cfg80211: remove CFG80211_REG_DEBUG
[cascardo/linux.git] / net / wireless / reg.c
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007       Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011  Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  *
8  * Permission to use, copy, modify, and/or distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20
21
22 /**
23  * DOC: Wireless regulatory infrastructure
24  *
25  * The usual implementation is for a driver to read a device EEPROM to
26  * determine which regulatory domain it should be operating under, then
27  * looking up the allowable channels in a driver-local table and finally
28  * registering those channels in the wiphy structure.
29  *
30  * Another set of compliance enforcement is for drivers to use their
31  * own compliance limits which can be stored on the EEPROM. The host
32  * driver or firmware may ensure these are used.
33  *
34  * In addition to all this we provide an extra layer of regulatory
35  * conformance. For drivers which do not have any regulatory
36  * information CRDA provides the complete regulatory solution.
37  * For others it provides a community effort on further restrictions
38  * to enhance compliance.
39  *
40  * Note: When number of rules --> infinity we will not be able to
41  * index on alpha2 any more, instead we'll probably have to
42  * rely on some SHA1 checksum of the regdomain for example.
43  *
44  */
45
46 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
47
48 #include <linux/kernel.h>
49 #include <linux/export.h>
50 #include <linux/slab.h>
51 #include <linux/list.h>
52 #include <linux/ctype.h>
53 #include <linux/nl80211.h>
54 #include <linux/platform_device.h>
55 #include <linux/moduleparam.h>
56 #include <net/cfg80211.h>
57 #include "core.h"
58 #include "reg.h"
59 #include "rdev-ops.h"
60 #include "regdb.h"
61 #include "nl80211.h"
62
63 /*
64  * Grace period we give before making sure all current interfaces reside on
65  * channels allowed by the current regulatory domain.
66  */
67 #define REG_ENFORCE_GRACE_MS 60000
68
69 /**
70  * enum reg_request_treatment - regulatory request treatment
71  *
72  * @REG_REQ_OK: continue processing the regulatory request
73  * @REG_REQ_IGNORE: ignore the regulatory request
74  * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
75  *      be intersected with the current one.
76  * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
77  *      regulatory settings, and no further processing is required.
78  */
79 enum reg_request_treatment {
80         REG_REQ_OK,
81         REG_REQ_IGNORE,
82         REG_REQ_INTERSECT,
83         REG_REQ_ALREADY_SET,
84 };
85
86 static struct regulatory_request core_request_world = {
87         .initiator = NL80211_REGDOM_SET_BY_CORE,
88         .alpha2[0] = '0',
89         .alpha2[1] = '0',
90         .intersect = false,
91         .processed = true,
92         .country_ie_env = ENVIRON_ANY,
93 };
94
95 /*
96  * Receipt of information from last regulatory request,
97  * protected by RTNL (and can be accessed with RCU protection)
98  */
99 static struct regulatory_request __rcu *last_request =
100         (void __force __rcu *)&core_request_world;
101
102 /* To trigger userspace events */
103 static struct platform_device *reg_pdev;
104
105 /*
106  * Central wireless core regulatory domains, we only need two,
107  * the current one and a world regulatory domain in case we have no
108  * information to give us an alpha2.
109  * (protected by RTNL, can be read under RCU)
110  */
111 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
112
113 /*
114  * Number of devices that registered to the core
115  * that support cellular base station regulatory hints
116  * (protected by RTNL)
117  */
118 static int reg_num_devs_support_basehint;
119
120 /*
121  * State variable indicating if the platform on which the devices
122  * are attached is operating in an indoor environment. The state variable
123  * is relevant for all registered devices.
124  */
125 static bool reg_is_indoor;
126 static spinlock_t reg_indoor_lock;
127
128 /* Used to track the userspace process controlling the indoor setting */
129 static u32 reg_is_indoor_portid;
130
131 static void restore_regulatory_settings(bool reset_user);
132
133 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
134 {
135         return rtnl_dereference(cfg80211_regdomain);
136 }
137
138 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
139 {
140         return rtnl_dereference(wiphy->regd);
141 }
142
143 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
144 {
145         switch (dfs_region) {
146         case NL80211_DFS_UNSET:
147                 return "unset";
148         case NL80211_DFS_FCC:
149                 return "FCC";
150         case NL80211_DFS_ETSI:
151                 return "ETSI";
152         case NL80211_DFS_JP:
153                 return "JP";
154         }
155         return "Unknown";
156 }
157
158 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
159 {
160         const struct ieee80211_regdomain *regd = NULL;
161         const struct ieee80211_regdomain *wiphy_regd = NULL;
162
163         regd = get_cfg80211_regdom();
164         if (!wiphy)
165                 goto out;
166
167         wiphy_regd = get_wiphy_regdom(wiphy);
168         if (!wiphy_regd)
169                 goto out;
170
171         if (wiphy_regd->dfs_region == regd->dfs_region)
172                 goto out;
173
174         pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
175                  dev_name(&wiphy->dev),
176                  reg_dfs_region_str(wiphy_regd->dfs_region),
177                  reg_dfs_region_str(regd->dfs_region));
178
179 out:
180         return regd->dfs_region;
181 }
182
183 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
184 {
185         if (!r)
186                 return;
187         kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
188 }
189
190 static struct regulatory_request *get_last_request(void)
191 {
192         return rcu_dereference_rtnl(last_request);
193 }
194
195 /* Used to queue up regulatory hints */
196 static LIST_HEAD(reg_requests_list);
197 static spinlock_t reg_requests_lock;
198
199 /* Used to queue up beacon hints for review */
200 static LIST_HEAD(reg_pending_beacons);
201 static spinlock_t reg_pending_beacons_lock;
202
203 /* Used to keep track of processed beacon hints */
204 static LIST_HEAD(reg_beacon_list);
205
206 struct reg_beacon {
207         struct list_head list;
208         struct ieee80211_channel chan;
209 };
210
211 static void reg_check_chans_work(struct work_struct *work);
212 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
213
214 static void reg_todo(struct work_struct *work);
215 static DECLARE_WORK(reg_work, reg_todo);
216
217 /* We keep a static world regulatory domain in case of the absence of CRDA */
218 static const struct ieee80211_regdomain world_regdom = {
219         .n_reg_rules = 8,
220         .alpha2 =  "00",
221         .reg_rules = {
222                 /* IEEE 802.11b/g, channels 1..11 */
223                 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
224                 /* IEEE 802.11b/g, channels 12..13. */
225                 REG_RULE(2467-10, 2472+10, 40, 6, 20,
226                         NL80211_RRF_NO_IR),
227                 /* IEEE 802.11 channel 14 - Only JP enables
228                  * this and for 802.11b only */
229                 REG_RULE(2484-10, 2484+10, 20, 6, 20,
230                         NL80211_RRF_NO_IR |
231                         NL80211_RRF_NO_OFDM),
232                 /* IEEE 802.11a, channel 36..48 */
233                 REG_RULE(5180-10, 5240+10, 160, 6, 20,
234                         NL80211_RRF_NO_IR),
235
236                 /* IEEE 802.11a, channel 52..64 - DFS required */
237                 REG_RULE(5260-10, 5320+10, 160, 6, 20,
238                         NL80211_RRF_NO_IR |
239                         NL80211_RRF_DFS),
240
241                 /* IEEE 802.11a, channel 100..144 - DFS required */
242                 REG_RULE(5500-10, 5720+10, 160, 6, 20,
243                         NL80211_RRF_NO_IR |
244                         NL80211_RRF_DFS),
245
246                 /* IEEE 802.11a, channel 149..165 */
247                 REG_RULE(5745-10, 5825+10, 80, 6, 20,
248                         NL80211_RRF_NO_IR),
249
250                 /* IEEE 802.11ad (60GHz), channels 1..3 */
251                 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
252         }
253 };
254
255 /* protected by RTNL */
256 static const struct ieee80211_regdomain *cfg80211_world_regdom =
257         &world_regdom;
258
259 static char *ieee80211_regdom = "00";
260 static char user_alpha2[2];
261
262 module_param(ieee80211_regdom, charp, 0444);
263 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
264
265 static void reg_free_request(struct regulatory_request *request)
266 {
267         if (request == &core_request_world)
268                 return;
269
270         if (request != get_last_request())
271                 kfree(request);
272 }
273
274 static void reg_free_last_request(void)
275 {
276         struct regulatory_request *lr = get_last_request();
277
278         if (lr != &core_request_world && lr)
279                 kfree_rcu(lr, rcu_head);
280 }
281
282 static void reg_update_last_request(struct regulatory_request *request)
283 {
284         struct regulatory_request *lr;
285
286         lr = get_last_request();
287         if (lr == request)
288                 return;
289
290         reg_free_last_request();
291         rcu_assign_pointer(last_request, request);
292 }
293
294 static void reset_regdomains(bool full_reset,
295                              const struct ieee80211_regdomain *new_regdom)
296 {
297         const struct ieee80211_regdomain *r;
298
299         ASSERT_RTNL();
300
301         r = get_cfg80211_regdom();
302
303         /* avoid freeing static information or freeing something twice */
304         if (r == cfg80211_world_regdom)
305                 r = NULL;
306         if (cfg80211_world_regdom == &world_regdom)
307                 cfg80211_world_regdom = NULL;
308         if (r == &world_regdom)
309                 r = NULL;
310
311         rcu_free_regdom(r);
312         rcu_free_regdom(cfg80211_world_regdom);
313
314         cfg80211_world_regdom = &world_regdom;
315         rcu_assign_pointer(cfg80211_regdomain, new_regdom);
316
317         if (!full_reset)
318                 return;
319
320         reg_update_last_request(&core_request_world);
321 }
322
323 /*
324  * Dynamic world regulatory domain requested by the wireless
325  * core upon initialization
326  */
327 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
328 {
329         struct regulatory_request *lr;
330
331         lr = get_last_request();
332
333         WARN_ON(!lr);
334
335         reset_regdomains(false, rd);
336
337         cfg80211_world_regdom = rd;
338 }
339
340 bool is_world_regdom(const char *alpha2)
341 {
342         if (!alpha2)
343                 return false;
344         return alpha2[0] == '0' && alpha2[1] == '0';
345 }
346
347 static bool is_alpha2_set(const char *alpha2)
348 {
349         if (!alpha2)
350                 return false;
351         return alpha2[0] && alpha2[1];
352 }
353
354 static bool is_unknown_alpha2(const char *alpha2)
355 {
356         if (!alpha2)
357                 return false;
358         /*
359          * Special case where regulatory domain was built by driver
360          * but a specific alpha2 cannot be determined
361          */
362         return alpha2[0] == '9' && alpha2[1] == '9';
363 }
364
365 static bool is_intersected_alpha2(const char *alpha2)
366 {
367         if (!alpha2)
368                 return false;
369         /*
370          * Special case where regulatory domain is the
371          * result of an intersection between two regulatory domain
372          * structures
373          */
374         return alpha2[0] == '9' && alpha2[1] == '8';
375 }
376
377 static bool is_an_alpha2(const char *alpha2)
378 {
379         if (!alpha2)
380                 return false;
381         return isalpha(alpha2[0]) && isalpha(alpha2[1]);
382 }
383
384 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
385 {
386         if (!alpha2_x || !alpha2_y)
387                 return false;
388         return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
389 }
390
391 static bool regdom_changes(const char *alpha2)
392 {
393         const struct ieee80211_regdomain *r = get_cfg80211_regdom();
394
395         if (!r)
396                 return true;
397         return !alpha2_equal(r->alpha2, alpha2);
398 }
399
400 /*
401  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
402  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
403  * has ever been issued.
