Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/jesse/openvswitch
[cascardo/linux.git] / net / openvswitch / flow.c
1 /*
2  * Copyright (c) 2007-2011 Nicira, Inc.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of version 2 of the GNU General Public
6  * License as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16  * 02110-1301, USA
17  */
18
19 #include "flow.h"
20 #include "datapath.h"
21 #include <linux/uaccess.h>
22 #include <linux/netdevice.h>
23 #include <linux/etherdevice.h>
24 #include <linux/if_ether.h>
25 #include <linux/if_vlan.h>
26 #include <net/llc_pdu.h>
27 #include <linux/kernel.h>
28 #include <linux/jhash.h>
29 #include <linux/jiffies.h>
30 #include <linux/llc.h>
31 #include <linux/module.h>
32 #include <linux/in.h>
33 #include <linux/rcupdate.h>
34 #include <linux/if_arp.h>
35 #include <linux/ip.h>
36 #include <linux/ipv6.h>
37 #include <linux/tcp.h>
38 #include <linux/udp.h>
39 #include <linux/icmp.h>
40 #include <linux/icmpv6.h>
41 #include <linux/rculist.h>
42 #include <net/ip.h>
43 #include <net/ipv6.h>
44 #include <net/ndisc.h>
45
46 static struct kmem_cache *flow_cache;
47
48 static int check_header(struct sk_buff *skb, int len)
49 {
50         if (unlikely(skb->len < len))
51                 return -EINVAL;
52         if (unlikely(!pskb_may_pull(skb, len)))
53                 return -ENOMEM;
54         return 0;
55 }
56
57 static bool arphdr_ok(struct sk_buff *skb)
58 {
59         return pskb_may_pull(skb, skb_network_offset(skb) +
60                                   sizeof(struct arp_eth_header));
61 }
62
63 static int check_iphdr(struct sk_buff *skb)
64 {
65         unsigned int nh_ofs = skb_network_offset(skb);
66         unsigned int ip_len;
67         int err;
68
69         err = check_header(skb, nh_ofs + sizeof(struct iphdr));
70         if (unlikely(err))
71                 return err;
72
73         ip_len = ip_hdrlen(skb);
74         if (unlikely(ip_len < sizeof(struct iphdr) ||
75                      skb->len < nh_ofs + ip_len))
76                 return -EINVAL;
77
78         skb_set_transport_header(skb, nh_ofs + ip_len);
79         return 0;
80 }
81
82 static bool tcphdr_ok(struct sk_buff *skb)
83 {
84         int th_ofs = skb_transport_offset(skb);
85         int tcp_len;
86
87         if (unlikely(!pskb_may_pull(skb, th_ofs + sizeof(struct tcphdr))))
88                 return false;
89
90         tcp_len = tcp_hdrlen(skb);
91         if (unlikely(tcp_len < sizeof(struct tcphdr) ||
92                      skb->len < th_ofs + tcp_len))
93                 return false;
94
95         return true;
96 }
97
98 static bool udphdr_ok(struct sk_buff *skb)
99 {
100         return pskb_may_pull(skb, skb_transport_offset(skb) +
101                                   sizeof(struct udphdr));
102 }
103
104 static bool icmphdr_ok(struct sk_buff *skb)
105 {
106         return pskb_may_pull(skb, skb_transport_offset(skb) +
107                                   sizeof(struct icmphdr));
108 }
109
110 u64 ovs_flow_used_time(unsigned long flow_jiffies)
111 {
112         struct timespec cur_ts;
113         u64 cur_ms, idle_ms;
114
115         ktime_get_ts(&cur_ts);
116         idle_ms = jiffies_to_msecs(jiffies - flow_jiffies);
117         cur_ms = (u64)cur_ts.tv_sec * MSEC_PER_SEC +
118                  cur_ts.tv_nsec / NSEC_PER_MSEC;
119
120         return cur_ms - idle_ms;
121 }
122
123 #define SW_FLOW_KEY_OFFSET(field)               \
124         (offsetof(struct sw_flow_key, field) +  \
125          FIELD_SIZEOF(struct sw_flow_key, field))
126
127 static int parse_ipv6hdr(struct sk_buff *skb, struct sw_flow_key *key,
128                          int *key_lenp)
129 {
130         unsigned int nh_ofs = skb_network_offset(skb);
131         unsigned int nh_len;
132         int payload_ofs;
133         struct ipv6hdr *nh;
134         uint8_t nexthdr;
135         __be16 frag_off;
136         int err;
137
138         *key_lenp = SW_FLOW_KEY_OFFSET(ipv6.label);
139
140         err = check_header(skb, nh_ofs + sizeof(*nh));
141         if (unlikely(err))
142                 return err;
143
144         nh = ipv6_hdr(skb);
145         nexthdr = nh->nexthdr;
146         payload_ofs = (u8 *)(nh + 1) - skb->data;
147
148         key->ip.proto = NEXTHDR_NONE;
149         key->ip.tos = ipv6_get_dsfield(nh);
150         key->ip.ttl = nh->hop_limit;
151         key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
152         key->ipv6.addr.src = nh->saddr;
153         key->ipv6.addr.dst = nh->daddr;
154
155         payload_ofs = ipv6_skip_exthdr(skb, payload_ofs, &nexthdr, &frag_off);
156         if (unlikely(payload_ofs < 0))
157                 return -EINVAL;
158
159         if (frag_off) {
160                 if (frag_off & htons(~0x7))
161                         key->ip.frag = OVS_FRAG_TYPE_LATER;
162                 else
163                         key->ip.frag = OVS_FRAG_TYPE_FIRST;
164         }
165
166         nh_len = payload_ofs - nh_ofs;
167         skb_set_transport_header(skb, nh_ofs + nh_len);
168         key->ip.proto = nexthdr;
169         return nh_len;
170 }
171
172 static bool icmp6hdr_ok(struct sk_buff *skb)
173 {
174         return pskb_may_pull(skb, skb_transport_offset(skb) +
175                                   sizeof(struct icmp6hdr));
176 }
177
178 #define TCP_FLAGS_OFFSET 13
179 #define TCP_FLAG_MASK 0x3f
180
181 void ovs_flow_used(struct sw_flow *flow, struct sk_buff *skb)
182 {
183         u8 tcp_flags = 0;
184
185         if ((flow->key.eth.type == htons(ETH_P_IP) ||
186              flow->key.eth.type == htons(ETH_P_IPV6)) &&
187             flow->key.ip.proto == IPPROTO_TCP &&
188             likely(skb->len >= skb_transport_offset(skb) + sizeof(struct tcphdr))) {
189                 u8 *tcp = (u8 *)tcp_hdr(skb);
190                 tcp_flags = *(tcp + TCP_FLAGS_OFFSET) & TCP_FLAG_MASK;
191         }
192
193         spin_lock(&flow->lock);
194         flow->used = jiffies;
195         flow->packet_count++;
196         flow->byte_count += skb->len;
197         flow->tcp_flags |= tcp_flags;
198         spin_unlock(&flow->lock);
199 }
200
201 struct sw_flow_actions *ovs_flow_actions_alloc(const struct nlattr *actions)
202 {
203         int actions_len = nla_len(actions);
204         struct sw_flow_actions *sfa;
205
206         /* At least DP_MAX_PORTS actions are required to be able to flood a
207          * packet to every port.  Factor of 2 allows for setting VLAN tags,
208          * etc. */
