Merge tag 'cris-for-3.20' of git://git.kernel.org/pub/scm/linux/kernel/git/jesper...
[cascardo/linux.git] / sound / core / pcm_lib.c
1 /*
2  *  Digital Audio (PCM) abstract layer
3  *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4  *                   Abramo Bagnara <abramo@alsa-project.org>
5  *
6  *
7  *   This program is free software; you can redistribute it and/or modify
8  *   it under the terms of the GNU General Public License as published by
9  *   the Free Software Foundation; either version 2 of the License, or
10  *   (at your option) any later version.
11  *
12  *   This program is distributed in the hope that it will be useful,
13  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *   GNU General Public License for more details.
16  *
17  *   You should have received a copy of the GNU General Public License
18  *   along with this program; if not, write to the Free Software
19  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
20  *
21  */
22
23 #include <linux/slab.h>
24 #include <linux/time.h>
25 #include <linux/math64.h>
26 #include <linux/export.h>
27 #include <sound/core.h>
28 #include <sound/control.h>
29 #include <sound/tlv.h>
30 #include <sound/info.h>
31 #include <sound/pcm.h>
32 #include <sound/pcm_params.h>
33 #include <sound/timer.h>
34
35 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
36 #define CREATE_TRACE_POINTS
37 #include "pcm_trace.h"
38 #else
39 #define trace_hwptr(substream, pos, in_interrupt)
40 #define trace_xrun(substream)
41 #define trace_hw_ptr_error(substream, reason)
42 #endif
43
44 /*
45  * fill ring buffer with silence
46  * runtime->silence_start: starting pointer to silence area
47  * runtime->silence_filled: size filled with silence
48  * runtime->silence_threshold: threshold from application
49  * runtime->silence_size: maximal size from application
50  *
51  * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
52  */
53 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
54 {
55         struct snd_pcm_runtime *runtime = substream->runtime;
56         snd_pcm_uframes_t frames, ofs, transfer;
57
58         if (runtime->silence_size < runtime->boundary) {
59                 snd_pcm_sframes_t noise_dist, n;
60                 if (runtime->silence_start != runtime->control->appl_ptr) {
61                         n = runtime->control->appl_ptr - runtime->silence_start;
62                         if (n < 0)
63                                 n += runtime->boundary;
64                         if ((snd_pcm_uframes_t)n < runtime->silence_filled)
65                                 runtime->silence_filled -= n;
66                         else
67                                 runtime->silence_filled = 0;
68                         runtime->silence_start = runtime->control->appl_ptr;
69                 }
70                 if (runtime->silence_filled >= runtime->buffer_size)
71                         return;
72                 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
73                 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
74                         return;
75                 frames = runtime->silence_threshold - noise_dist;
76                 if (frames > runtime->silence_size)
77                         frames = runtime->silence_size;
78         } else {
79                 if (new_hw_ptr == ULONG_MAX) {  /* initialization */
80                         snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
81                         if (avail > runtime->buffer_size)
82                                 avail = runtime->buffer_size;
83                         runtime->silence_filled = avail > 0 ? avail : 0;
84                         runtime->silence_start = (runtime->status->hw_ptr +
85                                                   runtime->silence_filled) %
86                                                  runtime->boundary;
87                 } else {
88                         ofs = runtime->status->hw_ptr;
89                         frames = new_hw_ptr - ofs;
90                         if ((snd_pcm_sframes_t)frames < 0)
91                                 frames += runtime->boundary;
92                         runtime->silence_filled -= frames;
93                         if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
94                                 runtime->silence_filled = 0;
95                                 runtime->silence_start = new_hw_ptr;
96                         } else {
97                                 runtime->silence_start = ofs;
98                         }
99                 }
100                 frames = runtime->buffer_size - runtime->silence_filled;
101         }
102         if (snd_BUG_ON(frames > runtime->buffer_size))
103                 return;
104         if (frames == 0)
105                 return;
106         ofs = runtime->silence_start % runtime->buffer_size;
107         while (frames > 0) {
108                 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
109                 if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
110                     runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) {
111                         if (substream->ops->silence) {
112                                 int err;
113                                 err = substream->ops->silence(substream, -1, ofs, transfer);
114                                 snd_BUG_ON(err < 0);
115                         } else {
116                                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs);
117                                 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels);
118                         }
119                 } else {
120                         unsigned int c;
121                         unsigned int channels = runtime->channels;
122                         if (substream->ops->silence) {
123                                 for (c = 0; c < channels; ++c) {
124                                         int err;
125                                         err = substream->ops->silence(substream, c, ofs, transfer);
126                                         snd_BUG_ON(err < 0);
127                                 }
128                         } else {
129                                 size_t dma_csize = runtime->dma_bytes / channels;
130                                 for (c = 0; c < channels; ++c) {
131                                         char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs);
132                                         snd_pcm_format_set_silence(runtime->format, hwbuf, transfer);
133                                 }
134                         }
135                 }
136                 runtime->silence_filled += transfer;
137                 frames -= transfer;
138                 ofs = 0;
139         }
140 }
141
142 #ifdef CONFIG_SND_DEBUG
143 void snd_pcm_debug_name(struct snd_pcm_substream *substream,
144                            char *name, size_t len)
145 {
146         snprintf(name, len, "pcmC%dD%d%c:%d",
147                  substream->pcm->card->number,
148                  substream->pcm->device,
149                  substream->stream ? 'c' : 'p',
150                  substream->number);
151 }
152 EXPORT_SYMBOL(snd_pcm_debug_name);
153 #endif
154
155 #define XRUN_DEBUG_BASIC        (1<<0)
156 #define XRUN_DEBUG_STACK        (1<<1)  /* dump also stack */
157 #define XRUN_DEBUG_JIFFIESCHECK (1<<2)  /* do jiffies check */
158
159 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
160
161 #define xrun_debug(substream, mask) \
162                         ((substream)->pstr->xrun_debug & (mask))
163 #else
164 #define xrun_debug(substream, mask)     0
165 #endif
166
167 #define dump_stack_on_xrun(substream) do {                      \
168                 if (xrun_debug(substream, XRUN_DEBUG_STACK))    \
169                         dump_stack();                           \
170         } while (0)
171
172 static void xrun(struct snd_pcm_substream *substream)
173 {
174         struct snd_pcm_runtime *runtime = substream->runtime;
175
176         trace_xrun(substream);
177         if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
178                 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
179         snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
180         if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
181                 char name[16];
182                 snd_pcm_debug_name(substream, name, sizeof(name));
183                 pcm_warn(substream->pcm, "XRUN: %s\n", name);
184                 dump_stack_on_xrun(substream);
185         }
186 }
187
188 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
189 #define hw_ptr_error(substream, in_interrupt, reason, fmt, args...)     \
190         do {                                                            \
191                 trace_hw_ptr_error(substream, reason);  \
192                 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {          \
193                         pr_err_ratelimited("ALSA: PCM: [%c] " reason ": " fmt, \
194                                            (in_interrupt) ? 'Q' : 'P', ##args); \
195                         dump_stack_on_xrun(substream);                  \
196                 }                                                       \
197         } while (0)
198
199 #else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
200
201 #define hw_ptr_error(substream, fmt, args...) do { } while (0)
202
203 #endif
204
205 int snd_pcm_update_state(struct snd_pcm_substream *substream,
206                          struct snd_pcm_runtime *runtime)
207 {
208         snd_pcm_uframes_t avail;
209
210         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
211                 avail = snd_pcm_playback_avail(runtime);
212         else
213                 avail = snd_pcm_capture_avail(runtime);
214         if (avail > runtime->avail_max)
215                 runtime->avail_max = avail;
216         if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
217                 if (avail >= runtime->buffer_size) {
218                         snd_pcm_drain_done(substream);
219                         return -EPIPE;
220                 }
221         } else {
222                 if (avail >= runtime->stop_threshold) {
223                         xrun(substream);
224                         return -EPIPE;
225                 }
226         }
227         if (runtime->twake) {
228                 if (avail >= runtime->twake)
229                         wake_up(&runtime->tsleep);
230         } else if (avail >= runtime->control->avail_min)
231                 wake_up(&runtime->sleep);
232         return 0;
233 }
234
235 static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
236                                   unsigned int in_interrupt)
237 {
238         struct snd_pcm_runtime *runtime = substream->runtime;
239         snd_pcm_uframes_t pos;
240         snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
241         snd_pcm_sframes_t hdelta, delta;
242         unsigned long jdelta;
243         unsigned long curr_jiffies;
244         struct timespec curr_tstamp;
245         struct timespec audio_tstamp;
246         int crossed_boundary = 0;
247
248         old_hw_ptr = runtime->status->hw_ptr;
249
250         /*
251          * group pointer, time and jiffies reads to allow for more
252          * accurate correlations/corrections.
253          * The values are stored at the end of this routine after
254          * corrections for hw_ptr position
255          */
256         pos = substream->ops->pointer(substream);
257         curr_jiffies = jiffies;
258         if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
259                 snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
260
261                 if ((runtime->hw.info & SNDRV_PCM_INFO_HAS_WALL_CLOCK) &&
262                         (substream->ops->wall_clock))
263                         substream->ops->wall_clock(substream, &audio_tstamp);
264         }
265
266         if (pos == SNDRV_PCM_POS_XRUN) {
267                 xrun(substream);
268                 return -EPIPE;
269         }
270         if (pos >= runtime->buffer_size) {
271                 if (printk_ratelimit()) {
272                         char name[16];
273                         snd_pcm_debug_name(substream, name, sizeof(name));
274                         pcm_err(substream->pcm,
275                                 "BUG: %s, pos = %ld, buffer size = %ld, period size = %ld\n",
276                                 name, pos, runtime->buffer_size,
277                                 runtime->period_size);
278                 }
279                 pos = 0;
280         }
281         pos -= pos % runtime->min_align;
282         trace_hwptr(substream, pos, in_interrupt);
283         hw_base = runtime->hw_ptr_base;
284         new_hw_ptr = hw_base + pos;
285         if (in_interrupt) {
286                 /* we know that one period was processed */
287                 /* delta = "expected next hw_ptr" for in_interrupt != 0 */
288                 delta = runtime->hw_ptr_interrupt + runtime->period_size;
289                 if (delta > new_hw_ptr) {
290                         /* check for double acknowledged interrupts */
291                         hdelta = curr_jiffies - runtime->hw_ptr_jiffies;
292                         if (hdelta > runtime->hw_ptr_buffer_jiffies/2) {
293                                 hw_base += runtime->buffer_size;
294                                 if (hw_base >= runtime->boundary) {
295                                         hw_base = 0;
296                                         crossed_boundary++;
297                                 }
298                                 new_hw_ptr = hw_base + pos;
299                                 goto __delta;
300                         }
301                 }
302         }
303         /* new_hw_ptr might be lower than old_hw_ptr in case when */
304         /* pointer crosses the end of the ring buffer */
305         if (new_hw_ptr < old_hw_ptr) {
306                 hw_base += runtime->buffer_size;
307                 if (hw_base >= runtime->boundary) {
308                         hw_base = 0;
309                         crossed_boundary++;
310                 }
311                 new_hw_ptr = hw_base + pos;
312         }
313       __delta:
314         delta = new_hw_ptr - old_hw_ptr;
315         if (delta < 0)
316                 delta += runtime->boundary;
317
318         if (runtime->no_period_wakeup) {
319                 snd_pcm_sframes_t xrun_threshold;
320                 /*
321                  * Without regular period interrupts, we have to check
322                  * the elapsed time to detect xruns.
