Merge branches 'arm/rockchip', 'arm/exynos', 'arm/smmu', 'arm/mediatek', 'arm/io...
[cascardo/linux.git] / net / wireless / reg.c
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007       Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011  Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  *
8  * Permission to use, copy, modify, and/or distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20
21
22 /**
23  * DOC: Wireless regulatory infrastructure
24  *
25  * The usual implementation is for a driver to read a device EEPROM to
26  * determine which regulatory domain it should be operating under, then
27  * looking up the allowable channels in a driver-local table and finally
28  * registering those channels in the wiphy structure.
29  *
30  * Another set of compliance enforcement is for drivers to use their
31  * own compliance limits which can be stored on the EEPROM. The host
32  * driver or firmware may ensure these are used.
33  *
34  * In addition to all this we provide an extra layer of regulatory
35  * conformance. For drivers which do not have any regulatory
36  * information CRDA provides the complete regulatory solution.
37  * For others it provides a community effort on further restrictions
38  * to enhance compliance.
39  *
40  * Note: When number of rules --> infinity we will not be able to
41  * index on alpha2 any more, instead we'll probably have to
42  * rely on some SHA1 checksum of the regdomain for example.
43  *
44  */
45
46 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
47
48 #include <linux/kernel.h>
49 #include <linux/export.h>
50 #include <linux/slab.h>
51 #include <linux/list.h>
52 #include <linux/ctype.h>
53 #include <linux/nl80211.h>
54 #include <linux/platform_device.h>
55 #include <linux/moduleparam.h>
56 #include <net/cfg80211.h>
57 #include "core.h"
58 #include "reg.h"
59 #include "rdev-ops.h"
60 #include "regdb.h"
61 #include "nl80211.h"
62
63 #ifdef CONFIG_CFG80211_REG_DEBUG
64 #define REG_DBG_PRINT(format, args...)                  \
65         printk(KERN_DEBUG pr_fmt(format), ##args)
66 #else
67 #define REG_DBG_PRINT(args...)
68 #endif
69
70 /*
71  * Grace period we give before making sure all current interfaces reside on
72  * channels allowed by the current regulatory domain.
73  */
74 #define REG_ENFORCE_GRACE_MS 60000
75
76 /**
77  * enum reg_request_treatment - regulatory request treatment
78  *
79  * @REG_REQ_OK: continue processing the regulatory request
80  * @REG_REQ_IGNORE: ignore the regulatory request
81  * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
82  *      be intersected with the current one.
83  * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
84  *      regulatory settings, and no further processing is required.
85  */
86 enum reg_request_treatment {
87         REG_REQ_OK,
88         REG_REQ_IGNORE,
89         REG_REQ_INTERSECT,
90         REG_REQ_ALREADY_SET,
91 };
92
93 static struct regulatory_request core_request_world = {
94         .initiator = NL80211_REGDOM_SET_BY_CORE,
95         .alpha2[0] = '0',
96         .alpha2[1] = '0',
97         .intersect = false,
98         .processed = true,
99         .country_ie_env = ENVIRON_ANY,
100 };
101
102 /*
103  * Receipt of information from last regulatory request,
104  * protected by RTNL (and can be accessed with RCU protection)
105  */
106 static struct regulatory_request __rcu *last_request =
107         (void __force __rcu *)&core_request_world;
108
109 /* To trigger userspace events */
110 static struct platform_device *reg_pdev;
111
112 /*
113  * Central wireless core regulatory domains, we only need two,
114  * the current one and a world regulatory domain in case we have no
115  * information to give us an alpha2.
116  * (protected by RTNL, can be read under RCU)
117  */
118 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
119
120 /*
121  * Number of devices that registered to the core
122  * that support cellular base station regulatory hints
123  * (protected by RTNL)
124  */
125 static int reg_num_devs_support_basehint;
126
127 /*
128  * State variable indicating if the platform on which the devices
129  * are attached is operating in an indoor environment. The state variable
130  * is relevant for all registered devices.
131  */
132 static bool reg_is_indoor;
133 static spinlock_t reg_indoor_lock;
134
135 /* Used to track the userspace process controlling the indoor setting */
136 static u32 reg_is_indoor_portid;
137
138 static void restore_regulatory_settings(bool reset_user);
139
140 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
141 {
142         return rtnl_dereference(cfg80211_regdomain);
143 }
144
145 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
146 {
147         return rtnl_dereference(wiphy->regd);
148 }
149
150 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
151 {
152         switch (dfs_region) {
153         case NL80211_DFS_UNSET:
154                 return "unset";
155         case NL80211_DFS_FCC:
156                 return "FCC";
157         case NL80211_DFS_ETSI:
158                 return "ETSI";
159         case NL80211_DFS_JP:
160                 return "JP";
161         }
162         return "Unknown";
163 }
164
165 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
166 {
167         const struct ieee80211_regdomain *regd = NULL;
168         const struct ieee80211_regdomain *wiphy_regd = NULL;
169
170         regd = get_cfg80211_regdom();
171         if (!wiphy)
172                 goto out;
173
174         wiphy_regd = get_wiphy_regdom(wiphy);
175         if (!wiphy_regd)
176                 goto out;
177
178         if (wiphy_regd->dfs_region == regd->dfs_region)
179                 goto out;
180
181         REG_DBG_PRINT("%s: device specific dfs_region "
182                       "(%s) disagrees with cfg80211's "
183                       "central dfs_region (%s)\n",
184                       dev_name(&wiphy->dev),
185                       reg_dfs_region_str(wiphy_regd->dfs_region),
186                       reg_dfs_region_str(regd->dfs_region));
187
188 out:
189         return regd->dfs_region;
190 }
191
192 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
193 {
194         if (!r)
195                 return;
196         kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
197 }
198
199 static struct regulatory_request *get_last_request(void)
200 {
201         return rcu_dereference_rtnl(last_request);
202 }
203
204 /* Used to queue up regulatory hints */
205 static LIST_HEAD(reg_requests_list);
206 static spinlock_t reg_requests_lock;
207
208 /* Used to queue up beacon hints for review */
209 static LIST_HEAD(reg_pending_beacons);
210 static spinlock_t reg_pending_beacons_lock;
211
212 /* Used to keep track of processed beacon hints */
213 static LIST_HEAD(reg_beacon_list);
214
215 struct reg_beacon {
216         struct list_head list;
217         struct ieee80211_channel chan;
218 };
219
220 static void reg_check_chans_work(struct work_struct *work);
221 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
222
223 static void reg_todo(struct work_struct *work);
224 static DECLARE_WORK(reg_work, reg_todo);
225
226 /* We keep a static world regulatory domain in case of the absence of CRDA */
227 static const struct ieee80211_regdomain world_regdom = {
228         .n_reg_rules = 8,
229         .alpha2 =  "00",
230         .reg_rules = {
231                 /* IEEE 802.11b/g, channels 1..11 */
232                 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
233                 /* IEEE 802.11b/g, channels 12..13. */
234                 REG_RULE(2467-10, 2472+10, 20, 6, 20,
235                         NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
236                 /* IEEE 802.11 channel 14 - Only JP enables
237                  * this and for 802.11b only */
238                 REG_RULE(2484-10, 2484+10, 20, 6, 20,
239                         NL80211_RRF_NO_IR |
240                         NL80211_RRF_NO_OFDM),
241                 /* IEEE 802.11a, channel 36..48 */
242                 REG_RULE(5180-10, 5240+10, 80, 6, 20,
243                         NL80211_RRF_NO_IR |
244                         NL80211_RRF_AUTO_BW),
245
246                 /* IEEE 802.11a, channel 52..64 - DFS required */
247                 REG_RULE(5260-10, 5320+10, 80, 6, 20,
248                         NL80211_RRF_NO_IR |
249                         NL80211_RRF_AUTO_BW |
250                         NL80211_RRF_DFS),
251
252                 /* IEEE 802.11a, channel 100..144 - DFS required */
253                 REG_RULE(5500-10, 5720+10, 160, 6, 20,
254                         NL80211_RRF_NO_IR |
255                         NL80211_RRF_DFS),
256
257                 /* IEEE 802.11a, channel 149..165 */
258                 REG_RULE(5745-10, 5825+10, 80, 6, 20,
259                         NL80211_RRF_NO_IR),
260
261                 /* IEEE 802.11ad (60GHz), channels 1..3 */
262                 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
263         }
264 };
265
266 /* protected by RTNL */
267 static const struct ieee80211_regdomain *cfg80211_world_regdom =
268         &world_regdom;
269
270 static char *ieee80211_regdom = "00";
271 static char user_alpha2[2];
272
273 module_param(ieee80211_regdom, charp, 0444);
274 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
275
276 static void reg_free_request(struct regulatory_request *request)
277 {
278         if (request == &core_request_world)
279                 return;
280
281         if (request != get_last_request())
282                 kfree(request);
283 }
284
285 static void reg_free_last_request(void)
286 {
287         struct regulatory_request *lr = get_last_request();
288
289         if (lr != &core_request_world && lr)
290                 kfree_rcu(lr, rcu_head);
291 }
292
293 static void reg_update_last_request(struct regulatory_request *request)
294 {
295         struct regulatory_request *lr;
296
297         lr = get_last_request();
298         if (lr == request)
299                 return;
300
301         reg_free_last_request();
302         rcu_assign_pointer(last_request, request);
303 }
304
305 static void reset_regdomains(bool full_reset,
306                              const struct ieee80211_regdomain *new_regdom)
307 {
308         const struct ieee80211_regdomain *r;
309
310         ASSERT_RTNL();
311
312         r = get_cfg80211_regdom();
313
314         /* avoid freeing static information or freeing something twice */
315         if (r == cfg80211_world_regdom)
316                 r = NULL;
317         if (cfg80211_world_regdom == &world_regdom)
318                 cfg80211_world_regdom = NULL;
319         if (r == &world_regdom)
320                 r = NULL;
321
322         rcu_free_regdom(r);
323         rcu_free_regdom(cfg80211_world_regdom);
324
325         cfg80211_world_regdom = &world_regdom;
326         rcu_assign_pointer(cfg80211_regdomain, new_regdom);
327
328         if (!full_reset)
329                 return;
330
331         reg_update_last_request(&core_request_world);
332 }
333
334 /*
335  * Dynamic world regulatory domain requested by the wireless
336  * core upon initialization
337  */
338 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
339 {
340         struct regulatory_request *lr;
341
342         lr = get_last_request();
343
344         WARN_ON(!lr);
345
346         reset_regdomains(false, rd);
347
348         cfg80211_world_regdom = rd;
349 }
350
351 bool is_world_regdom(const char *alpha2)
352 {
353         if (!alpha2)
354                 return false;
355         return alpha2[0] == '0' && alpha2[1] == '0';
356 }
357
358 static bool is_alpha2_set(const char *alpha2)
359 {
360         if (!alpha2)
361                 return false;
362         return alpha2[0] && alpha2[1];
363 }
364
365 static bool is_unknown_alpha2(const char *alpha2)
366 {
367         if (!alpha2)
368                 return false;
369         /*
370          * Special case where regulatory domain was built by driver
371          * but a specific alpha2 cannot be determined
372          */
373         return alpha2[0] == '9' && alpha2[1] == '9';
374 }
375
376 static bool is_intersected_alpha2(const char *alpha2)
377 {
378         if (!alpha2)
379                 return false;
380         /*
381          * Special case where regulatory domain is the
382          * result of an intersection between two regulatory domain
383          * structures
384          */
385         return alpha2[0] == '9' && alpha2[1] == '8';
386 }
387
388 static bool is_an_alpha2(const char *alpha2)
389 {
390         if (!alpha2)
391                 return false;
392         return isalpha(alpha2[0]) && isalpha(alpha2[1]);
393 }
394
395 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
396 {
397         if (!alpha2_x || !alpha2_y)
398                 return false;
399         return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
400 }
401
402 static bool regdom_changes(const char *alpha2)
403 {
404         const struct ieee80211_regdomain *r = get_cfg80211_regdom();
405
406         if (!r)
407                 return true;
408         return !alpha2_equal(r->alpha2, alpha2);
409 }
410
411 /*
412  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
413  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
414  * has ever been issued.
