5dd929cc1423cbd44a9debc5599bbbd21c470fd2
[cascardo/linux.git] / net / sched / sch_fq.c
1 /*
2  * net/sched/sch_fq.c Fair Queue Packet Scheduler (per flow pacing)
3  *
4  *  Copyright (C) 2013-2015 Eric Dumazet <edumazet@google.com>
5  *
6  *      This program is free software; you can redistribute it and/or
7  *      modify it under the terms of the GNU General Public License
8  *      as published by the Free Software Foundation; either version
9  *      2 of the License, or (at your option) any later version.
10  *
11  *  Meant to be mostly used for locally generated traffic :
12  *  Fast classification depends on skb->sk being set before reaching us.
13  *  If not, (router workload), we use rxhash as fallback, with 32 bits wide hash.
14  *  All packets belonging to a socket are considered as a 'flow'.
15  *
16  *  Flows are dynamically allocated and stored in a hash table of RB trees
17  *  They are also part of one Round Robin 'queues' (new or old flows)
18  *
19  *  Burst avoidance (aka pacing) capability :
20  *
21  *  Transport (eg TCP) can set in sk->sk_pacing_rate a rate, enqueue a
22  *  bunch of packets, and this packet scheduler adds delay between
23  *  packets to respect rate limitation.
24  *
25  *  enqueue() :
26  *   - lookup one RB tree (out of 1024 or more) to find the flow.
27  *     If non existent flow, create it, add it to the tree.
28  *     Add skb to the per flow list of skb (fifo).
29  *   - Use a special fifo for high prio packets
30  *
31  *  dequeue() : serves flows in Round Robin
32  *  Note : When a flow becomes empty, we do not immediately remove it from
33  *  rb trees, for performance reasons (its expected to send additional packets,
34  *  or SLAB cache will reuse socket for another flow)
35  */
36
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/jiffies.h>
41 #include <linux/string.h>
42 #include <linux/in.h>
43 #include <linux/errno.h>
44 #include <linux/init.h>
45 #include <linux/skbuff.h>
46 #include <linux/slab.h>
47 #include <linux/rbtree.h>
48 #include <linux/hash.h>
49 #include <linux/prefetch.h>
50 #include <linux/vmalloc.h>
51 #include <net/netlink.h>
52 #include <net/pkt_sched.h>
53 #include <net/sock.h>
54 #include <net/tcp_states.h>
55 #include <net/tcp.h>
56
57 /*
58  * Per flow structure, dynamically allocated
59  */
60 struct fq_flow {
61         struct sk_buff  *head;          /* list of skbs for this flow : first skb */
62         union {
63                 struct sk_buff *tail;   /* last skb in the list */
64                 unsigned long  age;     /* jiffies when flow was emptied, for gc */
65         };
66         struct rb_node  fq_node;        /* anchor in fq_root[] trees */
67         struct sock     *sk;
68         int             qlen;           /* number of packets in flow queue */
69         int             credit;
70         u32             socket_hash;    /* sk_hash */
71         struct fq_flow *next;           /* next pointer in RR lists, or &detached */
72
73         struct rb_node  rate_node;      /* anchor in q->delayed tree */
74         u64             time_next_packet;
75 };
76
77 struct fq_flow_head {
78         struct fq_flow *first;
79         struct fq_flow *last;
80 };
81
82 struct fq_sched_data {
83         struct fq_flow_head new_flows;
84
85         struct fq_flow_head old_flows;
86
87         struct rb_root  delayed;        /* for rate limited flows */
88         u64             time_next_delayed_flow;
89
90         struct fq_flow  internal;       /* for non classified or high prio packets */
91         u32             quantum;
92         u32             initial_quantum;
93         u32             flow_refill_delay;
94         u32             flow_max_rate;  /* optional max rate per flow */
95         u32             flow_plimit;    /* max packets per flow */
96         u32             orphan_mask;    /* mask for orphaned skb */
97         u32             low_rate_threshold;
98         struct rb_root  *fq_root;
99         u8              rate_enable;
100         u8              fq_trees_log;
101
102         u32             flows;
103         u32             inactive_flows;
104         u32             throttled_flows;
105
106         u64             stat_gc_flows;
107         u64             stat_internal_packets;
108         u64             stat_tcp_retrans;
109         u64             stat_throttled;
110         u64             stat_flows_plimit;
111         u64             stat_pkts_too_long;
112         u64             stat_allocation_errors;
113         struct qdisc_watchdog watchdog;
114 };
115
116 /* special value to mark a detached flow (not on old/new list) */
117 static struct fq_flow detached, throttled;
118
119 static void fq_flow_set_detached(struct fq_flow *f)
120 {
121         f->next = &detached;
122         f->age = jiffies;
123 }
124
