drm/exynos: Debounce gpio hotplug interrupts
[cascardo/linux.git] / security / security.c
1 /*
2  * Security plug functions
3  *
4  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7  *
8  *      This program is free software; you can redistribute it and/or modify
9  *      it under the terms of the GNU General Public License as published by
10  *      the Free Software Foundation; either version 2 of the License, or
11  *      (at your option) any later version.
12  */
13
14 #include <linux/capability.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/security.h>
19 #include <linux/integrity.h>
20 #include <linux/ima.h>
21 #include <linux/evm.h>
22 #include <linux/fsnotify.h>
23 #include <net/flow.h>
24
25 #define MAX_LSM_EVM_XATTR       2
26
27 /* Boot-time LSM user choice */
28 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
29         CONFIG_DEFAULT_SECURITY;
30
31 static struct security_operations *security_ops;
32 static struct security_operations default_security_ops = {
33         .name   = "default",
34 };
35
36 static inline int __init verify(struct security_operations *ops)
37 {
38         /* verify the security_operations structure exists */
39         if (!ops)
40                 return -EINVAL;
41         security_fixup_ops(ops);
42         return 0;
43 }
44
45 static void __init do_security_initcalls(void)
46 {
47         initcall_t *call;
48         call = __security_initcall_start;
49         while (call < __security_initcall_end) {
50                 (*call) ();
51                 call++;
52         }
53 }
54
55 /**
56  * security_init - initializes the security framework
57  *
58  * This should be called early in the kernel initialization sequence.
59  */
60 int __init security_init(void)
61 {
62         printk(KERN_INFO "Security Framework initialized\n");
63
64         security_fixup_ops(&default_security_ops);
65         security_ops = &default_security_ops;
66         do_security_initcalls();
67
68         return 0;
69 }
70
71 void reset_security_ops(void)
72 {
73         security_ops = &default_security_ops;
74 }
75
76 /* Save user chosen LSM */
77 static int __init choose_lsm(char *str)
78 {
79         strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
80         return 1;
81 }
82 __setup("security=", choose_lsm);
83
84 /**
85  * security_module_enable - Load given security module on boot ?
86  * @ops: a pointer to the struct security_operations that is to be checked.
87  *
88  * Each LSM must pass this method before registering its own operations
89  * to avoid security registration races. This method may also be used
90  * to check if your LSM is currently loaded during kernel initialization.
91  *
92  * Return true if:
93  *      -The passed LSM is the one chosen by user at boot time,
94  *      -or the passed LSM is configured as the default and the user did not
95  *       choose an alternate LSM at boot time.
96  * Otherwise, return false.
97  */
98 int __init security_module_enable(struct security_operations *ops)
99 {
100         return !strcmp(ops->name, chosen_lsm);
101 }
102
103 /**
104  * register_security - registers a security framework with the kernel
105  * @ops: a pointer to the struct security_options that is to be registered
106  *
107  * This function allows a security module to register itself with the
108  * kernel security subsystem.  Some rudimentary checking is done on the @ops
109  * value passed to this function. You'll need to check first if your LSM
110  * is allowed to register its @ops by calling security_module_enable(@ops).
111  *
112  * If there is already a security module registered with the kernel,
113  * an error will be returned.  Otherwise %0 is returned on success.
114  */
115 int __init register_security(struct security_operations *ops)
116 {
117         if (verify(ops)) {
118                 printk(KERN_DEBUG "%s could not verify "
119                        "security_operations structure.\n", __func__);
120                 return -EINVAL;
121         }
122
123         if (security_ops != &default_security_ops)
124                 return -EAGAIN;
125
126         security_ops = ops;
127
128         return 0;
129 }
130
131 /* Security operations */
132
133 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
134 {
135         int rc;
136         rc = yama_ptrace_access_check(child, mode);
137         if (rc)
138                 return rc;
139         return security_ops->ptrace_access_check(child, mode);
140 }
141
142 int security_ptrace_traceme(struct task_struct *parent)
143 {
144         return security_ops->ptrace_traceme(parent);
145 }
146
147 int security_capget(struct task_struct *target,
148                      kernel_cap_t *effective,
149                      kernel_cap_t *inheritable,
150                      kernel_cap_t *permitted)
151 {
152         return security_ops->capget(target, effective, inheritable, permitted);
153 }
154
155 int security_capset(struct cred *new, const struct cred *old,
156                     const kernel_cap_t *effective,
157                     const kernel_cap_t *inheritable,
158                     const kernel_cap_t *permitted)
159 {
160         return security_ops->capset(new, old,
161                                     effective, inheritable, permitted);
162 }
163
