Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/klassert/ipsec
[cascardo/linux.git] / net / wireless / reg.c
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007       Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011  Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  *
8  * Permission to use, copy, modify, and/or distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20
21
22 /**
23  * DOC: Wireless regulatory infrastructure
24  *
25  * The usual implementation is for a driver to read a device EEPROM to
26  * determine which regulatory domain it should be operating under, then
27  * looking up the allowable channels in a driver-local table and finally
28  * registering those channels in the wiphy structure.
29  *
30  * Another set of compliance enforcement is for drivers to use their
31  * own compliance limits which can be stored on the EEPROM. The host
32  * driver or firmware may ensure these are used.
33  *
34  * In addition to all this we provide an extra layer of regulatory
35  * conformance. For drivers which do not have any regulatory
36  * information CRDA provides the complete regulatory solution.
37  * For others it provides a community effort on further restrictions
38  * to enhance compliance.
39  *
40  * Note: When number of rules --> infinity we will not be able to
41  * index on alpha2 any more, instead we'll probably have to
42  * rely on some SHA1 checksum of the regdomain for example.
43  *
44  */
45
46 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
47
48 #include <linux/kernel.h>
49 #include <linux/export.h>
50 #include <linux/slab.h>
51 #include <linux/list.h>
52 #include <linux/ctype.h>
53 #include <linux/nl80211.h>
54 #include <linux/platform_device.h>
55 #include <linux/moduleparam.h>
56 #include <net/cfg80211.h>
57 #include "core.h"
58 #include "reg.h"
59 #include "rdev-ops.h"
60 #include "regdb.h"
61 #include "nl80211.h"
62
63 #ifdef CONFIG_CFG80211_REG_DEBUG
64 #define REG_DBG_PRINT(format, args...)                  \
65         printk(KERN_DEBUG pr_fmt(format), ##args)
66 #else
67 #define REG_DBG_PRINT(args...)
68 #endif
69
70 /*
71  * Grace period we give before making sure all current interfaces reside on
72  * channels allowed by the current regulatory domain.
73  */
74 #define REG_ENFORCE_GRACE_MS 60000
75
76 /**
77  * enum reg_request_treatment - regulatory request treatment
78  *
79  * @REG_REQ_OK: continue processing the regulatory request
80  * @REG_REQ_IGNORE: ignore the regulatory request
81  * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
82  *      be intersected with the current one.
83  * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
84  *      regulatory settings, and no further processing is required.
85  * @REG_REQ_USER_HINT_HANDLED: a non alpha2  user hint was handled and no
86  *      further processing is required, i.e., not need to update last_request
87  *      etc. This should be used for user hints that do not provide an alpha2
88  *      but some other type of regulatory hint, i.e., indoor operation.
89  */
90 enum reg_request_treatment {
91         REG_REQ_OK,
92         REG_REQ_IGNORE,
93         REG_REQ_INTERSECT,
94         REG_REQ_ALREADY_SET,
95         REG_REQ_USER_HINT_HANDLED,
96 };
97
98 static struct regulatory_request core_request_world = {
99         .initiator = NL80211_REGDOM_SET_BY_CORE,
100         .alpha2[0] = '0',
101         .alpha2[1] = '0',
102         .intersect = false,
103         .processed = true,
104         .country_ie_env = ENVIRON_ANY,
105 };
106
107 /*
108  * Receipt of information from last regulatory request,
109  * protected by RTNL (and can be accessed with RCU protection)
110  */
111 static struct regulatory_request __rcu *last_request =
112         (void __rcu *)&core_request_world;
113
114 /* To trigger userspace events */
115 static struct platform_device *reg_pdev;
116
117 /*
118  * Central wireless core regulatory domains, we only need two,
119  * the current one and a world regulatory domain in case we have no
120  * information to give us an alpha2.
121  * (protected by RTNL, can be read under RCU)
122  */
123 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
124
125 /*
126  * Number of devices that registered to the core
127  * that support cellular base station regulatory hints
128  * (protected by RTNL)
129  */
130 static int reg_num_devs_support_basehint;
131
132 /*
133  * State variable indicating if the platform on which the devices
134  * are attached is operating in an indoor environment. The state variable
135  * is relevant for all registered devices.
136  * (protected by RTNL)
137  */
138 static bool reg_is_indoor;
139
140 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
141 {
142         return rtnl_dereference(cfg80211_regdomain);
143 }
144
145 static const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
146 {
147         return rtnl_dereference(wiphy->regd);
148 }
149
150 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
151 {
152         switch (dfs_region) {
153         case NL80211_DFS_UNSET:
154                 return "unset";
155         case NL80211_DFS_FCC:
156                 return "FCC";
157         case NL80211_DFS_ETSI:
158                 return "ETSI";
159         case NL80211_DFS_JP:
160                 return "JP";
161         }
162         return "Unknown";
163 }
164
165 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
166 {
167         const struct ieee80211_regdomain *regd = NULL;
168         const struct ieee80211_regdomain *wiphy_regd = NULL;
169
170         regd = get_cfg80211_regdom();
171         if (!wiphy)
172                 goto out;
173
174         wiphy_regd = get_wiphy_regdom(wiphy);
175         if (!wiphy_regd)
176                 goto out;
177
178         if (wiphy_regd->dfs_region == regd->dfs_region)
179                 goto out;
180
181         REG_DBG_PRINT("%s: device specific dfs_region "
182                       "(%s) disagrees with cfg80211's "
183                       "central dfs_region (%s)\n",
184                       dev_name(&wiphy->dev),
185                       reg_dfs_region_str(wiphy_regd->dfs_region),
186                       reg_dfs_region_str(regd->dfs_region));
187
188 out:
189         return regd->dfs_region;
190 }
191
192 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
193 {
194         if (!r)
195                 return;
196         kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
197 }
198
199 static struct regulatory_request *get_last_request(void)
200 {
201         return rcu_dereference_rtnl(last_request);
202 }
203
204 /* Used to queue up regulatory hints */
205 static LIST_HEAD(reg_requests_list);
206 static spinlock_t reg_requests_lock;
207
208 /* Used to queue up beacon hints for review */
209 static LIST_HEAD(reg_pending_beacons);
210 static spinlock_t reg_pending_beacons_lock;
211
212 /* Used to keep track of processed beacon hints */
213 static LIST_HEAD(reg_beacon_list);
214
215 struct reg_beacon {
216         struct list_head list;
217         struct ieee80211_channel chan;
218 };
219
220 static void reg_check_chans_work(struct work_struct *work);
221 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
222
223 static void reg_todo(struct work_struct *work);
224 static DECLARE_WORK(reg_work, reg_todo);
225
226 static void reg_timeout_work(struct work_struct *work);
227 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
228
229 /* We keep a static world regulatory domain in case of the absence of CRDA */
230 static const struct ieee80211_regdomain world_regdom = {
231         .n_reg_rules = 6,
232         .alpha2 =  "00",
233         .reg_rules = {
234                 /* IEEE 802.11b/g, channels 1..11 */
235                 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
236                 /* IEEE 802.11b/g, channels 12..13. */
237                 REG_RULE(2467-10, 2472+10, 40, 6, 20,
238                         NL80211_RRF_NO_IR),
239                 /* IEEE 802.11 channel 14 - Only JP enables
240                  * this and for 802.11b only */
241                 REG_RULE(2484-10, 2484+10, 20, 6, 20,
242                         NL80211_RRF_NO_IR |
243                         NL80211_RRF_NO_OFDM),
244                 /* IEEE 802.11a, channel 36..48 */
245                 REG_RULE(5180-10, 5240+10, 160, 6, 20,
246                         NL80211_RRF_NO_IR),
247
248                 /* IEEE 802.11a, channel 52..64 - DFS required */
249                 REG_RULE(5260-10, 5320+10, 160, 6, 20,
250                         NL80211_RRF_NO_IR |
251                         NL80211_RRF_DFS),
252
253                 /* IEEE 802.11a, channel 100..144 - DFS required */
254                 REG_RULE(5500-10, 5720+10, 160, 6, 20,
255                         NL80211_RRF_NO_IR |
256                         NL80211_RRF_DFS),
257
258                 /* IEEE 802.11a, channel 149..165 */
259                 REG_RULE(5745-10, 5825+10, 80, 6, 20,
260                         NL80211_RRF_NO_IR),
261
262                 /* IEEE 802.11ad (60gHz), channels 1..3 */
263                 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
264         }
265 };
266
267 /* protected by RTNL */
268 static const struct ieee80211_regdomain *cfg80211_world_regdom =
269         &world_regdom;
270
271 static char *ieee80211_regdom = "00";
272 static char user_alpha2[2];
273
274 module_param(ieee80211_regdom, charp, 0444);
275 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
276
277 static void reg_free_request(struct regulatory_request *request)
278 {
279         if (request != get_last_request())
280                 kfree(request);
281 }
282
283 static void reg_free_last_request(void)
284 {
285         struct regulatory_request *lr = get_last_request();
286
287         if (lr != &core_request_world && lr)
288                 kfree_rcu(lr, rcu_head);
289 }
290
291 static void reg_update_last_request(struct regulatory_request *request)
292 {
293         struct regulatory_request *lr;
294
295         lr = get_last_request();
296         if (lr == request)
297                 return;
298
299         reg_free_last_request();
300         rcu_assign_pointer(last_request, request);
301 }
302
303 static void reset_regdomains(bool full_reset,
304                              const struct ieee80211_regdomain *new_regdom)
305 {
306         const struct ieee80211_regdomain *r;
307
308         ASSERT_RTNL();
309
310         r = get_cfg80211_regdom();
311
312         /* avoid freeing static information or freeing something twice */
313         if (r == cfg80211_world_regdom)
314                 r = NULL;
315         if (cfg80211_world_regdom == &world_regdom)
316                 cfg80211_world_regdom = NULL;
317         if (r == &world_regdom)
318                 r = NULL;
319
320         rcu_free_regdom(r);
321         rcu_free_regdom(cfg80211_world_regdom);
322
323         cfg80211_world_regdom = &world_regdom;
324         rcu_assign_pointer(cfg80211_regdomain, new_regdom);
325
326         if (!full_reset)
327                 return;
328
329         reg_update_last_request(&core_request_world);
330 }
331
332 /*
333  * Dynamic world regulatory domain requested by the wireless
334  * core upon initialization
335  */
336 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
337 {
338         struct regulatory_request *lr;
339
340         lr = get_last_request();
341
342         WARN_ON(!lr);
343
344         reset_regdomains(false, rd);
345
346         cfg80211_world_regdom = rd;
347 }
348
349 bool is_world_regdom(const char *alpha2)
350 {
351         if (!alpha2)
352                 return false;
353         return alpha2[0] == '0' && alpha2[1] == '0';
354 }
355
356 static bool is_alpha2_set(const char *alpha2)
357 {
358         if (!alpha2)
359                 return false;
360         return alpha2[0] && alpha2[1];
361 }
362
363 static bool is_unknown_alpha2(const char *alpha2)
364 {
365         if (!alpha2)
366                 return false;
367         /*
368          * Special case where regulatory domain was built by driver
369          * but a specific alpha2 cannot be determined
370          */
371         return alpha2[0] == '9' && alpha2[1] == '9';
372 }
373
374 static bool is_intersected_alpha2(const char *alpha2)
375 {
376         if (!alpha2)
377                 return false;
378         /*
379          * Special case where regulatory domain is the
380          * result of an intersection between two regulatory domain
381          * structures
382          */
383         return alpha2[0] == '9' && alpha2[1] == '8';
384 }
385
386 static bool is_an_alpha2(const char *alpha2)
387 {
388         if (!alpha2)
389                 return false;
390         return isalpha(alpha2[0]) && isalpha(alpha2[1]);
391 }
392
393 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
394 {
395         if (!alpha2_x || !alpha2_y)
396                 return false;
397         return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
398 }
399
400 static bool regdom_changes(const char *alpha2)
401 {
402         const struct ieee80211_regdomain *r = get_cfg80211_regdom();
403
404         if (!r)
405                 return true;
406         return !alpha2_equal(r->alpha2, alpha2);
407 }
408
409 /*
410  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
411  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
412  * has ever been issued.
413  */
414 static bool is_user_regdom_saved(void)
415 {
416         if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
417                 return false;
418
419         /* This would indicate a mistake on the design */
420         if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
421                  "Unexpected user alpha2: %c%c\n",
422                  user_alpha2[0], user_alpha2[1]))
423                 return false;
424
425         return true;
426 }
427
428 static const struct ieee80211_regdomain *
429 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
430 {
431         struct ieee80211_regdomain *regd;
432         int size_of_regd;
433         unsigned int i;
434
435         size_of_regd =
436                 sizeof(struct ieee80211_regdomain) +
437                 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
438
439         regd = kzalloc(size_of_regd, GFP_KERNEL);
440         if (!regd)
441                 return ERR_PTR(-ENOMEM);
442
443         memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
444
445         for (i = 0; i < src_regd->n_reg_rules; i++)
446                 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
447                        sizeof(struct ieee80211_reg_rule));
448
449         return regd;
450 }
451
452 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
453 struct reg_regdb_search_request {
454         char alpha2[2];
455         struct list_head list;
456 };
457
458 static LIST_HEAD(reg_regdb_search_list);
459 static DEFINE_MUTEX(reg_regdb_search_mutex);
460
461 static void reg_regdb_search(struct work_struct *work)
462 {
463         struct reg_regdb_search_request *request;
464         const struct ieee80211_regdomain *curdom, *regdom = NULL;
465         int i;
466
467         rtnl_lock();
468
469         mutex_lock(&reg_regdb_search_mutex);
470         while (!list_empty(&reg_regdb_search_list)) {
471                 request = list_first_entry(&reg_regdb_search_list,
472                                            struct reg_regdb_search_request,
473                                            list);
474                 list_del(&request->list);
475
476                 for (i = 0; i < reg_regdb_size; i++) {
477                         curdom = reg_regdb[i];
478
479                         if (alpha2_equal(request->alpha2, curdom->alpha2)) {
480                                 regdom = reg_copy_regd(curdom);
481                                 break;
482                         }
483                 }
484
485                 kfree(request);
486         }
487         mutex_unlock(&reg_regdb_search_mutex);
488
489         if (!IS_ERR_OR_NULL(regdom))
490                 set_regdom(regdom);
491
492         rtnl_unlock();
493 }
494
495 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
496
497 static void reg_regdb_query(const char *alpha2)
498 {
499         struct reg_regdb_search_request *request;
500
501         if (!alpha2)
502                 return;
503
504         request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
505         if (!request)
506                 return;
507
508         memcpy(request->alpha2, alpha2, 2);
509
510         mutex_lock(&reg_regdb_search_mutex);
511         list_add_tail(&request->list, &reg_regdb_search_list);
512         mutex_unlock(&reg_regdb_search_mutex);
513
514         schedule_work(&reg_regdb_work);
515 }
516
517 /* Feel free to add any other sanity checks here */
518 static void reg_regdb_size_check(void)
519 {
520         /* We should ideally BUILD_BUG_ON() but then random builds would fail */
521         WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
522 }
523 #else
524 static inline void reg_regdb_size_check(void) {}
525 static inline void reg_regdb_query(const char *alpha2) {}
526 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
527
528 /*
529  * This lets us keep regulatory code which is updated on a regulatory
530  * basis in userspace.
531  */
532 static int call_crda(const char *alpha2)
533 {
534         char country[12];
535         char *env[] = { country, NULL };
536
537         snprintf(country, sizeof(country), "COUNTRY=%c%c",
538                  alpha2[0], alpha2[1]);
539
540         if (!is_world_regdom((char *) alpha2))
541                 pr_info("Calling CRDA for country: %c%c\n",
542                         alpha2[0], alpha2[1]);
543         else
544                 pr_info("Calling CRDA to update world regulatory domain\n");
545
546         /* query internal regulatory database (if it exists) */
547         reg_regdb_query(alpha2);
548
549         return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
550 }
551
552 static enum reg_request_treatment
553 reg_call_crda(struct regulatory_request *request)
554 {
555         if (call_crda(request->alpha2))
556                 return REG_REQ_IGNORE;
557         return REG_REQ_OK;
558 }
559
560 bool reg_is_valid_request(const char *alpha2)
561 {
562         struct regulatory_request *lr = get_last_request();
563
564         if (!lr || lr->processed)
565                 return false;
566
567         return alpha2_equal(lr->alpha2, alpha2);
568 }
569
570 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
571 {
572         struct regulatory_request *lr = get_last_request();
573
574         /*
575          * Follow the driver's regulatory domain, if present, unless a country
576          * IE has been processed or a user wants to help complaince further
577          */
578         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
579             lr->initiator != NL80211_REGDOM_SET_BY_USER &&
580             wiphy->regd)
581                 return get_wiphy_regdom(wiphy);
582
583         return get_cfg80211_regdom();
584 }
585
586 static unsigned int
587 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
588                                  const struct ieee80211_reg_rule *rule)
589 {
590         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
591         const struct ieee80211_freq_range *freq_range_tmp;
592         const struct ieee80211_reg_rule *tmp;
593         u32 start_freq, end_freq, idx, no;
594
595         for (idx = 0; idx < rd->n_reg_rules; idx++)
596                 if (rule == &rd->reg_rules[idx])
597                         break;
598
599         if (idx == rd->n_reg_rules)
600                 return 0;
601
602         /* get start_freq */
603         no = idx;
604
605         while (no) {
606                 tmp = &rd->reg_rules[--no];
607                 freq_range_tmp = &tmp->freq_range;
608
609                 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
610                         break;
611
612                 freq_range = freq_range_tmp;
613         }
614
615         start_freq = freq_range->start_freq_khz;
616
617         /* get end_freq */
618         freq_range = &rule->freq_range;
619         no = idx;
620
621         while (no < rd->n_reg_rules - 1) {
622                 tmp = &rd->reg_rules[++no];
623                 freq_range_tmp = &tmp->freq_range;
624
625                 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
626                         break;
627
628                 freq_range = freq_range_tmp;
629         }
630
631         end_freq = freq_range->end_freq_khz;
632
633         return end_freq - start_freq;
634 }
635
636 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
637                                    const struct ieee80211_reg_rule *rule)
638 {
639         unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
640
641         if (rule->flags & NL80211_RRF_NO_160MHZ)
642                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
643         if (rule->flags & NL80211_RRF_NO_80MHZ)
644                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
645
646         /*
647          * HT40+/HT40- limits are handled per-channel. Only limit BW if both
648          * are not allowed.
649          */
650         if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
651             rule->flags & NL80211_RRF_NO_HT40PLUS)
652                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
653
654         return bw;
655 }
656
657 /* Sanity check on a regulatory rule */
658 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
659 {
660         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
661         u32 freq_diff;
662
663         if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
664                 return false;
665
666         if (freq_range->start_freq_khz > freq_range->end_freq_khz)
667                 return false;
668
669         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
670
671         if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
672             freq_range->max_bandwidth_khz > freq_diff)
673                 return false;
674
675         return true;
676 }
677
678 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
679 {
680         const struct ieee80211_reg_rule *reg_rule = NULL;
681         unsigned int i;
682
683         if (!rd->n_reg_rules)
684                 return false;
685
686         if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
687                 return false;
688
689         for (i = 0; i < rd->n_reg_rules; i++) {
690                 reg_rule = &rd->reg_rules[i];
691                 if (!is_valid_reg_rule(reg_rule))
692                         return false;
693         }
694
695         return true;
696 }
697
698 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
699                             u32 center_freq_khz, u32 bw_khz)
700 {
701         u32 start_freq_khz, end_freq_khz;
702
703         start_freq_khz = center_freq_khz - (bw_khz/2);
704         end_freq_khz = center_freq_khz + (bw_khz/2);
705
706         if (start_freq_khz >= freq_range->start_freq_khz &&
707             end_freq_khz <= freq_range->end_freq_khz)
708                 return true;
709
710         return false;
711 }
712
713 /**
714  * freq_in_rule_band - tells us if a frequency is in a frequency band
715  * @freq_range: frequency rule we want to query
716  * @freq_khz: frequency we are inquiring about
717  *
718  * This lets us know if a specific frequency rule is or is not relevant to
719  * a specific frequency's band. Bands are device specific and artificial
720  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
721  * however it is safe for now to assume that a frequency rule should not be
722  * part of a frequency's band if the start freq or end freq are off by more
723  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
724  * 60 GHz band.
725  * This resolution can be lowered and should be considered as we add
726  * regulatory rule support for other "bands".
727  **/
728 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
729                               u32 freq_khz)
730 {
731 #define ONE_GHZ_IN_KHZ  1000000
732         /*
733          * From 802.11ad: directional multi-gigabit (DMG):
734          * Pertaining to operation in a frequency band containing a channel
735          * with the Channel starting frequency above 45 GHz.
736          */
737         u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
738                         10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
739         if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
740                 return true;
741         if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
742                 return true;
743         return false;
744 #undef ONE_GHZ_IN_KHZ
745 }
746
747 /*
748  * Later on we can perhaps use the more restrictive DFS
749  * region but we don't have information for that yet so
750  * for now simply disallow conflicts.
751  */
752 static enum nl80211_dfs_regions
753 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
754                          const enum nl80211_dfs_regions dfs_region2)
755 {
756         if (dfs_region1 != dfs_region2)
757                 return NL80211_DFS_UNSET;
758         return dfs_region1;
759 }
760
761 /*
762  * Helper for regdom_intersect(), this does the real
763  * mathematical intersection fun
764  */
765 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
766                                const struct ieee80211_regdomain *rd2,
767                                const struct ieee80211_reg_rule *rule1,
768                                const struct ieee80211_reg_rule *rule2,
769                                struct ieee80211_reg_rule *intersected_rule)
770 {
771         const struct ieee80211_freq_range *freq_range1, *freq_range2;
772         struct ieee80211_freq_range *freq_range;
773         const struct ieee80211_power_rule *power_rule1, *power_rule2;
774         struct ieee80211_power_rule *power_rule;
775         u32 freq_diff, max_bandwidth1, max_bandwidth2;
776
777         freq_range1 = &rule1->freq_range;
778         freq_range2 = &rule2->freq_range;
779         freq_range = &intersected_rule->freq_range;
780
781         power_rule1 = &rule1->power_rule;
782         power_rule2 = &rule2->power_rule;
783         power_rule = &intersected_rule->power_rule;
784
785         freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
786                                          freq_range2->start_freq_khz);
787         freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
788                                        freq_range2->end_freq_khz);
789
790         max_bandwidth1 = freq_range1->max_bandwidth_khz;
791         max_bandwidth2 = freq_range2->max_bandwidth_khz;
792
793         if (rule1->flags & NL80211_RRF_AUTO_BW)
794                 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
795         if (rule2->flags & NL80211_RRF_AUTO_BW)
796                 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
797
798         freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
799
800         intersected_rule->flags = rule1->flags | rule2->flags;
801
802         /*
803          * In case NL80211_RRF_AUTO_BW requested for both rules
804          * set AUTO_BW in intersected rule also. Next we will
805          * calculate BW correctly in handle_channel function.
806          * In other case remove AUTO_BW flag while we calculate
807          * maximum bandwidth correctly and auto calculation is
808          * not required.