323                  */
324                 jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
325                 if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
326                         goto no_delta_check;
327                 hdelta = jdelta - delta * HZ / runtime->rate;
328                 xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
329                 while (hdelta > xrun_threshold) {
330                         delta += runtime->buffer_size;
331                         hw_base += runtime->buffer_size;
332                         if (hw_base >= runtime->boundary) {
333                                 hw_base = 0;
334                                 crossed_boundary++;
335                         }
336                         new_hw_ptr = hw_base + pos;
337                         hdelta -= runtime->hw_ptr_buffer_jiffies;
338                 }
339                 goto no_delta_check;
340         }
341
342         /* something must be really wrong */
343         if (delta >= runtime->buffer_size + runtime->period_size) {
344                 hw_ptr_error(substream, in_interrupt, "Unexpected hw_ptr",
345                              "(stream=%i, pos=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
346                              substream->stream, (long)pos,
347                              (long)new_hw_ptr, (long)old_hw_ptr);
348                 return 0;
349         }
350
351         /* Do jiffies check only in xrun_debug mode */
352         if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
353                 goto no_jiffies_check;
354
355         /* Skip the jiffies check for hardwares with BATCH flag.
356          * Such hardware usually just increases the position at each IRQ,
357          * thus it can't give any strange position.
358          */
359         if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
360                 goto no_jiffies_check;
361         hdelta = delta;
362         if (hdelta < runtime->delay)
363                 goto no_jiffies_check;
364         hdelta -= runtime->delay;
365         jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
366         if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
367                 delta = jdelta /
368                         (((runtime->period_size * HZ) / runtime->rate)
369                                                                 + HZ/100);
370                 /* move new_hw_ptr according jiffies not pos variable */
371                 new_hw_ptr = old_hw_ptr;
372                 hw_base = delta;
373                 /* use loop to avoid checks for delta overflows */
374                 /* the delta value is small or zero in most cases */
375                 while (delta > 0) {
376                         new_hw_ptr += runtime->period_size;
377                         if (new_hw_ptr >= runtime->boundary) {
378                                 new_hw_ptr -= runtime->boundary;
379                                 crossed_boundary--;
380                         }
381                         delta--;
382                 }
383                 /* align hw_base to buffer_size */
384                 hw_ptr_error(substream, in_interrupt, "hw_ptr skipping",
385                              "(pos=%ld, delta=%ld, period=%ld, jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
386                              (long)pos, (long)hdelta,
387                              (long)runtime->period_size, jdelta,
388                              ((hdelta * HZ) / runtime->rate), hw_base,
389                              (unsigned long)old_hw_ptr,
390                              (unsigned long)new_hw_ptr);
391                 /* reset values to proper state */
392                 delta = 0;
393                 hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
394         }
395  no_jiffies_check:
396         if (delta > runtime->period_size + runtime->period_size / 2) {
397                 hw_ptr_error(substream, in_interrupt,
398                              "Lost interrupts?",
399                              "(stream=%i, delta=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
400                              substream->stream, (long)delta,
401                              (long)new_hw_ptr,
402                              (long)old_hw_ptr);
403         }
404
405  no_delta_check:
406         if (runtime->status->hw_ptr == new_hw_ptr)
407                 return 0;
408
409         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
410             runtime->silence_size > 0)
411                 snd_pcm_playback_silence(substream, new_hw_ptr);
412
413         if (in_interrupt) {
414                 delta = new_hw_ptr - runtime->hw_ptr_interrupt;
415                 if (delta < 0)
416                         delta += runtime->boundary;
417                 delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
418                 runtime->hw_ptr_interrupt += delta;
419                 if (runtime->hw_ptr_interrupt >= runtime->boundary)
420                         runtime->hw_ptr_interrupt -= runtime->boundary;
421         }
422         runtime->hw_ptr_base = hw_base;
423         runtime->status->hw_ptr = new_hw_ptr;
424         runtime->hw_ptr_jiffies = curr_jiffies;
425         if (crossed_boundary) {
426                 snd_BUG_ON(crossed_boundary != 1);
427                 runtime->hw_ptr_wrap += runtime->boundary;
428         }
429         if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
430                 runtime->status->tstamp = curr_tstamp;
431
432                 if (!(runtime->hw.info & SNDRV_PCM_INFO_HAS_WALL_CLOCK)) {
433                         /*
434                          * no wall clock available, provide audio timestamp
435                          * derived from pointer position+delay
436                          */
437                         u64 audio_frames, audio_nsecs;
438
439                         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
440                                 audio_frames = runtime->hw_ptr_wrap
441                                         + runtime->status->hw_ptr
442                                         - runtime->delay;
443                         else
444                                 audio_frames = runtime->hw_ptr_wrap
445                                         + runtime->status->hw_ptr
446                                         + runtime->delay;
447                         audio_nsecs = div_u64(audio_frames * 1000000000LL,
448                                         runtime->rate);
449                         audio_tstamp = ns_to_timespec(audio_nsecs);
450                 }
451                 runtime->status->audio_tstamp = audio_tstamp;
452         }
453
454         return snd_pcm_update_state(substream, runtime);
455 }
456
457 /* CAUTION: call it with irq disabled */
458 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
459 {
460         return snd_pcm_update_hw_ptr0(substream, 0);
461 }
462
463 /**
464  * snd_pcm_set_ops - set the PCM operators
465  * @pcm: the pcm instance
466  * @direction: stream direction, SNDRV_PCM_STREAM_XXX
467  * @ops: the operator table
468  *
469  * Sets the given PCM operators to the pcm instance.
470  */
471 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction,
472                      const struct snd_pcm_ops *ops)
473 {
474         struct snd_pcm_str *stream = &pcm->streams[direction];
475         struct snd_pcm_substream *substream;
476         
477         for (substream = stream->substream; substream != NULL; substream = substream->next)
478                 substream->ops = ops;
479 }
480
481 EXPORT_SYMBOL(snd_pcm_set_ops);
482
483 /**
484  * snd_pcm_sync - set the PCM sync id
485  * @substream: the pcm substream
486  *
487  * Sets the PCM sync identifier for the card.
488  */
489 void snd_pcm_set_sync(struct snd_pcm_substream *substream)
490 {
491         struct snd_pcm_runtime *runtime = substream->runtime;
492         
493         runtime->sync.id32[0] = substream->pcm->card->number;
494         runtime->sync.id32[1] = -1;
495         runtime->sync.id32[2] = -1;
496         runtime->sync.id32[3] = -1;
497 }
498
499 EXPORT_SYMBOL(snd_pcm_set_sync);
500
501 /*
502  *  Standard ioctl routine
503  */
504
505 static inline unsigned int div32(unsigned int a, unsigned int b, 
506                                  unsigned int *r)
507 {
508         if (b == 0) {
509                 *r = 0;
510                 return UINT_MAX;
511         }
512         *r = a % b;
513         return a / b;
514 }
515
516 static inline unsigned int div_down(unsigned int a, unsigned int b)
517 {
518         if (b == 0)
519                 return UINT_MAX;
520         return a / b;
521 }
522
523 static inline unsigned int div_up(unsigned int a, unsigned int b)
524 {
525         unsigned int r;
526         unsigned int q;
527         if (b == 0)
528                 return UINT_MAX;
529         q = div32(a, b, &r);
530         if (r)
531                 ++q;
532         return q;
533 }
534
535 static inline unsigned int mul(unsigned int a, unsigned int b)
536 {
537         if (a == 0)
538                 return 0;
539         if (div_down(UINT_MAX, a) < b)
540                 return UINT_MAX;
541         return a * b;
542 }
543
544 static inline unsigned int muldiv32(unsigned int a, unsigned int b,
545                                     unsigned int c, unsigned int *r)
546 {
547         u_int64_t n = (u_int64_t) a * b;
548         if (c == 0) {
549                 snd_BUG_ON(!n);
550                 *r = 0;
551                 return UINT_MAX;
552         }
553         n = div_u64_rem(n, c, r);
554         if (n >= UINT_MAX) {
555                 *r = 0;
556                 return UINT_MAX;
557         }
558         return n;
559 }
560
561 /**
562  * snd_interval_refine - refine the interval value of configurator
563  * @i: the interval value to refine
564  * @v: the interval value to refer to
565  *
566  * Refines the interval value with the reference value.
567  * The interval is changed to the range satisfying both intervals.
568  * The interval status (min, max, integer, etc.) are evaluated.
569  *
570  * Return: Positive if the value is changed, zero if it's not changed, or a
571  * negative error code.
572  */
573 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
574 {
575         int changed = 0;
576         if (snd_BUG_ON(snd_interval_empty(i)))
577                 return -EINVAL;
578         if (i->min < v->min) {
579                 i->min = v->min;
580                 i->openmin = v->openmin;
581                 changed = 1;
582         } else if (i->min == v->min && !i->openmin && v->openmin) {
583                 i->openmin = 1;
584                 changed = 1;
585         }
586         if (i->max > v->max) {
587                 i->max = v->max;
588                 i->openmax = v->openmax;
589                 changed = 1;
590         } else if (i->max == v->max && !i->openmax && v->openmax) {
591                 i->openmax = 1;
592                 changed = 1;
593         }
594         if (!i->integer && v->integer) {
595                 i->integer = 1;
596                 changed = 1;
597         }
598         if (i->integer) {
599                 if (i->openmin) {
600                         i->min++;
601                         i->openmin = 0;
602                 }
603                 if (i->openmax) {
604                         i->max--;
605                         i->openmax = 0;
606                 }
607         } else if (!i->openmin && !i->openmax && i->min == i->max)
608                 i->integer = 1;
609         if (snd_interval_checkempty(i)) {
610                 snd_interval_none(i);
611                 return -EINVAL;
612         }
613         return changed;
614 }
615
616 EXPORT_SYMBOL(snd_interval_refine);
617
618 static int snd_interval_refine_first(struct snd_interval *i)
619 {
620         if (snd_BUG_ON(snd_interval_empty(i)))
621                 return -EINVAL;
622         if (snd_interval_single(i))
623                 return 0;
624         i->max = i->min;
625         i->openmax = i->openmin;
626         if (i->openmax)
627                 i->max++;
628         return 1;
629 }
630
631 static int snd_interval_refine_last(struct snd_interval *i)
632 {
633         if (snd_BUG_ON(snd_interval_empty(i)))
634                 return -EINVAL;
635         if (snd_interval_single(i))
636                 return 0;
637         i->min = i->max;
638         i->openmin = i->openmax;
639         if (i->openmin)
640                 i->min--;
641         return 1;
642 }
643
644 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
645 {
646         if (a->empty || b->empty) {
647                 snd_interval_none(c);
648                 return;
649         }
650         c->empty = 0;
651         c->min = mul(a->min, b->min);
652         c->openmin = (a->openmin || b->openmin);
653         c->max = mul(a->max,  b->max);
654         c->openmax = (a->openmax || b->openmax);
655         c->integer = (a->integer && b->integer);
656 }
657
658 /**
659  * snd_interval_div - refine the interval value with division
660  * @a: dividend
661  * @b: divisor
662  * @c: quotient
663  *
664  * c = a / b
665  *
666  * Returns non-zero if the value is changed, zero if not changed.
