99ee4b1ce2dbd2b500c8b80f805dfe21c2eecf42
[cascardo/linux.git] / virt / kvm / kvm_main.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include <kvm/iodev.h>
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
52
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/ioctl.h>
56 #include <asm/uaccess.h>
57 #include <asm/pgtable.h>
58
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "vfio.h"
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
65
66 MODULE_AUTHOR("Qumranet");
67 MODULE_LICENSE("GPL");
68
69 /* Architectures should define their poll value according to the halt latency */
70 static unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
71 module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR);
72
73 /* Default doubles per-vcpu halt_poll_ns. */
74 static unsigned int halt_poll_ns_grow = 2;
75 module_param(halt_poll_ns_grow, uint, S_IRUGO | S_IWUSR);
76
77 /* Default resets per-vcpu halt_poll_ns . */
78 static unsigned int halt_poll_ns_shrink;
79 module_param(halt_poll_ns_shrink, uint, S_IRUGO | S_IWUSR);
80
81 /*
82  * Ordering of locks:
83  *
84  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
85  */
86
87 DEFINE_SPINLOCK(kvm_lock);
88 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
89 LIST_HEAD(vm_list);
90
91 static cpumask_var_t cpus_hardware_enabled;
92 static int kvm_usage_count;
93 static atomic_t hardware_enable_failed;
94
95 struct kmem_cache *kvm_vcpu_cache;
96 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
97
98 static __read_mostly struct preempt_ops kvm_preempt_ops;
99
100 struct dentry *kvm_debugfs_dir;
101 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
102
103 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
104                            unsigned long arg);
105 #ifdef CONFIG_KVM_COMPAT
106 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
107                                   unsigned long arg);
108 #endif
109 static int hardware_enable_all(void);
110 static void hardware_disable_all(void);
111
112 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
113
114 static void kvm_release_pfn_dirty(kvm_pfn_t pfn);
115 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
116
117 __visible bool kvm_rebooting;
118 EXPORT_SYMBOL_GPL(kvm_rebooting);
119
120 static bool largepages_enabled = true;
121
122 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
123 {
124         if (pfn_valid(pfn))
125                 return PageReserved(pfn_to_page(pfn));
126
127         return true;
128 }
129
130 /*
131  * Switches to specified vcpu, until a matching vcpu_put()
132  */
133 int vcpu_load(struct kvm_vcpu *vcpu)
134 {
135         int cpu;
136
137         if (mutex_lock_killable(&vcpu->mutex))
138                 return -EINTR;
139         cpu = get_cpu();
140         preempt_notifier_register(&vcpu->preempt_notifier);
141         kvm_arch_vcpu_load(vcpu, cpu);
142         put_cpu();
143         return 0;
144 }
145
146 void vcpu_put(struct kvm_vcpu *vcpu)
147 {
148         preempt_disable();
149         kvm_arch_vcpu_put(vcpu);
150         preempt_notifier_unregister(&vcpu->preempt_notifier);
151         preempt_enable();
152         mutex_unlock(&vcpu->mutex);
153 }
154
155 static void ack_flush(void *_completed)
156 {
157 }
158
159 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
160 {
161         int i, cpu, me;
162         cpumask_var_t cpus;
163         bool called = true;
164         struct kvm_vcpu *vcpu;
165
166         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
167
168         me = get_cpu();
169         kvm_for_each_vcpu(i, vcpu, kvm) {
170                 kvm_make_request(req, vcpu);
171                 cpu = vcpu->cpu;
172
173                 /* Set ->requests bit before we read ->mode */
174                 smp_mb();
175
176                 if (cpus != NULL && cpu != -1 && cpu != me &&
177                       kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
178                         cpumask_set_cpu(cpu, cpus);
179         }
180         if (unlikely(cpus == NULL))
181                 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
182         else if (!cpumask_empty(cpus))
183                 smp_call_function_many(cpus, ack_flush, NULL, 1);
184         else
185                 called = false;
186         put_cpu();
187         free_cpumask_var(cpus);
188         return called;
189 }
190
191 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
192 void kvm_flush_remote_tlbs(struct kvm *kvm)
193 {
194         long dirty_count = kvm->tlbs_dirty;
195
196         smp_mb();
197         if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
198                 ++kvm->stat.remote_tlb_flush;
199         cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
200 }
201 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
202 #endif