164 int security_capable(const struct cred *cred, struct user_namespace *ns,
165                      int cap)
166 {
167         return security_ops->capable(cred, ns, cap, SECURITY_CAP_AUDIT);
168 }
169
170 int security_capable_noaudit(const struct cred *cred, struct user_namespace *ns,
171                              int cap)
172 {
173         return security_ops->capable(cred, ns, cap, SECURITY_CAP_NOAUDIT);
174 }
175
176 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
177 {
178         return security_ops->quotactl(cmds, type, id, sb);
179 }
180
181 int security_quota_on(struct dentry *dentry)
182 {
183         return security_ops->quota_on(dentry);
184 }
185
186 int security_syslog(int type)
187 {
188         return security_ops->syslog(type);
189 }
190
191 int security_settime(const struct timespec *ts, const struct timezone *tz)
192 {
193         return security_ops->settime(ts, tz);
194 }
195
196 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
197 {
198         return security_ops->vm_enough_memory(mm, pages);
199 }
200
201 int security_bprm_set_creds(struct linux_binprm *bprm)
202 {
203         return security_ops->bprm_set_creds(bprm);
204 }
205
206 int security_bprm_check(struct linux_binprm *bprm)
207 {
208         int ret;
209
210         ret = security_ops->bprm_check_security(bprm);
211         if (ret)
212                 return ret;
213         return ima_bprm_check(bprm);
214 }
215
216 void security_bprm_committing_creds(struct linux_binprm *bprm)
217 {
218         security_ops->bprm_committing_creds(bprm);
219 }
220
221 void security_bprm_committed_creds(struct linux_binprm *bprm)
222 {
223         security_ops->bprm_committed_creds(bprm);
224 }
225
226 int security_bprm_secureexec(struct linux_binprm *bprm)
227 {
228         return security_ops->bprm_secureexec(bprm);
229 }
230
231 int security_sb_alloc(struct super_block *sb)
232 {
233         return security_ops->sb_alloc_security(sb);
234 }
235
236 void security_sb_free(struct super_block *sb)
237 {
238         security_ops->sb_free_security(sb);
239 }
240
241 int security_sb_copy_data(char *orig, char *copy)
242 {
243         return security_ops->sb_copy_data(orig, copy);
244 }
245 EXPORT_SYMBOL(security_sb_copy_data);
246
247 int security_sb_remount(struct super_block *sb, void *data)
248 {
249         return security_ops->sb_remount(sb, data);
250 }
251
252 int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
253 {
254         return security_ops->sb_kern_mount(sb, flags, data);
255 }
256
257 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
258 {
259         return security_ops->sb_show_options(m, sb);
260 }
261
262 int security_sb_statfs(struct dentry *dentry)
263 {
264         return security_ops->sb_statfs(dentry);
265 }
266
267 int security_sb_mount(char *dev_name, struct path *path,
268                        char *type, unsigned long flags, void *data)
269 {
270         return security_ops->sb_mount(dev_name, path, type, flags, data);
271 }
272
273 int security_sb_umount(struct vfsmount *mnt, int flags)
274 {
275         return security_ops->sb_umount(mnt, flags);
276 }
277
278 int security_sb_pivotroot(struct path *old_path, struct path *new_path)
279 {
280         return security_ops->sb_pivotroot(old_path, new_path);
281 }
282
283 int security_sb_set_mnt_opts(struct super_block *sb,
284                                 struct security_mnt_opts *opts)
285 {
286         return security_ops->sb_set_mnt_opts(sb, opts);
287 }
288 EXPORT_SYMBOL(security_sb_set_mnt_opts);
289
290 void security_sb_clone_mnt_opts(const struct super_block *oldsb,
291                                 struct super_block *newsb)
292 {
293         security_ops->sb_clone_mnt_opts(oldsb, newsb);
294 }
295 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
296
297 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
298 {
299         return security_ops->sb_parse_opts_str(options, opts);
300 }
301 EXPORT_SYMBOL(security_sb_parse_opts_str);
302
303 int security_inode_alloc(struct inode *inode)
304 {
305         inode->i_security = NULL;
306         return security_ops->inode_alloc_security(inode);
307 }
308
309 void security_inode_free(struct inode *inode)
310 {
311         integrity_inode_free(inode);
312         security_ops->inode_free_security(inode);
313 }
314
315 int security_inode_init_security(struct inode *inode, struct inode *dir,
316                                  const struct qstr *qstr,
317                                  const initxattrs initxattrs, void *fs_data)
318 {
319         struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
320         struct xattr *lsm_xattr, *evm_xattr, *xattr;
321         int ret;
322
323         if (unlikely(IS_PRIVATE(inode)))
324                 return 0;
325
326         memset(new_xattrs, 0, sizeof new_xattrs);
327         if (!initxattrs)
328                 return security_ops->inode_init_security(inode, dir, qstr,
329                                                          NULL, NULL, NULL);
330         lsm_xattr = new_xattrs;
331         ret = security_ops->inode_init_security(inode, dir, qstr,
332                                                 &lsm_xattr->name,
333                                                 &lsm_xattr->value,