667  */
668 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
669 {
670         unsigned int r;
671         if (a->empty || b->empty) {
672                 snd_interval_none(c);
673                 return;
674         }
675         c->empty = 0;
676         c->min = div32(a->min, b->max, &r);
677         c->openmin = (r || a->openmin || b->openmax);
678         if (b->min > 0) {
679                 c->max = div32(a->max, b->min, &r);
680                 if (r) {
681                         c->max++;
682                         c->openmax = 1;
683                 } else
684                         c->openmax = (a->openmax || b->openmin);
685         } else {
686                 c->max = UINT_MAX;
687                 c->openmax = 0;
688         }
689         c->integer = 0;
690 }
691
692 /**
693  * snd_interval_muldivk - refine the interval value
694  * @a: dividend 1
695  * @b: dividend 2
696  * @k: divisor (as integer)
697  * @c: result
698   *
699  * c = a * b / k
700  *
701  * Returns non-zero if the value is changed, zero if not changed.
702  */
703 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
704                       unsigned int k, struct snd_interval *c)
705 {
706         unsigned int r;
707         if (a->empty || b->empty) {
708                 snd_interval_none(c);
709                 return;
710         }
711         c->empty = 0;
712         c->min = muldiv32(a->min, b->min, k, &r);
713         c->openmin = (r || a->openmin || b->openmin);
714         c->max = muldiv32(a->max, b->max, k, &r);
715         if (r) {
716                 c->max++;
717                 c->openmax = 1;
718         } else
719                 c->openmax = (a->openmax || b->openmax);
720         c->integer = 0;
721 }
722
723 /**
724  * snd_interval_mulkdiv - refine the interval value
725  * @a: dividend 1
726  * @k: dividend 2 (as integer)
727  * @b: divisor
728  * @c: result
729  *
730  * c = a * k / b
731  *
732  * Returns non-zero if the value is changed, zero if not changed.
733  */
734 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
735                       const struct snd_interval *b, struct snd_interval *c)
736 {
737         unsigned int r;
738         if (a->empty || b->empty) {
739                 snd_interval_none(c);
740                 return;
741         }
742         c->empty = 0;
743         c->min = muldiv32(a->min, k, b->max, &r);
744         c->openmin = (r || a->openmin || b->openmax);
745         if (b->min > 0) {
746                 c->max = muldiv32(a->max, k, b->min, &r);
747                 if (r) {
748                         c->max++;
749                         c->openmax = 1;
750                 } else
751                         c->openmax = (a->openmax || b->openmin);
752         } else {
753                 c->max = UINT_MAX;
754                 c->openmax = 0;
755         }
756         c->integer = 0;
757 }
758
759 /* ---- */
760
761
762 /**
763  * snd_interval_ratnum - refine the interval value
764  * @i: interval to refine
765  * @rats_count: number of ratnum_t 
766  * @rats: ratnum_t array
767  * @nump: pointer to store the resultant numerator
768  * @denp: pointer to store the resultant denominator
769  *
770  * Return: Positive if the value is changed, zero if it's not changed, or a
771  * negative error code.
772  */
773 int snd_interval_ratnum(struct snd_interval *i,
774                         unsigned int rats_count, struct snd_ratnum *rats,
775                         unsigned int *nump, unsigned int *denp)
776 {
777         unsigned int best_num, best_den;
778         int best_diff;
779         unsigned int k;
780         struct snd_interval t;
781         int err;
782         unsigned int result_num, result_den;
783         int result_diff;
784
785         best_num = best_den = best_diff = 0;
786         for (k = 0; k < rats_count; ++k) {
787                 unsigned int num = rats[k].num;
788                 unsigned int den;
789                 unsigned int q = i->min;
790                 int diff;
791                 if (q == 0)
792                         q = 1;
793                 den = div_up(num, q);
794                 if (den < rats[k].den_min)
795                         continue;
796                 if (den > rats[k].den_max)
797                         den = rats[k].den_max;
798                 else {
799                         unsigned int r;
800                         r = (den - rats[k].den_min) % rats[k].den_step;
801                         if (r != 0)
802                                 den -= r;
803                 }
804                 diff = num - q * den;
805                 if (diff < 0)
806                         diff = -diff;
807                 if (best_num == 0 ||
808                     diff * best_den < best_diff * den) {
809                         best_diff = diff;
810                         best_den = den;
811                         best_num = num;
812                 }
813         }
814         if (best_den == 0) {
815                 i->empty = 1;
816                 return -EINVAL;
817         }
818         t.min = div_down(best_num, best_den);
819         t.openmin = !!(best_num % best_den);
820         
821         result_num = best_num;
822         result_diff = best_diff;
823         result_den = best_den;
824         best_num = best_den = best_diff = 0;
825         for (k = 0; k < rats_count; ++k) {
826                 unsigned int num = rats[k].num;
827                 unsigned int den;
828                 unsigned int q = i->max;
829                 int diff;
830                 if (q == 0) {
831                         i->empty = 1;
832                         return -EINVAL;
833                 }
834                 den = div_down(num, q);
835                 if (den > rats[k].den_max)
836                         continue;
837                 if (den < rats[k].den_min)
838                         den = rats[k].den_min;
839                 else {
840                         unsigned int r;
841                         r = (den - rats[k].den_min) % rats[k].den_step;
842                         if (r != 0)
843                                 den += rats[k].den_step - r;
844                 }
845                 diff = q * den - num;
846                 if (diff < 0)
847                         diff = -diff;
848                 if (best_num == 0 ||
849                     diff * best_den < best_diff * den) {
850                         best_diff = diff;
851                         best_den = den;
852                         best_num = num;
853                 }
854         }
855         if (best_den == 0) {
856                 i->empty = 1;
857                 return -EINVAL;
858         }
859         t.max = div_up(best_num, best_den);
860         t.openmax = !!(best_num % best_den);
861         t.integer = 0;
862         err = snd_interval_refine(i, &t);
863         if (err < 0)
864                 return err;
865
866         if (snd_interval_single(i)) {
867                 if (best_diff * result_den < result_diff * best_den) {
868                         result_num = best_num;
869                         result_den = best_den;
870                 }
871                 if (nump)
872                         *nump = result_num;
873                 if (denp)
874                         *denp = result_den;
875         }
876         return err;
877 }
878
879 EXPORT_SYMBOL(snd_interval_ratnum);
880
881 /**
882  * snd_interval_ratden - refine the interval value
883  * @i: interval to refine
884  * @rats_count: number of struct ratden
885  * @rats: struct ratden array
886  * @nump: pointer to store the resultant numerator
887  * @denp: pointer to store the resultant denominator
888  *
889  * Return: Positive if the value is changed, zero if it's not changed, or a
890  * negative error code.
891  */
892 static int snd_interval_ratden(struct snd_interval *i,
893                                unsigned int rats_count, struct snd_ratden *rats,
894                                unsigned int *nump, unsigned int *denp)
895 {
896         unsigned int best_num, best_diff, best_den;
897         unsigned int k;
898         struct snd_interval t;
899         int err;
900
901         best_num = best_den = best_diff = 0;
902         for (k = 0; k < rats_count; ++k) {
903                 unsigned int num;
904                 unsigned int den = rats[k].den;
905                 unsigned int q = i->min;
906                 int diff;
907                 num = mul(q, den);
908                 if (num > rats[k].num_max)
909                         continue;
910                 if (num < rats[k].num_min)
911                         num = rats[k].num_max;
912                 else {
913                         unsigned int r;
914                         r = (num - rats[k].num_min) % rats[k].num_step;
915                         if (r != 0)
916                                 num += rats[k].num_step - r;
917                 }
918                 diff = num - q * den;
919                 if (best_num == 0 ||
920                     diff * best_den < best_diff * den) {
921                         best_diff = diff;
922                         best_den = den;
923                         best_num = num;
924                 }
925         }
926         if (best_den == 0) {
927                 i->empty = 1;
928                 return -EINVAL;
929         }
930         t.min = div_down(best_num, best_den);
931         t.openmin = !!(best_num % best_den);
932         
933         best_num = best_den = best_diff = 0;
934         for (k = 0; k < rats_count; ++k) {
935                 unsigned int num;
936                 unsigned int den = rats[k].den;
937                 unsigned int q = i->max;
938                 int diff;
939                 num = mul(q, den);
940                 if (num < rats[k].num_min)
941                         continue;
942                 if (num > rats[k].num_max)
943                         num = rats[k].num_max;
944                 else {
945                         unsigned int r;
946                         r = (num - rats[k].num_min) % rats[k].num_step;
947                         if (r != 0)
948                                 num -= r;
949                 }
950                 diff = q * den - num;
951                 if (best_num == 0 ||
952                     diff * best_den < best_diff * den) {
953                         best_diff = diff;
954                         best_den = den;
955                         best_num = num;
956                 }
957         }
958         if (best_den == 0) {
959                 i->empty = 1;
960                 return -EINVAL;
961         }
962         t.max = div_up(best_num, best_den);
963         t.openmax = !!(best_num % best_den);
964         t.integer = 0;
965         err = snd_interval_refine(i, &t);
966         if (err < 0)
967                 return err;
968
969         if (snd_interval_single(i)) {
970                 if (nump)
971                         *nump = best_num;
972                 if (denp)
973                         *denp = best_den;
974         }
975         return err;
976 }
977
978 /**
979  * snd_interval_list - refine the interval value from the list
980  * @i: the interval value to refine
981  * @count: the number of elements in the list
982  * @list: the value list
983  * @mask: the bit-mask to evaluate
984  *
985  * Refines the interval value from the list.
986  * When mask is non-zero, only the elements corresponding to bit 1 are
987  * evaluated.
988  *
989  * Return: Positive if the value is changed, zero if it's not changed, or a
990  * negative error code.
