sk_state == TCP_LISTEN ?
2681                     (fastopenq ? fastopenq->max_qlen : 0) :
2682                     (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh),
2683                 len);
2684 }
2685
2686 static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2687                                struct seq_file *f, int i, int *len)
2688 {
2689         __be32 dest, src;
2690         __u16 destp, srcp;
2691         long delta = tw->tw_ttd - jiffies;
2692
2693         dest  = tw->tw_daddr;
2694         src   = tw->tw_rcv_saddr;
2695         destp = ntohs(tw->tw_dport);
2696         srcp  = ntohs(tw->tw_sport);
2697
2698         seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2699                 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK%n",
2700                 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2701                 3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0,
2702                 atomic_read(&tw->tw_refcnt), tw, len);
2703 }
2704
2705 #define TMPSZ 150
2706
2707 static int tcp4_seq_show(struct seq_file *seq, void *v)
2708 {
2709         struct tcp_iter_state *st;
2710         int len;
2711
2712         if (v == SEQ_START_TOKEN) {
2713                 seq_printf(seq, "%-*s\n", TMPSZ - 1,
2714                            "  sl  local_address rem_address   st tx_queue "
2715                            "rx_queue tr tm->when retrnsmt   uid  timeout "
2716                            "inode");
2717                 goto out;
2718         }
2719         st = seq->private;
2720
2721         switch (st->state) {
2722         case TCP_SEQ_STATE_LISTENING:
2723         case TCP_SEQ_STATE_ESTABLISHED:
2724                 get_tcp4_sock(v, seq, st->num, &len);
2725                 break;
2726         case TCP_SEQ_STATE_OPENREQ:
2727                 get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid, &len);
2728                 break;
2729         case TCP_SEQ_STATE_TIME_WAIT:
2730                 get_timewait4_sock(v, seq, st->num, &len);
2731                 break;
2732         }
2733         seq_printf(seq, "%*s\n", TMPSZ - 1 - len, "");
2734 out:
2735         return 0;
2736 }
2737
2738 static const struct file_operations tcp_afinfo_seq_fops = {
2739         .owner   = THIS_MODULE,
2740         .open    = tcp_seq_open,
2741         .read    = seq_read,
2742         .llseek  = seq_lseek,
2743         .release = seq_release_net
2744 };
2745
2746 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2747         .name           = "tcp",
2748         .family         = AF_INET,
2749         .seq_fops       = &tcp_afinfo_seq_fops,
2750         .seq_ops        = {
2751                 .show           = tcp4_seq_show,
2752         },
2753 };
2754
2755 static int __net_init tcp4_proc_init_net(struct net *net)
2756 {
2757         return tcp_proc_register(net, &tcp4_seq_afinfo);
2758 }
2759
2760 static void __net_exit tcp4_proc_exit_net(struct net *net)
2761 {
2762         tcp_proc_unregister(net, &tcp4_seq_afinfo);
2763 }
2764
2765 static struct pernet_operations tcp4_net_ops = {
2766         .init = tcp4_proc_init_net,
2767         .exit = tcp4_proc_exit_net,
2768 };
2769
2770 int __init tcp4_proc_init(void)
2771 {
2772         return register_pernet_subsys(&tcp4_net_ops);
2773 }
2774
2775 void tcp4_proc_exit(void)
2776 {
2777         unregister_pernet_subsys(&tcp4_net_ops);
2778 }
2779 #endif /* CONFIG_PROC_FS */
2780
2781 struct proto tcp_prot = {
2782         .name                   = "TCP",
2783         .owner                  = THIS_MODULE,
2784         .close                  = tcp_close,
2785         .connect                = tcp_v4_connect,
2786         .disconnect             = tcp_disconnect,
2787         .accept                 = inet_csk_accept,
2788         .ioctl                  = tcp_ioctl,
2789         .init                   = tcp_v4_init_sock,
2790         .destroy                = tcp_v4_destroy_sock,
2791         .shutdown               = tcp_shutdown,
2792         .setsockopt             = tcp_setsockopt,
2793         .getsockopt             = tcp_getsockopt,
2794         .recvmsg                = tcp_recvmsg,
2795         .sendmsg                = tcp_sendmsg,
2796         .sendpage               = tcp_sendpage,
2797         .backlog_rcv            = tcp_v4_do_rcv,
2798         .release_cb             = tcp_release_cb,
2799         .mtu_reduced            = tcp_v4_mtu_reduced,
2800         .hash                   = inet_hash,
2801         .unhash                 = inet_unhash,
2802         .get_port               = inet_csk_get_port,
2803         .enter_memory_pressure  = tcp_enter_memory_pressure,
2804         .stream_memory_free     = tcp_stream_memory_free,
2805         .sockets_allocated      = &tcp_sockets_allocated,
2806         .orphan_count           = &tcp_orphan_count,
2807         .memory_allocated       = &tcp_memory_allocated,
2808         .memory_pressure        = &tcp_memory_pressure,
2809         .sysctl_wmem            = sysctl_tcp_wmem,
2810         .sysctl_rmem            = sysctl_tcp_rmem,
2811         .max_header             = MAX_TCP_HEADER,
2812         .obj_size               = sizeof(struct tcp_sock),
2813         .slab_flags             = SLAB_DESTROY_BY_RCU,
2814         .twsk_prot              = &tcp_timewait_sock_ops,
2815         .rsk_prot               = &tcp_request_sock_ops,
2816         .h.hashinfo             = &tcp_hashinfo,
2817         .no_autobind            = true,
2818 #ifdef CONFIG_COMPAT
2819         .compat_setsockopt      = compat_tcp_setsockopt,
2820         .compat_getsockopt      = compat_tcp_getsockopt,
2821 #endif
2822 #ifdef CONFIG_MEMCG_KMEM
2823         .init_cgroup            = tcp_init_cgroup,
2824         .destroy_cgroup         = tcp_destroy_cgroup,
2825         .proto_cgroup           = tcp_proto_cgroup,
2826 #endif
2827 };
2828 EXPORT_SYMBOL(tcp_prot);
2829
2830 static int __net_init tcp_sk_init(struct net *net)
2831 {
2832         net->ipv4.sysctl_tcp_ecn = 2;
2833         return 0;
2834 }
2835
2836 static void __net_exit tcp_sk_exit(struct net *net)
2837 {
2838 }
2839
2840 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2841 {
2842         inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET);
2843 }
2844
2845 static struct pernet_operations __net_initdata tcp_sk_ops = {
2846        .init       = tcp_sk_init,
2847        .exit       = tcp_sk_exit,
2848        .exit_batch = tcp_sk_exit_batch,
2849 };
2850
2851 void __init tcp_v4_init(void)
2852 {
2853         inet_hashinfo_init(&tcp_hashinfo);
2854         if (register_pernet_subsys(&tcp_sk_ops))
2855                 panic("Failed to create the TCP control socket.\n");
2856 }