415  */
416 static bool is_user_regdom_saved(void)
417 {
418         if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
419                 return false;
420
421         /* This would indicate a mistake on the design */
422         if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
423                  "Unexpected user alpha2: %c%c\n",
424                  user_alpha2[0], user_alpha2[1]))
425                 return false;
426
427         return true;
428 }
429
430 static const struct ieee80211_regdomain *
431 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
432 {
433         struct ieee80211_regdomain *regd;
434         int size_of_regd;
435         unsigned int i;
436
437         size_of_regd =
438                 sizeof(struct ieee80211_regdomain) +
439                 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
440
441         regd = kzalloc(size_of_regd, GFP_KERNEL);
442         if (!regd)
443                 return ERR_PTR(-ENOMEM);
444
445         memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
446
447         for (i = 0; i < src_regd->n_reg_rules; i++)
448                 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
449                        sizeof(struct ieee80211_reg_rule));
450
451         return regd;
452 }
453
454 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
455 struct reg_regdb_apply_request {
456         struct list_head list;
457         const struct ieee80211_regdomain *regdom;
458 };
459
460 static LIST_HEAD(reg_regdb_apply_list);
461 static DEFINE_MUTEX(reg_regdb_apply_mutex);
462
463 static void reg_regdb_apply(struct work_struct *work)
464 {
465         struct reg_regdb_apply_request *request;
466
467         rtnl_lock();
468
469         mutex_lock(&reg_regdb_apply_mutex);
470         while (!list_empty(&reg_regdb_apply_list)) {
471                 request = list_first_entry(&reg_regdb_apply_list,
472                                            struct reg_regdb_apply_request,
473                                            list);
474                 list_del(&request->list);
475
476                 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
477                 kfree(request);
478         }
479         mutex_unlock(&reg_regdb_apply_mutex);
480
481         rtnl_unlock();
482 }
483
484 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
485
486 static int reg_query_builtin(const char *alpha2)
487 {
488         const struct ieee80211_regdomain *regdom = NULL;
489         struct reg_regdb_apply_request *request;
490         unsigned int i;
491
492         for (i = 0; i < reg_regdb_size; i++) {
493                 if (alpha2_equal(alpha2, reg_regdb[i]->alpha2)) {
494                         regdom = reg_regdb[i];
495                         break;
496                 }
497         }
498
499         if (!regdom)
500                 return -ENODATA;
501
502         request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
503         if (!request)
504                 return -ENOMEM;
505
506         request->regdom = reg_copy_regd(regdom);
507         if (IS_ERR_OR_NULL(request->regdom)) {
508                 kfree(request);
509                 return -ENOMEM;
510         }
511
512         mutex_lock(&reg_regdb_apply_mutex);
513         list_add_tail(&request->list, &reg_regdb_apply_list);
514         mutex_unlock(&reg_regdb_apply_mutex);
515
516         schedule_work(&reg_regdb_work);
517
518         return 0;
519 }
520
521 /* Feel free to add any other sanity checks here */
522 static void reg_regdb_size_check(void)
523 {
524         /* We should ideally BUILD_BUG_ON() but then random builds would fail */
525         WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
526 }
527 #else
528 static inline void reg_regdb_size_check(void) {}
529 static inline int reg_query_builtin(const char *alpha2)
530 {
531         return -ENODATA;
532 }
533 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
534
535 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
536 /* Max number of consecutive attempts to communicate with CRDA  */
537 #define REG_MAX_CRDA_TIMEOUTS 10
538
539 static u32 reg_crda_timeouts;
540
541 static void crda_timeout_work(struct work_struct *work);
542 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
543
544 static void crda_timeout_work(struct work_struct *work)
545 {
546         REG_DBG_PRINT("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
547         rtnl_lock();
548         reg_crda_timeouts++;
549         restore_regulatory_settings(true);
550         rtnl_unlock();
551 }
552
553 static void cancel_crda_timeout(void)
554 {
555         cancel_delayed_work(&crda_timeout);
556 }
557
558 static void cancel_crda_timeout_sync(void)
559 {
560         cancel_delayed_work_sync(&crda_timeout);
561 }
562
563 static void reset_crda_timeouts(void)
564 {
565         reg_crda_timeouts = 0;
566 }
567
568 /*
569  * This lets us keep regulatory code which is updated on a regulatory
570  * basis in userspace.
571  */
572 static int call_crda(const char *alpha2)
573 {
574         char country[12];
575         char *env[] = { country, NULL };
576         int ret;
577
578         snprintf(country, sizeof(country), "COUNTRY=%c%c",
579                  alpha2[0], alpha2[1]);
580
581         if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
582                 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
583                 return -EINVAL;
584         }
585
586         if (!is_world_regdom((char *) alpha2))
587                 pr_debug("Calling CRDA for country: %c%c\n",
588                         alpha2[0], alpha2[1]);
589         else
590                 pr_debug("Calling CRDA to update world regulatory domain\n");
591
592         ret = kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
593         if (ret)
594                 return ret;
595
596         queue_delayed_work(system_power_efficient_wq,
597                            &crda_timeout, msecs_to_jiffies(3142));
598         return 0;
599 }
600 #else
601 static inline void cancel_crda_timeout(void) {}
602 static inline void cancel_crda_timeout_sync(void) {}
603 static inline void reset_crda_timeouts(void) {}
604 static inline int call_crda(const char *alpha2)
605 {
606         return -ENODATA;
607 }
608 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
609
610 static bool reg_query_database(struct regulatory_request *request)
611 {
612         /* query internal regulatory database (if it exists) */
613         if (reg_query_builtin(request->alpha2) == 0)
614                 return true;
615
616         if (call_crda(request->alpha2) == 0)
617                 return true;
618
619         return false;
620 }
621
622 bool reg_is_valid_request(const char *alpha2)
623 {
624         struct regulatory_request *lr = get_last_request();
625
626         if (!lr || lr->processed)
627                 return false;
628
629         return alpha2_equal(lr->alpha2, alpha2);
630 }
631
632 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
633 {
634         struct regulatory_request *lr = get_last_request();
635
636         /*
637          * Follow the driver's regulatory domain, if present, unless a country
638          * IE has been processed or a user wants to help complaince further
639          */
640         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
641             lr->initiator != NL80211_REGDOM_SET_BY_USER &&
642             wiphy->regd)
643                 return get_wiphy_regdom(wiphy);
644
645         return get_cfg80211_regdom();
646 }
647
648 static unsigned int
649 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
650                                  const struct ieee80211_reg_rule *rule)
651 {
652         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
653         const struct ieee80211_freq_range *freq_range_tmp;
654         const struct ieee80211_reg_rule *tmp;
655         u32 start_freq, end_freq, idx, no;
656
657         for (idx = 0; idx < rd->n_reg_rules; idx++)
658                 if (rule == &rd->reg_rules[idx])
659                         break;
660
661         if (idx == rd->n_reg_rules)
662                 return 0;
663
664         /* get start_freq */
665         no = idx;
666
667         while (no) {
668                 tmp = &rd->reg_rules[--no];
669                 freq_range_tmp = &tmp->freq_range;
670
671                 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
672                         break;
673
674                 freq_range = freq_range_tmp;
675         }
676
677         start_freq = freq_range->start_freq_khz;
678
679         /* get end_freq */
680         freq_range = &rule->freq_range;
681         no = idx;
682
683         while (no < rd->n_reg_rules - 1) {
684                 tmp = &rd->reg_rules[++no];
685                 freq_range_tmp = &tmp->freq_range;
686
687                 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
688                         break;
689
690                 freq_range = freq_range_tmp;
691         }
692
693         end_freq = freq_range->end_freq_khz;
694
695         return end_freq - start_freq;
696 }
697
698 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
699                                    const struct ieee80211_reg_rule *rule)
700 {
701         unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
702
703         if (rule->flags & NL80211_RRF_NO_160MHZ)
704                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
705         if (rule->flags & NL80211_RRF_NO_80MHZ)
706                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
707
708         /*
709          * HT40+/HT40- limits are handled per-channel. Only limit BW if both
710          * are not allowed.
711          */
712         if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
713             rule->flags & NL80211_RRF_NO_HT40PLUS)
714                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
715
716         return bw;
717 }
718
719 /* Sanity check on a regulatory rule */
720 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
721 {
722         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
723         u32 freq_diff;
724
725         if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
726                 return false;
727
728         if (freq_range->start_freq_khz > freq_range->end_freq_khz)
729                 return false;
730
731         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
732
733         if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
734             freq_range->max_bandwidth_khz > freq_diff)
735                 return false;
736
737         return true;
738 }
739
740 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
741 {
742         const struct ieee80211_reg_rule *reg_rule = NULL;
743         unsigned int i;
744
745         if (!rd->n_reg_rules)
746                 return false;
747
748         if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
749                 return false;
750
751         for (i = 0; i < rd->n_reg_rules; i++) {
752                 reg_rule = &rd->reg_rules[i];
753                 if (!is_valid_reg_rule(reg_rule))
754                         return false;
755         }
756
757         return true;
758 }
759
760 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
761                             u32 center_freq_khz, u32 bw_khz)
762 {
763         u32 start_freq_khz, end_freq_khz;
764
765         start_freq_khz = center_freq_khz - (bw_khz/2);
766         end_freq_khz = center_freq_khz + (bw_khz/2);
767
768         if (start_freq_khz >= freq_range->start_freq_khz &&
769             end_freq_khz <= freq_range->end_freq_khz)
770                 return true;
771
772         return false;
773 }
774
775 /**
776  * freq_in_rule_band - tells us if a frequency is in a frequency band
777  * @freq_range: frequency rule we want to query
778  * @freq_khz: frequency we are inquiring about
779  *
780  * This lets us know if a specific frequency rule is or is not relevant to
781  * a specific frequency's band. Bands are device specific and artificial
782  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
783  * however it is safe for now to assume that a frequency rule should not be
784  * part of a frequency's band if the start freq or end freq are off by more
785  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
786  * 60 GHz band.
787  * This resolution can be lowered and should be considered as we add
788  * regulatory rule support for other "bands".
789  **/
790 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
791                               u32 freq_khz)
792 {
793 #define ONE_GHZ_IN_KHZ  1000000
794         /*
795          * From 802.11ad: directional multi-gigabit (DMG):
796          * Pertaining to operation in a frequency band containing a channel
797          * with the Channel starting frequency above 45 GHz.
798          */
799         u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
800                         10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
801         if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
802                 return true;
803         if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
804                 return true;
805         return false;
806 #undef ONE_GHZ_IN_KHZ
807 }
808
809 /*
810  * Later on we can perhaps use the more restrictive DFS
811  * region but we don't have information for that yet so
812  * for now simply disallow conflicts.
813  */
814 static enum nl80211_dfs_regions
815 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
816                          const enum nl80211_dfs_regions dfs_region2)
817 {
818         if (dfs_region1 != dfs_region2)
819                 return NL80211_DFS_UNSET;
820         return dfs_region1;
821 }
822
823 /*
824  * Helper for regdom_intersect(), this does the real
825  * mathematical intersection fun
826  */
827 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
828                                const struct ieee80211_regdomain *rd2,
829                                const struct ieee80211_reg_rule *rule1,
830                                const struct ieee80211_reg_rule *rule2,
831                                struct ieee80211_reg_rule *intersected_rule)
832 {
833         const struct ieee80211_freq_range *freq_range1, *freq_range2;
834         struct ieee80211_freq_range *freq_range;
835         const struct ieee80211_power_rule *power_rule1, *power_rule2;
836         struct ieee80211_power_rule *power_rule;
837         u32 freq_diff, max_bandwidth1, max_bandwidth2;
838
839         freq_range1 = &rule1->freq_range;
840         freq_range2 = &rule2->freq_range;
841         freq_range = &intersected_rule->freq_range;
842
843         power_rule1 = &rule1->power_rule;
844         power_rule2 = &rule2->power_rule;
845         power_rule = &intersected_rule->power_rule;
846
847         freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
848                                          freq_range2->start_freq_khz);
849         freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
850                                        freq_range2->end_freq_khz);
851
852         max_bandwidth1 = freq_range1->max_bandwidth_khz;
853         max_bandwidth2 = freq_range2->max_bandwidth_khz;
854
855         if (rule1->flags & NL80211_RRF_AUTO_BW)
856                 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
857         if (rule2->flags & NL80211_RRF_AUTO_BW)
858                 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
859
860         freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
861
862         intersected_rule->flags = rule1->flags | rule2->flags;
863
864         /*
865          * In case NL80211_RRF_AUTO_BW requested for both rules
866          * set AUTO_BW in intersected rule also. Next we will
867          * calculate BW correctly in handle_channel function.
868          * In other case remove AUTO_BW flag while we calculate
869          * maximum bandwidth correctly and auto calculation is
870          * not required.