203
204 void kvm_reload_remote_mmus(struct kvm *kvm)
205 {
206         kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
207 }
208
209 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
210 {
211         struct page *page;
212         int r;
213
214         mutex_init(&vcpu->mutex);
215         vcpu->cpu = -1;
216         vcpu->kvm = kvm;
217         vcpu->vcpu_id = id;
218         vcpu->pid = NULL;
219         init_swait_queue_head(&vcpu->wq);
220         kvm_async_pf_vcpu_init(vcpu);
221
222         vcpu->pre_pcpu = -1;
223         INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
224
225         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
226         if (!page) {
227                 r = -ENOMEM;
228                 goto fail;
229         }
230         vcpu->run = page_address(page);
231
232         kvm_vcpu_set_in_spin_loop(vcpu, false);
233         kvm_vcpu_set_dy_eligible(vcpu, false);
234         vcpu->preempted = false;
235
236         r = kvm_arch_vcpu_init(vcpu);
237         if (r < 0)
238                 goto fail_free_run;
239         return 0;
240
241 fail_free_run:
242         free_page((unsigned long)vcpu->run);
243 fail:
244         return r;
245 }
246 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
247
248 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
249 {
250         put_pid(vcpu->pid);
251         kvm_arch_vcpu_uninit(vcpu);
252         free_page((unsigned long)vcpu->run);
253 }
254 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
255
256 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
257 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
258 {
259         return container_of(mn, struct kvm, mmu_notifier);
260 }
261
262 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
263                                              struct mm_struct *mm,
264                                              unsigned long address)
265 {
266         struct kvm *kvm = mmu_notifier_to_kvm(mn);
267         int need_tlb_flush, idx;
268
269         /*
270          * When ->invalidate_page runs, the linux pte has been zapped
271          * already but the page is still allocated until
272          * ->invalidate_page returns. So if we increase the sequence
273          * here the kvm page fault will notice if the spte can't be
274          * established because the page is going to be freed. If
275          * instead the kvm page fault establishes the spte before
276          * ->invalidate_page runs, kvm_unmap_hva will release it
277          * before returning.
278          *
279          * The sequence increase only need to be seen at spin_unlock
280          * time, and not at spin_lock time.
281          *
282          * Increasing the sequence after the spin_unlock would be
283          * unsafe because the kvm page fault could then establish the
284          * pte after kvm_unmap_hva returned, without noticing the page
285          * is going to be freed.
286          */
287         idx = srcu_read_lock(&kvm->srcu);
288         spin_lock(&kvm->mmu_lock);
289
290         kvm->mmu_notifier_seq++;
291         need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
292         /* we've to flush the tlb before the pages can be freed */
293         if (need_tlb_flush)
294                 kvm_flush_remote_tlbs(kvm);
295
296         spin_unlock(&kvm->mmu_lock);
297
298         kvm_arch_mmu_notifier_invalidate_page(kvm, address);
299
300         srcu_read_unlock(&kvm->srcu, idx);
301 }
302
303 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
304                                         struct mm_struct *mm,
305                                         unsigned long address,
306                                         pte_t pte)
307 {
308         struct kvm *kvm = mmu_notifier_to_kvm(mn);
309         int idx;
310
311         idx = srcu_read_lock(&kvm->srcu);
312         spin_lock(&kvm->mmu_lock);
313         kvm->mmu_notifier_seq++;
314         kvm_set_spte_hva(kvm, address, pte);
315         spin_unlock(&kvm->mmu_lock);
316         srcu_read_unlock(&kvm->srcu, idx);
317 }
318
319 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
320                                                     struct mm_struct *mm,
321                                                     unsigned long start,
322                                                     unsigned long end)
323 {
324         struct kvm *kvm = mmu_notifier_to_kvm(mn);
325         int need_tlb_flush = 0, idx;
326
327         idx = srcu_read_lock(&kvm->srcu);
328         spin_lock(&kvm->mmu_lock);
329         /*
330          * The count increase must become visible at unlock time as no
331          * spte can be established without taking the mmu_lock and
332          * count is also read inside the mmu_lock critical section.