334                                                 &lsm_xattr->value_len);
335         if (ret)
336                 goto out;
337
338         evm_xattr = lsm_xattr + 1;
339         ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
340         if (ret)
341                 goto out;
342         ret = initxattrs(inode, new_xattrs, fs_data);
343 out:
344         for (xattr = new_xattrs; xattr->name != NULL; xattr++) {
345                 kfree(xattr->name);
346                 kfree(xattr->value);
347         }
348         return (ret == -EOPNOTSUPP) ? 0 : ret;
349 }
350 EXPORT_SYMBOL(security_inode_init_security);
351
352 int security_old_inode_init_security(struct inode *inode, struct inode *dir,
353                                      const struct qstr *qstr, char **name,
354                                      void **value, size_t *len)
355 {
356         if (unlikely(IS_PRIVATE(inode)))
357                 return -EOPNOTSUPP;
358         return security_ops->inode_init_security(inode, dir, qstr, name, value,
359                                                  len);
360 }
361 EXPORT_SYMBOL(security_old_inode_init_security);
362
363 #ifdef CONFIG_SECURITY_PATH
364 int security_path_mknod(struct path *dir, struct dentry *dentry, umode_t mode,
365                         unsigned int dev)
366 {
367         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
368                 return 0;
369         return security_ops->path_mknod(dir, dentry, mode, dev);
370 }
371 EXPORT_SYMBOL(security_path_mknod);
372
373 int security_path_mkdir(struct path *dir, struct dentry *dentry, umode_t mode)
374 {
375         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
376                 return 0;
377         return security_ops->path_mkdir(dir, dentry, mode);
378 }
379 EXPORT_SYMBOL(security_path_mkdir);
380
381 int security_path_rmdir(struct path *dir, struct dentry *dentry)
382 {
383         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
384                 return 0;
385         return security_ops->path_rmdir(dir, dentry);
386 }
387
388 int security_path_unlink(struct path *dir, struct dentry *dentry)
389 {
390         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
391                 return 0;
392         return security_ops->path_unlink(dir, dentry);
393 }
394 EXPORT_SYMBOL(security_path_unlink);
395
396 int security_path_symlink(struct path *dir, struct dentry *dentry,
397                           const char *old_name)
398 {
399         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
400                 return 0;
401         return security_ops->path_symlink(dir, dentry, old_name);
402 }
403
404 int security_path_link(struct dentry *old_dentry, struct path *new_dir,
405                        struct dentry *new_dentry)
406 {
407         int rc;
408         if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
409                 return 0;
410         rc = yama_path_link(old_dentry, new_dir, new_dentry);
411         if (rc)
412                 return rc;
413         return security_ops->path_link(old_dentry, new_dir, new_dentry);
414 }
415
416 int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
417                          struct path *new_dir, struct dentry *new_dentry)
418 {
419         if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
420                      (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
421                 return 0;
422         return security_ops->path_rename(old_dir, old_dentry, new_dir,
423                                          new_dentry);
424 }
425 EXPORT_SYMBOL(security_path_rename);
426
427 int security_path_truncate(struct path *path)
428 {
429         if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
430                 return 0;
431         return security_ops->path_truncate(path);
432 }
433
434 int security_path_chmod(struct path *path, umode_t mode)
435 {
436         if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
437                 return 0;
438         return security_ops->path_chmod(path, mode);
439 }
440
441 int security_path_chown(struct path *path, uid_t uid, gid_t gid)
442 {
443         if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
444                 return 0;
445         return security_ops->path_chown(path, uid, gid);
446 }
447
448 int security_path_chroot(struct path *path)
449 {
450         return security_ops->path_chroot(path);
451 }
452 #endif
453
454 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
455 {
456         if (unlikely(IS_PRIVATE(dir)))
457                 return 0;
458         return security_ops->inode_create(dir, dentry, mode);
459 }
460 EXPORT_SYMBOL_GPL(security_inode_create);
461
462 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
463                          struct dentry *new_dentry)
464 {
465         if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
466                 return 0;
467         return security_ops->inode_link(old_dentry, dir, new_dentry);
468 }
469
470 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
471 {
472         if (unlikely(IS_PRIVATE(dentry->d_inode)))
473                 return 0;
474         return security_ops->inode_unlink(dir, dentry);
475 }
476
477 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
478                             const char *old_name)