871          */
872         if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
873             (rule2->flags & NL80211_RRF_AUTO_BW))
874                 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
875         else
876                 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
877
878         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
879         if (freq_range->max_bandwidth_khz > freq_diff)
880                 freq_range->max_bandwidth_khz = freq_diff;
881
882         power_rule->max_eirp = min(power_rule1->max_eirp,
883                 power_rule2->max_eirp);
884         power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
885                 power_rule2->max_antenna_gain);
886
887         intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
888                                            rule2->dfs_cac_ms);
889
890         if (!is_valid_reg_rule(intersected_rule))
891                 return -EINVAL;
892
893         return 0;
894 }
895
896 /* check whether old rule contains new rule */
897 static bool rule_contains(struct ieee80211_reg_rule *r1,
898                           struct ieee80211_reg_rule *r2)
899 {
900         /* for simplicity, currently consider only same flags */
901         if (r1->flags != r2->flags)
902                 return false;
903
904         /* verify r1 is more restrictive */
905         if ((r1->power_rule.max_antenna_gain >
906              r2->power_rule.max_antenna_gain) ||
907             r1->power_rule.max_eirp > r2->power_rule.max_eirp)
908                 return false;
909
910         /* make sure r2's range is contained within r1 */
911         if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
912             r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
913                 return false;
914
915         /* and finally verify that r1.max_bw >= r2.max_bw */
916         if (r1->freq_range.max_bandwidth_khz <
917             r2->freq_range.max_bandwidth_khz)
918                 return false;
919
920         return true;
921 }
922
923 /* add or extend current rules. do nothing if rule is already contained */
924 static void add_rule(struct ieee80211_reg_rule *rule,
925                      struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
926 {
927         struct ieee80211_reg_rule *tmp_rule;
928         int i;
929
930         for (i = 0; i < *n_rules; i++) {
931                 tmp_rule = &reg_rules[i];
932                 /* rule is already contained - do nothing */
933                 if (rule_contains(tmp_rule, rule))
934                         return;
935
936                 /* extend rule if possible */
937                 if (rule_contains(rule, tmp_rule)) {
938                         memcpy(tmp_rule, rule, sizeof(*rule));
939                         return;
940                 }
941         }
942
943         memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
944         (*n_rules)++;
945 }
946
947 /**
948  * regdom_intersect - do the intersection between two regulatory domains
949  * @rd1: first regulatory domain
950  * @rd2: second regulatory domain
951  *
952  * Use this function to get the intersection between two regulatory domains.
953  * Once completed we will mark the alpha2 for the rd as intersected, "98",
954  * as no one single alpha2 can represent this regulatory domain.
955  *
956  * Returns a pointer to the regulatory domain structure which will hold the
957  * resulting intersection of rules between rd1 and rd2. We will
958  * kzalloc() this structure for you.
959  */
960 static struct ieee80211_regdomain *
961 regdom_intersect(const struct ieee80211_regdomain *rd1,
962                  const struct ieee80211_regdomain *rd2)
963 {
964         int r, size_of_regd;
965         unsigned int x, y;
966         unsigned int num_rules = 0;
967         const struct ieee80211_reg_rule *rule1, *rule2;
968         struct ieee80211_reg_rule intersected_rule;
969         struct ieee80211_regdomain *rd;
970
971         if (!rd1 || !rd2)
972                 return NULL;
973
974         /*
975          * First we get a count of the rules we'll need, then we actually
976          * build them. This is to so we can malloc() and free() a
977          * regdomain once. The reason we use reg_rules_intersect() here
978          * is it will return -EINVAL if the rule computed makes no sense.
979          * All rules that do check out OK are valid.
980          */
981
982         for (x = 0; x < rd1->n_reg_rules; x++) {
983                 rule1 = &rd1->reg_rules[x];
984                 for (y = 0; y < rd2->n_reg_rules; y++) {
985                         rule2 = &rd2->reg_rules[y];
986                         if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
987                                                  &intersected_rule))
988                                 num_rules++;
989                 }
990         }
991
992         if (!num_rules)
993                 return NULL;
994
995         size_of_regd = sizeof(struct ieee80211_regdomain) +
996                        num_rules * sizeof(struct ieee80211_reg_rule);
997
998         rd = kzalloc(size_of_regd, GFP_KERNEL);
999         if (!rd)
1000                 return NULL;
1001
1002         for (x = 0; x < rd1->n_reg_rules; x++) {
1003                 rule1 = &rd1->reg_rules[x];
1004                 for (y = 0; y < rd2->n_reg_rules; y++) {
1005                         rule2 = &rd2->reg_rules[y];
1006                         r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1007                                                 &intersected_rule);
1008                         /*
1009                          * No need to memset here the intersected rule here as
1010                          * we're not using the stack anymore
1011                          */
1012                         if (r)
1013                                 continue;
1014
1015                         add_rule(&intersected_rule, rd->reg_rules,
1016                                  &rd->n_reg_rules);
1017                 }
1018         }
1019
1020         rd->alpha2[0] = '9';
1021         rd->alpha2[1] = '8';
1022         rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1023                                                   rd2->dfs_region);
1024
1025         return rd;
1026 }
1027
1028 /*
1029  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1030  * want to just have the channel structure use these
1031  */
1032 static u32 map_regdom_flags(u32 rd_flags)
1033 {
1034         u32 channel_flags = 0;
1035         if (rd_flags & NL80211_RRF_NO_IR_ALL)
1036                 channel_flags |= IEEE80211_CHAN_NO_IR;
1037         if (rd_flags & NL80211_RRF_DFS)
1038                 channel_flags |= IEEE80211_CHAN_RADAR;
1039         if (rd_flags & NL80211_RRF_NO_OFDM)
1040                 channel_flags |= IEEE80211_CHAN_NO_OFDM;
1041         if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1042                 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1043         if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1044                 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1045         if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1046                 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1047         if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1048                 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1049         if (rd_flags & NL80211_RRF_NO_80MHZ)
1050                 channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1051         if (rd_flags & NL80211_RRF_NO_160MHZ)
1052                 channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1053         return channel_flags;
1054 }
1055
1056 static const struct ieee80211_reg_rule *
1057 freq_reg_info_regd(u32 center_freq,
1058                    const struct ieee80211_regdomain *regd, u32 bw)
1059 {
1060         int i;
1061         bool band_rule_found = false;
1062         bool bw_fits = false;
1063
1064         if (!regd)
1065                 return ERR_PTR(-EINVAL);
1066
1067         for (i = 0; i < regd->n_reg_rules; i++) {
1068                 const struct ieee80211_reg_rule *rr;
1069                 const struct ieee80211_freq_range *fr = NULL;
1070
1071                 rr = &regd->reg_rules[i];
1072                 fr = &rr->freq_range;
1073
1074                 /*
1075                  * We only need to know if one frequency rule was
1076                  * was in center_freq's band, that's enough, so lets
1077                  * not overwrite it once found
1078                  */
1079                 if (!band_rule_found)
1080                         band_rule_found = freq_in_rule_band(fr, center_freq);
1081
1082                 bw_fits = reg_does_bw_fit(fr, center_freq, bw);
1083
1084                 if (band_rule_found && bw_fits)
1085                         return rr;
1086         }
1087
1088         if (!band_rule_found)
1089                 return ERR_PTR(-ERANGE);
1090
1091         return ERR_PTR(-EINVAL);
1092 }
1093
1094 static const struct ieee80211_reg_rule *
1095 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1096 {
1097         const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1098         const struct ieee80211_reg_rule *reg_rule = NULL;
1099         u32 bw;
1100
1101         for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
1102                 reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1103                 if (!IS_ERR(reg_rule))
1104                         return reg_rule;
1105         }
1106
1107         return reg_rule;
1108 }
1109
1110 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1111                                                u32 center_freq)
1112 {
1113         return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(20));
1114 }
1115 EXPORT_SYMBOL(freq_reg_info);
1116
1117 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1118 {
1119         switch (initiator) {
1120         case NL80211_REGDOM_SET_BY_CORE:
1121                 return "core";
1122         case NL80211_REGDOM_SET_BY_USER:
1123                 return "user";
1124         case NL80211_REGDOM_SET_BY_DRIVER:
1125                 return "driver";
1126         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1127                 return "country IE";
1128         default:
1129                 WARN_ON(1);
1130                 return "bug";
1131         }
1132 }
1133 EXPORT_SYMBOL(reg_initiator_name);
1134
1135 static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain *regd,
1136                                     struct ieee80211_channel *chan,
1137                                     const struct ieee80211_reg_rule *reg_rule)
1138 {
1139 #ifdef CONFIG_CFG80211_REG_DEBUG
1140         const struct ieee80211_power_rule *power_rule;
1141         const struct ieee80211_freq_range *freq_range;
1142         char max_antenna_gain[32], bw[32];
1143
1144         power_rule = &reg_rule->power_rule;
1145         freq_range = &reg_rule->freq_range;
1146
1147         if (!power_rule->max_antenna_gain)
1148                 snprintf(max_antenna_gain, sizeof(max_antenna_gain), "N/A");
1149         else
1150                 snprintf(max_antenna_gain, sizeof(max_antenna_gain), "%d mBi",
1151                          power_rule->max_antenna_gain);
1152
1153         if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1154                 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
1155                          freq_range->max_bandwidth_khz,
1156                          reg_get_max_bandwidth(regd, reg_rule));
1157         else
1158                 snprintf(bw, sizeof(bw), "%d KHz",
1159                          freq_range->max_bandwidth_khz);
1160
1161         REG_DBG_PRINT("Updating information on frequency %d MHz with regulatory rule:\n",
1162                       chan->center_freq);
1163
1164         REG_DBG_PRINT("(%d KHz - %d KHz @ %s), (%s, %d mBm)\n",
1165                       freq_range->start_freq_khz, freq_range->end_freq_khz,
1166                       bw, max_antenna_gain,
1167                       power_rule->max_eirp);
1168 #endif
1169 }
1170
1171 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1172                                           const struct ieee80211_reg_rule *reg_rule,
1173                                           const struct ieee80211_channel *chan)
1174 {
1175         const struct ieee80211_freq_range *freq_range = NULL;
1176         u32 max_bandwidth_khz, bw_flags = 0;
1177
1178         freq_range = &reg_rule->freq_range;
1179
1180         max_bandwidth_khz = freq_range->max_bandwidth_khz;
1181         /* Check if auto calculation requested */
1182         if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1183                 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1184
1185         /* If we get a reg_rule we can assume that at least 5Mhz fit */
1186         if (!reg_does_bw_fit(freq_range, MHZ_TO_KHZ(chan->center_freq),
1187                              MHZ_TO_KHZ(10)))
1188                 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1189         if (!reg_does_bw_fit(freq_range, MHZ_TO_KHZ(chan->center_freq),
1190                              MHZ_TO_KHZ(20)))
1191                 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1192
1193         if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1194                 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1195         if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1196                 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1197         if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1198                 bw_flags |= IEEE80211_CHAN_NO_HT40;
1199         if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1200                 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1201         if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1202                 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1203         return bw_flags;
1204 }
1205
1206 /*
1207  * Note that right now we assume the desired channel bandwidth
1208  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1209  * per channel, the primary and the extension channel).
1210  */
1211 static void handle_channel(struct wiphy *wiphy,
1212                            enum nl80211_reg_initiator initiator,
1213                            struct ieee80211_channel *chan)
1214 {
1215         u32 flags, bw_flags = 0;
1216         const struct ieee80211_reg_rule *reg_rule = NULL;
1217         const struct ieee80211_power_rule *power_rule = NULL;
1218         struct wiphy *request_wiphy = NULL;
1219         struct regulatory_request *lr = get_last_request();
1220         const struct ieee80211_regdomain *regd;
1221
1222         request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1223
1224         flags = chan->orig_flags;
1225
1226         reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
1227         if (IS_ERR(reg_rule)) {
1228                 /*
1229                  * We will disable all channels that do not match our
1230                  * received regulatory rule unless the hint is coming
1231                  * from a Country IE and the Country IE had no information
1232                  * about a band. The IEEE 802.11 spec allows for an AP
1233                  * to send only a subset of the regulatory rules allowed,
1234                  * so an AP in the US that only supports 2.4 GHz may only send
1235                  * a country IE with information for the 2.4 GHz band
1236                  * while 5 GHz is still supported.