809          */
810         if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
811             (rule2->flags & NL80211_RRF_AUTO_BW))
812                 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
813         else
814                 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
815
816         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
817         if (freq_range->max_bandwidth_khz > freq_diff)
818                 freq_range->max_bandwidth_khz = freq_diff;
819
820         power_rule->max_eirp = min(power_rule1->max_eirp,
821                 power_rule2->max_eirp);
822         power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
823                 power_rule2->max_antenna_gain);
824
825         intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
826                                            rule2->dfs_cac_ms);
827
828         if (!is_valid_reg_rule(intersected_rule))
829                 return -EINVAL;
830
831         return 0;
832 }
833
834 /* check whether old rule contains new rule */
835 static bool rule_contains(struct ieee80211_reg_rule *r1,
836                           struct ieee80211_reg_rule *r2)
837 {
838         /* for simplicity, currently consider only same flags */
839         if (r1->flags != r2->flags)
840                 return false;
841
842         /* verify r1 is more restrictive */
843         if ((r1->power_rule.max_antenna_gain >
844              r2->power_rule.max_antenna_gain) ||
845             r1->power_rule.max_eirp > r2->power_rule.max_eirp)
846                 return false;
847
848         /* make sure r2's range is contained within r1 */
849         if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
850             r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
851                 return false;
852
853         /* and finally verify that r1.max_bw >= r2.max_bw */
854         if (r1->freq_range.max_bandwidth_khz <
855             r2->freq_range.max_bandwidth_khz)
856                 return false;
857
858         return true;
859 }
860
861 /* add or extend current rules. do nothing if rule is already contained */
862 static void add_rule(struct ieee80211_reg_rule *rule,
863                      struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
864 {
865         struct ieee80211_reg_rule *tmp_rule;
866         int i;
867
868         for (i = 0; i < *n_rules; i++) {
869                 tmp_rule = &reg_rules[i];
870                 /* rule is already contained - do nothing */
871                 if (rule_contains(tmp_rule, rule))
872                         return;
873
874                 /* extend rule if possible */
875                 if (rule_contains(rule, tmp_rule)) {
876                         memcpy(tmp_rule, rule, sizeof(*rule));
877                         return;
878                 }
879         }
880
881         memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
882         (*n_rules)++;
883 }
884
885 /**
886  * regdom_intersect - do the intersection between two regulatory domains
887  * @rd1: first regulatory domain
888  * @rd2: second regulatory domain
889  *
890  * Use this function to get the intersection between two regulatory domains.
891  * Once completed we will mark the alpha2 for the rd as intersected, "98",
892  * as no one single alpha2 can represent this regulatory domain.
893  *
894  * Returns a pointer to the regulatory domain structure which will hold the
895  * resulting intersection of rules between rd1 and rd2. We will
896  * kzalloc() this structure for you.
897  */
898 static struct ieee80211_regdomain *
899 regdom_intersect(const struct ieee80211_regdomain *rd1,
900                  const struct ieee80211_regdomain *rd2)
901 {
902         int r, size_of_regd;
903         unsigned int x, y;
904         unsigned int num_rules = 0;
905         const struct ieee80211_reg_rule *rule1, *rule2;
906         struct ieee80211_reg_rule intersected_rule;
907         struct ieee80211_regdomain *rd;
908
909         if (!rd1 || !rd2)
910                 return NULL;
911
912         /*
913          * First we get a count of the rules we'll need, then we actually
914          * build them. This is to so we can malloc() and free() a
915          * regdomain once. The reason we use reg_rules_intersect() here
916          * is it will return -EINVAL if the rule computed makes no sense.
917          * All rules that do check out OK are valid.
918          */
919
920         for (x = 0; x < rd1->n_reg_rules; x++) {
921                 rule1 = &rd1->reg_rules[x];
922                 for (y = 0; y < rd2->n_reg_rules; y++) {
923                         rule2 = &rd2->reg_rules[y];
924                         if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
925                                                  &intersected_rule))
926                                 num_rules++;
927                 }
928         }
929
930         if (!num_rules)
931                 return NULL;
932
933         size_of_regd = sizeof(struct ieee80211_regdomain) +
934                        num_rules * sizeof(struct ieee80211_reg_rule);
935
936         rd = kzalloc(size_of_regd, GFP_KERNEL);
937         if (!rd)
938                 return NULL;
939
940         for (x = 0; x < rd1->n_reg_rules; x++) {
941                 rule1 = &rd1->reg_rules[x];
942                 for (y = 0; y < rd2->n_reg_rules; y++) {
943                         rule2 = &rd2->reg_rules[y];
944                         r = reg_rules_intersect(rd1, rd2, rule1, rule2,
945                                                 &intersected_rule);
946                         /*
947                          * No need to memset here the intersected rule here as
948                          * we're not using the stack anymore
949                          */
950                         if (r)
951                                 continue;
952
953                         add_rule(&intersected_rule, rd->reg_rules,
954                                  &rd->n_reg_rules);
955                 }
956         }
957
958         rd->alpha2[0] = '9';
959         rd->alpha2[1] = '8';
960         rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
961                                                   rd2->dfs_region);
962
963         return rd;
964 }
965
966 /*
967  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
968  * want to just have the channel structure use these
969  */
970 static u32 map_regdom_flags(u32 rd_flags)
971 {
972         u32 channel_flags = 0;
973         if (rd_flags & NL80211_RRF_NO_IR_ALL)
974                 channel_flags |= IEEE80211_CHAN_NO_IR;
975         if (rd_flags & NL80211_RRF_DFS)
976                 channel_flags |= IEEE80211_CHAN_RADAR;
977         if (rd_flags & NL80211_RRF_NO_OFDM)
978                 channel_flags |= IEEE80211_CHAN_NO_OFDM;
979         if (rd_flags & NL80211_RRF_NO_OUTDOOR)
980                 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
981         if (rd_flags & NL80211_RRF_GO_CONCURRENT)
982                 channel_flags |= IEEE80211_CHAN_GO_CONCURRENT;
983         if (rd_flags & NL80211_RRF_NO_HT40MINUS)
984                 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
985         if (rd_flags & NL80211_RRF_NO_HT40PLUS)
986                 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
987         if (rd_flags & NL80211_RRF_NO_80MHZ)
988                 channel_flags |= IEEE80211_CHAN_NO_80MHZ;
989         if (rd_flags & NL80211_RRF_NO_160MHZ)
990                 channel_flags |= IEEE80211_CHAN_NO_160MHZ;
991         return channel_flags;
992 }
993
994 static const struct ieee80211_reg_rule *
995 freq_reg_info_regd(struct wiphy *wiphy, u32 center_freq,
996                    const struct ieee80211_regdomain *regd)
997 {
998         int i;
999         bool band_rule_found = false;
1000         bool bw_fits = false;
1001
1002         if (!regd)
1003                 return ERR_PTR(-EINVAL);
1004
1005         for (i = 0; i < regd->n_reg_rules; i++) {
1006                 const struct ieee80211_reg_rule *rr;
1007                 const struct ieee80211_freq_range *fr = NULL;
1008
1009                 rr = &regd->reg_rules[i];
1010                 fr = &rr->freq_range;
1011
1012                 /*
1013                  * We only need to know if one frequency rule was
1014                  * was in center_freq's band, that's enough, so lets
1015                  * not overwrite it once found
1016                  */
1017                 if (!band_rule_found)
1018                         band_rule_found = freq_in_rule_band(fr, center_freq);
1019
1020                 bw_fits = reg_does_bw_fit(fr, center_freq, MHZ_TO_KHZ(20));
1021
1022                 if (band_rule_found && bw_fits)
1023                         return rr;
1024         }
1025
1026         if (!band_rule_found)
1027                 return ERR_PTR(-ERANGE);
1028
1029         return ERR_PTR(-EINVAL);
1030 }
1031
1032 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1033                                                u32 center_freq)
1034 {
1035         const struct ieee80211_regdomain *regd;
1036
1037         regd = reg_get_regdomain(wiphy);
1038
1039         return freq_reg_info_regd(wiphy, center_freq, regd);
1040 }
1041 EXPORT_SYMBOL(freq_reg_info);
1042
1043 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1044 {
1045         switch (initiator) {
1046         case NL80211_REGDOM_SET_BY_CORE:
1047                 return "core";
1048         case NL80211_REGDOM_SET_BY_USER:
1049                 return "user";
1050         case NL80211_REGDOM_SET_BY_DRIVER:
1051                 return "driver";
1052         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1053                 return "country IE";
1054         default:
1055                 WARN_ON(1);
1056                 return "bug";
1057         }
1058 }
1059 EXPORT_SYMBOL(reg_initiator_name);
1060
1061 #ifdef CONFIG_CFG80211_REG_DEBUG
1062 static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain *regd,
1063                                     struct ieee80211_channel *chan,
1064                                     const struct ieee80211_reg_rule *reg_rule)
1065 {
1066         const struct ieee80211_power_rule *power_rule;
1067         const struct ieee80211_freq_range *freq_range;
1068         char max_antenna_gain[32], bw[32];
1069
1070         power_rule = &reg_rule->power_rule;
1071         freq_range = &reg_rule->freq_range;
1072
1073         if (!power_rule->max_antenna_gain)
1074                 snprintf(max_antenna_gain, sizeof(max_antenna_gain), "N/A");
1075         else
1076                 snprintf(max_antenna_gain, sizeof(max_antenna_gain), "%d",
1077                          power_rule->max_antenna_gain);
1078
1079         if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1080                 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
1081                          freq_range->max_bandwidth_khz,
1082                          reg_get_max_bandwidth(regd, reg_rule));
1083         else
1084                 snprintf(bw, sizeof(bw), "%d KHz",
1085                          freq_range->max_bandwidth_khz);
1086
1087         REG_DBG_PRINT("Updating information on frequency %d MHz with regulatory rule:\n",
1088                       chan->center_freq);
1089
1090         REG_DBG_PRINT("%d KHz - %d KHz @ %s), (%s mBi, %d mBm)\n",
1091                       freq_range->start_freq_khz, freq_range->end_freq_khz,
1092                       bw, max_antenna_gain,
1093                       power_rule->max_eirp);
1094 }
1095 #else
1096 static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain *regd,
1097                                     struct ieee80211_channel *chan,
1098                                     const struct ieee80211_reg_rule *reg_rule)
1099 {
1100         return;
1101 }
1102 #endif
1103
1104 /*
1105  * Note that right now we assume the desired channel bandwidth
1106  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1107  * per channel, the primary and the extension channel).
1108  */
1109 static void handle_channel(struct wiphy *wiphy,
1110                            enum nl80211_reg_initiator initiator,
1111                            struct ieee80211_channel *chan)
1112 {
1113         u32 flags, bw_flags = 0;
1114         const struct ieee80211_reg_rule *reg_rule = NULL;
1115         const struct ieee80211_power_rule *power_rule = NULL;
1116         const struct ieee80211_freq_range *freq_range = NULL;
1117         struct wiphy *request_wiphy = NULL;
1118         struct regulatory_request *lr = get_last_request();
1119         const struct ieee80211_regdomain *regd;
1120         u32 max_bandwidth_khz;
1121
1122         request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1123
1124         flags = chan->orig_flags;
1125
1126         reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
1127         if (IS_ERR(reg_rule)) {
1128                 /*
1129                  * We will disable all channels that do not match our
1130                  * received regulatory rule unless the hint is coming
1131                  * from a Country IE and the Country IE had no information
1132                  * about a band. The IEEE 802.11 spec allows for an AP
1133                  * to send only a subset of the regulatory rules allowed,
1134                  * so an AP in the US that only supports 2.4 GHz may only send
1135                  * a country IE with information for the 2.4 GHz band
1136                  * while 5 GHz is still supported.
1137                  */
1138                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1139                     PTR_ERR(reg_rule) == -ERANGE)
1140                         return;
1141
1142                 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1143                     request_wiphy && request_wiphy == wiphy &&
1144                     request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1145                         REG_DBG_PRINT("Disabling freq %d MHz for good\n",
1146                                       chan->center_freq);
1147                         chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1148                         chan->flags = chan->orig_flags;
1149                 } else {
1150                         REG_DBG_PRINT("Disabling freq %d MHz\n",
1151                                       chan->center_freq);
1152                         chan->flags |= IEEE80211_CHAN_DISABLED;
1153                 }
1154                 return;
1155         }
1156
1157         regd = reg_get_regdomain(wiphy);
1158         chan_reg_rule_print_dbg(regd, chan, reg_rule);
1159
1160         power_rule = &reg_rule->power_rule;
1161         freq_range = &reg_rule->freq_range;
1162
1163         max_bandwidth_khz = freq_range->max_bandwidth_khz;
1164         /* Check if auto calculation requested */
1165         if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1166                 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1167
1168         if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1169                 bw_flags = IEEE80211_CHAN_NO_HT40;
1170         if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1171                 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1172         if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1173                 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1174
1175         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1176             request_wiphy && request_wiphy == wiphy &&
1177             request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1178                 /*
1179                  * This guarantees the driver's requested regulatory domain
1180                  * will always be used as a base for further regulatory
1181                  * settings
1182                  */
1183                 chan->flags = chan->orig_flags =
1184                         map_regdom_flags(reg_rule->flags) | bw_flags;
1185                 chan->max_antenna_gain = chan->orig_mag =
1186                         (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1187                 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1188                         (int) MBM_TO_DBM(power_rule->max_eirp);
1189
1190                 if (chan->flags & IEEE80211_CHAN_RADAR) {
1191                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1192                         if (reg_rule->dfs_cac_ms)
1193                                 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1194                 }
1195
1196                 return;
1197         }
1198
1199         chan->dfs_state = NL80211_DFS_USABLE;
1200         chan->dfs_state_entered = jiffies;
1201
1202         chan->beacon_found = false;
1203         chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1204         chan->max_antenna_gain =
1205                 min_t(int, chan->orig_mag,
1206                       MBI_TO_DBI(power_rule->max_antenna_gain));
1207         chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1208
1209         if (chan->flags & IEEE80211_CHAN_RADAR) {
1210                 if (reg_rule->dfs_cac_ms)
1211                         chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1212                 else
1213                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1214         }
1215
1216         if (chan->orig_mpwr) {
1217                 /*
1218                  * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1219                  * will always follow the passed country IE power settings.
1220                  */
1221                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1222                     wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1223                         chan->max_power = chan->max_reg_power;
1224                 else
1225                         chan->max_power = min(chan->orig_mpwr,
1226                                               chan->max_reg_power);
1227         } else
1228                 chan->max_power = chan->max_reg_power;
1229 }
1230
1231 static void handle_band(struct wiphy *wiphy,
1232                         enum nl80211_reg_initiator initiator,
1233                         struct ieee80211_supported_band *sband)
1234 {
1235         unsigned int i;
1236
1237         if (!sband)
1238                 return;
1239
1240         for (i = 0; i < sband->n_channels; i++)
1241                 handle_channel(wiphy, initiator, &sband->channels[i]);
1242 }
1243
1244 static bool reg_request_cell_base(struct regulatory_request *request)
1245 {
1246         if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1247                 return false;
1248         return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1249 }
1250
1251 static bool reg_request_indoor(struct regulatory_request *request)
1252 {
1253         if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1254                 return false;
1255         return request->user_reg_hint_type == NL80211_USER_REG_HINT_INDOOR;
1256 }
1257
1258 bool reg_last_request_cell_base(void)
1259 {
1260         return reg_request_cell_base(get_last_request());
1261 }
1262
1263 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1264 /* Core specific check */
1265 static enum reg_request_treatment
1266 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1267 {
1268         struct regulatory_request *lr = get_last_request();
1269
1270         if (!reg_num_devs_support_basehint)
1271                 return REG_REQ_IGNORE;
1272
1273         if (reg_request_cell_base(lr) &&
1274             !regdom_changes(pending_request->alpha2))
1275                 return REG_REQ_ALREADY_SET;
1276
1277         return REG_REQ_OK;
1278 }
1279
1280 /* Device specific check */
1281 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1282 {
1283         return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1284 }
1285 #else
1286 static int reg_ignore_cell_hint(struct regulatory_request *pending_request)
1287 {
1288         return REG_REQ_IGNORE;
1289 }
1290
1291 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1292 {
1293         return true;
1294 }
1295 #endif
1296
1297 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1298 {
1299         if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1300             !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1301                 return true;
1302         return false;
1303 }
1304
1305 static bool ignore_reg_update(struct wiphy *wiphy,
1306                               enum nl80211_reg_initiator initiator)
1307 {
1308         struct regulatory_request *lr = get_last_request();
1309
1310         if (!lr) {
1311                 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1312                               "since last_request is not set\n",
1313                               reg_initiator_name(initiator));
1314                 return true;
1315         }
1316
1317         if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1318             wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1319                 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1320                               "since the driver uses its own custom "
1321                               "regulatory domain\n",
1322                               reg_initiator_name(initiator));
1323                 return true;
1324         }
1325
1326         /*
1327          * wiphy->regd will be set once the device has its own
1328          * desired regulatory domain set
1329          */
1330         if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1331             initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1332             !is_world_regdom(lr->alpha2)) {
1333                 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1334                               "since the driver requires its own regulatory "
1335                               "domain to be set first\n",
1336                               reg_initiator_name(initiator));
1337                 return true;
1338         }
1339
1340         if (reg_request_cell_base(lr))
1341                 return reg_dev_ignore_cell_hint(wiphy);
1342
1343         return false;
1344 }
1345
1346 static bool reg_is_world_roaming(struct wiphy *wiphy)
1347 {
1348         const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1349         const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1350         struct regulatory_request *lr = get_last_request();
1351
1352         if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1353                 return true;
1354
1355         if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1356             wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1357                 return true;
1358
1359         return false;
1360 }
1361
1362 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1363                               struct reg_beacon *reg_beacon)
1364 {
1365         struct ieee80211_supported_band *sband;
1366         struct ieee80211_channel *chan;
1367         bool channel_changed = false;
1368         struct ieee80211_channel chan_before;
1369
1370         sband = wiphy->bands[reg_beacon->chan.band];
1371         chan = &sband->channels[chan_idx];
1372
1373         if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1374                 return;
1375
1376         if (chan->beacon_found)
1377                 return;
1378
1379         chan->beacon_found = true;
1380
1381         if (!reg_is_world_roaming(wiphy))
1382                 return;
1383
1384         if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1385                 return;
1386
1387         chan_before.center_freq = chan->center_freq;
1388         chan_before.flags = chan->flags;
1389
1390         if (chan->flags & IEEE80211_CHAN_NO_IR) {
1391                 chan->flags &= ~IEEE80211_CHAN_NO_IR;
1392                 channel_changed = true;
1393         }
1394
1395         if (channel_changed)
1396                 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1397 }
1398
1399 /*
1400  * Called when a scan on a wiphy finds a beacon on
1401  * new channel
1402  */
1403 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1404                                     struct reg_beacon *reg_beacon)
1405 {
1406         unsigned int i;
1407         struct ieee80211_supported_band *sband;
1408
1409         if (!wiphy->bands[reg_beacon->chan.band])
1410                 return;
1411
1412         sband = wiphy->bands[reg_beacon->chan.band];
1413
1414         for (i = 0; i < sband->n_channels; i++)
1415                 handle_reg_beacon(wiphy, i, reg_beacon);
1416 }
1417
1418 /*
1419  * Called upon reg changes or a new wiphy is added
1420  */
1421 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1422 {
1423         unsigned int i;
1424         struct ieee80211_supported_band *sband;
1425         struct reg_beacon *reg_beacon;
1426
1427         list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1428                 if (!wiphy->bands[reg_beacon->chan.band])
1429                         continue;
1430                 sband = wiphy->bands[reg_beacon->chan.band];
1431                 for (i = 0; i < sband->n_channels; i++)
1432                         handle_reg_beacon(wiphy, i, reg_beacon);
1433         }
1434 }
1435
1436 /* Reap the advantages of previously found beacons */
1437 static void reg_process_beacons(struct wiphy *wiphy)
1438 {
1439         /*
1440          * Means we are just firing up cfg80211, so no beacons would
1441          * have been processed yet.
1442          */
1443         if (!last_request)
1444                 return;
1445         wiphy_update_beacon_reg(wiphy);
1446 }
1447
1448 static bool is_ht40_allowed(struct ieee80211_channel *chan)
1449 {
1450         if (!chan)
1451                 return false;
1452         if (chan->flags & IEEE80211_CHAN_DISABLED)
1453                 return false;
1454         /* This would happen when regulatory rules disallow HT40 completely */
1455         if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
1456                 return false;
1457         return true;
1458 }
1459
1460 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1461                                          struct ieee80211_channel *channel)
1462 {
1463         struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
1464         struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1465         unsigned int i;
1466
1467         if (!is_ht40_allowed(channel)) {
1468                 channel->flags |= IEEE80211_CHAN_NO_HT40;
1469                 return;
1470         }
1471
1472         /*
1473          * We need to ensure the extension channels exist to
1474          * be able to use HT40- or HT40+, this finds them (or not)
1475          */
1476         for (i = 0; i < sband->n_channels; i++) {
1477                 struct ieee80211_channel *c = &sband->channels[i];
1478
1479                 if (c->center_freq == (channel->center_freq - 20))
1480                         channel_before = c;
1481                 if (c->center_freq == (channel->center_freq + 20))
1482                         channel_after = c;
1483         }
1484
1485         /*
1486          * Please note that this assumes target bandwidth is 20 MHz,
1487          * if that ever changes we also need to change the below logic
1488          * to include that as well.
1489          */
1490         if (!is_ht40_allowed(channel_before))
1491                 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1492         else
1493                 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1494
1495         if (!is_ht40_allowed(channel_after))
1496                 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1497         else
1498                 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1499 }
1500
1501 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1502                                       struct ieee80211_supported_band *sband)
1503 {
1504         unsigned int i;
1505
1506         if (!sband)
1507                 return;
1508
1509         for (i = 0; i < sband->n_channels; i++)
1510                 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
1511 }
1512
1513 static void reg_process_ht_flags(struct wiphy *wiphy)
1514 {
1515         enum ieee80211_band band;
1516
1517         if (!wiphy)
1518                 return;
1519
1520         for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1521                 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
1522 }
1523
1524 static void reg_call_notifier(struct wiphy *wiphy,
1525                               struct regulatory_request *request)
1526 {
1527         if (wiphy->reg_notifier)
1528                 wiphy->reg_notifier(wiphy, request);
1529 }
1530
1531 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
1532 {
1533         struct cfg80211_chan_def chandef;
1534         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1535         enum nl80211_iftype iftype;
1536
1537         wdev_lock(wdev);
1538         iftype = wdev->iftype;
1539
1540         /* make sure the interface is active */
1541         if (!wdev->netdev || !netif_running(wdev->netdev))
1542                 goto wdev_inactive_unlock;
1543
1544         switch (iftype) {
1545         case NL80211_IFTYPE_AP:
1546         case NL80211_IFTYPE_P2P_GO:
1547                 if (!wdev->beacon_interval)
1548                         goto wdev_inactive_unlock;
1549                 chandef = wdev->chandef;
1550                 break;
1551         case NL80211_IFTYPE_ADHOC:
1552                 if (!wdev->ssid_len)
1553                         goto wdev_inactive_unlock;
1554                 chandef = wdev->chandef;
1555                 break;
1556         case NL80211_IFTYPE_STATION:
1557         case NL80211_IFTYPE_P2P_CLIENT:
1558                 if (!wdev->current_bss ||
1559                     !wdev->current_bss->pub.channel)
1560                         goto wdev_inactive_unlock;
1561
1562                 if (!rdev->ops->get_channel ||
1563                     rdev_get_channel(rdev, wdev, &chandef))
1564                         cfg80211_chandef_create(&chandef,
1565                                                 wdev->current_bss->pub.channel,
1566                                                 NL80211_CHAN_NO_HT);
1567                 break;
1568         case NL80211_IFTYPE_MONITOR:
1569         case NL80211_IFTYPE_AP_VLAN:
1570         case NL80211_IFTYPE_P2P_DEVICE:
1571                 /* no enforcement required */
1572                 break;
1573         default:
1574                 /* others not implemented for now */
1575                 WARN_ON(1);
1576                 break;
1577         }
1578
1579         wdev_unlock(wdev);
1580
1581         switch (iftype) {
1582         case NL80211_IFTYPE_AP:
1583         case NL80211_IFTYPE_P2P_GO:
1584         case NL80211_IFTYPE_ADHOC:
1585                 return cfg80211_reg_can_beacon(wiphy, &chandef, iftype);
1586         case NL80211_IFTYPE_STATION:
1587         case NL80211_IFTYPE_P2P_CLIENT:
1588                 return cfg80211_chandef_usable(wiphy, &chandef,
1589                                                IEEE80211_CHAN_DISABLED);
1590         default:
1591                 break;
1592         }
1593
1594         return true;
1595
1596 wdev_inactive_unlock:
1597         wdev_unlock(wdev);
1598         return true;
1599 }
1600
1601 static void reg_leave_invalid_chans(struct wiphy *wiphy)
1602 {
1603         struct wireless_dev *wdev;
1604         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1605
1606         ASSERT_RTNL();
1607
1608         list_for_each_entry(wdev, &rdev->wdev_list, list)
1609                 if (!reg_wdev_chan_valid(wiphy, wdev))
1610                         cfg80211_leave(rdev, wdev);
1611 }
1612
1613 static void reg_check_chans_work(struct work_struct *work)
1614 {
1615         struct cfg80211_registered_device *rdev;
1616
1617         REG_DBG_PRINT("Verifying active interfaces after reg change\n");
1618         rtnl_lock();
1619
1620         list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1621                 if (!(rdev->wiphy.regulatory_flags &
1622                       REGULATORY_IGNORE_STALE_KICKOFF))
1623                         reg_leave_invalid_chans(&rdev->wiphy);
1624
1625         rtnl_unlock();
1626 }
1627
1628 static void reg_check_channels(void)
1629 {
1630         /*
1631          * Give usermode a chance to do something nicer (move to another
1632          * channel, orderly disconnection), before forcing a disconnection.
1633          */
1634         mod_delayed_work(system_power_efficient_wq,
1635                          &reg_check_chans,
1636                          msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
1637 }
1638
1639 static void wiphy_update_regulatory(struct wiphy *wiphy,
1640                                     enum nl80211_reg_initiator initiator)
1641 {
1642         enum ieee80211_band band;
1643         struct regulatory_request *lr = get_last_request();
1644
1645         if (ignore_reg_update(wiphy, initiator)) {
1646                 /*
1647                  * Regulatory updates set by CORE are ignored for custom
1648                  * regulatory cards. Let us notify the changes to the driver,
1649                  * as some drivers used this to restore its orig_* reg domain.
1650                  */
1651                 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1652                     wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1653                         reg_call_notifier(wiphy, lr);
1654                 return;
1655         }
1656
1657         lr->dfs_region = get_cfg80211_regdom()->dfs_region;
1658
1659         for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1660                 handle_band(wiphy, initiator, wiphy->bands[band]);
1661
1662         reg_process_beacons(wiphy);
1663         reg_process_ht_flags(wiphy);
1664         reg_call_notifier(wiphy, lr);
1665 }
1666
1667 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1668 {
1669         struct cfg80211_registered_device *rdev;
1670         struct wiphy *wiphy;
1671
1672         ASSERT_RTNL();
1673
1674         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1675                 wiphy = &rdev->wiphy;
1676                 wiphy_update_regulatory(wiphy, initiator);
1677         }
1678
1679         reg_check_channels();
1680 }
1681
1682 static void handle_channel_custom(struct wiphy *wiphy,
1683                                   struct ieee80211_channel *chan,
1684                                   const struct ieee80211_regdomain *regd)
1685 {
1686         u32 bw_flags = 0;
1687         const struct ieee80211_reg_rule *reg_rule = NULL;
1688         const struct ieee80211_power_rule *power_rule = NULL;
1689         const struct ieee80211_freq_range *freq_range = NULL;
1690         u32 max_bandwidth_khz;
1691
1692         reg_rule = freq_reg_info_regd(wiphy, MHZ_TO_KHZ(chan->center_freq),
1693                                       regd);
1694
1695         if (IS_ERR(reg_rule)) {
1696                 REG_DBG_PRINT("Disabling freq %d MHz as custom regd has no rule that fits it\n",
1697                               chan->center_freq);
1698                 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1699                 chan->flags = chan->orig_flags;
1700                 return;
1701         }
1702
1703         chan_reg_rule_print_dbg(regd, chan, reg_rule);
1704
1705         power_rule = &reg_rule->power_rule;
1706         freq_range = &reg_rule->freq_range;
1707
1708         max_bandwidth_khz = freq_range->max_bandwidth_khz;
1709         /* Check if auto calculation requested */
1710         if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1711                 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1712
1713         if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1714                 bw_flags = IEEE80211_CHAN_NO_HT40;
1715         if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1716                 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1717         if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1718                 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1719
1720         chan->dfs_state_entered = jiffies;
1721         chan->dfs_state = NL80211_DFS_USABLE;
1722
1723         chan->beacon_found = false;
1724         chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1725         chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1726         chan->max_reg_power = chan->max_power =
1727                 (int) MBM_TO_DBM(power_rule->max_eirp);
1728
1729         if (chan->flags & IEEE80211_CHAN_RADAR) {
1730                 if (reg_rule->dfs_cac_ms)
1731                         chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1732                 else
1733                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1734         }
1735
1736         chan->max_power = chan->max_reg_power;
1737 }
1738
1739 static void handle_band_custom(struct wiphy *wiphy,
1740                                struct ieee80211_supported_band *sband,
1741                                const struct ieee80211_regdomain *regd)
1742 {
1743         unsigned int i;
1744
1745         if (!sband)
1746                 return;
1747
1748         for (i = 0; i < sband->n_channels; i++)
1749                 handle_channel_custom(wiphy, &sband->channels[i], regd);
1750 }
1751
1752 /* Used by drivers prior to wiphy registration */
1753 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1754                                    const struct ieee80211_regdomain *regd)
1755 {
1756         enum ieee80211_band band;
1757         unsigned int bands_set = 0;
1758
1759         WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
1760              "wiphy should have REGULATORY_CUSTOM_REG\n");
1761         wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
1762
1763         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1764                 if (!wiphy->bands[band])
1765                         continue;
1766                 handle_band_custom(wiphy, wiphy->bands[band], regd);
1767                 bands_set++;
1768         }
1769
1770         /*
1771          * no point in calling this if it won't have any effect
1772          * on your device's supported bands.
1773          */
1774         WARN_ON(!bands_set);
1775 }
1776 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1777
1778 static void reg_set_request_processed(void)
1779 {
1780         bool need_more_processing = false;
1781         struct regulatory_request *lr = get_last_request();
1782
1783         lr->processed = true;
1784
1785         spin_lock(&reg_requests_lock);
1786         if (!list_empty(&reg_requests_list))
1787                 need_more_processing = true;
1788         spin_unlock(&reg_requests_lock);
1789
1790         if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
1791                 cancel_delayed_work(&reg_timeout);
1792
1793         if (need_more_processing)
1794                 schedule_work(&reg_work);
1795 }
1796
1797 /**
1798  * reg_process_hint_core - process core regulatory requests
1799  * @pending_request: a pending core regulatory request
1800  *
1801  * The wireless subsystem can use this function to process
1802  * a regulatory request issued by the regulatory core.
1803  *
1804  * Returns one of the different reg request treatment values.
1805  */
1806 static enum reg_request_treatment
1807 reg_process_hint_core(struct regulatory_request *core_request)
1808 {
1809
1810         core_request->intersect = false;
1811         core_request->processed = false;
1812
1813         reg_update_last_request(core_request);
1814
1815         return reg_call_crda(core_request);
1816 }
1817
1818 static enum reg_request_treatment
1819 __reg_process_hint_user(struct regulatory_request *user_request)
1820 {
1821         struct regulatory_request *lr = get_last_request();
1822
1823         if (reg_request_indoor(user_request)) {
1824                 reg_is_indoor = true;
1825                 return REG_REQ_USER_HINT_HANDLED;
1826         }
1827
1828         if (reg_request_cell_base(user_request))
1829                 return reg_ignore_cell_hint(user_request);
1830
1831         if (reg_request_cell_base(lr))
1832                 return REG_REQ_IGNORE;
1833
1834         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1835                 return REG_REQ_INTERSECT;
1836         /*
1837          * If the user knows better the user should set the regdom
1838          * to their country before the IE is picked up
1839          */
1840         if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
1841             lr->intersect)
1842                 return REG_REQ_IGNORE;
1843         /*
1844          * Process user requests only after previous user/driver/core
1845          * requests have been processed
1846          */
1847         if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
1848              lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1849              lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
1850             regdom_changes(lr->alpha2))
1851                 return REG_REQ_IGNORE;
1852
1853         if (!regdom_changes(user_request->alpha2))
1854                 return REG_REQ_ALREADY_SET;
1855
1856         return REG_REQ_OK;
1857 }
1858
1859 /**
1860  * reg_process_hint_user - process user regulatory requests
1861  * @user_request: a pending user regulatory request
1862  *
1863  * The wireless subsystem can use this function to process
1864  * a regulatory request initiated by userspace.
1865  *
1866  * Returns one of the different reg request treatment values.
1867  */
1868 static enum reg_request_treatment
1869 reg_process_hint_user(struct regulatory_request *user_request)
1870 {
1871         enum reg_request_treatment treatment;
1872
1873         treatment = __reg_process_hint_user(user_request);
1874         if (treatment == REG_REQ_IGNORE ||
1875             treatment == REG_REQ_ALREADY_SET ||
1876             treatment == REG_REQ_USER_HINT_HANDLED) {
1877                 reg_free_request(user_request);
1878                 return treatment;
1879         }
1880
1881         user_request->intersect = treatment == REG_REQ_INTERSECT;
1882         user_request->processed = false;
1883
1884         reg_update_last_request(user_request);
1885
1886         user_alpha2[0] = user_request->alpha2[0];
1887         user_alpha2[1] = user_request->alpha2[1];
1888
1889         return reg_call_crda(user_request);
1890 }
1891
1892 static enum reg_request_treatment
1893 __reg_process_hint_driver(struct regulatory_request *driver_request)
1894 {
1895         struct regulatory_request *lr = get_last_request();
1896
1897         if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
1898                 if (regdom_changes(driver_request->alpha2))
1899                         return REG_REQ_OK;
1900                 return REG_REQ_ALREADY_SET;
1901         }
1902
1903         /*
1904          * This would happen if you unplug and plug your card
1905          * back in or if you add a new device for which the previously
1906          * loaded card also agrees on the regulatory domain.
1907          */
1908         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1909             !regdom_changes(driver_request->alpha2))
1910                 return REG_REQ_ALREADY_SET;
1911
1912         return REG_REQ_INTERSECT;
1913 }
1914
1915 /**
1916  * reg_process_hint_driver - process driver regulatory requests
1917  * @driver_request: a pending driver regulatory request
1918  *
1919  * The wireless subsystem can use this function to process
1920  * a regulatory request issued by an 802.11 driver.
1921  *
1922  * Returns one of the different reg request treatment values.
1923  */
1924 static enum reg_request_treatment
1925 reg_process_hint_driver(struct wiphy *wiphy,
1926                         struct regulatory_request *driver_request)
1927 {
1928         const struct ieee80211_regdomain *regd, *tmp;
1929         enum reg_request_treatment treatment;
1930
1931         treatment = __reg_process_hint_driver(driver_request);
1932
1933         switch (treatment) {
1934         case REG_REQ_OK:
1935                 break;
1936         case REG_REQ_IGNORE:
1937         case REG_REQ_USER_HINT_HANDLED:
1938                 reg_free_request(driver_request);
1939                 return treatment;
1940         case REG_REQ_INTERSECT:
1941                 /* fall through */
1942         case REG_REQ_ALREADY_SET:
1943                 regd = reg_copy_regd(get_cfg80211_regdom());
1944                 if (IS_ERR(regd)) {
1945                         reg_free_request(driver_request);
1946                         return REG_REQ_IGNORE;
1947                 }
1948
1949                 tmp = get_wiphy_regdom(wiphy);
1950                 rcu_assign_pointer(wiphy->regd, regd);
1951                 rcu_free_regdom(tmp);
1952         }
1953
1954
1955         driver_request->intersect = treatment == REG_REQ_INTERSECT;
1956         driver_request->processed = false;
1957
1958         reg_update_last_request(driver_request);
1959
1960         /*
1961          * Since CRDA will not be called in this case as we already
1962          * have applied the requested regulatory domain before we just
1963          * inform userspace we have processed the request
1964          */
1965         if (treatment == REG_REQ_ALREADY_SET) {
1966                 nl80211_send_reg_change_event(driver_request);
1967                 reg_set_request_processed();
1968                 return treatment;
1969         }
1970
1971         return reg_call_crda(driver_request);
1972 }
1973
1974 static enum reg_request_treatment
1975 __reg_process_hint_country_ie(struct wiphy *wiphy,
1976                               struct regulatory_request *country_ie_request)
1977 {
1978         struct wiphy *last_wiphy = NULL;
1979         struct regulatory_request *lr = get_last_request();
1980
1981         if (reg_request_cell_base(lr)) {
1982                 /* Trust a Cell base station over the AP's country IE */
1983                 if (regdom_changes(country_ie_request->alpha2))
1984                         return REG_REQ_IGNORE;
1985                 return REG_REQ_ALREADY_SET;
1986         } else {
1987                 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
1988                         return REG_REQ_IGNORE;
1989         }
1990
1991         if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
1992                 return -EINVAL;
1993
1994         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
1995                 return REG_REQ_OK;
1996
1997         last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1998
1999         if (last_wiphy != wiphy) {
2000                 /*
2001                  * Two cards with two APs claiming different
2002                  * Country IE alpha2s. We could
2003                  * intersect them, but that seems unlikely
2004                  * to be correct. Reject second one for now.
2005                  */
2006                 if (regdom_changes(country_ie_request->alpha2))
2007                         return REG_REQ_IGNORE;
2008                 return REG_REQ_ALREADY_SET;
2009         }
2010
2011         if (regdom_changes(country_ie_request->alpha2))
2012                 return REG_REQ_OK;
2013         return REG_REQ_ALREADY_SET;
2014 }
2015
2016 /**
2017  * reg_process_hint_country_ie - process regulatory requests from country IEs
2018  * @country_ie_request: a regulatory request from a country IE
2019  *
2020  * The wireless subsystem can use this function to process
2021  * a regulatory request issued by a country Information Element.
2022  *
2023  * Returns one of the different reg request treatment values.
2024  */
2025 static enum reg_request_treatment
2026 reg_process_hint_country_ie(struct wiphy *wiphy,
2027                             struct regulatory_request *country_ie_request)
2028 {
2029         enum reg_request_treatment treatment;
2030
2031         treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2032
2033         switch (treatment) {
2034         case REG_REQ_OK:
2035                 break;
2036         case REG_REQ_IGNORE:
2037         case REG_REQ_USER_HINT_HANDLED:
2038                 /* fall through */
2039         case REG_REQ_ALREADY_SET:
2040                 reg_free_request(country_ie_request);
2041                 return treatment;
2042         case REG_REQ_INTERSECT:
2043                 reg_free_request(country_ie_request);
2044                 /*
2045                  * This doesn't happen yet, not sure we
2046                  * ever want to support it for this case.
2047                  */
2048                 WARN_ONCE(1, "Unexpected intersection for country IEs");
2049                 return REG_REQ_IGNORE;
2050         }
2051
2052         country_ie_request->intersect = false;
2053         country_ie_request->processed = false;
2054
2055         reg_update_last_request(country_ie_request);
2056
2057         return reg_call_crda(country_ie_request);
2058 }
2059
2060 /* This processes *all* regulatory hints */
2061 static void reg_process_hint(struct regulatory_request *reg_request)
2062 {
2063         struct wiphy *wiphy = NULL;
2064         enum reg_request_treatment treatment;
2065
2066         if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
2067                 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
2068
2069         switch (reg_request->initiator) {
2070         case NL80211_REGDOM_SET_BY_CORE:
2071                 reg_process_hint_core(reg_request);
2072                 return;
2073         case NL80211_REGDOM_SET_BY_USER:
2074                 treatment = reg_process_hint_user(reg_request);
2075                 if (treatment == REG_REQ_IGNORE ||
2076                     treatment == REG_REQ_ALREADY_SET ||
2077                     treatment == REG_REQ_USER_HINT_HANDLED)
2078                         return;
2079                 queue_delayed_work(system_power_efficient_wq,
2080                                    &reg_timeout, msecs_to_jiffies(3142));
2081                 return;
2082         case NL80211_REGDOM_SET_BY_DRIVER:
2083                 if (!wiphy)
2084                         goto out_free;
2085                 treatment = reg_process_hint_driver(wiphy, reg_request);
2086                 break;
2087         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2088                 if (!wiphy)
2089                         goto out_free;
2090                 treatment = reg_process_hint_country_ie(wiphy, reg_request);
2091                 break;
2092         default:
2093                 WARN(1, "invalid initiator %d\n", reg_request->initiator);
2094                 goto out_free;
2095         }
2096
2097         /* This is required so that the orig_* parameters are saved */
2098         if (treatment == REG_REQ_ALREADY_SET && wiphy &&
2099             wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2100                 wiphy_update_regulatory(wiphy, reg_request->initiator);
2101                 reg_check_channels();
2102         }
2103
2104         return;
2105
2106 out_free:
2107         reg_free_request(reg_request);
2108 }
2109
2110 /*
2111  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
2112  * Regulatory hints come on a first come first serve basis and we
2113  * must process each one atomically.
2114  */
2115 static void reg_process_pending_hints(void)
2116 {
2117         struct regulatory_request *reg_request, *lr;
2118
2119         lr = get_last_request();
2120
2121         /* When last_request->processed becomes true this will be rescheduled */
2122         if (lr && !lr->processed) {
2123                 reg_process_hint(lr);
2124                 return;
2125         }
2126
2127         spin_lock(&reg_requests_lock);
2128
2129         if (list_empty(&reg_requests_list)) {
2130                 spin_unlock(&reg_requests_lock);
2131                 return;
2132         }
2133
2134         reg_request = list_first_entry(&reg_requests_list,
2135                                        struct regulatory_request,
2136                                        list);
2137         list_del_init(&reg_request->list);
2138
2139         spin_unlock(&reg_requests_lock);
2140
2141         reg_process_hint(reg_request);
2142 }
2143
2144 /* Processes beacon hints -- this has nothing to do with country IEs */
2145 static void reg_process_pending_beacon_hints(void)
2146 {
2147         struct cfg80211_registered_device *rdev;
2148         struct reg_beacon *pending_beacon, *tmp;
2149
2150         /* This goes through the _pending_ beacon list */
2151         spin_lock_bh(&reg_pending_beacons_lock);
2152
2153         list_for_each_entry_safe(pending_beacon, tmp,
2154                                  &reg_pending_beacons, list) {
2155                 list_del_init(&pending_beacon->list);
2156
2157                 /* Applies the beacon hint to current wiphys */
2158                 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2159                         wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
2160
2161                 /* Remembers the beacon hint for new wiphys or reg changes */
2162                 list_add_tail(&pending_beacon->list, &reg_beacon_list);
2163         }
2164
2165         spin_unlock_bh(&reg_pending_beacons_lock);
2166 }
2167
2168 static void reg_todo(struct work_struct *work)
2169 {
2170         rtnl_lock();
2171         reg_process_pending_hints();
2172         reg_process_pending_beacon_hints();
2173         rtnl_unlock();
2174 }
2175
2176 static void queue_regulatory_request(struct regulatory_request *request)
2177 {
2178         request->alpha2[0] = toupper(request->alpha2[0]);
2179         request->alpha2[1] = toupper(request->alpha2[1]);
2180
2181         spin_lock(&reg_requests_lock);
2182         list_add_tail(&request->list, &reg_requests_list);
2183         spin_unlock(&reg_requests_lock);
2184
2185         schedule_work(&reg_work);
2186 }
2187
2188 /*
2189  * Core regulatory hint -- happens during cfg80211_init()
2190  * and when we restore regulatory settings.
2191  */
2192 static int regulatory_hint_core(const char *alpha2)
2193 {
2194         struct regulatory_request *request;
2195
2196         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2197         if (!request)
2198                 return -ENOMEM;
2199
2200         request->alpha2[0] = alpha2[0];
2201         request->alpha2[1] = alpha2[1];
2202         request->initiator = NL80211_REGDOM_SET_BY_CORE;
2203
2204         queue_regulatory_request(request);
2205
2206         return 0;
2207 }
2208
2209 /* User hints */
2210 int regulatory_hint_user(const char *alpha2,
2211                          enum nl80211_user_reg_hint_type user_reg_hint_type)
2212 {
2213         struct regulatory_request *request;
2214
2215         if (WARN_ON(!alpha2))
2216                 return -EINVAL;
2217
2218         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2219         if (!request)
2220                 return -ENOMEM;
2221
2222         request->wiphy_idx = WIPHY_IDX_INVALID;
2223         request->alpha2[0] = alpha2[0];
2224         request->alpha2[1] = alpha2[1];
2225         request->initiator = NL80211_REGDOM_SET_BY_USER;
2226         request->user_reg_hint_type = user_reg_hint_type;
2227
2228         queue_regulatory_request(request);
2229
2230         return 0;
2231 }
2232
2233 int regulatory_hint_indoor_user(void)
2234 {
2235         struct regulatory_request *request;
2236
2237         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2238         if (!request)
2239                 return -ENOMEM;
2240
2241         request->wiphy_idx = WIPHY_IDX_INVALID;
2242         request->initiator = NL80211_REGDOM_SET_BY_USER;
2243         request->user_reg_hint_type = NL80211_USER_REG_HINT_INDOOR;
2244         queue_regulatory_request(request);
2245
2246         return 0;
2247 }
2248
2249 /* Driver hints */
2250 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
2251 {
2252         struct regulatory_request *request;
2253
2254         if (WARN_ON(!alpha2 || !wiphy))
2255                 return -EINVAL;
2256
2257         wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
2258
2259         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2260         if (!request)
2261                 return -ENOMEM;
2262
2263         request->wiphy_idx = get_wiphy_idx(wiphy);
2264
2265         request->alpha2[0] = alpha2[0];
2266         request->alpha2[1] = alpha2[1];
2267         request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
2268
2269         queue_regulatory_request(request);
2270
2271         return 0;
2272 }
2273 EXPORT_SYMBOL(regulatory_hint);
2274
2275 void regulatory_hint_country_ie(struct wiphy *wiphy, enum ieee80211_band band,
2276                                 const u8 *country_ie, u8 country_ie_len)
2277 {
2278         char alpha2[2];
2279         enum environment_cap env = ENVIRON_ANY;
2280         struct regulatory_request *request = NULL, *lr;
2281
2282         /* IE len must be evenly divisible by 2 */
2283         if (country_ie_len & 0x01)
2284                 return;
2285
2286         if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
2287                 return;
2288
2289         request = kzalloc(sizeof(*request), GFP_KERNEL);
2290         if (!request)
2291                 return;
2292
2293         alpha2[0] = country_ie[0];
2294         alpha2[1] = country_ie[1];
2295
2296         if (country_ie[2] == 'I')
2297                 env = ENVIRON_INDOOR;
2298         else if (country_ie[2] == 'O')
2299                 env = ENVIRON_OUTDOOR;
2300
2301         rcu_read_lock();
2302         lr = get_last_request();
2303
2304         if (unlikely(!lr))
2305                 goto out;
2306
2307         /*
2308          * We will run this only upon a successful connection on cfg80211.
2309          * We leave conflict resolution to the workqueue, where can hold
2310          * the RTNL.
2311          */
2312         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2313             lr->wiphy_idx != WIPHY_IDX_INVALID)
2314                 goto out;
2315
2316         request->wiphy_idx = get_wiphy_idx(wiphy);
2317         request->alpha2[0] = alpha2[0];
2318         request->alpha2[1] = alpha2[1];
2319         request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
2320         request->country_ie_env = env;
2321
2322         queue_regulatory_request(request);
2323         request = NULL;
2324 out:
2325         kfree(request);
2326         rcu_read_unlock();
2327 }
2328
2329 static void restore_alpha2(char *alpha2, bool reset_user)
2330 {
2331         /* indicates there is no alpha2 to consider for restoration */
2332         alpha2[0] = '9';
2333         alpha2[1] = '7';
2334
2335         /* The user setting has precedence over the module parameter */
2336         if (is_user_regdom_saved()) {
2337                 /* Unless we're asked to ignore it and reset it */
2338                 if (reset_user) {
2339                         REG_DBG_PRINT("Restoring regulatory settings including user preference\n");
2340                         user_alpha2[0] = '9';
2341                         user_alpha2[1] = '7';
2342
2343                         /*
2344                          * If we're ignoring user settings, we still need to
2345                          * check the module parameter to ensure we put things
2346                          * back as they were for a full restore.
2347                          */
2348                         if (!is_world_regdom(ieee80211_regdom)) {
2349                                 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2350                                               ieee80211_regdom[0], ieee80211_regdom[1]);
2351                                 alpha2[0] = ieee80211_regdom[0];
2352                                 alpha2[1] = ieee80211_regdom[1];
2353                         }
2354                 } else {
2355                         REG_DBG_PRINT("Restoring regulatory settings while preserving user preference for: %c%c\n",
2356                                       user_alpha2[0], user_alpha2[1]);
2357                         alpha2[0] = user_alpha2[0];
2358                         alpha2[1] = user_alpha2[1];
2359                 }
2360         } else if (!is_world_regdom(ieee80211_regdom)) {
2361                 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2362                               ieee80211_regdom[0], ieee80211_regdom[1]);
2363                 alpha2[0] = ieee80211_regdom[0];
2364                 alpha2[1] = ieee80211_regdom[1];
2365         } else
2366                 REG_DBG_PRINT("Restoring regulatory settings\n");
2367 }
2368
2369 static void restore_custom_reg_settings(struct wiphy *wiphy)
2370 {
2371         struct ieee80211_supported_band *sband;
2372         enum ieee80211_band band;
2373         struct ieee80211_channel *chan;
2374         int i;
2375
2376         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
2377                 sband = wiphy->bands[band];
2378                 if (!sband)
2379                         continue;
2380                 for (i = 0; i < sband->n_channels; i++) {
2381                         chan = &sband->channels[i];
2382                         chan->flags = chan->orig_flags;
2383                         chan->max_antenna_gain = chan->orig_mag;
2384                         chan->max_power = chan->orig_mpwr;
2385                         chan->beacon_found = false;
2386                 }
2387         }
2388 }
2389
2390 /*
2391  * Restoring regulatory settings involves ingoring any
2392  * possibly stale country IE information and user regulatory
2393  * settings if so desired, this includes any beacon hints
2394  * learned as we could have traveled outside to another country
2395  * after disconnection. To restore regulatory settings we do
2396  * exactly what we did at bootup:
2397  *
2398  *   - send a core regulatory hint
2399  *   - send a user regulatory hint if applicable
2400  *
2401  * Device drivers that send a regulatory hint for a specific country
2402  * keep their own regulatory domain on wiphy->regd so that does does
2403  * not need to be remembered.
2404  */
2405 static void restore_regulatory_settings(bool reset_user)
2406 {
2407         char alpha2[2];
2408         char world_alpha2[2];
2409         struct reg_beacon *reg_beacon, *btmp;
2410         struct regulatory_request *reg_request, *tmp;
2411         LIST_HEAD(tmp_reg_req_list);
2412         struct cfg80211_registered_device *rdev;
2413
2414         ASSERT_RTNL();
2415
2416         reg_is_indoor = false;
2417
2418         reset_regdomains(true, &world_regdom);
2419         restore_alpha2(alpha2, reset_user);
2420
2421         /*
2422          * If there's any pending requests we simply
2423          * stash them to a temporary pending queue and
2424          * add then after we've restored regulatory
2425          * settings.
2426          */
2427         spin_lock(&reg_requests_lock);
2428         list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
2429                 if (reg_request->initiator != NL80211_REGDOM_SET_BY_USER)
2430                         continue;
2431                 list_move_tail(&reg_request->list, &tmp_reg_req_list);
2432         }
2433         spin_unlock(&reg_requests_lock);
2434
2435         /* Clear beacon hints */
2436         spin_lock_bh(&reg_pending_beacons_lock);
2437         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2438                 list_del(&reg_beacon->list);
2439                 kfree(reg_beacon);
2440         }
2441         spin_unlock_bh(&reg_pending_beacons_lock);
2442
2443         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2444                 list_del(&reg_beacon->list);
2445                 kfree(reg_beacon);
2446         }
2447
2448         /* First restore to the basic regulatory settings */
2449         world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
2450         world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
2451
2452         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2453                 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
2454                         restore_custom_reg_settings(&rdev->wiphy);
2455         }
2456
2457         regulatory_hint_core(world_alpha2);
2458
2459         /*
2460          * This restores the ieee80211_regdom module parameter
2461          * preference or the last user requested regulatory
2462          * settings, user regulatory settings takes precedence.
2463          */
2464         if (is_an_alpha2(alpha2))
2465                 regulatory_hint_user(user_alpha2, NL80211_USER_REG_HINT_USER);
2466
2467         spin_lock(&reg_requests_lock);
2468         list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
2469         spin_unlock(&reg_requests_lock);
2470
2471         REG_DBG_PRINT("Kicking the queue\n");
2472
2473         schedule_work(&reg_work);
2474 }
2475
2476 void regulatory_hint_disconnect(void)
2477 {
2478         REG_DBG_PRINT("All devices are disconnected, going to restore regulatory settings\n");
2479         restore_regulatory_settings(false);
2480 }
2481
2482 static bool freq_is_chan_12_13_14(u16 freq)
2483 {
2484         if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
2485             freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
2486             freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
2487                 return true;
2488         return false;
2489 }
2490
2491 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
2492 {
2493         struct reg_beacon *pending_beacon;
2494
2495         list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
2496                 if (beacon_chan->center_freq ==
2497                     pending_beacon->chan.center_freq)
2498                         return true;
2499         return false;
2500 }
2501
2502 int regulatory_hint_found_beacon(struct wiphy *wiphy,
2503                                  struct ieee80211_channel *beacon_chan,
2504                                  gfp_t gfp)
2505 {
2506         struct reg_beacon *reg_beacon;
2507         bool processing;
2508
2509         if (beacon_chan->beacon_found ||
2510             beacon_chan->flags & IEEE80211_CHAN_RADAR ||
2511             (beacon_chan->band == IEEE80211_BAND_2GHZ &&
2512              !freq_is_chan_12_13_14(beacon_chan->center_freq)))
2513                 return 0;
2514
2515         spin_lock_bh(&reg_pending_beacons_lock);
2516         processing = pending_reg_beacon(beacon_chan);
2517         spin_unlock_bh(&reg_pending_beacons_lock);
2518
2519         if (processing)
2520                 return 0;
2521
2522         reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
2523         if (!reg_beacon)
2524                 return -ENOMEM;
2525
2526         REG_DBG_PRINT("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
2527                       beacon_chan->center_freq,
2528                       ieee80211_frequency_to_channel(beacon_chan->center_freq),
2529                       wiphy_name(wiphy));
2530
2531         memcpy(&reg_beacon->chan, beacon_chan,
2532                sizeof(struct ieee80211_channel));
2533
2534         /*
2535          * Since we can be called from BH or and non-BH context
2536          * we must use spin_lock_bh()
2537          */
2538         spin_lock_bh(&reg_pending_beacons_lock);
2539         list_add_tail(&reg_beacon->list, &reg_pending_beacons);
2540         spin_unlock_bh(&reg_pending_beacons_lock);
2541
2542         schedule_work(&reg_work);
2543
2544         return 0;
2545 }
2546
2547 static void print_rd_rules(const struct ieee80211_regdomain *rd)
2548 {
2549         unsigned int i;
2550         const struct ieee80211_reg_rule *reg_rule = NULL;
2551         const struct ieee80211_freq_range *freq_range = NULL;
2552         const struct ieee80211_power_rule *power_rule = NULL;
2553         char bw[32], cac_time[32];
2554
2555         pr_info("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
2556
2557         for (i = 0; i < rd->n_reg_rules; i++) {
2558                 reg_rule = &rd->reg_rules[i];
2559                 freq_range = &reg_rule->freq_range;
2560                 power_rule = &reg_rule->power_rule;
2561
2562                 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
2563                         snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
2564                                  freq_range->max_bandwidth_khz,
2565                                  reg_get_max_bandwidth(rd, reg_rule));
2566                 else
2567                         snprintf(bw, sizeof(bw), "%d KHz",
2568                                  freq_range->max_bandwidth_khz);
2569
2570                 if (reg_rule->flags & NL80211_RRF_DFS)
2571                         scnprintf(cac_time, sizeof(cac_time), "%u s",
2572                                   reg_rule->dfs_cac_ms/1000);
2573                 else
2574                         scnprintf(cac_time, sizeof(cac_time), "N/A");
2575
2576
2577                 /*
2578                  * There may not be documentation for max antenna gain
2579                  * in certain regions
2580                  */
2581                 if (power_rule->max_antenna_gain)
2582                         pr_info("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
2583                                 freq_range->start_freq_khz,
2584                                 freq_range->end_freq_khz,
2585                                 bw,
2586                                 power_rule->max_antenna_gain,
2587                                 power_rule->max_eirp,
2588                                 cac_time);
2589                 else
2590                         pr_info("  (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
2591                                 freq_range->start_freq_khz,
2592                                 freq_range->end_freq_khz,
2593                                 bw,
2594                                 power_rule->max_eirp,
2595                                 cac_time);
2596         }
2597 }
2598
2599 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
2600 {
2601         switch (dfs_region) {
2602         case NL80211_DFS_UNSET:
2603         case NL80211_DFS_FCC:
2604         case NL80211_DFS_ETSI:
2605         case NL80211_DFS_JP:
2606                 return true;
2607         default:
2608                 REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
2609                               dfs_region);
2610                 return false;
2611         }
2612 }
2613
2614 static void print_regdomain(const struct ieee80211_regdomain *rd)
2615 {
2616         struct regulatory_request *lr = get_last_request();
2617
2618         if (is_intersected_alpha2(rd->alpha2)) {
2619                 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2620                         struct cfg80211_registered_device *rdev;
2621                         rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
2622                         if (rdev) {
2623                                 pr_info("Current regulatory domain updated by AP to: %c%c\n",