479 {
480         if (unlikely(IS_PRIVATE(dir)))
481                 return 0;
482         return security_ops->inode_symlink(dir, dentry, old_name);
483 }
484
485 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
486 {
487         if (unlikely(IS_PRIVATE(dir)))
488                 return 0;
489         return security_ops->inode_mkdir(dir, dentry, mode);
490 }
491 EXPORT_SYMBOL_GPL(security_inode_mkdir);
492
493 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
494 {
495         if (unlikely(IS_PRIVATE(dentry->d_inode)))
496                 return 0;
497         return security_ops->inode_rmdir(dir, dentry);
498 }
499
500 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
501 {
502         if (unlikely(IS_PRIVATE(dir)))
503                 return 0;
504         return security_ops->inode_mknod(dir, dentry, mode, dev);
505 }
506
507 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
508                            struct inode *new_dir, struct dentry *new_dentry)
509 {
510         if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
511             (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
512                 return 0;
513         return security_ops->inode_rename(old_dir, old_dentry,
514                                            new_dir, new_dentry);
515 }
516
517 int security_inode_readlink(struct dentry *dentry)
518 {
519         if (unlikely(IS_PRIVATE(dentry->d_inode)))
520                 return 0;
521         return security_ops->inode_readlink(dentry);
522 }
523
524 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
525 {
526         int rc;
527         if (unlikely(IS_PRIVATE(dentry->d_inode)))
528                 return 0;
529         rc = yama_inode_follow_link(dentry, nd);
530         if (rc)
531                 return rc;
532         return security_ops->inode_follow_link(dentry, nd);
533 }
534
535 int security_inode_permission(struct inode *inode, int mask)
536 {
537         if (unlikely(IS_PRIVATE(inode)))
538                 return 0;
539         return security_ops->inode_permission(inode, mask);
540 }
541
542 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
543 {
544         int ret;
545
546         if (unlikely(IS_PRIVATE(dentry->d_inode)))
547                 return 0;
548         ret = security_ops->inode_setattr(dentry, attr);
549         if (ret)
550                 return ret;
551         return evm_inode_setattr(dentry, attr);
552 }
553 EXPORT_SYMBOL_GPL(security_inode_setattr);
554
555 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
556 {
557         if (unlikely(IS_PRIVATE(dentry->d_inode)))
558                 return 0;
559         return security_ops->inode_getattr(mnt, dentry);
560 }
561
562 int security_inode_setxattr(struct dentry *dentry, const char *name,
563                             const void *value, size_t size, int flags)
564 {
565         int ret;
566
567         if (unlikely(IS_PRIVATE(dentry->d_inode)))
568                 return 0;
569         ret = security_ops->inode_setxattr(dentry, name, value, size, flags);
570         if (ret)
571                 return ret;
572         return evm_inode_setxattr(dentry, name, value, size);
573 }
574
575 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
576                                   const void *value, size_t size, int flags)
577 {
578         if (unlikely(IS_PRIVATE(dentry->d_inode)))
579                 return;
580         security_ops->inode_post_setxattr(dentry, name, value, size, flags);
581         evm_inode_post_setxattr(dentry, name, value, size);
582 }
583
584 int security_inode_getxattr(struct dentry *dentry, const char *name)
585 {
586         if (unlikely(IS_PRIVATE(dentry->d_inode)))
587                 return 0;
588         return security_ops->inode_getxattr(dentry, name);
589 }
590
591 int security_inode_listxattr(struct dentry *dentry)
592 {
593         if (unlikely(IS_PRIVATE(dentry->d_inode)))
594                 return 0;
595         return security_ops->inode_listxattr(dentry);
596 }
597
598 int security_inode_removexattr(struct dentry *dentry, const char *name)
599 {
600         int ret;
601
602         if (unlikely(IS_PRIVATE(dentry->d_inode)))
603                 return 0;
604         ret = security_ops->inode_removexattr(dentry, name);
605         if (ret)
606                 return ret;
607         return evm_inode_removexattr(dentry, name);
608 }
609
610 int security_inode_need_killpriv(struct dentry *dentry)
611 {
612         return security_ops->inode_need_killpriv(dentry);
613 }
614
615 int security_inode_killpriv(struct dentry *dentry)
616 {
617         return security_ops->inode_killpriv(dentry);
618 }
619
620 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
621 {
622         if (unlikely(IS_PRIVATE(inode)))
623                 return -EOPNOTSUPP;
624         return security_ops->inode_getsecurity(inode, name, buffer, alloc);
625 }
626
627 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
628 {
629         if (unlikely(IS_PRIVATE(inode)))
630                 return -EOPNOTSUPP;
631         return security_ops->inode_setsecurity(inode, name, value, size, flags);
632 }
633
634 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
635 {
636         if (unlikely(IS_PRIVATE(inode)))
637                 return 0;
638         return security_ops->inode_listsecurity(inode, buffer, buffer_size);
639 }
640
641 void security_inode_getsecid(const struct inode *inode, u32 *secid)
642 {
643         security_ops->inode_getsecid(inode, secid);
644 }
645
646 int security_file_permission(struct file *file, int mask)
647 {
648         int ret;
649
650         ret = security_ops->file_permission(file, mask);
651         if (ret)
652                 return ret;
653
654         return fsnotify_perm(file, mask);
655 }
656
657 int security_file_alloc(struct file *file)
658 {
659         return security_ops->file_alloc_security(file);
660 }
661
662 void security_file_free(struct file *file)
663 {
664         security_ops->file_free_security(file);
665 }
666
667 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
668 {
669         return security_ops->file_ioctl(file, cmd, arg);
670 }
671
672 int security_file_mmap(struct file *file, unsigned long reqprot,
673                         unsigned long prot, unsigned long flags,
674                         unsigned long addr, unsigned long addr_only)
675 {
676         int ret;
677
678         ret = security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only);
679         if (ret)
680                 return ret;
681         return ima_file_mmap(file, prot);
682 }
683
684 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
685                             unsigned long prot)
686 {
687         return security_ops->file_mprotect(vma, reqprot, prot);
688 }
689
690 int security_file_lock(struct file *file, unsigned int cmd)
691 {
692         return security_ops->file_lock(file, cmd);
693 }
694
695 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
696 {
697         return security_ops->file_fcntl(file, cmd, arg);
698 }
699
700 int security_file_set_fowner(struct file *file)
701 {
702         return security_ops->file_set_fowner(file);
703 }
704
705 int security_file_send_sigiotask(struct task_struct *tsk,
706                                   struct fown_struct *fown, int sig)
707 {
708         return security_ops->file_send_sigiotask(tsk, fown, sig);
709 }
710
711 int security_file_receive(struct file *file)
712 {
713         return security_ops->file_receive(file);
714 }
715
716 int security_dentry_open(struct file *file, const struct cred *cred)
717 {
718         int ret;
719
720         ret = security_ops->dentry_open(file, cred);
721         if (ret)
722                 return ret;
723
724         return fsnotify_perm(file, MAY_OPEN);
725 }
726
727 int security_task_create(unsigned long clone_flags)
728 {
729         return security_ops->task_create(clone_flags);
730 }
731
732 void security_task_free(struct task_struct *task)
733 {
734         yama_task_free(task);
735         security_ops->task_free(task);
736 }
737
738 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
739 {
740         return security_ops->cred_alloc_blank(cred, gfp);
741 }
742
743 void security_cred_free(struct cred *cred)
744 {
745         security_ops->cred_free(cred);
746 }
747
748 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
749 {
750         return security_ops->cred_prepare(new, old, gfp);
751 }
752
753 void security_transfer_creds(struct cred *new, const struct cred *old)
754 {
755         security_ops->cred_transfer(new, old);
756 }
757
758 int security_kernel_act_as(struct cred *new, u32 secid)
759 {
760         return security_ops->kernel_act_as(new, secid);
761 }
762
763 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
764 {
765         return security_ops->kernel_create_files_as(new, inode);
766 }
767
768 int security_kernel_module_request(char *kmod_name)
769 {
770         return security_ops->kernel_module_request(kmod_name);
771 }
772
773 int security_kernel_module_from_file(struct file *file)
774 {
775         return security_ops->kernel_module_from_file(file);
776 }
777
778 int security_task_fix_setuid(struct cred *new, const struct cred *old,
779                              int flags)
780 {
781         return security_ops->task_fix_setuid(new, old, flags);
782 }
783
784 int security_task_setpgid(struct task_struct *p, pid_t pgid)
785 {
786         return security_ops->task_setpgid(p, pgid);
787 }
788
789 int security_task_getpgid(struct task_struct *p)
790 {
791         return security_ops->task_getpgid(p);
792 }
793
794 int security_task_getsid(struct task_struct *p)
795 {
796         return security_ops->task_getsid(p);
797 }
798
799 void security_task_getsecid(struct task_struct *p, u32 *secid)
800 {
801         security_ops->task_getsecid(p, secid);
802 }
803 EXPORT_SYMBOL(security_task_getsecid);
804
805 int security_task_setnice(struct task_struct *p, int nice)
806 {
807         return security_ops->task_setnice(p, nice);
808 }
809
810 int security_task_setioprio(struct task_struct *p, int ioprio)
811 {
812         return security_ops->task_setioprio(p, ioprio);
813 }
814
815 int security_task_getioprio(struct task_struct *p)
816 {
817         return security_ops->task_getioprio(p);
818 }
819
820 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
821                 struct rlimit *new_rlim)
822 {
823         return security_ops->task_setrlimit(p, resource, new_rlim);
824 }
825
826 int security_task_setscheduler(struct task_struct *p)
827 {
