8ab49cfc024eadced69b8040d708e53bcfc3c05a
[cascardo/linux.git] / virt / kvm / kvm_main.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include <kvm/iodev.h>
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/ioctl.h>
56 #include <asm/uaccess.h>
57 #include <asm/pgtable.h>
58
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "vfio.h"
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
65
66 MODULE_AUTHOR("Qumranet");
67 MODULE_LICENSE("GPL");
68
69 /* halt polling only reduces halt latency by 5-7 us, 500us is enough */
70 static unsigned int halt_poll_ns = 500000;
71 module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR);
72
73 /* Default doubles per-vcpu halt_poll_ns. */
74 static unsigned int halt_poll_ns_grow = 2;
75 module_param(halt_poll_ns_grow, int, S_IRUGO);
76
77 /* Default resets per-vcpu halt_poll_ns . */
78 static unsigned int halt_poll_ns_shrink;
79 module_param(halt_poll_ns_shrink, int, S_IRUGO);
80
81 /*
82  * Ordering of locks:
83  *
84  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
85  */
86
87 DEFINE_SPINLOCK(kvm_lock);
88 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
89 LIST_HEAD(vm_list);
90
91 static cpumask_var_t cpus_hardware_enabled;
92 static int kvm_usage_count;
93 static atomic_t hardware_enable_failed;
94
95 struct kmem_cache *kvm_vcpu_cache;
96 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
97
98 static __read_mostly struct preempt_ops kvm_preempt_ops;
99
100 struct dentry *kvm_debugfs_dir;
101 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
102
103 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
104                            unsigned long arg);
105 #ifdef CONFIG_KVM_COMPAT
106 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
107                                   unsigned long arg);
108 #endif
109 static int hardware_enable_all(void);
110 static void hardware_disable_all(void);
111
112 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
113
114 static void kvm_release_pfn_dirty(pfn_t pfn);
115 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
116
117 __visible bool kvm_rebooting;
118 EXPORT_SYMBOL_GPL(kvm_rebooting);
119
120 static bool largepages_enabled = true;
121
122 bool kvm_is_reserved_pfn(pfn_t pfn)
123 {
124         if (pfn_valid(pfn))
125                 return PageReserved(pfn_to_page(pfn));
126
127         return true;
128 }
129
130 /*
131  * Switches to specified vcpu, until a matching vcpu_put()
132  */
133 int vcpu_load(struct kvm_vcpu *vcpu)
134 {
135         int cpu;
136
137         if (mutex_lock_killable(&vcpu->mutex))
138                 return -EINTR;
139         cpu = get_cpu();
140         preempt_notifier_register(&vcpu->preempt_notifier);
141         kvm_arch_vcpu_load(vcpu, cpu);
142         put_cpu();
143         return 0;
144 }
145
146 void vcpu_put(struct kvm_vcpu *vcpu)
147 {
148         preempt_disable();
149         kvm_arch_vcpu_put(vcpu);
150         preempt_notifier_unregister(&vcpu->preempt_notifier);
151         preempt_enable();
152         mutex_unlock(&vcpu->mutex);
153 }
154
155 static void ack_flush(void *_completed)
156 {
157 }
158
159 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
160 {
161         int i, cpu, me;
162         cpumask_var_t cpus;
163         bool called = true;
164         struct kvm_vcpu *vcpu;
165
166         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
167
168         me = get_cpu();
169         kvm_for_each_vcpu(i, vcpu, kvm) {
170                 kvm_make_request(req, vcpu);
171                 cpu = vcpu->cpu;
172
173                 /* Set ->requests bit before we read ->mode */
174                 smp_mb();
175
176                 if (cpus != NULL && cpu != -1 && cpu != me &&
177                       kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
178                         cpumask_set_cpu(cpu, cpus);
179         }
180         if (unlikely(cpus == NULL))
181                 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
182         else if (!cpumask_empty(cpus))
183                 smp_call_function_many(cpus, ack_flush, NULL, 1);
184         else
185                 called = false;
186         put_cpu();
187         free_cpumask_var(cpus);
188         return called;
189 }
190
191 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
192 void kvm_flush_remote_tlbs(struct kvm *kvm)
193 {
194         long dirty_count = kvm->tlbs_dirty;
195
196         smp_mb();
197         if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
198                 ++kvm->stat.remote_tlb_flush;
199         cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
200 }
201 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
202 #endif
203
204 void kvm_reload_remote_mmus(struct kvm *kvm)
205 {
206         kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
207 }
208
209 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
210 {
211         kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
212 }
213
214 void kvm_make_scan_ioapic_request(struct kvm *kvm)
215 {
216         kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
217 }
218
219 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
220 {
221         struct page *page;
222         int r;
223
224         mutex_init(&vcpu->mutex);
225         vcpu->cpu = -1;
226         vcpu->kvm = kvm;
227         vcpu->vcpu_id = id;
228         vcpu->pid = NULL;
229         vcpu->halt_poll_ns = 0;
230         init_waitqueue_head(&vcpu->wq);
231         kvm_async_pf_vcpu_init(vcpu);
232
233         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
234         if (!page) {
235                 r = -ENOMEM;
236                 goto fail;
237         }
238         vcpu->run = page_address(page);
239
240         kvm_vcpu_set_in_spin_loop(vcpu, false);
241         kvm_vcpu_set_dy_eligible(vcpu, false);
242         vcpu->preempted = false;
243
244         r = kvm_arch_vcpu_init(vcpu);
245         if (r < 0)
246                 goto fail_free_run;
247         return 0;
248
249 fail_free_run:
250         free_page((unsigned long)vcpu->run);
251 fail:
252         return r;
253 }
254 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
255
256 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
257 {
258         put_pid(vcpu->pid);
259         kvm_arch_vcpu_uninit(vcpu);
260         free_page((unsigned long)vcpu->run);
261 }
262 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
263
264 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
265 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
266 {
267         return container_of(mn, struct kvm, mmu_notifier);
268 }
269
270 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
271                                              struct mm_struct *mm,
272                                              unsigned long address)
273 {
274         struct kvm *kvm = mmu_notifier_to_kvm(mn);
275         int need_tlb_flush, idx;
276
277         /*
278          * When ->invalidate_page runs, the linux pte has been zapped
279          * already but the page is still allocated until
280          * ->invalidate_page returns. So if we increase the sequence
281          * here the kvm page fault will notice if the spte can't be
282          * established because the page is going to be freed. If
283          * instead the kvm page fault establishes the spte before
284          * ->invalidate_page runs, kvm_unmap_hva will release it
285          * before returning.
286          *
287          * The sequence increase only need to be seen at spin_unlock
288          * time, and not at spin_lock time.
289          *
290          * Increasing the sequence after the spin_unlock would be
291          * unsafe because the kvm page fault could then establish the
292          * pte after kvm_unmap_hva returned, without noticing the page
293          * is going to be freed.
294          */
295         idx = srcu_read_lock(&kvm->srcu);
296         spin_lock(&kvm->mmu_lock);
297
298         kvm->mmu_notifier_seq++;
299         need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
300         /* we've to flush the tlb before the pages can be freed */
301         if (need_tlb_flush)
302                 kvm_flush_remote_tlbs(kvm);
303
304         spin_unlock(&kvm->mmu_lock);
305
306         kvm_arch_mmu_notifier_invalidate_page(kvm, address);
307
308         srcu_read_unlock(&kvm->srcu, idx);
309 }
310
311 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
312                                         struct mm_struct *mm,
313                                         unsigned long address,
314                                         pte_t pte)
315 {
316         struct kvm *kvm = mmu_notifier_to_kvm(mn);
317         int idx;
318
319         idx = srcu_read_lock(&kvm->srcu);
320         spin_lock(&kvm->mmu_lock);
321         kvm->mmu_notifier_seq++;
322         kvm_set_spte_hva(kvm, address, pte);
323         spin_unlock(&kvm->mmu_lock);
324         srcu_read_unlock(&kvm->srcu, idx);
325 }
326
327 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
328                                                     struct mm_struct *mm,
329                                                     unsigned long start,
330                                                     unsigned long end)
331 {
332         struct kvm *kvm = mmu_notifier_to_kvm(mn);
333         int need_tlb_flush = 0, idx;
334
335         idx = srcu_read_lock(&kvm->srcu);
336         spin_lock(&kvm->mmu_lock);
337         /*
338          * The count increase must become visible at unlock time as no
339          * spte can be established without taking the mmu_lock and
340          * count is also read inside the mmu_lock critical section.
341          */
342         kvm->mmu_notifier_count++;
343         need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
344         need_tlb_flush |= kvm->tlbs_dirty;
345         /* we've to flush the tlb before the pages can be freed */
346         if (need_tlb_flush)
347                 kvm_flush_remote_tlbs(kvm);
348
349         spin_unlock(&kvm->mmu_lock);
350         srcu_read_unlock(&kvm->srcu, idx);
351 }
352
353 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
354                                                   struct mm_struct *mm,
355                                                   unsigned long start,
356                                                   unsigned long end)
357 {
358         struct kvm *kvm = mmu_notifier_to_kvm(mn);
359
360         spin_lock(&kvm->mmu_lock);
361         /*
362          * This sequence increase will notify the kvm page fault that
363          * the page that is going to be mapped in the spte could have
364          * been freed.
365          */
366         kvm->mmu_notifier_seq++;
367         smp_wmb();
368         /*
369          * The above sequence increase must be visible before the
370          * below count decrease, which is ensured by the smp_wmb above
371          * in conjunction with the smp_rmb in mmu_notifier_retry().
372          */
373         kvm->mmu_notifier_count--;
374         spin_unlock(&kvm->mmu_lock);
375
376         BUG_ON(kvm->mmu_notifier_count < 0);
377 }
378
379 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
380                                               struct mm_struct *mm,
381                                               unsigned long start,
382                                               unsigned long end)
383 {
384         struct kvm *kvm = mmu_notifier_to_kvm(mn);
385         int young, idx;
386
387         idx = srcu_read_lock(&kvm->srcu);
388         spin_lock(&kvm->mmu_lock);
389
390         young = kvm_age_hva(kvm, start, end);
391         if (young)
392                 kvm_flush_remote_tlbs(kvm);
393
394         spin_unlock(&kvm->mmu_lock);
395         srcu_read_unlock(&kvm->srcu, idx);
396
397         return young;
398 }
399
400 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
401                                        struct mm_struct *mm,
402                                        unsigned long address)
403 {
404         struct kvm *kvm = mmu_notifier_to_kvm(mn);
405         int young, idx;
406
407         idx = srcu_read_lock(&kvm->srcu);
408         spin_lock(&kvm->mmu_lock);
409         young = kvm_test_age_hva(kvm, address);
410         spin_unlock(&kvm->mmu_lock);
411         srcu_read_unlock(&kvm->srcu, idx);
412
413         return young;
414 }
415
416 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
417                                      struct mm_struct *mm)
418 {
419         struct kvm *kvm = mmu_notifier_to_kvm(mn);
420         int idx;
421
422         idx = srcu_read_lock(&kvm->srcu);
423         kvm_arch_flush_shadow_all(kvm);
424         srcu_read_unlock(&kvm->srcu, idx);
425 }
426
427 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
428         .invalidate_page        = kvm_mmu_notifier_invalidate_page,
429         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
430         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
431         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
432         .test_young             = kvm_mmu_notifier_test_young,
433         .change_pte             = kvm_mmu_notifier_change_pte,
434         .release                = kvm_mmu_notifier_release,
435 };
436
437 static int kvm_init_mmu_notifier(struct kvm *kvm)
438 {
439         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
440         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
441 }
442
443 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
444
445 static int kvm_init_mmu_notifier(struct kvm *kvm)
446 {
447         return 0;
448 }
449
450 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
451
452 static struct kvm_memslots *kvm_alloc_memslots(void)
453 {
454         int i;
455         struct kvm_memslots *slots;
456
457         slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
458         if (!slots)
459                 return NULL;
460
461         /*
462          * Init kvm generation close to the maximum to easily test the
463          * code of handling generation number wrap-around.
464          */
465         slots->generation = -150;
466         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
467                 slots->id_to_index[i] = slots->memslots[i].id = i;
468
469         return slots;
470 }
471
472 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
473 {
474         if (!memslot->dirty_bitmap)
475                 return;
476
477         kvfree(memslot->dirty_bitmap);
478         memslot->dirty_bitmap = NULL;
479 }
480
481 /*
482  * Free any memory in @free but not in @dont.