991  */
992 int snd_interval_list(struct snd_interval *i, unsigned int count,
993                       const unsigned int *list, unsigned int mask)
994 {
995         unsigned int k;
996         struct snd_interval list_range;
997
998         if (!count) {
999                 i->empty = 1;
1000                 return -EINVAL;
1001         }
1002         snd_interval_any(&list_range);
1003         list_range.min = UINT_MAX;
1004         list_range.max = 0;
1005         for (k = 0; k < count; k++) {
1006                 if (mask && !(mask & (1 << k)))
1007                         continue;
1008                 if (!snd_interval_test(i, list[k]))
1009                         continue;
1010                 list_range.min = min(list_range.min, list[k]);
1011                 list_range.max = max(list_range.max, list[k]);
1012         }
1013         return snd_interval_refine(i, &list_range);
1014 }
1015
1016 EXPORT_SYMBOL(snd_interval_list);
1017
1018 /**
1019  * snd_interval_ranges - refine the interval value from the list of ranges
1020  * @i: the interval value to refine
1021  * @count: the number of elements in the list of ranges
1022  * @ranges: the ranges list
1023  * @mask: the bit-mask to evaluate
1024  *
1025  * Refines the interval value from the list of ranges.
1026  * When mask is non-zero, only the elements corresponding to bit 1 are
1027  * evaluated.
1028  *
1029  * Return: Positive if the value is changed, zero if it's not changed, or a
1030  * negative error code.
1031  */
1032 int snd_interval_ranges(struct snd_interval *i, unsigned int count,
1033                         const struct snd_interval *ranges, unsigned int mask)
1034 {
1035         unsigned int k;
1036         struct snd_interval range_union;
1037         struct snd_interval range;
1038
1039         if (!count) {
1040                 snd_interval_none(i);
1041                 return -EINVAL;
1042         }
1043         snd_interval_any(&range_union);
1044         range_union.min = UINT_MAX;
1045         range_union.max = 0;
1046         for (k = 0; k < count; k++) {
1047                 if (mask && !(mask & (1 << k)))
1048                         continue;
1049                 snd_interval_copy(&range, &ranges[k]);
1050                 if (snd_interval_refine(&range, i) < 0)
1051                         continue;
1052                 if (snd_interval_empty(&range))
1053                         continue;
1054
1055                 if (range.min < range_union.min) {
1056                         range_union.min = range.min;
1057                         range_union.openmin = 1;
1058                 }
1059                 if (range.min == range_union.min && !range.openmin)
1060                         range_union.openmin = 0;
1061                 if (range.max > range_union.max) {
1062                         range_union.max = range.max;
1063                         range_union.openmax = 1;
1064                 }
1065                 if (range.max == range_union.max && !range.openmax)
1066                         range_union.openmax = 0;
1067         }
1068         return snd_interval_refine(i, &range_union);
1069 }
1070 EXPORT_SYMBOL(snd_interval_ranges);
1071
1072 static int snd_interval_step(struct snd_interval *i, unsigned int step)
1073 {
1074         unsigned int n;
1075         int changed = 0;
1076         n = i->min % step;
1077         if (n != 0 || i->openmin) {
1078                 i->min += step - n;
1079                 i->openmin = 0;
1080                 changed = 1;
1081         }
1082         n = i->max % step;
1083         if (n != 0 || i->openmax) {
1084                 i->max -= n;
1085                 i->openmax = 0;
1086                 changed = 1;
1087         }
1088         if (snd_interval_checkempty(i)) {
1089                 i->empty = 1;
1090                 return -EINVAL;
1091         }
1092         return changed;
1093 }
1094
1095 /* Info constraints helpers */
1096
1097 /**
1098  * snd_pcm_hw_rule_add - add the hw-constraint rule
1099  * @runtime: the pcm runtime instance
1100  * @cond: condition bits
1101  * @var: the variable to evaluate
1102  * @func: the evaluation function
1103  * @private: the private data pointer passed to function
1104  * @dep: the dependent variables
1105  *
1106  * Return: Zero if successful, or a negative error code on failure.
1107  */
1108 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1109                         int var,
1110                         snd_pcm_hw_rule_func_t func, void *private,
1111                         int dep, ...)
1112 {
1113         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1114         struct snd_pcm_hw_rule *c;
1115         unsigned int k;
1116         va_list args;
1117         va_start(args, dep);
1118         if (constrs->rules_num >= constrs->rules_all) {
1119                 struct snd_pcm_hw_rule *new;
1120                 unsigned int new_rules = constrs->rules_all + 16;
1121                 new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
1122                 if (!new) {
1123                         va_end(args);
1124                         return -ENOMEM;
1125                 }
1126                 if (constrs->rules) {
1127                         memcpy(new, constrs->rules,
1128                                constrs->rules_num * sizeof(*c));
1129                         kfree(constrs->rules);
1130                 }
1131                 constrs->rules = new;
1132                 constrs->rules_all = new_rules;
1133         }
1134         c = &constrs->rules[constrs->rules_num];
1135         c->cond = cond;
1136         c->func = func;
1137         c->var = var;
1138         c->private = private;
1139         k = 0;
1140         while (1) {
1141                 if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1142                         va_end(args);
1143                         return -EINVAL;
1144                 }
1145                 c->deps[k++] = dep;
1146                 if (dep < 0)
1147                         break;
1148                 dep = va_arg(args, int);
1149         }
1150         constrs->rules_num++;
1151         va_end(args);
1152         return 0;
1153 }
1154
1155 EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1156
1157 /**
1158  * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1159  * @runtime: PCM runtime instance
1160  * @var: hw_params variable to apply the mask
1161  * @mask: the bitmap mask
1162  *
1163  * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1164  *
1165  * Return: Zero if successful, or a negative error code on failure.
1166  */
1167 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1168                                u_int32_t mask)
1169 {
1170         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1171         struct snd_mask *maskp = constrs_mask(constrs, var);
1172         *maskp->bits &= mask;
1173         memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1174         if (*maskp->bits == 0)
1175                 return -EINVAL;
1176         return 0;
1177 }
1178
1179 /**
1180  * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1181  * @runtime: PCM runtime instance
1182  * @var: hw_params variable to apply the mask
1183  * @mask: the 64bit bitmap mask
1184  *
1185  * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1186  *
1187  * Return: Zero if successful, or a negative error code on failure.
1188  */
1189 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1190                                  u_int64_t mask)
1191 {
1192         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1193         struct snd_mask *maskp = constrs_mask(constrs, var);
1194         maskp->bits[0] &= (u_int32_t)mask;
1195         maskp->bits[1] &= (u_int32_t)(mask >> 32);
1196         memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1197         if (! maskp->bits[0] && ! maskp->bits[1])
1198                 return -EINVAL;
1199         return 0;
1200 }
1201 EXPORT_SYMBOL(snd_pcm_hw_constraint_mask64);
1202
1203 /**
1204  * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1205  * @runtime: PCM runtime instance
1206  * @var: hw_params variable to apply the integer constraint
1207  *
1208  * Apply the constraint of integer to an interval parameter.
1209  *
1210  * Return: Positive if the value is changed, zero if it's not changed, or a
1211  * negative error code.
1212  */
1213 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1214 {
1215         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1216         return snd_interval_setinteger(constrs_interval(constrs, var));
1217 }
1218
1219 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1220
1221 /**
1222  * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1223  * @runtime: PCM runtime instance
1224  * @var: hw_params variable to apply the range
1225  * @min: the minimal value
1226  * @max: the maximal value
1227  * 
1228  * Apply the min/max range constraint to an interval parameter.
1229  *
1230  * Return: Positive if the value is changed, zero if it's not changed, or a
1231  * negative error code.
1232  */
1233 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1234                                  unsigned int min, unsigned int max)
1235 {
1236         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1237         struct snd_interval t;
1238         t.min = min;
1239         t.max = max;
1240         t.openmin = t.openmax = 0;
1241         t.integer = 0;
1242         return snd_interval_refine(constrs_interval(constrs, var), &t);
1243 }
1244
1245 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1246
1247 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1248                                 struct snd_pcm_hw_rule *rule)
1249 {
1250         struct snd_pcm_hw_constraint_list *list = rule->private;
1251         return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1252 }               
1253
1254
1255 /**
1256  * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1257  * @runtime: PCM runtime instance
1258  * @cond: condition bits
1259  * @var: hw_params variable to apply the list constraint
1260  * @l: list
1261  * 
1262  * Apply the list of constraints to an interval parameter.
1263  *
1264  * Return: Zero if successful, or a negative error code on failure.
1265  */
1266 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1267                                unsigned int cond,
1268                                snd_pcm_hw_param_t var,
1269                                const struct snd_pcm_hw_constraint_list *l)
1270 {
1271         return snd_pcm_hw_rule_add(runtime, cond, var,
1272                                    snd_pcm_hw_rule_list, (void *)l,
1273                                    var, -1);
1274 }
1275
1276 EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1277
1278 static int snd_pcm_hw_rule_ranges(struct snd_pcm_hw_params *params,
1279                                   struct snd_pcm_hw_rule *rule)
1280 {
1281         struct snd_pcm_hw_constraint_ranges *r = rule->private;
1282         return snd_interval_ranges(hw_param_interval(params, rule->var),
1283                                    r->count, r->ranges, r->mask);
1284 }
1285
1286
1287 /**
1288  * snd_pcm_hw_constraint_ranges - apply list of range constraints to a parameter
1289  * @runtime: PCM runtime instance
1290  * @cond: condition bits
1291  * @var: hw_params variable to apply the list of range constraints
1292  * @r: ranges
1293  *
1294  * Apply the list of range constraints to an interval parameter.
1295  *
1296  * Return: Zero if successful, or a negative error code on failure.
1297  */
1298 int snd_pcm_hw_constraint_ranges(struct snd_pcm_runtime *runtime,
1299                                  unsigned int cond,
1300                                  snd_pcm_hw_param_t var,
1301                                  const struct snd_pcm_hw_constraint_ranges *r)
1302 {
1303         return snd_pcm_hw_rule_add(runtime, cond, var,
1304                                    snd_pcm_hw_rule_ranges, (void *)r,
1305                                    var, -1);
1306 }
1307 EXPORT_SYMBOL(snd_pcm_hw_constraint_ranges);
1308
1309 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1310                                    struct snd_pcm_hw_rule *rule)
1311 {
1312         struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1313         unsigned int num = 0, den = 0;
1314         int err;
1315         err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1316                                   r->nrats, r->rats, &num, &den);
1317         if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1318                 params->rate_num = num;
1319                 params->rate_den = den;
1320         }
1321         return err;
1322 }
1323
1324 /**
1325  * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1326  * @runtime: PCM runtime instance
1327  * @cond: condition bits
1328  * @var: hw_params variable to apply the ratnums constraint
1329  * @r: struct snd_ratnums constriants
1330  *
1331  * Return: Zero if successful, or a negative error code on failure.