828         return security_ops->task_setscheduler(p);
829 }
830
831 int security_task_getscheduler(struct task_struct *p)
832 {
833         return security_ops->task_getscheduler(p);
834 }
835
836 int security_task_movememory(struct task_struct *p)
837 {
838         return security_ops->task_movememory(p);
839 }
840
841 int security_task_kill(struct task_struct *p, struct siginfo *info,
842                         int sig, u32 secid)
843 {
844         return security_ops->task_kill(p, info, sig, secid);
845 }
846
847 int security_task_wait(struct task_struct *p)
848 {
849         return security_ops->task_wait(p);
850 }
851
852 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
853                          unsigned long arg4, unsigned long arg5)
854 {
855         int rc;
856         rc = yama_task_prctl(option, arg2, arg3, arg4, arg5);
857         if (rc != -ENOSYS)
858                 return rc;
859         return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
860 }
861
862 void security_task_to_inode(struct task_struct *p, struct inode *inode)
863 {
864         security_ops->task_to_inode(p, inode);
865 }
866
867 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
868 {
869         return security_ops->ipc_permission(ipcp, flag);
870 }
871
872 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
873 {
874         security_ops->ipc_getsecid(ipcp, secid);
875 }
876
877 int security_msg_msg_alloc(struct msg_msg *msg)
878 {
879         return security_ops->msg_msg_alloc_security(msg);
880 }
881
882 void security_msg_msg_free(struct msg_msg *msg)
883 {
884         security_ops->msg_msg_free_security(msg);
885 }
886
887 int security_msg_queue_alloc(struct msg_queue *msq)
888 {
889         return security_ops->msg_queue_alloc_security(msq);
890 }
891
892 void security_msg_queue_free(struct msg_queue *msq)
893 {
894         security_ops->msg_queue_free_security(msq);
895 }
896
897 int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
898 {
899         return security_ops->msg_queue_associate(msq, msqflg);
900 }
901
902 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
903 {
904         return security_ops->msg_queue_msgctl(msq, cmd);
905 }
906
907 int security_msg_queue_msgsnd(struct msg_queue *msq,
908                                struct msg_msg *msg, int msqflg)
909 {
910         return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
911 }
912
913 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
914                                struct task_struct *target, long type, int mode)
915 {
916         return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
917 }
918
919 int security_shm_alloc(struct shmid_kernel *shp)
920 {
921         return security_ops->shm_alloc_security(shp);
922 }
923
924 void security_shm_free(struct shmid_kernel *shp)
925 {
926         security_ops->shm_free_security(shp);
927 }
928
929 int security_shm_associate(struct shmid_kernel *shp, int shmflg)
930 {
931         return security_ops->shm_associate(shp, shmflg);
932 }
933
934 int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
935 {
936         return security_ops->shm_shmctl(shp, cmd);
937 }
938
939 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
940 {
941         return security_ops->shm_shmat(shp, shmaddr, shmflg);
942 }
943
944 int security_sem_alloc(struct sem_array *sma)
945 {
946         return security_ops->sem_alloc_security(sma);
947 }
948
949 void security_sem_free(struct sem_array *sma)
950 {
951         security_ops->sem_free_security(sma);
952 }
953
954 int security_sem_associate(struct sem_array *sma, int semflg)
955 {
956         return security_ops->sem_associate(sma, semflg);
957 }
958
959 int security_sem_semctl(struct sem_array *sma, int cmd)
960 {
961         return security_ops->sem_semctl(sma, cmd);
962 }
963
964 int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
965                         unsigned nsops, int alter)
966 {
967         return security_ops->sem_semop(sma, sops, nsops, alter);
968 }
969
970 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
971 {
972         if (unlikely(inode && IS_PRIVATE(inode)))
973                 return;
974         security_ops->d_instantiate(dentry, inode);
975 }
976 EXPORT_SYMBOL(security_d_instantiate);
977
978 int security_getprocattr(struct task_struct *p, char *name, char **value)
979 {
980         return security_ops->getprocattr(p, name, value);
981 }
982
983 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
984 {
985         return security_ops->setprocattr(p, name, value, size);
986 }
987
988 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
989 {
990         return security_ops->netlink_send(sk, skb);
991 }
992
993 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
994 {
995         return security_ops->secid_to_secctx(secid, secdata, seclen);
996 }
997 EXPORT_SYMBOL(security_secid_to_secctx);
998
999 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
1000 {
1001         return security_ops->secctx_to_secid(secdata, seclen, secid);
1002 }
1003 EXPORT_SYMBOL(security_secctx_to_secid);
1004
1005 void security_release_secctx(char *secdata, u32 seclen)
1006 {
1007         security_ops->release_secctx(secdata, seclen);
1008 }
1009 EXPORT_SYMBOL(security_release_secctx);
1010
1011 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
1012 {
1013         return security_ops->inode_notifysecctx(inode, ctx, ctxlen);
1014 }
1015 EXPORT_SYMBOL(security_inode_notifysecctx);
1016
1017 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
1018 {
1019         return security_ops->inode_setsecctx(dentry, ctx, ctxlen);
1020 }
1021 EXPORT_SYMBOL(security_inode_setsecctx);
1022
1023 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
1024 {
1025         return security_ops->inode_getsecctx(inode, ctx, ctxlen);
1026 }
1027 EXPORT_SYMBOL(security_inode_getsecctx);
1028
1029 #ifdef CONFIG_SECURITY_NETWORK
1030
1031 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
1032 {
1033         return security_ops->unix_stream_connect(sock, other, newsk);
1034 }
1035 EXPORT_SYMBOL(security_unix_stream_connect);
1036
1037 int security_unix_may_send(struct socket *sock,  struct socket *other)
1038 {
1039         return security_ops->unix_may_send(sock, other);
1040 }
1041 EXPORT_SYMBOL(security_unix_may_send);
1042
1043 int security_socket_create(int family, int type, int protocol, int kern)
1044 {
1045         return security_ops->socket_create(family, type, protocol, kern);
1046 }
1047
1048 int security_socket_post_create(struct socket *sock, int family,
1049                                 int type, int protocol, int kern)
1050 {
1051         return security_ops->socket_post_create(sock, family, type,
1052                                                 protocol, kern);
1053 }
1054
1055 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1056 {
1057         return security_ops->socket_bind(sock, address, addrlen);
1058 }
1059
1060 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1061 {
1062         return security_ops->socket_connect(sock, address, addrlen);
1063 }
1064
1065 int security_socket_listen(struct socket *sock, int backlog)
1066 {
1067         return security_ops->socket_listen(sock, backlog);
1068 }
1069
1070 int security_socket_accept(struct socket *sock, struct socket *newsock)
1071 {
1072         return security_ops->socket_accept(sock, newsock);
1073 }
1074
1075 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1076 {
1077         return security_ops->socket_sendmsg(sock, msg, size);
1078 }
1079
1080 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1081                             int size, int flags)
1082 {
1083         return security_ops->socket_recvmsg(sock, msg, size, flags);
1084 }
1085
1086 int security_socket_getsockname(struct socket *sock)
1087 {
1088         return security_ops->socket_getsockname(sock);
1089 }
1090
1091 int security_socket_getpeername(struct socket *sock)
1092 {
1093         return security_ops->socket_getpeername(sock);
1094 }
1095
1096 int security_socket_getsockopt(struct socket *sock, int level, int optname)
1097 {
1098         return security_ops->socket_getsockopt(sock, level, optname);
1099 }
1100
1101 int security_socket_setsockopt(struct socket *sock, int level, int optname)
1102 {
1103         return security_ops->socket_setsockopt(sock, level, optname);
1104 }
1105
1106 int security_socket_shutdown(struct socket *sock, int how)
1107 {
1108         return security_ops->socket_shutdown(sock, how);
1109 }
1110
1111 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
1112 {
1113         return security_ops->socket_sock_rcv_skb(sk, skb);
1114 }
1115 EXPORT_SYMBOL(security_sock_rcv_skb);
1116
1117 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
1118                                       int __user *optlen, unsigned len)
1119 {
1120         return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
1121 }
1122
1123 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1124 {
1125         return security_ops->socket_getpeersec_dgram(sock, skb, secid);
1126 }
1127 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1128
1129 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1130 {
1131         return security_ops->sk_alloc_security(sk, family, priority);
1132 }
1133
1134 void security_sk_free(struct sock *sk)
1135 {
1136         security_ops->sk_free_security(sk);
1137 }
1138
1139 void security_sk_clone(const struct sock *sk, struct sock *newsk)
1140 {
1141         security_ops->sk_clone_security(sk, newsk);
1142 }
1143 EXPORT_SYMBOL(security_sk_clone);
1144
1145 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1146 {
1147         security_ops->sk_getsecid(sk, &fl->flowi_secid);
1148 }
1149 EXPORT_SYMBOL(security_sk_classify_flow);
1150
1151 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1152 {
1153         security_ops->req_classify_flow(req, fl);
1154 }
1155 EXPORT_SYMBOL(security_req_classify_flow);
1156
1157 void security_sock_graft(struct sock *sk, struct socket *parent)
1158 {
1159         security_ops->sock_graft(sk, parent);
1160 }
1161 EXPORT_SYMBOL(security_sock_graft);
1162
1163 int security_inet_conn_request(struct sock *sk,
1164                         struct sk_buff *skb, struct request_sock *req)
1165 {
1166         return security_ops->inet_conn_request(sk, skb, req);
1167 }
1168 EXPORT_SYMBOL(security_inet_conn_request);
1169
1170 void security_inet_csk_clone(struct sock *newsk,
1171                         const struct request_sock *req)
1172 {
1173         security_ops->inet_csk_clone(newsk, req);
1174 }
1175