483  */
484 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
485                               struct kvm_memory_slot *dont)
486 {
487         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
488                 kvm_destroy_dirty_bitmap(free);
489
490         kvm_arch_free_memslot(kvm, free, dont);
491
492         free->npages = 0;
493 }
494
495 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
496 {
497         struct kvm_memory_slot *memslot;
498
499         if (!slots)
500                 return;
501
502         kvm_for_each_memslot(memslot, slots)
503                 kvm_free_memslot(kvm, memslot, NULL);
504
505         kvfree(slots);
506 }
507
508 static struct kvm *kvm_create_vm(unsigned long type)
509 {
510         int r, i;
511         struct kvm *kvm = kvm_arch_alloc_vm();
512
513         if (!kvm)
514                 return ERR_PTR(-ENOMEM);
515
516         r = kvm_arch_init_vm(kvm, type);
517         if (r)
518                 goto out_err_no_disable;
519
520         r = hardware_enable_all();
521         if (r)
522                 goto out_err_no_disable;
523
524 #ifdef CONFIG_HAVE_KVM_IRQFD
525         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
526 #endif
527
528         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
529
530         r = -ENOMEM;
531         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
532                 kvm->memslots[i] = kvm_alloc_memslots();
533                 if (!kvm->memslots[i])
534                         goto out_err_no_srcu;
535         }
536
537         if (init_srcu_struct(&kvm->srcu))
538                 goto out_err_no_srcu;
539         if (init_srcu_struct(&kvm->irq_srcu))
540                 goto out_err_no_irq_srcu;
541         for (i = 0; i < KVM_NR_BUSES; i++) {
542                 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
543                                         GFP_KERNEL);
544                 if (!kvm->buses[i])
545                         goto out_err;
546         }
547
548         spin_lock_init(&kvm->mmu_lock);
549         kvm->mm = current->mm;
550         atomic_inc(&kvm->mm->mm_count);
551         kvm_eventfd_init(kvm);
552         mutex_init(&kvm->lock);
553         mutex_init(&kvm->irq_lock);
554         mutex_init(&kvm->slots_lock);
555         atomic_set(&kvm->users_count, 1);
556         INIT_LIST_HEAD(&kvm->devices);
557
558         r = kvm_init_mmu_notifier(kvm);
559         if (r)
560                 goto out_err;
561
562         spin_lock(&kvm_lock);
563         list_add(&kvm->vm_list, &vm_list);
564         spin_unlock(&kvm_lock);
565
566         preempt_notifier_inc();
567
568         return kvm;
569
570 out_err:
571         cleanup_srcu_struct(&kvm->irq_srcu);
572 out_err_no_irq_srcu:
573         cleanup_srcu_struct(&kvm->srcu);
574 out_err_no_srcu:
575         hardware_disable_all();
576 out_err_no_disable:
577         for (i = 0; i < KVM_NR_BUSES; i++)
578                 kfree(kvm->buses[i]);
579         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
580                 kvm_free_memslots(kvm, kvm->memslots[i]);
581         kvm_arch_free_vm(kvm);
582         return ERR_PTR(r);
583 }
584
585 /*
586  * Avoid using vmalloc for a small buffer.
587  * Should not be used when the size is statically known.
588  */
589 void *kvm_kvzalloc(unsigned long size)
590 {
591         if (size > PAGE_SIZE)
592                 return vzalloc(size);
593         else
594                 return kzalloc(size, GFP_KERNEL);
595 }
596
597 static void kvm_destroy_devices(struct kvm *kvm)
598 {
599         struct list_head *node, *tmp;
600
601         list_for_each_safe(node, tmp, &kvm->devices) {
602                 struct kvm_device *dev =
603                         list_entry(node, struct kvm_device, vm_node);
604
605                 list_del(node);
606                 dev->ops->destroy(dev);
607         }
608 }
609
610 static void kvm_destroy_vm(struct kvm *kvm)
611 {
612         int i;
613         struct mm_struct *mm = kvm->mm;
614
615         kvm_arch_sync_events(kvm);
616         spin_lock(&kvm_lock);
617         list_del(&kvm->vm_list);
618         spin_unlock(&kvm_lock);
619         kvm_free_irq_routing(kvm);
620         for (i = 0; i < KVM_NR_BUSES; i++)
621                 kvm_io_bus_destroy(kvm->buses[i]);
622         kvm_coalesced_mmio_free(kvm);
623 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
624         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
625 #else
626         kvm_arch_flush_shadow_all(kvm);
627 #endif
628         kvm_arch_destroy_vm(kvm);
629         kvm_destroy_devices(kvm);
630         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
631                 kvm_free_memslots(kvm, kvm->memslots[i]);
632         cleanup_srcu_struct(&kvm->irq_srcu);
633         cleanup_srcu_struct(&kvm->srcu);
634         kvm_arch_free_vm(kvm);
635         preempt_notifier_dec();
636         hardware_disable_all();
637         mmdrop(mm);
638 }
639
640 void kvm_get_kvm(struct kvm *kvm)
641 {
642         atomic_inc(&kvm->users_count);
643 }
644 EXPORT_SYMBOL_GPL(kvm_get_kvm);
645
646 void kvm_put_kvm(struct kvm *kvm)
647 {
648         if (atomic_dec_and_test(&kvm->users_count))
649                 kvm_destroy_vm(kvm);
650 }
651 EXPORT_SYMBOL_GPL(kvm_put_kvm);
652
653
654 static int kvm_vm_release(struct inode *inode, struct file *filp)
655 {
656         struct kvm *kvm = filp->private_data;
657
658         kvm_irqfd_release(kvm);
659
660         kvm_put_kvm(kvm);
661         return 0;
662 }
663
664 /*
665  * Allocation size is twice as large as the actual dirty bitmap size.
666  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
667  */
668 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
669 {
670         unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
671
672         memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
673         if (!memslot->dirty_bitmap)
674                 return -ENOMEM;
675
676         return 0;
677 }
678
679 /*
680  * Insert memslot and re-sort memslots based on their GFN,
681  * so binary search could be used to lookup GFN.
682  * Sorting algorithm takes advantage of having initially
683  * sorted array and known changed memslot position.
684  */
685 static void update_memslots(struct kvm_memslots *slots,
686                             struct kvm_memory_slot *new)
687 {
688         int id = new->id;
689         int i = slots->id_to_index[id];
690         struct kvm_memory_slot *mslots = slots->memslots;
691
692         WARN_ON(mslots[i].id != id);
693         if (!new->npages) {
694                 WARN_ON(!mslots[i].npages);
695                 if (mslots[i].npages)
696                         slots->used_slots--;
697         } else {
698                 if (!mslots[i].npages)
699                         slots->used_slots++;
700         }
701
702         while (i < KVM_MEM_SLOTS_NUM - 1 &&
703                new->base_gfn <= mslots[i + 1].base_gfn) {
704                 if (!mslots[i + 1].npages)
705                         break;
706                 mslots[i] = mslots[i + 1];
707                 slots->id_to_index[mslots[i].id] = i;
708                 i++;
709         }
710
711         /*
712          * The ">=" is needed when creating a slot with base_gfn == 0,
713          * so that it moves before all those with base_gfn == npages == 0.
714          *
715          * On the other hand, if new->npages is zero, the above loop has
716          * already left i pointing to the beginning of the empty part of
717          * mslots, and the ">=" would move the hole backwards in this
718          * case---which is wrong.  So skip the loop when deleting a slot.
719          */
720         if (new->npages) {
721                 while (i > 0 &&
722                        new->base_gfn >= mslots[i - 1].base_gfn) {
723                         mslots[i] = mslots[i - 1];
724                         slots->id_to_index[mslots[i].id] = i;
725                         i--;
726                 }
727         } else
728                 WARN_ON_ONCE(i != slots->used_slots);
729
730         mslots[i] = *new;
731         slots->id_to_index[mslots[i].id] = i;
732 }
733
734 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
735 {
736         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
737
738 #ifdef __KVM_HAVE_READONLY_MEM
739         valid_flags |= KVM_MEM_READONLY;
740 #endif
741
742         if (mem->flags & ~valid_flags)
743                 return -EINVAL;
744
745         return 0;
746 }
747
748 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
749                 int as_id, struct kvm_memslots *slots)
750 {
751         struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
752
753         /*
754          * Set the low bit in the generation, which disables SPTE caching
755          * until the end of synchronize_srcu_expedited.
756          */
757         WARN_ON(old_memslots->generation & 1);
758         slots->generation = old_memslots->generation + 1;
759
760         rcu_assign_pointer(kvm->memslots[as_id], slots);
761         synchronize_srcu_expedited(&kvm->srcu);
762
763         /*
764          * Increment the new memslot generation a second time. This prevents
765          * vm exits that race with memslot updates from caching a memslot
766          * generation that will (potentially) be valid forever.
767          */
768         slots->generation++;
769
770         kvm_arch_memslots_updated(kvm, slots);
771
772         return old_memslots;
773 }
774
775 /*
776  * Allocate some memory and give it an address in the guest physical address
777  * space.
778  *
779  * Discontiguous memory is allowed, mostly for framebuffers.
780  *
781  * Must be called holding kvm->slots_lock for write.
782  */
783 int __kvm_set_memory_region(struct kvm *kvm,
784                             const struct kvm_userspace_memory_region *mem)
785 {
786         int r;
787         gfn_t base_gfn;
788         unsigned long npages;
789         struct kvm_memory_slot *slot;
790         struct kvm_memory_slot old, new;
791         struct kvm_memslots *slots = NULL, *old_memslots;
792         int as_id, id;
793         enum kvm_mr_change change;
794
795         r = check_memory_region_flags(mem);
796         if (r)
797                 goto out;
798
799         r = -EINVAL;
800         as_id = mem->slot >> 16;
801         id = (u16)mem->slot;
802
803         /* General sanity checks */
804         if (mem->memory_size & (PAGE_SIZE - 1))
805                 goto out;
806         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
807                 goto out;
808         /* We can read the guest memory with __xxx_user() later on. */
809         if ((id < KVM_USER_MEM_SLOTS) &&
810             ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
811              !access_ok(VERIFY_WRITE,
812                         (void __user *)(unsigned long)mem->userspace_addr,
813                         mem->memory_size)))
814                 goto out;
815         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
816                 goto out;
817         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
818                 goto out;
819
820         slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
821         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
822         npages = mem->memory_size >> PAGE_SHIFT;
823
824         if (npages > KVM_MEM_MAX_NR_PAGES)
825                 goto out;
826
827         new = old = *slot;
828
829         new.id = id;
830         new.base_gfn = base_gfn;
831         new.npages = npages;
832         new.flags = mem->flags;
833
834         if (npages) {
835                 if (!old.npages)
836                         change = KVM_MR_CREATE;
837                 else { /* Modify an existing slot. */
838                         if ((mem->userspace_addr != old.userspace_addr) ||
839                             (npages != old.npages) ||
840                             ((new.flags ^ old.flags) & KVM_MEM_READONLY))
841                                 goto out;
842
843                         if (base_gfn != old.base_gfn)
844                                 change = KVM_MR_MOVE;
845                         else if (new.flags != old.flags)
846                                 change = KVM_MR_FLAGS_ONLY;
847                         else { /* Nothing to change. */
848                                 r = 0;
849                                 goto out;
850                         }
851                 }
852         } else {
853                 if (!old.npages)
854                         goto out;
855
856                 change = KVM_MR_DELETE;
857                 new.base_gfn = 0;
858                 new.flags = 0;
859         }
860
861         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
862                 /* Check for overlaps */
863                 r = -EEXIST;
864                 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
865                         if ((slot->id >= KVM_USER_MEM_SLOTS) ||
866                             (slot->id == id))
867                                 continue;
868                         if (!((base_gfn + npages <= slot->base_gfn) ||
869                               (base_gfn >= slot->base_gfn + slot->npages)))
870                                 goto out;
871                 }
872         }
873
874         /* Free page dirty bitmap if unneeded */
875         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
876                 new.dirty_bitmap = NULL;
877
878         r = -ENOMEM;
879         if (change == KVM_MR_CREATE) {
880                 new.userspace_addr = mem->userspace_addr;
881
882                 if (kvm_arch_create_memslot(kvm, &new, npages))
883                         goto out_free;
884         }
885
886         /* Allocate page dirty bitmap if needed */
887         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
888                 if (kvm_create_dirty_bitmap(&new) < 0)
889                         goto out_free;
890         }
891
892         slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
893         if (!slots)
894                 goto out_free;
895         memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
896
897         if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
898                 slot = id_to_memslot(slots, id);
899                 slot->flags |= KVM_MEMSLOT_INVALID;
900
901                 old_memslots = install_new_memslots(kvm, as_id, slots);
902
903                 /* slot was deleted or moved, clear iommu mapping */
904                 kvm_iommu_unmap_pages(kvm, &old);
905                 /* From this point no new shadow pages pointing to a deleted,
906                  * or moved, memslot will be created.