1332  */
1333 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime, 
1334                                   unsigned int cond,
1335                                   snd_pcm_hw_param_t var,
1336                                   struct snd_pcm_hw_constraint_ratnums *r)
1337 {
1338         return snd_pcm_hw_rule_add(runtime, cond, var,
1339                                    snd_pcm_hw_rule_ratnums, r,
1340                                    var, -1);
1341 }
1342
1343 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1344
1345 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1346                                    struct snd_pcm_hw_rule *rule)
1347 {
1348         struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1349         unsigned int num = 0, den = 0;
1350         int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1351                                   r->nrats, r->rats, &num, &den);
1352         if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1353                 params->rate_num = num;
1354                 params->rate_den = den;
1355         }
1356         return err;
1357 }
1358
1359 /**
1360  * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1361  * @runtime: PCM runtime instance
1362  * @cond: condition bits
1363  * @var: hw_params variable to apply the ratdens constraint
1364  * @r: struct snd_ratdens constriants
1365  *
1366  * Return: Zero if successful, or a negative error code on failure.
1367  */
1368 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime, 
1369                                   unsigned int cond,
1370                                   snd_pcm_hw_param_t var,
1371                                   struct snd_pcm_hw_constraint_ratdens *r)
1372 {
1373         return snd_pcm_hw_rule_add(runtime, cond, var,
1374                                    snd_pcm_hw_rule_ratdens, r,
1375                                    var, -1);
1376 }
1377
1378 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1379
1380 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1381                                   struct snd_pcm_hw_rule *rule)
1382 {
1383         unsigned int l = (unsigned long) rule->private;
1384         int width = l & 0xffff;
1385         unsigned int msbits = l >> 16;
1386         struct snd_interval *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1387
1388         if (!snd_interval_single(i))
1389                 return 0;
1390
1391         if ((snd_interval_value(i) == width) ||
1392             (width == 0 && snd_interval_value(i) > msbits))
1393                 params->msbits = min_not_zero(params->msbits, msbits);
1394
1395         return 0;
1396 }
1397
1398 /**
1399  * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1400  * @runtime: PCM runtime instance
1401  * @cond: condition bits
1402  * @width: sample bits width
1403  * @msbits: msbits width
1404  *
1405  * This constraint will set the number of most significant bits (msbits) if a
1406  * sample format with the specified width has been select. If width is set to 0
1407  * the msbits will be set for any sample format with a width larger than the
1408  * specified msbits.
1409  *
1410  * Return: Zero if successful, or a negative error code on failure.
1411  */
1412 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime, 
1413                                  unsigned int cond,
1414                                  unsigned int width,
1415                                  unsigned int msbits)
1416 {
1417         unsigned long l = (msbits << 16) | width;
1418         return snd_pcm_hw_rule_add(runtime, cond, -1,
1419                                     snd_pcm_hw_rule_msbits,
1420                                     (void*) l,
1421                                     SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1422 }
1423
1424 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1425
1426 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1427                                 struct snd_pcm_hw_rule *rule)
1428 {
1429         unsigned long step = (unsigned long) rule->private;
1430         return snd_interval_step(hw_param_interval(params, rule->var), step);
1431 }
1432
1433 /**
1434  * snd_pcm_hw_constraint_step - add a hw constraint step rule
1435  * @runtime: PCM runtime instance
1436  * @cond: condition bits
1437  * @var: hw_params variable to apply the step constraint
1438  * @step: step size
1439  *
1440  * Return: Zero if successful, or a negative error code on failure.
1441  */
1442 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1443                                unsigned int cond,
1444                                snd_pcm_hw_param_t var,
1445                                unsigned long step)
1446 {
1447         return snd_pcm_hw_rule_add(runtime, cond, var, 
1448                                    snd_pcm_hw_rule_step, (void *) step,
1449                                    var, -1);
1450 }
1451
1452 EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1453
1454 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1455 {
1456         static unsigned int pow2_sizes[] = {
1457                 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1458                 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1459                 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1460                 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1461         };
1462         return snd_interval_list(hw_param_interval(params, rule->var),
1463                                  ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1464 }               
1465
1466 /**
1467  * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1468  * @runtime: PCM runtime instance
1469  * @cond: condition bits
1470  * @var: hw_params variable to apply the power-of-2 constraint
1471  *
1472  * Return: Zero if successful, or a negative error code on failure.
1473  */
1474 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1475                                unsigned int cond,
1476                                snd_pcm_hw_param_t var)
1477 {
1478         return snd_pcm_hw_rule_add(runtime, cond, var, 
1479                                    snd_pcm_hw_rule_pow2, NULL,
1480                                    var, -1);
1481 }
1482
1483 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1484
1485 static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params,
1486                                            struct snd_pcm_hw_rule *rule)
1487 {
1488         unsigned int base_rate = (unsigned int)(uintptr_t)rule->private;
1489         struct snd_interval *rate;
1490
1491         rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
1492         return snd_interval_list(rate, 1, &base_rate, 0);
1493 }
1494
1495 /**
1496  * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1497  * @runtime: PCM runtime instance
1498  * @base_rate: the rate at which the hardware does not resample
1499  *
1500  * Return: Zero if successful, or a negative error code on failure.
1501  */
1502 int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime,
1503                                unsigned int base_rate)
1504 {
1505         return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE,
1506                                    SNDRV_PCM_HW_PARAM_RATE,
1507                                    snd_pcm_hw_rule_noresample_func,
1508                                    (void *)(uintptr_t)base_rate,
1509                                    SNDRV_PCM_HW_PARAM_RATE, -1);
1510 }
1511 EXPORT_SYMBOL(snd_pcm_hw_rule_noresample);
1512
1513 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1514                                   snd_pcm_hw_param_t var)
1515 {
1516         if (hw_is_mask(var)) {
1517                 snd_mask_any(hw_param_mask(params, var));
1518                 params->cmask |= 1 << var;
1519                 params->rmask |= 1 << var;
1520                 return;
1521         }
1522         if (hw_is_interval(var)) {
1523                 snd_interval_any(hw_param_interval(params, var));
1524                 params->cmask |= 1 << var;
1525                 params->rmask |= 1 << var;
1526                 return;
1527         }
1528         snd_BUG();
1529 }
1530
1531 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1532 {
1533         unsigned int k;
1534         memset(params, 0, sizeof(*params));
1535         for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1536                 _snd_pcm_hw_param_any(params, k);
1537         for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1538                 _snd_pcm_hw_param_any(params, k);
1539         params->info = ~0U;
1540 }
1541
1542 EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1543
1544 /**
1545  * snd_pcm_hw_param_value - return @params field @var value
1546  * @params: the hw_params instance
1547  * @var: parameter to retrieve
1548  * @dir: pointer to the direction (-1,0,1) or %NULL
1549  *
1550  * Return: The value for field @var if it's fixed in configuration space
1551  * defined by @params. -%EINVAL otherwise.
1552  */
1553 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1554                            snd_pcm_hw_param_t var, int *dir)
1555 {
1556         if (hw_is_mask(var)) {
1557                 const struct snd_mask *mask = hw_param_mask_c(params, var);
1558                 if (!snd_mask_single(mask))
1559                         return -EINVAL;
1560                 if (dir)
1561                         *dir = 0;
1562                 return snd_mask_value(mask);
1563         }
1564         if (hw_is_interval(var)) {
1565                 const struct snd_interval *i = hw_param_interval_c(params, var);
1566                 if (!snd_interval_single(i))
1567                         return -EINVAL;
1568                 if (dir)
1569                         *dir = i->openmin;
1570                 return snd_interval_value(i);
1571         }
1572         return -EINVAL;
1573 }
1574
1575 EXPORT_SYMBOL(snd_pcm_hw_param_value);
1576
1577 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1578                                 snd_pcm_hw_param_t var)
1579 {
1580         if (hw_is_mask(var)) {
1581                 snd_mask_none(hw_param_mask(params, var));
1582                 params->cmask |= 1 << var;
1583                 params->rmask |= 1 << var;
1584         } else if (hw_is_interval(var)) {
1585                 snd_interval_none(hw_param_interval(params, var));
1586                 params->cmask |= 1 << var;
1587                 params->rmask |= 1 << var;
1588         } else {
1589                 snd_BUG();
1590         }
1591 }
1592
1593 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1594
1595 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1596                                    snd_pcm_hw_param_t var)
1597 {
1598         int changed;
1599         if (hw_is_mask(var))
1600                 changed = snd_mask_refine_first(hw_param_mask(params, var));
1601         else if (hw_is_interval(var))
1602                 changed = snd_interval_refine_first(hw_param_interval(params, var));
1603         else
1604                 return -EINVAL;
1605         if (changed) {
1606                 params->cmask |= 1 << var;
1607                 params->rmask |= 1 << var;
1608         }
1609         return changed;
1610 }
1611
1612
1613 /**
1614  * snd_pcm_hw_param_first - refine config space and return minimum value
1615  * @pcm: PCM instance
1616  * @params: the hw_params instance
1617  * @var: parameter to retrieve
1618  * @dir: pointer to the direction (-1,0,1) or %NULL
1619  *
1620  * Inside configuration space defined by @params remove from @var all
1621  * values > minimum. Reduce configuration space accordingly.
1622  *
1623  * Return: The minimum, or a negative error code on failure.
1624  */
1625 int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm, 
1626                            struct snd_pcm_hw_params *params, 
1627                            snd_pcm_hw_param_t var, int *dir)
1628 {
1629         int changed = _snd_pcm_hw_param_first(params, var);
1630         if (changed < 0)
1631                 return changed;
1632         if (params->rmask) {
1633                 int err = snd_pcm_hw_refine(pcm, params);
1634                 if (snd_BUG_ON(err < 0))
1635                         return err;
1636         }
1637         return snd_pcm_hw_param_value(params, var, dir);
1638 }
1639
1640 EXPORT_SYMBOL(snd_pcm_hw_param_first);
1641
1642 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1643                                   snd_pcm_hw_param_t var)
1644 {
1645         int changed;
1646         if (hw_is_mask(var))
1647                 changed = snd_mask_refine_last(hw_param_mask(params, var));
1648         else if (hw_is_interval(var))
1649                 changed = snd_interval_refine_last(hw_param_interval(params, var));
1650         else
1651                 return -EINVAL;
1652         if (changed) {
1653                 params->cmask |= 1 << var;
1654                 params->rmask |= 1 << var;
1655         }
1656         return changed;
1657 }
1658
1659
1660 /**
1661  * snd_pcm_hw_param_last - refine config space and return maximum value
1662  * @pcm: PCM instance
1663  * @params: the hw_params instance
1664  * @var: parameter to retrieve
1665  * @dir: pointer to the direction (-1,0,1) or %NULL
1666  *
1667  * Inside configuration space defined by @params remove from @var all
1668  * values < maximum. Reduce configuration space accordingly.
1669  *
1670  * Return: The maximum, or a negative error code on failure.