1176 void security_inet_conn_established(struct sock *sk,
1177                         struct sk_buff *skb)
1178 {
1179         security_ops->inet_conn_established(sk, skb);
1180 }
1181
1182 int security_secmark_relabel_packet(u32 secid)
1183 {
1184         return security_ops->secmark_relabel_packet(secid);
1185 }
1186 EXPORT_SYMBOL(security_secmark_relabel_packet);
1187
1188 void security_secmark_refcount_inc(void)
1189 {
1190         security_ops->secmark_refcount_inc();
1191 }
1192 EXPORT_SYMBOL(security_secmark_refcount_inc);
1193
1194 void security_secmark_refcount_dec(void)
1195 {
1196         security_ops->secmark_refcount_dec();
1197 }
1198 EXPORT_SYMBOL(security_secmark_refcount_dec);
1199
1200 int security_tun_dev_create(void)
1201 {
1202         return security_ops->tun_dev_create();
1203 }
1204 EXPORT_SYMBOL(security_tun_dev_create);
1205
1206 void security_tun_dev_post_create(struct sock *sk)
1207 {
1208         return security_ops->tun_dev_post_create(sk);
1209 }
1210 EXPORT_SYMBOL(security_tun_dev_post_create);
1211
1212 int security_tun_dev_attach(struct sock *sk)
1213 {
1214         return security_ops->tun_dev_attach(sk);
1215 }
1216 EXPORT_SYMBOL(security_tun_dev_attach);
1217
1218 #endif  /* CONFIG_SECURITY_NETWORK */
1219
1220 #ifdef CONFIG_SECURITY_NETWORK_XFRM
1221
1222 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
1223 {
1224         return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
1225 }
1226 EXPORT_SYMBOL(security_xfrm_policy_alloc);
1227
1228 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1229                               struct xfrm_sec_ctx **new_ctxp)
1230 {
1231         return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1232 }
1233
1234 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1235 {
1236         security_ops->xfrm_policy_free_security(ctx);
1237 }
1238 EXPORT_SYMBOL(security_xfrm_policy_free);
1239
1240 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1241 {
1242         return security_ops->xfrm_policy_delete_security(ctx);
1243 }
1244
1245 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
1246 {
1247         return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1248 }
1249 EXPORT_SYMBOL(security_xfrm_state_alloc);
1250
1251 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1252                                       struct xfrm_sec_ctx *polsec, u32 secid)
1253 {
1254         if (!polsec)
1255                 return 0;
1256         /*
1257          * We want the context to be taken from secid which is usually
1258          * from the sock.
1259          */
1260         return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1261 }
1262
1263 int security_xfrm_state_delete(struct xfrm_state *x)
1264 {
1265         return security_ops->xfrm_state_delete_security(x);
1266 }
1267 EXPORT_SYMBOL(security_xfrm_state_delete);
1268
1269 void security_xfrm_state_free(struct xfrm_state *x)
1270 {
1271         security_ops->xfrm_state_free_security(x);
1272 }
1273
1274 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1275 {
1276         return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1277 }
1278
1279 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1280                                        struct xfrm_policy *xp,
1281                                        const struct flowi *fl)
1282 {
1283         return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1284 }
1285
1286 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1287 {
1288         return security_ops->xfrm_decode_session(skb, secid, 1);
1289 }
1290
1291 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1292 {
1293         int rc = security_ops->xfrm_decode_session(skb, &fl->flowi_secid, 0);
1294
1295         BUG_ON(rc);
1296 }
1297 EXPORT_SYMBOL(security_skb_classify_flow);
1298
1299 #endif  /* CONFIG_SECURITY_NETWORK_XFRM */
1300
1301 #ifdef CONFIG_KEYS
1302
1303 int security_key_alloc(struct key *key, const struct cred *cred,
1304                        unsigned long flags)
1305 {
1306         return security_ops->key_alloc(key, cred, flags);
1307 }
1308
1309 void security_key_free(struct key *key)
1310 {
1311         security_ops->key_free(key);
1312 }
1313
1314 int security_key_permission(key_ref_t key_ref,
1315                             const struct cred *cred, key_perm_t perm)
1316 {
1317         return security_ops->key_permission(key_ref, cred, perm);
1318 }
1319
1320 int security_key_getsecurity(struct key *key, char **_buffer)
1321 {
1322         return security_ops->key_getsecurity(key, _buffer);
1323 }
1324
1325 #endif  /* CONFIG_KEYS */
1326
1327 #ifdef CONFIG_AUDIT
1328
1329 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1330 {
1331         return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1332 }
1333
1334 int security_audit_rule_known(struct audit_krule *krule)
1335 {
1336         return security_ops->audit_rule_known(krule);
1337 }
1338
1339 void security_audit_rule_free(void *lsmrule)
1340 {
1341         security_ops->audit_rule_free(lsmrule);
1342 }
1343
1344 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1345                               struct audit_context *actx)
1346 {
1347         return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
1348 }
1349
1350 #endif /* CONFIG_AUDIT */