907                  *
908                  * validation of sp->gfn happens in:
909                  *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
910                  *      - kvm_is_visible_gfn (mmu_check_roots)
911                  */
912                 kvm_arch_flush_shadow_memslot(kvm, slot);
913
914                 /*
915                  * We can re-use the old_memslots from above, the only difference
916                  * from the currently installed memslots is the invalid flag.  This
917                  * will get overwritten by update_memslots anyway.
918                  */
919                 slots = old_memslots;
920         }
921
922         r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
923         if (r)
924                 goto out_slots;
925
926         /* actual memory is freed via old in kvm_free_memslot below */
927         if (change == KVM_MR_DELETE) {
928                 new.dirty_bitmap = NULL;
929                 memset(&new.arch, 0, sizeof(new.arch));
930         }
931
932         update_memslots(slots, &new);
933         old_memslots = install_new_memslots(kvm, as_id, slots);
934
935         kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
936
937         kvm_free_memslot(kvm, &old, &new);
938         kvfree(old_memslots);
939
940         /*
941          * IOMMU mapping:  New slots need to be mapped.  Old slots need to be
942          * un-mapped and re-mapped if their base changes.  Since base change
943          * unmapping is handled above with slot deletion, mapping alone is
944          * needed here.  Anything else the iommu might care about for existing
945          * slots (size changes, userspace addr changes and read-only flag
946          * changes) is disallowed above, so any other attribute changes getting
947          * here can be skipped.
948          */
949         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
950                 r = kvm_iommu_map_pages(kvm, &new);
951                 return r;
952         }
953
954         return 0;
955
956 out_slots:
957         kvfree(slots);
958 out_free:
959         kvm_free_memslot(kvm, &new, &old);
960 out:
961         return r;
962 }
963 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
964
965 int kvm_set_memory_region(struct kvm *kvm,
966                           const struct kvm_userspace_memory_region *mem)
967 {
968         int r;
969
970         mutex_lock(&kvm->slots_lock);
971         r = __kvm_set_memory_region(kvm, mem);
972         mutex_unlock(&kvm->slots_lock);
973         return r;
974 }
975 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
976
977 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
978                                           struct kvm_userspace_memory_region *mem)
979 {
980         if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
981                 return -EINVAL;
982
983         return kvm_set_memory_region(kvm, mem);
984 }
985
986 int kvm_get_dirty_log(struct kvm *kvm,
987                         struct kvm_dirty_log *log, int *is_dirty)
988 {
989         struct kvm_memslots *slots;
990         struct kvm_memory_slot *memslot;
991         int r, i, as_id, id;
992         unsigned long n;
993         unsigned long any = 0;
994
995         r = -EINVAL;
996         as_id = log->slot >> 16;
997         id = (u16)log->slot;
998         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
999                 goto out;
1000
1001         slots = __kvm_memslots(kvm, as_id);
1002         memslot = id_to_memslot(slots, id);
1003         r = -ENOENT;
1004         if (!memslot->dirty_bitmap)
1005                 goto out;
1006
1007         n = kvm_dirty_bitmap_bytes(memslot);
1008
1009         for (i = 0; !any && i < n/sizeof(long); ++i)
1010                 any = memslot->dirty_bitmap[i];
1011
1012         r = -EFAULT;
1013         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1014                 goto out;
1015
1016         if (any)
1017                 *is_dirty = 1;
1018
1019         r = 0;
1020 out:
1021         return r;
1022 }
1023 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1024
1025 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1026 /**
1027  * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1028  *      are dirty write protect them for next write.
1029  * @kvm:        pointer to kvm instance
1030  * @log:        slot id and address to which we copy the log
1031  * @is_dirty:   flag set if any page is dirty
1032  *
1033  * We need to keep it in mind that VCPU threads can write to the bitmap
1034  * concurrently. So, to avoid losing track of dirty pages we keep the
1035  * following order:
1036  *
1037  *    1. Take a snapshot of the bit and clear it if needed.
1038  *    2. Write protect the corresponding page.
1039  *    3. Copy the snapshot to the userspace.
1040  *    4. Upon return caller flushes TLB's if needed.
1041  *
1042  * Between 2 and 4, the guest may write to the page using the remaining TLB
1043  * entry.  This is not a problem because the page is reported dirty using
1044  * the snapshot taken before and step 4 ensures that writes done after
1045  * exiting to userspace will be logged for the next call.
1046  *
1047  */
1048 int kvm_get_dirty_log_protect(struct kvm *kvm,
1049                         struct kvm_dirty_log *log, bool *is_dirty)
1050 {
1051         struct kvm_memslots *slots;
1052         struct kvm_memory_slot *memslot;
1053         int r, i, as_id, id;
1054         unsigned long n;
1055         unsigned long *dirty_bitmap;
1056         unsigned long *dirty_bitmap_buffer;
1057
1058         r = -EINVAL;
1059         as_id = log->slot >> 16;
1060         id = (u16)log->slot;
1061         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1062                 goto out;
1063
1064         slots = __kvm_memslots(kvm, as_id);
1065         memslot = id_to_memslot(slots, id);
1066
1067         dirty_bitmap = memslot->dirty_bitmap;
1068         r = -ENOENT;
1069         if (!dirty_bitmap)
1070                 goto out;
1071
1072         n = kvm_dirty_bitmap_bytes(memslot);
1073
1074         dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1075         memset(dirty_bitmap_buffer, 0, n);
1076
1077         spin_lock(&kvm->mmu_lock);
1078         *is_dirty = false;
1079         for (i = 0; i < n / sizeof(long); i++) {
1080                 unsigned long mask;
1081                 gfn_t offset;
1082
1083                 if (!dirty_bitmap[i])
1084                         continue;
1085
1086                 *is_dirty = true;
1087
1088                 mask = xchg(&dirty_bitmap[i], 0);
1089                 dirty_bitmap_buffer[i] = mask;
1090
1091                 if (mask) {
1092                         offset = i * BITS_PER_LONG;
1093                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1094                                                                 offset, mask);
1095                 }
1096         }
1097
1098         spin_unlock(&kvm->mmu_lock);
1099
1100         r = -EFAULT;
1101         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1102                 goto out;
1103
1104         r = 0;
1105 out:
1106         return r;
1107 }
1108 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1109 #endif
1110
1111 bool kvm_largepages_enabled(void)
1112 {
1113         return largepages_enabled;
1114 }
1115
1116 void kvm_disable_largepages(void)
1117 {
1118         largepages_enabled = false;
1119 }
1120 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1121
1122 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1123 {
1124         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1125 }
1126 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1127
1128 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1129 {
1130         return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1131 }
1132
1133 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1134 {
1135         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1136
1137         if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1138               memslot->flags & KVM_MEMSLOT_INVALID)
1139                 return 0;
1140
1141         return 1;
1142 }
1143 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1144
1145 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1146 {
1147         struct vm_area_struct *vma;
1148         unsigned long addr, size;
1149
1150         size = PAGE_SIZE;
1151
1152         addr = gfn_to_hva(kvm, gfn);
1153         if (kvm_is_error_hva(addr))
1154                 return PAGE_SIZE;
1155
1156         down_read(&current->mm->mmap_sem);
1157         vma = find_vma(current->mm, addr);
1158         if (!vma)
1159                 goto out;
1160
1161         size = vma_kernel_pagesize(vma);
1162
1163 out:
1164         up_read(&current->mm->mmap_sem);
1165
1166         return size;
1167 }
1168
1169 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1170 {
1171         return slot->flags & KVM_MEM_READONLY;
1172 }
1173
1174 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1175                                        gfn_t *nr_pages, bool write)
1176 {
1177         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1178                 return KVM_HVA_ERR_BAD;
1179
1180         if (memslot_is_readonly(slot) && write)
1181                 return KVM_HVA_ERR_RO_BAD;
1182
1183         if (nr_pages)
1184                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1185
1186         return __gfn_to_hva_memslot(slot, gfn);
1187 }
1188
1189 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1190                                      gfn_t *nr_pages)
1191 {
1192         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1193 }
1194
1195 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1196                                         gfn_t gfn)
1197 {
1198         return gfn_to_hva_many(slot, gfn, NULL);
1199 }
1200 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1201
1202 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1203 {
1204         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1205 }
1206 EXPORT_SYMBOL_GPL(gfn_to_hva);
1207
1208 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1209 {
1210         return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1211 }
1212 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1213
1214 /*
1215  * If writable is set to false, the hva returned by this function is only
1216  * allowed to be read.
1217  */
1218 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1219                                       gfn_t gfn, bool *writable)
1220 {
1221         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1222
1223         if (!kvm_is_error_hva(hva) && writable)
1224                 *writable = !memslot_is_readonly(slot);
1225
1226         return hva;
1227 }
1228
1229 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1230 {
1231         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1232
1233         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1234 }
1235
1236 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1237 {
1238         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1239
1240         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1241 }
1242
1243 static int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1244         unsigned long start, int write, struct page **page)
1245 {
1246         int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1247
1248         if (write)
1249                 flags |= FOLL_WRITE;
1250
1251         return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1252 }
1253
1254 static inline int check_user_page_hwpoison(unsigned long addr)
1255 {
1256         int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1257
1258         rc = __get_user_pages(current, current->mm, addr, 1,
1259                               flags, NULL, NULL, NULL);
1260         return rc == -EHWPOISON;
1261 }
1262
1263 /*
1264  * The atomic path to get the writable pfn which will be stored in @pfn,
1265  * true indicates success, otherwise false is returned.
1266  */
1267 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1268                             bool write_fault, bool *writable, pfn_t *pfn)
1269 {
1270         struct page *page[1];
1271         int npages;
1272
1273         if (!(async || atomic))
1274                 return false;
1275
1276         /*
1277          * Fast pin a writable pfn only if it is a write fault request
1278          * or the caller allows to map a writable pfn for a read fault
1279          * request.
1280          */
1281         if (!(write_fault || writable))
1282                 return false;
1283
1284         npages = __get_user_pages_fast(addr, 1, 1, page);
1285         if (npages == 1) {
1286                 *pfn = page_to_pfn(page[0]);
1287
1288                 if (writable)
1289                         *writable = true;
1290                 return true;
1291         }
1292
1293         return false;
1294 }
1295
1296 /*
1297  * The slow path to get the pfn of the specified host virtual address,
1298  * 1 indicates success, -errno is returned if error is detected.
1299  */
1300 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1301                            bool *writable, pfn_t *pfn)
1302 {
1303         struct page *page[1];
1304         int npages = 0;
1305
1306         might_sleep();
1307
1308         if (writable)
1309                 *writable = write_fault;
1310
1311         if (async) {
1312                 down_read(&current->mm->mmap_sem);
1313                 npages = get_user_page_nowait(current, current->mm,
1314                                               addr, write_fault, page);
1315                 up_read(&current->mm->mmap_sem);
1316         } else
1317                 npages = __get_user_pages_unlocked(current, current->mm, addr, 1,
1318                                                    write_fault, 0, page,
1319                                                    FOLL_TOUCH|FOLL_HWPOISON);
1320         if (npages != 1)
1321                 return npages;
1322
1323         /* map read fault as writable if possible */
1324         if (unlikely(!write_fault) && writable) {
1325                 struct page *wpage[1];
1326
1327                 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1328                 if (npages == 1) {
1329                         *writable = true;
1330                         put_page(page[0]);
1331                         page[0] = wpage[0];
1332                 }
1333
1334                 npages = 1;
1335         }
1336         *pfn = page_to_pfn(page[0]);
1337         return npages;
1338 }
1339
1340 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1341 {
1342         if (unlikely(!(vma->vm_flags & VM_READ)))
1343                 return false;
1344
1345         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1346                 return false;
1347
1348         return true;
1349 }
1350
1351 /*
1352  * Pin guest page in memory and return its pfn.
1353  * @addr: host virtual address which maps memory to the guest
1354  * @atomic: whether this function can sleep
1355  * @async: whether this function need to wait IO complete if the
1356  *         host page is not in the memory
1357  * @write_fault: whether we should get a writable host page
1358  * @writable: whether it allows to map a writable host page for !@write_fault
1359  *
1360  * The function will map a writable host page for these two cases:
1361  * 1): @write_fault = true
1362  * 2): @write_fault = false && @writable, @writable will tell the caller
1363  *     whether the mapping is writable.