2624                                         rdev->country_ie_alpha2[0],
2625                                         rdev->country_ie_alpha2[1]);
2626                         } else
2627                                 pr_info("Current regulatory domain intersected:\n");
2628                 } else
2629                         pr_info("Current regulatory domain intersected:\n");
2630         } else if (is_world_regdom(rd->alpha2)) {
2631                 pr_info("World regulatory domain updated:\n");
2632         } else {
2633                 if (is_unknown_alpha2(rd->alpha2))
2634                         pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2635                 else {
2636                         if (reg_request_cell_base(lr))
2637                                 pr_info("Regulatory domain changed to country: %c%c by Cell Station\n",
2638                                         rd->alpha2[0], rd->alpha2[1]);
2639                         else
2640                                 pr_info("Regulatory domain changed to country: %c%c\n",
2641                                         rd->alpha2[0], rd->alpha2[1]);
2642                 }
2643         }
2644
2645         pr_info(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
2646         print_rd_rules(rd);
2647 }
2648
2649 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2650 {
2651         pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2652         print_rd_rules(rd);
2653 }
2654
2655 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
2656 {
2657         if (!is_world_regdom(rd->alpha2))
2658                 return -EINVAL;
2659         update_world_regdomain(rd);
2660         return 0;
2661 }
2662
2663 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
2664                            struct regulatory_request *user_request)
2665 {
2666         const struct ieee80211_regdomain *intersected_rd = NULL;
2667
2668         if (!regdom_changes(rd->alpha2))
2669                 return -EALREADY;
2670
2671         if (!is_valid_rd(rd)) {
2672                 pr_err("Invalid regulatory domain detected:\n");
2673                 print_regdomain_info(rd);
2674                 return -EINVAL;
2675         }
2676
2677         if (!user_request->intersect) {
2678                 reset_regdomains(false, rd);
2679                 return 0;
2680         }
2681
2682         intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2683         if (!intersected_rd)
2684                 return -EINVAL;
2685
2686         kfree(rd);
2687         rd = NULL;
2688         reset_regdomains(false, intersected_rd);
2689
2690         return 0;
2691 }
2692
2693 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
2694                              struct regulatory_request *driver_request)
2695 {
2696         const struct ieee80211_regdomain *regd;
2697         const struct ieee80211_regdomain *intersected_rd = NULL;
2698         const struct ieee80211_regdomain *tmp;
2699         struct wiphy *request_wiphy;
2700
2701         if (is_world_regdom(rd->alpha2))
2702                 return -EINVAL;
2703
2704         if (!regdom_changes(rd->alpha2))
2705                 return -EALREADY;
2706
2707         if (!is_valid_rd(rd)) {
2708                 pr_err("Invalid regulatory domain detected:\n");
2709                 print_regdomain_info(rd);
2710                 return -EINVAL;
2711         }
2712
2713         request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
2714         if (!request_wiphy) {
2715                 queue_delayed_work(system_power_efficient_wq,
2716                                    &reg_timeout, 0);
2717                 return -ENODEV;
2718         }
2719
2720         if (!driver_request->intersect) {
2721                 if (request_wiphy->regd)
2722                         return -EALREADY;
2723
2724                 regd = reg_copy_regd(rd);
2725                 if (IS_ERR(regd))
2726                         return PTR_ERR(regd);
2727
2728                 rcu_assign_pointer(request_wiphy->regd, regd);
2729                 reset_regdomains(false, rd);
2730                 return 0;
2731         }
2732
2733         intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2734         if (!intersected_rd)
2735                 return -EINVAL;
2736
2737         /*
2738          * We can trash what CRDA provided now.
2739          * However if a driver requested this specific regulatory
2740          * domain we keep it for its private use
2741          */
2742         tmp = get_wiphy_regdom(request_wiphy);
2743         rcu_assign_pointer(request_wiphy->regd, rd);
2744         rcu_free_regdom(tmp);
2745
2746         rd = NULL;
2747
2748         reset_regdomains(false, intersected_rd);
2749
2750         return 0;
2751 }
2752
2753 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
2754                                  struct regulatory_request *country_ie_request)
2755 {
2756         struct wiphy *request_wiphy;
2757
2758         if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2759             !is_unknown_alpha2(rd->alpha2))
2760                 return -EINVAL;
2761
2762         /*
2763          * Lets only bother proceeding on the same alpha2 if the current
2764          * rd is non static (it means CRDA was present and was used last)
2765          * and the pending request came in from a country IE
2766          */
2767
2768         if (!is_valid_rd(rd)) {
2769                 pr_err("Invalid regulatory domain detected:\n");
2770                 print_regdomain_info(rd);
2771                 return -EINVAL;
2772         }
2773
2774         request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
2775         if (!request_wiphy) {
2776                 queue_delayed_work(system_power_efficient_wq,
2777                                    &reg_timeout, 0);
2778                 return -ENODEV;
2779         }
2780
2781         if (country_ie_request->intersect)
2782                 return -EINVAL;
2783
2784         reset_regdomains(false, rd);
2785         return 0;
2786 }
2787
2788 /*
2789  * Use this call to set the current regulatory domain. Conflicts with
2790  * multiple drivers can be ironed out later. Caller must've already
2791  * kmalloc'd the rd structure.
2792  */
2793 int set_regdom(const struct ieee80211_regdomain *rd)
2794 {
2795         struct regulatory_request *lr;
2796         bool user_reset = false;
2797         int r;
2798
2799         if (!reg_is_valid_request(rd->alpha2)) {
2800                 kfree(rd);
2801                 return -EINVAL;
2802         }
2803
2804         lr = get_last_request();
2805
2806         /* Note that this doesn't update the wiphys, this is done below */
2807         switch (lr->initiator) {
2808         case NL80211_REGDOM_SET_BY_CORE:
2809                 r = reg_set_rd_core(rd);
2810                 break;
2811         case NL80211_REGDOM_SET_BY_USER:
2812                 r = reg_set_rd_user(rd, lr);
2813                 user_reset = true;
2814                 break;
2815         case NL80211_REGDOM_SET_BY_DRIVER:
2816                 r = reg_set_rd_driver(rd, lr);
2817                 break;
2818         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2819                 r = reg_set_rd_country_ie(rd, lr);
2820                 break;
2821         default:
2822                 WARN(1, "invalid initiator %d\n", lr->initiator);
2823                 return -EINVAL;
2824         }
2825
2826         if (r) {
2827                 switch (r) {
2828                 case -EALREADY:
2829                         reg_set_request_processed();
2830                         break;
2831                 default:
2832                         /* Back to world regulatory in case of errors */
2833                         restore_regulatory_settings(user_reset);
2834                 }
2835
2836                 kfree(rd);
2837                 return r;
2838         }
2839
2840         /* This would make this whole thing pointless */
2841         if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
2842                 return -EINVAL;
2843
2844         /* update all wiphys now with the new established regulatory domain */
2845         update_all_wiphy_regulatory(lr->initiator);
2846
2847         print_regdomain(get_cfg80211_regdom());
2848
2849         nl80211_send_reg_change_event(lr);
2850
2851         reg_set_request_processed();
2852
2853         return 0;
2854 }
2855
2856 void wiphy_regulatory_register(struct wiphy *wiphy)
2857 {
2858         struct regulatory_request *lr;
2859
2860         if (!reg_dev_ignore_cell_hint(wiphy))
2861                 reg_num_devs_support_basehint++;
2862
2863         lr = get_last_request();
2864         wiphy_update_regulatory(wiphy, lr->initiator);
2865 }
2866
2867 void wiphy_regulatory_deregister(struct wiphy *wiphy)
2868 {
2869         struct wiphy *request_wiphy = NULL;
2870         struct regulatory_request *lr;
2871
2872         lr = get_last_request();
2873
2874         if (!reg_dev_ignore_cell_hint(wiphy))
2875                 reg_num_devs_support_basehint--;
2876
2877         rcu_free_regdom(get_wiphy_regdom(wiphy));
2878         RCU_INIT_POINTER(wiphy->regd, NULL);
2879
2880         if (lr)
2881                 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2882
2883         if (!request_wiphy || request_wiphy != wiphy)
2884                 return;
2885
2886         lr->wiphy_idx = WIPHY_IDX_INVALID;
2887         lr->country_ie_env = ENVIRON_ANY;
2888 }
2889
2890 static void reg_timeout_work(struct work_struct *work)
2891 {
2892         REG_DBG_PRINT("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
2893         rtnl_lock();
2894         restore_regulatory_settings(true);
2895         rtnl_unlock();
2896 }
2897
2898 /*
2899  * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for
2900  * UNII band definitions
2901  */
2902 int cfg80211_get_unii(int freq)
2903 {
2904         /* UNII-1 */
2905         if (freq >= 5150 && freq <= 5250)
2906                 return 0;
2907
2908         /* UNII-2A */
2909         if (freq > 5250 && freq <= 5350)
2910                 return 1;
2911
2912         /* UNII-2B */
2913         if (freq > 5350 && freq <= 5470)
2914                 return 2;
2915
2916         /* UNII-2C */
2917         if (freq > 5470 && freq <= 5725)
2918                 return 3;
2919
2920         /* UNII-3 */
2921         if (freq > 5725 && freq <= 5825)
2922                 return 4;
2923
2924         return -EINVAL;
2925 }
2926
2927 bool regulatory_indoor_allowed(void)
2928 {
2929         return reg_is_indoor;
2930 }
2931
2932 int __init regulatory_init(void)
2933 {
2934         int err = 0;
2935
2936         reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2937         if (IS_ERR(reg_pdev))
2938                 return PTR_ERR(reg_pdev);
2939
2940         spin_lock_init(&reg_requests_lock);
2941         spin_lock_init(&reg_pending_beacons_lock);
2942
2943         reg_regdb_size_check();
2944
2945         rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
2946
2947         user_alpha2[0] = '9';
2948         user_alpha2[1] = '7';
2949
2950         /* We always try to get an update for the static regdomain */
2951         err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
2952         if (err) {
2953                 if (err == -ENOMEM)
2954                         return err;
2955                 /*
2956                  * N.B. kobject_uevent_env() can fail mainly for when we're out
2957                  * memory which is handled and propagated appropriately above
2958                  * but it can also fail during a netlink_broadcast() or during
2959                  * early boot for call_usermodehelper(). For now treat these
2960                  * errors as non-fatal.
2961                  */
2962                 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2963         }
2964
2965         /*
2966          * Finally, if the user set the module parameter treat it
2967          * as a user hint.
2968          */
2969         if (!is_world_regdom(ieee80211_regdom))
2970                 regulatory_hint_user(ieee80211_regdom,
2971                                      NL80211_USER_REG_HINT_USER);
2972
2973         return 0;
2974 }
2975
2976 void regulatory_exit(void)
2977 {
2978         struct regulatory_request *reg_request, *tmp;
2979         struct reg_beacon *reg_beacon, *btmp;
2980
2981         cancel_work_sync(&reg_work);
2982         cancel_delayed_work_sync(&reg_timeout);
2983         cancel_delayed_work_sync(&reg_check_chans);
2984
2985         /* Lock to suppress warnings */
2986         rtnl_lock();
2987         reset_regdomains(true, NULL);
2988         rtnl_unlock();
2989
2990         dev_set_uevent_suppress(&reg_pdev->dev, true);
2991
2992         platform_device_unregister(reg_pdev);
2993
2994         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2995                 list_del(&reg_beacon->list);
2996                 kfree(reg_beacon);
2997         }
2998
2999         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3000                 list_del(&reg_beacon->list);
3001                 kfree(reg_beacon);
3002         }
3003
3004         list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
3005                 list_del(&reg_request->list);
3006                 kfree(reg_request);
3007         }
3008 }