1671  */
1672 int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm, 
1673                           struct snd_pcm_hw_params *params,
1674                           snd_pcm_hw_param_t var, int *dir)
1675 {
1676         int changed = _snd_pcm_hw_param_last(params, var);
1677         if (changed < 0)
1678                 return changed;
1679         if (params->rmask) {
1680                 int err = snd_pcm_hw_refine(pcm, params);
1681                 if (snd_BUG_ON(err < 0))
1682                         return err;
1683         }
1684         return snd_pcm_hw_param_value(params, var, dir);
1685 }
1686
1687 EXPORT_SYMBOL(snd_pcm_hw_param_last);
1688
1689 /**
1690  * snd_pcm_hw_param_choose - choose a configuration defined by @params
1691  * @pcm: PCM instance
1692  * @params: the hw_params instance
1693  *
1694  * Choose one configuration from configuration space defined by @params.
1695  * The configuration chosen is that obtained fixing in this order:
1696  * first access, first format, first subformat, min channels,
1697  * min rate, min period time, max buffer size, min tick time
1698  *
1699  * Return: Zero if successful, or a negative error code on failure.
1700  */
1701 int snd_pcm_hw_params_choose(struct snd_pcm_substream *pcm,
1702                              struct snd_pcm_hw_params *params)
1703 {
1704         static int vars[] = {
1705                 SNDRV_PCM_HW_PARAM_ACCESS,
1706                 SNDRV_PCM_HW_PARAM_FORMAT,
1707                 SNDRV_PCM_HW_PARAM_SUBFORMAT,
1708                 SNDRV_PCM_HW_PARAM_CHANNELS,
1709                 SNDRV_PCM_HW_PARAM_RATE,
1710                 SNDRV_PCM_HW_PARAM_PERIOD_TIME,
1711                 SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
1712                 SNDRV_PCM_HW_PARAM_TICK_TIME,
1713                 -1
1714         };
1715         int err, *v;
1716
1717         for (v = vars; *v != -1; v++) {
1718                 if (*v != SNDRV_PCM_HW_PARAM_BUFFER_SIZE)
1719                         err = snd_pcm_hw_param_first(pcm, params, *v, NULL);
1720                 else
1721                         err = snd_pcm_hw_param_last(pcm, params, *v, NULL);
1722                 if (snd_BUG_ON(err < 0))
1723                         return err;
1724         }
1725         return 0;
1726 }
1727
1728 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1729                                    void *arg)
1730 {
1731         struct snd_pcm_runtime *runtime = substream->runtime;
1732         unsigned long flags;
1733         snd_pcm_stream_lock_irqsave(substream, flags);
1734         if (snd_pcm_running(substream) &&
1735             snd_pcm_update_hw_ptr(substream) >= 0)
1736                 runtime->status->hw_ptr %= runtime->buffer_size;
1737         else {
1738                 runtime->status->hw_ptr = 0;
1739                 runtime->hw_ptr_wrap = 0;
1740         }
1741         snd_pcm_stream_unlock_irqrestore(substream, flags);
1742         return 0;
1743 }
1744
1745 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1746                                           void *arg)
1747 {
1748         struct snd_pcm_channel_info *info = arg;
1749         struct snd_pcm_runtime *runtime = substream->runtime;
1750         int width;
1751         if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1752                 info->offset = -1;
1753                 return 0;
1754         }
1755         width = snd_pcm_format_physical_width(runtime->format);
1756         if (width < 0)
1757                 return width;
1758         info->offset = 0;
1759         switch (runtime->access) {
1760         case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1761         case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1762                 info->first = info->channel * width;
1763                 info->step = runtime->channels * width;
1764                 break;
1765         case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1766         case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1767         {
1768                 size_t size = runtime->dma_bytes / runtime->channels;
1769                 info->first = info->channel * size * 8;
1770                 info->step = width;
1771                 break;
1772         }
1773         default:
1774                 snd_BUG();
1775                 break;
1776         }
1777         return 0;
1778 }
1779
1780 static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1781                                        void *arg)
1782 {
1783         struct snd_pcm_hw_params *params = arg;
1784         snd_pcm_format_t format;
1785         int channels;
1786         ssize_t frame_size;
1787
1788         params->fifo_size = substream->runtime->hw.fifo_size;
1789         if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1790                 format = params_format(params);
1791                 channels = params_channels(params);
1792                 frame_size = snd_pcm_format_size(format, channels);
1793                 if (frame_size > 0)
1794                         params->fifo_size /= (unsigned)frame_size;
1795         }
1796         return 0;
1797 }
1798
1799 /**
1800  * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1801  * @substream: the pcm substream instance
1802  * @cmd: ioctl command
1803  * @arg: ioctl argument
1804  *
1805  * Processes the generic ioctl commands for PCM.
1806  * Can be passed as the ioctl callback for PCM ops.
1807  *
1808  * Return: Zero if successful, or a negative error code on failure.
1809  */
1810 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1811                       unsigned int cmd, void *arg)
1812 {
1813         switch (cmd) {
1814         case SNDRV_PCM_IOCTL1_INFO:
1815                 return 0;
1816         case SNDRV_PCM_IOCTL1_RESET:
1817                 return snd_pcm_lib_ioctl_reset(substream, arg);
1818         case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1819                 return snd_pcm_lib_ioctl_channel_info(substream, arg);
1820         case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1821                 return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1822         }
1823         return -ENXIO;
1824 }
1825
1826 EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1827
1828 /**
1829  * snd_pcm_period_elapsed - update the pcm status for the next period
1830  * @substream: the pcm substream instance
1831  *
1832  * This function is called from the interrupt handler when the
1833  * PCM has processed the period size.  It will update the current
1834  * pointer, wake up sleepers, etc.
1835  *
1836  * Even if more than one periods have elapsed since the last call, you
1837  * have to call this only once.
1838  */
1839 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1840 {
1841         struct snd_pcm_runtime *runtime;
1842         unsigned long flags;
1843
1844         if (PCM_RUNTIME_CHECK(substream))
1845                 return;
1846         runtime = substream->runtime;
1847
1848         if (runtime->transfer_ack_begin)
1849                 runtime->transfer_ack_begin(substream);
1850
1851         snd_pcm_stream_lock_irqsave(substream, flags);
1852         if (!snd_pcm_running(substream) ||
1853             snd_pcm_update_hw_ptr0(substream, 1) < 0)
1854                 goto _end;
1855
1856         if (substream->timer_running)
1857                 snd_timer_interrupt(substream->timer, 1);
1858  _end:
1859         snd_pcm_stream_unlock_irqrestore(substream, flags);
1860         if (runtime->transfer_ack_end)
1861                 runtime->transfer_ack_end(substream);
1862         kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1863 }
1864
1865 EXPORT_SYMBOL(snd_pcm_period_elapsed);
1866
1867 /*
1868  * Wait until avail_min data becomes available
1869  * Returns a negative error code if any error occurs during operation.
1870  * The available space is stored on availp.  When err = 0 and avail = 0
1871  * on the capture stream, it indicates the stream is in DRAINING state.
1872  */
1873 static int wait_for_avail(struct snd_pcm_substream *substream,
1874                               snd_pcm_uframes_t *availp)
1875 {
1876         struct snd_pcm_runtime *runtime = substream->runtime;
1877         int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1878         wait_queue_t wait;
1879         int err = 0;
1880         snd_pcm_uframes_t avail = 0;
1881         long wait_time, tout;
1882
1883         init_waitqueue_entry(&wait, current);
1884         set_current_state(TASK_INTERRUPTIBLE);
1885         add_wait_queue(&runtime->tsleep, &wait);
1886
1887         if (runtime->no_period_wakeup)
1888                 wait_time = MAX_SCHEDULE_TIMEOUT;
1889         else {
1890                 wait_time = 10;
1891                 if (runtime->rate) {
1892                         long t = runtime->period_size * 2 / runtime->rate;
1893                         wait_time = max(t, wait_time);
1894                 }
1895                 wait_time = msecs_to_jiffies(wait_time * 1000);
1896         }
1897
1898         for (;;) {
1899                 if (signal_pending(current)) {
1900                         err = -ERESTARTSYS;
1901                         break;
1902                 }
1903
1904                 /*
1905                  * We need to check if space became available already
1906                  * (and thus the wakeup happened already) first to close
1907                  * the race of space already having become available.
1908                  * This check must happen after been added to the waitqueue
1909                  * and having current state be INTERRUPTIBLE.
