netfilter: conntrack: get rid of conntrack timer
[cascardo/linux.git] / net / netfilter / nf_conntrack_core.c
1 /* Connection state tracking for netfilter.  This is separated from,
2    but required by, the NAT layer; it can also be used by an iptables
3    extension. */
4
5 /* (C) 1999-2001 Paul `Rusty' Russell
6  * (C) 2002-2006 Netfilter Core Team <coreteam@netfilter.org>
7  * (C) 2003,2004 USAGI/WIDE Project <http://www.linux-ipv6.org>
8  * (C) 2005-2012 Patrick McHardy <kaber@trash.net>
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License version 2 as
12  * published by the Free Software Foundation.
13  */
14
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17 #include <linux/types.h>
18 #include <linux/netfilter.h>
19 #include <linux/module.h>
20 #include <linux/sched.h>
21 #include <linux/skbuff.h>
22 #include <linux/proc_fs.h>
23 #include <linux/vmalloc.h>
24 #include <linux/stddef.h>
25 #include <linux/slab.h>
26 #include <linux/random.h>
27 #include <linux/jhash.h>
28 #include <linux/err.h>
29 #include <linux/percpu.h>
30 #include <linux/moduleparam.h>
31 #include <linux/notifier.h>
32 #include <linux/kernel.h>
33 #include <linux/netdevice.h>
34 #include <linux/socket.h>
35 #include <linux/mm.h>
36 #include <linux/nsproxy.h>
37 #include <linux/rculist_nulls.h>
38
39 #include <net/netfilter/nf_conntrack.h>
40 #include <net/netfilter/nf_conntrack_l3proto.h>
41 #include <net/netfilter/nf_conntrack_l4proto.h>
42 #include <net/netfilter/nf_conntrack_expect.h>
43 #include <net/netfilter/nf_conntrack_helper.h>
44 #include <net/netfilter/nf_conntrack_seqadj.h>
45 #include <net/netfilter/nf_conntrack_core.h>
46 #include <net/netfilter/nf_conntrack_extend.h>
47 #include <net/netfilter/nf_conntrack_acct.h>
48 #include <net/netfilter/nf_conntrack_ecache.h>
49 #include <net/netfilter/nf_conntrack_zones.h>
50 #include <net/netfilter/nf_conntrack_timestamp.h>
51 #include <net/netfilter/nf_conntrack_timeout.h>
52 #include <net/netfilter/nf_conntrack_labels.h>
53 #include <net/netfilter/nf_conntrack_synproxy.h>
54 #include <net/netfilter/nf_nat.h>
55 #include <net/netfilter/nf_nat_core.h>
56 #include <net/netfilter/nf_nat_helper.h>
57 #include <net/netns/hash.h>
58
59 #define NF_CONNTRACK_VERSION    "0.5.0"
60
61 int (*nfnetlink_parse_nat_setup_hook)(struct nf_conn *ct,
62                                       enum nf_nat_manip_type manip,
63                                       const struct nlattr *attr) __read_mostly;
64 EXPORT_SYMBOL_GPL(nfnetlink_parse_nat_setup_hook);
65
66 __cacheline_aligned_in_smp spinlock_t nf_conntrack_locks[CONNTRACK_LOCKS];
67 EXPORT_SYMBOL_GPL(nf_conntrack_locks);
68
69 __cacheline_aligned_in_smp DEFINE_SPINLOCK(nf_conntrack_expect_lock);
70 EXPORT_SYMBOL_GPL(nf_conntrack_expect_lock);
71
72 struct hlist_nulls_head *nf_conntrack_hash __read_mostly;
73 EXPORT_SYMBOL_GPL(nf_conntrack_hash);
74
75 static __read_mostly struct kmem_cache *nf_conntrack_cachep;
76 static __read_mostly spinlock_t nf_conntrack_locks_all_lock;
77 static __read_mostly DEFINE_SPINLOCK(nf_conntrack_locks_all_lock);
78 static __read_mostly bool nf_conntrack_locks_all;
79
80 void nf_conntrack_lock(spinlock_t *lock) __acquires(lock)
81 {
82         spin_lock(lock);
83         while (unlikely(nf_conntrack_locks_all)) {
84                 spin_unlock(lock);
85
86                 /*
87                  * Order the 'nf_conntrack_locks_all' load vs. the
88                  * spin_unlock_wait() loads below, to ensure
89                  * that 'nf_conntrack_locks_all_lock' is indeed held:
90                  */
91                 smp_rmb(); /* spin_lock(&nf_conntrack_locks_all_lock) */
92                 spin_unlock_wait(&nf_conntrack_locks_all_lock);
93                 spin_lock(lock);
94         }
95 }
96 EXPORT_SYMBOL_GPL(nf_conntrack_lock);
97
98 static void nf_conntrack_double_unlock(unsigned int h1, unsigned int h2)
99 {
100         h1 %= CONNTRACK_LOCKS;
101         h2 %= CONNTRACK_LOCKS;
102         spin_unlock(&nf_conntrack_locks[h1]);
103         if (h1 != h2)
104                 spin_unlock(&nf_conntrack_locks[h2]);
105 }
106
107 /* return true if we need to recompute hashes (in case hash table was resized) */
108 static bool nf_conntrack_double_lock(struct net *net, unsigned int h1,
109                                      unsigned int h2, unsigned int sequence)
110 {
111         h1 %= CONNTRACK_LOCKS;
112         h2 %= CONNTRACK_LOCKS;
113         if (h1 <= h2) {
114                 nf_conntrack_lock(&nf_conntrack_locks[h1]);
115                 if (h1 != h2)
116                         spin_lock_nested(&nf_conntrack_locks[h2],
117                                          SINGLE_DEPTH_NESTING);
118         } else {
119                 nf_conntrack_lock(&nf_conntrack_locks[h2]);
120                 spin_lock_nested(&nf_conntrack_locks[h1],
121                                  SINGLE_DEPTH_NESTING);
122         }
123         if (read_seqcount_retry(&nf_conntrack_generation, sequence)) {
124                 nf_conntrack_double_unlock(h1, h2);
125                 return true;
126         }
127         return false;
128 }
129
130 static void nf_conntrack_all_lock(void)
131 {
132         int i;
133
134         spin_lock(&nf_conntrack_locks_all_lock);
135         nf_conntrack_locks_all = true;
136
137         /*
138          * Order the above store of 'nf_conntrack_locks_all' against
139          * the spin_unlock_wait() loads below, such that if
140          * nf_conntrack_lock() observes 'nf_conntrack_locks_all'
141          * we must observe nf_conntrack_locks[] held:
142          */
143         smp_mb(); /* spin_lock(&nf_conntrack_locks_all_lock) */
144
145         for (i = 0; i < CONNTRACK_LOCKS; i++) {
146                 spin_unlock_wait(&nf_conntrack_locks[i]);
147         }
148 }
149
150 static void nf_conntrack_all_unlock(void)
151 {
152         /*
153          * All prior stores must be complete before we clear
154          * 'nf_conntrack_locks_all'. Otherwise nf_conntrack_lock()
155          * might observe the false value but not the entire
156          * critical section:
157          */
158         smp_store_release(&nf_conntrack_locks_all, false);
159         spin_unlock(&nf_conntrack_locks_all_lock);
160 }
161
162 unsigned int nf_conntrack_htable_size __read_mostly;
163 EXPORT_SYMBOL_GPL(nf_conntrack_htable_size);
164
165 unsigned int nf_conntrack_max __read_mostly;
166 seqcount_t nf_conntrack_generation __read_mostly;
167
168 DEFINE_PER_CPU(struct nf_conn, nf_conntrack_untracked);
169 EXPORT_PER_CPU_SYMBOL(nf_conntrack_untracked);
170
171 static unsigned int nf_conntrack_hash_rnd __read_mostly;
172
173 static u32 hash_conntrack_raw(const struct nf_conntrack_tuple *tuple,
174                               const struct net *net)
175 {
176         unsigned int n;
177         u32 seed;
178
179         get_random_once(&nf_conntrack_hash_rnd, sizeof(nf_conntrack_hash_rnd));
180
181         /* The direction must be ignored, so we hash everything up to the
182          * destination ports (which is a multiple of 4) and treat the last
183          * three bytes manually.