209         if (actions_len > 2 * DP_MAX_PORTS * nla_total_size(4))
210                 return ERR_PTR(-EINVAL);
211
212         sfa = kmalloc(sizeof(*sfa) + actions_len, GFP_KERNEL);
213         if (!sfa)
214                 return ERR_PTR(-ENOMEM);
215
216         sfa->actions_len = actions_len;
217         memcpy(sfa->actions, nla_data(actions), actions_len);
218         return sfa;
219 }
220
221 struct sw_flow *ovs_flow_alloc(void)
222 {
223         struct sw_flow *flow;
224
225         flow = kmem_cache_alloc(flow_cache, GFP_KERNEL);
226         if (!flow)
227                 return ERR_PTR(-ENOMEM);
228
229         spin_lock_init(&flow->lock);
230         flow->sf_acts = NULL;
231
232         return flow;
233 }
234
235 static struct hlist_head *find_bucket(struct flow_table *table, u32 hash)
236 {
237         hash = jhash_1word(hash, table->hash_seed);
238         return flex_array_get(table->buckets,
239                                 (hash & (table->n_buckets - 1)));
240 }
241
242 static struct flex_array *alloc_buckets(unsigned int n_buckets)
243 {
244         struct flex_array *buckets;
245         int i, err;
246
247         buckets = flex_array_alloc(sizeof(struct hlist_head *),
248                                    n_buckets, GFP_KERNEL);
249         if (!buckets)
250                 return NULL;
251
252         err = flex_array_prealloc(buckets, 0, n_buckets, GFP_KERNEL);
253         if (err) {
254                 flex_array_free(buckets);
255                 return NULL;
256         }
257
258         for (i = 0; i < n_buckets; i++)
259                 INIT_HLIST_HEAD((struct hlist_head *)
260                                         flex_array_get(buckets, i));
261
262         return buckets;
263 }
264
265 static void free_buckets(struct flex_array *buckets)
266 {
267         flex_array_free(buckets);
268 }
269
270 struct flow_table *ovs_flow_tbl_alloc(int new_size)
271 {
272         struct flow_table *table = kmalloc(sizeof(*table), GFP_KERNEL);
273
274         if (!table)
275                 return NULL;
276
277         table->buckets = alloc_buckets(new_size);
278
279         if (!table->buckets) {
280                 kfree(table);
281                 return NULL;
282         }
283         table->n_buckets = new_size;
284         table->count = 0;
285         table->node_ver = 0;
286         table->keep_flows = false;
287         get_random_bytes(&table->hash_seed, sizeof(u32));
288
289         return table;
290 }
291
292 void ovs_flow_tbl_destroy(struct flow_table *table)
293 {
294         int i;
295
296         if (!table)
297                 return;
298
299         if (table->keep_flows)
300                 goto skip_flows;
301
302         for (i = 0; i < table->n_buckets; i++) {
303                 struct sw_flow *flow;
304                 struct hlist_head *head = flex_array_get(table->buckets, i);
305                 struct hlist_node *node, *n;
306                 int ver = table->node_ver;
307
308                 hlist_for_each_entry_safe(flow, node, n, head, hash_node[ver]) {
309                         hlist_del_rcu(&flow->hash_node[ver]);
310                         ovs_flow_free(flow);
311                 }
312         }
313
314 skip_flows:
315         free_buckets(table->buckets);
316         kfree(table);
317 }
318
319 static void flow_tbl_destroy_rcu_cb(struct rcu_head *rcu)
320 {
321         struct flow_table *table = container_of(rcu, struct flow_table, rcu);
322
323         ovs_flow_tbl_destroy(table);
324 }
325
326 void ovs_flow_tbl_deferred_destroy(struct flow_table *table)
327 {
328         if (!table)
329                 return;
330
331         call_rcu(&table->rcu, flow_tbl_destroy_rcu_cb);
332 }
333
334 struct sw_flow *ovs_flow_tbl_next(struct flow_table *table, u32 *bucket, u32 *last)
335 {
336         struct sw_flow *flow;
337         struct hlist_head *head;
338         struct hlist_node *n;
339         int ver;
340         int i;
341
342         ver = table->node_ver;
343         while (*bucket < table->n_buckets) {
344                 i = 0;
345                 head = flex_array_get(table->buckets, *bucket);
346                 hlist_for_each_entry_rcu(flow, n, head, hash_node[ver]) {
347                         if (i < *last) {
348                                 i++;
349                                 continue;
350                         }
351                         *last = i + 1;
352                         return flow;
353                 }
354                 (*bucket)++;
355                 *last = 0;
356         }
357
358         return NULL;
359 }
360
361 static void flow_table_copy_flows(struct flow_table *old, struct flow_table *new)
362 {
363         int old_ver;
364         int i;
365
366         old_ver = old->node_ver;
367         new->node_ver = !old_ver;
368
369         /* Insert in new table. */
370         for (i = 0; i < old->n_buckets; i++) {
371                 struct sw_flow *flow;
372                 struct hlist_head *head;
373                 struct hlist_node *n;
374
375                 head = flex_array_get(old->buckets, i);
376
377                 hlist_for_each_entry(flow, n, head, hash_node[old_ver])
378                         ovs_flow_tbl_insert(new, flow);
379         }
380         old->keep_flows = true;
381 }
382
383 static struct flow_table *__flow_tbl_rehash(struct flow_table *table, int n_buckets)
384 {
385         struct flow_table *new_table;
386
387         new_table = ovs_flow_tbl_alloc(n_buckets);
388         if (!new_table)
389                 return ERR_PTR(-ENOMEM);
390
391         flow_table_copy_flows(table, new_table);
392
393         return new_table;
394 }
395
396 struct flow_table *ovs_flow_tbl_rehash(struct flow_table *table)
397 {
398         return __flow_tbl_rehash(table, table->n_buckets);
399 }
400
401 struct flow_table *ovs_flow_tbl_expand(struct flow_table *table)
402 {
403         return __flow_tbl_rehash(table, table->n_buckets * 2);
404 }
405
406 void ovs_flow_free(struct sw_flow *flow)
407 {
408         if (unlikely(!flow))
409                 return;
410
411         kfree((struct sf_flow_acts __force *)flow->sf_acts);
412         kmem_cache_free(flow_cache, flow);
413 }
414
415 /* RCU callback used by ovs_flow_deferred_free. */
416 static void rcu_free_flow_callback(struct rcu_head *rcu)
417 {
418         struct sw_flow *flow = container_of(rcu, struct sw_flow, rcu);
419
420         ovs_flow_free(flow);
421 }
422
423 /* Schedules 'flow' to be freed after the next RCU grace period.