1237                  */
1238                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1239                     PTR_ERR(reg_rule) == -ERANGE)
1240                         return;
1241
1242                 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1243                     request_wiphy && request_wiphy == wiphy &&
1244                     request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1245                         REG_DBG_PRINT("Disabling freq %d MHz for good\n",
1246                                       chan->center_freq);
1247                         chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1248                         chan->flags = chan->orig_flags;
1249                 } else {
1250                         REG_DBG_PRINT("Disabling freq %d MHz\n",
1251                                       chan->center_freq);
1252                         chan->flags |= IEEE80211_CHAN_DISABLED;
1253                 }
1254                 return;
1255         }
1256
1257         regd = reg_get_regdomain(wiphy);
1258         chan_reg_rule_print_dbg(regd, chan, reg_rule);
1259
1260         power_rule = &reg_rule->power_rule;
1261         bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1262
1263         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1264             request_wiphy && request_wiphy == wiphy &&
1265             request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1266                 /*
1267                  * This guarantees the driver's requested regulatory domain
1268                  * will always be used as a base for further regulatory
1269                  * settings
1270                  */
1271                 chan->flags = chan->orig_flags =
1272                         map_regdom_flags(reg_rule->flags) | bw_flags;
1273                 chan->max_antenna_gain = chan->orig_mag =
1274                         (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1275                 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1276                         (int) MBM_TO_DBM(power_rule->max_eirp);
1277
1278                 if (chan->flags & IEEE80211_CHAN_RADAR) {
1279                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1280                         if (reg_rule->dfs_cac_ms)
1281                                 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1282                 }
1283
1284                 return;
1285         }
1286
1287         chan->dfs_state = NL80211_DFS_USABLE;
1288         chan->dfs_state_entered = jiffies;
1289
1290         chan->beacon_found = false;
1291         chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1292         chan->max_antenna_gain =
1293                 min_t(int, chan->orig_mag,
1294                       MBI_TO_DBI(power_rule->max_antenna_gain));
1295         chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1296
1297         if (chan->flags & IEEE80211_CHAN_RADAR) {
1298                 if (reg_rule->dfs_cac_ms)
1299                         chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1300                 else
1301                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1302         }
1303
1304         if (chan->orig_mpwr) {
1305                 /*
1306                  * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1307                  * will always follow the passed country IE power settings.
1308                  */
1309                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1310                     wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1311                         chan->max_power = chan->max_reg_power;
1312                 else
1313                         chan->max_power = min(chan->orig_mpwr,
1314                                               chan->max_reg_power);
1315         } else
1316                 chan->max_power = chan->max_reg_power;
1317 }
1318
1319 static void handle_band(struct wiphy *wiphy,
1320                         enum nl80211_reg_initiator initiator,
1321                         struct ieee80211_supported_band *sband)
1322 {
1323         unsigned int i;
1324
1325         if (!sband)
1326                 return;
1327
1328         for (i = 0; i < sband->n_channels; i++)
1329                 handle_channel(wiphy, initiator, &sband->channels[i]);
1330 }
1331
1332 static bool reg_request_cell_base(struct regulatory_request *request)
1333 {
1334         if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1335                 return false;
1336         return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1337 }
1338
1339 bool reg_last_request_cell_base(void)
1340 {
1341         return reg_request_cell_base(get_last_request());
1342 }
1343
1344 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1345 /* Core specific check */
1346 static enum reg_request_treatment
1347 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1348 {
1349         struct regulatory_request *lr = get_last_request();
1350
1351         if (!reg_num_devs_support_basehint)
1352                 return REG_REQ_IGNORE;
1353
1354         if (reg_request_cell_base(lr) &&
1355             !regdom_changes(pending_request->alpha2))
1356                 return REG_REQ_ALREADY_SET;
1357
1358         return REG_REQ_OK;
1359 }
1360
1361 /* Device specific check */
1362 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1363 {
1364         return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1365 }
1366 #else
1367 static enum reg_request_treatment
1368 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1369 {
1370         return REG_REQ_IGNORE;
1371 }
1372
1373 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1374 {
1375         return true;
1376 }
1377 #endif
1378
1379 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1380 {
1381         if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1382             !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1383                 return true;
1384         return false;
1385 }
1386
1387 static bool ignore_reg_update(struct wiphy *wiphy,
1388                               enum nl80211_reg_initiator initiator)
1389 {
1390         struct regulatory_request *lr = get_last_request();
1391
1392         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1393                 return true;
1394
1395         if (!lr) {
1396                 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1397                               "since last_request is not set\n",
1398                               reg_initiator_name(initiator));
1399                 return true;
1400         }
1401
1402         if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1403             wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1404                 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1405                               "since the driver uses its own custom "
1406                               "regulatory domain\n",
1407                               reg_initiator_name(initiator));
1408                 return true;
1409         }
1410
1411         /*
1412          * wiphy->regd will be set once the device has its own
1413          * desired regulatory domain set
1414          */
1415         if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1416             initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1417             !is_world_regdom(lr->alpha2)) {
1418                 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1419                               "since the driver requires its own regulatory "
1420                               "domain to be set first\n",
1421                               reg_initiator_name(initiator));
1422                 return true;
1423         }
1424
1425         if (reg_request_cell_base(lr))
1426                 return reg_dev_ignore_cell_hint(wiphy);
1427
1428         return false;
1429 }
1430
1431 static bool reg_is_world_roaming(struct wiphy *wiphy)
1432 {
1433         const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1434         const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1435         struct regulatory_request *lr = get_last_request();
1436
1437         if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1438                 return true;
1439
1440         if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1441             wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1442                 return true;
1443
1444         return false;
1445 }
1446
1447 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1448                               struct reg_beacon *reg_beacon)
1449 {
1450         struct ieee80211_supported_band *sband;
1451         struct ieee80211_channel *chan;
1452         bool channel_changed = false;
1453         struct ieee80211_channel chan_before;
1454
1455         sband = wiphy->bands[reg_beacon->chan.band];
1456         chan = &sband->channels[chan_idx];
1457
1458         if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1459                 return;
1460
1461         if (chan->beacon_found)
1462                 return;
1463
1464         chan->beacon_found = true;
1465
1466         if (!reg_is_world_roaming(wiphy))
1467                 return;
1468
1469         if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1470                 return;
1471
1472         chan_before.center_freq = chan->center_freq;
1473         chan_before.flags = chan->flags;
1474
1475         if (chan->flags & IEEE80211_CHAN_NO_IR) {
1476                 chan->flags &= ~IEEE80211_CHAN_NO_IR;
1477                 channel_changed = true;
1478         }
1479
1480         if (channel_changed)
1481                 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1482 }
1483
1484 /*
1485  * Called when a scan on a wiphy finds a beacon on
1486  * new channel
1487  */
1488 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1489                                     struct reg_beacon *reg_beacon)
1490 {
1491         unsigned int i;
1492         struct ieee80211_supported_band *sband;
1493
1494         if (!wiphy->bands[reg_beacon->chan.band])
1495                 return;
1496
1497         sband = wiphy->bands[reg_beacon->chan.band];
1498
1499         for (i = 0; i < sband->n_channels; i++)
1500                 handle_reg_beacon(wiphy, i, reg_beacon);
1501 }
1502
1503 /*
1504  * Called upon reg changes or a new wiphy is added
1505  */
1506 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1507 {
1508         unsigned int i;
1509         struct ieee80211_supported_band *sband;
1510         struct reg_beacon *reg_beacon;
1511
1512         list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1513                 if (!wiphy->bands[reg_beacon->chan.band])
1514                         continue;
1515                 sband = wiphy->bands[reg_beacon->chan.band];
1516                 for (i = 0; i < sband->n_channels; i++)
1517                         handle_reg_beacon(wiphy, i, reg_beacon);
1518         }
1519 }
1520
1521 /* Reap the advantages of previously found beacons */
1522 static void reg_process_beacons(struct wiphy *wiphy)
1523 {
1524         /*
1525          * Means we are just firing up cfg80211, so no beacons would
1526          * have been processed yet.
1527          */
1528         if (!last_request)
1529                 return;
1530         wiphy_update_beacon_reg(wiphy);
1531 }
1532
1533 static bool is_ht40_allowed(struct ieee80211_channel *chan)
1534 {
1535         if (!chan)
1536                 return false;
1537         if (chan->flags & IEEE80211_CHAN_DISABLED)
1538                 return false;
1539         /* This would happen when regulatory rules disallow HT40 completely */
1540         if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
1541                 return false;
1542         return true;
1543 }
1544
1545 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1546                                          struct ieee80211_channel *channel)
1547 {
1548         struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
1549         struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1550         unsigned int i;
1551
1552         if (!is_ht40_allowed(channel)) {
1553                 channel->flags |= IEEE80211_CHAN_NO_HT40;
1554                 return;
1555         }
1556
1557         /*
1558          * We need to ensure the extension channels exist to
1559          * be able to use HT40- or HT40+, this finds them (or not)
1560          */
1561         for (i = 0; i < sband->n_channels; i++) {
1562                 struct ieee80211_channel *c = &sband->channels[i];
1563
1564                 if (c->center_freq == (channel->center_freq - 20))
1565                         channel_before = c;
1566                 if (c->center_freq == (channel->center_freq + 20))
1567                         channel_after = c;
1568         }
1569
1570         /*
1571          * Please note that this assumes target bandwidth is 20 MHz,
1572          * if that ever changes we also need to change the below logic
1573          * to include that as well.
1574          */
1575         if (!is_ht40_allowed(channel_before))
1576                 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1577         else
1578                 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1579
1580         if (!is_ht40_allowed(channel_after))
1581                 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1582         else
1583                 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1584 }
1585
1586 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1587                                       struct ieee80211_supported_band *sband)
1588 {
1589         unsigned int i;
1590
1591         if (!sband)
1592                 return;
1593
1594         for (i = 0; i < sband->n_channels; i++)
1595                 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
1596 }
1597
1598 static void reg_process_ht_flags(struct wiphy *wiphy)
1599 {
1600         enum ieee80211_band band;
1601
1602         if (!wiphy)
1603                 return;
1604
1605         for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1606                 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
1607 }
1608
1609 static void reg_call_notifier(struct wiphy *wiphy,
1610                               struct regulatory_request *request)
1611 {
1612         if (wiphy->reg_notifier)
1613                 wiphy->reg_notifier(wiphy, request);
1614 }
1615
1616 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
1617 {
1618         struct cfg80211_chan_def chandef;
1619         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1620         enum nl80211_iftype iftype;
1621
1622         wdev_lock(wdev);
1623         iftype = wdev->iftype;
1624
1625         /* make sure the interface is active */
1626         if (!wdev->netdev || !netif_running(wdev->netdev))
1627                 goto wdev_inactive_unlock;
1628
1629         switch (iftype) {
1630         case NL80211_IFTYPE_AP:
1631         case NL80211_IFTYPE_P2P_GO:
1632                 if (!wdev->beacon_interval)
1633                         goto wdev_inactive_unlock;
1634                 chandef = wdev->chandef;
1635                 break;
1636         case NL80211_IFTYPE_ADHOC:
1637                 if (!wdev->ssid_len)
1638                         goto wdev_inactive_unlock;
1639                 chandef = wdev->chandef;
1640                 break;
1641         case NL80211_IFTYPE_STATION:
1642         case NL80211_IFTYPE_P2P_CLIENT:
1643                 if (!wdev->current_bss ||
1644                     !wdev->current_bss->pub.channel)
1645                         goto wdev_inactive_unlock;
1646
1647                 if (!rdev->ops->get_channel ||
1648                     rdev_get_channel(rdev, wdev, &chandef))
1649                         cfg80211_chandef_create(&chandef,
1650                                                 wdev->current_bss->pub.channel,
1651                                                 NL80211_CHAN_NO_HT);
1652                 break;
1653         case NL80211_IFTYPE_MONITOR:
1654         case NL80211_IFTYPE_AP_VLAN:
1655         case NL80211_IFTYPE_P2P_DEVICE:
1656                 /* no enforcement required */
1657                 break;
1658         default:
1659                 /* others not implemented for now */
1660                 WARN_ON(1);
1661                 break;
1662         }
1663
1664         wdev_unlock(wdev);
1665
1666         switch (iftype) {
1667         case NL80211_IFTYPE_AP:
1668         case NL80211_IFTYPE_P2P_GO:
1669         case NL80211_IFTYPE_ADHOC:
1670                 return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype);
1671         case NL80211_IFTYPE_STATION:
1672         case NL80211_IFTYPE_P2P_CLIENT:
1673                 return cfg80211_chandef_usable(wiphy, &chandef,
1674                                                IEEE80211_CHAN_DISABLED);
1675         default:
1676                 break;
1677         }
1678
1679         return true;
1680
1681 wdev_inactive_unlock:
1682         wdev_unlock(wdev);
1683         return true;
1684 }
1685
1686 static void reg_leave_invalid_chans(struct wiphy *wiphy)
1687 {
1688         struct wireless_dev *wdev;
1689         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1690
1691         ASSERT_RTNL();
1692
1693         list_for_each_entry(wdev, &rdev->wdev_list, list)
1694                 if (!reg_wdev_chan_valid(wiphy, wdev))
1695                         cfg80211_leave(rdev, wdev);
1696 }
1697
1698 static void reg_check_chans_work(struct work_struct *work)
1699 {
1700         struct cfg80211_registered_device *rdev;
1701
1702         REG_DBG_PRINT("Verifying active interfaces after reg change\n");
1703         rtnl_lock();
1704
1705         list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1706                 if (!(rdev->wiphy.regulatory_flags &
1707                       REGULATORY_IGNORE_STALE_KICKOFF))
1708                         reg_leave_invalid_chans(&rdev->wiphy);
1709
1710         rtnl_unlock();
1711 }
1712
1713 static void reg_check_channels(void)
1714 {
1715         /*
1716          * Give usermode a chance to do something nicer (move to another
1717          * channel, orderly disconnection), before forcing a disconnection.
1718          */
1719         mod_delayed_work(system_power_efficient_wq,
1720                          &reg_check_chans,
1721                          msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
1722 }
1723
1724 static void wiphy_update_regulatory(struct wiphy *wiphy,
1725                                     enum nl80211_reg_initiator initiator)
1726 {
1727         enum ieee80211_band band;
1728         struct regulatory_request *lr = get_last_request();
1729
1730         if (ignore_reg_update(wiphy, initiator)) {
1731                 /*
1732                  * Regulatory updates set by CORE are ignored for custom
1733                  * regulatory cards. Let us notify the changes to the driver,
1734                  * as some drivers used this to restore its orig_* reg domain.
1735                  */
1736                 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1737                     wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1738                         reg_call_notifier(wiphy, lr);
1739                 return;
1740         }
1741
1742         lr->dfs_region = get_cfg80211_regdom()->dfs_region;
1743
1744         for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1745                 handle_band(wiphy, initiator, wiphy->bands[band]);
1746
1747         reg_process_beacons(wiphy);
1748         reg_process_ht_flags(wiphy);
1749         reg_call_notifier(wiphy, lr);
1750 }
1751
1752 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1753 {
1754         struct cfg80211_registered_device *rdev;
1755         struct wiphy *wiphy;
1756
1757         ASSERT_RTNL();
1758
1759         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1760                 wiphy = &rdev->wiphy;
1761                 wiphy_update_regulatory(wiphy, initiator);
1762         }
1763
1764         reg_check_channels();
1765 }
1766
1767 static void handle_channel_custom(struct wiphy *wiphy,
1768                                   struct ieee80211_channel *chan,
1769                                   const struct ieee80211_regdomain *regd)
1770 {
1771         u32 bw_flags = 0;
1772         const struct ieee80211_reg_rule *reg_rule = NULL;
1773         const struct ieee80211_power_rule *power_rule = NULL;
1774         u32 bw;
1775
1776         for (bw = MHZ_TO_KHZ(20); bw >= MHZ_TO_KHZ(5); bw = bw / 2) {
1777                 reg_rule = freq_reg_info_regd(MHZ_TO_KHZ(chan->center_freq),
1778                                               regd, bw);
1779                 if (!IS_ERR(reg_rule))
1780                         break;
1781         }
1782
1783         if (IS_ERR(reg_rule)) {
1784                 REG_DBG_PRINT("Disabling freq %d MHz as custom regd has no rule that fits it\n",
1785                               chan->center_freq);
1786                 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
1787                         chan->flags |= IEEE80211_CHAN_DISABLED;
1788                 } else {
1789                         chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1790                         chan->flags = chan->orig_flags;
1791                 }
1792                 return;
1793         }
1794
1795         chan_reg_rule_print_dbg(regd, chan, reg_rule);
1796
1797         power_rule = &reg_rule->power_rule;
1798         bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1799
1800         chan->dfs_state_entered = jiffies;
1801         chan->dfs_state = NL80211_DFS_USABLE;
1802
1803         chan->beacon_found = false;
1804
1805         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1806                 chan->flags = chan->orig_flags | bw_flags |
1807                               map_regdom_flags(reg_rule->flags);
1808         else
1809                 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1810
1811         chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1812         chan->max_reg_power = chan->max_power =
1813                 (int) MBM_TO_DBM(power_rule->max_eirp);
1814
1815         if (chan->flags & IEEE80211_CHAN_RADAR) {
1816                 if (reg_rule->dfs_cac_ms)
1817                         chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1818                 else
1819                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1820         }
1821
1822         chan->max_power = chan->max_reg_power;
1823 }
1824
1825 static void handle_band_custom(struct wiphy *wiphy,
1826                                struct ieee80211_supported_band *sband,
1827                                const struct ieee80211_regdomain *regd)
1828 {
1829         unsigned int i;
1830
1831         if (!sband)
1832                 return;
1833
1834         for (i = 0; i < sband->n_channels; i++)
1835                 handle_channel_custom(wiphy, &sband->channels[i], regd);
1836 }
1837
1838 /* Used by drivers prior to wiphy registration */
1839 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1840                                    const struct ieee80211_regdomain *regd)
1841 {
1842         enum ieee80211_band band;
1843         unsigned int bands_set = 0;
1844
1845         WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
1846              "wiphy should have REGULATORY_CUSTOM_REG\n");
1847         wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
1848
1849         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1850                 if (!wiphy->bands[band])
1851                         continue;
1852                 handle_band_custom(wiphy, wiphy->bands[band], regd);
1853                 bands_set++;
1854         }
1855
1856         /*
1857          * no point in calling this if it won't have any effect
1858          * on your device's supported bands.
1859          */
1860         WARN_ON(!bands_set);
1861 }
1862 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1863
1864 static void reg_set_request_processed(void)
1865 {
1866         bool need_more_processing = false;
1867         struct regulatory_request *lr = get_last_request();
1868
1869         lr->processed = true;
1870
1871         spin_lock(&reg_requests_lock);
1872         if (!list_empty(&reg_requests_list))
1873                 need_more_processing = true;
1874         spin_unlock(&reg_requests_lock);
1875
1876         cancel_crda_timeout();
1877
1878         if (need_more_processing)
1879                 schedule_work(&reg_work);
1880 }
1881
1882 /**
1883  * reg_process_hint_core - process core regulatory requests
1884  * @pending_request: a pending core regulatory request
1885  *
1886  * The wireless subsystem can use this function to process
1887  * a regulatory request issued by the regulatory core.
1888  */
1889 static enum reg_request_treatment
1890 reg_process_hint_core(struct regulatory_request *core_request)
1891 {
1892         if (reg_query_database(core_request)) {
1893                 core_request->intersect = false;
1894                 core_request->processed = false;
1895                 reg_update_last_request(core_request);
1896                 return REG_REQ_OK;
1897         }
1898
1899         return REG_REQ_IGNORE;
1900 }
1901
1902 static enum reg_request_treatment
1903 __reg_process_hint_user(struct regulatory_request *user_request)
1904 {
1905         struct regulatory_request *lr = get_last_request();
1906
1907         if (reg_request_cell_base(user_request))
1908                 return reg_ignore_cell_hint(user_request);
1909
1910         if (reg_request_cell_base(lr))
1911                 return REG_REQ_IGNORE;
1912
1913         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1914                 return REG_REQ_INTERSECT;
1915         /*
1916          * If the user knows better the user should set the regdom
1917          * to their country before the IE is picked up
1918          */
1919         if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
1920             lr->intersect)
1921                 return REG_REQ_IGNORE;
1922         /*
1923          * Process user requests only after previous user/driver/core
1924          * requests have been processed
1925          */
1926         if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
1927              lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1928              lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
1929             regdom_changes(lr->alpha2))
1930                 return REG_REQ_IGNORE;
1931
1932         if (!regdom_changes(user_request->alpha2))
1933                 return REG_REQ_ALREADY_SET;
1934
1935         return REG_REQ_OK;
1936 }
1937
1938 /**
1939  * reg_process_hint_user - process user regulatory requests
1940  * @user_request: a pending user regulatory request
1941  *
1942  * The wireless subsystem can use this function to process
1943  * a regulatory request initiated by userspace.
1944  */
1945 static enum reg_request_treatment
1946 reg_process_hint_user(struct regulatory_request *user_request)
1947 {
1948         enum reg_request_treatment treatment;
1949
1950         treatment = __reg_process_hint_user(user_request);
1951         if (treatment == REG_REQ_IGNORE ||
1952             treatment == REG_REQ_ALREADY_SET)
1953                 return REG_REQ_IGNORE;
1954
1955         user_request->intersect = treatment == REG_REQ_INTERSECT;
1956         user_request->processed = false;
1957
1958         if (reg_query_database(user_request)) {
1959                 reg_update_last_request(user_request);
1960                 user_alpha2[0] = user_request->alpha2[0];
1961                 user_alpha2[1] = user_request->alpha2[1];
1962                 return REG_REQ_OK;
1963         }
1964
1965         return REG_REQ_IGNORE;
1966 }
1967
1968 static enum reg_request_treatment
1969 __reg_process_hint_driver(struct regulatory_request *driver_request)
1970 {
1971         struct regulatory_request *lr = get_last_request();
1972
1973         if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
1974                 if (regdom_changes(driver_request->alpha2))
1975                         return REG_REQ_OK;
1976                 return REG_REQ_ALREADY_SET;
1977         }
1978
1979         /*
1980          * This would happen if you unplug and plug your card
1981          * back in or if you add a new device for which the previously
1982          * loaded card also agrees on the regulatory domain.
1983          */
1984         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1985             !regdom_changes(driver_request->alpha2))
1986                 return REG_REQ_ALREADY_SET;
1987
1988         return REG_REQ_INTERSECT;
1989 }
1990
1991 /**
1992  * reg_process_hint_driver - process driver regulatory requests
1993  * @driver_request: a pending driver regulatory request
1994  *
1995  * The wireless subsystem can use this function to process
1996  * a regulatory request issued by an 802.11 driver.
1997  *
1998  * Returns one of the different reg request treatment values.
1999  */
2000 static enum reg_request_treatment
2001 reg_process_hint_driver(struct wiphy *wiphy,
2002                         struct regulatory_request *driver_request)
2003 {
2004         const struct ieee80211_regdomain *regd, *tmp;
2005         enum reg_request_treatment treatment;
2006
2007         treatment = __reg_process_hint_driver(driver_request);
2008
2009         switch (treatment) {
2010         case REG_REQ_OK:
2011                 break;
2012         case REG_REQ_IGNORE:
2013                 return REG_REQ_IGNORE;
2014         case REG_REQ_INTERSECT:
2015         case REG_REQ_ALREADY_SET:
2016                 regd = reg_copy_regd(get_cfg80211_regdom());
2017                 if (IS_ERR(regd))
2018                         return REG_REQ_IGNORE;
2019
2020                 tmp = get_wiphy_regdom(wiphy);
2021                 rcu_assign_pointer(wiphy->regd, regd);
2022                 rcu_free_regdom(tmp);
2023         }
2024
2025
2026         driver_request->intersect = treatment == REG_REQ_INTERSECT;
2027         driver_request->processed = false;
2028
2029         /*
2030          * Since CRDA will not be called in this case as we already
2031          * have applied the requested regulatory domain before we just
2032          * inform userspace we have processed the request
2033          */
2034         if (treatment == REG_REQ_ALREADY_SET) {
2035                 nl80211_send_reg_change_event(driver_request);
2036                 reg_update_last_request(driver_request);
2037                 reg_set_request_processed();
2038                 return REG_REQ_ALREADY_SET;
2039         }
2040
2041         if (reg_query_database(driver_request)) {
2042                 reg_update_last_request(driver_request);
2043                 return REG_REQ_OK;
2044         }
2045
2046         return REG_REQ_IGNORE;
2047 }
2048
2049 static enum reg_request_treatment
2050 __reg_process_hint_country_ie(struct wiphy *wiphy,
2051                               struct regulatory_request *country_ie_request)
2052 {
2053         struct wiphy *last_wiphy = NULL;
2054         struct regulatory_request *lr = get_last_request();
2055
2056         if (reg_request_cell_base(lr)) {
2057                 /* Trust a Cell base station over the AP's country IE */
2058                 if (regdom_changes(country_ie_request->alpha2))
2059                         return REG_REQ_IGNORE;
2060                 return REG_REQ_ALREADY_SET;
2061         } else {
2062                 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2063                         return REG_REQ_IGNORE;
2064         }
2065
2066         if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2067                 return -EINVAL;
2068
2069         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2070                 return REG_REQ_OK;
2071
2072         last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2073
2074         if (last_wiphy != wiphy) {
2075                 /*
2076                  * Two cards with two APs claiming different
2077                  * Country IE alpha2s. We could
2078                  * intersect them, but that seems unlikely
2079                  * to be correct. Reject second one for now.