184          */
185         seed = nf_conntrack_hash_rnd ^ net_hash_mix(net);
186         n = (sizeof(tuple->src) + sizeof(tuple->dst.u3)) / sizeof(u32);
187         return jhash2((u32 *)tuple, n, seed ^
188                       (((__force __u16)tuple->dst.u.all << 16) |
189                       tuple->dst.protonum));
190 }
191
192 static u32 scale_hash(u32 hash)
193 {
194         return reciprocal_scale(hash, nf_conntrack_htable_size);
195 }
196
197 static u32 __hash_conntrack(const struct net *net,
198                             const struct nf_conntrack_tuple *tuple,
199                             unsigned int size)
200 {
201         return reciprocal_scale(hash_conntrack_raw(tuple, net), size);
202 }
203
204 static u32 hash_conntrack(const struct net *net,
205                           const struct nf_conntrack_tuple *tuple)
206 {
207         return scale_hash(hash_conntrack_raw(tuple, net));
208 }
209
210 bool
211 nf_ct_get_tuple(const struct sk_buff *skb,
212                 unsigned int nhoff,
213                 unsigned int dataoff,
214                 u_int16_t l3num,
215                 u_int8_t protonum,
216                 struct net *net,
217                 struct nf_conntrack_tuple *tuple,
218                 const struct nf_conntrack_l3proto *l3proto,
219                 const struct nf_conntrack_l4proto *l4proto)
220 {
221         memset(tuple, 0, sizeof(*tuple));
222
223         tuple->src.l3num = l3num;
224         if (l3proto->pkt_to_tuple(skb, nhoff, tuple) == 0)
225                 return false;
226
227         tuple->dst.protonum = protonum;
228         tuple->dst.dir = IP_CT_DIR_ORIGINAL;
229
230         return l4proto->pkt_to_tuple(skb, dataoff, net, tuple);
231 }
232 EXPORT_SYMBOL_GPL(nf_ct_get_tuple);
233
234 bool nf_ct_get_tuplepr(const struct sk_buff *skb, unsigned int nhoff,
235                        u_int16_t l3num,
236                        struct net *net, struct nf_conntrack_tuple *tuple)
237 {
238         struct nf_conntrack_l3proto *l3proto;
239         struct nf_conntrack_l4proto *l4proto;
240         unsigned int protoff;
241         u_int8_t protonum;
242         int ret;
243
244         rcu_read_lock();
245
246         l3proto = __nf_ct_l3proto_find(l3num);
247         ret = l3proto->get_l4proto(skb, nhoff, &protoff, &protonum);
248         if (ret != NF_ACCEPT) {
249                 rcu_read_unlock();
250                 return false;
251         }
252
253         l4proto = __nf_ct_l4proto_find(l3num, protonum);
254
255         ret = nf_ct_get_tuple(skb, nhoff, protoff, l3num, protonum, net, tuple,
256                               l3proto, l4proto);
257
258         rcu_read_unlock();
259         return ret;
260 }
261 EXPORT_SYMBOL_GPL(nf_ct_get_tuplepr);
262
263 bool
264 nf_ct_invert_tuple(struct nf_conntrack_tuple *inverse,
265                    const struct nf_conntrack_tuple *orig,
266                    const struct nf_conntrack_l3proto *l3proto,
267                    const struct nf_conntrack_l4proto *l4proto)
268 {
269         memset(inverse, 0, sizeof(*inverse));
270
271         inverse->src.l3num = orig->src.l3num;
272         if (l3proto->invert_tuple(inverse, orig) == 0)
273                 return false;
274
275         inverse->dst.dir = !orig->dst.dir;
276
277         inverse->dst.protonum = orig->dst.protonum;
278         return l4proto->invert_tuple(inverse, orig);
279 }
280 EXPORT_SYMBOL_GPL(nf_ct_invert_tuple);
281
282 static void
283 clean_from_lists(struct nf_conn *ct)
284 {
285         pr_debug("clean_from_lists(%p)\n", ct);
286         hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
287         hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode);
288
289         /* Destroy all pending expectations */
290         nf_ct_remove_expectations(ct);
291 }
292
293 /* must be called with local_bh_disable */
294 static void nf_ct_add_to_dying_list(struct nf_conn *ct)
295 {
296         struct ct_pcpu *pcpu;
297
298         /* add this conntrack to the (per cpu) dying list */
299         ct->cpu = smp_processor_id();
300         pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
301
302         spin_lock(&pcpu->lock);
303         hlist_nulls_add_head(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
304                              &pcpu->dying);
305         spin_unlock(&pcpu->lock);
306 }
307
308 /* must be called with local_bh_disable */
309 static void nf_ct_add_to_unconfirmed_list(struct nf_conn *ct)
310 {
311         struct ct_pcpu *pcpu;
312
313         /* add this conntrack to the (per cpu) unconfirmed list */
314         ct->cpu = smp_processor_id();
315         pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
316
317         spin_lock(&pcpu->lock);
318         hlist_nulls_add_head(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
319                              &pcpu->unconfirmed);
320         spin_unlock(&pcpu->lock);
321 }
322
323 /* must be called with local_bh_disable */
324 static void nf_ct_del_from_dying_or_unconfirmed_list(struct nf_conn *ct)
325 {
326         struct ct_pcpu *pcpu;
327
328         /* We overload first tuple to link into unconfirmed or dying list.*/
329         pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
330
331         spin_lock(&pcpu->lock);
332         BUG_ON(hlist_nulls_unhashed(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode));
333         hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
334         spin_unlock(&pcpu->lock);
335 }
336
337 /* Released via destroy_conntrack() */
338 struct nf_conn *nf_ct_tmpl_alloc(struct net *net,
339                                  const struct nf_conntrack_zone *zone,
340                                  gfp_t flags)
341 {
342         struct nf_conn *tmpl;
343
344         tmpl = kzalloc(sizeof(*tmpl), flags);
345         if (tmpl == NULL)
346                 return NULL;
347
348         tmpl->status = IPS_TEMPLATE;
349         write_pnet(&tmpl->ct_net, net);
350         nf_ct_zone_add(tmpl, zone);
351         atomic_set(&tmpl->ct_general.use, 0);
352
353         return tmpl;
354 }
355 EXPORT_SYMBOL_GPL(nf_ct_tmpl_alloc);
356
357 void nf_ct_tmpl_free(struct nf_conn *tmpl)
358 {
359         nf_ct_ext_destroy(tmpl);
360         nf_ct_ext_free(tmpl);
361         kfree(tmpl);
362 }
363 EXPORT_SYMBOL_GPL(nf_ct_tmpl_free);
364
365 static void
366 destroy_conntrack(struct nf_conntrack *nfct)
367 {
368         struct nf_conn *ct = (struct nf_conn *)nfct;
369         struct net *net = nf_ct_net(ct);
370         struct nf_conntrack_l4proto *l4proto;
371
372         pr_debug("destroy_conntrack(%p)\n", ct);
373         NF_CT_ASSERT(atomic_read(&nfct->use) == 0);
374
375         if (unlikely(nf_ct_is_template(ct))) {
376                 nf_ct_tmpl_free(ct);
377                 return;
378         }
379         rcu_read_lock();
380         l4proto = __nf_ct_l4proto_find(nf_ct_l3num(ct), nf_ct_protonum(ct));
381         if (l4proto->destroy)
382                 l4proto->destroy(ct);
383
384         rcu_read_unlock();
385
386         local_bh_disable();
387         /* Expectations will have been removed in clean_from_lists,
388          * except TFTP can create an expectation on the first packet,
389          * before connection is in the list, so we need to clean here,
390          * too.
391          */
392         nf_ct_remove_expectations(ct);
393
394         nf_ct_del_from_dying_or_unconfirmed_list(ct);
395
396         NF_CT_STAT_INC(net, delete);
397         local_bh_enable();
398
399         if (ct->master)
400                 nf_ct_put(ct->master);
401
402         pr_debug("destroy_conntrack: returning ct=%p to slab\n", ct);
403         nf_conntrack_free(ct);
404 }
405
406 static void nf_ct_delete_from_lists(struct nf_conn *ct)
407 {
408         struct net *net = nf_ct_net(ct);
409         unsigned int hash, reply_hash;
410         unsigned int sequence;
411
412         nf_ct_helper_destroy(ct);
413
414         local_bh_disable();
415         do {
416                 sequence = read_seqcount_begin(&nf_conntrack_generation);
417                 hash = hash_conntrack(net,
418                                       &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
419                 reply_hash = hash_conntrack(net,
420                                            &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
421         } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
422
423         clean_from_lists(ct);
424         nf_conntrack_double_unlock(hash, reply_hash);
425
426         nf_ct_add_to_dying_list(ct);
427
428         NF_CT_STAT_INC(net, delete_list);
429         local_bh_enable();
430 }
431
432 bool nf_ct_delete(struct nf_conn *ct, u32 portid, int report)
433 {
434         struct nf_conn_tstamp *tstamp;
435
436         if (test_and_set_bit(IPS_DYING_BIT, &ct->status))
437                 return false;
438
439         tstamp = nf_conn_tstamp_find(ct);
440         if (tstamp && tstamp->stop == 0)
441                 tstamp->stop = ktime_get_real_ns();
442
443         if (nf_conntrack_event_report(IPCT_DESTROY, ct,
444                                     portid, report) < 0) {
445                 /* destroy event was not delivered. nf_ct_put will
446                  * be done by event cache worker on redelivery.
447                  */
448                 nf_ct_delete_from_lists(ct);
449                 nf_conntrack_ecache_delayed_work(nf_ct_net(ct));
450                 return false;
451         }
452
453         nf_conntrack_ecache_work(nf_ct_net(ct));
454         nf_ct_delete_from_lists(ct);
455         nf_ct_put(ct);
456         return true;
457 }
458 EXPORT_SYMBOL_GPL(nf_ct_delete);
459
460 static inline bool
461 nf_ct_key_equal(struct nf_conntrack_tuple_hash *h,
462                 const struct nf_conntrack_tuple *tuple,
463                 const struct nf_conntrack_zone *zone,
464                 const struct net *net)
465 {
466         struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
467
468         /* A conntrack can be recreated with the equal tuple,
469          * so we need to check that the conntrack is confirmed
470          */
471         return nf_ct_tuple_equal(tuple, &h->tuple) &&
472                nf_ct_zone_equal(ct, zone, NF_CT_DIRECTION(h)) &&
473                nf_ct_is_confirmed(ct) &&
474                net_eq(net, nf_ct_net(ct));
475 }
476
477 /* caller must hold rcu readlock and none of the nf_conntrack_locks */
478 static void nf_ct_gc_expired(struct nf_conn *ct)
479 {
480         if (!atomic_inc_not_zero(&ct->ct_general.use))
481                 return;
482
483         if (nf_ct_should_gc(ct))
484                 nf_ct_kill(ct);
485
486         nf_ct_put(ct);
487 }
488
489 /*
490  * Warning :
491  * - Caller must take a reference on returned object
492  *   and recheck nf_ct_tuple_equal(tuple, &h->tuple)
493  */
494 static struct nf_conntrack_tuple_hash *
495 ____nf_conntrack_find(struct net *net, const struct nf_conntrack_zone *zone,
496                       const struct nf_conntrack_tuple *tuple, u32 hash)
497 {
498         struct nf_conntrack_tuple_hash *h;
499         struct hlist_nulls_head *ct_hash;
500         struct hlist_nulls_node *n;
501         unsigned int bucket, hsize;
502
503 begin:
504         nf_conntrack_get_ht(&ct_hash, &hsize);
505         bucket = reciprocal_scale(hash, hsize);
506
507         hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[bucket], hnnode) {
508                 struct nf_conn *ct;
509
510                 ct = nf_ct_tuplehash_to_ctrack(h);
511                 if (nf_ct_is_expired(ct)) {
512                         nf_ct_gc_expired(ct);
513                         continue;
514                 }
515
516                 if (nf_ct_is_dying(ct))
517                         continue;
518
519                 if (nf_ct_key_equal(h, tuple, zone, net)) {
520                         NF_CT_STAT_INC_ATOMIC(net, found);
521                         return h;
522                 }
523                 NF_CT_STAT_INC_ATOMIC(net, searched);
524         }
525         /*
526          * if the nulls value we got at the end of this lookup is
527          * not the expected one, we must restart lookup.