1364  */
1365 static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1366                         bool write_fault, bool *writable)
1367 {
1368         struct vm_area_struct *vma;
1369         pfn_t pfn = 0;
1370         int npages;
1371
1372         /* we can do it either atomically or asynchronously, not both */
1373         BUG_ON(atomic && async);
1374
1375         if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1376                 return pfn;
1377
1378         if (atomic)
1379                 return KVM_PFN_ERR_FAULT;
1380
1381         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1382         if (npages == 1)
1383                 return pfn;
1384
1385         down_read(&current->mm->mmap_sem);
1386         if (npages == -EHWPOISON ||
1387               (!async && check_user_page_hwpoison(addr))) {
1388                 pfn = KVM_PFN_ERR_HWPOISON;
1389                 goto exit;
1390         }
1391
1392         vma = find_vma_intersection(current->mm, addr, addr + 1);
1393
1394         if (vma == NULL)
1395                 pfn = KVM_PFN_ERR_FAULT;
1396         else if ((vma->vm_flags & VM_PFNMAP)) {
1397                 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1398                         vma->vm_pgoff;
1399                 BUG_ON(!kvm_is_reserved_pfn(pfn));
1400         } else {
1401                 if (async && vma_is_valid(vma, write_fault))
1402                         *async = true;
1403                 pfn = KVM_PFN_ERR_FAULT;
1404         }
1405 exit:
1406         up_read(&current->mm->mmap_sem);
1407         return pfn;
1408 }
1409
1410 pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic,
1411                            bool *async, bool write_fault, bool *writable)
1412 {
1413         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1414
1415         if (addr == KVM_HVA_ERR_RO_BAD)
1416                 return KVM_PFN_ERR_RO_FAULT;
1417
1418         if (kvm_is_error_hva(addr))
1419                 return KVM_PFN_NOSLOT;
1420
1421         /* Do not map writable pfn in the readonly memslot. */
1422         if (writable && memslot_is_readonly(slot)) {
1423                 *writable = false;
1424                 writable = NULL;
1425         }
1426
1427         return hva_to_pfn(addr, atomic, async, write_fault,
1428                           writable);
1429 }
1430 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1431
1432 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1433                       bool *writable)
1434 {
1435         return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1436                                     write_fault, writable);
1437 }
1438 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1439
1440 pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1441 {
1442         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1443 }
1444 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1445
1446 pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1447 {
1448         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1449 }
1450 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1451
1452 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1453 {
1454         return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1455 }
1456 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1457
1458 pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1459 {
1460         return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1461 }
1462 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1463
1464 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1465 {
1466         return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1467 }
1468 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1469
1470 pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1471 {
1472         return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1473 }
1474 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1475
1476 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1477                             struct page **pages, int nr_pages)
1478 {
1479         unsigned long addr;
1480         gfn_t entry;
1481
1482         addr = gfn_to_hva_many(slot, gfn, &entry);
1483         if (kvm_is_error_hva(addr))
1484                 return -1;
1485
1486         if (entry < nr_pages)
1487                 return 0;
1488
1489         return __get_user_pages_fast(addr, nr_pages, 1, pages);
1490 }
1491 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1492
1493 static struct page *kvm_pfn_to_page(pfn_t pfn)
1494 {
1495         if (is_error_noslot_pfn(pfn))
1496                 return KVM_ERR_PTR_BAD_PAGE;
1497
1498         if (kvm_is_reserved_pfn(pfn)) {
1499                 WARN_ON(1);
1500                 return KVM_ERR_PTR_BAD_PAGE;
1501         }
1502
1503         return pfn_to_page(pfn);
1504 }
1505
1506 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1507 {
1508         pfn_t pfn;
1509
1510         pfn = gfn_to_pfn(kvm, gfn);
1511
1512         return kvm_pfn_to_page(pfn);
1513 }
1514 EXPORT_SYMBOL_GPL(gfn_to_page);
1515
1516 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1517 {
1518         pfn_t pfn;
1519
1520         pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1521
1522         return kvm_pfn_to_page(pfn);
1523 }
1524 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1525
1526 void kvm_release_page_clean(struct page *page)
1527 {
1528         WARN_ON(is_error_page(page));
1529
1530         kvm_release_pfn_clean(page_to_pfn(page));
1531 }
1532 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1533
1534 void kvm_release_pfn_clean(pfn_t pfn)
1535 {
1536         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1537                 put_page(pfn_to_page(pfn));
1538 }
1539 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1540
1541 void kvm_release_page_dirty(struct page *page)
1542 {
1543         WARN_ON(is_error_page(page));
1544
1545         kvm_release_pfn_dirty(page_to_pfn(page));
1546 }
1547 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1548
1549 static void kvm_release_pfn_dirty(pfn_t pfn)
1550 {
1551         kvm_set_pfn_dirty(pfn);
1552         kvm_release_pfn_clean(pfn);
1553 }
1554
1555 void kvm_set_pfn_dirty(pfn_t pfn)
1556 {
1557         if (!kvm_is_reserved_pfn(pfn)) {
1558                 struct page *page = pfn_to_page(pfn);
1559
1560                 if (!PageReserved(page))
1561                         SetPageDirty(page);
1562         }
1563 }
1564 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1565
1566 void kvm_set_pfn_accessed(pfn_t pfn)
1567 {
1568         if (!kvm_is_reserved_pfn(pfn))
1569                 mark_page_accessed(pfn_to_page(pfn));
1570 }
1571 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1572
1573 void kvm_get_pfn(pfn_t pfn)
1574 {
1575         if (!kvm_is_reserved_pfn(pfn))
1576                 get_page(pfn_to_page(pfn));
1577 }
1578 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1579
1580 static int next_segment(unsigned long len, int offset)
1581 {
1582         if (len > PAGE_SIZE - offset)
1583                 return PAGE_SIZE - offset;
1584         else
1585                 return len;
1586 }
1587
1588 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1589                                  void *data, int offset, int len)
1590 {
1591         int r;
1592         unsigned long addr;
1593
1594         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1595         if (kvm_is_error_hva(addr))
1596                 return -EFAULT;
1597         r = __copy_from_user(data, (void __user *)addr + offset, len);
1598         if (r)
1599                 return -EFAULT;
1600         return 0;
1601 }
1602
1603 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1604                         int len)
1605 {
1606         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1607
1608         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1609 }
1610 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1611
1612 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1613                              int offset, int len)
1614 {
1615         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1616
1617         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1618 }
1619 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1620
1621 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1622 {
1623         gfn_t gfn = gpa >> PAGE_SHIFT;
1624         int seg;
1625         int offset = offset_in_page(gpa);
1626         int ret;
1627
1628         while ((seg = next_segment(len, offset)) != 0) {
1629                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1630                 if (ret < 0)
1631                         return ret;
1632                 offset = 0;
1633                 len -= seg;
1634                 data += seg;
1635                 ++gfn;
1636         }
1637         return 0;
1638 }
1639 EXPORT_SYMBOL_GPL(kvm_read_guest);
1640
1641 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1642 {
1643         gfn_t gfn = gpa >> PAGE_SHIFT;
1644         int seg;
1645         int offset = offset_in_page(gpa);
1646         int ret;
1647
1648         while ((seg = next_segment(len, offset)) != 0) {
1649                 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1650                 if (ret < 0)
1651                         return ret;
1652                 offset = 0;
1653                 len -= seg;
1654                 data += seg;
1655                 ++gfn;
1656         }
1657         return 0;
1658 }
1659 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1660
1661 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1662                                    void *data, int offset, unsigned long len)
1663 {
1664         int r;
1665         unsigned long addr;
1666
1667         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1668         if (kvm_is_error_hva(addr))
1669                 return -EFAULT;
1670         pagefault_disable();
1671         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1672         pagefault_enable();
1673         if (r)
1674                 return -EFAULT;
1675         return 0;
1676 }
1677
1678 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1679                           unsigned long len)
1680 {
1681         gfn_t gfn = gpa >> PAGE_SHIFT;
1682         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1683         int offset = offset_in_page(gpa);
1684
1685         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1686 }
1687 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1688
1689 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1690                                void *data, unsigned long len)
1691 {
1692         gfn_t gfn = gpa >> PAGE_SHIFT;
1693         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1694         int offset = offset_in_page(gpa);
1695
1696         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1697 }
1698 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1699
1700 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1701                                   const void *data, int offset, int len)
1702 {
1703         int r;
1704         unsigned long addr;
1705
1706         addr = gfn_to_hva_memslot(memslot, gfn);
1707         if (kvm_is_error_hva(addr))
1708                 return -EFAULT;
1709         r = __copy_to_user((void __user *)addr + offset, data, len);
1710         if (r)
1711                 return -EFAULT;
1712         mark_page_dirty_in_slot(memslot, gfn);
1713         return 0;
1714 }
1715
1716 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1717                          const void *data, int offset, int len)
1718 {
1719         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1720
1721         return __kvm_write_guest_page(slot, gfn, data, offset, len);
1722 }
1723 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1724
1725 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1726                               const void *data, int offset, int len)
1727 {
1728         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1729
1730         return __kvm_write_guest_page(slot, gfn, data, offset, len);
1731 }
1732 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1733
1734 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1735                     unsigned long len)
1736 {
1737         gfn_t gfn = gpa >> PAGE_SHIFT;
1738         int seg;
1739         int offset = offset_in_page(gpa);
1740         int ret;
1741
1742         while ((seg = next_segment(len, offset)) != 0) {
1743                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1744                 if (ret < 0)
1745                         return ret;
1746                 offset = 0;
1747                 len -= seg;
1748                 data += seg;
1749                 ++gfn;
1750         }
1751         return 0;
1752 }
1753 EXPORT_SYMBOL_GPL(kvm_write_guest);
1754
1755 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1756                          unsigned long len)
1757 {
1758         gfn_t gfn = gpa >> PAGE_SHIFT;
1759         int seg;
1760         int offset = offset_in_page(gpa);
1761         int ret;
1762
1763         while ((seg = next_segment(len, offset)) != 0) {
1764                 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1765                 if (ret < 0)
1766                         return ret;
1767                 offset = 0;
1768                 len -= seg;
1769                 data += seg;
1770                 ++gfn;
1771         }
1772         return 0;
1773 }
1774 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1775
1776 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1777                               gpa_t gpa, unsigned long len)
1778 {
1779         struct kvm_memslots *slots = kvm_memslots(kvm);
1780         int offset = offset_in_page(gpa);
1781         gfn_t start_gfn = gpa >> PAGE_SHIFT;
1782         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1783         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1784         gfn_t nr_pages_avail;
1785
1786         ghc->gpa = gpa;
1787         ghc->generation = slots->generation;
1788         ghc->len = len;
1789         ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1790         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1791         if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1792                 ghc->hva += offset;
1793         } else {
1794                 /*
1795                  * If the requested region crosses two memslots, we still
1796                  * verify that the entire region is valid here.