2080                  */
2081                 if (regdom_changes(country_ie_request->alpha2))
2082                         return REG_REQ_IGNORE;
2083                 return REG_REQ_ALREADY_SET;
2084         }
2085
2086         if (regdom_changes(country_ie_request->alpha2))
2087                 return REG_REQ_OK;
2088         return REG_REQ_ALREADY_SET;
2089 }
2090
2091 /**
2092  * reg_process_hint_country_ie - process regulatory requests from country IEs
2093  * @country_ie_request: a regulatory request from a country IE
2094  *
2095  * The wireless subsystem can use this function to process
2096  * a regulatory request issued by a country Information Element.
2097  *
2098  * Returns one of the different reg request treatment values.
2099  */
2100 static enum reg_request_treatment
2101 reg_process_hint_country_ie(struct wiphy *wiphy,
2102                             struct regulatory_request *country_ie_request)
2103 {
2104         enum reg_request_treatment treatment;
2105
2106         treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2107
2108         switch (treatment) {
2109         case REG_REQ_OK:
2110                 break;
2111         case REG_REQ_IGNORE:
2112                 return REG_REQ_IGNORE;
2113         case REG_REQ_ALREADY_SET:
2114                 reg_free_request(country_ie_request);
2115                 return REG_REQ_ALREADY_SET;
2116         case REG_REQ_INTERSECT:
2117                 /*
2118                  * This doesn't happen yet, not sure we
2119                  * ever want to support it for this case.
2120                  */
2121                 WARN_ONCE(1, "Unexpected intersection for country IEs");
2122                 return REG_REQ_IGNORE;
2123         }
2124
2125         country_ie_request->intersect = false;
2126         country_ie_request->processed = false;
2127
2128         if (reg_query_database(country_ie_request)) {
2129                 reg_update_last_request(country_ie_request);
2130                 return REG_REQ_OK;
2131         }
2132
2133         return REG_REQ_IGNORE;
2134 }
2135
2136 /* This processes *all* regulatory hints */
2137 static void reg_process_hint(struct regulatory_request *reg_request)
2138 {
2139         struct wiphy *wiphy = NULL;
2140         enum reg_request_treatment treatment;
2141
2142         if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
2143                 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
2144
2145         switch (reg_request->initiator) {
2146         case NL80211_REGDOM_SET_BY_CORE:
2147                 treatment = reg_process_hint_core(reg_request);
2148                 break;
2149         case NL80211_REGDOM_SET_BY_USER:
2150                 treatment = reg_process_hint_user(reg_request);
2151                 break;
2152         case NL80211_REGDOM_SET_BY_DRIVER:
2153                 if (!wiphy)
2154                         goto out_free;
2155                 treatment = reg_process_hint_driver(wiphy, reg_request);
2156                 break;
2157         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2158                 if (!wiphy)
2159                         goto out_free;
2160                 treatment = reg_process_hint_country_ie(wiphy, reg_request);
2161                 break;
2162         default:
2163                 WARN(1, "invalid initiator %d\n", reg_request->initiator);
2164                 goto out_free;
2165         }
2166
2167         if (treatment == REG_REQ_IGNORE)
2168                 goto out_free;
2169
2170         WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
2171              "unexpected treatment value %d\n", treatment);
2172
2173         /* This is required so that the orig_* parameters are saved.
2174          * NOTE: treatment must be set for any case that reaches here!
2175          */
2176         if (treatment == REG_REQ_ALREADY_SET && wiphy &&
2177             wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2178                 wiphy_update_regulatory(wiphy, reg_request->initiator);
2179                 reg_check_channels();
2180         }
2181
2182         return;
2183
2184 out_free:
2185         reg_free_request(reg_request);
2186 }
2187
2188 static bool reg_only_self_managed_wiphys(void)
2189 {
2190         struct cfg80211_registered_device *rdev;
2191         struct wiphy *wiphy;
2192         bool self_managed_found = false;
2193
2194         ASSERT_RTNL();
2195
2196         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2197                 wiphy = &rdev->wiphy;
2198                 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2199                         self_managed_found = true;
2200                 else
2201                         return false;
2202         }
2203
2204         /* make sure at least one self-managed wiphy exists */
2205         return self_managed_found;
2206 }
2207
2208 /*
2209  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
2210  * Regulatory hints come on a first come first serve basis and we
2211  * must process each one atomically.
2212  */
2213 static void reg_process_pending_hints(void)
2214 {
2215         struct regulatory_request *reg_request, *lr;
2216
2217         lr = get_last_request();
2218
2219         /* When last_request->processed becomes true this will be rescheduled */
2220         if (lr && !lr->processed) {
2221                 reg_process_hint(lr);
2222                 return;
2223         }
2224
2225         spin_lock(&reg_requests_lock);
2226
2227         if (list_empty(&reg_requests_list)) {
2228                 spin_unlock(&reg_requests_lock);
2229                 return;
2230         }
2231
2232         reg_request = list_first_entry(&reg_requests_list,
2233                                        struct regulatory_request,
2234                                        list);
2235         list_del_init(&reg_request->list);
2236
2237         spin_unlock(&reg_requests_lock);
2238
2239         if (reg_only_self_managed_wiphys()) {
2240                 reg_free_request(reg_request);
2241                 return;
2242         }
2243
2244         reg_process_hint(reg_request);
2245
2246         lr = get_last_request();
2247
2248         spin_lock(&reg_requests_lock);
2249         if (!list_empty(&reg_requests_list) && lr && lr->processed)
2250                 schedule_work(&reg_work);
2251         spin_unlock(&reg_requests_lock);
2252 }
2253
2254 /* Processes beacon hints -- this has nothing to do with country IEs */
2255 static void reg_process_pending_beacon_hints(void)
2256 {
2257         struct cfg80211_registered_device *rdev;
2258         struct reg_beacon *pending_beacon, *tmp;
2259
2260         /* This goes through the _pending_ beacon list */
2261         spin_lock_bh(&reg_pending_beacons_lock);
2262
2263         list_for_each_entry_safe(pending_beacon, tmp,
2264                                  &reg_pending_beacons, list) {
2265                 list_del_init(&pending_beacon->list);
2266
2267                 /* Applies the beacon hint to current wiphys */
2268                 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2269                         wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
2270
2271                 /* Remembers the beacon hint for new wiphys or reg changes */
2272                 list_add_tail(&pending_beacon->list, &reg_beacon_list);
2273         }
2274
2275         spin_unlock_bh(&reg_pending_beacons_lock);
2276 }
2277
2278 static void reg_process_self_managed_hints(void)
2279 {
2280         struct cfg80211_registered_device *rdev;
2281         struct wiphy *wiphy;
2282         const struct ieee80211_regdomain *tmp;
2283         const struct ieee80211_regdomain *regd;
2284         enum ieee80211_band band;
2285         struct regulatory_request request = {};
2286
2287         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2288                 wiphy = &rdev->wiphy;
2289
2290                 spin_lock(&reg_requests_lock);
2291                 regd = rdev->requested_regd;
2292                 rdev->requested_regd = NULL;
2293                 spin_unlock(&reg_requests_lock);
2294
2295                 if (regd == NULL)
2296                         continue;
2297
2298                 tmp = get_wiphy_regdom(wiphy);
2299                 rcu_assign_pointer(wiphy->regd, regd);
2300                 rcu_free_regdom(tmp);
2301
2302                 for (band = 0; band < IEEE80211_NUM_BANDS; band++)
2303                         handle_band_custom(wiphy, wiphy->bands[band], regd);
2304
2305                 reg_process_ht_flags(wiphy);
2306
2307                 request.wiphy_idx = get_wiphy_idx(wiphy);
2308                 request.alpha2[0] = regd->alpha2[0];
2309                 request.alpha2[1] = regd->alpha2[1];
2310                 request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
2311
2312                 nl80211_send_wiphy_reg_change_event(&request);
2313         }
2314
2315         reg_check_channels();
2316 }
2317
2318 static void reg_todo(struct work_struct *work)
2319 {
2320         rtnl_lock();
2321         reg_process_pending_hints();
2322         reg_process_pending_beacon_hints();
2323         reg_process_self_managed_hints();
2324         rtnl_unlock();
2325 }
2326
2327 static void queue_regulatory_request(struct regulatory_request *request)
2328 {
2329         request->alpha2[0] = toupper(request->alpha2[0]);
2330         request->alpha2[1] = toupper(request->alpha2[1]);
2331
2332         spin_lock(&reg_requests_lock);
2333         list_add_tail(&request->list, &reg_requests_list);
2334         spin_unlock(&reg_requests_lock);
2335
2336         schedule_work(&reg_work);
2337 }
2338
2339 /*
2340  * Core regulatory hint -- happens during cfg80211_init()
2341  * and when we restore regulatory settings.
2342  */
2343 static int regulatory_hint_core(const char *alpha2)
2344 {
2345         struct regulatory_request *request;
2346
2347         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2348         if (!request)
2349                 return -ENOMEM;
2350
2351         request->alpha2[0] = alpha2[0];
2352         request->alpha2[1] = alpha2[1];
2353         request->initiator = NL80211_REGDOM_SET_BY_CORE;
2354
2355         queue_regulatory_request(request);
2356
2357         return 0;
2358 }
2359
2360 /* User hints */
2361 int regulatory_hint_user(const char *alpha2,
2362                          enum nl80211_user_reg_hint_type user_reg_hint_type)
2363 {
2364         struct regulatory_request *request;
2365
2366         if (WARN_ON(!alpha2))
2367                 return -EINVAL;
2368
2369         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2370         if (!request)
2371                 return -ENOMEM;
2372
2373         request->wiphy_idx = WIPHY_IDX_INVALID;
2374         request->alpha2[0] = alpha2[0];
2375         request->alpha2[1] = alpha2[1];
2376         request->initiator = NL80211_REGDOM_SET_BY_USER;
2377         request->user_reg_hint_type = user_reg_hint_type;
2378
2379         /* Allow calling CRDA again */
2380         reset_crda_timeouts();
2381
2382         queue_regulatory_request(request);
2383
2384         return 0;
2385 }
2386
2387 int regulatory_hint_indoor(bool is_indoor, u32 portid)
2388 {
2389         spin_lock(&reg_indoor_lock);
2390
2391         /* It is possible that more than one user space process is trying to
2392          * configure the indoor setting. To handle such cases, clear the indoor
2393          * setting in case that some process does not think that the device
2394          * is operating in an indoor environment. In addition, if a user space
2395          * process indicates that it is controlling the indoor setting, save its
2396          * portid, i.e., make it the owner.
2397          */
2398         reg_is_indoor = is_indoor;
2399         if (reg_is_indoor) {
2400                 if (!reg_is_indoor_portid)
2401                         reg_is_indoor_portid = portid;
2402         } else {
2403                 reg_is_indoor_portid = 0;
2404         }
2405
2406         spin_unlock(&reg_indoor_lock);
2407
2408         if (!is_indoor)
2409                 reg_check_channels();
2410
2411         return 0;
2412 }
2413
2414 void regulatory_netlink_notify(u32 portid)
2415 {
2416         spin_lock(&reg_indoor_lock);
2417
2418         if (reg_is_indoor_portid != portid) {
2419                 spin_unlock(&reg_indoor_lock);
2420                 return;
2421         }
2422
2423         reg_is_indoor = false;
2424         reg_is_indoor_portid = 0;
2425
2426         spin_unlock(&reg_indoor_lock);
2427
2428         reg_check_channels();
2429 }
2430
2431 /* Driver hints */
2432 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
2433 {
2434         struct regulatory_request *request;
2435
2436         if (WARN_ON(!alpha2 || !wiphy))
2437                 return -EINVAL;
2438
2439         wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
2440
2441         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2442         if (!request)
2443                 return -ENOMEM;
2444
2445         request->wiphy_idx = get_wiphy_idx(wiphy);
2446
2447         request->alpha2[0] = alpha2[0];
2448         request->alpha2[1] = alpha2[1];
2449         request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
2450
2451         /* Allow calling CRDA again */
2452         reset_crda_timeouts();
2453
2454         queue_regulatory_request(request);
2455
2456         return 0;
2457 }
2458 EXPORT_SYMBOL(regulatory_hint);
2459
2460 void regulatory_hint_country_ie(struct wiphy *wiphy, enum ieee80211_band band,
2461                                 const u8 *country_ie, u8 country_ie_len)
2462 {
2463         char alpha2[2];
2464         enum environment_cap env = ENVIRON_ANY;
2465         struct regulatory_request *request = NULL, *lr;
2466
2467         /* IE len must be evenly divisible by 2 */
2468         if (country_ie_len & 0x01)
2469                 return;
2470
2471         if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
2472                 return;
2473
2474         request = kzalloc(sizeof(*request), GFP_KERNEL);
2475         if (!request)
2476                 return;
2477
2478         alpha2[0] = country_ie[0];
2479         alpha2[1] = country_ie[1];
2480
2481         if (country_ie[2] == 'I')
2482                 env = ENVIRON_INDOOR;
2483         else if (country_ie[2] == 'O')
2484                 env = ENVIRON_OUTDOOR;
2485
2486         rcu_read_lock();
2487         lr = get_last_request();
2488
2489         if (unlikely(!lr))
2490                 goto out;
2491
2492         /*
2493          * We will run this only upon a successful connection on cfg80211.
2494          * We leave conflict resolution to the workqueue, where can hold
2495          * the RTNL.
2496          */
2497         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2498             lr->wiphy_idx != WIPHY_IDX_INVALID)
2499                 goto out;
2500
2501         request->wiphy_idx = get_wiphy_idx(wiphy);
2502         request->alpha2[0] = alpha2[0];
2503         request->alpha2[1] = alpha2[1];
2504         request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
2505         request->country_ie_env = env;
2506
2507         /* Allow calling CRDA again */
2508         reset_crda_timeouts();
2509
2510         queue_regulatory_request(request);
2511         request = NULL;
2512 out:
2513         kfree(request);
2514         rcu_read_unlock();
2515 }
2516
2517 static void restore_alpha2(char *alpha2, bool reset_user)
2518 {
2519         /* indicates there is no alpha2 to consider for restoration */
2520         alpha2[0] = '9';
2521         alpha2[1] = '7';
2522
2523         /* The user setting has precedence over the module parameter */
2524         if (is_user_regdom_saved()) {
2525                 /* Unless we're asked to ignore it and reset it */
2526                 if (reset_user) {
2527                         REG_DBG_PRINT("Restoring regulatory settings including user preference\n");
2528                         user_alpha2[0] = '9';
2529                         user_alpha2[1] = '7';
2530
2531                         /*
2532                          * If we're ignoring user settings, we still need to
2533                          * check the module parameter to ensure we put things
2534                          * back as they were for a full restore.
2535                          */
2536                         if (!is_world_regdom(ieee80211_regdom)) {
2537                                 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2538                                               ieee80211_regdom[0], ieee80211_regdom[1]);
2539                                 alpha2[0] = ieee80211_regdom[0];
2540                                 alpha2[1] = ieee80211_regdom[1];
2541                         }
2542                 } else {
2543                         REG_DBG_PRINT("Restoring regulatory settings while preserving user preference for: %c%c\n",
2544                                       user_alpha2[0], user_alpha2[1]);
2545                         alpha2[0] = user_alpha2[0];
2546                         alpha2[1] = user_alpha2[1];
2547                 }
2548         } else if (!is_world_regdom(ieee80211_regdom)) {
2549                 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2550                               ieee80211_regdom[0], ieee80211_regdom[1]);
2551                 alpha2[0] = ieee80211_regdom[0];
2552                 alpha2[1] = ieee80211_regdom[1];
2553         } else
2554                 REG_DBG_PRINT("Restoring regulatory settings\n");
2555 }
2556
2557 static void restore_custom_reg_settings(struct wiphy *wiphy)
2558 {
2559         struct ieee80211_supported_band *sband;
2560         enum ieee80211_band band;
2561         struct ieee80211_channel *chan;
2562         int i;
2563
2564         for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
2565                 sband = wiphy->bands[band];
2566                 if (!sband)
2567                         continue;
2568                 for (i = 0; i < sband->n_channels; i++) {
2569                         chan = &sband->channels[i];
2570                         chan->flags = chan->orig_flags;
2571                         chan->max_antenna_gain = chan->orig_mag;
2572                         chan->max_power = chan->orig_mpwr;
2573                         chan->beacon_found = false;
2574                 }
2575         }
2576 }
2577
2578 /*
2579  * Restoring regulatory settings involves ingoring any
2580  * possibly stale country IE information and user regulatory
2581  * settings if so desired, this includes any beacon hints
2582  * learned as we could have traveled outside to another country
2583  * after disconnection. To restore regulatory settings we do
2584  * exactly what we did at bootup:
2585  *
2586  *   - send a core regulatory hint
2587  *   - send a user regulatory hint if applicable
2588  *
2589  * Device drivers that send a regulatory hint for a specific country
2590  * keep their own regulatory domain on wiphy->regd so that does does
2591  * not need to be remembered.
2592  */
2593 static void restore_regulatory_settings(bool reset_user)
2594 {
2595         char alpha2[2];
2596         char world_alpha2[2];
2597         struct reg_beacon *reg_beacon, *btmp;
2598         LIST_HEAD(tmp_reg_req_list);
2599         struct cfg80211_registered_device *rdev;
2600
2601         ASSERT_RTNL();
2602
2603         /*
2604          * Clear the indoor setting in case that it is not controlled by user
2605          * space, as otherwise there is no guarantee that the device is still
2606          * operating in an indoor environment.
2607          */
2608         spin_lock(&reg_indoor_lock);
2609         if (reg_is_indoor && !reg_is_indoor_portid) {
2610                 reg_is_indoor = false;
2611                 reg_check_channels();
2612         }
2613         spin_unlock(&reg_indoor_lock);
2614
2615         reset_regdomains(true, &world_regdom);
2616         restore_alpha2(alpha2, reset_user);
2617
2618         /*
2619          * If there's any pending requests we simply
2620          * stash them to a temporary pending queue and
2621          * add then after we've restored regulatory
2622          * settings.
2623          */
2624         spin_lock(&reg_requests_lock);
2625         list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
2626         spin_unlock(&reg_requests_lock);
2627
2628         /* Clear beacon hints */
2629         spin_lock_bh(&reg_pending_beacons_lock);
2630         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2631                 list_del(&reg_beacon->list);
2632                 kfree(reg_beacon);
2633         }
2634         spin_unlock_bh(&reg_pending_beacons_lock);
2635
2636         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2637                 list_del(&reg_beacon->list);
2638                 kfree(reg_beacon);
2639         }
2640
2641         /* First restore to the basic regulatory settings */
2642         world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
2643         world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
2644
2645         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2646                 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2647                         continue;
2648                 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
2649                         restore_custom_reg_settings(&rdev->wiphy);
2650         }
2651
2652         regulatory_hint_core(world_alpha2);
2653
2654         /*
2655          * This restores the ieee80211_regdom module parameter
2656          * preference or the last user requested regulatory
2657          * settings, user regulatory settings takes precedence.
2658          */
2659         if (is_an_alpha2(alpha2))
2660                 regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
2661
2662         spin_lock(&reg_requests_lock);
2663         list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
2664         spin_unlock(&reg_requests_lock);
2665
2666         REG_DBG_PRINT("Kicking the queue\n");
2667
2668         schedule_work(&reg_work);
2669 }
2670
2671 void regulatory_hint_disconnect(void)
2672 {
2673         REG_DBG_PRINT("All devices are disconnected, going to restore regulatory settings\n");
2674         restore_regulatory_settings(false);
2675 }
2676
2677 static bool freq_is_chan_12_13_14(u16 freq)
2678 {
2679         if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
2680             freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
2681             freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
2682                 return true;
2683         return false;
2684 }
2685
2686 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
2687 {
2688         struct reg_beacon *pending_beacon;
2689
2690         list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
2691                 if (beacon_chan->center_freq ==
2692                     pending_beacon->chan.center_freq)
2693                         return true;
2694         return false;
2695 }
2696
2697 int regulatory_hint_found_beacon(struct wiphy *wiphy,
2698                                  struct ieee80211_channel *beacon_chan,
2699                                  gfp_t gfp)
2700 {
2701         struct reg_beacon *reg_beacon;
2702         bool processing;
2703
2704         if (beacon_chan->beacon_found ||
2705             beacon_chan->flags & IEEE80211_CHAN_RADAR ||
2706             (beacon_chan->band == IEEE80211_BAND_2GHZ &&
2707              !freq_is_chan_12_13_14(beacon_chan->center_freq)))
2708                 return 0;
2709
2710         spin_lock_bh(&reg_pending_beacons_lock);
2711         processing = pending_reg_beacon(beacon_chan);
2712         spin_unlock_bh(&reg_pending_beacons_lock);
2713
2714         if (processing)
2715                 return 0;
2716
2717         reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
2718         if (!reg_beacon)
2719                 return -ENOMEM;
2720
2721         REG_DBG_PRINT("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
2722                       beacon_chan->center_freq,
2723                       ieee80211_frequency_to_channel(beacon_chan->center_freq),
2724                       wiphy_name(wiphy));
2725
2726         memcpy(&reg_beacon->chan, beacon_chan,
2727                sizeof(struct ieee80211_channel));
2728
2729         /*
2730          * Since we can be called from BH or and non-BH context
2731          * we must use spin_lock_bh()
2732          */
2733         spin_lock_bh(&reg_pending_beacons_lock);
2734         list_add_tail(&reg_beacon->list, &reg_pending_beacons);
2735         spin_unlock_bh(&reg_pending_beacons_lock);
2736
2737         schedule_work(&reg_work);
2738
2739         return 0;
2740 }
2741
2742 static void print_rd_rules(const struct ieee80211_regdomain *rd)
2743 {
2744         unsigned int i;
2745         const struct ieee80211_reg_rule *reg_rule = NULL;
2746         const struct ieee80211_freq_range *freq_range = NULL;
2747         const struct ieee80211_power_rule *power_rule = NULL;
2748         char bw[32], cac_time[32];
2749
2750         pr_debug("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
2751
2752         for (i = 0; i < rd->n_reg_rules; i++) {
2753                 reg_rule = &rd->reg_rules[i];
2754                 freq_range = &reg_rule->freq_range;
2755                 power_rule = &reg_rule->power_rule;
2756
2757                 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
2758                         snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
2759                                  freq_range->max_bandwidth_khz,
2760                                  reg_get_max_bandwidth(rd, reg_rule));
2761                 else
2762                         snprintf(bw, sizeof(bw), "%d KHz",
2763                                  freq_range->max_bandwidth_khz);
2764
2765                 if (reg_rule->flags & NL80211_RRF_DFS)
2766                         scnprintf(cac_time, sizeof(cac_time), "%u s",
2767                                   reg_rule->dfs_cac_ms/1000);
2768                 else
2769                         scnprintf(cac_time, sizeof(cac_time), "N/A");
2770
2771
2772                 /*
2773                  * There may not be documentation for max antenna gain
2774                  * in certain regions
2775                  */
2776                 if (power_rule->max_antenna_gain)
2777                         pr_debug("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
2778                                 freq_range->start_freq_khz,
2779                                 freq_range->end_freq_khz,
2780                                 bw,
2781                                 power_rule->max_antenna_gain,
2782                                 power_rule->max_eirp,
2783                                 cac_time);
2784                 else
2785                         pr_debug("  (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
2786                                 freq_range->start_freq_khz,
2787                                 freq_range->end_freq_khz,
2788                                 bw,
2789                                 power_rule->max_eirp,
2790                                 cac_time);
2791         }
2792 }
2793
2794 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
2795 {
2796         switch (dfs_region) {
2797         case NL80211_DFS_UNSET:
2798         case NL80211_DFS_FCC:
2799         case NL80211_DFS_ETSI:
2800         case NL80211_DFS_JP:
2801                 return true;
2802         default:
2803                 REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
2804                               dfs_region);
2805                 return false;
2806         }
2807 }
2808
2809 static void print_regdomain(const struct ieee80211_regdomain *rd)
2810 {
2811         struct regulatory_request *lr = get_last_request();
2812
2813         if (is_intersected_alpha2(rd->alpha2)) {
2814                 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2815                         struct cfg80211_registered_device *rdev;
2816                         rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
2817                         if (rdev) {
2818                                 pr_debug("Current regulatory domain updated by AP to: %c%c\n",
2819                                         rdev->country_ie_alpha2[0],
2820                                         rdev->country_ie_alpha2[1]);
2821                         } else
2822                                 pr_debug("Current regulatory domain intersected:\n");
2823                 } else
2824                         pr_debug("Current regulatory domain intersected:\n");
2825         } else if (is_world_regdom(rd->alpha2)) {
2826                 pr_debug("World regulatory domain updated:\n");
2827         } else {
2828                 if (is_unknown_alpha2(rd->alpha2))
2829                         pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
2830                 else {
2831                         if (reg_request_cell_base(lr))
2832                                 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
2833                                         rd->alpha2[0], rd->alpha2[1]);
2834                         else
2835                                 pr_debug("Regulatory domain changed to country: %c%c\n",
2836                                         rd->alpha2[0], rd->alpha2[1]);
2837                 }
2838         }
2839
2840         pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
2841         print_rd_rules(rd);
2842 }
2843
2844 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2845 {
2846         pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2847         print_rd_rules(rd);
2848 }
2849
2850 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
2851 {
2852         if (!is_world_regdom(rd->alpha2))
2853                 return -EINVAL;
2854         update_world_regdomain(rd);
2855         return 0;
2856 }
2857
2858 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
2859                            struct regulatory_request *user_request)
2860 {
2861         const struct ieee80211_regdomain *intersected_rd = NULL;
2862
2863         if (!regdom_changes(rd->alpha2))
2864                 return -EALREADY;
2865
2866         if (!is_valid_rd(rd)) {
2867                 pr_err("Invalid regulatory domain detected: %c%c\n",
2868                        rd->alpha2[0], rd->alpha2[1]);
2869                 print_regdomain_info(rd);
2870                 return -EINVAL;
2871         }
2872
2873         if (!user_request->intersect) {
2874                 reset_regdomains(false, rd);
2875                 return 0;
2876         }
2877
2878         intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2879         if (!intersected_rd)
2880                 return -EINVAL;
2881
2882         kfree(rd);
2883         rd = NULL;
2884         reset_regdomains(false, intersected_rd);
2885
2886         return 0;
2887 }
2888
2889 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
2890                              struct regulatory_request *driver_request)
2891 {
2892         const struct ieee80211_regdomain *regd;
2893         const struct ieee80211_regdomain *intersected_rd = NULL;
2894         const struct ieee80211_regdomain *tmp;
2895         struct wiphy *request_wiphy;
2896
2897         if (is_world_regdom(rd->alpha2))
2898                 return -EINVAL;
2899
2900         if (!regdom_changes(rd->alpha2))
2901                 return -EALREADY;
2902
2903         if (!is_valid_rd(rd)) {
2904                 pr_err("Invalid regulatory domain detected: %c%c\n",
2905                        rd->alpha2[0], rd->alpha2[1]);
2906                 print_regdomain_info(rd);
2907                 return -EINVAL;
2908         }
2909
2910         request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
2911         if (!request_wiphy)
2912                 return -ENODEV;
2913
2914         if (!driver_request->intersect) {
2915                 if (request_wiphy->regd)
2916                         return -EALREADY;
2917
2918                 regd = reg_copy_regd(rd);
2919                 if (IS_ERR(regd))
2920                         return PTR_ERR(regd);
2921
2922                 rcu_assign_pointer(request_wiphy->regd, regd);
2923                 reset_regdomains(false, rd);
2924                 return 0;
2925         }
2926
2927         intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2928         if (!intersected_rd)
2929                 return -EINVAL;
2930
2931         /*
2932          * We can trash what CRDA provided now.
2933          * However if a driver requested this specific regulatory
2934          * domain we keep it for its private use
2935          */
2936         tmp = get_wiphy_regdom(request_wiphy);
2937         rcu_assign_pointer(request_wiphy->regd, rd);
2938         rcu_free_regdom(tmp);
2939
2940         rd = NULL;
2941
2942         reset_regdomains(false, intersected_rd);
2943
2944         return 0;
2945 }
2946
2947 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
2948                                  struct regulatory_request *country_ie_request)
2949 {
2950         struct wiphy *request_wiphy;
2951
2952         if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2953             !is_unknown_alpha2(rd->alpha2))
2954                 return -EINVAL;
2955
2956         /*
2957          * Lets only bother proceeding on the same alpha2 if the current
2958          * rd is non static (it means CRDA was present and was used last)
2959          * and the pending request came in from a country IE
2960          */
2961
2962         if (!is_valid_rd(rd)) {
2963                 pr_err("Invalid regulatory domain detected: %c%c\n",
2964                        rd->alpha2[0], rd->alpha2[1]);
2965                 print_regdomain_info(rd);
2966                 return -EINVAL;
2967         }
2968
2969         request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
2970         if (!request_wiphy)
2971                 return -ENODEV;
2972
2973         if (country_ie_request->intersect)
2974                 return -EINVAL;
2975
2976         reset_regdomains(false, rd);
2977         return 0;
2978 }
2979
2980 /*
2981  * Use this call to set the current regulatory domain. Conflicts with
2982  * multiple drivers can be ironed out later. Caller must've already
2983  * kmalloc'd the rd structure.
2984  */
2985 int set_regdom(const struct ieee80211_regdomain *rd,
2986                enum ieee80211_regd_source regd_src)
2987 {
2988         struct regulatory_request *lr;
2989         bool user_reset = false;
2990         int r;
2991
2992         if (!reg_is_valid_request(rd->alpha2)) {
2993                 kfree(rd);
2994                 return -EINVAL;
2995         }
2996
2997         if (regd_src == REGD_SOURCE_CRDA)
2998                 reset_crda_timeouts();
2999
3000         lr = get_last_request();
3001
3002         /* Note that this doesn't update the wiphys, this is done below */
3003         switch (lr->initiator) {
3004         case NL80211_REGDOM_SET_BY_CORE:
3005                 r = reg_set_rd_core(rd);
3006                 break;
3007         case NL80211_REGDOM_SET_BY_USER:
3008                 r = reg_set_rd_user(rd, lr);
3009                 user_reset = true;
3010                 break;
3011         case NL80211_REGDOM_SET_BY_DRIVER:
3012                 r = reg_set_rd_driver(rd, lr);
3013                 break;
3014         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3015                 r = reg_set_rd_country_ie(rd, lr);
3016                 break;
3017         default:
3018                 WARN(1, "invalid initiator %d\n", lr->initiator);
3019                 kfree(rd);
3020                 return -EINVAL;
3021         }
3022
3023         if (r) {
3024                 switch (r) {
3025                 case -EALREADY:
3026                         reg_set_request_processed();
3027                         break;
3028                 default:
3029                         /* Back to world regulatory in case of errors */
3030                         restore_regulatory_settings(user_reset);
3031                 }
3032
3033                 kfree(rd);
3034                 return r;
3035         }
3036
3037         /* This would make this whole thing pointless */
3038         if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
3039                 return -EINVAL;
3040
3041         /* update all wiphys now with the new established regulatory domain */
3042         update_all_wiphy_regulatory(lr->initiator);
3043
3044         print_regdomain(get_cfg80211_regdom());
3045
3046         nl80211_send_reg_change_event(lr);
3047
3048         reg_set_request_processed();
3049
3050         return 0;
3051 }
3052
3053 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
3054                                        struct ieee80211_regdomain *rd)
3055 {
3056         const struct ieee80211_regdomain *regd;
3057         const struct ieee80211_regdomain *prev_regd;
3058         struct cfg80211_registered_device *rdev;
3059
3060         if (WARN_ON(!wiphy || !rd))
3061                 return -EINVAL;
3062
3063         if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
3064                  "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
3065                 return -EPERM;
3066
3067         if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) {
3068                 print_regdomain_info(rd);
3069                 return -EINVAL;
3070         }
3071
3072         regd = reg_copy_regd(rd);
3073         if (IS_ERR(regd))
3074                 return PTR_ERR(regd);
3075
3076         rdev = wiphy_to_rdev(wiphy);
3077
3078         spin_lock(&reg_requests_lock);
3079         prev_regd = rdev->requested_regd;
3080         rdev->requested_regd = regd;
3081         spin_unlock(&reg_requests_lock);
3082
3083         kfree(prev_regd);
3084         return 0;
3085 }
3086
3087 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
3088                               struct ieee80211_regdomain *rd)
3089 {
3090         int ret = __regulatory_set_wiphy_regd(wiphy, rd);
3091
3092         if (ret)
3093                 return ret;
3094
3095         schedule_work(&reg_work);
3096         return 0;
3097 }
3098 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
3099
3100 int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy,
3101                                         struct ieee80211_regdomain *rd)
3102 {
3103         int ret;
3104
3105         ASSERT_RTNL();
3106
3107         ret = __regulatory_set_wiphy_regd(wiphy, rd);
3108         if (ret)
3109                 return ret;
3110
3111         /* process the request immediately */
3112         reg_process_self_managed_hints();
3113         return 0;
3114 }
3115 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl);
3116
3117 void wiphy_regulatory_register(struct wiphy *wiphy)
3118 {
3119         struct regulatory_request *lr;
3120
3121         /* self-managed devices ignore external hints */
3122         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3123                 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
3124                                            REGULATORY_COUNTRY_IE_IGNORE;
3125
3126         if (!reg_dev_ignore_cell_hint(wiphy))
3127                 reg_num_devs_support_basehint++;
3128
3129         lr = get_last_request();
3130         wiphy_update_regulatory(wiphy, lr->initiator);
3131 }
3132
3133 void wiphy_regulatory_deregister(struct wiphy *wiphy)
3134 {
3135         struct wiphy *request_wiphy = NULL;
3136         struct regulatory_request *lr;
3137
3138         lr = get_last_request();
3139
3140         if (!reg_dev_ignore_cell_hint(wiphy))
3141                 reg_num_devs_support_basehint--;
3142
3143         rcu_free_regdom(get_wiphy_regdom(wiphy));
3144         RCU_INIT_POINTER(wiphy->regd, NULL);
3145
3146         if (lr)
3147                 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
3148
3149         if (!request_wiphy || request_wiphy != wiphy)
3150                 return;
3151
3152         lr->wiphy_idx = WIPHY_IDX_INVALID;
3153         lr->country_ie_env = ENVIRON_ANY;
3154 }
3155
3156 /*
3157  * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for
3158  * UNII band definitions
3159  */
3160 int cfg80211_get_unii(int freq)
3161 {
3162         /* UNII-1 */
3163         if (freq >= 5150 && freq <= 5250)
3164                 return 0;
3165
3166         /* UNII-2A */
3167         if (freq > 5250 && freq <= 5350)
3168                 return 1;
3169
3170         /* UNII-2B */
3171         if (freq > 5350 && freq <= 5470)
3172                 return 2;
3173
3174         /* UNII-2C */
3175         if (freq > 5470 && freq <= 5725)
3176                 return 3;
3177
3178         /* UNII-3 */
3179         if (freq > 5725 && freq <= 5825)
3180                 return 4;
3181
3182         return -EINVAL;
3183 }
3184
3185 bool regulatory_indoor_allowed(void)
3186 {
3187         return reg_is_indoor;
3188 }
3189
3190 int __init regulatory_init(void)
3191 {
3192         int err = 0;
3193
3194         reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
3195         if (IS_ERR(reg_pdev))
3196                 return PTR_ERR(reg_pdev);
3197
3198         spin_lock_init(&reg_requests_lock);
3199         spin_lock_init(&reg_pending_beacons_lock);
3200         spin_lock_init(&reg_indoor_lock);
3201
3202         reg_regdb_size_check();
3203
3204         rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
3205
3206         user_alpha2[0] = '9';
3207         user_alpha2[1] = '7';
3208
3209         /* We always try to get an update for the static regdomain */
3210         err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
3211         if (err) {
3212                 if (err == -ENOMEM) {
3213                         platform_device_unregister(reg_pdev);
3214                         return err;
3215                 }
3216                 /*
3217                  * N.B. kobject_uevent_env() can fail mainly for when we're out
3218                  * memory which is handled and propagated appropriately above
3219                  * but it can also fail during a netlink_broadcast() or during
3220                  * early boot for call_usermodehelper(). For now treat these
3221                  * errors as non-fatal.
3222                  */
3223                 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
3224         }
3225
3226         /*
3227          * Finally, if the user set the module parameter treat it
3228          * as a user hint.
3229          */
3230         if (!is_world_regdom(ieee80211_regdom))
3231                 regulatory_hint_user(ieee80211_regdom,
3232                                      NL80211_USER_REG_HINT_USER);
3233
3234         return 0;
3235 }
3236
3237 void regulatory_exit(void)
3238 {
3239         struct regulatory_request *reg_request, *tmp;
3240         struct reg_beacon *reg_beacon, *btmp;
3241
3242         cancel_work_sync(&reg_work);
3243         cancel_crda_timeout_sync();
3244         cancel_delayed_work_sync(&reg_check_chans);
3245
3246         /* Lock to suppress warnings */
3247         rtnl_lock();
3248         reset_regdomains(true, NULL);
3249         rtnl_unlock();
3250
3251         dev_set_uevent_suppress(&reg_pdev->dev, true);
3252
3253         platform_device_unregister(reg_pdev);
3254
3255         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3256                 list_del(&reg_beacon->list);
3257                 kfree(reg_beacon);
3258         }
3259
3260         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3261                 list_del(&reg_beacon->list);
3262                 kfree(reg_beacon);
3263         }
3264
3265         list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
3266                 list_del(&reg_request->list);
3267                 kfree(reg_request);
3268         }
3269 }