528          * We probably met an item that was moved to another chain.
529          */
530         if (get_nulls_value(n) != bucket) {
531                 NF_CT_STAT_INC_ATOMIC(net, search_restart);
532                 goto begin;
533         }
534
535         return NULL;
536 }
537
538 /* Find a connection corresponding to a tuple. */
539 static struct nf_conntrack_tuple_hash *
540 __nf_conntrack_find_get(struct net *net, const struct nf_conntrack_zone *zone,
541                         const struct nf_conntrack_tuple *tuple, u32 hash)
542 {
543         struct nf_conntrack_tuple_hash *h;
544         struct nf_conn *ct;
545
546         rcu_read_lock();
547 begin:
548         h = ____nf_conntrack_find(net, zone, tuple, hash);
549         if (h) {
550                 ct = nf_ct_tuplehash_to_ctrack(h);
551                 if (unlikely(nf_ct_is_dying(ct) ||
552                              !atomic_inc_not_zero(&ct->ct_general.use)))
553                         h = NULL;
554                 else {
555                         if (unlikely(!nf_ct_key_equal(h, tuple, zone, net))) {
556                                 nf_ct_put(ct);
557                                 goto begin;
558                         }
559                 }
560         }
561         rcu_read_unlock();
562
563         return h;
564 }
565
566 struct nf_conntrack_tuple_hash *
567 nf_conntrack_find_get(struct net *net, const struct nf_conntrack_zone *zone,
568                       const struct nf_conntrack_tuple *tuple)
569 {
570         return __nf_conntrack_find_get(net, zone, tuple,
571                                        hash_conntrack_raw(tuple, net));
572 }
573 EXPORT_SYMBOL_GPL(nf_conntrack_find_get);
574
575 static void __nf_conntrack_hash_insert(struct nf_conn *ct,
576                                        unsigned int hash,
577                                        unsigned int reply_hash)
578 {
579         hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
580                            &nf_conntrack_hash[hash]);
581         hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode,
582                            &nf_conntrack_hash[reply_hash]);
583 }
584
585 int
586 nf_conntrack_hash_check_insert(struct nf_conn *ct)
587 {
588         const struct nf_conntrack_zone *zone;
589         struct net *net = nf_ct_net(ct);
590         unsigned int hash, reply_hash;
591         struct nf_conntrack_tuple_hash *h;
592         struct hlist_nulls_node *n;
593         unsigned int sequence;
594
595         zone = nf_ct_zone(ct);
596
597         local_bh_disable();
598         do {
599                 sequence = read_seqcount_begin(&nf_conntrack_generation);
600                 hash = hash_conntrack(net,
601                                       &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
602                 reply_hash = hash_conntrack(net,
603                                            &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
604         } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
605
606         /* See if there's one in the list already, including reverse */
607         hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[hash], hnnode)
608                 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
609                                     zone, net))
610                         goto out;
611
612         hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[reply_hash], hnnode)
613                 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
614                                     zone, net))
615                         goto out;
616
617         smp_wmb();
618         /* The caller holds a reference to this object */
619         atomic_set(&ct->ct_general.use, 2);
620         __nf_conntrack_hash_insert(ct, hash, reply_hash);
621         nf_conntrack_double_unlock(hash, reply_hash);
622         NF_CT_STAT_INC(net, insert);
623         local_bh_enable();
624         return 0;
625
626 out:
627         nf_conntrack_double_unlock(hash, reply_hash);
628         NF_CT_STAT_INC(net, insert_failed);
629         local_bh_enable();
630         return -EEXIST;
631 }
632 EXPORT_SYMBOL_GPL(nf_conntrack_hash_check_insert);
633
634 static inline void nf_ct_acct_update(struct nf_conn *ct,
635                                      enum ip_conntrack_info ctinfo,
636                                      unsigned int len)
637 {
638         struct nf_conn_acct *acct;
639
640         acct = nf_conn_acct_find(ct);
641         if (acct) {
642                 struct nf_conn_counter *counter = acct->counter;
643
644                 atomic64_inc(&counter[CTINFO2DIR(ctinfo)].packets);
645                 atomic64_add(len, &counter[CTINFO2DIR(ctinfo)].bytes);
646         }
647 }
648
649 static void nf_ct_acct_merge(struct nf_conn *ct, enum ip_conntrack_info ctinfo,
650                              const struct nf_conn *loser_ct)
651 {
652         struct nf_conn_acct *acct;
653
654         acct = nf_conn_acct_find(loser_ct);
655         if (acct) {
656                 struct nf_conn_counter *counter = acct->counter;
657                 unsigned int bytes;
658
659                 /* u32 should be fine since we must have seen one packet. */
660                 bytes = atomic64_read(&counter[CTINFO2DIR(ctinfo)].bytes);
661                 nf_ct_acct_update(ct, ctinfo, bytes);
662         }
663 }
664
665 /* Resolve race on insertion if this protocol allows this. */
666 static int nf_ct_resolve_clash(struct net *net, struct sk_buff *skb,
667                                enum ip_conntrack_info ctinfo,
668                                struct nf_conntrack_tuple_hash *h)
669 {
670         /* This is the conntrack entry already in hashes that won race. */
671         struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
672         struct nf_conntrack_l4proto *l4proto;
673
674         l4proto = __nf_ct_l4proto_find(nf_ct_l3num(ct), nf_ct_protonum(ct));
675         if (l4proto->allow_clash &&
676             !nfct_nat(ct) &&
677             !nf_ct_is_dying(ct) &&
678             atomic_inc_not_zero(&ct->ct_general.use)) {
679                 nf_ct_acct_merge(ct, ctinfo, (struct nf_conn *)skb->nfct);
680                 nf_conntrack_put(skb->nfct);
681                 /* Assign conntrack already in hashes to this skbuff. Don't
682                  * modify skb->nfctinfo to ensure consistent stateful filtering.
683                  */
684                 skb->nfct = &ct->ct_general;
685                 return NF_ACCEPT;
686         }
687         NF_CT_STAT_INC(net, drop);
688         return NF_DROP;
689 }
690
691 /* Confirm a connection given skb; places it in hash table */
692 int
693 __nf_conntrack_confirm(struct sk_buff *skb)
694 {
695         const struct nf_conntrack_zone *zone;
696         unsigned int hash, reply_hash;
697         struct nf_conntrack_tuple_hash *h;
698         struct nf_conn *ct;
699         struct nf_conn_help *help;
700         struct nf_conn_tstamp *tstamp;
701         struct hlist_nulls_node *n;
702         enum ip_conntrack_info ctinfo;
703         struct net *net;
704         unsigned int sequence;
705         int ret = NF_DROP;
706
707         ct = nf_ct_get(skb, &ctinfo);
708         net = nf_ct_net(ct);
709
710         /* ipt_REJECT uses nf_conntrack_attach to attach related
711            ICMP/TCP RST packets in other direction.  Actual packet
712            which created connection will be IP_CT_NEW or for an
713            expected connection, IP_CT_RELATED. */
714         if (CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL)
715                 return NF_ACCEPT;
716
717         zone = nf_ct_zone(ct);
718         local_bh_disable();
719
720         do {
721                 sequence = read_seqcount_begin(&nf_conntrack_generation);
722                 /* reuse the hash saved before */
723                 hash = *(unsigned long *)&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev;
724                 hash = scale_hash(hash);
725                 reply_hash = hash_conntrack(net,
726                                            &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
727
728         } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
729
730         /* We're not in hash table, and we refuse to set up related
731          * connections for unconfirmed conns.  But packet copies and
732          * REJECT will give spurious warnings here.
733          */
734         /* NF_CT_ASSERT(atomic_read(&ct->ct_general.use) == 1); */
735
736         /* No external references means no one else could have
737          * confirmed us.
738          */
739         NF_CT_ASSERT(!nf_ct_is_confirmed(ct));
740         pr_debug("Confirming conntrack %p\n", ct);
741         /* We have to check the DYING flag after unlink to prevent
742          * a race against nf_ct_get_next_corpse() possibly called from
743          * user context, else we insert an already 'dead' hash, blocking
744          * further use of that particular connection -JM.
745          */
746         nf_ct_del_from_dying_or_unconfirmed_list(ct);
747
748         if (unlikely(nf_ct_is_dying(ct))) {
749                 nf_ct_add_to_dying_list(ct);
750                 goto dying;
751         }
752
753         /* See if there's one in the list already, including reverse:
754            NAT could have grabbed it without realizing, since we're
755            not in the hash.  If there is, we lost race. */
756         hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[hash], hnnode)
757                 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
758                                     zone, net))
759                         goto out;
760
761         hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[reply_hash], hnnode)
762                 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
763                                     zone, net))
764                         goto out;
765
766         /* Timer relative to confirmation time, not original
767            setting time, otherwise we'd get timer wrap in
768            weird delay cases. */
769         ct->timeout += nfct_time_stamp;
770         atomic_inc(&ct->ct_general.use);
771         ct->status |= IPS_CONFIRMED;
772
773         /* set conntrack timestamp, if enabled. */
774         tstamp = nf_conn_tstamp_find(ct);
775         if (tstamp) {
776                 if (skb->tstamp.tv64 == 0)
777                         __net_timestamp(skb);
778
779                 tstamp->start = ktime_to_ns(skb->tstamp);
780         }
781         /* Since the lookup is lockless, hash insertion must be done after
782          * starting the timer and setting the CONFIRMED bit. The RCU barriers
783          * guarantee that no other CPU can find the conntrack before the above
784          * stores are visible.
785          */
786         __nf_conntrack_hash_insert(ct, hash, reply_hash);
787         nf_conntrack_double_unlock(hash, reply_hash);
788         NF_CT_STAT_INC(net, insert);
789         local_bh_enable();
790
791         help = nfct_help(ct);
792         if (help && help->helper)
793                 nf_conntrack_event_cache(IPCT_HELPER, ct);
794
795         nf_conntrack_event_cache(master_ct(ct) ?
796                                  IPCT_RELATED : IPCT_NEW, ct);
797         return NF_ACCEPT;
798
799 out:
800         nf_ct_add_to_dying_list(ct);
801         ret = nf_ct_resolve_clash(net, skb, ctinfo, h);
802 dying:
803         nf_conntrack_double_unlock(hash, reply_hash);
804         NF_CT_STAT_INC(net, insert_failed);
805         local_bh_enable();
806         return ret;
807 }
808 EXPORT_SYMBOL_GPL(__nf_conntrack_confirm);
809
810 /* Returns true if a connection correspondings to the tuple (required
811    for NAT). */
812 int
813 nf_conntrack_tuple_taken(const struct nf_conntrack_tuple *tuple,
814                          const struct nf_conn *ignored_conntrack)
815 {
816         struct net *net = nf_ct_net(ignored_conntrack);
817         const struct nf_conntrack_zone *zone;
818         struct nf_conntrack_tuple_hash *h;
819         struct hlist_nulls_head *ct_hash;
820         unsigned int hash, hsize;
821         struct hlist_nulls_node *n;
822         struct nf_conn *ct;
823
824         zone = nf_ct_zone(ignored_conntrack);
825
826         rcu_read_lock();
827  begin:
828         nf_conntrack_get_ht(&ct_hash, &hsize);
829         hash = __hash_conntrack(net, tuple, hsize);
830
831         hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[hash], hnnode) {
832                 ct = nf_ct_tuplehash_to_ctrack(h);
833
834                 if (ct == ignored_conntrack)
835                         continue;
836
837                 if (nf_ct_is_expired(ct)) {
838                         nf_ct_gc_expired(ct);
839                         continue;
840                 }
841
842                 if (nf_ct_key_equal(h, tuple, zone, net)) {
843                         NF_CT_STAT_INC_ATOMIC(net, found);
844                         rcu_read_unlock();
845                         return 1;
846                 }
847                 NF_CT_STAT_INC_ATOMIC(net, searched);
848         }
849
850         if (get_nulls_value(n) != hash) {
851                 NF_CT_STAT_INC_ATOMIC(net, search_restart);
852                 goto begin;
853         }
854
855         rcu_read_unlock();
856
857         return 0;
858 }
859 EXPORT_SYMBOL_GPL(nf_conntrack_tuple_taken);
860
861 #define NF_CT_EVICTION_RANGE    8
862
863 /* There's a small race here where we may free a just-assured
864    connection.  Too bad: we're in trouble anyway. */
865 static unsigned int early_drop_list(struct net *net,
866                                     struct hlist_nulls_head *head)
867 {
868         struct nf_conntrack_tuple_hash *h;
869         struct hlist_nulls_node *n;
870         unsigned int drops = 0;
871         struct nf_conn *tmp;
872
873         hlist_nulls_for_each_entry_rcu(h, n, head, hnnode) {
874                 tmp = nf_ct_tuplehash_to_ctrack(h);
875
876                 if (nf_ct_is_expired(tmp)) {
877                         nf_ct_gc_expired(tmp);
878                         continue;
879                 }
880
881                 if (test_bit(IPS_ASSURED_BIT, &tmp->status) ||
882                     !net_eq(nf_ct_net(tmp), net) ||
883                     nf_ct_is_dying(tmp))
884                         continue;
885
886                 if (!atomic_inc_not_zero(&tmp->ct_general.use))
887                         continue;
888
889                 /* kill only if still in same netns -- might have moved due to
890                  * SLAB_DESTROY_BY_RCU rules.
891                  *
892                  * We steal the timer reference.  If that fails timer has
893                  * already fired or someone else deleted it. Just drop ref
894                  * and move to next entry.
895                  */
896                 if (net_eq(nf_ct_net(tmp), net) &&
897                     nf_ct_is_confirmed(tmp) &&
898                     nf_ct_delete(tmp, 0, 0))
899                         drops++;
900
901                 nf_ct_put(tmp);
902         }
903
904         return drops;
905 }
906
907 static noinline int early_drop(struct net *net, unsigned int _hash)
908 {
909         unsigned int i;
910
911         for (i = 0; i < NF_CT_EVICTION_RANGE; i++) {
912                 struct hlist_nulls_head *ct_hash;
913                 unsigned int hash, hsize, drops;
914
915                 rcu_read_lock();
916                 nf_conntrack_get_ht(&ct_hash, &hsize);
917                 hash = reciprocal_scale(_hash++, hsize);
918
919                 drops = early_drop_list(net, &ct_hash[hash]);
920                 rcu_read_unlock();
921
922                 if (drops) {
923                         NF_CT_STAT_ADD_ATOMIC(net, early_drop, drops);
924                         return true;
925                 }
926         }
927
928         return false;
929 }
930
931 static struct nf_conn *
932 __nf_conntrack_alloc(struct net *net,
933                      const struct nf_conntrack_zone *zone,
934                      const struct nf_conntrack_tuple *orig,
935                      const struct nf_conntrack_tuple *repl,
936                      gfp_t gfp, u32 hash)
937 {
938         struct nf_conn *ct;
939
940         /* We don't want any race condition at early drop stage */
941         atomic_inc(&net->ct.count);
942
943         if (nf_conntrack_max &&
944             unlikely(atomic_read(&net->ct.count) > nf_conntrack_max)) {
945                 if (!early_drop(net, hash)) {
946                         atomic_dec(&net->ct.count);
947                         net_warn_ratelimited("nf_conntrack: table full, dropping packet\n");
948                         return ERR_PTR(-ENOMEM);
949                 }
950         }
951
952         /*
953          * Do not use kmem_cache_zalloc(), as this cache uses
954          * SLAB_DESTROY_BY_RCU.
955          */
956         ct = kmem_cache_alloc(nf_conntrack_cachep, gfp);
957         if (ct == NULL)
958                 goto out;
959
960         spin_lock_init(&ct->lock);
961         ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple = *orig;
962         ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode.pprev = NULL;
963         ct->tuplehash[IP_CT_DIR_REPLY].tuple = *repl;
964         /* save hash for reusing when confirming */
965         *(unsigned long *)(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev) = hash;
966         ct->status = 0;
967         write_pnet(&ct->ct_net, net);
968         memset(&ct->__nfct_init_offset[0], 0,
969                offsetof(struct nf_conn, proto) -
970                offsetof(struct nf_conn, __nfct_init_offset[0]));
971
972         nf_ct_zone_add(ct, zone);
973
974         /* Because we use RCU lookups, we set ct_general.use to zero before
975          * this is inserted in any list.
976          */
977         atomic_set(&ct->ct_general.use, 0);
978         return ct;
979 out:
980         atomic_dec(&net->ct.count);
981         return ERR_PTR(-ENOMEM);
982 }
983
984 struct nf_conn *nf_conntrack_alloc(struct net *net,
985                                    const struct nf_conntrack_zone *zone,
986                                    const struct nf_conntrack_tuple *orig,
987                                    const struct nf_conntrack_tuple *repl,
988                                    gfp_t gfp)
989 {
990         return __nf_conntrack_alloc(net, zone, orig, repl, gfp, 0);
991 }
992 EXPORT_SYMBOL_GPL(nf_conntrack_alloc);
993
994 void nf_conntrack_free(struct nf_conn *ct)
995 {
996         struct net *net = nf_ct_net(ct);
997
998         /* A freed object has refcnt == 0, that's
999          * the golden rule for SLAB_DESTROY_BY_RCU
1000          */
1001         NF_CT_ASSERT(atomic_read(&ct->ct_general.use) == 0);
1002
1003         nf_ct_ext_destroy(ct);
1004         nf_ct_ext_free(ct);
1005         kmem_cache_free(nf_conntrack_cachep, ct);
1006         smp_mb__before_atomic();
1007         atomic_dec(&net->ct.count);
1008 }
1009 EXPORT_SYMBOL_GPL(nf_conntrack_free);
1010
1011
1012 /* Allocate a new conntrack: we return -ENOMEM if classification
1013    failed due to stress.  Otherwise it really is unclassifiable. */
1014 static struct nf_conntrack_tuple_hash *
1015 init_conntrack(struct net *net, struct nf_conn *tmpl,
1016                const struct nf_conntrack_tuple *tuple,
1017                struct nf_conntrack_l3proto *l3proto,
1018                struct nf_conntrack_l4proto *l4proto,
1019                struct sk_buff *skb,
1020                unsigned int dataoff, u32 hash)
1021 {
1022         struct nf_conn *ct;
1023         struct nf_conn_help *help;
1024         struct nf_conntrack_tuple repl_tuple;
1025         struct nf_conntrack_ecache *ecache;
1026         struct nf_conntrack_expect *exp = NULL;
1027         const struct nf_conntrack_zone *zone;
1028         struct nf_conn_timeout *timeout_ext;
1029         struct nf_conntrack_zone tmp;
1030         unsigned int *timeouts;
1031
1032         if (!nf_ct_invert_tuple(&repl_tuple, tuple, l3proto, l4proto)) {
1033                 pr_debug("Can't invert tuple.\n");
1034                 return NULL;
1035         }
1036
1037         zone = nf_ct_zone_tmpl(tmpl, skb, &tmp);
1038         ct = __nf_conntrack_alloc(net, zone, tuple, &repl_tuple, GFP_ATOMIC,
1039                                   hash);
1040         if (IS_ERR(ct))
1041                 return (struct nf_conntrack_tuple_hash *)ct;
1042
1043         if (tmpl && nfct_synproxy(tmpl)) {
1044                 nfct_seqadj_ext_add(ct);
1045                 nfct_synproxy_ext_add(ct);
1046         }
1047
1048         timeout_ext = tmpl ? nf_ct_timeout_find(tmpl) : NULL;
1049         if (timeout_ext) {
1050                 timeouts = nf_ct_timeout_data(timeout_ext);
1051                 if (unlikely(!timeouts))
1052                         timeouts = l4proto->get_timeouts(net);
1053         } else {
1054                 timeouts = l4proto->get_timeouts(net);
1055         }
1056
1057         if (!l4proto->new(ct, skb, dataoff, timeouts)) {
1058                 nf_conntrack_free(ct);
1059                 pr_debug("can't track with proto module\n");
1060                 return NULL;
1061         }
1062
1063         if (timeout_ext)
1064                 nf_ct_timeout_ext_add(ct, rcu_dereference(timeout_ext->timeout),
1065                                       GFP_ATOMIC);
1066
1067         nf_ct_acct_ext_add(ct, GFP_ATOMIC);
1068         nf_ct_tstamp_ext_add(ct, GFP_ATOMIC);
1069         nf_ct_labels_ext_add(ct);
1070
1071         ecache = tmpl ? nf_ct_ecache_find(tmpl) : NULL;
1072         nf_ct_ecache_ext_add(ct, ecache ? ecache->ctmask : 0,
1073                                  ecache ? ecache->expmask : 0,
1074                              GFP_ATOMIC);
1075
1076         local_bh_disable();
1077         if (net->ct.expect_count) {
1078                 spin_lock(&nf_conntrack_expect_lock);
1079                 exp = nf_ct_find_expectation(net, zone, tuple);
1080                 if (exp) {
1081                         pr_debug("expectation arrives ct=%p exp=%p\n",
1082                                  ct, exp);
1083                         /* Welcome, Mr. Bond.  We've been expecting you... */
1084                         __set_bit(IPS_EXPECTED_BIT, &ct->status);
1085                         /* exp->master safe, refcnt bumped in nf_ct_find_expectation */
1086                         ct->master = exp->master;
1087                         if (exp->helper) {
1088                                 help = nf_ct_helper_ext_add(ct, exp->helper,
1089                                                             GFP_ATOMIC);
1090                                 if (help)
1091                                         rcu_assign_pointer(help->helper, exp->helper);
1092                         }
1093
1094 #ifdef CONFIG_NF_CONNTRACK_MARK
1095                         ct->mark = exp->master->mark;
1096 #endif
1097 #ifdef CONFIG_NF_CONNTRACK_SECMARK
1098                         ct->secmark = exp->master->secmark;
1099 #endif
1100                         NF_CT_STAT_INC(net, expect_new);
1101                 }
1102                 spin_unlock(&nf_conntrack_expect_lock);
1103         }
1104         if (!exp) {
1105                 __nf_ct_try_assign_helper(ct, tmpl, GFP_ATOMIC);
1106                 NF_CT_STAT_INC(net, new);
1107         }
1108
1109         /* Now it is inserted into the unconfirmed list, bump refcount */
1110         nf_conntrack_get(&ct->ct_general);
1111         nf_ct_add_to_unconfirmed_list(ct);
1112
1113         local_bh_enable();
1114
1115         if (exp) {
1116                 if (exp->expectfn)
1117                         exp->expectfn(ct, exp);
1118                 nf_ct_expect_put(exp);
1119         }
1120
1121         return &ct->tuplehash[IP_CT_DIR_ORIGINAL];
1122 }
1123
1124 /* On success, returns conntrack ptr, sets skb->nfct and ctinfo */
1125 static inline struct nf_conn *
1126 resolve_normal_ct(struct net *net, struct nf_conn *tmpl,
1127                   struct sk_buff *skb,
1128                   unsigned int dataoff,
1129                   u_int16_t l3num,
1130                   u_int8_t protonum,
1131                   struct nf_conntrack_l3proto *l3proto,
1132                   struct nf_conntrack_l4proto *l4proto,
1133                   int *set_reply,
1134                   enum ip_conntrack_info *ctinfo)
1135 {
1136         const struct nf_conntrack_zone *zone;
1137         struct nf_conntrack_tuple tuple;
1138         struct nf_conntrack_tuple_hash *h;
1139         struct nf_conntrack_zone tmp;
1140         struct nf_conn *ct;
1141         u32 hash;
1142
1143         if (!nf_ct_get_tuple(skb, skb_network_offset(skb),
1144                              dataoff, l3num, protonum, net, &tuple, l3proto,
1145                              l4proto)) {
1146                 pr_debug("Can't get tuple\n");
1147                 return NULL;
1148         }
1149
1150         /* look for tuple match */
1151         zone = nf_ct_zone_tmpl(tmpl, skb, &tmp);
1152         hash = hash_conntrack_raw(&tuple, net);
1153         h = __nf_conntrack_find_get(net, zone, &tuple, hash);
1154         if (!h) {
1155                 h = init_conntrack(net, tmpl, &tuple, l3proto, l4proto,
1156                                    skb, dataoff, hash);
1157                 if (!h)
1158                         return NULL;
1159                 if (IS_ERR(h))
1160                         return (void *)h;
1161         }
1162         ct = nf_ct_tuplehash_to_ctrack(h);
1163
1164         /* It exists; we have (non-exclusive) reference. */
1165         if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY) {
1166                 *ctinfo = IP_CT_ESTABLISHED_REPLY;
1167                 /* Please set reply bit if this packet OK */
1168                 *set_reply = 1;
1169         } else {
1170                 /* Once we've had two way comms, always ESTABLISHED. */
1171                 if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status)) {
1172                         pr_debug("normal packet for %p\n", ct);
1173                         *ctinfo = IP_CT_ESTABLISHED;
1174                 } else if (test_bit(IPS_EXPECTED_BIT, &ct->status)) {
1175                         pr_debug("related packet for %p\n", ct);
1176                         *ctinfo = IP_CT_RELATED;
1177                 } else {
1178                         pr_debug("new packet for %p\n", ct);
1179                         *ctinfo = IP_CT_NEW;
1180                 }
1181                 *set_reply = 0;
1182         }
1183         skb->nfct = &ct->ct_general;
1184         skb->nfctinfo = *ctinfo;
1185         return ct;
1186 }
1187
1188 unsigned int
1189 nf_conntrack_in(struct net *net, u_int8_t pf, unsigned int hooknum,
1190                 struct sk_buff *skb)
1191 {
1192         struct nf_conn *ct, *tmpl = NULL;
1193         enum ip_conntrack_info ctinfo;
1194         struct nf_conntrack_l3proto *l3proto;
1195         struct nf_conntrack_l4proto *l4proto;
1196         unsigned int *timeouts;
1197         unsigned int dataoff;
1198         u_int8_t protonum;
1199         int set_reply = 0;
1200         int ret;
1201
1202         if (skb->nfct) {
1203                 /* Previously seen (loopback or untracked)?  Ignore. */
1204                 tmpl = (struct nf_conn *)skb->nfct;
1205                 if (!nf_ct_is_template(tmpl)) {
1206                         NF_CT_STAT_INC_ATOMIC(net, ignore);
1207                         return NF_ACCEPT;
1208                 }
1209                 skb->nfct = NULL;
1210         }
1211
1212         /* rcu_read_lock()ed by nf_hook_slow */
1213         l3proto = __nf_ct_l3proto_find(pf);
1214         ret = l3proto->get_l4proto(skb, skb_network_offset(skb),
1215                                    &dataoff, &protonum);
1216         if (ret <= 0) {
1217                 pr_debug("not prepared to track yet or error occurred\n");
1218                 NF_CT_STAT_INC_ATOMIC(net, error);
1219                 NF_CT_STAT_INC_ATOMIC(net, invalid);
1220                 ret = -ret;
1221                 goto out;
1222         }
1223
1224         l4proto = __nf_ct_l4proto_find(pf, protonum);
1225
1226         /* It may be an special packet, error, unclean...
1227          * inverse of the return code tells to the netfilter
1228          * core what to do with the packet. */
1229         if (l4proto->error != NULL) {
1230                 ret = l4proto->error(net, tmpl, skb, dataoff, &ctinfo,
1231                                      pf, hooknum);
1232                 if (ret <= 0) {
1233                         NF_CT_STAT_INC_ATOMIC(net, error);
1234                         NF_CT_STAT_INC_ATOMIC(net, invalid);
1235                         ret = -ret;
1236                         goto out;
1237                 }
1238                 /* ICMP[v6] protocol trackers may assign one conntrack. */
1239                 if (skb->nfct)
1240                         goto out;
1241         }
1242
1243         ct = resolve_normal_ct(net, tmpl, skb, dataoff, pf, protonum,
1244                                l3proto, l4proto, &set_reply, &ctinfo);
1245         if (!ct) {
1246                 /* Not valid part of a connection */
1247                 NF_CT_STAT_INC_ATOMIC(net, invalid);
1248                 ret = NF_ACCEPT;
1249                 goto out;
1250         }
1251
1252         if (IS_ERR(ct)) {
1253                 /* Too stressed to deal. */
1254                 NF_CT_STAT_INC_ATOMIC(net, drop);
1255                 ret = NF_DROP;
1256                 goto out;
1257         }
1258
1259         NF_CT_ASSERT(skb->nfct);
1260
1261         /* Decide what timeout policy we want to apply to this flow. */
1262         timeouts = nf_ct_timeout_lookup(net, ct, l4proto);
1263
1264         ret = l4proto->packet(ct, skb, dataoff, ctinfo, pf, hooknum, timeouts);
1265         if (ret <= 0) {
1266                 /* Invalid: inverse of the return code tells
1267                  * the netfilter core what to do */
1268                 pr_debug("nf_conntrack_in: Can't track with proto module\n");
1269                 nf_conntrack_put(skb->nfct);
1270                 skb->nfct = NULL;
1271                 NF_CT_STAT_INC_ATOMIC(net, invalid);
1272                 if (ret == -NF_DROP)
1273                         NF_CT_STAT_INC_ATOMIC(net, drop);
1274                 ret = -ret;
1275                 goto out;
1276         }
1277
1278         if (set_reply && !test_and_set_bit(IPS_SEEN_REPLY_BIT, &ct->status))
1279                 nf_conntrack_event_cache(IPCT_REPLY, ct);
1280 out:
1281         if (tmpl) {
1282                 /* Special case: we have to repeat this hook, assign the
1283                  * template again to this packet. We assume that this packet
1284                  * has no conntrack assigned. This is used by nf_ct_tcp. */
1285                 if (ret == NF_REPEAT)
1286                         skb->nfct = (struct nf_conntrack *)tmpl;
1287                 else
1288                         nf_ct_put(tmpl);
1289         }
1290
1291         return ret;
1292 }
1293 EXPORT_SYMBOL_GPL(nf_conntrack_in);
1294
1295 bool nf_ct_invert_tuplepr(struct nf_conntrack_tuple *inverse,
1296                           const struct nf_conntrack_tuple *orig)
1297 {
1298         bool ret;
1299
1300         rcu_read_lock();
1301         ret = nf_ct_invert_tuple(inverse, orig,
1302                                  __nf_ct_l3proto_find(orig->src.l3num),
1303                                  __nf_ct_l4proto_find(orig->src.l3num,
1304                                                       orig->dst.protonum));
1305         rcu_read_unlock();
1306         return ret;
1307 }
1308 EXPORT_SYMBOL_GPL(nf_ct_invert_tuplepr);
1309
1310 /* Alter reply tuple (maybe alter helper).  This is for NAT, and is
1311    implicitly racy: see __nf_conntrack_confirm */
1312 void nf_conntrack_alter_reply(struct nf_conn *ct,
1313                               const struct nf_conntrack_tuple *newreply)
1314 {
1315         struct nf_conn_help *help = nfct_help(ct);
1316
1317         /* Should be unconfirmed, so not in hash table yet */
1318         NF_CT_ASSERT(!nf_ct_is_confirmed(ct));
1319
1320         pr_debug("Altering reply tuple of %p to ", ct);
1321         nf_ct_dump_tuple(newreply);
1322
1323         ct->tuplehash[IP_CT_DIR_REPLY].tuple = *newreply;
1324         if (ct->master || (help && !hlist_empty(&help->expectations)))
1325                 return;
1326
1327         rcu_read_lock();
1328         __nf_ct_try_assign_helper(ct, NULL, GFP_ATOMIC);
1329         rcu_read_unlock();
1330 }
1331 EXPORT_SYMBOL_GPL(nf_conntrack_alter_reply);
1332
1333 /* Refresh conntrack for this many jiffies and do accounting if do_acct is 1 */
1334 void __nf_ct_refresh_acct(struct nf_conn *ct,
1335                           enum ip_conntrack_info ctinfo,
1336                           const struct sk_buff *skb,
1337                           unsigned long extra_jiffies,
1338                           int do_acct)
1339 {
1340         NF_CT_ASSERT(skb);
1341
1342         /* Only update if this is not a fixed timeout */
1343         if (test_bit(IPS_FIXED_TIMEOUT_BIT, &ct->status))
1344                 goto acct;
1345
1346         /* If not in hash table, timer will not be active yet */
1347         if (nf_ct_is_confirmed(ct))
1348                 extra_jiffies += nfct_time_stamp;
1349
1350         ct->timeout = extra_jiffies;
1351 acct:
1352         if (do_acct)
1353                 nf_ct_acct_update(ct, ctinfo, skb->len);
1354 }
1355 EXPORT_SYMBOL_GPL(__nf_ct_refresh_acct);
1356
1357 bool __nf_ct_kill_acct(struct nf_conn *ct,
1358                        enum ip_conntrack_info ctinfo,
1359                        const struct sk_buff *skb,
1360                        int do_acct)
1361 {
1362         if (do_acct)
1363                 nf_ct_acct_update(ct, ctinfo, skb->len);
1364
1365         return nf_ct_delete(ct, 0, 0);
1366 }
1367 EXPORT_SYMBOL_GPL(__nf_ct_kill_acct);
1368
1369 #if IS_ENABLED(CONFIG_NF_CT_NETLINK)
1370
1371 #include <linux/netfilter/nfnetlink.h>
1372 #include <linux/netfilter/nfnetlink_conntrack.h>
1373 #include <linux/mutex.h>
1374
1375 /* Generic function for tcp/udp/sctp/dccp and alike. This needs to be
1376  * in ip_conntrack_core, since we don't want the protocols to autoload
1377  * or depend on ctnetlink */
1378 int nf_ct_port_tuple_to_nlattr(struct sk_buff *skb,
1379                                const struct nf_conntrack_tuple *tuple)
1380 {
1381         if (nla_put_be16(skb, CTA_PROTO_SRC_PORT, tuple->src.u.tcp.port) ||
1382             nla_put_be16(skb, CTA_PROTO_DST_PORT, tuple->dst.u.tcp.port))
1383                 goto nla_put_failure;
1384         return 0;
1385
1386 nla_put_failure:
1387         return -1;
1388 }
1389 EXPORT_SYMBOL_GPL(nf_ct_port_tuple_to_nlattr);
1390
1391 const struct nla_policy nf_ct_port_nla_policy[CTA_PROTO_MAX+1] = {
1392         [CTA_PROTO_SRC_PORT]  = { .type = NLA_U16 },
1393         [CTA_PROTO_DST_PORT]  = { .type = NLA_U16 },
1394 };
1395 EXPORT_SYMBOL_GPL(nf_ct_port_nla_policy);
1396
1397 int nf_ct_port_nlattr_to_tuple(struct nlattr *tb[],
1398                                struct nf_conntrack_tuple *t)
1399 {
1400         if (!tb[CTA_PROTO_SRC_PORT] || !tb[CTA_PROTO_DST_PORT])
1401                 return -EINVAL;
1402
1403         t->src.u.tcp.port = nla_get_be16(tb[CTA_PROTO_SRC_PORT]);
1404         t->dst.u.tcp.port = nla_get_be16(tb[CTA_PROTO_DST_PORT]);
1405
1406         return 0;
1407 }
1408 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_to_tuple);
1409
1410 int nf_ct_port_nlattr_tuple_size(void)
1411 {
1412         return nla_policy_len(nf_ct_port_nla_policy, CTA_PROTO_MAX + 1);
1413 }
1414 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_tuple_size);
1415 #endif
1416
1417 /* Used by ipt_REJECT and ip6t_REJECT. */
1418 static void nf_conntrack_attach(struct sk_buff *nskb, const struct sk_buff *skb)
1419 {
1420         struct nf_conn *ct;
1421         enum ip_conntrack_info ctinfo;
1422
1423         /* This ICMP is in reverse direction to the packet which caused it */
1424         ct = nf_ct_get(skb, &ctinfo);
1425         if (CTINFO2DIR(ctinfo) == IP_CT_DIR_ORIGINAL)
1426                 ctinfo = IP_CT_RELATED_REPLY;
1427         else
1428                 ctinfo = IP_CT_RELATED;
1429
1430         /* Attach to new skbuff, and increment count */
1431         nskb->nfct = &ct->ct_general;
1432         nskb->nfctinfo = ctinfo;
1433         nf_conntrack_get(nskb->nfct);
1434 }
1435
1436 /* Bring out ya dead! */
1437 static struct nf_conn *
1438 get_next_corpse(struct net *net, int (*iter)(struct nf_conn *i, void *data),
1439                 void *data, unsigned int *bucket)
1440 {
1441         struct nf_conntrack_tuple_hash *h;
1442         struct nf_conn *ct;
1443         struct hlist_nulls_node *n;
1444         int cpu;
1445         spinlock_t *lockp;
1446
1447         for (; *bucket < nf_conntrack_htable_size; (*bucket)++) {
1448                 lockp = &nf_conntrack_locks[*bucket % CONNTRACK_LOCKS];
1449                 local_bh_disable();
1450                 nf_conntrack_lock(lockp);
1451                 if (*bucket < nf_conntrack_htable_size) {
1452                         hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[*bucket], hnnode) {
1453                                 if (NF_CT_DIRECTION(h) != IP_CT_DIR_ORIGINAL)
1454                                         continue;
1455                                 ct = nf_ct_tuplehash_to_ctrack(h);
1456                                 if (net_eq(nf_ct_net(ct), net) &&
1457                                     iter(ct, data))
1458                                         goto found;
1459                         }
1460                 }
1461                 spin_unlock(lockp);
1462                 local_bh_enable();
1463                 cond_resched();
1464         }
1465
1466         for_each_possible_cpu(cpu) {
1467                 struct ct_pcpu *pcpu = per_cpu_ptr(net->ct.pcpu_lists, cpu);
1468
1469                 spin_lock_bh(&pcpu->lock);
1470                 hlist_nulls_for_each_entry(h, n, &pcpu->unconfirmed, hnnode) {
1471                         ct = nf_ct_tuplehash_to_ctrack(h);
1472                         if (iter(ct, data))
1473                                 set_bit(IPS_DYING_BIT, &ct->status);
1474                 }
1475                 spin_unlock_bh(&pcpu->lock);
1476                 cond_resched();
1477         }
1478         return NULL;
1479 found:
1480         atomic_inc(&ct->ct_general.use);
1481         spin_unlock(lockp);
1482         local_bh_enable();
1483         return ct;
1484 }
1485
1486 void nf_ct_iterate_cleanup(struct net *net,
1487                            int (*iter)(struct nf_conn *i, void *data),
1488                            void *data, u32 portid, int report)
1489 {
1490         struct nf_conn *ct;
1491         unsigned int bucket = 0;
1492
1493         might_sleep();
1494
1495         if (atomic_read(&net->ct.count) == 0)
1496                 return;
1497
1498         while ((ct = get_next_corpse(net, iter, data, &bucket)) != NULL) {
1499                 /* Time to push up daises... */
1500
1501                 nf_ct_delete(ct, portid, report);
1502                 nf_ct_put(ct);
1503                 cond_resched();
1504         }
1505 }
1506 EXPORT_SYMBOL_GPL(nf_ct_iterate_cleanup);
1507
1508 static int kill_all(struct nf_conn *i, void *data)
1509 {
1510         return 1;
1511 }
1512
1513 void nf_ct_free_hashtable(void *hash, unsigned int size)
1514 {
1515         if (is_vmalloc_addr(hash))
1516                 vfree(hash);
1517         else
1518                 free_pages((unsigned long)hash,
1519                            get_order(sizeof(struct hlist_head) * size));
1520 }
1521 EXPORT_SYMBOL_GPL(nf_ct_free_hashtable);
1522
1523 static int untrack_refs(void)
1524 {
1525         int cnt = 0, cpu;
1526
1527         for_each_possible_cpu(cpu) {
1528                 struct nf_conn *ct = &per_cpu(nf_conntrack_untracked, cpu);
1529
1530                 cnt += atomic_read(&ct->ct_general.use) - 1;
1531         }
1532         return cnt;
1533 }
1534
1535 void nf_conntrack_cleanup_start(void)
1536 {
1537         RCU_INIT_POINTER(ip_ct_attach, NULL);
1538 }
1539
1540 void nf_conntrack_cleanup_end(void)
1541 {
1542         RCU_INIT_POINTER(nf_ct_destroy, NULL);
1543         while (untrack_refs() > 0)
1544                 schedule();
1545
1546         nf_ct_free_hashtable(nf_conntrack_hash, nf_conntrack_htable_size);
1547
1548         nf_conntrack_proto_fini();
1549         nf_conntrack_seqadj_fini();
1550         nf_conntrack_labels_fini();
1551         nf_conntrack_helper_fini();
1552         nf_conntrack_timeout_fini();
1553         nf_conntrack_ecache_fini();
1554         nf_conntrack_tstamp_fini();
1555         nf_conntrack_acct_fini();
1556         nf_conntrack_expect_fini();
1557
1558         kmem_cache_destroy(nf_conntrack_cachep);
1559 }
1560
1561 /*
1562  * Mishearing the voices in his head, our hero wonders how he's
1563  * supposed to kill the mall.
1564  */
1565 void nf_conntrack_cleanup_net(struct net *net)
1566 {
1567         LIST_HEAD(single);
1568
1569         list_add(&net->exit_list, &single);
1570         nf_conntrack_cleanup_net_list(&single);
1571 }
1572
1573 void nf_conntrack_cleanup_net_list(struct list_head *net_exit_list)
1574 {
1575         int busy;
1576         struct net *net;
1577
1578         /*
1579          * This makes sure all current packets have passed through
1580          *  netfilter framework.  Roll on, two-stage module
1581          *  delete...
1582          */
1583         synchronize_net();
1584 i_see_dead_people:
1585         busy = 0;
1586         list_for_each_entry(net, net_exit_list, exit_list) {
1587                 nf_ct_iterate_cleanup(net, kill_all, NULL, 0, 0);
1588                 if (atomic_read(&net->ct.count) != 0)
1589                         busy = 1;
1590         }
1591         if (busy) {
1592                 schedule();
1593                 goto i_see_dead_people;
1594         }
1595
1596         list_for_each_entry(net, net_exit_list, exit_list) {
1597                 nf_conntrack_proto_pernet_fini(net);
1598                 nf_conntrack_helper_pernet_fini(net);
1599                 nf_conntrack_ecache_pernet_fini(net);
1600                 nf_conntrack_tstamp_pernet_fini(net);
1601                 nf_conntrack_acct_pernet_fini(net);
1602                 nf_conntrack_expect_pernet_fini(net);
1603                 free_percpu(net->ct.stat);
1604                 free_percpu(net->ct.pcpu_lists);
1605         }
1606 }
1607
1608 void *nf_ct_alloc_hashtable(unsigned int *sizep, int nulls)
1609 {
1610         struct hlist_nulls_head *hash;
1611         unsigned int nr_slots, i;
1612         size_t sz;
1613
1614         if (*sizep > (UINT_MAX / sizeof(struct hlist_nulls_head)))
1615                 return NULL;
1616
1617         BUILD_BUG_ON(sizeof(struct hlist_nulls_head) != sizeof(struct hlist_head));
1618         nr_slots = *sizep = roundup(*sizep, PAGE_SIZE / sizeof(struct hlist_nulls_head));
1619
1620         if (nr_slots > (UINT_MAX / sizeof(struct hlist_nulls_head)))
1621                 return NULL;
1622
1623         sz = nr_slots * sizeof(struct hlist_nulls_head);
1624         hash = (void *)__get_free_pages(GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO,
1625                                         get_order(sz));
1626         if (!hash)
1627                 hash = vzalloc(sz);
1628
1629         if (hash && nulls)
1630                 for (i = 0; i < nr_slots; i++)
1631                         INIT_HLIST_NULLS_HEAD(&hash[i], i);
1632
1633         return hash;
1634 }
1635 EXPORT_SYMBOL_GPL(nf_ct_alloc_hashtable);
1636
1637 int nf_conntrack_hash_resize(unsigned int hashsize)
1638 {
1639         int i, bucket;
1640         unsigned int old_size;
1641         struct hlist_nulls_head *hash, *old_hash;
1642         struct nf_conntrack_tuple_hash *h;
1643         struct nf_conn *ct;
1644
1645         if (!hashsize)
1646                 return -EINVAL;
1647
1648         hash = nf_ct_alloc_hashtable(&hashsize, 1);
1649         if (!hash)
1650                 return -ENOMEM;
1651
1652         old_size = nf_conntrack_htable_size;
1653         if (old_size == hashsize) {
1654                 nf_ct_free_hashtable(hash, hashsize);
1655                 return 0;
1656         }
1657
1658         local_bh_disable();
1659         nf_conntrack_all_lock();
1660         write_seqcount_begin(&nf_conntrack_generation);
1661
1662         /* Lookups in the old hash might happen in parallel, which means we
1663          * might get false negatives during connection lookup. New connections
1664          * created because of a false negative won't make it into the hash
1665          * though since that required taking the locks.
1666          */
1667
1668         for (i = 0; i < nf_conntrack_htable_size; i++) {
1669                 while (!hlist_nulls_empty(&nf_conntrack_hash[i])) {
1670                         h = hlist_nulls_entry(nf_conntrack_hash[i].first,
1671                                               struct nf_conntrack_tuple_hash, hnnode);
1672                         ct = nf_ct_tuplehash_to_ctrack(h);
1673                         hlist_nulls_del_rcu(&h->hnnode);
1674                         bucket = __hash_conntrack(nf_ct_net(ct),
1675                                                   &h->tuple, hashsize);
1676                         hlist_nulls_add_head_rcu(&h->hnnode, &hash[bucket]);
1677                 }
1678         }
1679         old_size = nf_conntrack_htable_size;
1680         old_hash = nf_conntrack_hash;
1681
1682         nf_conntrack_hash = hash;
1683         nf_conntrack_htable_size = hashsize;
1684
1685         write_seqcount_end(&nf_conntrack_generation);
1686         nf_conntrack_all_unlock();
1687         local_bh_enable();
1688
1689         synchronize_net();
1690         nf_ct_free_hashtable(old_hash, old_size);
1691         return 0;
1692 }
1693
1694 int nf_conntrack_set_hashsize(const char *val, struct kernel_param *kp)
1695 {
1696         unsigned int hashsize;
1697         int rc;
1698
1699         if (current->nsproxy->net_ns != &init_net)
1700                 return -EOPNOTSUPP;
1701
1702         /* On boot, we can set this without any fancy locking. */
1703         if (!nf_conntrack_htable_size)
1704                 return param_set_uint(val, kp);
1705
1706         rc = kstrtouint(val, 0, &hashsize);
1707         if (rc)
1708                 return rc;
1709
1710         return nf_conntrack_hash_resize(hashsize);
1711 }
1712 EXPORT_SYMBOL_GPL(nf_conntrack_set_hashsize);
1713
1714 module_param_call(hashsize, nf_conntrack_set_hashsize, param_get_uint,
1715                   &nf_conntrack_htable_size, 0600);
1716
1717 void nf_ct_untracked_status_or(unsigned long bits)
1718 {
1719         int cpu;
1720
1721         for_each_possible_cpu(cpu)
1722                 per_cpu(nf_conntrack_untracked, cpu).status |= bits;
1723 }
1724 EXPORT_SYMBOL_GPL(nf_ct_untracked_status_or);
1725
1726 int nf_conntrack_init_start(void)
1727 {
1728         int max_factor = 8;
1729         int ret = -ENOMEM;
1730         int i, cpu;
1731
1732         seqcount_init(&nf_conntrack_generation);
1733
1734         for (i = 0; i < CONNTRACK_LOCKS; i++)
1735                 spin_lock_init(&nf_conntrack_locks[i]);
1736
1737         if (!nf_conntrack_htable_size) {
1738                 /* Idea from tcp.c: use 1/16384 of memory.
1739                  * On i386: 32MB machine has 512 buckets.
1740                  * >= 1GB machines have 16384 buckets.
1741                  * >= 4GB machines have 65536 buckets.
1742                  */
1743                 nf_conntrack_htable_size
1744                         = (((totalram_pages << PAGE_SHIFT) / 16384)
1745                            / sizeof(struct hlist_head));
1746                 if (totalram_pages > (4 * (1024 * 1024 * 1024 / PAGE_SIZE)))
1747                         nf_conntrack_htable_size = 65536;
1748                 else if (totalram_pages > (1024 * 1024 * 1024 / PAGE_SIZE))
1749                         nf_conntrack_htable_size = 16384;
1750                 if (nf_conntrack_htable_size < 32)
1751                         nf_conntrack_htable_size = 32;
1752
1753                 /* Use a max. factor of four by default to get the same max as
1754                  * with the old struct list_heads. When a table size is given
1755                  * we use the old value of 8 to avoid reducing the max.
1756                  * entries. */
1757                 max_factor = 4;
1758         }
1759
1760         nf_conntrack_hash = nf_ct_alloc_hashtable(&nf_conntrack_htable_size, 1);
1761         if (!nf_conntrack_hash)
1762                 return -ENOMEM;
1763
1764         nf_conntrack_max = max_factor * nf_conntrack_htable_size;
1765
1766         nf_conntrack_cachep = kmem_cache_create("nf_conntrack",
1767                                                 sizeof(struct nf_conn), 0,
1768                                                 SLAB_DESTROY_BY_RCU | SLAB_HWCACHE_ALIGN, NULL);
1769         if (!nf_conntrack_cachep)
1770                 goto err_cachep;
1771
1772         printk(KERN_INFO "nf_conntrack version %s (%u buckets, %d max)\n",
1773                NF_CONNTRACK_VERSION, nf_conntrack_htable_size,
1774                nf_conntrack_max);
1775
1776         ret = nf_conntrack_expect_init();
1777         if (ret < 0)
1778                 goto err_expect;
1779
1780         ret = nf_conntrack_acct_init();
1781         if (ret < 0)
1782                 goto err_acct;
1783
1784         ret = nf_conntrack_tstamp_init();
1785         if (ret < 0)
1786                 goto err_tstamp;
1787
1788         ret = nf_conntrack_ecache_init();
1789         if (ret < 0)
1790                 goto err_ecache;
1791
1792         ret = nf_conntrack_timeout_init();
1793         if (ret < 0)
1794                 goto err_timeout;
1795
1796         ret = nf_conntrack_helper_init();
1797         if (ret < 0)
1798                 goto err_helper;
1799
1800         ret = nf_conntrack_labels_init();
1801         if (ret < 0)
1802                 goto err_labels;
1803
1804         ret = nf_conntrack_seqadj_init();
1805         if (ret < 0)
1806                 goto err_seqadj;
1807
1808         ret = nf_conntrack_proto_init();
1809         if (ret < 0)
1810                 goto err_proto;
1811
1812         /* Set up fake conntrack: to never be deleted, not in any hashes */
1813         for_each_possible_cpu(cpu) {
1814                 struct nf_conn *ct = &per_cpu(nf_conntrack_untracked, cpu);
1815                 write_pnet(&ct->ct_net, &init_net);
1816                 atomic_set(&ct->ct_general.use, 1);
1817         }
1818         /*  - and look it like as a confirmed connection */
1819         nf_ct_untracked_status_or(IPS_CONFIRMED | IPS_UNTRACKED);
1820         return 0;
1821
1822 err_proto:
1823         nf_conntrack_seqadj_fini();
1824 err_seqadj:
1825         nf_conntrack_labels_fini();
1826 err_labels:
1827         nf_conntrack_helper_fini();
1828 err_helper:
1829         nf_conntrack_timeout_fini();
1830 err_timeout:
1831         nf_conntrack_ecache_fini();
1832 err_ecache:
1833         nf_conntrack_tstamp_fini();
1834 err_tstamp:
1835         nf_conntrack_acct_fini();
1836 err_acct:
1837         nf_conntrack_expect_fini();
1838 err_expect:
1839         kmem_cache_destroy(nf_conntrack_cachep);
1840 err_cachep:
1841         nf_ct_free_hashtable(nf_conntrack_hash, nf_conntrack_htable_size);
1842         return ret;
1843 }
1844
1845 void nf_conntrack_init_end(void)
1846 {
1847         /* For use by REJECT target */
1848         RCU_INIT_POINTER(ip_ct_attach, nf_conntrack_attach);
1849         RCU_INIT_POINTER(nf_ct_destroy, destroy_conntrack);
1850 }
1851
1852 /*
1853  * We need to use special "null" values, not used in hash table
1854  */
1855 #define UNCONFIRMED_NULLS_VAL   ((1<<30)+0)
1856 #define DYING_NULLS_VAL         ((1<<30)+1)
1857 #define TEMPLATE_NULLS_VAL      ((1<<30)+2)
1858
1859 int nf_conntrack_init_net(struct net *net)
1860 {
1861         int ret = -ENOMEM;
1862         int cpu;
1863
1864         atomic_set(&net->ct.count, 0);
1865
1866         net->ct.pcpu_lists = alloc_percpu(struct ct_pcpu);
1867         if (!net->ct.pcpu_lists)
1868                 goto err_stat;
1869
1870         for_each_possible_cpu(cpu) {
1871                 struct ct_pcpu *pcpu = per_cpu_ptr(net->ct.pcpu_lists, cpu);
1872
1873                 spin_lock_init(&pcpu->lock);
1874                 INIT_HLIST_NULLS_HEAD(&pcpu->unconfirmed, UNCONFIRMED_NULLS_VAL);
1875                 INIT_HLIST_NULLS_HEAD(&pcpu->dying, DYING_NULLS_VAL);
1876         }
1877
1878         net->ct.stat = alloc_percpu(struct ip_conntrack_stat);
1879         if (!net->ct.stat)
1880                 goto err_pcpu_lists;
1881
1882         ret = nf_conntrack_expect_pernet_init(net);
1883         if (ret < 0)
1884                 goto err_expect;
1885         ret = nf_conntrack_acct_pernet_init(net);
1886         if (ret < 0)
1887                 goto err_acct;
1888         ret = nf_conntrack_tstamp_pernet_init(net);
1889         if (ret < 0)
1890                 goto err_tstamp;
1891         ret = nf_conntrack_ecache_pernet_init(net);
1892         if (ret < 0)
1893                 goto err_ecache;
1894         ret = nf_conntrack_helper_pernet_init(net);
1895         if (ret < 0)
1896                 goto err_helper;
1897         ret = nf_conntrack_proto_pernet_init(net);
1898         if (ret < 0)
1899                 goto err_proto;
1900         return 0;
1901
1902 err_proto:
1903         nf_conntrack_helper_pernet_fini(net);
1904 err_helper:
1905         nf_conntrack_ecache_pernet_fini(net);
1906 err_ecache:
1907         nf_conntrack_tstamp_pernet_fini(net);
1908 err_tstamp:
1909         nf_conntrack_acct_pernet_fini(net);
1910 err_acct:
1911         nf_conntrack_expect_pernet_fini(net);
1912 err_expect:
1913         free_percpu(net->ct.stat);
1914 err_pcpu_lists:
1915         free_percpu(net->ct.pcpu_lists);
1916 err_stat:
1917         return ret;
1918 }