1797                  */
1798                 while (start_gfn <= end_gfn) {
1799                         ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1800                         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1801                                                    &nr_pages_avail);
1802                         if (kvm_is_error_hva(ghc->hva))
1803                                 return -EFAULT;
1804                         start_gfn += nr_pages_avail;
1805                 }
1806                 /* Use the slow path for cross page reads and writes. */
1807                 ghc->memslot = NULL;
1808         }
1809         return 0;
1810 }
1811 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1812
1813 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1814                            void *data, unsigned long len)
1815 {
1816         struct kvm_memslots *slots = kvm_memslots(kvm);
1817         int r;
1818
1819         BUG_ON(len > ghc->len);
1820
1821         if (slots->generation != ghc->generation)
1822                 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1823
1824         if (unlikely(!ghc->memslot))
1825                 return kvm_write_guest(kvm, ghc->gpa, data, len);
1826
1827         if (kvm_is_error_hva(ghc->hva))
1828                 return -EFAULT;
1829
1830         r = __copy_to_user((void __user *)ghc->hva, data, len);
1831         if (r)
1832                 return -EFAULT;
1833         mark_page_dirty_in_slot(ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1834
1835         return 0;
1836 }
1837 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1838
1839 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1840                            void *data, unsigned long len)
1841 {
1842         struct kvm_memslots *slots = kvm_memslots(kvm);
1843         int r;
1844
1845         BUG_ON(len > ghc->len);
1846
1847         if (slots->generation != ghc->generation)
1848                 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1849
1850         if (unlikely(!ghc->memslot))
1851                 return kvm_read_guest(kvm, ghc->gpa, data, len);
1852
1853         if (kvm_is_error_hva(ghc->hva))
1854                 return -EFAULT;
1855
1856         r = __copy_from_user(data, (void __user *)ghc->hva, len);
1857         if (r)
1858                 return -EFAULT;
1859
1860         return 0;
1861 }
1862 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1863
1864 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1865 {
1866         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
1867
1868         return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
1869 }
1870 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1871
1872 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1873 {
1874         gfn_t gfn = gpa >> PAGE_SHIFT;
1875         int seg;
1876         int offset = offset_in_page(gpa);
1877         int ret;
1878
1879         while ((seg = next_segment(len, offset)) != 0) {
1880                 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1881                 if (ret < 0)
1882                         return ret;
1883                 offset = 0;
1884                 len -= seg;
1885                 ++gfn;
1886         }
1887         return 0;
1888 }
1889 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1890
1891 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
1892                                     gfn_t gfn)
1893 {
1894         if (memslot && memslot->dirty_bitmap) {
1895                 unsigned long rel_gfn = gfn - memslot->base_gfn;
1896
1897                 set_bit_le(rel_gfn, memslot->dirty_bitmap);
1898         }
1899 }
1900
1901 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1902 {
1903         struct kvm_memory_slot *memslot;
1904
1905         memslot = gfn_to_memslot(kvm, gfn);
1906         mark_page_dirty_in_slot(memslot, gfn);
1907 }
1908 EXPORT_SYMBOL_GPL(mark_page_dirty);
1909
1910 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
1911 {
1912         struct kvm_memory_slot *memslot;
1913
1914         memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1915         mark_page_dirty_in_slot(memslot, gfn);
1916 }
1917 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
1918
1919 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
1920 {
1921         int val = vcpu->halt_poll_ns;
1922
1923         /* 10us base */
1924         if (val == 0 && halt_poll_ns_grow)
1925                 val = 10000;
1926         else
1927                 val *= halt_poll_ns_grow;
1928
1929         vcpu->halt_poll_ns = val;
1930 }
1931
1932 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
1933 {
1934         int val = vcpu->halt_poll_ns;
1935
1936         if (halt_poll_ns_shrink == 0)
1937                 val = 0;
1938         else
1939                 val /= halt_poll_ns_shrink;
1940
1941         vcpu->halt_poll_ns = val;
1942 }
1943
1944 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
1945 {
1946         if (kvm_arch_vcpu_runnable(vcpu)) {
1947                 kvm_make_request(KVM_REQ_UNHALT, vcpu);
1948                 return -EINTR;
1949         }
1950         if (kvm_cpu_has_pending_timer(vcpu))
1951                 return -EINTR;
1952         if (signal_pending(current))
1953                 return -EINTR;
1954
1955         return 0;
1956 }
1957
1958 /*
1959  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1960  */
1961 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1962 {
1963         ktime_t start, cur;
1964         DEFINE_WAIT(wait);
1965         bool waited = false;
1966         u64 block_ns;
1967
1968         start = cur = ktime_get();
1969         if (vcpu->halt_poll_ns) {
1970                 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
1971
1972                 do {
1973                         /*
1974                          * This sets KVM_REQ_UNHALT if an interrupt
1975                          * arrives.
1976                          */
1977                         if (kvm_vcpu_check_block(vcpu) < 0) {
1978                                 ++vcpu->stat.halt_successful_poll;
1979                                 goto out;
1980                         }
1981                         cur = ktime_get();
1982                 } while (single_task_running() && ktime_before(cur, stop));
1983         }
1984
1985         for (;;) {
1986                 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1987
1988                 if (kvm_vcpu_check_block(vcpu) < 0)
1989                         break;
1990
1991                 waited = true;
1992                 schedule();
1993         }
1994
1995         finish_wait(&vcpu->wq, &wait);
1996         cur = ktime_get();
1997
1998 out:
1999         block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2000
2001         if (halt_poll_ns) {
2002                 if (block_ns <= vcpu->halt_poll_ns)
2003                         ;
2004                 /* we had a long block, shrink polling */
2005                 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2006                         shrink_halt_poll_ns(vcpu);
2007                 /* we had a short halt and our poll time is too small */
2008                 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2009                         block_ns < halt_poll_ns)
2010                         grow_halt_poll_ns(vcpu);
2011         }
2012
2013         trace_kvm_vcpu_wakeup(block_ns, waited);
2014 }
2015 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2016
2017 #ifndef CONFIG_S390
2018 /*
2019  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2020  */
2021 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2022 {
2023         int me;
2024         int cpu = vcpu->cpu;
2025         wait_queue_head_t *wqp;
2026
2027         wqp = kvm_arch_vcpu_wq(vcpu);
2028         if (waitqueue_active(wqp)) {
2029                 wake_up_interruptible(wqp);
2030                 ++vcpu->stat.halt_wakeup;
2031         }
2032
2033         me = get_cpu();
2034         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2035                 if (kvm_arch_vcpu_should_kick(vcpu))
2036                         smp_send_reschedule(cpu);
2037         put_cpu();
2038 }
2039 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2040 #endif /* !CONFIG_S390 */
2041
2042 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2043 {
2044         struct pid *pid;
2045         struct task_struct *task = NULL;
2046         int ret = 0;
2047
2048         rcu_read_lock();
2049         pid = rcu_dereference(target->pid);
2050         if (pid)
2051                 task = get_pid_task(pid, PIDTYPE_PID);
2052         rcu_read_unlock();
2053         if (!task)
2054                 return ret;
2055         ret = yield_to(task, 1);
2056         put_task_struct(task);
2057
2058         return ret;
2059 }
2060 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2061
2062 /*
2063  * Helper that checks whether a VCPU is eligible for directed yield.
2064  * Most eligible candidate to yield is decided by following heuristics:
2065  *
2066  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2067  *  (preempted lock holder), indicated by @in_spin_loop.
2068  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2069  *
2070  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2071  *  chance last time (mostly it has become eligible now since we have probably
2072  *  yielded to lockholder in last iteration. This is done by toggling
2073  *  @dy_eligible each time a VCPU checked for eligibility.)
2074  *
2075  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2076  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2077  *  burning. Giving priority for a potential lock-holder increases lock
2078  *  progress.
2079  *
2080  *  Since algorithm is based on heuristics, accessing another VCPU data without
2081  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2082  *  and continue with next VCPU and so on.
2083  */
2084 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2085 {
2086 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2087         bool eligible;
2088
2089         eligible = !vcpu->spin_loop.in_spin_loop ||
2090                     vcpu->spin_loop.dy_eligible;
2091
2092         if (vcpu->spin_loop.in_spin_loop)
2093                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2094
2095         return eligible;
2096 #else
2097         return true;
2098 #endif
2099 }
2100
2101 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
2102 {
2103         struct kvm *kvm = me->kvm;
2104         struct kvm_vcpu *vcpu;
2105         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2106         int yielded = 0;
2107         int try = 3;
2108         int pass;
2109         int i;
2110
2111         kvm_vcpu_set_in_spin_loop(me, true);
2112         /*
2113          * We boost the priority of a VCPU that is runnable but not
2114          * currently running, because it got preempted by something
2115          * else and called schedule in __vcpu_run.  Hopefully that
2116          * VCPU is holding the lock that we need and will release it.
2117          * We approximate round-robin by starting at the last boosted VCPU.
2118          */
2119         for (pass = 0; pass < 2 && !yielded && try; pass++) {
2120                 kvm_for_each_vcpu(i, vcpu, kvm) {
2121                         if (!pass && i <= last_boosted_vcpu) {
2122                                 i = last_boosted_vcpu;
2123                                 continue;
2124                         } else if (pass && i > last_boosted_vcpu)
2125                                 break;
2126                         if (!ACCESS_ONCE(vcpu->preempted))
2127                                 continue;
2128                         if (vcpu == me)
2129                                 continue;
2130                         if (waitqueue_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2131                                 continue;
2132                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2133                                 continue;
2134
2135                         yielded = kvm_vcpu_yield_to(vcpu);
2136                         if (yielded > 0) {
2137                                 kvm->last_boosted_vcpu = i;
2138                                 break;
2139                         } else if (yielded < 0) {
2140                                 try--;
2141                                 if (!try)
2142                                         break;
2143                         }
2144                 }
2145         }
2146         kvm_vcpu_set_in_spin_loop(me, false);
2147
2148         /* Ensure vcpu is not eligible during next spinloop */
2149         kvm_vcpu_set_dy_eligible(me, false);
2150 }
2151 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2152
2153 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2154 {
2155         struct kvm_vcpu *vcpu = vma->vm_file->private_data;
2156         struct page *page;
2157
2158         if (vmf->pgoff == 0)
2159                 page = virt_to_page(vcpu->run);
2160 #ifdef CONFIG_X86
2161         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2162                 page = virt_to_page(vcpu->arch.pio_data);
2163 #endif
2164 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2165         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2166                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2167 #endif
2168         else
2169                 return kvm_arch_vcpu_fault(vcpu, vmf);
2170         get_page(page);
2171         vmf->page = page;
2172         return 0;
2173 }
2174
2175 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2176         .fault = kvm_vcpu_fault,
2177 };
2178
2179 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2180 {
2181         vma->vm_ops = &kvm_vcpu_vm_ops;
2182         return 0;
2183 }
2184
2185 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2186 {
2187         struct kvm_vcpu *vcpu = filp->private_data;
2188
2189         kvm_put_kvm(vcpu->kvm);
2190         return 0;
2191 }
2192
2193 static struct file_operations kvm_vcpu_fops = {
2194         .release        = kvm_vcpu_release,
2195         .unlocked_ioctl = kvm_vcpu_ioctl,
2196 #ifdef CONFIG_KVM_COMPAT
2197         .compat_ioctl   = kvm_vcpu_compat_ioctl,
2198 #endif
2199         .mmap           = kvm_vcpu_mmap,
2200         .llseek         = noop_llseek,
2201 };
2202
2203 /*
2204  * Allocates an inode for the vcpu.
2205  */
2206 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2207 {
2208         return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2209 }
2210
2211 /*
2212  * Creates some virtual cpus.  Good luck creating more than one.
2213  */
2214 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2215 {
2216         int r;
2217         struct kvm_vcpu *vcpu, *v;
2218
2219         if (id >= KVM_MAX_VCPUS)
2220                 return -EINVAL;
2221
2222         vcpu = kvm_arch_vcpu_create(kvm, id);
2223         if (IS_ERR(vcpu))
2224                 return PTR_ERR(vcpu);
2225
2226         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2227
2228         r = kvm_arch_vcpu_setup(vcpu);
2229         if (r)
2230                 goto vcpu_destroy;
2231
2232         mutex_lock(&kvm->lock);
2233         if (!kvm_vcpu_compatible(vcpu)) {
2234                 r = -EINVAL;
2235                 goto unlock_vcpu_destroy;
2236         }
2237         if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
2238                 r = -EINVAL;
2239                 goto unlock_vcpu_destroy;
2240         }
2241
2242         kvm_for_each_vcpu(r, v, kvm)
2243                 if (v->vcpu_id == id) {
2244                         r = -EEXIST;
2245                         goto unlock_vcpu_destroy;
2246                 }
2247
2248         BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2249
2250         /* Now it's all set up, let userspace reach it */
2251         kvm_get_kvm(kvm);
2252         r = create_vcpu_fd(vcpu);
2253         if (r < 0) {
2254                 kvm_put_kvm(kvm);
2255                 goto unlock_vcpu_destroy;
2256         }
2257
2258         kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2259
2260         /*
2261          * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2262          * before kvm->online_vcpu's incremented value.
2263          */
2264         smp_wmb();
2265         atomic_inc(&kvm->online_vcpus);
2266
2267         mutex_unlock(&kvm->lock);
2268         kvm_arch_vcpu_postcreate(vcpu);
2269         return r;
2270
2271 unlock_vcpu_destroy:
2272         mutex_unlock(&kvm->lock);
2273 vcpu_destroy:
2274         kvm_arch_vcpu_destroy(vcpu);
2275         return r;
2276 }
2277
2278 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2279 {
2280         if (sigset) {
2281                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2282                 vcpu->sigset_active = 1;
2283                 vcpu->sigset = *sigset;
2284         } else
2285                 vcpu->sigset_active = 0;
2286         return 0;
2287 }
2288
2289 static long kvm_vcpu_ioctl(struct file *filp,
2290                            unsigned int ioctl, unsigned long arg)
2291 {
2292         struct kvm_vcpu *vcpu = filp->private_data;
2293         void __user *argp = (void __user *)arg;
2294         int r;
2295         struct kvm_fpu *fpu = NULL;
2296         struct kvm_sregs *kvm_sregs = NULL;
2297
2298         if (vcpu->kvm->mm != current->mm)
2299                 return -EIO;
2300
2301         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2302                 return -EINVAL;
2303
2304 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2305         /*
2306          * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2307          * so vcpu_load() would break it.