333          */
334         kvm->mmu_notifier_count++;
335         need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
336         need_tlb_flush |= kvm->tlbs_dirty;
337         /* we've to flush the tlb before the pages can be freed */
338         if (need_tlb_flush)
339                 kvm_flush_remote_tlbs(kvm);
340
341         spin_unlock(&kvm->mmu_lock);
342         srcu_read_unlock(&kvm->srcu, idx);
343 }
344
345 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
346                                                   struct mm_struct *mm,
347                                                   unsigned long start,
348                                                   unsigned long end)
349 {
350         struct kvm *kvm = mmu_notifier_to_kvm(mn);
351
352         spin_lock(&kvm->mmu_lock);
353         /*
354          * This sequence increase will notify the kvm page fault that
355          * the page that is going to be mapped in the spte could have
356          * been freed.
357          */
358         kvm->mmu_notifier_seq++;
359         smp_wmb();
360         /*
361          * The above sequence increase must be visible before the
362          * below count decrease, which is ensured by the smp_wmb above
363          * in conjunction with the smp_rmb in mmu_notifier_retry().
364          */
365         kvm->mmu_notifier_count--;
366         spin_unlock(&kvm->mmu_lock);
367
368         BUG_ON(kvm->mmu_notifier_count < 0);
369 }
370
371 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
372                                               struct mm_struct *mm,
373                                               unsigned long start,
374                                               unsigned long end)
375 {
376         struct kvm *kvm = mmu_notifier_to_kvm(mn);
377         int young, idx;
378
379         idx = srcu_read_lock(&kvm->srcu);
380         spin_lock(&kvm->mmu_lock);
381
382         young = kvm_age_hva(kvm, start, end);
383         if (young)
384                 kvm_flush_remote_tlbs(kvm);
385
386         spin_unlock(&kvm->mmu_lock);
387         srcu_read_unlock(&kvm->srcu, idx);
388
389         return young;
390 }
391
392 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
393                                         struct mm_struct *mm,
394                                         unsigned long start,
395                                         unsigned long end)
396 {
397         struct kvm *kvm = mmu_notifier_to_kvm(mn);
398         int young, idx;
399
400         idx = srcu_read_lock(&kvm->srcu);
401         spin_lock(&kvm->mmu_lock);
402         /*
403          * Even though we do not flush TLB, this will still adversely
404          * affect performance on pre-Haswell Intel EPT, where there is
405          * no EPT Access Bit to clear so that we have to tear down EPT
406          * tables instead. If we find this unacceptable, we can always
407          * add a parameter to kvm_age_hva so that it effectively doesn't
408          * do anything on clear_young.
409          *
410          * Also note that currently we never issue secondary TLB flushes
411          * from clear_young, leaving this job up to the regular system
412          * cadence. If we find this inaccurate, we might come up with a
413          * more sophisticated heuristic later.
414          */
415         young = kvm_age_hva(kvm, start, end);
416         spin_unlock(&kvm->mmu_lock);
417         srcu_read_unlock(&kvm->srcu, idx);
418
419         return young;
420 }
421
422 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
423                                        struct mm_struct *mm,
424                                        unsigned long address)
425 {
426         struct kvm *kvm = mmu_notifier_to_kvm(mn);
427         int young, idx;
428
429         idx = srcu_read_lock(&kvm->srcu);
430         spin_lock(&kvm->mmu_lock);
431         young = kvm_test_age_hva(kvm, address);
432         spin_unlock(&kvm->mmu_lock);
433         srcu_read_unlock(&kvm->srcu, idx);
434
435         return young;
436 }
437
438 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
439                                      struct mm_struct *mm)
440 {
441         struct kvm *kvm = mmu_notifier_to_kvm(mn);
442         int idx;
443
444         idx = srcu_read_lock(&kvm->srcu);
445         kvm_arch_flush_shadow_all(kvm);
446         srcu_read_unlock(&kvm->srcu, idx);
447 }
448
449 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
450         .invalidate_page        = kvm_mmu_notifier_invalidate_page,
451         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
452         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
453         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
454         .clear_young            = kvm_mmu_notifier_clear_young,
455         .test_young             = kvm_mmu_notifier_test_young,
456         .change_pte             = kvm_mmu_notifier_change_pte,
457         .release                = kvm_mmu_notifier_release,
458 };
459
460 static int kvm_init_mmu_notifier(struct kvm *kvm)
461 {
462         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
463         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
464 }
465
466 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
467
468 static int kvm_init_mmu_notifier(struct kvm *kvm)
469 {
470         return 0;
471 }
472
473 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
474
475 static struct kvm_memslots *kvm_alloc_memslots(void)
476 {
477         int i;
478         struct kvm_memslots *slots;
479
480         slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
481         if (!slots)
482                 return NULL;
483
484         /*
485          * Init kvm generation close to the maximum to easily test the
486          * code of handling generation number wrap-around.
487          */
488         slots->generation = -150;
489         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
490                 slots->id_to_index[i] = slots->memslots[i].id = i;
491
492         return slots;
493 }
494
495 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
496 {
497         if (!memslot->dirty_bitmap)
498                 return;
499
500         kvfree(memslot->dirty_bitmap);
501         memslot->dirty_bitmap = NULL;
502 }
503
504 /*
505  * Free any memory in @free but not in @dont.
506  */
507 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
508                               struct kvm_memory_slot *dont)
509 {
510         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
511                 kvm_destroy_dirty_bitmap(free);
512
513         kvm_arch_free_memslot(kvm, free, dont);
514
515         free->npages = 0;
516 }
517
518 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
519 {
520         struct kvm_memory_slot *memslot;
521
522         if (!slots)
523                 return;
524
525         kvm_for_each_memslot(memslot, slots)
526                 kvm_free_memslot(kvm, memslot, NULL);
527
528         kvfree(slots);
529 }
530
531 static struct kvm *kvm_create_vm(unsigned long type)
532 {
533         int r, i;
534         struct kvm *kvm = kvm_arch_alloc_vm();
535
536         if (!kvm)
537                 return ERR_PTR(-ENOMEM);
538
539         r = kvm_arch_init_vm(kvm, type);
540         if (r)
541                 goto out_err_no_disable;
542
543         r = hardware_enable_all();
544         if (r)
545                 goto out_err_no_disable;
546
547 #ifdef CONFIG_HAVE_KVM_IRQFD
548         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
549 #endif
550
551         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
552
553         r = -ENOMEM;
554         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
555                 kvm->memslots[i] = kvm_alloc_memslots();
556                 if (!kvm->memslots[i])
557                         goto out_err_no_srcu;
558         }
559
560         if (init_srcu_struct(&kvm->srcu))
561                 goto out_err_no_srcu;
562         if (init_srcu_struct(&kvm->irq_srcu))
563                 goto out_err_no_irq_srcu;
564         for (i = 0; i < KVM_NR_BUSES; i++) {
565                 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
566                                         GFP_KERNEL);
567                 if (!kvm->buses[i])
568                         goto out_err;
569         }
570
571         spin_lock_init(&kvm->mmu_lock);
572         kvm->mm = current->mm;
573         atomic_inc(&kvm->mm->mm_count);
574         kvm_eventfd_init(kvm);
575         mutex_init(&kvm->lock);
576         mutex_init(&kvm->irq_lock);
577         mutex_init(&kvm->slots_lock);
578         atomic_set(&kvm->users_count, 1);
579         INIT_LIST_HEAD(&kvm->devices);
580
581         r = kvm_init_mmu_notifier(kvm);
582         if (r)
583                 goto out_err;
584
585         spin_lock(&kvm_lock);
586         list_add(&kvm->vm_list, &vm_list);
587         spin_unlock(&kvm_lock);
588
589         preempt_notifier_inc();
590
591         return kvm;
592
593 out_err:
594         cleanup_srcu_struct(&kvm->irq_srcu);
595 out_err_no_irq_srcu:
596         cleanup_srcu_struct(&kvm->srcu);
597 out_err_no_srcu:
598         hardware_disable_all();
599 out_err_no_disable:
600         for (i = 0; i < KVM_NR_BUSES; i++)
601                 kfree(kvm->buses[i]);
602         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
603                 kvm_free_memslots(kvm, kvm->memslots[i]);
604         kvm_arch_free_vm(kvm);
605         return ERR_PTR(r);
606 }
607
608 /*
609  * Avoid using vmalloc for a small buffer.
610  * Should not be used when the size is statically known.