404  */
405 static bool is_user_regdom_saved(void)
406 {
407         if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
408                 return false;
409
410         /* This would indicate a mistake on the design */
411         if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
412                  "Unexpected user alpha2: %c%c\n",
413                  user_alpha2[0], user_alpha2[1]))
414                 return false;
415
416         return true;
417 }
418
419 static const struct ieee80211_regdomain *
420 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
421 {
422         struct ieee80211_regdomain *regd;
423         int size_of_regd;
424         unsigned int i;
425
426         size_of_regd =
427                 sizeof(struct ieee80211_regdomain) +
428                 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
429
430         regd = kzalloc(size_of_regd, GFP_KERNEL);
431         if (!regd)
432                 return ERR_PTR(-ENOMEM);
433
434         memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
435
436         for (i = 0; i < src_regd->n_reg_rules; i++)
437                 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
438                        sizeof(struct ieee80211_reg_rule));
439
440         return regd;
441 }
442
443 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
444 struct reg_regdb_apply_request {
445         struct list_head list;
446         const struct ieee80211_regdomain *regdom;
447 };
448
449 static LIST_HEAD(reg_regdb_apply_list);
450 static DEFINE_MUTEX(reg_regdb_apply_mutex);
451
452 static void reg_regdb_apply(struct work_struct *work)
453 {
454         struct reg_regdb_apply_request *request;
455
456         rtnl_lock();
457
458         mutex_lock(&reg_regdb_apply_mutex);
459         while (!list_empty(&reg_regdb_apply_list)) {
460                 request = list_first_entry(&reg_regdb_apply_list,
461                                            struct reg_regdb_apply_request,
462                                            list);
463                 list_del(&request->list);
464
465                 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
466                 kfree(request);
467         }
468         mutex_unlock(&reg_regdb_apply_mutex);
469
470         rtnl_unlock();
471 }
472
473 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
474
475 static int reg_query_builtin(const char *alpha2)
476 {
477         const struct ieee80211_regdomain *regdom = NULL;
478         struct reg_regdb_apply_request *request;
479         unsigned int i;
480
481         for (i = 0; i < reg_regdb_size; i++) {
482                 if (alpha2_equal(alpha2, reg_regdb[i]->alpha2)) {
483                         regdom = reg_regdb[i];
484                         break;
485                 }
486         }
487
488         if (!regdom)
489                 return -ENODATA;
490
491         request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
492         if (!request)
493                 return -ENOMEM;
494
495         request->regdom = reg_copy_regd(regdom);
496         if (IS_ERR_OR_NULL(request->regdom)) {
497                 kfree(request);
498                 return -ENOMEM;
499         }
500
501         mutex_lock(&reg_regdb_apply_mutex);
502         list_add_tail(&request->list, &reg_regdb_apply_list);
503         mutex_unlock(&reg_regdb_apply_mutex);
504
505         schedule_work(&reg_regdb_work);
506
507         return 0;
508 }
509
510 /* Feel free to add any other sanity checks here */
511 static void reg_regdb_size_check(void)
512 {
513         /* We should ideally BUILD_BUG_ON() but then random builds would fail */
514         WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
515 }
516 #else
517 static inline void reg_regdb_size_check(void) {}
518 static inline int reg_query_builtin(const char *alpha2)
519 {
520         return -ENODATA;
521 }
522 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
523
524 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
525 /* Max number of consecutive attempts to communicate with CRDA  */
526 #define REG_MAX_CRDA_TIMEOUTS 10
527
528 static u32 reg_crda_timeouts;
529
530 static void crda_timeout_work(struct work_struct *work);
531 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
532
533 static void crda_timeout_work(struct work_struct *work)
534 {
535         pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
536         rtnl_lock();
537         reg_crda_timeouts++;
538         restore_regulatory_settings(true);
539         rtnl_unlock();
540 }
541
542 static void cancel_crda_timeout(void)
543 {
544         cancel_delayed_work(&crda_timeout);
545 }
546
547 static void cancel_crda_timeout_sync(void)
548 {
549         cancel_delayed_work_sync(&crda_timeout);
550 }
551
552 static void reset_crda_timeouts(void)
553 {
554         reg_crda_timeouts = 0;
555 }
556
557 /*
558  * This lets us keep regulatory code which is updated on a regulatory
559  * basis in userspace.
560  */
561 static int call_crda(const char *alpha2)
562 {
563         char country[12];
564         char *env[] = { country, NULL };
565         int ret;
566
567         snprintf(country, sizeof(country), "COUNTRY=%c%c",
568                  alpha2[0], alpha2[1]);
569
570         if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
571                 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
572                 return -EINVAL;
573         }
574
575         if (!is_world_regdom((char *) alpha2))
576                 pr_debug("Calling CRDA for country: %c%c\n",
577                          alpha2[0], alpha2[1]);
578         else
579                 pr_debug("Calling CRDA to update world regulatory domain\n");
580
581         ret = kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
582         if (ret)
583                 return ret;
584
585         queue_delayed_work(system_power_efficient_wq,
586                            &crda_timeout, msecs_to_jiffies(3142));
587         return 0;
588 }
589 #else
590 static inline void cancel_crda_timeout(void) {}
591 static inline void cancel_crda_timeout_sync(void) {}
592 static inline void reset_crda_timeouts(void) {}
593 static inline int call_crda(const char *alpha2)
594 {
595         return -ENODATA;
596 }
597 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
598
599 static bool reg_query_database(struct regulatory_request *request)
600 {
601         /* query internal regulatory database (if it exists) */
602         if (reg_query_builtin(request->alpha2) == 0)
603                 return true;
604
605         if (call_crda(request->alpha2) == 0)
606                 return true;
607
608         return false;
609 }
610
611 bool reg_is_valid_request(const char *alpha2)
612 {
613         struct regulatory_request *lr = get_last_request();
614
615         if (!lr || lr->processed)
616                 return false;
617
618         return alpha2_equal(lr->alpha2, alpha2);
619 }
620
621 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
622 {
623         struct regulatory_request *lr = get_last_request();
624
625         /*
626          * Follow the driver's regulatory domain, if present, unless a country
627          * IE has been processed or a user wants to help complaince further
628          */
629         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
630             lr->initiator != NL80211_REGDOM_SET_BY_USER &&
631             wiphy->regd)
632                 return get_wiphy_regdom(wiphy);
633
634         return get_cfg80211_regdom();
635 }
636
637 static unsigned int
638 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
639                                  const struct ieee80211_reg_rule *rule)
640 {
641         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
642         const struct ieee80211_freq_range *freq_range_tmp;
643         const struct ieee80211_reg_rule *tmp;
644         u32 start_freq, end_freq, idx, no;
645
646         for (idx = 0; idx < rd->n_reg_rules; idx++)
647                 if (rule == &rd->reg_rules[idx])
648                         break;
649
650         if (idx == rd->n_reg_rules)
651                 return 0;
652
653         /* get start_freq */
654         no = idx;
655
656         while (no) {
657                 tmp = &rd->reg_rules[--no];
658                 freq_range_tmp = &tmp->freq_range;
659
660                 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
661                         break;
662
663                 freq_range = freq_range_tmp;
664         }
665
666         start_freq = freq_range->start_freq_khz;
667
668         /* get end_freq */
669         freq_range = &rule->freq_range;
670         no = idx;
671
672         while (no < rd->n_reg_rules - 1) {
673                 tmp = &rd->reg_rules[++no];
674                 freq_range_tmp = &tmp->freq_range;
675
676                 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
677                         break;
678
679                 freq_range = freq_range_tmp;
680         }
681
682         end_freq = freq_range->end_freq_khz;
683
684         return end_freq - start_freq;
685 }
686
687 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
688                                    const struct ieee80211_reg_rule *rule)
689 {
690         unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
691
692         if (rule->flags & NL80211_RRF_NO_160MHZ)
693                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
694         if (rule->flags & NL80211_RRF_NO_80MHZ)
695                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
696
697         /*
698          * HT40+/HT40- limits are handled per-channel. Only limit BW if both
699          * are not allowed.
700          */
701         if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
702             rule->flags & NL80211_RRF_NO_HT40PLUS)
703                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
704
705         return bw;
706 }
707
708 /* Sanity check on a regulatory rule */
709 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
710 {
711         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
712         u32 freq_diff;
713
714         if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
715                 return false;
716
717         if (freq_range->start_freq_khz > freq_range->end_freq_khz)
718                 return false;
719
720         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
721
722         if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
723             freq_range->max_bandwidth_khz > freq_diff)
724                 return false;
725
726         return true;
727 }
728
729 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
730 {
731         const struct ieee80211_reg_rule *reg_rule = NULL;
732         unsigned int i;
733
734         if (!rd->n_reg_rules)
735                 return false;
736
737         if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
738                 return false;
739
740         for (i = 0; i < rd->n_reg_rules; i++) {
741                 reg_rule = &rd->reg_rules[i];
742                 if (!is_valid_reg_rule(reg_rule))
743                         return false;
744         }
745
746         return true;
747 }
748
749 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
750                             u32 center_freq_khz, u32 bw_khz)
751 {
752         u32 start_freq_khz, end_freq_khz;
753
754         start_freq_khz = center_freq_khz - (bw_khz/2);
755         end_freq_khz = center_freq_khz + (bw_khz/2);
756
757         if (start_freq_khz >= freq_range->start_freq_khz &&
758             end_freq_khz <= freq_range->end_freq_khz)
759                 return true;
760
761         return false;
762 }
763
764 /**
765  * freq_in_rule_band - tells us if a frequency is in a frequency band
766  * @freq_range: frequency rule we want to query
767  * @freq_khz: frequency we are inquiring about
768  *
769  * This lets us know if a specific frequency rule is or is not relevant to
770  * a specific frequency's band. Bands are device specific and artificial
771  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
772  * however it is safe for now to assume that a frequency rule should not be
773  * part of a frequency's band if the start freq or end freq are off by more
774  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
775  * 60 GHz band.
776  * This resolution can be lowered and should be considered as we add
777  * regulatory rule support for other "bands".
778  **/
779 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
780                               u32 freq_khz)
781 {
782 #define ONE_GHZ_IN_KHZ  1000000
783         /*
784          * From 802.11ad: directional multi-gigabit (DMG):
785          * Pertaining to operation in a frequency band containing a channel
786          * with the Channel starting frequency above 45 GHz.
787          */
788         u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
789                         10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
790         if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
791                 return true;
792         if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
793                 return true;
794         return false;
795 #undef ONE_GHZ_IN_KHZ
796 }
797
798 /*
799  * Later on we can perhaps use the more restrictive DFS
800  * region but we don't have information for that yet so
801  * for now simply disallow conflicts.
802  */
803 static enum nl80211_dfs_regions
804 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
805                          const enum nl80211_dfs_regions dfs_region2)
806 {
807         if (dfs_region1 != dfs_region2)
808                 return NL80211_DFS_UNSET;
809         return dfs_region1;
810 }
811
812 /*
813  * Helper for regdom_intersect(), this does the real
814  * mathematical intersection fun
815  */
816 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
817                                const struct ieee80211_regdomain *rd2,
818                                const struct ieee80211_reg_rule *rule1,
819                                const struct ieee80211_reg_rule *rule2,
820                                struct ieee80211_reg_rule *intersected_rule)
821 {
822         const struct ieee80211_freq_range *freq_range1, *freq_range2;
823         struct ieee80211_freq_range *freq_range;
824         const struct ieee80211_power_rule *power_rule1, *power_rule2;
825         struct ieee80211_power_rule *power_rule;
826         u32 freq_diff, max_bandwidth1, max_bandwidth2;
827
828         freq_range1 = &rule1->freq_range;
829         freq_range2 = &rule2->freq_range;
830         freq_range = &intersected_rule->freq_range;
831
832         power_rule1 = &rule1->power_rule;
833         power_rule2 = &rule2->power_rule;
834         power_rule = &intersected_rule->power_rule;
835
836         freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
837                                          freq_range2->start_freq_khz);
838         freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
839                                        freq_range2->end_freq_khz);
840
841         max_bandwidth1 = freq_range1->max_bandwidth_khz;
842         max_bandwidth2 = freq_range2->max_bandwidth_khz;
843
844         if (rule1->flags & NL80211_RRF_AUTO_BW)
845                 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
846         if (rule2->flags & NL80211_RRF_AUTO_BW)
847                 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
848
849         freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
850
851         intersected_rule->flags = rule1->flags | rule2->flags;
852
853         /*
854          * In case NL80211_RRF_AUTO_BW requested for both rules
855          * set AUTO_BW in intersected rule also. Next we will
856          * calculate BW correctly in handle_channel function.
857          * In other case remove AUTO_BW flag while we calculate
858          * maximum bandwidth correctly and auto calculation is
859          * not required.