1910                  */
1911                 if (is_playback)
1912                         avail = snd_pcm_playback_avail(runtime);
1913                 else
1914                         avail = snd_pcm_capture_avail(runtime);
1915                 if (avail >= runtime->twake)
1916                         break;
1917                 snd_pcm_stream_unlock_irq(substream);
1918
1919                 tout = schedule_timeout(wait_time);
1920
1921                 snd_pcm_stream_lock_irq(substream);
1922                 set_current_state(TASK_INTERRUPTIBLE);
1923                 switch (runtime->status->state) {
1924                 case SNDRV_PCM_STATE_SUSPENDED:
1925                         err = -ESTRPIPE;
1926                         goto _endloop;
1927                 case SNDRV_PCM_STATE_XRUN:
1928                         err = -EPIPE;
1929                         goto _endloop;
1930                 case SNDRV_PCM_STATE_DRAINING:
1931                         if (is_playback)
1932                                 err = -EPIPE;
1933                         else 
1934                                 avail = 0; /* indicate draining */
1935                         goto _endloop;
1936                 case SNDRV_PCM_STATE_OPEN:
1937                 case SNDRV_PCM_STATE_SETUP:
1938                 case SNDRV_PCM_STATE_DISCONNECTED:
1939                         err = -EBADFD;
1940                         goto _endloop;
1941                 case SNDRV_PCM_STATE_PAUSED:
1942                         continue;
1943                 }
1944                 if (!tout) {
1945                         pcm_dbg(substream->pcm,
1946                                 "%s write error (DMA or IRQ trouble?)\n",
1947                                 is_playback ? "playback" : "capture");
1948                         err = -EIO;
1949                         break;
1950                 }
1951         }
1952  _endloop:
1953         set_current_state(TASK_RUNNING);
1954         remove_wait_queue(&runtime->tsleep, &wait);
1955         *availp = avail;
1956         return err;
1957 }
1958         
1959 static int snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream,
1960                                       unsigned int hwoff,
1961                                       unsigned long data, unsigned int off,
1962                                       snd_pcm_uframes_t frames)
1963 {
1964         struct snd_pcm_runtime *runtime = substream->runtime;
1965         int err;
1966         char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
1967         if (substream->ops->copy) {
1968                 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
1969                         return err;
1970         } else {
1971                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
1972                 if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames)))
1973                         return -EFAULT;
1974         }
1975         return 0;
1976 }
1977  
1978 typedef int (*transfer_f)(struct snd_pcm_substream *substream, unsigned int hwoff,
1979                           unsigned long data, unsigned int off,
1980                           snd_pcm_uframes_t size);
1981
1982 static snd_pcm_sframes_t snd_pcm_lib_write1(struct snd_pcm_substream *substream, 
1983                                             unsigned long data,
1984                                             snd_pcm_uframes_t size,
1985                                             int nonblock,
1986                                             transfer_f transfer)
1987 {
1988         struct snd_pcm_runtime *runtime = substream->runtime;
1989         snd_pcm_uframes_t xfer = 0;
1990         snd_pcm_uframes_t offset = 0;
1991         snd_pcm_uframes_t avail;
1992         int err = 0;
1993
1994         if (size == 0)
1995                 return 0;
1996
1997         snd_pcm_stream_lock_irq(substream);
1998         switch (runtime->status->state) {
1999         case SNDRV_PCM_STATE_PREPARED:
2000         case SNDRV_PCM_STATE_RUNNING:
2001         case SNDRV_PCM_STATE_PAUSED:
2002                 break;
2003         case SNDRV_PCM_STATE_XRUN:
2004                 err = -EPIPE;
2005                 goto _end_unlock;
2006         case SNDRV_PCM_STATE_SUSPENDED:
2007                 err = -ESTRPIPE;
2008                 goto _end_unlock;
2009         default:
2010                 err = -EBADFD;
2011                 goto _end_unlock;
2012         }
2013
2014         runtime->twake = runtime->control->avail_min ? : 1;
2015         if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2016                 snd_pcm_update_hw_ptr(substream);
2017         avail = snd_pcm_playback_avail(runtime);
2018         while (size > 0) {
2019                 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2020                 snd_pcm_uframes_t cont;
2021                 if (!avail) {
2022                         if (nonblock) {
2023                                 err = -EAGAIN;
2024                                 goto _end_unlock;
2025                         }
2026                         runtime->twake = min_t(snd_pcm_uframes_t, size,
2027                                         runtime->control->avail_min ? : 1);
2028                         err = wait_for_avail(substream, &avail);
2029                         if (err < 0)
2030                                 goto _end_unlock;
2031                 }
2032                 frames = size > avail ? avail : size;
2033                 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2034                 if (frames > cont)
2035                         frames = cont;
2036                 if (snd_BUG_ON(!frames)) {
2037                         runtime->twake = 0;
2038                         snd_pcm_stream_unlock_irq(substream);
2039                         return -EINVAL;
2040                 }
2041                 appl_ptr = runtime->control->appl_ptr;
2042                 appl_ofs = appl_ptr % runtime->buffer_size;
2043                 snd_pcm_stream_unlock_irq(substream);
2044                 err = transfer(substream, appl_ofs, data, offset, frames);
2045                 snd_pcm_stream_lock_irq(substream);
2046                 if (err < 0)
2047                         goto _end_unlock;
2048                 switch (runtime->status->state) {
2049                 case SNDRV_PCM_STATE_XRUN:
2050                         err = -EPIPE;
2051                         goto _end_unlock;
2052                 case SNDRV_PCM_STATE_SUSPENDED:
2053                         err = -ESTRPIPE;
2054                         goto _end_unlock;
2055                 default:
2056                         break;
2057                 }
2058                 appl_ptr += frames;
2059                 if (appl_ptr >= runtime->boundary)
2060                         appl_ptr -= runtime->boundary;
2061                 runtime->control->appl_ptr = appl_ptr;
2062                 if (substream->ops->ack)
2063                         substream->ops->ack(substream);
2064
2065                 offset += frames;
2066                 size -= frames;
2067                 xfer += frames;
2068                 avail -= frames;
2069                 if (runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
2070                     snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
2071                         err = snd_pcm_start(substream);
2072                         if (err < 0)
2073                                 goto _end_unlock;
2074                 }
2075         }
2076  _end_unlock:
2077         runtime->twake = 0;
2078         if (xfer > 0 && err >= 0)
2079                 snd_pcm_update_state(substream, runtime);
2080         snd_pcm_stream_unlock_irq(substream);
2081         return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2082 }
2083
2084 /* sanity-check for read/write methods */
2085 static int pcm_sanity_check(struct snd_pcm_substream *substream)
2086 {
2087         struct snd_pcm_runtime *runtime;
2088         if (PCM_RUNTIME_CHECK(substream))
2089                 return -ENXIO;
2090         runtime = substream->runtime;
2091         if (snd_BUG_ON(!substream->ops->copy && !runtime->dma_area))
2092                 return -EINVAL;
2093         if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2094                 return -EBADFD;
2095         return 0;
2096 }
2097
2098 snd_pcm_sframes_t snd_pcm_lib_write(struct snd_pcm_substream *substream, const void __user *buf, snd_pcm_uframes_t size)
2099 {
2100         struct snd_pcm_runtime *runtime;
2101         int nonblock;
2102         int err;
2103
2104         err = pcm_sanity_check(substream);
2105         if (err < 0)
2106                 return err;
2107         runtime = substream->runtime;
2108         nonblock = !!(substream->f_flags & O_NONBLOCK);
2109
2110         if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2111             runtime->channels > 1)
2112                 return -EINVAL;
2113         return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock,
2114                                   snd_pcm_lib_write_transfer);
2115 }
2116
2117 EXPORT_SYMBOL(snd_pcm_lib_write);
2118
2119 static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream *substream,
2120                                        unsigned int hwoff,
2121                                        unsigned long data, unsigned int off,
2122                                        snd_pcm_uframes_t frames)
2123 {
2124         struct snd_pcm_runtime *runtime = substream->runtime;
2125         int err;
2126         void __user **bufs = (void __user **)data;
2127         int channels = runtime->channels;
2128         int c;
2129         if (substream->ops->copy) {
2130                 if (snd_BUG_ON(!substream->ops->silence))
2131                         return -EINVAL;
2132                 for (c = 0; c < channels; ++c, ++bufs) {
2133                         if (*bufs == NULL) {
2134                                 if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0)
2135                                         return err;
2136                         } else {
2137                                 char __user *buf = *bufs + samples_to_bytes(runtime, off);
2138                                 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2139                                         return err;
2140                         }
2141                 }
2142         } else {
2143                 /* default transfer behaviour */
2144                 size_t dma_csize = runtime->dma_bytes / channels;
2145                 for (c = 0; c < channels; ++c, ++bufs) {
2146                         char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2147                         if (*bufs == NULL) {
2148                                 snd_pcm_format_set_silence(runtime->format, hwbuf, frames);
2149                         } else {
2150                                 char __user *buf = *bufs + samples_to_bytes(runtime, off);
2151                                 if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames)))
2152                                         return -EFAULT;
2153                         }
2154                 }
2155         }
2156         return 0;
2157 }
2158  
2159 snd_pcm_sframes_t snd_pcm_lib_writev(struct snd_pcm_substream *substream,
2160                                      void __user **bufs,
2161                                      snd_pcm_uframes_t frames)
2162 {
2163         struct snd_pcm_runtime *runtime;
2164         int nonblock;
2165         int err;
2166
2167         err = pcm_sanity_check(substream);
2168         if (err < 0)
2169                 return err;
2170         runtime = substream->runtime;
2171         nonblock = !!(substream->f_flags & O_NONBLOCK);
2172
2173         if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2174                 return -EINVAL;
2175         return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames,
2176                                   nonblock, snd_pcm_lib_writev_transfer);
2177 }
2178
2179 EXPORT_SYMBOL(snd_pcm_lib_writev);
2180
2181 static int snd_pcm_lib_read_transfer(struct snd_pcm_substream *substream, 
2182                                      unsigned int hwoff,
2183                                      unsigned long data, unsigned int off,
2184                                      snd_pcm_uframes_t frames)
2185 {
2186         struct snd_pcm_runtime *runtime = substream->runtime;
2187         int err;
2188         char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
2189         if (substream->ops->copy) {
2190                 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
2191                         return err;
2192         } else {
2193                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
2194                 if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames)))
2195                         return -EFAULT;
2196         }
2197         return 0;
2198 }
2199
2200 static snd_pcm_sframes_t snd_pcm_lib_read1(struct snd_pcm_substream *substream,
2201                                            unsigned long data,
2202                                            snd_pcm_uframes_t size,
2203                                            int nonblock,
2204                                            transfer_f transfer)
2205 {
2206         struct snd_pcm_runtime *runtime = substream->runtime;
2207         snd_pcm_uframes_t xfer = 0;
2208         snd_pcm_uframes_t offset = 0;
2209         snd_pcm_uframes_t avail;
2210         int err = 0;
2211
2212         if (size == 0)
2213                 return 0;
2214
2215         snd_pcm_stream_lock_irq(substream);
2216         switch (runtime->status->state) {
2217         case SNDRV_PCM_STATE_PREPARED:
2218                 if (size >= runtime->start_threshold) {
2219                         err = snd_pcm_start(substream);
2220                         if (err < 0)
2221                                 goto _end_unlock;
2222                 }
2223                 break;
2224         case SNDRV_PCM_STATE_DRAINING:
2225         case SNDRV_PCM_STATE_RUNNING:
2226         case SNDRV_PCM_STATE_PAUSED:
2227                 break;
2228         case SNDRV_PCM_STATE_XRUN:
2229                 err = -EPIPE;
2230                 goto _end_unlock;
2231         case SNDRV_PCM_STATE_SUSPENDED:
2232                 err = -ESTRPIPE;
2233                 goto _end_unlock;
2234         default:
2235                 err = -EBADFD;
2236                 goto _end_unlock;
2237         }
2238
2239         runtime->twake = runtime->control->avail_min ? : 1;
2240         if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2241                 snd_pcm_update_hw_ptr(substream);
2242         avail = snd_pcm_capture_avail(runtime);
2243         while (size > 0) {
2244                 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2245                 snd_pcm_uframes_t cont;
2246                 if (!avail) {
2247                         if (runtime->status->state ==
2248                             SNDRV_PCM_STATE_DRAINING) {
2249                                 snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2250                                 goto _end_unlock;
2251                         }