2308          */
2309         if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2310                 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2311 #endif
2312
2313
2314         r = vcpu_load(vcpu);
2315         if (r)
2316                 return r;
2317         switch (ioctl) {
2318         case KVM_RUN:
2319                 r = -EINVAL;
2320                 if (arg)
2321                         goto out;
2322                 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
2323                         /* The thread running this VCPU changed. */
2324                         struct pid *oldpid = vcpu->pid;
2325                         struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2326
2327                         rcu_assign_pointer(vcpu->pid, newpid);
2328                         if (oldpid)
2329                                 synchronize_rcu();
2330                         put_pid(oldpid);
2331                 }
2332                 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2333                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2334                 break;
2335         case KVM_GET_REGS: {
2336                 struct kvm_regs *kvm_regs;
2337
2338                 r = -ENOMEM;
2339                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2340                 if (!kvm_regs)
2341                         goto out;
2342                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2343                 if (r)
2344                         goto out_free1;
2345                 r = -EFAULT;
2346                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2347                         goto out_free1;
2348                 r = 0;
2349 out_free1:
2350                 kfree(kvm_regs);
2351                 break;
2352         }
2353         case KVM_SET_REGS: {
2354                 struct kvm_regs *kvm_regs;
2355
2356                 r = -ENOMEM;
2357                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2358                 if (IS_ERR(kvm_regs)) {
2359                         r = PTR_ERR(kvm_regs);
2360                         goto out;
2361                 }
2362                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2363                 kfree(kvm_regs);
2364                 break;
2365         }
2366         case KVM_GET_SREGS: {
2367                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2368                 r = -ENOMEM;
2369                 if (!kvm_sregs)
2370                         goto out;
2371                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2372                 if (r)
2373                         goto out;
2374                 r = -EFAULT;
2375                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2376                         goto out;
2377                 r = 0;
2378                 break;
2379         }
2380         case KVM_SET_SREGS: {
2381                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2382                 if (IS_ERR(kvm_sregs)) {
2383                         r = PTR_ERR(kvm_sregs);
2384                         kvm_sregs = NULL;
2385                         goto out;
2386                 }
2387                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2388                 break;
2389         }
2390         case KVM_GET_MP_STATE: {
2391                 struct kvm_mp_state mp_state;
2392
2393                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2394                 if (r)
2395                         goto out;
2396                 r = -EFAULT;
2397                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2398                         goto out;
2399                 r = 0;
2400                 break;
2401         }
2402         case KVM_SET_MP_STATE: {
2403                 struct kvm_mp_state mp_state;
2404
2405                 r = -EFAULT;
2406                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2407                         goto out;
2408                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2409                 break;
2410         }
2411         case KVM_TRANSLATE: {
2412                 struct kvm_translation tr;
2413
2414                 r = -EFAULT;
2415                 if (copy_from_user(&tr, argp, sizeof(tr)))
2416                         goto out;
2417                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2418                 if (r)
2419                         goto out;
2420                 r = -EFAULT;
2421                 if (copy_to_user(argp, &tr, sizeof(tr)))
2422                         goto out;
2423                 r = 0;
2424                 break;
2425         }
2426         case KVM_SET_GUEST_DEBUG: {
2427                 struct kvm_guest_debug dbg;
2428
2429                 r = -EFAULT;
2430                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2431                         goto out;
2432                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2433                 break;
2434         }
2435         case KVM_SET_SIGNAL_MASK: {
2436                 struct kvm_signal_mask __user *sigmask_arg = argp;
2437                 struct kvm_signal_mask kvm_sigmask;
2438                 sigset_t sigset, *p;
2439
2440                 p = NULL;
2441                 if (argp) {
2442                         r = -EFAULT;
2443                         if (copy_from_user(&kvm_sigmask, argp,
2444                                            sizeof(kvm_sigmask)))
2445                                 goto out;
2446                         r = -EINVAL;
2447                         if (kvm_sigmask.len != sizeof(sigset))
2448                                 goto out;
2449                         r = -EFAULT;
2450                         if (copy_from_user(&sigset, sigmask_arg->sigset,
2451                                            sizeof(sigset)))
2452                                 goto out;
2453                         p = &sigset;
2454                 }
2455                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2456                 break;
2457         }
2458         case KVM_GET_FPU: {
2459                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2460                 r = -ENOMEM;
2461                 if (!fpu)
2462                         goto out;
2463                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2464                 if (r)
2465                         goto out;
2466                 r = -EFAULT;
2467                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2468                         goto out;
2469                 r = 0;
2470                 break;
2471         }
2472         case KVM_SET_FPU: {
2473                 fpu = memdup_user(argp, sizeof(*fpu));
2474                 if (IS_ERR(fpu)) {
2475                         r = PTR_ERR(fpu);
2476                         fpu = NULL;
2477                         goto out;
2478                 }
2479                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2480                 break;
2481         }
2482         default:
2483                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2484         }
2485 out:
2486         vcpu_put(vcpu);
2487         kfree(fpu);
2488         kfree(kvm_sregs);
2489         return r;
2490 }
2491
2492 #ifdef CONFIG_KVM_COMPAT
2493 static long kvm_vcpu_compat_ioctl(struct file *filp,
2494                                   unsigned int ioctl, unsigned long arg)
2495 {
2496         struct kvm_vcpu *vcpu = filp->private_data;
2497         void __user *argp = compat_ptr(arg);
2498         int r;
2499
2500         if (vcpu->kvm->mm != current->mm)
2501                 return -EIO;
2502
2503         switch (ioctl) {
2504         case KVM_SET_SIGNAL_MASK: {
2505                 struct kvm_signal_mask __user *sigmask_arg = argp;
2506                 struct kvm_signal_mask kvm_sigmask;
2507                 compat_sigset_t csigset;
2508                 sigset_t sigset;
2509
2510                 if (argp) {
2511                         r = -EFAULT;
2512                         if (copy_from_user(&kvm_sigmask, argp,
2513                                            sizeof(kvm_sigmask)))
2514                                 goto out;
2515                         r = -EINVAL;
2516                         if (kvm_sigmask.len != sizeof(csigset))
2517                                 goto out;
2518                         r = -EFAULT;
2519                         if (copy_from_user(&csigset, sigmask_arg->sigset,
2520                                            sizeof(csigset)))
2521                                 goto out;
2522                         sigset_from_compat(&sigset, &csigset);
2523                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2524                 } else
2525                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2526                 break;
2527         }
2528         default:
2529                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2530         }
2531
2532 out:
2533         return r;
2534 }
2535 #endif
2536
2537 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2538                                  int (*accessor)(struct kvm_device *dev,
2539                                                  struct kvm_device_attr *attr),
2540                                  unsigned long arg)
2541 {
2542         struct kvm_device_attr attr;
2543
2544         if (!accessor)
2545                 return -EPERM;
2546
2547         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2548                 return -EFAULT;
2549
2550         return accessor(dev, &attr);
2551 }
2552
2553 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2554                              unsigned long arg)
2555 {
2556         struct kvm_device *dev = filp->private_data;
2557
2558         switch (ioctl) {
2559         case KVM_SET_DEVICE_ATTR:
2560                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2561         case KVM_GET_DEVICE_ATTR:
2562                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2563         case KVM_HAS_DEVICE_ATTR:
2564                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2565         default:
2566                 if (dev->ops->ioctl)
2567                         return dev->ops->ioctl(dev, ioctl, arg);
2568
2569                 return -ENOTTY;
2570         }
2571 }
2572
2573 static int kvm_device_release(struct inode *inode, struct file *filp)
2574 {
2575         struct kvm_device *dev = filp->private_data;
2576         struct kvm *kvm = dev->kvm;
2577
2578         kvm_put_kvm(kvm);
2579         return 0;
2580 }
2581
2582 static const struct file_operations kvm_device_fops = {
2583         .unlocked_ioctl = kvm_device_ioctl,
2584 #ifdef CONFIG_KVM_COMPAT
2585         .compat_ioctl = kvm_device_ioctl,
2586 #endif
2587         .release = kvm_device_release,
2588 };
2589
2590 struct kvm_device *kvm_device_from_filp(struct file *filp)
2591 {
2592         if (filp->f_op != &kvm_device_fops)
2593                 return NULL;
2594
2595         return filp->private_data;
2596 }
2597
2598 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2599 #ifdef CONFIG_KVM_MPIC
2600         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
2601         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
2602 #endif
2603
2604 #ifdef CONFIG_KVM_XICS
2605         [KVM_DEV_TYPE_XICS]             = &kvm_xics_ops,
2606 #endif
2607 };
2608
2609 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2610 {
2611         if (type >= ARRAY_SIZE(kvm_device_ops_table))
2612                 return -ENOSPC;
2613
2614         if (kvm_device_ops_table[type] != NULL)
2615                 return -EEXIST;
2616
2617         kvm_device_ops_table[type] = ops;
2618         return 0;
2619 }
2620
2621 void kvm_unregister_device_ops(u32 type)
2622 {
2623         if (kvm_device_ops_table[type] != NULL)
2624                 kvm_device_ops_table[type] = NULL;
2625 }
2626
2627 static int kvm_ioctl_create_device(struct kvm *kvm,
2628                                    struct kvm_create_device *cd)
2629 {
2630         struct kvm_device_ops *ops = NULL;
2631         struct kvm_device *dev;
2632         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2633         int ret;
2634
2635         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2636                 return -ENODEV;
2637
2638         ops = kvm_device_ops_table[cd->type];
2639         if (ops == NULL)
2640                 return -ENODEV;
2641
2642         if (test)
2643                 return 0;
2644
2645         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2646         if (!dev)
2647                 return -ENOMEM;
2648
2649         dev->ops = ops;
2650         dev->kvm = kvm;
2651
2652         ret = ops->create(dev, cd->type);
2653         if (ret < 0) {
2654                 kfree(dev);
2655                 return ret;
2656         }
2657
2658         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2659         if (ret < 0) {
2660                 ops->destroy(dev);
2661                 return ret;
2662         }
2663
2664         list_add(&dev->vm_node, &kvm->devices);
2665         kvm_get_kvm(kvm);
2666         cd->fd = ret;
2667         return 0;
2668 }
2669
2670 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2671 {
2672         switch (arg) {
2673         case KVM_CAP_USER_MEMORY:
2674         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2675         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2676         case KVM_CAP_INTERNAL_ERROR_DATA:
2677 #ifdef CONFIG_HAVE_KVM_MSI
2678         case KVM_CAP_SIGNAL_MSI:
2679 #endif
2680 #ifdef CONFIG_HAVE_KVM_IRQFD
2681         case KVM_CAP_IRQFD:
2682         case KVM_CAP_IRQFD_RESAMPLE:
2683 #endif
2684         case KVM_CAP_CHECK_EXTENSION_VM:
2685                 return 1;
2686 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2687         case KVM_CAP_IRQ_ROUTING:
2688                 return KVM_MAX_IRQ_ROUTES;
2689 #endif
2690 #if KVM_ADDRESS_SPACE_NUM > 1
2691         case KVM_CAP_MULTI_ADDRESS_SPACE:
2692                 return KVM_ADDRESS_SPACE_NUM;
2693 #endif
2694         default:
2695                 break;
2696         }
2697         return kvm_vm_ioctl_check_extension(kvm, arg);
2698 }
2699
2700 static long kvm_vm_ioctl(struct file *filp,
2701                            unsigned int ioctl, unsigned long arg)
2702 {
2703         struct kvm *kvm = filp->private_data;
2704         void __user *argp = (void __user *)arg;
2705         int r;
2706
2707         if (kvm->mm != current->mm)
2708                 return -EIO;
2709         switch (ioctl) {
2710         case KVM_CREATE_VCPU:
2711                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2712                 break;
2713         case KVM_SET_USER_MEMORY_REGION: {
2714                 struct kvm_userspace_memory_region kvm_userspace_mem;
2715
2716                 r = -EFAULT;
2717                 if (copy_from_user(&kvm_userspace_mem, argp,
2718                                                 sizeof(kvm_userspace_mem)))
2719                         goto out;
2720
2721                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2722                 break;
2723         }
2724         case KVM_GET_DIRTY_LOG: {
2725                 struct kvm_dirty_log log;
2726
2727                 r = -EFAULT;
2728                 if (copy_from_user(&log, argp, sizeof(log)))
2729                         goto out;
2730                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2731                 break;
2732         }
2733 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2734         case KVM_REGISTER_COALESCED_MMIO: {
2735                 struct kvm_coalesced_mmio_zone zone;
2736
2737                 r = -EFAULT;
2738                 if (copy_from_user(&zone, argp, sizeof(zone)))
2739                         goto out;
2740                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2741                 break;
2742         }
2743         case KVM_UNREGISTER_COALESCED_MMIO: {
2744                 struct kvm_coalesced_mmio_zone zone;
2745
2746                 r = -EFAULT;
2747                 if (copy_from_user(&zone, argp, sizeof(zone)))
2748                         goto out;
2749                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2750                 break;
2751         }
2752 #endif
2753         case KVM_IRQFD: {
2754                 struct kvm_irqfd data;
2755
2756                 r = -EFAULT;
2757                 if (copy_from_user(&data, argp, sizeof(data)))
2758                         goto out;
2759                 r = kvm_irqfd(kvm, &data);
2760                 break;
2761         }
2762         case KVM_IOEVENTFD: {
2763                 struct kvm_ioeventfd data;
2764
2765                 r = -EFAULT;
2766                 if (copy_from_user(&data, argp, sizeof(data)))
2767                         goto out;
2768                 r = kvm_ioeventfd(kvm, &data);
2769                 break;
2770         }
2771 #ifdef CONFIG_HAVE_KVM_MSI
2772         case KVM_SIGNAL_MSI: {
2773                 struct kvm_msi msi;
2774
2775                 r = -EFAULT;
2776                 if (copy_from_user(&msi, argp, sizeof(msi)))
2777                         goto out;
2778                 r = kvm_send_userspace_msi(kvm, &msi);
2779                 break;
2780         }
2781 #endif
2782 #ifdef __KVM_HAVE_IRQ_LINE
2783         case KVM_IRQ_LINE_STATUS:
2784         case KVM_IRQ_LINE: {
2785                 struct kvm_irq_level irq_event;
2786
2787                 r = -EFAULT;
2788                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
2789                         goto out;
2790
2791                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
2792                                         ioctl == KVM_IRQ_LINE_STATUS);
2793                 if (r)
2794                         goto out;
2795
2796                 r = -EFAULT;
2797                 if (ioctl == KVM_IRQ_LINE_STATUS) {
2798                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
2799                                 goto out;
2800                 }
2801
2802                 r = 0;
2803                 break;
2804         }
2805 #endif
2806 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2807         case KVM_SET_GSI_ROUTING: {
2808                 struct kvm_irq_routing routing;
2809                 struct kvm_irq_routing __user *urouting;
2810                 struct kvm_irq_routing_entry *entries;
2811
2812                 r = -EFAULT;
2813                 if (copy_from_user(&routing, argp, sizeof(routing)))
2814                         goto out;
2815                 r = -EINVAL;
2816                 if (routing.nr >= KVM_MAX_IRQ_ROUTES)
2817                         goto out;
2818                 if (routing.flags)
2819                         goto out;
2820                 r = -ENOMEM;
2821                 entries = vmalloc(routing.nr * sizeof(*entries));
2822                 if (!entries)
2823                         goto out;
2824                 r = -EFAULT;
2825                 urouting = argp;
2826                 if (copy_from_user(entries, urouting->entries,
2827                                    routing.nr * sizeof(*entries)))
2828                         goto out_free_irq_routing;
2829                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
2830                                         routing.flags);
2831 out_free_irq_routing:
2832                 vfree(entries);
2833                 break;
2834         }
2835 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
2836         case KVM_CREATE_DEVICE: {
2837                 struct kvm_create_device cd;
2838
2839                 r = -EFAULT;
2840                 if (copy_from_user(&cd, argp, sizeof(cd)))
2841                         goto out;
2842
2843                 r = kvm_ioctl_create_device(kvm, &cd);
2844                 if (r)
2845                         goto out;
2846
2847                 r = -EFAULT;
2848                 if (copy_to_user(argp, &cd, sizeof(cd)))
2849                         goto out;
2850
2851                 r = 0;
2852                 break;
2853         }
2854         case KVM_CHECK_EXTENSION:
2855                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
2856                 break;
2857         default:
2858                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2859         }
2860 out:
2861         return r;
2862 }
2863
2864 #ifdef CONFIG_KVM_COMPAT
2865 struct compat_kvm_dirty_log {
2866         __u32 slot;
2867         __u32 padding1;
2868         union {
2869                 compat_uptr_t dirty_bitmap; /* one bit per page */
2870                 __u64 padding2;
2871         };
2872 };
2873
2874 static long kvm_vm_compat_ioctl(struct file *filp,
2875                            unsigned int ioctl, unsigned long arg)
2876 {
2877         struct kvm *kvm = filp->private_data;
2878         int r;
2879
2880         if (kvm->mm != current->mm)
2881                 return -EIO;
2882         switch (ioctl) {
2883         case KVM_GET_DIRTY_LOG: {
2884                 struct compat_kvm_dirty_log compat_log;
2885                 struct kvm_dirty_log log;
2886
2887                 r = -EFAULT;
2888                 if (copy_from_user(&compat_log, (void __user *)arg,
2889                                    sizeof(compat_log)))
2890                         goto out;
2891                 log.slot         = compat_log.slot;
2892                 log.padding1     = compat_log.padding1;
2893                 log.padding2     = compat_log.padding2;
2894                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2895
2896                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2897                 break;
2898         }
2899         default:
2900                 r = kvm_vm_ioctl(filp, ioctl, arg);
2901         }
2902
2903 out:
2904         return r;
2905 }
2906 #endif
2907
2908 static struct file_operations kvm_vm_fops = {
2909         .release        = kvm_vm_release,
2910         .unlocked_ioctl = kvm_vm_ioctl,
2911 #ifdef CONFIG_KVM_COMPAT
2912         .compat_ioctl   = kvm_vm_compat_ioctl,
2913 #endif
2914         .llseek         = noop_llseek,
2915 };
2916
2917 static int kvm_dev_ioctl_create_vm(unsigned long type)
2918 {
2919         int r;
2920         struct kvm *kvm;
2921
2922         kvm = kvm_create_vm(type);
2923         if (IS_ERR(kvm))
2924                 return PTR_ERR(kvm);
2925 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2926         r = kvm_coalesced_mmio_init(kvm);
2927         if (r < 0) {
2928                 kvm_put_kvm(kvm);
2929                 return r;
2930         }
2931 #endif
2932         r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR | O_CLOEXEC);
2933         if (r < 0)
2934                 kvm_put_kvm(kvm);
2935
2936         return r;
2937 }
2938
2939 static long kvm_dev_ioctl(struct file *filp,
2940                           unsigned int ioctl, unsigned long arg)
2941 {
2942         long r = -EINVAL;
2943
2944         switch (ioctl) {
2945         case KVM_GET_API_VERSION:
2946                 if (arg)
2947                         goto out;
2948                 r = KVM_API_VERSION;
2949                 break;
2950         case KVM_CREATE_VM:
2951                 r = kvm_dev_ioctl_create_vm(arg);
2952                 break;
2953         case KVM_CHECK_EXTENSION:
2954                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
2955                 break;
2956         case KVM_GET_VCPU_MMAP_SIZE:
2957                 if (arg)
2958                         goto out;
2959                 r = PAGE_SIZE;     /* struct kvm_run */
2960 #ifdef CONFIG_X86
2961                 r += PAGE_SIZE;    /* pio data page */
2962 #endif
2963 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2964                 r += PAGE_SIZE;    /* coalesced mmio ring page */
2965 #endif
2966                 break;
2967         case KVM_TRACE_ENABLE:
2968         case KVM_TRACE_PAUSE:
2969         case KVM_TRACE_DISABLE:
2970                 r = -EOPNOTSUPP;
2971                 break;
2972         default:
2973                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
2974         }
2975 out:
2976         return r;
2977 }
2978
2979 static struct file_operations kvm_chardev_ops = {
2980         .unlocked_ioctl = kvm_dev_ioctl,
2981         .compat_ioctl   = kvm_dev_ioctl,
2982         .llseek         = noop_llseek,
2983 };
2984
2985 static struct miscdevice kvm_dev = {
2986         KVM_MINOR,
2987         "kvm",
2988         &kvm_chardev_ops,
2989 };
2990
2991 static void hardware_enable_nolock(void *junk)
2992 {
2993         int cpu = raw_smp_processor_id();
2994         int r;
2995
2996         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2997                 return;
2998
2999         cpumask_set_cpu(cpu, cpus_hardware_enabled);
3000
3001         r = kvm_arch_hardware_enable();
3002
3003         if (r) {
3004                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3005                 atomic_inc(&hardware_enable_failed);
3006                 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3007         }
3008 }
3009
3010 static void hardware_enable(void)
3011 {
3012         raw_spin_lock(&kvm_count_lock);
3013         if (kvm_usage_count)
3014                 hardware_enable_nolock(NULL);
3015         raw_spin_unlock(&kvm_count_lock);
3016 }
3017
3018 static void hardware_disable_nolock(void *junk)
3019 {
3020         int cpu = raw_smp_processor_id();
3021
3022         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3023                 return;
3024         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3025         kvm_arch_hardware_disable();
3026 }
3027
3028 static void hardware_disable(void)
3029 {
3030         raw_spin_lock(&kvm_count_lock);
3031         if (kvm_usage_count)
3032                 hardware_disable_nolock(NULL);
3033         raw_spin_unlock(&kvm_count_lock);
3034 }
3035
3036 static void hardware_disable_all_nolock(void)
3037 {
3038         BUG_ON(!kvm_usage_count);
3039
3040         kvm_usage_count--;
3041         if (!kvm_usage_count)
3042                 on_each_cpu(hardware_disable_nolock, NULL, 1);
3043 }
3044
3045 static void hardware_disable_all(void)
3046 {
3047         raw_spin_lock(&kvm_count_lock);
3048         hardware_disable_all_nolock();
3049         raw_spin_unlock(&kvm_count_lock);
3050 }
3051
3052 static int hardware_enable_all(void)
3053 {
3054         int r = 0;
3055
3056         raw_spin_lock(&kvm_count_lock);
3057
3058         kvm_usage_count++;
3059         if (kvm_usage_count == 1) {
3060                 atomic_set(&hardware_enable_failed, 0);
3061                 on_each_cpu(hardware_enable_nolock, NULL, 1);
3062
3063                 if (atomic_read(&hardware_enable_failed)) {
3064                         hardware_disable_all_nolock();
3065                         r = -EBUSY;
3066                 }
3067         }
3068
3069         raw_spin_unlock(&kvm_count_lock);
3070
3071         return r;
3072 }
3073
3074 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
3075                            void *v)
3076 {
3077         val &= ~CPU_TASKS_FROZEN;
3078         switch (val) {
3079         case CPU_DYING:
3080                 hardware_disable();
3081                 break;
3082         case CPU_STARTING:
3083                 hardware_enable();
3084                 break;
3085         }
3086         return NOTIFY_OK;
3087 }
3088
3089 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3090                       void *v)
3091 {
3092         /*
3093          * Some (well, at least mine) BIOSes hang on reboot if
3094          * in vmx root mode.
3095          *
3096          * And Intel TXT required VMX off for all cpu when system shutdown.