860          */
861         if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
862             (rule2->flags & NL80211_RRF_AUTO_BW))
863                 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
864         else
865                 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
866
867         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
868         if (freq_range->max_bandwidth_khz > freq_diff)
869                 freq_range->max_bandwidth_khz = freq_diff;
870
871         power_rule->max_eirp = min(power_rule1->max_eirp,
872                 power_rule2->max_eirp);
873         power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
874                 power_rule2->max_antenna_gain);
875
876         intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
877                                            rule2->dfs_cac_ms);
878
879         if (!is_valid_reg_rule(intersected_rule))
880                 return -EINVAL;
881
882         return 0;
883 }
884
885 /* check whether old rule contains new rule */
886 static bool rule_contains(struct ieee80211_reg_rule *r1,
887                           struct ieee80211_reg_rule *r2)
888 {
889         /* for simplicity, currently consider only same flags */
890         if (r1->flags != r2->flags)
891                 return false;
892
893         /* verify r1 is more restrictive */
894         if ((r1->power_rule.max_antenna_gain >
895              r2->power_rule.max_antenna_gain) ||
896             r1->power_rule.max_eirp > r2->power_rule.max_eirp)
897                 return false;
898
899         /* make sure r2's range is contained within r1 */
900         if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
901             r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
902                 return false;
903
904         /* and finally verify that r1.max_bw >= r2.max_bw */
905         if (r1->freq_range.max_bandwidth_khz <
906             r2->freq_range.max_bandwidth_khz)
907                 return false;
908
909         return true;
910 }
911
912 /* add or extend current rules. do nothing if rule is already contained */
913 static void add_rule(struct ieee80211_reg_rule *rule,
914                      struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
915 {
916         struct ieee80211_reg_rule *tmp_rule;
917         int i;
918
919         for (i = 0; i < *n_rules; i++) {
920                 tmp_rule = &reg_rules[i];
921                 /* rule is already contained - do nothing */
922                 if (rule_contains(tmp_rule, rule))
923                         return;
924
925                 /* extend rule if possible */
926                 if (rule_contains(rule, tmp_rule)) {
927                         memcpy(tmp_rule, rule, sizeof(*rule));
928                         return;
929                 }
930         }
931
932         memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
933         (*n_rules)++;
934 }
935
936 /**
937  * regdom_intersect - do the intersection between two regulatory domains
938  * @rd1: first regulatory domain
939  * @rd2: second regulatory domain
940  *
941  * Use this function to get the intersection between two regulatory domains.
942  * Once completed we will mark the alpha2 for the rd as intersected, "98",
943  * as no one single alpha2 can represent this regulatory domain.
944  *
945  * Returns a pointer to the regulatory domain structure which will hold the
946  * resulting intersection of rules between rd1 and rd2. We will
947  * kzalloc() this structure for you.
948  */
949 static struct ieee80211_regdomain *
950 regdom_intersect(const struct ieee80211_regdomain *rd1,
951                  const struct ieee80211_regdomain *rd2)
952 {
953         int r, size_of_regd;
954         unsigned int x, y;
955         unsigned int num_rules = 0;
956         const struct ieee80211_reg_rule *rule1, *rule2;
957         struct ieee80211_reg_rule intersected_rule;
958         struct ieee80211_regdomain *rd;
959
960         if (!rd1 || !rd2)
961                 return NULL;
962
963         /*
964          * First we get a count of the rules we'll need, then we actually
965          * build them. This is to so we can malloc() and free() a
966          * regdomain once. The reason we use reg_rules_intersect() here
967          * is it will return -EINVAL if the rule computed makes no sense.
968          * All rules that do check out OK are valid.
969          */
970
971         for (x = 0; x < rd1->n_reg_rules; x++) {
972                 rule1 = &rd1->reg_rules[x];
973                 for (y = 0; y < rd2->n_reg_rules; y++) {
974                         rule2 = &rd2->reg_rules[y];
975                         if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
976                                                  &intersected_rule))
977                                 num_rules++;
978                 }
979         }
980
981         if (!num_rules)
982                 return NULL;
983
984         size_of_regd = sizeof(struct ieee80211_regdomain) +
985                        num_rules * sizeof(struct ieee80211_reg_rule);
986
987         rd = kzalloc(size_of_regd, GFP_KERNEL);
988         if (!rd)
989                 return NULL;
990
991         for (x = 0; x < rd1->n_reg_rules; x++) {
992                 rule1 = &rd1->reg_rules[x];
993                 for (y = 0; y < rd2->n_reg_rules; y++) {
994                         rule2 = &rd2->reg_rules[y];
995                         r = reg_rules_intersect(rd1, rd2, rule1, rule2,
996                                                 &intersected_rule);
997                         /*
998                          * No need to memset here the intersected rule here as
999                          * we're not using the stack anymore
1000                          */
1001                         if (r)
1002                                 continue;
1003
1004                         add_rule(&intersected_rule, rd->reg_rules,
1005                                  &rd->n_reg_rules);
1006                 }
1007         }
1008
1009         rd->alpha2[0] = '9';
1010         rd->alpha2[1] = '8';
1011         rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1012                                                   rd2->dfs_region);
1013
1014         return rd;
1015 }
1016
1017 /*
1018  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1019  * want to just have the channel structure use these
1020  */
1021 static u32 map_regdom_flags(u32 rd_flags)
1022 {
1023         u32 channel_flags = 0;
1024         if (rd_flags & NL80211_RRF_NO_IR_ALL)
1025                 channel_flags |= IEEE80211_CHAN_NO_IR;
1026         if (rd_flags & NL80211_RRF_DFS)
1027                 channel_flags |= IEEE80211_CHAN_RADAR;
1028         if (rd_flags & NL80211_RRF_NO_OFDM)
1029                 channel_flags |= IEEE80211_CHAN_NO_OFDM;
1030         if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1031                 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1032         if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1033                 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1034         if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1035                 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1036         if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1037                 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1038         if (rd_flags & NL80211_RRF_NO_80MHZ)
1039                 channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1040         if (rd_flags & NL80211_RRF_NO_160MHZ)
1041                 channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1042         return channel_flags;
1043 }
1044
1045 static const struct ieee80211_reg_rule *
1046 freq_reg_info_regd(u32 center_freq,
1047                    const struct ieee80211_regdomain *regd, u32 bw)
1048 {
1049         int i;
1050         bool band_rule_found = false;
1051         bool bw_fits = false;
1052
1053         if (!regd)
1054                 return ERR_PTR(-EINVAL);
1055
1056         for (i = 0; i < regd->n_reg_rules; i++) {
1057                 const struct ieee80211_reg_rule *rr;
1058                 const struct ieee80211_freq_range *fr = NULL;
1059
1060                 rr = &regd->reg_rules[i];
1061                 fr = &rr->freq_range;
1062
1063                 /*
1064                  * We only need to know if one frequency rule was
1065                  * was in center_freq's band, that's enough, so lets
1066                  * not overwrite it once found
1067                  */
1068                 if (!band_rule_found)
1069                         band_rule_found = freq_in_rule_band(fr, center_freq);
1070
1071                 bw_fits = reg_does_bw_fit(fr, center_freq, bw);
1072
1073                 if (band_rule_found && bw_fits)
1074                         return rr;
1075         }
1076
1077         if (!band_rule_found)
1078                 return ERR_PTR(-ERANGE);
1079
1080         return ERR_PTR(-EINVAL);
1081 }
1082
1083 static const struct ieee80211_reg_rule *
1084 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1085 {
1086         const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1087         const struct ieee80211_reg_rule *reg_rule = NULL;
1088         u32 bw;
1089
1090         for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
1091                 reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1092                 if (!IS_ERR(reg_rule))
1093                         return reg_rule;
1094         }
1095
1096         return reg_rule;
1097 }
1098
1099 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1100                                                u32 center_freq)
1101 {
1102         return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(20));
1103 }
1104 EXPORT_SYMBOL(freq_reg_info);
1105
1106 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1107 {
1108         switch (initiator) {
1109         case NL80211_REGDOM_SET_BY_CORE:
1110                 return "core";
1111         case NL80211_REGDOM_SET_BY_USER:
1112                 return "user";
1113         case NL80211_REGDOM_SET_BY_DRIVER:
1114                 return "driver";
1115         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1116                 return "country IE";
1117         default:
1118                 WARN_ON(1);
1119                 return "bug";
1120         }
1121 }
1122 EXPORT_SYMBOL(reg_initiator_name);
1123
1124 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1125                                           const struct ieee80211_reg_rule *reg_rule,
1126                                           const struct ieee80211_channel *chan)
1127 {
1128         const struct ieee80211_freq_range *freq_range = NULL;
1129         u32 max_bandwidth_khz, bw_flags = 0;
1130
1131         freq_range = &reg_rule->freq_range;
1132
1133         max_bandwidth_khz = freq_range->max_bandwidth_khz;
1134         /* Check if auto calculation requested */
1135         if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1136                 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1137
1138         /* If we get a reg_rule we can assume that at least 5Mhz fit */
1139         if (!reg_does_bw_fit(freq_range, MHZ_TO_KHZ(chan->center_freq),
1140                              MHZ_TO_KHZ(10)))
1141                 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1142         if (!reg_does_bw_fit(freq_range, MHZ_TO_KHZ(chan->center_freq),
1143                              MHZ_TO_KHZ(20)))
1144                 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1145
1146         if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1147                 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1148         if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1149                 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1150         if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1151                 bw_flags |= IEEE80211_CHAN_NO_HT40;
1152         if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1153                 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1154         if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1155                 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1156         return bw_flags;
1157 }
1158
1159 /*
1160  * Note that right now we assume the desired channel bandwidth
1161  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1162  * per channel, the primary and the extension channel).
1163  */
1164 static void handle_channel(struct wiphy *wiphy,
1165                            enum nl80211_reg_initiator initiator,
1166                            struct ieee80211_channel *chan)
1167 {
1168         u32 flags, bw_flags = 0;
1169         const struct ieee80211_reg_rule *reg_rule = NULL;
1170         const struct ieee80211_power_rule *power_rule = NULL;
1171         struct wiphy *request_wiphy = NULL;
1172         struct regulatory_request *lr = get_last_request();
1173         const struct ieee80211_regdomain *regd;
1174
1175         request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1176
1177         flags = chan->orig_flags;
1178
1179         reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
1180         if (IS_ERR(reg_rule)) {
1181                 /*
1182                  * We will disable all channels that do not match our
1183                  * received regulatory rule unless the hint is coming
1184                  * from a Country IE and the Country IE had no information
1185                  * about a band. The IEEE 802.11 spec allows for an AP
1186                  * to send only a subset of the regulatory rules allowed,
1187                  * so an AP in the US that only supports 2.4 GHz may only send
1188                  * a country IE with information for the 2.4 GHz band
1189                  * while 5 GHz is still supported.
1190                  */
1191                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1192                     PTR_ERR(reg_rule) == -ERANGE)
1193                         return;
1194
1195                 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1196                     request_wiphy && request_wiphy == wiphy &&
1197                     request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1198                         pr_debug("Disabling freq %d MHz for good\n",
1199                                  chan->center_freq);
1200                         chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1201                         chan->flags = chan->orig_flags;
1202                 } else {
1203                         pr_debug("Disabling freq %d MHz\n",
1204                                  chan->center_freq);
1205                         chan->flags |= IEEE80211_CHAN_DISABLED;
1206                 }
1207                 return;
1208         }
1209
1210         regd = reg_get_regdomain(wiphy);
1211
1212         power_rule = &reg_rule->power_rule;
1213         bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1214
1215         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1216             request_wiphy && request_wiphy == wiphy &&
1217             request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1218                 /*
1219                  * This guarantees the driver's requested regulatory domain
1220                  * will always be used as a base for further regulatory
1221                  * settings
1222                  */
1223                 chan->flags = chan->orig_flags =
1224                         map_regdom_flags(reg_rule->flags) | bw_flags;
1225                 chan->max_antenna_gain = chan->orig_mag =
1226                         (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1227                 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1228                         (int) MBM_TO_DBM(power_rule->max_eirp);
1229
1230                 if (chan->flags & IEEE80211_CHAN_RADAR) {
1231                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1232                         if (reg_rule->dfs_cac_ms)
1233                                 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1234                 }
1235
1236                 return;
1237         }
1238
1239         chan->dfs_state = NL80211_DFS_USABLE;
1240         chan->dfs_state_entered = jiffies;
1241
1242         chan->beacon_found = false;
1243         chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1244         chan->max_antenna_gain =
1245                 min_t(int, chan->orig_mag,
1246                       MBI_TO_DBI(power_rule->max_antenna_gain));
1247         chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1248
1249         if (chan->flags & IEEE80211_CHAN_RADAR) {
1250                 if (reg_rule->dfs_cac_ms)
1251                         chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1252                 else
1253                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1254         }
1255
1256         if (chan->orig_mpwr) {
1257                 /*
1258                  * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1259                  * will always follow the passed country IE power settings.