125 static bool fq_flow_is_detached(const struct fq_flow *f)
126 {
127         return f->next == &detached;
128 }
129
130 static void fq_flow_set_throttled(struct fq_sched_data *q, struct fq_flow *f)
131 {
132         struct rb_node **p = &q->delayed.rb_node, *parent = NULL;
133
134         while (*p) {
135                 struct fq_flow *aux;
136
137                 parent = *p;
138                 aux = container_of(parent, struct fq_flow, rate_node);
139                 if (f->time_next_packet >= aux->time_next_packet)
140                         p = &parent->rb_right;
141                 else
142                         p = &parent->rb_left;
143         }
144         rb_link_node(&f->rate_node, parent, p);
145         rb_insert_color(&f->rate_node, &q->delayed);
146         q->throttled_flows++;
147         q->stat_throttled++;
148
149         f->next = &throttled;
150         if (q->time_next_delayed_flow > f->time_next_packet)
151                 q->time_next_delayed_flow = f->time_next_packet;
152 }
153
154
155 static struct kmem_cache *fq_flow_cachep __read_mostly;
156
157 static void fq_flow_add_tail(struct fq_flow_head *head, struct fq_flow *flow)
158 {
159         if (head->first)
160                 head->last->next = flow;
161         else
162                 head->first = flow;
163         head->last = flow;
164         flow->next = NULL;
165 }
166
167 /* limit number of collected flows per round */
168 #define FQ_GC_MAX 8
169 #define FQ_GC_AGE (3*HZ)
170
171 static bool fq_gc_candidate(const struct fq_flow *f)
172 {
173         return fq_flow_is_detached(f) &&
174                time_after(jiffies, f->age + FQ_GC_AGE);
175 }
176
177 static void fq_gc(struct fq_sched_data *q,
178                   struct rb_root *root,
179                   struct sock *sk)
180 {
181         struct fq_flow *f, *tofree[FQ_GC_MAX];
182         struct rb_node **p, *parent;
183         int fcnt = 0;
184
185         p = &root->rb_node;
186         parent = NULL;
187         while (*p) {
188                 parent = *p;
189
190                 f = container_of(parent, struct fq_flow, fq_node);
191                 if (f->sk == sk)
192                         break;
193
194                 if (fq_gc_candidate(f)) {
195                         tofree[fcnt++] = f;
196                         if (fcnt == FQ_GC_MAX)
197                                 break;
198                 }
199
200                 if (f->sk > sk)
201                         p = &parent->rb_right;
202                 else
203                         p = &parent->rb_left;
204         }
205
206         q->flows -= fcnt;
207         q->inactive_flows -= fcnt;
208         q->stat_gc_flows += fcnt;
209         while (fcnt) {
210                 struct fq_flow *f = tofree[--fcnt];
211
212                 rb_erase(&f->fq_node, root);
213                 kmem_cache_free(fq_flow_cachep, f);
214         }
215 }
216
217 static struct fq_flow *fq_classify(struct sk_buff *skb, struct fq_sched_data *q)
218 {
219         struct rb_node **p, *parent;
220         struct sock *sk = skb->sk;
221         struct rb_root *root;
222         struct fq_flow *f;
223
224         /* warning: no starvation prevention... */
225         if (unlikely((skb->priority & TC_PRIO_MAX) == TC_PRIO_CONTROL))
226                 return &q->internal;
227
228         /* SYNACK messages are attached to a TCP_NEW_SYN_RECV request socket
229          * or a listener (SYNCOOKIE mode)
230          * 1) request sockets are not full blown,
231          *    they do not contain sk_pacing_rate
232          * 2) They are not part of a 'flow' yet
233          * 3) We do not want to rate limit them (eg SYNFLOOD attack),
234          *    especially if the listener set SO_MAX_PACING_RATE
235          * 4) We pretend they are orphaned
236          */
237         if (!sk || sk_listener(sk)) {
238                 unsigned long hash = skb_get_hash(skb) & q->orphan_mask;
239
240                 /* By forcing low order bit to 1, we make sure to not
241                  * collide with a local flow (socket pointers are word aligned)
242                  */
243                 sk = (struct sock *)((hash << 1) | 1UL);
244                 skb_orphan(skb);
245         }
246
247         root = &q->fq_root[hash_32((u32)(long)sk, q->fq_trees_log)];
248
249         if (q->flows >= (2U << q->fq_trees_log) &&
250             q->inactive_flows > q->flows/2)
251                 fq_gc(q, root, sk);
252
253         p = &root->rb_node;
254         parent = NULL;
255         while (*p) {
256                 parent = *p;
257
258                 f = container_of(parent, struct fq_flow, fq_node);
259                 if (f->sk == sk) {
260                         /* socket might have been reallocated, so check
261                          * if its sk_hash is the same.