2252                         if (nonblock) {
2253                                 err = -EAGAIN;
2254                                 goto _end_unlock;
2255                         }
2256                         runtime->twake = min_t(snd_pcm_uframes_t, size,
2257                                         runtime->control->avail_min ? : 1);
2258                         err = wait_for_avail(substream, &avail);
2259                         if (err < 0)
2260                                 goto _end_unlock;
2261                         if (!avail)
2262                                 continue; /* draining */
2263                 }
2264                 frames = size > avail ? avail : size;
2265                 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2266                 if (frames > cont)
2267                         frames = cont;
2268                 if (snd_BUG_ON(!frames)) {
2269                         runtime->twake = 0;
2270                         snd_pcm_stream_unlock_irq(substream);
2271                         return -EINVAL;
2272                 }
2273                 appl_ptr = runtime->control->appl_ptr;
2274                 appl_ofs = appl_ptr % runtime->buffer_size;
2275                 snd_pcm_stream_unlock_irq(substream);
2276                 err = transfer(substream, appl_ofs, data, offset, frames);
2277                 snd_pcm_stream_lock_irq(substream);
2278                 if (err < 0)
2279                         goto _end_unlock;
2280                 switch (runtime->status->state) {
2281                 case SNDRV_PCM_STATE_XRUN:
2282                         err = -EPIPE;
2283                         goto _end_unlock;
2284                 case SNDRV_PCM_STATE_SUSPENDED:
2285                         err = -ESTRPIPE;
2286                         goto _end_unlock;
2287                 default:
2288                         break;
2289                 }
2290                 appl_ptr += frames;
2291                 if (appl_ptr >= runtime->boundary)
2292                         appl_ptr -= runtime->boundary;
2293                 runtime->control->appl_ptr = appl_ptr;
2294                 if (substream->ops->ack)
2295                         substream->ops->ack(substream);
2296
2297                 offset += frames;
2298                 size -= frames;
2299                 xfer += frames;
2300                 avail -= frames;
2301         }
2302  _end_unlock:
2303         runtime->twake = 0;
2304         if (xfer > 0 && err >= 0)
2305                 snd_pcm_update_state(substream, runtime);
2306         snd_pcm_stream_unlock_irq(substream);
2307         return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2308 }
2309
2310 snd_pcm_sframes_t snd_pcm_lib_read(struct snd_pcm_substream *substream, void __user *buf, snd_pcm_uframes_t size)
2311 {
2312         struct snd_pcm_runtime *runtime;
2313         int nonblock;
2314         int err;
2315         
2316         err = pcm_sanity_check(substream);
2317         if (err < 0)
2318                 return err;
2319         runtime = substream->runtime;
2320         nonblock = !!(substream->f_flags & O_NONBLOCK);
2321         if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED)
2322                 return -EINVAL;
2323         return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer);
2324 }
2325
2326 EXPORT_SYMBOL(snd_pcm_lib_read);
2327
2328 static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream *substream,
2329                                       unsigned int hwoff,
2330                                       unsigned long data, unsigned int off,
2331                                       snd_pcm_uframes_t frames)
2332 {
2333         struct snd_pcm_runtime *runtime = substream->runtime;
2334         int err;
2335         void __user **bufs = (void __user **)data;
2336         int channels = runtime->channels;
2337         int c;
2338         if (substream->ops->copy) {
2339                 for (c = 0; c < channels; ++c, ++bufs) {
2340                         char __user *buf;
2341                         if (*bufs == NULL)
2342                                 continue;
2343                         buf = *bufs + samples_to_bytes(runtime, off);
2344                         if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2345                                 return err;
2346                 }
2347         } else {
2348                 snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels;
2349                 for (c = 0; c < channels; ++c, ++bufs) {
2350                         char *hwbuf;
2351                         char __user *buf;
2352                         if (*bufs == NULL)
2353                                 continue;
2354
2355                         hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2356                         buf = *bufs + samples_to_bytes(runtime, off);
2357                         if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames)))
2358                                 return -EFAULT;
2359                 }
2360         }
2361         return 0;
2362 }
2363  
2364 snd_pcm_sframes_t snd_pcm_lib_readv(struct snd_pcm_substream *substream,
2365                                     void __user **bufs,
2366                                     snd_pcm_uframes_t frames)
2367 {
2368         struct snd_pcm_runtime *runtime;
2369         int nonblock;
2370         int err;
2371
2372         err = pcm_sanity_check(substream);
2373         if (err < 0)
2374                 return err;
2375         runtime = substream->runtime;
2376         if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2377                 return -EBADFD;
2378
2379         nonblock = !!(substream->f_flags & O_NONBLOCK);
2380         if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2381                 return -EINVAL;
2382         return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer);
2383 }
2384
2385 EXPORT_SYMBOL(snd_pcm_lib_readv);
2386
2387 /*
2388  * standard channel mapping helpers
2389  */
2390
2391 /* default channel maps for multi-channel playbacks, up to 8 channels */
2392 const struct snd_pcm_chmap_elem snd_pcm_std_chmaps[] = {
2393         { .channels = 1,
2394           .map = { SNDRV_CHMAP_MONO } },
2395         { .channels = 2,
2396           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2397         { .channels = 4,
2398           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2399                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2400         { .channels = 6,
2401           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2402                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2403                    SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE } },
2404         { .channels = 8,
2405           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2406                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2407                    SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2408                    SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2409         { }
2410 };
2411 EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps);
2412
2413 /* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */
2414 const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps[] = {
2415         { .channels = 1,
2416           .map = { SNDRV_CHMAP_MONO } },
2417         { .channels = 2,
2418           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2419         { .channels = 4,
2420           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2421                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2422         { .channels = 6,
2423           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2424                    SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2425                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2426         { .channels = 8,
2427           .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2428                    SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2429                    SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2430                    SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2431         { }
2432 };
2433 EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps);
2434
2435 static bool valid_chmap_channels(const struct snd_pcm_chmap *info, int ch)
2436 {
2437         if (ch > info->max_channels)
2438                 return false;
2439         return !info->channel_mask || (info->channel_mask & (1U << ch));
2440 }
2441
2442 static int pcm_chmap_ctl_info(struct snd_kcontrol *kcontrol,
2443                               struct snd_ctl_elem_info *uinfo)
2444 {
2445         struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2446
2447         uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2448         uinfo->count = 0;
2449         uinfo->count = info->max_channels;
2450         uinfo->value.integer.min = 0;
2451         uinfo->value.integer.max = SNDRV_CHMAP_LAST;
2452         return 0;
2453 }
2454
2455 /* get callback for channel map ctl element
2456  * stores the channel position firstly matching with the current channels
2457  */
2458 static int pcm_chmap_ctl_get(struct snd_kcontrol *kcontrol,
2459                              struct snd_ctl_elem_value *ucontrol)
2460 {
2461         struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2462         unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id);
2463         struct snd_pcm_substream *substream;
2464         const struct snd_pcm_chmap_elem *map;
2465
2466         if (snd_BUG_ON(!info->chmap))
2467                 return -EINVAL;
2468         substream = snd_pcm_chmap_substream(info, idx);
2469         if (!substream)
2470                 return -ENODEV;
2471         memset(ucontrol->value.integer.value, 0,
2472                sizeof(ucontrol->value.integer.value));
2473         if (!substream->runtime)
2474                 return 0; /* no channels set */
2475         for (map = info->chmap; map->channels; map++) {
2476                 int i;
2477                 if (map->channels == substream->runtime->channels &&
2478                     valid_chmap_channels(info, map->channels)) {
2479                         for (i = 0; i < map->channels; i++)
2480                                 ucontrol->value.integer.value[i] = map->map[i];
2481                         return 0;
2482                 }
2483         }
2484         return -EINVAL;
2485 }
2486
2487 /* tlv callback for channel map ctl element
2488  * expands the pre-defined channel maps in a form of TLV
2489  */
2490 static int pcm_chmap_ctl_tlv(struct snd_kcontrol *kcontrol, int op_flag,
2491                              unsigned int size, unsigned int __user *tlv)
2492 {
2493         struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2494         const struct snd_pcm_chmap_elem *map;
2495         unsigned int __user *dst;
2496         int c, count = 0;
2497
2498         if (snd_BUG_ON(!info->chmap))
2499                 return -EINVAL;
2500         if (size < 8)
2501                 return -ENOMEM;
2502         if (put_user(SNDRV_CTL_TLVT_CONTAINER, tlv))
2503                 return -EFAULT;
2504         size -= 8;
2505         dst = tlv + 2;
2506         for (map = info->chmap; map->channels; map++) {
2507                 int chs_bytes = map->channels * 4;
2508                 if (!valid_chmap_channels(info, map->channels))
2509                         continue;
2510                 if (size < 8)
2511                         return -ENOMEM;
2512                 if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED, dst) ||
2513                     put_user(chs_bytes, dst + 1))
2514                         return -EFAULT;
2515                 dst += 2;
2516                 size -= 8;
2517                 count += 8;
2518                 if (size < chs_bytes)
2519                         return -ENOMEM;
2520                 size -= chs_bytes;
2521                 count += chs_bytes;
2522                 for (c = 0; c < map->channels; c++) {
2523                         if (put_user(map->map[c], dst))
2524                                 return -EFAULT;
2525                         dst++;
2526                 }
2527         }
2528         if (put_user(count, tlv + 1))
2529                 return -EFAULT;
2530         return 0;
2531 }
2532
2533 static void pcm_chmap_ctl_private_free(struct snd_kcontrol *kcontrol)
2534 {
2535         struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2536         info->pcm->streams[info->stream].chmap_kctl = NULL;
2537         kfree(info);
2538 }
2539
2540 /**
2541  * snd_pcm_add_chmap_ctls - create channel-mapping control elements
2542  * @pcm: the assigned PCM instance
2543  * @stream: stream direction
2544  * @chmap: channel map elements (for query)
2545  * @max_channels: the max number of channels for the stream
2546  * @private_value: the value passed to each kcontrol's private_value field
2547  * @info_ret: store struct snd_pcm_chmap instance if non-NULL
2548  *
2549  * Create channel-mapping control elements assigned to the given PCM stream(s).
2550  * Return: Zero if successful, or a negative error value.
2551  */
2552 int snd_pcm_add_chmap_ctls(struct snd_pcm *pcm, int stream,
2553                            const struct snd_pcm_chmap_elem *chmap,
2554                            int max_channels,
2555                            unsigned long private_value,
2556                            struct snd_pcm_chmap **info_ret)
2557 {
2558         struct snd_pcm_chmap *info;
2559         struct snd_kcontrol_new knew = {
2560                 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
2561                 .access = SNDRV_CTL_ELEM_ACCESS_READ |
2562                         SNDRV_CTL_ELEM_ACCESS_TLV_READ |
2563                         SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK,
2564                 .info = pcm_chmap_ctl_info,
2565                 .get = pcm_chmap_ctl_get,
2566                 .tlv.c = pcm_chmap_ctl_tlv,
2567         };
2568         int err;
2569
2570         info = kzalloc(sizeof(*info), GFP_KERNEL);
2571         if (!info)
2572                 return -ENOMEM;
2573         info->pcm = pcm;
2574         info->stream = stream;
2575         info->chmap = chmap;
2576         info->max_channels = max_channels;
2577         if (stream == SNDRV_PCM_STREAM_PLAYBACK)
2578                 knew.name = "Playback Channel Map";
2579         else
2580                 knew.name = "Capture Channel Map";
2581         knew.device = pcm->device;
2582         knew.count = pcm->streams[stream].substream_count;
2583         knew.private_value = private_value;
2584         info->kctl = snd_ctl_new1(&knew, info);
2585         if (!info->kctl) {
2586                 kfree(info);
2587                 return -ENOMEM;
2588         }
2589         info->kctl->private_free = pcm_chmap_ctl_private_free;
2590         err = snd_ctl_add(pcm->card, info->kctl);
2591         if (err < 0)
2592                 return err;
2593         pcm->streams[stream].chmap_kctl = info->kctl;
2594         if (info_ret)
2595                 *info_ret = info;
2596         return 0;
2597 }
2598 EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls);