perf stat: Remove the limit on repeat
[cascardo/linux.git] / tools / perf / builtin-stat.c
1 /*
2  * builtin-stat.c
3  *
4  * Builtin stat command: Give a precise performance counters summary
5  * overview about any workload, CPU or specific PID.
6  *
7  * Sample output:
8
9    $ perf stat ~/hackbench 10
10    Time: 0.104
11
12     Performance counter stats for '/home/mingo/hackbench':
13
14        1255.538611  task clock ticks     #      10.143 CPU utilization factor
15              54011  context switches     #       0.043 M/sec
16                385  CPU migrations       #       0.000 M/sec
17              17755  pagefaults           #       0.014 M/sec
18         3808323185  CPU cycles           #    3033.219 M/sec
19         1575111190  instructions         #    1254.530 M/sec
20           17367895  cache references     #      13.833 M/sec
21            7674421  cache misses         #       6.112 M/sec
22
23     Wall-clock time elapsed:   123.786620 msecs
24
25  *
26  * Copyright (C) 2008, Red Hat Inc, Ingo Molnar <mingo@redhat.com>
27  *
28  * Improvements and fixes by:
29  *
30  *   Arjan van de Ven <arjan@linux.intel.com>
31  *   Yanmin Zhang <yanmin.zhang@intel.com>
32  *   Wu Fengguang <fengguang.wu@intel.com>
33  *   Mike Galbraith <efault@gmx.de>
34  *   Paul Mackerras <paulus@samba.org>
35  *   Jaswinder Singh Rajput <jaswinder@kernel.org>
36  *
37  * Released under the GPL v2. (and only v2, not any later version)
38  */
39
40 #include "perf.h"
41 #include "builtin.h"
42 #include "util/util.h"
43 #include "util/parse-options.h"
44 #include "util/parse-events.h"
45 #include "util/event.h"
46 #include "util/debug.h"
47
48 #include <sys/prctl.h>
49 #include <math.h>
50
51 static struct perf_counter_attr default_attrs[] = {
52
53   { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_TASK_CLOCK      },
54   { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_CONTEXT_SWITCHES},
55   { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_CPU_MIGRATIONS  },
56   { .type = PERF_TYPE_SOFTWARE, .config = PERF_COUNT_SW_PAGE_FAULTS     },
57
58   { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_CPU_CYCLES      },
59   { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_INSTRUCTIONS    },
60   { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_CACHE_REFERENCES},
61   { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_CACHE_MISSES    },
62
63 };
64
65 static int                      system_wide                     =  0;
66 static unsigned int             nr_cpus                         =  0;
67 static int                      run_idx                         =  0;
68
69 static int                      run_count                       =  1;
70 static int                      inherit                         =  1;
71 static int                      scale                           =  1;
72 static int                      target_pid                      = -1;
73 static int                      null_run                        =  0;
74
75 static int                      fd[MAX_NR_CPUS][MAX_COUNTERS];
76
77 static u64                      event_res[MAX_COUNTERS][3];
78 static u64                      event_scaled[MAX_COUNTERS];
79
80 struct stats
81 {
82         double sum;
83         double sum_sq;
84 };
85
86 static void update_stats(struct stats *stats, u64 val)
87 {
88         double sq = val;
89
90         stats->sum += val;
91         stats->sum_sq += sq * sq;
92 }
93
94 static double avg_stats(struct stats *stats)
95 {
96         return stats->sum / run_count;
97 }
98
99 /*
100  * stddev = sqrt(1/N (\Sum n_i^2) - avg(n)^2)
101  */
102 static double stddev_stats(struct stats *stats)
103 {
104         double avg = stats->sum / run_count;
105
106         return sqrt(stats->sum_sq/run_count - avg*avg);
107 }
108
109 struct stats                    event_res_stats[MAX_COUNTERS][3];
110 struct stats                    event_scaled_stats[MAX_COUNTERS];
111 struct stats                    runtime_nsecs_stats;
112 struct stats                    walltime_nsecs_stats;
113 struct stats                    runtime_cycles_stats;
114
115 #define MATCH_EVENT(t, c, counter)                      \
116         (attrs[counter].type == PERF_TYPE_##t &&        \
117          attrs[counter].config == PERF_COUNT_##c)
118
119 #define ERR_PERF_OPEN \
120 "Error: counter %d, sys_perf_counter_open() syscall returned with %d (%s)\n"
121
122 static void create_perf_stat_counter(int counter, int pid)
123 {
124         struct perf_counter_attr *attr = attrs + counter;
125
126         if (scale)
127                 attr->read_format = PERF_FORMAT_TOTAL_TIME_ENABLED |
128                                     PERF_FORMAT_TOTAL_TIME_RUNNING;
129
130         if (system_wide) {
131                 unsigned int cpu;
132
133                 for (cpu = 0; cpu < nr_cpus; cpu++) {
134                         fd[cpu][counter] = sys_perf_counter_open(attr, -1, cpu, -1, 0);
135                         if (fd[cpu][counter] < 0 && verbose)
136                                 fprintf(stderr, ERR_PERF_OPEN, counter,
137                                         fd[cpu][counter], strerror(errno));
138                 }
139         } else {
140                 attr->inherit        = inherit;
141                 attr->disabled       = 1;
142                 attr->enable_on_exec = 1;
143
144                 fd[0][counter] = sys_perf_counter_open(attr, pid, -1, -1, 0);
145                 if (fd[0][counter] < 0 && verbose)
146                         fprintf(stderr, ERR_PERF_OPEN, counter,
147                                 fd[0][counter], strerror(errno));
148         }
149 }
150
151 /*
152  * Does the counter have nsecs as a unit?
153  */
154 static inline int nsec_counter(int counter)
155 {
156         if (MATCH_EVENT(SOFTWARE, SW_CPU_CLOCK, counter) ||
157             MATCH_EVENT(SOFTWARE, SW_TASK_CLOCK, counter))
158                 return 1;
159
160         return 0;
161 }
162
163 /*
164  * Read out the results of a single counter:
165  */
166 static void read_counter(int counter)
167 {
168         u64 *count, single_count[3];
169         unsigned int cpu;
170         size_t res, nv;
171         int scaled;
172         int i;
173
174         count = event_res[counter];
175
176         count[0] = count[1] = count[2] = 0;
177
178         nv = scale ? 3 : 1;
179         for (cpu = 0; cpu < nr_cpus; cpu++) {
180                 if (fd[cpu][counter] < 0)
181                         continue;
182
183                 res = read(fd[cpu][counter], single_count, nv * sizeof(u64));
184                 assert(res == nv * sizeof(u64));
185
186                 close(fd[cpu][counter]);
187                 fd[cpu][counter] = -1;
188
189                 count[0] += single_count[0];
190                 if (scale) {
191                         count[1] += single_count[1];
192                         count[2] += single_count[2];
193                 }
194         }
195
196         scaled = 0;
197         if (scale) {
198                 if (count[2] == 0) {
199                         event_scaled[counter] = -1;
200                         count[0] = 0;
201                         return;
202                 }
203
204                 if (count[2] < count[1]) {
205                         event_scaled[counter] = 1;
206                         count[0] = (unsigned long long)
207                                 ((double)count[0] * count[1] / count[2] + 0.5);
208                 }
209         }
210
211         for (i = 0; i < 3; i++)
212                 update_stats(&event_res_stats[counter][i], count[i]);
213
214         if (verbose) {
215                 fprintf(stderr, "%s: %Ld %Ld %Ld\n", event_name(counter),
216                                 count[0], count[1], count[2]);
217         }
218
219         /*
220          * Save the full runtime - to allow normalization during printout:
221          */
222         if (MATCH_EVENT(SOFTWARE, SW_TASK_CLOCK, counter))
223                 update_stats(&runtime_nsecs_stats, count[0]);
224         if (MATCH_EVENT(HARDWARE, HW_CPU_CYCLES, counter))
225                 update_stats(&runtime_cycles_stats, count[0]);
226 }
227
228 static int run_perf_stat(int argc __used, const char **argv)
229 {
230         unsigned long long t0, t1;
231         int status = 0;
232         int counter;
233         int pid;
234         int child_ready_pipe[2], go_pipe[2];
235         char buf;
236
237         if (!system_wide)
238                 nr_cpus = 1;
239
240         if (pipe(child_ready_pipe) < 0 || pipe(go_pipe) < 0) {
241                 perror("failed to create pipes");
242                 exit(1);
243         }
244
245         if ((pid = fork()) < 0)
246                 perror("failed to fork");
247
248         if (!pid) {
249                 close(child_ready_pipe[0]);
250                 close(go_pipe[1]);
251                 fcntl(go_pipe[0], F_SETFD, FD_CLOEXEC);
252
253                 /*
254                  * Do a dummy execvp to get the PLT entry resolved,
255                  * so we avoid the resolver overhead on the real
256                  * execvp call.