262                          * It not, we need to refill credit with
263                          * initial quantum
264                          */
265                         if (unlikely(skb->sk &&
266                                      f->socket_hash != sk->sk_hash)) {
267                                 f->credit = q->initial_quantum;
268                                 f->socket_hash = sk->sk_hash;
269                                 f->time_next_packet = 0ULL;
270                         }
271                         return f;
272                 }
273                 if (f->sk > sk)
274                         p = &parent->rb_right;
275                 else
276                         p = &parent->rb_left;
277         }
278
279         f = kmem_cache_zalloc(fq_flow_cachep, GFP_ATOMIC | __GFP_NOWARN);
280         if (unlikely(!f)) {
281                 q->stat_allocation_errors++;
282                 return &q->internal;
283         }
284         fq_flow_set_detached(f);
285         f->sk = sk;
286         if (skb->sk)
287                 f->socket_hash = sk->sk_hash;
288         f->credit = q->initial_quantum;
289
290         rb_link_node(&f->fq_node, parent, p);
291         rb_insert_color(&f->fq_node, root);
292
293         q->flows++;
294         q->inactive_flows++;
295         return f;
296 }
297
298
299 /* remove one skb from head of flow queue */
300 static struct sk_buff *fq_dequeue_head(struct Qdisc *sch, struct fq_flow *flow)
301 {
302         struct sk_buff *skb = flow->head;
303
304         if (skb) {
305                 flow->head = skb->next;
306                 skb->next = NULL;
307                 flow->qlen--;
308                 qdisc_qstats_backlog_dec(sch, skb);
309                 sch->q.qlen--;
310         }
311         return skb;
312 }
313
314 /* We might add in the future detection of retransmits
315  * For the time being, just return false
316  */
317 static bool skb_is_retransmit(struct sk_buff *skb)
318 {
319         return false;
320 }
321
322 /* add skb to flow queue
323  * flow queue is a linked list, kind of FIFO, except for TCP retransmits
324  * We special case tcp retransmits to be transmitted before other packets.
325  * We rely on fact that TCP retransmits are unlikely, so we do not waste
326  * a separate queue or a pointer.
327  * head->  [retrans pkt 1]
328  *         [retrans pkt 2]
329  *         [ normal pkt 1]
330  *         [ normal pkt 2]
331  *         [ normal pkt 3]
332  * tail->  [ normal pkt 4]
333  */
334 static void flow_queue_add(struct fq_flow *flow, struct sk_buff *skb)
335 {
336         struct sk_buff *prev, *head = flow->head;
337
338         skb->next = NULL;
339         if (!head) {
340                 flow->head = skb;
341                 flow->tail = skb;
342                 return;
343         }
344         if (likely(!skb_is_retransmit(skb))) {
345                 flow->tail->next = skb;
346                 flow->tail = skb;
347                 return;
348         }
349
350         /* This skb is a tcp retransmit,
351          * find the last retrans packet in the queue
352          */
353         prev = NULL;
354         while (skb_is_retransmit(head)) {
355                 prev = head;
356                 head = head->next;
357                 if (!head)
358                         break;
359         }
360         if (!prev) { /* no rtx packet in queue, become the new head */
361                 skb->next = flow->head;
362                 flow->head = skb;
363         } else {
364                 if (prev == flow->tail)
365                         flow->tail = skb;
366                 else
367                         skb->next = prev->next;
368                 prev->next = skb;
369         }
370 }
371
372 static int fq_enqueue(struct sk_buff *skb, struct Qdisc *sch,
373                       struct sk_buff **to_free)
374 {
375         struct fq_sched_data *q = qdisc_priv(sch);
376         struct fq_flow *f;
377
378         if (unlikely(sch->q.qlen >= sch->limit))
379                 return qdisc_drop(skb, sch, to_free);
380
381         f = fq_classify(skb, q);
382         if (unlikely(f->qlen >= q->flow_plimit && f != &q->internal)) {
383                 q->stat_flows_plimit++;
384                 return qdisc_drop(skb, sch, to_free);
385         }
386
387         f->qlen++;
388         if (skb_is_retransmit(skb))
389                 q->stat_tcp_retrans++;
390         qdisc_qstats_backlog_inc(sch, skb);
391         if (fq_flow_is_detached(f)) {
392                 fq_flow_add_tail(&q->new_flows, f);
393                 if (time_after(jiffies, f->age + q->flow_refill_delay))
394                         f->credit = max_t(u32, f->credit, q->quantum);
395                 q->inactive_flows--;
396         }
397
398         /* Note: this overwrites f->age */
399         flow_queue_add(f, skb);
400
401         if (unlikely(f == &q->internal)) {
402                 q->stat_internal_packets++;
403         }
404         sch->q.qlen++;
405
406         return NET_XMIT_SUCCESS;
407 }
408
409 static void fq_check_throttled(struct fq_sched_data *q, u64 now)
410 {
411         struct rb_node *p;
412
413         if (q->time_next_delayed_flow > now)
414                 return;
415
416         q->time_next_delayed_flow = ~0ULL;
417         while ((p = rb_first(&q->delayed)) != NULL) {
418                 struct fq_flow *f = container_of(p, struct fq_flow, rate_node);
419
420                 if (f->time_next_packet > now) {
421                         q->time_next_delayed_flow = f->time_next_packet;
422                         break;
423                 }
424                 rb_erase(p, &q->delayed);
425                 q->throttled_flows--;
426                 fq_flow_add_tail(&q->old_flows, f);
427         }
428 }
429
430 static struct sk_buff *fq_dequeue(struct Qdisc *sch)
431 {
432         struct fq_sched_data *q = qdisc_priv(sch);
433         u64 now = ktime_get_ns();
434         struct fq_flow_head *head;
435         struct sk_buff *skb;
436         struct fq_flow *f;
437         u32 rate, plen;
438
439         skb = fq_dequeue_head(sch, &q->internal);
440         if (skb)
441                 goto out;
442         fq_check_throttled(q, now);
443 begin:
444         head = &q->new_flows;
445         if (!head->first) {
446                 head = &q->old_flows;
447                 if (!head->first) {
448                         if (q->time_next_delayed_flow != ~0ULL)
449                                 qdisc_watchdog_schedule_ns(&q->watchdog,
450                                                            q->time_next_delayed_flow);
451                         return NULL;
452                 }
453         }
454         f = head->first;
455
456         if (f->credit <= 0) {
457                 f->credit += q->quantum;
458                 head->first = f->next;
459                 fq_flow_add_tail(&q->old_flows, f);
460                 goto begin;
461         }
462
463         skb = f->head;
464         if (unlikely(skb && now < f->time_next_packet &&
465                      !skb_is_tcp_pure_ack(skb))) {
466                 head->first = f->next;
467                 fq_flow_set_throttled(q, f);
468                 goto begin;
469         }
470
471         skb = fq_dequeue_head(sch, f);
472         if (!skb) {
473                 head->first = f->next;
474                 /* force a pass through old_flows to prevent starvation */
475                 if ((head == &q->new_flows) && q->old_flows.first) {
476                         fq_flow_add_tail(&q->old_flows, f);
477                 } else {
478                         fq_flow_set_detached(f);
479                         q->inactive_flows++;
480                 }
481                 goto begin;
482         }
483         prefetch(&skb->end);
484         f->credit -= qdisc_pkt_len(skb);
485
486         if (!q->rate_enable)
487                 goto out;
488
489         /* Do not pace locally generated ack packets */
490         if (skb_is_tcp_pure_ack(skb))
491                 goto out;
492
493         rate = q->flow_max_rate;
494         if (skb->sk)
495                 rate = min(skb->sk->sk_pacing_rate, rate);
496
497         if (rate <= q->low_rate_threshold) {
498                 f->credit = 0;
499                 plen = qdisc_pkt_len(skb);
500         } else {
501                 plen = max(qdisc_pkt_len(skb), q->quantum);
502                 if (f->credit > 0)
503                         goto out;
504         }
505         if (rate != ~0U) {
506                 u64 len = (u64)plen * NSEC_PER_SEC;
507
508                 if (likely(rate))
509                         do_div(len, rate);
510                 /* Since socket rate can change later,
511                  * clamp the delay to 1 second.
512                  * Really, providers of too big packets should be fixed !
513                  */
514                 if (unlikely(len > NSEC_PER_SEC)) {
515                         len = NSEC_PER_SEC;
516                         q->stat_pkts_too_long++;
517                 }
518
519                 f->time_next_packet = now + len;
520         }
521 out:
522         qdisc_bstats_update(sch, skb);
523         return skb;
524 }
525
526 static void fq_flow_purge(struct fq_flow *flow)
527 {
528         rtnl_kfree_skbs(flow->head, flow->tail);
529         flow->head = NULL;
530         flow->qlen = 0;
531 }
532
533 static void fq_reset(struct Qdisc *sch)
534 {
535         struct fq_sched_data *q = qdisc_priv(sch);
536         struct rb_root *root;
537         struct rb_node *p;
538         struct fq_flow *f;
539         unsigned int idx;
540
541         sch->q.qlen = 0;
542         sch->qstats.backlog = 0;
543
544         fq_flow_purge(&q->internal);
545
546         if (!q->fq_root)
547                 return;
548
549         for (idx = 0; idx < (1U << q->fq_trees_log); idx++) {
550                 root = &q->fq_root[idx];
551                 while ((p = rb_first(root)) != NULL) {
552                         f = container_of(p, struct fq_flow, fq_node);
553                         rb_erase(p, root);
554
555                         fq_flow_purge(f);
556
557                         kmem_cache_free(fq_flow_cachep, f);
558                 }
559         }
560         q->new_flows.first      = NULL;
561         q->old_flows.first      = NULL;
562         q->delayed              = RB_ROOT;
563         q->flows                = 0;
564         q->inactive_flows       = 0;
565         q->throttled_flows      = 0;
566 }
567
568 static void fq_rehash(struct fq_sched_data *q,
569                       struct rb_root *old_array, u32 old_log,
570                       struct rb_root *new_array, u32 new_log)
571 {
572         struct rb_node *op, **np, *parent;
573         struct rb_root *oroot, *nroot;
574         struct fq_flow *of, *nf;
575         int fcnt = 0;
576         u32 idx;
577
578         for (idx = 0; idx < (1U << old_log); idx++) {
579                 oroot = &old_array[idx];
580                 while ((op = rb_first(oroot)) != NULL) {
581                         rb_erase(op, oroot);
582                         of = container_of(op, struct fq_flow, fq_node);
583                         if (fq_gc_candidate(of)) {
584                                 fcnt++;
585                                 kmem_cache_free(fq_flow_cachep, of);
586                                 continue;
587                         }
588                         nroot = &new_array[hash_32((u32)(long)of->sk, new_log)];
589
590                         np = &nroot->rb_node;
591                         parent = NULL;
592                         while (*np) {
593                                 parent = *np;
594
595                                 nf = container_of(parent, struct fq_flow, fq_node);
596                                 BUG_ON(nf->sk == of->sk);
597
598                                 if (nf->sk > of->sk)
599                                         np = &parent->rb_right;
600                                 else
601                                         np = &parent->rb_left;
602                         }
603
604                         rb_link_node(&of->fq_node, parent, np);
605                         rb_insert_color(&of->fq_node, nroot);
606                 }
607         }
608         q->flows -= fcnt;
609         q->inactive_flows -= fcnt;
610         q->stat_gc_flows += fcnt;
611 }
612
613 static void *fq_alloc_node(size_t sz, int node)
614 {
615         void *ptr;
616
617         ptr = kmalloc_node(sz, GFP_KERNEL | __GFP_REPEAT | __GFP_NOWARN, node);
618         if (!ptr)
619                 ptr = vmalloc_node(sz, node);
620         return ptr;
621 }
622
623 static void fq_free(void *addr)
624 {
625         kvfree(addr);
626 }
627
628 static int fq_resize(struct Qdisc *sch, u32 log)
629 {
630         struct fq_sched_data *q = qdisc_priv(sch);
631         struct rb_root *array;
632         void *old_fq_root;
633         u32 idx;
634
635         if (q->fq_root && log == q->fq_trees_log)
636                 return 0;
637
638         /* If XPS was setup, we can allocate memory on right NUMA node */
639         array = fq_alloc_node(sizeof(struct rb_root) << log,
640                               netdev_queue_numa_node_read(sch->dev_queue));
641         if (!array)
642                 return -ENOMEM;
643
644         for (idx = 0; idx < (1U << log); idx++)
645                 array[idx] = RB_ROOT;
646
647         sch_tree_lock(sch);
648
649         old_fq_root = q->fq_root;
650         if (old_fq_root)
651                 fq_rehash(q, old_fq_root, q->fq_trees_log, array, log);
652
653         q->fq_root = array;
654         q->fq_trees_log = log;
655
656         sch_tree_unlock(sch);
657
658         fq_free(old_fq_root);
659
660         return 0;
661 }
662
663 static const struct nla_policy fq_policy[TCA_FQ_MAX + 1] = {
664         [TCA_FQ_PLIMIT]                 = { .type = NLA_U32 },
665         [TCA_FQ_FLOW_PLIMIT]            = { .type = NLA_U32 },
666         [TCA_FQ_QUANTUM]                = { .type = NLA_U32 },
667         [TCA_FQ_INITIAL_QUANTUM]        = { .type = NLA_U32 },
668         [TCA_FQ_RATE_ENABLE]            = { .type = NLA_U32 },
669         [TCA_FQ_FLOW_DEFAULT_RATE]      = { .type = NLA_U32 },
670         [TCA_FQ_FLOW_MAX_RATE]          = { .type = NLA_U32 },
671         [TCA_FQ_BUCKETS_LOG]            = { .type = NLA_U32 },
672         [TCA_FQ_FLOW_REFILL_DELAY]      = { .type = NLA_U32 },
673         [TCA_FQ_LOW_RATE_THRESHOLD]     = { .type = NLA_U32 },
674 };
675
676 static int fq_change(struct Qdisc *sch, struct nlattr *opt)
677 {
678         struct fq_sched_data *q = qdisc_priv(sch);
679         struct nlattr *tb[TCA_FQ_MAX + 1];
680         int err, drop_count = 0;
681         unsigned drop_len = 0;
682         u32 fq_log;
683
684         if (!opt)
685                 return -EINVAL;
686
687         err = nla_parse_nested(tb, TCA_FQ_MAX, opt, fq_policy);
688         if (err < 0)
689                 return err;
690
691         sch_tree_lock(sch);
692
693         fq_log = q->fq_trees_log;
694
695         if (tb[TCA_FQ_BUCKETS_LOG]) {
696                 u32 nval = nla_get_u32(tb[TCA_FQ_BUCKETS_LOG]);
697
698                 if (nval >= 1 && nval <= ilog2(256*1024))
699                         fq_log = nval;
700                 else
701                         err = -EINVAL;
702         }
703         if (tb[TCA_FQ_PLIMIT])
704                 sch->limit = nla_get_u32(tb[TCA_FQ_PLIMIT]);
705
706         if (tb[TCA_FQ_FLOW_PLIMIT])
707                 q->flow_plimit = nla_get_u32(tb[TCA_FQ_FLOW_PLIMIT]);
708
709         if (tb[TCA_FQ_QUANTUM]) {
710                 u32 quantum = nla_get_u32(tb[TCA_FQ_QUANTUM]);
711
712                 if (quantum > 0)
713                         q->quantum = quantum;
714                 else
715                         err = -EINVAL;
716         }
717
718         if (tb[TCA_FQ_INITIAL_QUANTUM])
719                 q->initial_quantum = nla_get_u32(tb[TCA_FQ_INITIAL_QUANTUM]);
720
721         if (tb[TCA_FQ_FLOW_DEFAULT_RATE])
722                 pr_warn_ratelimited("sch_fq: defrate %u ignored.\n",
723                                     nla_get_u32(tb[TCA_FQ_FLOW_DEFAULT_RATE]));
724
725         if (tb[TCA_FQ_FLOW_MAX_RATE])
726                 q->flow_max_rate = nla_get_u32(tb[TCA_FQ_FLOW_MAX_RATE]);
727
728         if (tb[TCA_FQ_LOW_RATE_THRESHOLD])
729                 q->low_rate_threshold =
730                         nla_get_u32(tb[TCA_FQ_LOW_RATE_THRESHOLD]);
731
732         if (tb[TCA_FQ_RATE_ENABLE]) {
733                 u32 enable = nla_get_u32(tb[TCA_FQ_RATE_ENABLE]);
734
735                 if (enable <= 1)
736                         q->rate_enable = enable;
737                 else
738                         err = -EINVAL;
739         }
740
741         if (tb[TCA_FQ_FLOW_REFILL_DELAY]) {
742                 u32 usecs_delay = nla_get_u32(tb[TCA_FQ_FLOW_REFILL_DELAY]) ;
743
744                 q->flow_refill_delay = usecs_to_jiffies(usecs_delay);
745         }
746
747         if (tb[TCA_FQ_ORPHAN_MASK])
748                 q->orphan_mask = nla_get_u32(tb[TCA_FQ_ORPHAN_MASK]);
749
750         if (!err) {
751                 sch_tree_unlock(sch);
752                 err = fq_resize(sch, fq_log);
753                 sch_tree_lock(sch);
754         }
755         while (sch->q.qlen > sch->limit) {
756                 struct sk_buff *skb = fq_dequeue(sch);
757
758                 if (!skb)
759                         break;
760                 drop_len += qdisc_pkt_len(skb);
761                 rtnl_kfree_skbs(skb, skb);
762                 drop_count++;
763         }
764         qdisc_tree_reduce_backlog(sch, drop_count, drop_len);
765
766         sch_tree_unlock(sch);
767         return err;
768 }
769
770 static void fq_destroy(struct Qdisc *sch)
771 {
772         struct fq_sched_data *q = qdisc_priv(sch);
773
774         fq_reset(sch);
775         fq_free(q->fq_root);
776         qdisc_watchdog_cancel(&q->watchdog);
777 }
778
779 static int fq_init(struct Qdisc *sch, struct nlattr *opt)
780 {
781         struct fq_sched_data *q = qdisc_priv(sch);
782         int err;
783
784         sch->limit              = 10000;
785         q->flow_plimit          = 100;
786         q->quantum              = 2 * psched_mtu(qdisc_dev(sch));
787         q->initial_quantum      = 10 * psched_mtu(qdisc_dev(sch));
788         q->flow_refill_delay    = msecs_to_jiffies(40);
789         q->flow_max_rate        = ~0U;
790         q->rate_enable          = 1;
791         q->new_flows.first      = NULL;
792         q->old_flows.first      = NULL;
793         q->delayed              = RB_ROOT;
794         q->fq_root              = NULL;
795         q->fq_trees_log         = ilog2(1024);
796         q->orphan_mask          = 1024 - 1;
797         q->low_rate_threshold   = 550000 / 8;
798         qdisc_watchdog_init(&q->watchdog, sch);
799
800         if (opt)
801                 err = fq_change(sch, opt);
802         else
803                 err = fq_resize(sch, q->fq_trees_log);
804
805         return err;
806 }
807
808 static int fq_dump(struct Qdisc *sch, struct sk_buff *skb)
809 {
810         struct fq_sched_data *q = qdisc_priv(sch);
811         struct nlattr *opts;
812
813         opts = nla_nest_start(skb, TCA_OPTIONS);
814         if (opts == NULL)
815                 goto nla_put_failure;