1260                  */
1261                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1262                     wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1263                         chan->max_power = chan->max_reg_power;
1264                 else
1265                         chan->max_power = min(chan->orig_mpwr,
1266                                               chan->max_reg_power);
1267         } else
1268                 chan->max_power = chan->max_reg_power;
1269 }
1270
1271 static void handle_band(struct wiphy *wiphy,
1272                         enum nl80211_reg_initiator initiator,
1273                         struct ieee80211_supported_band *sband)
1274 {
1275         unsigned int i;
1276
1277         if (!sband)
1278                 return;
1279
1280         for (i = 0; i < sband->n_channels; i++)
1281                 handle_channel(wiphy, initiator, &sband->channels[i]);
1282 }
1283
1284 static bool reg_request_cell_base(struct regulatory_request *request)
1285 {
1286         if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1287                 return false;
1288         return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1289 }
1290
1291 bool reg_last_request_cell_base(void)
1292 {
1293         return reg_request_cell_base(get_last_request());
1294 }
1295
1296 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1297 /* Core specific check */
1298 static enum reg_request_treatment
1299 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1300 {
1301         struct regulatory_request *lr = get_last_request();
1302
1303         if (!reg_num_devs_support_basehint)
1304                 return REG_REQ_IGNORE;
1305
1306         if (reg_request_cell_base(lr) &&
1307             !regdom_changes(pending_request->alpha2))
1308                 return REG_REQ_ALREADY_SET;
1309
1310         return REG_REQ_OK;
1311 }
1312
1313 /* Device specific check */
1314 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1315 {
1316         return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1317 }
1318 #else
1319 static enum reg_request_treatment
1320 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1321 {
1322         return REG_REQ_IGNORE;
1323 }
1324
1325 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1326 {
1327         return true;
1328 }
1329 #endif
1330
1331 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1332 {
1333         if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1334             !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1335                 return true;
1336         return false;
1337 }
1338
1339 static bool ignore_reg_update(struct wiphy *wiphy,
1340                               enum nl80211_reg_initiator initiator)
1341 {
1342         struct regulatory_request *lr = get_last_request();
1343
1344         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1345                 return true;
1346
1347         if (!lr) {
1348                 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
1349                          reg_initiator_name(initiator));
1350                 return true;
1351         }
1352
1353         if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1354             wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1355                 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
1356                          reg_initiator_name(initiator));
1357                 return true;
1358         }
1359
1360         /*
1361          * wiphy->regd will be set once the device has its own
1362          * desired regulatory domain set
1363          */
1364         if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1365             initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1366             !is_world_regdom(lr->alpha2)) {
1367                 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
1368                          reg_initiator_name(initiator));
1369                 return true;
1370         }
1371
1372         if (reg_request_cell_base(lr))
1373                 return reg_dev_ignore_cell_hint(wiphy);
1374
1375         return false;
1376 }
1377
1378 static bool reg_is_world_roaming(struct wiphy *wiphy)
1379 {
1380         const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1381         const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1382         struct regulatory_request *lr = get_last_request();
1383
1384         if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1385                 return true;
1386
1387         if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1388             wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1389                 return true;
1390
1391         return false;
1392 }
1393
1394 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1395                               struct reg_beacon *reg_beacon)
1396 {
1397         struct ieee80211_supported_band *sband;
1398         struct ieee80211_channel *chan;
1399         bool channel_changed = false;
1400         struct ieee80211_channel chan_before;
1401
1402         sband = wiphy->bands[reg_beacon->chan.band];
1403         chan = &sband->channels[chan_idx];
1404
1405         if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1406                 return;
1407
1408         if (chan->beacon_found)
1409                 return;
1410
1411         chan->beacon_found = true;
1412
1413         if (!reg_is_world_roaming(wiphy))
1414                 return;
1415
1416         if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1417                 return;
1418
1419         chan_before.center_freq = chan->center_freq;
1420         chan_before.flags = chan->flags;
1421
1422         if (chan->flags & IEEE80211_CHAN_NO_IR) {
1423                 chan->flags &= ~IEEE80211_CHAN_NO_IR;
1424                 channel_changed = true;
1425         }
1426
1427         if (channel_changed)
1428                 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1429 }
1430
1431 /*
1432  * Called when a scan on a wiphy finds a beacon on
1433  * new channel
1434  */
1435 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1436                                     struct reg_beacon *reg_beacon)
1437 {
1438         unsigned int i;
1439         struct ieee80211_supported_band *sband;
1440
1441         if (!wiphy->bands[reg_beacon->chan.band])
1442                 return;
1443
1444         sband = wiphy->bands[reg_beacon->chan.band];
1445
1446         for (i = 0; i < sband->n_channels; i++)
1447                 handle_reg_beacon(wiphy, i, reg_beacon);
1448 }
1449
1450 /*
1451  * Called upon reg changes or a new wiphy is added
1452  */
1453 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1454 {
1455         unsigned int i;
1456         struct ieee80211_supported_band *sband;
1457         struct reg_beacon *reg_beacon;
1458
1459         list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1460                 if (!wiphy->bands[reg_beacon->chan.band])
1461                         continue;
1462                 sband = wiphy->bands[reg_beacon->chan.band];
1463                 for (i = 0; i < sband->n_channels; i++)
1464                         handle_reg_beacon(wiphy, i, reg_beacon);
1465         }
1466 }
1467
1468 /* Reap the advantages of previously found beacons */
1469 static void reg_process_beacons(struct wiphy *wiphy)
1470 {
1471         /*
1472          * Means we are just firing up cfg80211, so no beacons would
1473          * have been processed yet.
1474          */
1475         if (!last_request)
1476                 return;
1477         wiphy_update_beacon_reg(wiphy);
1478 }
1479
1480 static bool is_ht40_allowed(struct ieee80211_channel *chan)
1481 {
1482         if (!chan)
1483                 return false;
1484         if (chan->flags & IEEE80211_CHAN_DISABLED)
1485                 return false;
1486         /* This would happen when regulatory rules disallow HT40 completely */
1487         if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
1488                 return false;
1489         return true;
1490 }
1491
1492 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1493                                          struct ieee80211_channel *channel)
1494 {
1495         struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
1496         struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1497         unsigned int i;
1498
1499         if (!is_ht40_allowed(channel)) {
1500                 channel->flags |= IEEE80211_CHAN_NO_HT40;
1501                 return;
1502         }
1503
1504         /*
1505          * We need to ensure the extension channels exist to
1506          * be able to use HT40- or HT40+, this finds them (or not)
1507          */
1508         for (i = 0; i < sband->n_channels; i++) {
1509                 struct ieee80211_channel *c = &sband->channels[i];
1510
1511                 if (c->center_freq == (channel->center_freq - 20))
1512                         channel_before = c;
1513                 if (c->center_freq == (channel->center_freq + 20))
1514                         channel_after = c;
1515         }
1516
1517         /*
1518          * Please note that this assumes target bandwidth is 20 MHz,
1519          * if that ever changes we also need to change the below logic
1520          * to include that as well.
1521          */
1522         if (!is_ht40_allowed(channel_before))
1523                 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1524         else
1525                 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1526
1527         if (!is_ht40_allowed(channel_after))
1528                 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1529         else
1530                 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1531 }
1532
1533 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1534                                       struct ieee80211_supported_band *sband)
1535 {
1536         unsigned int i;
1537
1538         if (!sband)
1539                 return;
1540
1541         for (i = 0; i < sband->n_channels; i++)
1542                 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
1543 }
1544
1545 static void reg_process_ht_flags(struct wiphy *wiphy)
1546 {
1547         enum ieee80211_band band;
1548
1549         if (!wiphy)
1550                 return;
1551
1552         for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1553                 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
1554 }
1555
1556 static void reg_call_notifier(struct wiphy *wiphy,
1557                               struct regulatory_request *request)
1558 {
1559         if (wiphy->reg_notifier)
1560                 wiphy->reg_notifier(wiphy, request);
1561 }
1562
1563 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
1564 {
1565         struct cfg80211_chan_def chandef;
1566         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1567         enum nl80211_iftype iftype;
1568
1569         wdev_lock(wdev);
1570         iftype = wdev->iftype;
1571
1572         /* make sure the interface is active */
1573         if (!wdev->netdev || !netif_running(wdev->netdev))
1574                 goto wdev_inactive_unlock;
1575
1576         switch (iftype) {
1577         case NL80211_IFTYPE_AP:
1578         case NL80211_IFTYPE_P2P_GO:
1579                 if (!wdev->beacon_interval)
1580                         goto wdev_inactive_unlock;
1581                 chandef = wdev->chandef;
1582                 break;
1583         case NL80211_IFTYPE_ADHOC:
1584                 if (!wdev->ssid_len)
1585                         goto wdev_inactive_unlock;
1586                 chandef = wdev->chandef;
1587                 break;
1588         case NL80211_IFTYPE_STATION:
1589         case NL80211_IFTYPE_P2P_CLIENT:
1590                 if (!wdev->current_bss ||
1591                     !wdev->current_bss->pub.channel)
1592                         goto wdev_inactive_unlock;
1593
1594                 if (!rdev->ops->get_channel ||
1595                     rdev_get_channel(rdev, wdev, &chandef))
1596                         cfg80211_chandef_create(&chandef,
1597                                                 wdev->current_bss->pub.channel,
1598                                                 NL80211_CHAN_NO_HT);
1599                 break;
1600         case NL80211_IFTYPE_MONITOR:
1601         case NL80211_IFTYPE_AP_VLAN:
1602         case NL80211_IFTYPE_P2P_DEVICE:
1603                 /* no enforcement required */
1604                 break;
1605         default:
1606                 /* others not implemented for now */
1607                 WARN_ON(1);
1608                 break;
1609         }
1610
1611         wdev_unlock(wdev);
1612
1613         switch (iftype) {
1614         case NL80211_IFTYPE_AP:
1615         case NL80211_IFTYPE_P2P_GO:
1616         case NL80211_IFTYPE_ADHOC:
1617                 return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype);
1618         case NL80211_IFTYPE_STATION:
1619         case NL80211_IFTYPE_P2P_CLIENT:
1620                 return cfg80211_chandef_usable(wiphy, &chandef,
1621                                                IEEE80211_CHAN_DISABLED);
1622         default:
1623                 break;
1624         }
1625
1626         return true;
1627
1628 wdev_inactive_unlock:
1629         wdev_unlock(wdev);
1630         return true;
1631 }
1632
1633 static void reg_leave_invalid_chans(struct wiphy *wiphy)
1634 {
1635         struct wireless_dev *wdev;
1636         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1637
1638         ASSERT_RTNL();
1639
1640         list_for_each_entry(wdev, &rdev->wdev_list, list)
1641                 if (!reg_wdev_chan_valid(wiphy, wdev))
1642                         cfg80211_leave(rdev, wdev);
1643 }
1644
1645 static void reg_check_chans_work(struct work_struct *work)
1646 {
1647         struct cfg80211_registered_device *rdev;
1648
1649         pr_debug("Verifying active interfaces after reg change\n");
1650         rtnl_lock();
1651
1652         list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1653                 if (!(rdev->wiphy.regulatory_flags &
1654                       REGULATORY_IGNORE_STALE_KICKOFF))
1655                         reg_leave_invalid_chans(&rdev->wiphy);
1656
1657         rtnl_unlock();
1658 }
1659
1660 static void reg_check_channels(void)
1661 {
1662         /*
1663          * Give usermode a chance to do something nicer (move to another
1664          * channel, orderly disconnection), before forcing a disconnection.
1665          */
1666         mod_delayed_work(system_power_efficient_wq,
1667                          &reg_check_chans,
1668                          msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
1669 }
1670
1671 static void wiphy_update_regulatory(struct wiphy *wiphy,
1672                                     enum nl80211_reg_initiator initiator)
1673 {
1674         enum ieee80211_band band;
1675         struct regulatory_request *lr = get_last_request();
1676
1677         if (ignore_reg_update(wiphy, initiator)) {
1678                 /*
1679                  * Regulatory updates set by CORE are ignored for custom
1680                  * regulatory cards. Let us notify the changes to the driver,
1681                  * as some drivers used this to restore its orig_* reg domain.