257                  */
258                 execvp("", (char **)argv);
259
260                 /*
261                  * Tell the parent we're ready to go
262                  */
263                 close(child_ready_pipe[1]);
264
265                 /*
266                  * Wait until the parent tells us to go.
267                  */
268                 if (read(go_pipe[0], &buf, 1) == -1)
269                         perror("unable to read pipe");
270
271                 execvp(argv[0], (char **)argv);
272
273                 perror(argv[0]);
274                 exit(-1);
275         }
276
277         /*
278          * Wait for the child to be ready to exec.
279          */
280         close(child_ready_pipe[1]);
281         close(go_pipe[0]);
282         if (read(child_ready_pipe[0], &buf, 1) == -1)
283                 perror("unable to read pipe");
284         close(child_ready_pipe[0]);
285
286         for (counter = 0; counter < nr_counters; counter++)
287                 create_perf_stat_counter(counter, pid);
288
289         /*
290          * Enable counters and exec the command:
291          */
292         t0 = rdclock();
293
294         close(go_pipe[1]);
295         wait(&status);
296
297         t1 = rdclock();
298
299         update_stats(&walltime_nsecs_stats, t1 - t0);
300
301         for (counter = 0; counter < nr_counters; counter++)
302                 read_counter(counter);
303
304         return WEXITSTATUS(status);
305 }
306
307 static void print_noise(double avg, double stddev)
308 {
309         if (run_count > 1)
310                 fprintf(stderr, "   ( +- %7.3f%% )", 100*stddev / avg);
311 }
312
313 static void nsec_printout(int counter, double avg, double stddev)
314 {
315         double msecs = avg / 1e6;
316
317         fprintf(stderr, " %14.6f  %-24s", msecs, event_name(counter));
318
319         if (MATCH_EVENT(SOFTWARE, SW_TASK_CLOCK, counter)) {
320                 fprintf(stderr, " # %10.3f CPUs ",
321                                 avg / avg_stats(&walltime_nsecs_stats));
322         }
323         print_noise(avg, stddev);
324 }
325
326 static void abs_printout(int counter, double avg, double stddev)
327 {
328         fprintf(stderr, " %14.0f  %-24s", avg, event_name(counter));
329
330         if (MATCH_EVENT(HARDWARE, HW_INSTRUCTIONS, counter)) {
331                 fprintf(stderr, " # %10.3f IPC  ",
332                                 avg / avg_stats(&runtime_cycles_stats));
333         } else {
334                 fprintf(stderr, " # %10.3f M/sec",
335                                 1000.0 * avg / avg_stats(&runtime_nsecs_stats));
336         }
337         print_noise(avg, stddev);
338 }
339
340 /*
341  * Print out the results of a single counter:
342  */
343 static void print_counter(int counter)
344 {
345         double avg, stddev;
346         int scaled;
347
348         avg    = avg_stats(&event_res_stats[counter][0]);
349         stddev = stddev_stats(&event_res_stats[counter][0]);
350         scaled = avg_stats(&event_scaled_stats[counter]);
351
352         if (scaled == -1) {
353                 fprintf(stderr, " %14s  %-24s\n",
354                         "<not counted>", event_name(counter));
355                 return;
356         }
357
358         if (nsec_counter(counter))
359                 nsec_printout(counter, avg, stddev);
360         else
361                 abs_printout(counter, avg, stddev);
362
363         if (scaled) {
364                 double avg_enabled, avg_running;
365
366                 avg_enabled = avg_stats(&event_res_stats[counter][1]);
367                 avg_running = avg_stats(&event_res_stats[counter][2]);
368
369                 fprintf(stderr, "  (scaled from %.2f%%)",
370                                 100 * avg_running / avg_enabled);
371         }
372
373         fprintf(stderr, "\n");
374 }
375
376 static void print_stat(int argc, const char **argv)
377 {
378         int i, counter;
379
380         fflush(stdout);
381
382         fprintf(stderr, "\n");
383         fprintf(stderr, " Performance counter stats for \'%s", argv[0]);
384
385         for (i = 1; i < argc; i++)
386                 fprintf(stderr, " %s", argv[i]);
387
388         fprintf(stderr, "\'");
389         if (run_count > 1)
390                 fprintf(stderr, " (%d runs)", run_count);
391         fprintf(stderr, ":\n\n");
392
393         for (counter = 0; counter < nr_counters; counter++)
394                 print_counter(counter);
395
396         fprintf(stderr, "\n");
397         fprintf(stderr, " %14.9f  seconds time elapsed",
398                         avg_stats(&walltime_nsecs_stats)/1e9);
399         if (run_count > 1) {
400                 fprintf(stderr, "   ( +- %7.3f%% )",
401                                 100*stddev_stats(&walltime_nsecs_stats) /
402                                 avg_stats(&walltime_nsecs_stats));
403         }
404         fprintf(stderr, "\n\n");
405 }
406
407 static volatile int signr = -1;
408
409 static void skip_signal(int signo)
410 {
411         signr = signo;
412 }
413
414 static void sig_atexit(void)
415 {
416         if (signr == -1)
417                 return;
418
419         signal(signr, SIG_DFL);
420         kill(getpid(), signr);
421 }
422
423 static const char * const stat_usage[] = {
424         "perf stat [<options>] <command>",
425         NULL
426 };
427
428 static const struct option options[] = {
429         OPT_CALLBACK('e', "event", NULL, "event",
430                      "event selector. use 'perf list' to list available events",
431                      parse_events),
432         OPT_BOOLEAN('i', "inherit", &inherit,
433                     "child tasks inherit counters"),
434         OPT_INTEGER('p', "pid", &target_pid,
435                     "stat events on existing pid"),
436         OPT_BOOLEAN('a', "all-cpus", &system_wide,
437                     "system-wide collection from all CPUs"),
438         OPT_BOOLEAN('c', "scale", &scale,
439                     "scale/normalize counters"),
440         OPT_BOOLEAN('v', "verbose", &verbose,
441                     "be more verbose (show counter open errors, etc)"),
442         OPT_INTEGER('r', "repeat", &run_count,
443                     "repeat command and print average + stddev (max: 100)"),
444         OPT_BOOLEAN('n', "null", &null_run,
445                     "null run - dont start any counters"),
446         OPT_END()
447 };
448
449 int cmd_stat(int argc, const char **argv, const char *prefix __used)
450 {
451         int status;
452
453         argc = parse_options(argc, argv, options, stat_usage,
454                 PARSE_OPT_STOP_AT_NON_OPTION);
455         if (!argc)
456                 usage_with_options(stat_usage, options);
457         if (run_count <= 0)
458                 usage_with_options(stat_usage, options);
459
460         /* Set attrs and nr_counters if no event is selected and !null_run */
461         if (!null_run && !nr_counters) {
462                 memcpy(attrs, default_attrs, sizeof(default_attrs));
463                 nr_counters = ARRAY_SIZE(default_attrs);
464         }
465
466         nr_cpus = sysconf(_SC_NPROCESSORS_ONLN);
467         assert(nr_cpus <= MAX_NR_CPUS);
468         assert((int)nr_cpus >= 0);
469
470         /*
471          * We dont want to block the signals - that would cause
472          * child tasks to inherit that and Ctrl-C would not work.
473          * What we want is for Ctrl-C to work in the exec()-ed
474          * task, but being ignored by perf stat itself:
475          */
476         atexit(sig_atexit);
477         signal(SIGINT,  skip_signal);
478         signal(SIGALRM, skip_signal);
479         signal(SIGABRT, skip_signal);
480
481         status = 0;
482         for (run_idx = 0; run_idx < run_count; run_idx++) {
483                 if (run_count != 1 && verbose)
484                         fprintf(stderr, "[ perf stat: executing run #%d ... ]\n", run_idx + 1);
485                 status = run_perf_stat(argc, argv);
486         }
487
488         print_stat(argc, argv);
489
490         return status;
491 }