611  */
612 void *kvm_kvzalloc(unsigned long size)
613 {
614         if (size > PAGE_SIZE)
615                 return vzalloc(size);
616         else
617                 return kzalloc(size, GFP_KERNEL);
618 }
619
620 static void kvm_destroy_devices(struct kvm *kvm)
621 {
622         struct kvm_device *dev, *tmp;
623
624         list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
625                 list_del(&dev->vm_node);
626                 dev->ops->destroy(dev);
627         }
628 }
629
630 static void kvm_destroy_vm(struct kvm *kvm)
631 {
632         int i;
633         struct mm_struct *mm = kvm->mm;
634
635         kvm_arch_sync_events(kvm);
636         spin_lock(&kvm_lock);
637         list_del(&kvm->vm_list);
638         spin_unlock(&kvm_lock);
639         kvm_free_irq_routing(kvm);
640         for (i = 0; i < KVM_NR_BUSES; i++)
641                 kvm_io_bus_destroy(kvm->buses[i]);
642         kvm_coalesced_mmio_free(kvm);
643 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
644         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
645 #else
646         kvm_arch_flush_shadow_all(kvm);
647 #endif
648         kvm_arch_destroy_vm(kvm);
649         kvm_destroy_devices(kvm);
650         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
651                 kvm_free_memslots(kvm, kvm->memslots[i]);
652         cleanup_srcu_struct(&kvm->irq_srcu);
653         cleanup_srcu_struct(&kvm->srcu);
654         kvm_arch_free_vm(kvm);
655         preempt_notifier_dec();
656         hardware_disable_all();
657         mmdrop(mm);
658 }
659
660 void kvm_get_kvm(struct kvm *kvm)
661 {
662         atomic_inc(&kvm->users_count);
663 }
664 EXPORT_SYMBOL_GPL(kvm_get_kvm);
665
666 void kvm_put_kvm(struct kvm *kvm)
667 {
668         if (atomic_dec_and_test(&kvm->users_count))
669                 kvm_destroy_vm(kvm);
670 }
671 EXPORT_SYMBOL_GPL(kvm_put_kvm);
672
673
674 static int kvm_vm_release(struct inode *inode, struct file *filp)
675 {
676         struct kvm *kvm = filp->private_data;
677
678         kvm_irqfd_release(kvm);
679
680         kvm_put_kvm(kvm);
681         return 0;
682 }
683
684 /*
685  * Allocation size is twice as large as the actual dirty bitmap size.
686  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
687  */
688 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
689 {
690         unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
691
692         memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
693         if (!memslot->dirty_bitmap)
694                 return -ENOMEM;
695
696         return 0;
697 }
698
699 /*
700  * Insert memslot and re-sort memslots based on their GFN,
701  * so binary search could be used to lookup GFN.
702  * Sorting algorithm takes advantage of having initially
703  * sorted array and known changed memslot position.
704  */
705 static void update_memslots(struct kvm_memslots *slots,
706                             struct kvm_memory_slot *new)
707 {
708         int id = new->id;
709         int i = slots->id_to_index[id];
710         struct kvm_memory_slot *mslots = slots->memslots;
711
712         WARN_ON(mslots[i].id != id);
713         if (!new->npages) {
714                 WARN_ON(!mslots[i].npages);
715                 if (mslots[i].npages)
716                         slots->used_slots--;
717         } else {
718                 if (!mslots[i].npages)
719                         slots->used_slots++;
720         }
721
722         while (i < KVM_MEM_SLOTS_NUM - 1 &&
723                new->base_gfn <= mslots[i + 1].base_gfn) {
724                 if (!mslots[i + 1].npages)
725                         break;
726                 mslots[i] = mslots[i + 1];
727                 slots->id_to_index[mslots[i].id] = i;
728                 i++;
729         }
730
731         /*
732          * The ">=" is needed when creating a slot with base_gfn == 0,
733          * so that it moves before all those with base_gfn == npages == 0.
734          *
735          * On the other hand, if new->npages is zero, the above loop has
736          * already left i pointing to the beginning of the empty part of
737          * mslots, and the ">=" would move the hole backwards in this
738          * case---which is wrong.  So skip the loop when deleting a slot.
739          */
740         if (new->npages) {
741                 while (i > 0 &&
742                        new->base_gfn >= mslots[i - 1].base_gfn) {
743                         mslots[i] = mslots[i - 1];
744                         slots->id_to_index[mslots[i].id] = i;
745                         i--;
746                 }
747         } else
748                 WARN_ON_ONCE(i != slots->used_slots);
749
750         mslots[i] = *new;
751         slots->id_to_index[mslots[i].id] = i;
752 }
753
754 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
755 {
756         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
757
758 #ifdef __KVM_HAVE_READONLY_MEM
759         valid_flags |= KVM_MEM_READONLY;
760 #endif
761
762         if (mem->flags & ~valid_flags)
763                 return -EINVAL;
764
765         return 0;
766 }
767
768 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
769                 int as_id, struct kvm_memslots *slots)
770 {
771         struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
772
773         /*
774          * Set the low bit in the generation, which disables SPTE caching
775          * until the end of synchronize_srcu_expedited.
776          */
777         WARN_ON(old_memslots->generation & 1);
778         slots->generation = old_memslots->generation + 1;
779
780         rcu_assign_pointer(kvm->memslots[as_id], slots);
781         synchronize_srcu_expedited(&kvm->srcu);
782
783         /*
784          * Increment the new memslot generation a second time. This prevents
785          * vm exits that race with memslot updates from caching a memslot
786          * generation that will (potentially) be valid forever.
787          */
788         slots->generation++;
789
790         kvm_arch_memslots_updated(kvm, slots);
791
792         return old_memslots;
793 }
794
795 /*
796  * Allocate some memory and give it an address in the guest physical address
797  * space.
798  *
799  * Discontiguous memory is allowed, mostly for framebuffers.
800  *
801  * Must be called holding kvm->slots_lock for write.
802  */
803 int __kvm_set_memory_region(struct kvm *kvm,
804                             const struct kvm_userspace_memory_region *mem)
805 {
806         int r;
807         gfn_t base_gfn;
808         unsigned long npages;
809         struct kvm_memory_slot *slot;
810         struct kvm_memory_slot old, new;
811         struct kvm_memslots *slots = NULL, *old_memslots;
812         int as_id, id;
813         enum kvm_mr_change change;
814
815         r = check_memory_region_flags(mem);
816         if (r)
817                 goto out;
818
819         r = -EINVAL;
820         as_id = mem->slot >> 16;
821         id = (u16)mem->slot;
822
823         /* General sanity checks */
824         if (mem->memory_size & (PAGE_SIZE - 1))
825                 goto out;
826         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
827                 goto out;
828         /* We can read the guest memory with __xxx_user() later on. */
829         if ((id < KVM_USER_MEM_SLOTS) &&
830             ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
831              !access_ok(VERIFY_WRITE,
832                         (void __user *)(unsigned long)mem->userspace_addr,
833                         mem->memory_size)))
834                 goto out;
835         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
836                 goto out;
837         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
838                 goto out;
839
840         slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
841         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
842         npages = mem->memory_size >> PAGE_SHIFT;
843
844         if (npages > KVM_MEM_MAX_NR_PAGES)
845                 goto out;
846
847         new = old = *slot;
848
849         new.id = id;
850         new.base_gfn = base_gfn;
851         new.npages = npages;
852         new.flags = mem->flags;
853
854         if (npages) {
855                 if (!old.npages)
856                         change = KVM_MR_CREATE;
857                 else { /* Modify an existing slot. */
858                         if ((mem->userspace_addr != old.userspace_addr) ||
859                             (npages != old.npages) ||
860                             ((new.flags ^ old.flags) & KVM_MEM_READONLY))
861                                 goto out;
862
863                         if (base_gfn != old.base_gfn)
864                                 change = KVM_MR_MOVE;
865                         else if (new.flags != old.flags)
866                                 change = KVM_MR_FLAGS_ONLY;
867                         else { /* Nothing to change. */
868                                 r = 0;
869                                 goto out;
870                         }
871                 }
872         } else {
873                 if (!old.npages)
874                         goto out;
875
876                 change = KVM_MR_DELETE;
877                 new.base_gfn = 0;
878                 new.flags = 0;
879         }
880
881         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
882                 /* Check for overlaps */
883                 r = -EEXIST;
884                 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
885                         if ((slot->id >= KVM_USER_MEM_SLOTS) ||
886                             (slot->id == id))
887                                 continue;
888                         if (!((base_gfn + npages <= slot->base_gfn) ||
889                               (base_gfn >= slot->base_gfn + slot->npages)))
890                                 goto out;
891                 }
892         }
893
894         /* Free page dirty bitmap if unneeded */
895         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
896                 new.dirty_bitmap = NULL;
897
898         r = -ENOMEM;
899         if (change == KVM_MR_CREATE) {
900                 new.userspace_addr = mem->userspace_addr;
901
902                 if (kvm_arch_create_memslot(kvm, &new, npages))
903                         goto out_free;
904         }
905
906         /* Allocate page dirty bitmap if needed */
907         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
908                 if (kvm_create_dirty_bitmap(&new) < 0)
909                         goto out_free;
910         }
911
912         slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
913         if (!slots)
914                 goto out_free;
915         memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
916
917         if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
918                 slot = id_to_memslot(slots, id);
919                 slot->flags |= KVM_MEMSLOT_INVALID;
920
921                 old_memslots = install_new_memslots(kvm, as_id, slots);
922
923                 /* slot was deleted or moved, clear iommu mapping */
924                 kvm_iommu_unmap_pages(kvm, &old);
925                 /* From this point no new shadow pages pointing to a deleted,
926                  * or moved, memslot will be created.