1682                  */
1683                 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1684                     wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1685                         reg_call_notifier(wiphy, lr);
1686                 return;
1687         }
1688
1689         lr->dfs_region = get_cfg80211_regdom()->dfs_region;
1690
1691         for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1692                 handle_band(wiphy, initiator, wiphy->bands[band]);
1693
1694         reg_process_beacons(wiphy);
1695         reg_process_ht_flags(wiphy);
1696         reg_call_notifier(wiphy, lr);
1697 }
1698
1699 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1700 {
1701         struct cfg80211_registered_device *rdev;
1702         struct wiphy *wiphy;
1703
1704         ASSERT_RTNL();
1705
1706         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1707                 wiphy = &rdev->wiphy;
1708                 wiphy_update_regulatory(wiphy, initiator);
1709         }
1710
1711         reg_check_channels();
1712 }
1713
1714 static void handle_channel_custom(struct wiphy *wiphy,
1715                                   struct ieee80211_channel *chan,
1716                                   const struct ieee80211_regdomain *regd)
1717 {
1718         u32 bw_flags = 0;
1719         const struct ieee80211_reg_rule *reg_rule = NULL;
1720         const struct ieee80211_power_rule *power_rule = NULL;
1721         u32 bw;
1722
1723         for (bw = MHZ_TO_KHZ(20); bw >= MHZ_TO_KHZ(5); bw = bw / 2) {
1724                 reg_rule = freq_reg_info_regd(MHZ_TO_KHZ(chan->center_freq),
1725                                               regd, bw);
1726                 if (!IS_ERR(reg_rule))
1727                         break;
1728         }
1729
1730         if (IS_ERR(reg_rule)) {
1731                 pr_debug("Disabling freq %d MHz as custom regd has no rule that fits it\n",
1732                          chan->center_freq);
1733                 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
1734                         chan->flags |= IEEE80211_CHAN_DISABLED;
1735                 } else {
1736                         chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1737                         chan->flags = chan->orig_flags;
1738                 }
1739                 return;
1740         }
1741
1742         power_rule = &reg_rule->power_rule;
1743         bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1744
1745         chan->dfs_state_entered = jiffies;
1746         chan->dfs_state = NL80211_DFS_USABLE;
1747
1748         chan->beacon_found = false;
1749
1750         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1751                 chan->flags = chan->orig_flags | bw_flags |
1752                               map_regdom_flags(reg_rule->flags);
1753         else
1754                 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1755
1756         chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1757         chan->max_reg_power = chan->max_power =
1758                 (int) MBM_TO_DBM(power_rule->max_eirp);
1759
1760         if (chan->flags & IEEE80211_CHAN_RADAR) {
1761                 if (reg_rule->dfs_cac_ms)
1762                         chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1763                 else
1764                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1765         }
1766
1767         chan->max_power = chan->max_reg_power;
1768 }
1769
1770 static void handle_band_custom(struct wiphy *wiphy,
1771                                struct ieee80211_supported_band *sband,
1772                                const struct ieee80211_regdomain *regd)
1773 {
1774         unsigned int i;
1775
1776         if (!sband)
1777                 return;
1778
1779         for (i = 0; i < sband->n_channels; i++)
1780                 handle_channel_custom(wiphy, &sband->channels[i], regd);
1781 }
1782
1783 /* Used by drivers prior to wiphy registration */
1784 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1785                                    const struct ieee80211_regdomain *regd)
1786 {
1787         enum ieee80211_band band;
1788         unsigned int bands_set = 0;
1789
1790         WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
1791              "wiphy should have REGULATORY_CUSTOM_REG\n");
1792         wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
1793
1794         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1795                 if (!wiphy->bands[band])
1796                         continue;
1797                 handle_band_custom(wiphy, wiphy->bands[band], regd);
1798                 bands_set++;
1799         }
1800
1801         /*
1802          * no point in calling this if it won't have any effect
1803          * on your device's supported bands.
1804          */
1805         WARN_ON(!bands_set);
1806 }
1807 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1808
1809 static void reg_set_request_processed(void)
1810 {
1811         bool need_more_processing = false;
1812         struct regulatory_request *lr = get_last_request();
1813
1814         lr->processed = true;
1815
1816         spin_lock(&reg_requests_lock);
1817         if (!list_empty(&reg_requests_list))
1818                 need_more_processing = true;
1819         spin_unlock(&reg_requests_lock);
1820
1821         cancel_crda_timeout();
1822
1823         if (need_more_processing)
1824                 schedule_work(&reg_work);
1825 }
1826
1827 /**
1828  * reg_process_hint_core - process core regulatory requests
1829  * @pending_request: a pending core regulatory request
1830  *
1831  * The wireless subsystem can use this function to process
1832  * a regulatory request issued by the regulatory core.
1833  */
1834 static enum reg_request_treatment
1835 reg_process_hint_core(struct regulatory_request *core_request)
1836 {
1837         if (reg_query_database(core_request)) {
1838                 core_request->intersect = false;
1839                 core_request->processed = false;
1840                 reg_update_last_request(core_request);
1841                 return REG_REQ_OK;
1842         }
1843
1844         return REG_REQ_IGNORE;
1845 }
1846
1847 static enum reg_request_treatment
1848 __reg_process_hint_user(struct regulatory_request *user_request)
1849 {
1850         struct regulatory_request *lr = get_last_request();
1851
1852         if (reg_request_cell_base(user_request))
1853                 return reg_ignore_cell_hint(user_request);
1854
1855         if (reg_request_cell_base(lr))
1856                 return REG_REQ_IGNORE;
1857
1858         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1859                 return REG_REQ_INTERSECT;
1860         /*
1861          * If the user knows better the user should set the regdom
1862          * to their country before the IE is picked up
1863          */
1864         if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
1865             lr->intersect)
1866                 return REG_REQ_IGNORE;
1867         /*
1868          * Process user requests only after previous user/driver/core
1869          * requests have been processed
1870          */
1871         if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
1872              lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1873              lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
1874             regdom_changes(lr->alpha2))
1875                 return REG_REQ_IGNORE;
1876
1877         if (!regdom_changes(user_request->alpha2))
1878                 return REG_REQ_ALREADY_SET;
1879
1880         return REG_REQ_OK;
1881 }
1882
1883 /**
1884  * reg_process_hint_user - process user regulatory requests
1885  * @user_request: a pending user regulatory request
1886  *
1887  * The wireless subsystem can use this function to process
1888  * a regulatory request initiated by userspace.
1889  */
1890 static enum reg_request_treatment
1891 reg_process_hint_user(struct regulatory_request *user_request)
1892 {
1893         enum reg_request_treatment treatment;
1894
1895         treatment = __reg_process_hint_user(user_request);
1896         if (treatment == REG_REQ_IGNORE ||
1897             treatment == REG_REQ_ALREADY_SET)
1898                 return REG_REQ_IGNORE;
1899
1900         user_request->intersect = treatment == REG_REQ_INTERSECT;
1901         user_request->processed = false;
1902
1903         if (reg_query_database(user_request)) {
1904                 reg_update_last_request(user_request);
1905                 user_alpha2[0] = user_request->alpha2[0];
1906                 user_alpha2[1] = user_request->alpha2[1];
1907                 return REG_REQ_OK;
1908         }
1909
1910         return REG_REQ_IGNORE;
1911 }
1912
1913 static enum reg_request_treatment
1914 __reg_process_hint_driver(struct regulatory_request *driver_request)
1915 {
1916         struct regulatory_request *lr = get_last_request();
1917
1918         if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
1919                 if (regdom_changes(driver_request->alpha2))
1920                         return REG_REQ_OK;
1921                 return REG_REQ_ALREADY_SET;
1922         }
1923
1924         /*
1925          * This would happen if you unplug and plug your card
1926          * back in or if you add a new device for which the previously
1927          * loaded card also agrees on the regulatory domain.
1928          */
1929         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1930             !regdom_changes(driver_request->alpha2))
1931                 return REG_REQ_ALREADY_SET;
1932
1933         return REG_REQ_INTERSECT;
1934 }
1935
1936 /**
1937  * reg_process_hint_driver - process driver regulatory requests
1938  * @driver_request: a pending driver regulatory request
1939  *
1940  * The wireless subsystem can use this function to process
1941  * a regulatory request issued by an 802.11 driver.
1942  *
1943  * Returns one of the different reg request treatment values.
1944  */
1945 static enum reg_request_treatment
1946 reg_process_hint_driver(struct wiphy *wiphy,
1947                         struct regulatory_request *driver_request)
1948 {
1949         const struct ieee80211_regdomain *regd, *tmp;
1950         enum reg_request_treatment treatment;
1951
1952         treatment = __reg_process_hint_driver(driver_request);
1953
1954         switch (treatment) {
1955         case REG_REQ_OK:
1956                 break;
1957         case REG_REQ_IGNORE:
1958                 return REG_REQ_IGNORE;
1959         case REG_REQ_INTERSECT:
1960         case REG_REQ_ALREADY_SET:
1961                 regd = reg_copy_regd(get_cfg80211_regdom());
1962                 if (IS_ERR(regd))
1963                         return REG_REQ_IGNORE;
1964
1965                 tmp = get_wiphy_regdom(wiphy);
1966                 rcu_assign_pointer(wiphy->regd, regd);
1967                 rcu_free_regdom(tmp);
1968         }
1969
1970
1971         driver_request->intersect = treatment == REG_REQ_INTERSECT;
1972         driver_request->processed = false;
1973
1974         /*
1975          * Since CRDA will not be called in this case as we already
1976          * have applied the requested regulatory domain before we just
1977          * inform userspace we have processed the request
1978          */
1979         if (treatment == REG_REQ_ALREADY_SET) {
1980                 nl80211_send_reg_change_event(driver_request);
1981                 reg_update_last_request(driver_request);
1982                 reg_set_request_processed();
1983                 return REG_REQ_ALREADY_SET;
1984         }
1985
1986         if (reg_query_database(driver_request)) {
1987                 reg_update_last_request(driver_request);
1988                 return REG_REQ_OK;
1989         }
1990
1991         return REG_REQ_IGNORE;
1992 }
1993
1994 static enum reg_request_treatment
1995 __reg_process_hint_country_ie(struct wiphy *wiphy,
1996                               struct regulatory_request *country_ie_request)
1997 {
1998         struct wiphy *last_wiphy = NULL;
1999         struct regulatory_request *lr = get_last_request();
2000
2001         if (reg_request_cell_base(lr)) {
2002                 /* Trust a Cell base station over the AP's country IE */
2003                 if (regdom_changes(country_ie_request->alpha2))
2004                         return REG_REQ_IGNORE;
2005                 return REG_REQ_ALREADY_SET;
2006         } else {
2007                 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2008                         return REG_REQ_IGNORE;
2009         }
2010
2011         if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2012                 return -EINVAL;
2013
2014         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2015                 return REG_REQ_OK;
2016
2017         last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2018
2019         if (last_wiphy != wiphy) {
2020                 /*
2021                  * Two cards with two APs claiming different
2022                  * Country IE alpha2s. We could
2023                  * intersect them, but that seems unlikely
2024                  * to be correct. Reject second one for now.
2025                  */
2026                 if (regdom_changes(country_ie_request->alpha2))
2027                         return REG_REQ_IGNORE;
2028                 return REG_REQ_ALREADY_SET;
2029         }
2030
2031         if (regdom_changes(country_ie_request->alpha2))
2032                 return REG_REQ_OK;
2033         return REG_REQ_ALREADY_SET;
2034 }
2035
2036 /**
2037  * reg_process_hint_country_ie - process regulatory requests from country IEs
2038  * @country_ie_request: a regulatory request from a country IE
2039  *
2040  * The wireless subsystem can use this function to process
2041  * a regulatory request issued by a country Information Element.
2042  *
2043  * Returns one of the different reg request treatment values.
2044  */
2045 static enum reg_request_treatment
2046 reg_process_hint_country_ie(struct wiphy *wiphy,
2047                             struct regulatory_request *country_ie_request)
2048 {
2049         enum reg_request_treatment treatment;
2050
2051         treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2052
2053         switch (treatment) {
2054         case REG_REQ_OK:
2055                 break;
2056         case REG_REQ_IGNORE:
2057                 return REG_REQ_IGNORE;
2058         case REG_REQ_ALREADY_SET:
2059                 reg_free_request(country_ie_request);
2060                 return REG_REQ_ALREADY_SET;
2061         case REG_REQ_INTERSECT:
2062                 /*
2063                  * This doesn't happen yet, not sure we
2064                  * ever want to support it for this case.
2065                  */
2066                 WARN_ONCE(1, "Unexpected intersection for country IEs");
2067                 return REG_REQ_IGNORE;
2068         }
2069
2070         country_ie_request->intersect = false;
2071         country_ie_request->processed = false;
2072
2073         if (reg_query_database(country_ie_request)) {
2074                 reg_update_last_request(country_ie_request);
2075                 return REG_REQ_OK;
2076         }
2077
2078         return REG_REQ_IGNORE;
2079 }
2080
2081 /* This processes *all* regulatory hints */
2082 static void reg_process_hint(struct regulatory_request *reg_request)
2083 {
2084         struct wiphy *wiphy = NULL;
2085         enum reg_request_treatment treatment;
2086
2087         if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
2088                 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
2089
2090         switch (reg_request->initiator) {
2091         case NL80211_REGDOM_SET_BY_CORE:
2092                 treatment = reg_process_hint_core(reg_request);
2093                 break;
2094         case NL80211_REGDOM_SET_BY_USER:
2095                 treatment = reg_process_hint_user(reg_request);
2096                 break;
2097         case NL80211_REGDOM_SET_BY_DRIVER:
2098                 if (!wiphy)
2099                         goto out_free;
2100                 treatment = reg_process_hint_driver(wiphy, reg_request);
2101                 break;
2102         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2103                 if (!wiphy)
2104                         goto out_free;
2105                 treatment = reg_process_hint_country_ie(wiphy, reg_request);
2106                 break;
2107         default:
2108                 WARN(1, "invalid initiator %d\n", reg_request->initiator);
2109                 goto out_free;
2110         }
2111
2112         if (treatment == REG_REQ_IGNORE)
2113                 goto out_free;
2114
2115         WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
2116              "unexpected treatment value %d\n", treatment);
2117
2118         /* This is required so that the orig_* parameters are saved.
2119          * NOTE: treatment must be set for any case that reaches here!
2120          */
2121         if (treatment == REG_REQ_ALREADY_SET && wiphy &&
2122             wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2123                 wiphy_update_regulatory(wiphy, reg_request->initiator);
2124                 reg_check_channels();
2125         }
2126
2127         return;
2128
2129 out_free:
2130         reg_free_request(reg_request);
2131 }
2132
2133 static bool reg_only_self_managed_wiphys(void)
2134 {
2135         struct cfg80211_registered_device *rdev;
2136         struct wiphy *wiphy;
2137         bool self_managed_found = false;
2138
2139         ASSERT_RTNL();
2140
2141         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2142                 wiphy = &rdev->wiphy;
2143                 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2144                         self_managed_found = true;
2145                 else
2146                         return false;
2147         }
2148
2149         /* make sure at least one self-managed wiphy exists */
2150         return self_managed_found;
2151 }
2152
2153 /*
2154  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
2155  * Regulatory hints come on a first come first serve basis and we
2156  * must process each one atomically.
2157  */
2158 static void reg_process_pending_hints(void)
2159 {
2160         struct regulatory_request *reg_request, *lr;
2161
2162         lr = get_last_request();
2163
2164         /* When last_request->processed becomes true this will be rescheduled */
2165         if (lr && !lr->processed) {
2166                 reg_process_hint(lr);
2167                 return;
2168         }
2169
2170         spin_lock(&reg_requests_lock);
2171
2172         if (list_empty(&reg_requests_list)) {
2173                 spin_unlock(&reg_requests_lock);
2174                 return;
2175         }
2176
2177         reg_request = list_first_entry(&reg_requests_list,
2178                                        struct regulatory_request,
2179                                        list);
2180         list_del_init(&reg_request->list);
2181
2182         spin_unlock(&reg_requests_lock);
2183
2184         if (reg_only_self_managed_wiphys()) {
2185                 reg_free_request(reg_request);
2186                 return;
2187         }
2188
2189         reg_process_hint(reg_request);
2190
2191         lr = get_last_request();
2192
2193         spin_lock(&reg_requests_lock);
2194         if (!list_empty(&reg_requests_list) && lr && lr->processed)
2195                 schedule_work(&reg_work);
2196         spin_unlock(&reg_requests_lock);
2197 }
2198
2199 /* Processes beacon hints -- this has nothing to do with country IEs */
2200 static void reg_process_pending_beacon_hints(void)
2201 {
2202         struct cfg80211_registered_device *rdev;
2203         struct reg_beacon *pending_beacon, *tmp;
2204
2205         /* This goes through the _pending_ beacon list */
2206         spin_lock_bh(&reg_pending_beacons_lock);
2207
2208         list_for_each_entry_safe(pending_beacon, tmp,
2209                                  &reg_pending_beacons, list) {
2210                 list_del_init(&pending_beacon->list);
2211
2212                 /* Applies the beacon hint to current wiphys */
2213                 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2214                         wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
2215
2216                 /* Remembers the beacon hint for new wiphys or reg changes */
2217                 list_add_tail(&pending_beacon->list, &reg_beacon_list);
2218         }
2219
2220         spin_unlock_bh(&reg_pending_beacons_lock);
2221 }
2222
2223 static void reg_process_self_managed_hints(void)
2224 {
2225         struct cfg80211_registered_device *rdev;
2226         struct wiphy *wiphy;
2227         const struct ieee80211_regdomain *tmp;
2228         const struct ieee80211_regdomain *regd;
2229         enum ieee80211_band band;
2230         struct regulatory_request request = {};
2231
2232         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2233                 wiphy = &rdev->wiphy;
2234
2235                 spin_lock(&reg_requests_lock);
2236                 regd = rdev->requested_regd;
2237                 rdev->requested_regd = NULL;
2238                 spin_unlock(&reg_requests_lock);
2239
2240                 if (regd == NULL)
2241                         continue;
2242
2243                 tmp = get_wiphy_regdom(wiphy);
2244                 rcu_assign_pointer(wiphy->regd, regd);
2245                 rcu_free_regdom(tmp);
2246
2247                 for (band = 0; band < IEEE80211_NUM_BANDS; band++)
2248                         handle_band_custom(wiphy, wiphy->bands[band], regd);
2249
2250                 reg_process_ht_flags(wiphy);
2251
2252                 request.wiphy_idx = get_wiphy_idx(wiphy);
2253                 request.alpha2[0] = regd->alpha2[0];
2254                 request.alpha2[1] = regd->alpha2[1];
2255                 request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
2256
2257                 nl80211_send_wiphy_reg_change_event(&request);
2258         }
2259
2260         reg_check_channels();
2261 }
2262
2263 static void reg_todo(struct work_struct *work)
2264 {
2265         rtnl_lock();
2266         reg_process_pending_hints();
2267         reg_process_pending_beacon_hints();
2268         reg_process_self_managed_hints();
2269         rtnl_unlock();
2270 }
2271
2272 static void queue_regulatory_request(struct regulatory_request *request)
2273 {
2274         request->alpha2[0] = toupper(request->alpha2[0]);
2275         request->alpha2[1] = toupper(request->alpha2[1]);
2276
2277         spin_lock(&reg_requests_lock);
2278         list_add_tail(&request->list, &reg_requests_list);
2279         spin_unlock(&reg_requests_lock);
2280
2281         schedule_work(&reg_work);
2282 }
2283
2284 /*
2285  * Core regulatory hint -- happens during cfg80211_init()
2286  * and when we restore regulatory settings.
2287  */
2288 static int regulatory_hint_core(const char *alpha2)
2289 {
2290         struct regulatory_request *request;
2291
2292         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2293         if (!request)
2294                 return -ENOMEM;
2295
2296         request->alpha2[0] = alpha2[0];
2297         request->alpha2[1] = alpha2[1];
2298         request->initiator = NL80211_REGDOM_SET_BY_CORE;
2299
2300         queue_regulatory_request(request);
2301
2302         return 0;
2303 }
2304
2305 /* User hints */
2306 int regulatory_hint_user(const char *alpha2,
2307                          enum nl80211_user_reg_hint_type user_reg_hint_type)
2308 {
2309         struct regulatory_request *request;
2310
2311         if (WARN_ON(!alpha2))
2312                 return -EINVAL;
2313
2314         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2315         if (!request)
2316                 return -ENOMEM;
2317
2318         request->wiphy_idx = WIPHY_IDX_INVALID;
2319         request->alpha2[0] = alpha2[0];
2320         request->alpha2[1] = alpha2[1];
2321         request->initiator = NL80211_REGDOM_SET_BY_USER;
2322         request->user_reg_hint_type = user_reg_hint_type;
2323
2324         /* Allow calling CRDA again */
2325         reset_crda_timeouts();
2326
2327         queue_regulatory_request(request);
2328
2329         return 0;
2330 }
2331
2332 int regulatory_hint_indoor(bool is_indoor, u32 portid)
2333 {
2334         spin_lock(&reg_indoor_lock);
2335
2336         /* It is possible that more than one user space process is trying to
2337          * configure the indoor setting. To handle such cases, clear the indoor
2338          * setting in case that some process does not think that the device
2339          * is operating in an indoor environment. In addition, if a user space
2340          * process indicates that it is controlling the indoor setting, save its
2341          * portid, i.e., make it the owner.
2342          */
2343         reg_is_indoor = is_indoor;
2344         if (reg_is_indoor) {
2345                 if (!reg_is_indoor_portid)
2346                         reg_is_indoor_portid = portid;
2347         } else {
2348                 reg_is_indoor_portid = 0;
2349         }
2350
2351         spin_unlock(&reg_indoor_lock);
2352
2353         if (!is_indoor)
2354                 reg_check_channels();
2355
2356         return 0;
2357 }
2358
2359 void regulatory_netlink_notify(u32 portid)
2360 {
2361         spin_lock(&reg_indoor_lock);
2362
2363         if (reg_is_indoor_portid != portid) {
2364                 spin_unlock(&reg_indoor_lock);
2365                 return;
2366         }
2367
2368         reg_is_indoor = false;
2369         reg_is_indoor_portid = 0;
2370
2371         spin_unlock(&reg_indoor_lock);
2372
2373         reg_check_channels();
2374 }
2375
2376 /* Driver hints */
2377 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
2378 {
2379         struct regulatory_request *request;
2380
2381         if (WARN_ON(!alpha2 || !wiphy))
2382                 return -EINVAL;
2383
2384         wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
2385
2386         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2387         if (!request)
2388                 return -ENOMEM;
2389
2390         request->wiphy_idx = get_wiphy_idx(wiphy);
2391
2392         request->alpha2[0] = alpha2[0];
2393         request->alpha2[1] = alpha2[1];
2394         request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
2395
2396         /* Allow calling CRDA again */
2397         reset_crda_timeouts();
2398
2399         queue_regulatory_request(request);
2400
2401         return 0;
2402 }
2403 EXPORT_SYMBOL(regulatory_hint);
2404
2405 void regulatory_hint_country_ie(struct wiphy *wiphy, enum ieee80211_band band,
2406                                 const u8 *country_ie, u8 country_ie_len)
2407 {
2408         char alpha2[2];
2409         enum environment_cap env = ENVIRON_ANY;
2410         struct regulatory_request *request = NULL, *lr;
2411
2412         /* IE len must be evenly divisible by 2 */
2413         if (country_ie_len & 0x01)
2414                 return;
2415
2416         if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
2417                 return;
2418
2419         request = kzalloc(sizeof(*request), GFP_KERNEL);
2420         if (!request)
2421                 return;
2422
2423         alpha2[0] = country_ie[0];
2424         alpha2[1] = country_ie[1];
2425
2426         if (country_ie[2] == 'I')
2427                 env = ENVIRON_INDOOR;
2428         else if (country_ie[2] == 'O')
2429                 env = ENVIRON_OUTDOOR;
2430
2431         rcu_read_lock();
2432         lr = get_last_request();
2433
2434         if (unlikely(!lr))
2435                 goto out;
2436
2437         /*
2438          * We will run this only upon a successful connection on cfg80211.
2439          * We leave conflict resolution to the workqueue, where can hold
2440          * the RTNL.
2441          */
2442         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2443             lr->wiphy_idx != WIPHY_IDX_INVALID)
2444                 goto out;
2445
2446         request->wiphy_idx = get_wiphy_idx(wiphy);
2447         request->alpha2[0] = alpha2[0];
2448         request->alpha2[1] = alpha2[1];
2449         request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
2450         request->country_ie_env = env;
2451
2452         /* Allow calling CRDA again */
2453         reset_crda_timeouts();
2454
2455         queue_regulatory_request(request);
2456         request = NULL;
2457 out:
2458         kfree(request);
2459         rcu_read_unlock();
2460 }
2461
2462 static void restore_alpha2(char *alpha2, bool reset_user)
2463 {
2464         /* indicates there is no alpha2 to consider for restoration */
2465         alpha2[0] = '9';
2466         alpha2[1] = '7';
2467
2468         /* The user setting has precedence over the module parameter */
2469         if (is_user_regdom_saved()) {
2470                 /* Unless we're asked to ignore it and reset it */
2471                 if (reset_user) {
2472                         pr_debug("Restoring regulatory settings including user preference\n");
2473                         user_alpha2[0] = '9';
2474                         user_alpha2[1] = '7';
2475
2476                         /*
2477                          * If we're ignoring user settings, we still need to
2478                          * check the module parameter to ensure we put things
2479                          * back as they were for a full restore.
2480                          */
2481                         if (!is_world_regdom(ieee80211_regdom)) {
2482                                 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2483                                          ieee80211_regdom[0], ieee80211_regdom[1]);
2484                                 alpha2[0] = ieee80211_regdom[0];
2485                                 alpha2[1] = ieee80211_regdom[1];
2486                         }
2487                 } else {
2488                         pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
2489                                  user_alpha2[0], user_alpha2[1]);
2490                         alpha2[0] = user_alpha2[0];
2491                         alpha2[1] = user_alpha2[1];
2492                 }
2493         } else if (!is_world_regdom(ieee80211_regdom)) {
2494                 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2495                          ieee80211_regdom[0], ieee80211_regdom[1]);
2496                 alpha2[0] = ieee80211_regdom[0];
2497                 alpha2[1] = ieee80211_regdom[1];
2498         } else
2499                 pr_debug("Restoring regulatory settings\n");
2500 }
2501
2502 static void restore_custom_reg_settings(struct wiphy *wiphy)
2503 {
2504         struct ieee80211_supported_band *sband;
2505         enum ieee80211_band band;
2506         struct ieee80211_channel *chan;
2507         int i;
2508
2509         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
2510                 sband = wiphy->bands[band];
2511                 if (!sband)
2512                         continue;
2513                 for (i = 0; i < sband->n_channels; i++) {
2514                         chan = &sband->channels[i];
2515                         chan->flags = chan->orig_flags;
2516                         chan->max_antenna_gain = chan->orig_mag;
2517                         chan->max_power = chan->orig_mpwr;
2518                         chan->beacon_found = false;
2519                 }
2520         }
2521 }
2522
2523 /*
2524  * Restoring regulatory settings involves ingoring any
2525  * possibly stale country IE information and user regulatory
2526  * settings if so desired, this includes any beacon hints
2527  * learned as we could have traveled outside to another country
2528  * after disconnection. To restore regulatory settings we do
2529  * exactly what we did at bootup:
2530  *
2531  *   - send a core regulatory hint
2532  *   - send a user regulatory hint if applicable
2533  *
2534  * Device drivers that send a regulatory hint for a specific country
2535  * keep their own regulatory domain on wiphy->regd so that does does
2536  * not need to be remembered.
2537  */
2538 static void restore_regulatory_settings(bool reset_user)
2539 {
2540         char alpha2[2];
2541         char world_alpha2[2];
2542         struct reg_beacon *reg_beacon, *btmp;
2543         LIST_HEAD(tmp_reg_req_list);
2544         struct cfg80211_registered_device *rdev;
2545
2546         ASSERT_RTNL();
2547
2548         /*
2549          * Clear the indoor setting in case that it is not controlled by user
2550          * space, as otherwise there is no guarantee that the device is still
2551          * operating in an indoor environment.
2552          */
2553         spin_lock(&reg_indoor_lock);
2554         if (reg_is_indoor && !reg_is_indoor_portid) {
2555                 reg_is_indoor = false;
2556                 reg_check_channels();
2557         }
2558         spin_unlock(&reg_indoor_lock);
2559
2560         reset_regdomains(true, &world_regdom);
2561         restore_alpha2(alpha2, reset_user);
2562
2563         /*
2564          * If there's any pending requests we simply
2565          * stash them to a temporary pending queue and
2566          * add then after we've restored regulatory
2567          * settings.
2568          */
2569         spin_lock(&reg_requests_lock);
2570         list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
2571         spin_unlock(&reg_requests_lock);
2572
2573         /* Clear beacon hints */
2574         spin_lock_bh(&reg_pending_beacons_lock);
2575         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2576                 list_del(&reg_beacon->list);
2577                 kfree(reg_beacon);
2578         }
2579         spin_unlock_bh(&reg_pending_beacons_lock);
2580
2581         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2582                 list_del(&reg_beacon->list);
2583                 kfree(reg_beacon);
2584         }
2585
2586         /* First restore to the basic regulatory settings */
2587         world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
2588         world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
2589
2590         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2591                 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2592                         continue;
2593                 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
2594                         restore_custom_reg_settings(&rdev->wiphy);
2595         }
2596
2597         regulatory_hint_core(world_alpha2);
2598
2599         /*
2600          * This restores the ieee80211_regdom module parameter
2601          * preference or the last user requested regulatory
2602          * settings, user regulatory settings takes precedence.
2603          */
2604         if (is_an_alpha2(alpha2))
2605                 regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
2606
2607         spin_lock(&reg_requests_lock);
2608         list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
2609         spin_unlock(&reg_requests_lock);
2610
2611         pr_debug("Kicking the queue\n");
2612
2613         schedule_work(&reg_work);
2614 }
2615
2616 void regulatory_hint_disconnect(void)
2617 {
2618         pr_debug("All devices are disconnected, going to restore regulatory settings\n");
2619         restore_regulatory_settings(false);
2620 }
2621
2622 static bool freq_is_chan_12_13_14(u16 freq)
2623 {
2624         if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
2625             freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
2626             freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
2627                 return true;
2628         return false;
2629 }
2630
2631 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
2632 {
2633         struct reg_beacon *pending_beacon;
2634
2635         list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
2636                 if (beacon_chan->center_freq ==
2637                     pending_beacon->chan.center_freq)
2638                         return true;
2639         return false;
2640 }
2641
2642 int regulatory_hint_found_beacon(struct wiphy *wiphy,
2643                                  struct ieee80211_channel *beacon_chan,
2644                                  gfp_t gfp)
2645 {
2646         struct reg_beacon *reg_beacon;
2647         bool processing;
2648
2649         if (beacon_chan->beacon_found ||
2650             beacon_chan->flags & IEEE80211_CHAN_RADAR ||
2651             (beacon_chan->band == IEEE80211_BAND_2GHZ &&
2652              !freq_is_chan_12_13_14(beacon_chan->center_freq)))
2653                 return 0;
2654
2655         spin_lock_bh(&reg_pending_beacons_lock);
2656         processing = pending_reg_beacon(beacon_chan);
2657         spin_unlock_bh(&reg_pending_beacons_lock);
2658
2659         if (processing)
2660                 return 0;
2661
2662         reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
2663         if (!reg_beacon)
2664                 return -ENOMEM;
2665
2666         pr_debug("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
2667                  beacon_chan->center_freq,
2668                  ieee80211_frequency_to_channel(beacon_chan->center_freq),
2669                  wiphy_name(wiphy));
2670
2671         memcpy(&reg_beacon->chan, beacon_chan,
2672                sizeof(struct ieee80211_channel));
2673
2674         /*
2675          * Since we can be called from BH or and non-BH context
2676          * we must use spin_lock_bh()
2677          */
2678         spin_lock_bh(&reg_pending_beacons_lock);
2679         list_add_tail(&reg_beacon->list, &reg_pending_beacons);
2680         spin_unlock_bh(&reg_pending_beacons_lock);
2681
2682         schedule_work(&reg_work);
2683
2684         return 0;
2685 }
2686
2687 static void print_rd_rules(const struct ieee80211_regdomain *rd)
2688 {
2689         unsigned int i;
2690         const struct ieee80211_reg_rule *reg_rule = NULL;
2691         const struct ieee80211_freq_range *freq_range = NULL;
2692         const struct ieee80211_power_rule *power_rule = NULL;
2693         char bw[32], cac_time[32];
2694
2695         pr_info("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
2696
2697         for (i = 0; i < rd->n_reg_rules; i++) {
2698                 reg_rule = &rd->reg_rules[i];
2699                 freq_range = &reg_rule->freq_range;
2700                 power_rule = &reg_rule->power_rule;
2701
2702                 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
2703                         snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
2704                                  freq_range->max_bandwidth_khz,
2705                                  reg_get_max_bandwidth(rd, reg_rule));
2706                 else
2707                         snprintf(bw, sizeof(bw), "%d KHz",
2708                                  freq_range->max_bandwidth_khz);
2709
2710                 if (reg_rule->flags & NL80211_RRF_DFS)
2711                         scnprintf(cac_time, sizeof(cac_time), "%u s",
2712                                   reg_rule->dfs_cac_ms/1000);
2713                 else
2714                         scnprintf(cac_time, sizeof(cac_time), "N/A");
2715
2716
2717                 /*
2718                  * There may not be documentation for max antenna gain
2719                  * in certain regions
2720                  */
2721                 if (power_rule->max_antenna_gain)
2722                         pr_info("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
2723                                 freq_range->start_freq_khz,
2724                                 freq_range->end_freq_khz,
2725                                 bw,
2726                                 power_rule->max_antenna_gain,
2727                                 power_rule->max_eirp,
2728                                 cac_time);
2729                 else
2730                         pr_info("  (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
2731                                 freq_range->start_freq_khz,
2732                                 freq_range->end_freq_khz,
2733                                 bw,
2734                                 power_rule->max_eirp,
2735                                 cac_time);
2736         }
2737 }
2738
2739 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
2740 {
2741         switch (dfs_region) {
2742         case NL80211_DFS_UNSET:
2743         case NL80211_DFS_FCC:
2744         case NL80211_DFS_ETSI:
2745         case NL80211_DFS_JP:
2746                 return true;
2747         default:
2748                 pr_debug("Ignoring uknown DFS master region: %d\n", dfs_region);
2749                 return false;
2750         }
2751 }
2752
2753 static void print_regdomain(const struct ieee80211_regdomain *rd)
2754 {
2755         struct regulatory_request *lr = get_last_request();
2756
2757         if (is_intersected_alpha2(rd->alpha2)) {
2758                 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2759                         struct cfg80211_registered_device *rdev;
2760                         rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
2761                         if (rdev) {
2762                                 pr_info("Current regulatory domain updated by AP to: %c%c\n",
2763                                         rdev->country_ie_alpha2[0],
2764                                         rdev->country_ie_alpha2[1]);
2765                         } else
2766                                 pr_info("Current regulatory domain intersected:\n");
2767                 } else
2768                         pr_info("Current regulatory domain intersected:\n");
2769         } else if (is_world_regdom(rd->alpha2)) {
2770                 pr_info("World regulatory domain updated:\n");
2771         } else {
2772                 if (is_unknown_alpha2(rd->alpha2))
2773                         pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2774                 else {
2775                         if (reg_request_cell_base(lr))
2776                                 pr_info("Regulatory domain changed to country: %c%c by Cell Station\n",
2777                                         rd->alpha2[0], rd->alpha2[1]);
2778                         else
2779                                 pr_info("Regulatory domain changed to country: %c%c\n",
2780                                         rd->alpha2[0], rd->alpha2[1]);
2781                 }
2782         }
2783
2784         pr_info(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
2785         print_rd_rules(rd);
2786 }
2787
2788 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2789 {
2790         pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2791         print_rd_rules(rd);
2792 }
2793
2794 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
2795 {
2796         if (!is_world_regdom(rd->alpha2))
2797                 return -EINVAL;
2798         update_world_regdomain(rd);
2799         return 0;
2800 }
2801
2802 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
2803                            struct regulatory_request *user_request)
2804 {
2805         const struct ieee80211_regdomain *intersected_rd = NULL;
2806
2807         if (!regdom_changes(rd->alpha2))
2808                 return -EALREADY;
2809
2810         if (!is_valid_rd(rd)) {
2811                 pr_err("Invalid regulatory domain detected:\n");
2812                 print_regdomain_info(rd);
2813                 return -EINVAL;
2814         }
2815
2816         if (!user_request->intersect) {
2817                 reset_regdomains(false, rd);
2818                 return 0;
2819         }
2820
2821         intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2822         if (!intersected_rd)
2823                 return -EINVAL;
2824
2825         kfree(rd);
2826         rd = NULL;
2827         reset_regdomains(false, intersected_rd);
2828
2829         return 0;
2830 }
2831
2832 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
2833                              struct regulatory_request *driver_request)
2834 {
2835         const struct ieee80211_regdomain *regd;
2836         const struct ieee80211_regdomain *intersected_rd = NULL;
2837         const struct ieee80211_regdomain *tmp;
2838         struct wiphy *request_wiphy;
2839
2840         if (is_world_regdom(rd->alpha2))
2841                 return -EINVAL;
2842
2843         if (!regdom_changes(rd->alpha2))
2844                 return -EALREADY;
2845
2846         if (!is_valid_rd(rd)) {
2847                 pr_err("Invalid regulatory domain detected:\n");
2848                 print_regdomain_info(rd);
2849                 return -EINVAL;
2850         }
2851
2852         request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
2853         if (!request_wiphy)
2854                 return -ENODEV;
2855
2856         if (!driver_request->intersect) {
2857                 if (request_wiphy->regd)
2858                         return -EALREADY;
2859
2860                 regd = reg_copy_regd(rd);
2861                 if (IS_ERR(regd))
2862                         return PTR_ERR(regd);
2863
2864                 rcu_assign_pointer(request_wiphy->regd, regd);
2865                 reset_regdomains(false, rd);
2866                 return 0;
2867         }
2868
2869         intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2870         if (!intersected_rd)
2871                 return -EINVAL;
2872
2873         /*
2874          * We can trash what CRDA provided now.
2875          * However if a driver requested this specific regulatory
2876          * domain we keep it for its private use
2877          */
2878         tmp = get_wiphy_regdom(request_wiphy);
2879         rcu_assign_pointer(request_wiphy->regd, rd);
2880         rcu_free_regdom(tmp);
2881
2882         rd = NULL;
2883
2884         reset_regdomains(false, intersected_rd);
2885
2886         return 0;
2887 }
2888
2889 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
2890                                  struct regulatory_request *country_ie_request)
2891 {
2892         struct wiphy *request_wiphy;
2893
2894         if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2895             !is_unknown_alpha2(rd->alpha2))
2896                 return -EINVAL;
2897
2898         /*
2899          * Lets only bother proceeding on the same alpha2 if the current
2900          * rd is non static (it means CRDA was present and was used last)
2901          * and the pending request came in from a country IE
2902          */
2903
2904         if (!is_valid_rd(rd)) {
2905                 pr_err("Invalid regulatory domain detected:\n");
2906                 print_regdomain_info(rd);
2907                 return -EINVAL;
2908         }
2909
2910         request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
2911         if (!request_wiphy)
2912                 return -ENODEV;
2913
2914         if (country_ie_request->intersect)
2915                 return -EINVAL;
2916
2917         reset_regdomains(false, rd);
2918         return 0;
2919 }
2920
2921 /*
2922  * Use this call to set the current regulatory domain. Conflicts with
2923  * multiple drivers can be ironed out later. Caller must've already
2924  * kmalloc'd the rd structure.
2925  */
2926 int set_regdom(const struct ieee80211_regdomain *rd,
2927                enum ieee80211_regd_source regd_src)
2928 {
2929         struct regulatory_request *lr;
2930         bool user_reset = false;
2931         int r;
2932
2933         if (!reg_is_valid_request(rd->alpha2)) {
2934                 kfree(rd);
2935                 return -EINVAL;
2936         }
2937
2938         if (regd_src == REGD_SOURCE_CRDA)
2939                 reset_crda_timeouts();
2940
2941         lr = get_last_request();
2942
2943         /* Note that this doesn't update the wiphys, this is done below */
2944         switch (lr->initiator) {
2945         case NL80211_REGDOM_SET_BY_CORE:
2946                 r = reg_set_rd_core(rd);
2947                 break;
2948         case NL80211_REGDOM_SET_BY_USER:
2949                 r = reg_set_rd_user(rd, lr);
2950                 user_reset = true;
2951                 break;
2952         case NL80211_REGDOM_SET_BY_DRIVER:
2953                 r = reg_set_rd_driver(rd, lr);
2954                 break;
2955         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2956                 r = reg_set_rd_country_ie(rd, lr);
2957                 break;
2958         default:
2959                 WARN(1, "invalid initiator %d\n", lr->initiator);
2960                 kfree(rd);
2961                 return -EINVAL;
2962         }
2963
2964         if (r) {
2965                 switch (r) {
2966                 case -EALREADY:
2967                         reg_set_request_processed();
2968                         break;
2969                 default:
2970                         /* Back to world regulatory in case of errors */
2971                         restore_regulatory_settings(user_reset);
2972                 }
2973
2974                 kfree(rd);
2975                 return r;
2976         }
2977
2978         /* This would make this whole thing pointless */
2979         if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
2980                 return -EINVAL;
2981
2982         /* update all wiphys now with the new established regulatory domain */
2983         update_all_wiphy_regulatory(lr->initiator);
2984
2985         print_regdomain(get_cfg80211_regdom());
2986
2987         nl80211_send_reg_change_event(lr);
2988
2989         reg_set_request_processed();
2990
2991         return 0;
2992 }
2993
2994 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
2995                                        struct ieee80211_regdomain *rd)
2996 {
2997         const struct ieee80211_regdomain *regd;
2998         const struct ieee80211_regdomain *prev_regd;
2999         struct cfg80211_registered_device *rdev;
3000
3001         if (WARN_ON(!wiphy || !rd))
3002                 return -EINVAL;
3003
3004         if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
3005                  "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
3006                 return -EPERM;
3007
3008         if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) {
3009                 print_regdomain_info(rd);
3010                 return -EINVAL;
3011         }
3012
3013         regd = reg_copy_regd(rd);
3014         if (IS_ERR(regd))
3015                 return PTR_ERR(regd);
3016
3017         rdev = wiphy_to_rdev(wiphy);
3018
3019         spin_lock(&reg_requests_lock);
3020         prev_regd = rdev->requested_regd;
3021         rdev->requested_regd = regd;
3022         spin_unlock(&reg_requests_lock);
3023
3024         kfree(prev_regd);
3025         return 0;
3026 }
3027
3028 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
3029                               struct ieee80211_regdomain *rd)
3030 {
3031         int ret = __regulatory_set_wiphy_regd(wiphy, rd);
3032
3033         if (ret)
3034                 return ret;
3035
3036         schedule_work(&reg_work);
3037         return 0;
3038 }
3039 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
3040
3041 int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy,
3042                                         struct ieee80211_regdomain *rd)
3043 {
3044         int ret;
3045
3046         ASSERT_RTNL();
3047
3048         ret = __regulatory_set_wiphy_regd(wiphy, rd);
3049         if (ret)
3050                 return ret;
3051
3052         /* process the request immediately */
3053         reg_process_self_managed_hints();
3054         return 0;
3055 }
3056 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl);
3057
3058 void wiphy_regulatory_register(struct wiphy *wiphy)
3059 {
3060         struct regulatory_request *lr;
3061
3062         /* self-managed devices ignore external hints */
3063         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3064                 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
3065                                            REGULATORY_COUNTRY_IE_IGNORE;
3066
3067         if (!reg_dev_ignore_cell_hint(wiphy))
3068                 reg_num_devs_support_basehint++;
3069
3070         lr = get_last_request();
3071         wiphy_update_regulatory(wiphy, lr->initiator);
3072 }
3073
3074 void wiphy_regulatory_deregister(struct wiphy *wiphy)
3075 {
3076         struct wiphy *request_wiphy = NULL;
3077         struct regulatory_request *lr;
3078
3079         lr = get_last_request();
3080
3081         if (!reg_dev_ignore_cell_hint(wiphy))
3082                 reg_num_devs_support_basehint--;
3083
3084         rcu_free_regdom(get_wiphy_regdom(wiphy));
3085         RCU_INIT_POINTER(wiphy->regd, NULL);
3086
3087         if (lr)
3088                 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
3089
3090         if (!request_wiphy || request_wiphy != wiphy)
3091                 return;
3092
3093         lr->wiphy_idx = WIPHY_IDX_INVALID;
3094         lr->country_ie_env = ENVIRON_ANY;
3095 }
3096
3097 /*
3098  * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for
3099  * UNII band definitions
3100  */
3101 int cfg80211_get_unii(int freq)
3102 {
3103         /* UNII-1 */
3104         if (freq >= 5150 && freq <= 5250)
3105                 return 0;
3106
3107         /* UNII-2A */
3108         if (freq > 5250 && freq <= 5350)
3109                 return 1;
3110
3111         /* UNII-2B */
3112         if (freq > 5350 && freq <= 5470)
3113                 return 2;
3114
3115         /* UNII-2C */
3116         if (freq > 5470 && freq <= 5725)
3117                 return 3;
3118
3119         /* UNII-3 */
3120         if (freq > 5725 && freq <= 5825)
3121                 return 4;
3122
3123         return -EINVAL;
3124 }
3125
3126 bool regulatory_indoor_allowed(void)
3127 {
3128         return reg_is_indoor;
3129 }
3130
3131 int __init regulatory_init(void)
3132 {
3133         int err = 0;
3134
3135         reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
3136         if (IS_ERR(reg_pdev))
3137                 return PTR_ERR(reg_pdev);
3138
3139         spin_lock_init(&reg_requests_lock);
3140         spin_lock_init(&reg_pending_beacons_lock);
3141         spin_lock_init(&reg_indoor_lock);
3142
3143         reg_regdb_size_check();
3144
3145         rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
3146
3147         user_alpha2[0] = '9';
3148         user_alpha2[1] = '7';
3149
3150         /* We always try to get an update for the static regdomain */
3151         err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
3152         if (err) {
3153                 if (err == -ENOMEM) {
3154                         platform_device_unregister(reg_pdev);
3155                         return err;
3156                 }
3157                 /*
3158                  * N.B. kobject_uevent_env() can fail mainly for when we're out
3159                  * memory which is handled and propagated appropriately above
3160                  * but it can also fail during a netlink_broadcast() or during
3161                  * early boot for call_usermodehelper(). For now treat these
3162                  * errors as non-fatal.
3163                  */
3164                 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
3165         }
3166
3167         /*
3168          * Finally, if the user set the module parameter treat it
3169          * as a user hint.
3170          */
3171         if (!is_world_regdom(ieee80211_regdom))
3172                 regulatory_hint_user(ieee80211_regdom,
3173                                      NL80211_USER_REG_HINT_USER);
3174
3175         return 0;
3176 }
3177
3178 void regulatory_exit(void)
3179 {
3180         struct regulatory_request *reg_request, *tmp;
3181         struct reg_beacon *reg_beacon, *btmp;
3182
3183         cancel_work_sync(&reg_work);
3184         cancel_crda_timeout_sync();
3185         cancel_delayed_work_sync(&reg_check_chans);
3186
3187         /* Lock to suppress warnings */
3188         rtnl_lock();
3189         reset_regdomains(true, NULL);
3190         rtnl_unlock();
3191
3192         dev_set_uevent_suppress(&reg_pdev->dev, true);
3193
3194         platform_device_unregister(reg_pdev);
3195
3196         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3197                 list_del(&reg_beacon->list);
3198                 kfree(reg_beacon);
3199         }
3200
3201         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3202                 list_del(&reg_beacon->list);
3203                 kfree(reg_beacon);
3204         }
3205
3206         list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
3207                 list_del(&reg_request->list);
3208                 kfree(reg_request);
3209         }
3210 }