3097          */
3098         pr_info("kvm: exiting hardware virtualization\n");
3099         kvm_rebooting = true;
3100         on_each_cpu(hardware_disable_nolock, NULL, 1);
3101         return NOTIFY_OK;
3102 }
3103
3104 static struct notifier_block kvm_reboot_notifier = {
3105         .notifier_call = kvm_reboot,
3106         .priority = 0,
3107 };
3108
3109 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3110 {
3111         int i;
3112
3113         for (i = 0; i < bus->dev_count; i++) {
3114                 struct kvm_io_device *pos = bus->range[i].dev;
3115
3116                 kvm_iodevice_destructor(pos);
3117         }
3118         kfree(bus);
3119 }
3120
3121 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3122                                  const struct kvm_io_range *r2)
3123 {
3124         if (r1->addr < r2->addr)
3125                 return -1;
3126         if (r1->addr + r1->len > r2->addr + r2->len)
3127                 return 1;
3128         return 0;
3129 }
3130
3131 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3132 {
3133         return kvm_io_bus_cmp(p1, p2);
3134 }
3135
3136 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3137                           gpa_t addr, int len)
3138 {
3139         bus->range[bus->dev_count++] = (struct kvm_io_range) {
3140                 .addr = addr,
3141                 .len = len,
3142                 .dev = dev,
3143         };
3144
3145         sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3146                 kvm_io_bus_sort_cmp, NULL);
3147
3148         return 0;
3149 }
3150
3151 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3152                              gpa_t addr, int len)
3153 {
3154         struct kvm_io_range *range, key;
3155         int off;
3156
3157         key = (struct kvm_io_range) {
3158                 .addr = addr,
3159                 .len = len,
3160         };
3161
3162         range = bsearch(&key, bus->range, bus->dev_count,
3163                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3164         if (range == NULL)
3165                 return -ENOENT;
3166
3167         off = range - bus->range;
3168
3169         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3170                 off--;
3171
3172         return off;
3173 }
3174
3175 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3176                               struct kvm_io_range *range, const void *val)
3177 {
3178         int idx;
3179
3180         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3181         if (idx < 0)
3182                 return -EOPNOTSUPP;
3183
3184         while (idx < bus->dev_count &&
3185                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3186                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3187                                         range->len, val))
3188                         return idx;
3189                 idx++;
3190         }
3191
3192         return -EOPNOTSUPP;
3193 }
3194
3195 /* kvm_io_bus_write - called under kvm->slots_lock */
3196 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3197                      int len, const void *val)
3198 {
3199         struct kvm_io_bus *bus;
3200         struct kvm_io_range range;
3201         int r;
3202
3203         range = (struct kvm_io_range) {
3204                 .addr = addr,
3205                 .len = len,
3206         };
3207
3208         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3209         r = __kvm_io_bus_write(vcpu, bus, &range, val);
3210         return r < 0 ? r : 0;
3211 }
3212
3213 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3214 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3215                             gpa_t addr, int len, const void *val, long cookie)
3216 {
3217         struct kvm_io_bus *bus;
3218         struct kvm_io_range range;
3219
3220         range = (struct kvm_io_range) {
3221                 .addr = addr,
3222                 .len = len,
3223         };
3224
3225         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3226
3227         /* First try the device referenced by cookie. */
3228         if ((cookie >= 0) && (cookie < bus->dev_count) &&
3229             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3230                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3231                                         val))
3232                         return cookie;
3233
3234         /*
3235          * cookie contained garbage; fall back to search and return the
3236          * correct cookie value.
3237          */
3238         return __kvm_io_bus_write(vcpu, bus, &range, val);
3239 }
3240
3241 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3242                              struct kvm_io_range *range, void *val)
3243 {
3244         int idx;
3245
3246         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3247         if (idx < 0)
3248                 return -EOPNOTSUPP;
3249
3250         while (idx < bus->dev_count &&
3251                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3252                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3253                                        range->len, val))
3254                         return idx;
3255                 idx++;
3256         }
3257
3258         return -EOPNOTSUPP;
3259 }
3260 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3261
3262 /* kvm_io_bus_read - called under kvm->slots_lock */
3263 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3264                     int len, void *val)
3265 {
3266         struct kvm_io_bus *bus;
3267         struct kvm_io_range range;
3268         int r;
3269
3270         range = (struct kvm_io_range) {
3271                 .addr = addr,
3272                 .len = len,
3273         };
3274
3275         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3276         r = __kvm_io_bus_read(vcpu, bus, &range, val);
3277         return r < 0 ? r : 0;
3278 }
3279
3280
3281 /* Caller must hold slots_lock. */
3282 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3283                             int len, struct kvm_io_device *dev)
3284 {
3285         struct kvm_io_bus *new_bus, *bus;
3286
3287         bus = kvm->buses[bus_idx];
3288         /* exclude ioeventfd which is limited by maximum fd */
3289         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3290                 return -ENOSPC;
3291
3292         new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3293                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3294         if (!new_bus)
3295                 return -ENOMEM;
3296         memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3297                sizeof(struct kvm_io_range)));
3298         kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3299         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3300         synchronize_srcu_expedited(&kvm->srcu);
3301         kfree(bus);
3302
3303         return 0;
3304 }
3305
3306 /* Caller must hold slots_lock. */
3307 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3308                               struct kvm_io_device *dev)
3309 {
3310         int i, r;
3311         struct kvm_io_bus *new_bus, *bus;
3312
3313         bus = kvm->buses[bus_idx];
3314         r = -ENOENT;
3315         for (i = 0; i < bus->dev_count; i++)
3316                 if (bus->range[i].dev == dev) {
3317                         r = 0;
3318                         break;
3319                 }
3320
3321         if (r)
3322                 return r;
3323
3324         new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3325                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3326         if (!new_bus)
3327                 return -ENOMEM;
3328
3329         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3330         new_bus->dev_count--;
3331         memcpy(new_bus->range + i, bus->range + i + 1,
3332                (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3333
3334         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3335         synchronize_srcu_expedited(&kvm->srcu);
3336         kfree(bus);
3337         return r;
3338 }
3339
3340 static struct notifier_block kvm_cpu_notifier = {
3341         .notifier_call = kvm_cpu_hotplug,
3342 };
3343
3344 static int vm_stat_get(void *_offset, u64 *val)
3345 {
3346         unsigned offset = (long)_offset;
3347         struct kvm *kvm;
3348
3349         *val = 0;
3350         spin_lock(&kvm_lock);
3351         list_for_each_entry(kvm, &vm_list, vm_list)
3352                 *val += *(u32 *)((void *)kvm + offset);
3353         spin_unlock(&kvm_lock);
3354         return 0;
3355 }
3356
3357 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3358
3359 static int vcpu_stat_get(void *_offset, u64 *val)
3360 {
3361         unsigned offset = (long)_offset;
3362         struct kvm *kvm;
3363         struct kvm_vcpu *vcpu;
3364         int i;
3365
3366         *val = 0;
3367         spin_lock(&kvm_lock);
3368         list_for_each_entry(kvm, &vm_list, vm_list)
3369                 kvm_for_each_vcpu(i, vcpu, kvm)
3370                         *val += *(u32 *)((void *)vcpu + offset);
3371
3372         spin_unlock(&kvm_lock);
3373         return 0;
3374 }
3375
3376 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3377
3378 static const struct file_operations *stat_fops[] = {
3379         [KVM_STAT_VCPU] = &vcpu_stat_fops,
3380         [KVM_STAT_VM]   = &vm_stat_fops,
3381 };
3382
3383 static int kvm_init_debug(void)
3384 {
3385         int r = -EEXIST;
3386         struct kvm_stats_debugfs_item *p;
3387
3388         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3389         if (kvm_debugfs_dir == NULL)
3390                 goto out;
3391
3392         for (p = debugfs_entries; p->name; ++p) {
3393                 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3394                                                 (void *)(long)p->offset,
3395                                                 stat_fops[p->kind]);
3396                 if (p->dentry == NULL)
3397                         goto out_dir;
3398         }
3399
3400         return 0;
3401
3402 out_dir:
3403         debugfs_remove_recursive(kvm_debugfs_dir);
3404 out:
3405         return r;
3406 }
3407
3408 static void kvm_exit_debug(void)
3409 {
3410         struct kvm_stats_debugfs_item *p;
3411
3412         for (p = debugfs_entries; p->name; ++p)
3413                 debugfs_remove(p->dentry);
3414         debugfs_remove(kvm_debugfs_dir);
3415 }
3416
3417 static int kvm_suspend(void)
3418 {
3419         if (kvm_usage_count)
3420                 hardware_disable_nolock(NULL);
3421         return 0;
3422 }
3423
3424 static void kvm_resume(void)
3425 {
3426         if (kvm_usage_count) {
3427                 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3428                 hardware_enable_nolock(NULL);
3429         }
3430 }
3431
3432 static struct syscore_ops kvm_syscore_ops = {
3433         .suspend = kvm_suspend,
3434         .resume = kvm_resume,
3435 };
3436
3437 static inline
3438 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3439 {
3440         return container_of(pn, struct kvm_vcpu, preempt_notifier);
3441 }
3442
3443 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3444 {
3445         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3446
3447         if (vcpu->preempted)
3448                 vcpu->preempted = false;
3449
3450         kvm_arch_sched_in(vcpu, cpu);
3451
3452         kvm_arch_vcpu_load(vcpu, cpu);
3453 }
3454
3455 static void kvm_sched_out(struct preempt_notifier *pn,
3456                           struct task_struct *next)
3457 {
3458         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3459
3460         if (current->state == TASK_RUNNING)
3461                 vcpu->preempted = true;
3462         kvm_arch_vcpu_put(vcpu);
3463 }
3464
3465 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3466                   struct module *module)
3467 {
3468         int r;
3469         int cpu;
3470
3471         r = kvm_arch_init(opaque);
3472         if (r)
3473                 goto out_fail;
3474
3475         /*
3476          * kvm_arch_init makes sure there's at most one caller
3477          * for architectures that support multiple implementations,
3478          * like intel and amd on x86.
3479          * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3480          * conflicts in case kvm is already setup for another implementation.
3481          */
3482         r = kvm_irqfd_init();
3483         if (r)
3484                 goto out_irqfd;
3485
3486         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3487                 r = -ENOMEM;
3488                 goto out_free_0;
3489         }
3490
3491         r = kvm_arch_hardware_setup();
3492         if (r < 0)
3493                 goto out_free_0a;
3494
3495         for_each_online_cpu(cpu) {
3496                 smp_call_function_single(cpu,
3497                                 kvm_arch_check_processor_compat,
3498                                 &r, 1);
3499                 if (r < 0)
3500                         goto out_free_1;
3501         }
3502
3503         r = register_cpu_notifier(&kvm_cpu_notifier);
3504         if (r)
3505                 goto out_free_2;
3506         register_reboot_notifier(&kvm_reboot_notifier);
3507
3508         /* A kmem cache lets us meet the alignment requirements of fx_save. */
3509         if (!vcpu_align)
3510                 vcpu_align = __alignof__(struct kvm_vcpu);
3511         kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3512                                            0, NULL);
3513         if (!kvm_vcpu_cache) {
3514                 r = -ENOMEM;
3515                 goto out_free_3;
3516         }
3517
3518         r = kvm_async_pf_init();
3519         if (r)
3520                 goto out_free;
3521
3522         kvm_chardev_ops.owner = module;
3523         kvm_vm_fops.owner = module;
3524         kvm_vcpu_fops.owner = module;
3525
3526         r = misc_register(&kvm_dev);
3527         if (r) {
3528                 pr_err("kvm: misc device register failed\n");
3529                 goto out_unreg;
3530         }
3531
3532         register_syscore_ops(&kvm_syscore_ops);
3533
3534         kvm_preempt_ops.sched_in = kvm_sched_in;
3535         kvm_preempt_ops.sched_out = kvm_sched_out;
3536
3537         r = kvm_init_debug();
3538         if (r) {
3539                 pr_err("kvm: create debugfs files failed\n");
3540                 goto out_undebugfs;
3541         }
3542
3543         r = kvm_vfio_ops_init();
3544         WARN_ON(r);
3545
3546         return 0;
3547
3548 out_undebugfs:
3549         unregister_syscore_ops(&kvm_syscore_ops);
3550         misc_deregister(&kvm_dev);
3551 out_unreg:
3552         kvm_async_pf_deinit();
3553 out_free:
3554         kmem_cache_destroy(kvm_vcpu_cache);
3555 out_free_3:
3556         unregister_reboot_notifier(&kvm_reboot_notifier);
3557         unregister_cpu_notifier(&kvm_cpu_notifier);
3558 out_free_2:
3559 out_free_1:
3560         kvm_arch_hardware_unsetup();
3561 out_free_0a:
3562         free_cpumask_var(cpus_hardware_enabled);
3563 out_free_0:
3564         kvm_irqfd_exit();
3565 out_irqfd:
3566         kvm_arch_exit();
3567 out_fail:
3568         return r;
3569 }
3570 EXPORT_SYMBOL_GPL(kvm_init);
3571
3572 void kvm_exit(void)
3573 {
3574         kvm_exit_debug();
3575         misc_deregister(&kvm_dev);
3576         kmem_cache_destroy(kvm_vcpu_cache);
3577         kvm_async_pf_deinit();
3578         unregister_syscore_ops(&kvm_syscore_ops);
3579         unregister_reboot_notifier(&kvm_reboot_notifier);
3580         unregister_cpu_notifier(&kvm_cpu_notifier);
3581         on_each_cpu(hardware_disable_nolock, NULL, 1);
3582         kvm_arch_hardware_unsetup();
3583         kvm_arch_exit();
3584         kvm_irqfd_exit();
3585         free_cpumask_var(cpus_hardware_enabled);
3586         kvm_vfio_ops_exit();
3587 }
3588 EXPORT_SYMBOL_GPL(kvm_exit);