424  * The caller must hold rcu_read_lock for this to be sensible. */
425 void ovs_flow_deferred_free(struct sw_flow *flow)
426 {
427         call_rcu(&flow->rcu, rcu_free_flow_callback);
428 }
429
430 /* RCU callback used by ovs_flow_deferred_free_acts. */
431 static void rcu_free_acts_callback(struct rcu_head *rcu)
432 {
433         struct sw_flow_actions *sf_acts = container_of(rcu,
434                         struct sw_flow_actions, rcu);
435         kfree(sf_acts);
436 }
437
438 /* Schedules 'sf_acts' to be freed after the next RCU grace period.
439  * The caller must hold rcu_read_lock for this to be sensible. */
440 void ovs_flow_deferred_free_acts(struct sw_flow_actions *sf_acts)
441 {
442         call_rcu(&sf_acts->rcu, rcu_free_acts_callback);
443 }
444
445 static int parse_vlan(struct sk_buff *skb, struct sw_flow_key *key)
446 {
447         struct qtag_prefix {
448                 __be16 eth_type; /* ETH_P_8021Q */
449                 __be16 tci;
450         };
451         struct qtag_prefix *qp;
452
453         if (unlikely(skb->len < sizeof(struct qtag_prefix) + sizeof(__be16)))
454                 return 0;
455
456         if (unlikely(!pskb_may_pull(skb, sizeof(struct qtag_prefix) +
457                                          sizeof(__be16))))
458                 return -ENOMEM;
459
460         qp = (struct qtag_prefix *) skb->data;
461         key->eth.tci = qp->tci | htons(VLAN_TAG_PRESENT);
462         __skb_pull(skb, sizeof(struct qtag_prefix));
463
464         return 0;
465 }
466
467 static __be16 parse_ethertype(struct sk_buff *skb)
468 {
469         struct llc_snap_hdr {
470                 u8  dsap;  /* Always 0xAA */
471                 u8  ssap;  /* Always 0xAA */
472                 u8  ctrl;
473                 u8  oui[3];
474                 __be16 ethertype;
475         };
476         struct llc_snap_hdr *llc;
477         __be16 proto;
478
479         proto = *(__be16 *) skb->data;
480         __skb_pull(skb, sizeof(__be16));
481
482         if (ntohs(proto) >= 1536)
483                 return proto;
484
485         if (skb->len < sizeof(struct llc_snap_hdr))
486                 return htons(ETH_P_802_2);
487
488         if (unlikely(!pskb_may_pull(skb, sizeof(struct llc_snap_hdr))))
489                 return htons(0);
490
491         llc = (struct llc_snap_hdr *) skb->data;
492         if (llc->dsap != LLC_SAP_SNAP ||
493             llc->ssap != LLC_SAP_SNAP ||
494             (llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0)
495                 return htons(ETH_P_802_2);
496
497         __skb_pull(skb, sizeof(struct llc_snap_hdr));
498         return llc->ethertype;
499 }
500
501 static int parse_icmpv6(struct sk_buff *skb, struct sw_flow_key *key,
502                         int *key_lenp, int nh_len)
503 {
504         struct icmp6hdr *icmp = icmp6_hdr(skb);
505         int error = 0;
506         int key_len;
507
508         /* The ICMPv6 type and code fields use the 16-bit transport port
509          * fields, so we need to store them in 16-bit network byte order.
510          */
511         key->ipv6.tp.src = htons(icmp->icmp6_type);
512         key->ipv6.tp.dst = htons(icmp->icmp6_code);
513         key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
514
515         if (icmp->icmp6_code == 0 &&
516             (icmp->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION ||
517              icmp->icmp6_type == NDISC_NEIGHBOUR_ADVERTISEMENT)) {
518                 int icmp_len = skb->len - skb_transport_offset(skb);
519                 struct nd_msg *nd;
520                 int offset;
521
522                 key_len = SW_FLOW_KEY_OFFSET(ipv6.nd);
523
524                 /* In order to process neighbor discovery options, we need the
525                  * entire packet.
526                  */
527                 if (unlikely(icmp_len < sizeof(*nd)))
528                         goto out;
529                 if (unlikely(skb_linearize(skb))) {
530                         error = -ENOMEM;
531                         goto out;
532                 }
533
534                 nd = (struct nd_msg *)skb_transport_header(skb);
535                 key->ipv6.nd.target = nd->target;
536                 key_len = SW_FLOW_KEY_OFFSET(ipv6.nd);
537
538                 icmp_len -= sizeof(*nd);
539                 offset = 0;
540                 while (icmp_len >= 8) {
541                         struct nd_opt_hdr *nd_opt =
542                                  (struct nd_opt_hdr *)(nd->opt + offset);
543                         int opt_len = nd_opt->nd_opt_len * 8;
544
545                         if (unlikely(!opt_len || opt_len > icmp_len))
546                                 goto invalid;
547
548                         /* Store the link layer address if the appropriate
549                          * option is provided.  It is considered an error if
550                          * the same link layer option is specified twice.
551                          */
552                         if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LL_ADDR
553                             && opt_len == 8) {
554                                 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.sll)))
555                                         goto invalid;
556                                 memcpy(key->ipv6.nd.sll,
557                                     &nd->opt[offset+sizeof(*nd_opt)], ETH_ALEN);
558                         } else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LL_ADDR
559                                    && opt_len == 8) {
560                                 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.tll)))
561                                         goto invalid;
562                                 memcpy(key->ipv6.nd.tll,
563                                     &nd->opt[offset+sizeof(*nd_opt)], ETH_ALEN);
564                         }
565
566                         icmp_len -= opt_len;
567                         offset += opt_len;
568                 }
569         }
570
571         goto out;
572
573 invalid:
574         memset(&key->ipv6.nd.target, 0, sizeof(key->ipv6.nd.target));
575         memset(key->ipv6.nd.sll, 0, sizeof(key->ipv6.nd.sll));
576         memset(key->ipv6.nd.tll, 0, sizeof(key->ipv6.nd.tll));
577
578 out:
579         *key_lenp = key_len;
580         return error;
581 }
582
583 /**
584  * ovs_flow_extract - extracts a flow key from an Ethernet frame.
585  * @skb: sk_buff that contains the frame, with skb->data pointing to the
586  * Ethernet header
587  * @in_port: port number on which @skb was received.
588  * @key: output flow key
589  * @key_lenp: length of output flow key
590  *
591  * The caller must ensure that skb->len >= ETH_HLEN.
592  *
593  * Returns 0 if successful, otherwise a negative errno value.
594  *
595  * Initializes @skb header pointers as follows:
596  *
597  *    - skb->mac_header: the Ethernet header.
598  *
599  *    - skb->network_header: just past the Ethernet header, or just past the
600  *      VLAN header, to the first byte of the Ethernet payload.
601  *
602  *    - skb->transport_header: If key->dl_type is ETH_P_IP or ETH_P_IPV6
603  *      on output, then just past the IP header, if one is present and
604  *      of a correct length, otherwise the same as skb->network_header.
605  *      For other key->dl_type values it is left untouched.
606  */
607 int ovs_flow_extract(struct sk_buff *skb, u16 in_port, struct sw_flow_key *key,
608                  int *key_lenp)
609 {
610         int error = 0;
611         int key_len = SW_FLOW_KEY_OFFSET(eth);
612         struct ethhdr *eth;
613
614         memset(key, 0, sizeof(*key));
615
616         key->phy.priority = skb->priority;
617         key->phy.in_port = in_port;
618
619         skb_reset_mac_header(skb);
620
621         /* Link layer.  We are guaranteed to have at least the 14 byte Ethernet
622          * header in the linear data area.
623          */
624         eth = eth_hdr(skb);
625         memcpy(key->eth.src, eth->h_source, ETH_ALEN);
626         memcpy(key->eth.dst, eth->h_dest, ETH_ALEN);
627
628         __skb_pull(skb, 2 * ETH_ALEN);
629
630         if (vlan_tx_tag_present(skb))
631                 key->eth.tci = htons(skb->vlan_tci);
632         else if (eth->h_proto == htons(ETH_P_8021Q))
633                 if (unlikely(parse_vlan(skb, key)))
634                         return -ENOMEM;
635
636         key->eth.type = parse_ethertype(skb);
637         if (unlikely(key->eth.type == htons(0)))
638                 return -ENOMEM;
639
640         skb_reset_network_header(skb);
641         __skb_push(skb, skb->data - skb_mac_header(skb));
642
643         /* Network layer. */
644         if (key->eth.type == htons(ETH_P_IP)) {
645                 struct iphdr *nh;
646                 __be16 offset;
647
648                 key_len = SW_FLOW_KEY_OFFSET(ipv4.addr);
649
650                 error = check_iphdr(skb);
651                 if (unlikely(error)) {
652                         if (error == -EINVAL) {
653                                 skb->transport_header = skb->network_header;
654                                 error = 0;
655                         }
656                         goto out;
657                 }
658
659                 nh = ip_hdr(skb);
660                 key->ipv4.addr.src = nh->saddr;
661                 key->ipv4.addr.dst = nh->daddr;
662
663                 key->ip.proto = nh->protocol;
664                 key->ip.tos = nh->tos;
665                 key->ip.ttl = nh->ttl;
666
667                 offset = nh->frag_off & htons(IP_OFFSET);
668                 if (offset) {
669                         key->ip.frag = OVS_FRAG_TYPE_LATER;
670                         goto out;
671                 }
672                 if (nh->frag_off & htons(IP_MF) ||
673                          skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
674                         key->ip.frag = OVS_FRAG_TYPE_FIRST;
675
676                 /* Transport layer. */
677                 if (key->ip.proto == IPPROTO_TCP) {
678                         key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
679                         if (tcphdr_ok(skb)) {
680                                 struct tcphdr *tcp = tcp_hdr(skb);
681                                 key->ipv4.tp.src = tcp->source;
682                                 key->ipv4.tp.dst = tcp->dest;
683                         }
684                 } else if (key->ip.proto == IPPROTO_UDP) {
685                         key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
686                         if (udphdr_ok(skb)) {
687                                 struct udphdr *udp = udp_hdr(skb);
688                                 key->ipv4.tp.src = udp->source;
689                                 key->ipv4.tp.dst = udp->dest;
690                         }
691                 } else if (key->ip.proto == IPPROTO_ICMP) {
692                         key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
693                         if (icmphdr_ok(skb)) {
694                                 struct icmphdr *icmp = icmp_hdr(skb);
695                                 /* The ICMP type and code fields use the 16-bit
696                                  * transport port fields, so we need to store
697                                  * them in 16-bit network byte order. */
698                                 key->ipv4.tp.src = htons(icmp->type);
699                                 key->ipv4.tp.dst = htons(icmp->code);
700                         }
701                 }
702
703         } else if (key->eth.type == htons(ETH_P_ARP) && arphdr_ok(skb)) {
704                 struct arp_eth_header *arp;
705
706                 arp = (struct arp_eth_header *)skb_network_header(skb);
707
708                 if (arp->ar_hrd == htons(ARPHRD_ETHER)
709                                 && arp->ar_pro == htons(ETH_P_IP)
710                                 && arp->ar_hln == ETH_ALEN
711                                 && arp->ar_pln == 4) {
712
713                         /* We only match on the lower 8 bits of the opcode. */
714                         if (ntohs(arp->ar_op) <= 0xff)
715                                 key->ip.proto = ntohs(arp->ar_op);
716
717                         if (key->ip.proto == ARPOP_REQUEST
718                                         || key->ip.proto == ARPOP_REPLY) {
719                                 memcpy(&key->ipv4.addr.src, arp->ar_sip, sizeof(key->ipv4.addr.src));
720                                 memcpy(&key->ipv4.addr.dst, arp->ar_tip, sizeof(key->ipv4.addr.dst));
721                                 memcpy(key->ipv4.arp.sha, arp->ar_sha, ETH_ALEN);
722                                 memcpy(key->ipv4.arp.tha, arp->ar_tha, ETH_ALEN);
723                                 key_len = SW_FLOW_KEY_OFFSET(ipv4.arp);
724                         }
725                 }
726         } else if (key->eth.type == htons(ETH_P_IPV6)) {
727                 int nh_len;             /* IPv6 Header + Extensions */
728
729                 nh_len = parse_ipv6hdr(skb, key, &key_len);
730                 if (unlikely(nh_len < 0)) {
731                         if (nh_len == -EINVAL)
732                                 skb->transport_header = skb->network_header;
733                         else
734                                 error = nh_len;
735                         goto out;
736                 }
737
738                 if (key->ip.frag == OVS_FRAG_TYPE_LATER)
739                         goto out;
740                 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
741                         key->ip.frag = OVS_FRAG_TYPE_FIRST;
742
743                 /* Transport layer. */
744                 if (key->ip.proto == NEXTHDR_TCP) {
745                         key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
746                         if (tcphdr_ok(skb)) {
747                                 struct tcphdr *tcp = tcp_hdr(skb);
748                                 key->ipv6.tp.src = tcp->source;
749                                 key->ipv6.tp.dst = tcp->dest;
750                         }
751                 } else if (key->ip.proto == NEXTHDR_UDP) {
752                         key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
753                         if (udphdr_ok(skb)) {
754                                 struct udphdr *udp = udp_hdr(skb);
755                                 key->ipv6.tp.src = udp->source;
756                                 key->ipv6.tp.dst = udp->dest;
757                         }
758                 } else if (key->ip.proto == NEXTHDR_ICMP) {
759                         key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
760                         if (icmp6hdr_ok(skb)) {
761                                 error = parse_icmpv6(skb, key, &key_len, nh_len);
762                                 if (error < 0)
763                                         goto out;
764                         }
765                 }
766         }
767
768 out:
769         *key_lenp = key_len;
770         return error;
771 }
772
773 u32 ovs_flow_hash(const struct sw_flow_key *key, int key_len)
774 {
775         return jhash2((u32 *)key, DIV_ROUND_UP(key_len, sizeof(u32)), 0);
776 }
777
778 struct sw_flow *ovs_flow_tbl_lookup(struct flow_table *table,
779                                 struct sw_flow_key *key, int key_len)
780 {
781         struct sw_flow *flow;
782         struct hlist_node *n;
783         struct hlist_head *head;
784         u32 hash;
785
786         hash = ovs_flow_hash(key, key_len);
787
788         head = find_bucket(table, hash);
789         hlist_for_each_entry_rcu(flow, n, head, hash_node[table->node_ver]) {
790
791                 if (flow->hash == hash &&
792                     !memcmp(&flow->key, key, key_len)) {
793                         return flow;
794                 }
795         }
796         return NULL;
797 }
798
799 void ovs_flow_tbl_insert(struct flow_table *table, struct sw_flow *flow)
800 {
801         struct hlist_head *head;
802
803         head = find_bucket(table, flow->hash);
804         hlist_add_head_rcu(&flow->hash_node[table->node_ver], head);
805         table->count++;
806 }
807
808 void ovs_flow_tbl_remove(struct flow_table *table, struct sw_flow *flow)
809 {
810         hlist_del_rcu(&flow->hash_node[table->node_ver]);
811         table->count--;
812         BUG_ON(table->count < 0);
813 }
814
815 /* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute.  */
816 const int ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = {
817         [OVS_KEY_ATTR_ENCAP] = -1,
818         [OVS_KEY_ATTR_PRIORITY] = sizeof(u32),
819         [OVS_KEY_ATTR_IN_PORT] = sizeof(u32),
820         [OVS_KEY_ATTR_ETHERNET] = sizeof(struct ovs_key_ethernet),
821         [OVS_KEY_ATTR_VLAN] = sizeof(__be16),
822         [OVS_KEY_ATTR_ETHERTYPE] = sizeof(__be16),
823         [OVS_KEY_ATTR_IPV4] = sizeof(struct ovs_key_ipv4),
824         [OVS_KEY_ATTR_IPV6] = sizeof(struct ovs_key_ipv6),
825         [OVS_KEY_ATTR_TCP] = sizeof(struct ovs_key_tcp),
826         [OVS_KEY_ATTR_UDP] = sizeof(struct ovs_key_udp),
827         [OVS_KEY_ATTR_ICMP] = sizeof(struct ovs_key_icmp),
828         [OVS_KEY_ATTR_ICMPV6] = sizeof(struct ovs_key_icmpv6),
829         [OVS_KEY_ATTR_ARP] = sizeof(struct ovs_key_arp),
830         [OVS_KEY_ATTR_ND] = sizeof(struct ovs_key_nd),
831 };
832
833 static int ipv4_flow_from_nlattrs(struct sw_flow_key *swkey, int *key_len,
834                                   const struct nlattr *a[], u32 *attrs)
835 {
836         const struct ovs_key_icmp *icmp_key;
837         const struct ovs_key_tcp *tcp_key;
838         const struct ovs_key_udp *udp_key;
839
840         switch (swkey->ip.proto) {
841         case IPPROTO_TCP:
842                 if (!(*attrs & (1 << OVS_KEY_ATTR_TCP)))
843                         return -EINVAL;
844                 *attrs &= ~(1 << OVS_KEY_ATTR_TCP);
845
846                 *key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
847                 tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
848                 swkey->ipv4.tp.src = tcp_key->tcp_src;
849                 swkey->ipv4.tp.dst = tcp_key->tcp_dst;
850                 break;
851
852         case IPPROTO_UDP:
853                 if (!(*attrs & (1 << OVS_KEY_ATTR_UDP)))
854                         return -EINVAL;
855                 *attrs &= ~(1 << OVS_KEY_ATTR_UDP);
856
857                 *key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
858                 udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
859                 swkey->ipv4.tp.src = udp_key->udp_src;
860                 swkey->ipv4.tp.dst = udp_key->udp_dst;
861                 break;
862
863         case IPPROTO_ICMP:
864                 if (!(*attrs & (1 << OVS_KEY_ATTR_ICMP)))
865                         return -EINVAL;
866                 *attrs &= ~(1 << OVS_KEY_ATTR_ICMP);
867
868                 *key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
869                 icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]);
870                 swkey->ipv4.tp.src = htons(icmp_key->icmp_type);
871                 swkey->ipv4.tp.dst = htons(icmp_key->icmp_code);
872                 break;
873         }
874
875         return 0;
876 }
877
878 static int ipv6_flow_from_nlattrs(struct sw_flow_key *swkey, int *key_len,
879                                   const struct nlattr *a[], u32 *attrs)
880 {
881         const struct ovs_key_icmpv6 *icmpv6_key;
882         const struct ovs_key_tcp *tcp_key;
883         const struct ovs_key_udp *udp_key;
884
885         switch (swkey->ip.proto) {
886         case IPPROTO_TCP:
887                 if (!(*attrs & (1 << OVS_KEY_ATTR_TCP)))
888                         return -EINVAL;
889                 *attrs &= ~(1 << OVS_KEY_ATTR_TCP);
890
891                 *key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
892                 tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
893                 swkey->ipv6.tp.src = tcp_key->tcp_src;
894                 swkey->ipv6.tp.dst = tcp_key->tcp_dst;
895                 break;
896
897         case IPPROTO_UDP:
898                 if (!(*attrs & (1 << OVS_KEY_ATTR_UDP)))
899                         return -EINVAL;
900                 *attrs &= ~(1 << OVS_KEY_ATTR_UDP);
901
902                 *key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
903                 udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
904                 swkey->ipv6.tp.src = udp_key->udp_src;
905                 swkey->ipv6.tp.dst = udp_key->udp_dst;
906                 break;
907
908         case IPPROTO_ICMPV6:
909                 if (!(*attrs & (1 << OVS_KEY_ATTR_ICMPV6)))
910                         return -EINVAL;
911                 *attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6);
912
913                 *key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
914                 icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]);
915                 swkey->ipv6.tp.src = htons(icmpv6_key->icmpv6_type);
916                 swkey->ipv6.tp.dst = htons(icmpv6_key->icmpv6_code);
917
918                 if (swkey->ipv6.tp.src == htons(NDISC_NEIGHBOUR_SOLICITATION) ||
919                     swkey->ipv6.tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
920                         const struct ovs_key_nd *nd_key;
921
922                         if (!(*attrs & (1 << OVS_KEY_ATTR_ND)))
923                                 return -EINVAL;
924                         *attrs &= ~(1 << OVS_KEY_ATTR_ND);
925
926                         *key_len = SW_FLOW_KEY_OFFSET(ipv6.nd);
927                         nd_key = nla_data(a[OVS_KEY_ATTR_ND]);
928                         memcpy(&swkey->ipv6.nd.target, nd_key->nd_target,
929                                sizeof(swkey->ipv6.nd.target));
930                         memcpy(swkey->ipv6.nd.sll, nd_key->nd_sll, ETH_ALEN);
931                         memcpy(swkey->ipv6.nd.tll, nd_key->nd_tll, ETH_ALEN);
932                 }
933                 break;
934         }
935
936         return 0;
937 }
938
939 static int parse_flow_nlattrs(const struct nlattr *attr,
940                               const struct nlattr *a[], u32 *attrsp)
941 {
942         const struct nlattr *nla;
943         u32 attrs;
944         int rem;
945
946         attrs = 0;
947         nla_for_each_nested(nla, attr, rem) {
948                 u16 type = nla_type(nla);
949                 int expected_len;
950
951                 if (type > OVS_KEY_ATTR_MAX || attrs & (1 << type))
952                         return -EINVAL;
953
954                 expected_len = ovs_key_lens[type];
955                 if (nla_len(nla) != expected_len && expected_len != -1)
956                         return -EINVAL;
957
958                 attrs |= 1 << type;
959                 a[type] = nla;
960         }
961         if (rem)
962                 return -EINVAL;
963
964         *attrsp = attrs;
965         return 0;
966 }
967
968 /**
969  * ovs_flow_from_nlattrs - parses Netlink attributes into a flow key.
970  * @swkey: receives the extracted flow key.
971  * @key_lenp: number of bytes used in @swkey.
972  * @attr: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
973  * sequence.
974  */
975 int ovs_flow_from_nlattrs(struct sw_flow_key *swkey, int *key_lenp,
976                       const struct nlattr *attr)
977 {
978         const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
979         const struct ovs_key_ethernet *eth_key;
980         int key_len;
981         u32 attrs;
982         int err;
983
984         memset(swkey, 0, sizeof(struct sw_flow_key));
985         key_len = SW_FLOW_KEY_OFFSET(eth);
986
987         err = parse_flow_nlattrs(attr, a, &attrs);
988         if (err)
989                 return err;
990
991         /* Metadata attributes. */
992         if (attrs & (1 << OVS_KEY_ATTR_PRIORITY)) {
993                 swkey->phy.priority = nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]);
994                 attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY);
995         }
996         if (attrs & (1 << OVS_KEY_ATTR_IN_PORT)) {
997                 u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]);
998                 if (in_port >= DP_MAX_PORTS)
999                         return -EINVAL;
1000                 swkey->phy.in_port = in_port;
1001                 attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT);
1002         } else {
1003                 swkey->phy.in_port = USHRT_MAX;
1004         }
1005
1006         /* Data attributes. */
1007         if (!(attrs & (1 << OVS_KEY_ATTR_ETHERNET)))
1008                 return -EINVAL;
1009         attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET);
1010
1011         eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]);
1012         memcpy(swkey->eth.src, eth_key->eth_src, ETH_ALEN);
1013         memcpy(swkey->eth.dst, eth_key->eth_dst, ETH_ALEN);
1014
1015         if (attrs & (1u << OVS_KEY_ATTR_ETHERTYPE) &&
1016             nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]) == htons(ETH_P_8021Q)) {
1017                 const struct nlattr *encap;
1018                 __be16 tci;
1019
1020                 if (attrs != ((1 << OVS_KEY_ATTR_VLAN) |
1021                               (1 << OVS_KEY_ATTR_ETHERTYPE) |
1022                               (1 << OVS_KEY_ATTR_ENCAP)))
1023                         return -EINVAL;
1024
1025                 encap = a[OVS_KEY_ATTR_ENCAP];
1026                 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
1027                 if (tci & htons(VLAN_TAG_PRESENT)) {
1028                         swkey->eth.tci = tci;
1029
1030                         err = parse_flow_nlattrs(encap, a, &attrs);
1031                         if (err)
1032                                 return err;
1033                 } else if (!tci) {
1034                         /* Corner case for truncated 802.1Q header. */
1035                         if (nla_len(encap))
1036                                 return -EINVAL;
1037
1038                         swkey->eth.type = htons(ETH_P_8021Q);
1039                         *key_lenp = key_len;
1040                         return 0;
1041                 } else {
1042                         return -EINVAL;
1043                 }
1044         }
1045
1046         if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) {
1047                 swkey->eth.type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
1048                 if (ntohs(swkey->eth.type) < 1536)
1049                         return -EINVAL;
1050                 attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
1051         } else {
1052                 swkey->eth.type = htons(ETH_P_802_2);
1053         }
1054
1055         if (swkey->eth.type == htons(ETH_P_IP)) {
1056                 const struct ovs_key_ipv4 *ipv4_key;
1057
1058                 if (!(attrs & (1 << OVS_KEY_ATTR_IPV4)))
1059                         return -EINVAL;
1060                 attrs &= ~(1 << OVS_KEY_ATTR_IPV4);
1061
1062                 key_len = SW_FLOW_KEY_OFFSET(ipv4.addr);
1063                 ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]);
1064                 if (ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX)
1065                         return -EINVAL;
1066                 swkey->ip.proto = ipv4_key->ipv4_proto;
1067                 swkey->ip.tos = ipv4_key->ipv4_tos;
1068                 swkey->ip.ttl = ipv4_key->ipv4_ttl;
1069                 swkey->ip.frag = ipv4_key->ipv4_frag;
1070                 swkey->ipv4.addr.src = ipv4_key->ipv4_src;
1071                 swkey->ipv4.addr.dst = ipv4_key->ipv4_dst;
1072
1073                 if (swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
1074                         err = ipv4_flow_from_nlattrs(swkey, &key_len, a, &attrs);
1075                         if (err)
1076                                 return err;
1077                 }
1078         } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1079                 const struct ovs_key_ipv6 *ipv6_key;
1080
1081                 if (!(attrs & (1 << OVS_KEY_ATTR_IPV6)))
1082                         return -EINVAL;
1083                 attrs &= ~(1 << OVS_KEY_ATTR_IPV6);
1084
1085                 key_len = SW_FLOW_KEY_OFFSET(ipv6.label);
1086                 ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]);
1087                 if (ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX)
1088                         return -EINVAL;
1089                 swkey->ipv6.label = ipv6_key->ipv6_label;
1090                 swkey->ip.proto = ipv6_key->ipv6_proto;
1091                 swkey->ip.tos = ipv6_key->ipv6_tclass;
1092                 swkey->ip.ttl = ipv6_key->ipv6_hlimit;
1093                 swkey->ip.frag = ipv6_key->ipv6_frag;
1094                 memcpy(&swkey->ipv6.addr.src, ipv6_key->ipv6_src,
1095                        sizeof(swkey->ipv6.addr.src));
1096                 memcpy(&swkey->ipv6.addr.dst, ipv6_key->ipv6_dst,
1097                        sizeof(swkey->ipv6.addr.dst));
1098
1099                 if (swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
1100                         err = ipv6_flow_from_nlattrs(swkey, &key_len, a, &attrs);
1101                         if (err)
1102                                 return err;
1103                 }
1104         } else if (swkey->eth.type == htons(ETH_P_ARP)) {
1105                 const struct ovs_key_arp *arp_key;
1106
1107                 if (!(attrs & (1 << OVS_KEY_ATTR_ARP)))
1108                         return -EINVAL;
1109                 attrs &= ~(1 << OVS_KEY_ATTR_ARP);
1110
1111                 key_len = SW_FLOW_KEY_OFFSET(ipv4.arp);
1112                 arp_key = nla_data(a[OVS_KEY_ATTR_ARP]);
1113                 swkey->ipv4.addr.src = arp_key->arp_sip;
1114                 swkey->ipv4.addr.dst = arp_key->arp_tip;
1115                 if (arp_key->arp_op & htons(0xff00))
1116                         return -EINVAL;
1117                 swkey->ip.proto = ntohs(arp_key->arp_op);
1118                 memcpy(swkey->ipv4.arp.sha, arp_key->arp_sha, ETH_ALEN);
1119                 memcpy(swkey->ipv4.arp.tha, arp_key->arp_tha, ETH_ALEN);
1120         }
1121
1122         if (attrs)
1123                 return -EINVAL;
1124         *key_lenp = key_len;
1125
1126         return 0;
1127 }
1128
1129 /**
1130  * ovs_flow_metadata_from_nlattrs - parses Netlink attributes into a flow key.
1131  * @in_port: receives the extracted input port.
1132  * @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1133  * sequence.
1134  *
1135  * This parses a series of Netlink attributes that form a flow key, which must
1136  * take the same form accepted by flow_from_nlattrs(), but only enough of it to
1137  * get the metadata, that is, the parts of the flow key that cannot be
1138  * extracted from the packet itself.
1139  */
1140 int ovs_flow_metadata_from_nlattrs(u32 *priority, u16 *in_port,
1141                                const struct nlattr *attr)
1142 {
1143         const struct nlattr *nla;
1144         int rem;
1145
1146         *in_port = USHRT_MAX;
1147         *priority = 0;
1148
1149         nla_for_each_nested(nla, attr, rem) {
1150                 int type = nla_type(nla);
1151
1152                 if (type <= OVS_KEY_ATTR_MAX && ovs_key_lens[type] > 0) {
1153                         if (nla_len(nla) != ovs_key_lens[type])
1154                                 return -EINVAL;
1155
1156                         switch (type) {
1157                         case OVS_KEY_ATTR_PRIORITY:
1158                                 *priority = nla_get_u32(nla);
1159                                 break;
1160
1161                         case OVS_KEY_ATTR_IN_PORT:
1162                                 if (nla_get_u32(nla) >= DP_MAX_PORTS)
1163                                         return -EINVAL;
1164                                 *in_port = nla_get_u32(nla);
1165                                 break;
1166                         }
1167                 }
1168         }
1169         if (rem)
1170                 return -EINVAL;
1171         return 0;
1172 }
1173
1174 int ovs_flow_to_nlattrs(const struct sw_flow_key *swkey, struct sk_buff *skb)
1175 {
1176         struct ovs_key_ethernet *eth_key;
1177         struct nlattr *nla, *encap;
1178
1179         if (swkey->phy.priority &&
1180             nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, swkey->phy.priority))
1181                 goto nla_put_failure;
1182
1183         if (swkey->phy.in_port != USHRT_MAX &&
1184             nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, swkey->phy.in_port))
1185                 goto nla_put_failure;
1186
1187         nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key));
1188         if (!nla)
1189                 goto nla_put_failure;
1190         eth_key = nla_data(nla);
1191         memcpy(eth_key->eth_src, swkey->eth.src, ETH_ALEN);
1192         memcpy(eth_key->eth_dst, swkey->eth.dst, ETH_ALEN);
1193
1194         if (swkey->eth.tci || swkey->eth.type == htons(ETH_P_8021Q)) {
1195                 if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, htons(ETH_P_8021Q)) ||
1196                     nla_put_be16(skb, OVS_KEY_ATTR_VLAN, swkey->eth.tci))
1197                         goto nla_put_failure;
1198                 encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP);
1199                 if (!swkey->eth.tci)
1200                         goto unencap;
1201         } else {
1202                 encap = NULL;
1203         }
1204
1205         if (swkey->eth.type == htons(ETH_P_802_2))
1206                 goto unencap;
1207
1208         if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, swkey->eth.type))
1209                 goto nla_put_failure;
1210
1211         if (swkey->eth.type == htons(ETH_P_IP)) {
1212                 struct ovs_key_ipv4 *ipv4_key;
1213
1214                 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key));
1215                 if (!nla)
1216                         goto nla_put_failure;
1217                 ipv4_key = nla_data(nla);
1218                 ipv4_key->ipv4_src = swkey->ipv4.addr.src;
1219                 ipv4_key->ipv4_dst = swkey->ipv4.addr.dst;
1220                 ipv4_key->ipv4_proto = swkey->ip.proto;
1221                 ipv4_key->ipv4_tos = swkey->ip.tos;
1222                 ipv4_key->ipv4_ttl = swkey->ip.ttl;
1223                 ipv4_key->ipv4_frag = swkey->ip.frag;
1224         } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1225                 struct ovs_key_ipv6 *ipv6_key;
1226
1227                 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key));
1228                 if (!nla)
1229                         goto nla_put_failure;
1230                 ipv6_key = nla_data(nla);
1231                 memcpy(ipv6_key->ipv6_src, &swkey->ipv6.addr.src,
1232                                 sizeof(ipv6_key->ipv6_src));
1233                 memcpy(ipv6_key->ipv6_dst, &swkey->ipv6.addr.dst,
1234                                 sizeof(ipv6_key->ipv6_dst));
1235                 ipv6_key->ipv6_label = swkey->ipv6.label;
1236                 ipv6_key->ipv6_proto = swkey->ip.proto;
1237                 ipv6_key->ipv6_tclass = swkey->ip.tos;
1238                 ipv6_key->ipv6_hlimit = swkey->ip.ttl;
1239                 ipv6_key->ipv6_frag = swkey->ip.frag;
1240         } else if (swkey->eth.type == htons(ETH_P_ARP)) {
1241                 struct ovs_key_arp *arp_key;
1242
1243                 nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key));
1244                 if (!nla)
1245                         goto nla_put_failure;
1246                 arp_key = nla_data(nla);
1247                 memset(arp_key, 0, sizeof(struct ovs_key_arp));
1248                 arp_key->arp_sip = swkey->ipv4.addr.src;
1249                 arp_key->arp_tip = swkey->ipv4.addr.dst;
1250                 arp_key->arp_op = htons(swkey->ip.proto);
1251                 memcpy(arp_key->arp_sha, swkey->ipv4.arp.sha, ETH_ALEN);
1252                 memcpy(arp_key->arp_tha, swkey->ipv4.arp.tha, ETH_ALEN);
1253         }
1254
1255         if ((swkey->eth.type == htons(ETH_P_IP) ||
1256              swkey->eth.type == htons(ETH_P_IPV6)) &&
1257              swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
1258
1259                 if (swkey->ip.proto == IPPROTO_TCP) {
1260                         struct ovs_key_tcp *tcp_key;
1261
1262                         nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key));
1263                         if (!nla)
1264                                 goto nla_put_failure;
1265                         tcp_key = nla_data(nla);
1266                         if (swkey->eth.type == htons(ETH_P_IP)) {
1267                                 tcp_key->tcp_src = swkey->ipv4.tp.src;
1268                                 tcp_key->tcp_dst = swkey->ipv4.tp.dst;
1269                         } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1270                                 tcp_key->tcp_src = swkey->ipv6.tp.src;
1271                                 tcp_key->tcp_dst = swkey->ipv6.tp.dst;
1272                         }
1273                 } else if (swkey->ip.proto == IPPROTO_UDP) {
1274                         struct ovs_key_udp *udp_key;
1275
1276                         nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key));
1277                         if (!nla)
1278                                 goto nla_put_failure;
1279                         udp_key = nla_data(nla);
1280                         if (swkey->eth.type == htons(ETH_P_IP)) {
1281                                 udp_key->udp_src = swkey->ipv4.tp.src;
1282                                 udp_key->udp_dst = swkey->ipv4.tp.dst;
1283                         } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1284                                 udp_key->udp_src = swkey->ipv6.tp.src;
1285                                 udp_key->udp_dst = swkey->ipv6.tp.dst;
1286                         }
1287                 } else if (swkey->eth.type == htons(ETH_P_IP) &&
1288                            swkey->ip.proto == IPPROTO_ICMP) {
1289                         struct ovs_key_icmp *icmp_key;
1290
1291                         nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key));
1292                         if (!nla)
1293                                 goto nla_put_failure;
1294                         icmp_key = nla_data(nla);
1295                         icmp_key->icmp_type = ntohs(swkey->ipv4.tp.src);
1296                         icmp_key->icmp_code = ntohs(swkey->ipv4.tp.dst);
1297                 } else if (swkey->eth.type == htons(ETH_P_IPV6) &&
1298                            swkey->ip.proto == IPPROTO_ICMPV6) {
1299                         struct ovs_key_icmpv6 *icmpv6_key;
1300
1301                         nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6,
1302                                                 sizeof(*icmpv6_key));
1303                         if (!nla)
1304                                 goto nla_put_failure;
1305                         icmpv6_key = nla_data(nla);
1306                         icmpv6_key->icmpv6_type = ntohs(swkey->ipv6.tp.src);
1307                         icmpv6_key->icmpv6_code = ntohs(swkey->ipv6.tp.dst);
1308
1309                         if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION ||
1310                             icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) {
1311                                 struct ovs_key_nd *nd_key;
1312
1313                                 nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key));
1314                                 if (!nla)
1315                                         goto nla_put_failure;
1316                                 nd_key = nla_data(nla);
1317                                 memcpy(nd_key->nd_target, &swkey->ipv6.nd.target,
1318                                                         sizeof(nd_key->nd_target));
1319                                 memcpy(nd_key->nd_sll, swkey->ipv6.nd.sll, ETH_ALEN);
1320                                 memcpy(nd_key->nd_tll, swkey->ipv6.nd.tll, ETH_ALEN);
1321                         }
1322                 }
1323         }
1324
1325 unencap:
1326         if (encap)
1327                 nla_nest_end(skb, encap);
1328
1329         return 0;
1330
1331 nla_put_failure:
1332         return -EMSGSIZE;
1333 }
1334
1335 /* Initializes the flow module.
1336  * Returns zero if successful or a negative error code. */
1337 int ovs_flow_init(void)
1338 {
1339         flow_cache = kmem_cache_create("sw_flow", sizeof(struct sw_flow), 0,
1340                                         0, NULL);
1341         if (flow_cache == NULL)
1342                 return -ENOMEM;
1343
1344         return 0;
1345 }
1346
1347 /* Uninitializes the flow module. */
1348 void ovs_flow_exit(void)
1349 {
1350         kmem_cache_destroy(flow_cache);
1351 }