816
817         /* TCA_FQ_FLOW_DEFAULT_RATE is not used anymore */
818
819         if (nla_put_u32(skb, TCA_FQ_PLIMIT, sch->limit) ||
820             nla_put_u32(skb, TCA_FQ_FLOW_PLIMIT, q->flow_plimit) ||
821             nla_put_u32(skb, TCA_FQ_QUANTUM, q->quantum) ||
822             nla_put_u32(skb, TCA_FQ_INITIAL_QUANTUM, q->initial_quantum) ||
823             nla_put_u32(skb, TCA_FQ_RATE_ENABLE, q->rate_enable) ||
824             nla_put_u32(skb, TCA_FQ_FLOW_MAX_RATE, q->flow_max_rate) ||
825             nla_put_u32(skb, TCA_FQ_FLOW_REFILL_DELAY,
826                         jiffies_to_usecs(q->flow_refill_delay)) ||
827             nla_put_u32(skb, TCA_FQ_ORPHAN_MASK, q->orphan_mask) ||
828             nla_put_u32(skb, TCA_FQ_LOW_RATE_THRESHOLD,
829                         q->low_rate_threshold) ||
830             nla_put_u32(skb, TCA_FQ_BUCKETS_LOG, q->fq_trees_log))
831                 goto nla_put_failure;
832
833         return nla_nest_end(skb, opts);
834
835 nla_put_failure:
836         return -1;
837 }
838
839 static int fq_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
840 {
841         struct fq_sched_data *q = qdisc_priv(sch);
842         struct tc_fq_qd_stats st;
843
844         sch_tree_lock(sch);
845
846         st.gc_flows               = q->stat_gc_flows;
847         st.highprio_packets       = q->stat_internal_packets;
848         st.tcp_retrans            = q->stat_tcp_retrans;
849         st.throttled              = q->stat_throttled;
850         st.flows_plimit           = q->stat_flows_plimit;
851         st.pkts_too_long          = q->stat_pkts_too_long;
852         st.allocation_errors      = q->stat_allocation_errors;
853         st.time_next_delayed_flow = q->time_next_delayed_flow - ktime_get_ns();
854         st.flows                  = q->flows;
855         st.inactive_flows         = q->inactive_flows;
856         st.throttled_flows        = q->throttled_flows;
857         st.pad                    = 0;
858
859         sch_tree_unlock(sch);
860
861         return gnet_stats_copy_app(d, &st, sizeof(st));
862 }
863
864 static struct Qdisc_ops fq_qdisc_ops __read_mostly = {
865         .id             =       "fq",
866         .priv_size      =       sizeof(struct fq_sched_data),
867
868         .enqueue        =       fq_enqueue,
869         .dequeue        =       fq_dequeue,
870         .peek           =       qdisc_peek_dequeued,
871         .init           =       fq_init,
872         .reset          =       fq_reset,
873         .destroy        =       fq_destroy,
874         .change         =       fq_change,
875         .dump           =       fq_dump,
876         .dump_stats     =       fq_dump_stats,
877         .owner          =       THIS_MODULE,
878 };
879
880 static int __init fq_module_init(void)
881 {
882         int ret;
883
884         fq_flow_cachep = kmem_cache_create("fq_flow_cache",
885                                            sizeof(struct fq_flow),
886                                            0, 0, NULL);
887         if (!fq_flow_cachep)
888                 return -ENOMEM;
889
890         ret = register_qdisc(&fq_qdisc_ops);
891         if (ret)
892                 kmem_cache_destroy(fq_flow_cachep);
893         return ret;
894 }
895
896 static void __exit fq_module_exit(void)
897 {
898         unregister_qdisc(&fq_qdisc_ops);
899         kmem_cache_destroy(fq_flow_cachep);
900 }
901
902 module_init(fq_module_init)
903 module_exit(fq_module_exit)
904 MODULE_AUTHOR("Eric Dumazet");
905 MODULE_LICENSE("GPL");