927                  *
928                  * validation of sp->gfn happens in:
929                  *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
930                  *      - kvm_is_visible_gfn (mmu_check_roots)
931                  */
932                 kvm_arch_flush_shadow_memslot(kvm, slot);
933
934                 /*
935                  * We can re-use the old_memslots from above, the only difference
936                  * from the currently installed memslots is the invalid flag.  This
937                  * will get overwritten by update_memslots anyway.
938                  */
939                 slots = old_memslots;
940         }
941
942         r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
943         if (r)
944                 goto out_slots;
945
946         /* actual memory is freed via old in kvm_free_memslot below */
947         if (change == KVM_MR_DELETE) {
948                 new.dirty_bitmap = NULL;
949                 memset(&new.arch, 0, sizeof(new.arch));
950         }
951
952         update_memslots(slots, &new);
953         old_memslots = install_new_memslots(kvm, as_id, slots);
954
955         kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
956
957         kvm_free_memslot(kvm, &old, &new);
958         kvfree(old_memslots);
959
960         /*
961          * IOMMU mapping:  New slots need to be mapped.  Old slots need to be
962          * un-mapped and re-mapped if their base changes.  Since base change
963          * unmapping is handled above with slot deletion, mapping alone is
964          * needed here.  Anything else the iommu might care about for existing
965          * slots (size changes, userspace addr changes and read-only flag
966          * changes) is disallowed above, so any other attribute changes getting
967          * here can be skipped.
968          */
969         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
970                 r = kvm_iommu_map_pages(kvm, &new);
971                 return r;
972         }
973
974         return 0;
975
976 out_slots:
977         kvfree(slots);
978 out_free:
979         kvm_free_memslot(kvm, &new, &old);
980 out:
981         return r;
982 }
983 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
984
985 int kvm_set_memory_region(struct kvm *kvm,
986                           const struct kvm_userspace_memory_region *mem)
987 {
988         int r;
989
990         mutex_lock(&kvm->slots_lock);
991         r = __kvm_set_memory_region(kvm, mem);
992         mutex_unlock(&kvm->slots_lock);
993         return r;
994 }
995 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
996
997 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
998                                           struct kvm_userspace_memory_region *mem)
999 {
1000         if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1001                 return -EINVAL;
1002
1003         return kvm_set_memory_region(kvm, mem);
1004 }
1005
1006 int kvm_get_dirty_log(struct kvm *kvm,
1007                         struct kvm_dirty_log *log, int *is_dirty)
1008 {
1009         struct kvm_memslots *slots;
1010         struct kvm_memory_slot *memslot;
1011         int r, i, as_id, id;
1012         unsigned long n;
1013         unsigned long any = 0;
1014
1015         r = -EINVAL;
1016         as_id = log->slot >> 16;
1017         id = (u16)log->slot;
1018         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1019                 goto out;
1020
1021         slots = __kvm_memslots(kvm, as_id);
1022         memslot = id_to_memslot(slots, id);
1023         r = -ENOENT;
1024         if (!memslot->dirty_bitmap)
1025                 goto out;
1026
1027         n = kvm_dirty_bitmap_bytes(memslot);
1028
1029         for (i = 0; !any && i < n/sizeof(long); ++i)
1030                 any = memslot->dirty_bitmap[i];
1031
1032         r = -EFAULT;
1033         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1034                 goto out;
1035
1036         if (any)
1037                 *is_dirty = 1;
1038
1039         r = 0;
1040 out:
1041         return r;
1042 }
1043 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1044
1045 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1046 /**
1047  * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1048  *      are dirty write protect them for next write.
1049  * @kvm:        pointer to kvm instance
1050  * @log:        slot id and address to which we copy the log
1051  * @is_dirty:   flag set if any page is dirty
1052  *
1053  * We need to keep it in mind that VCPU threads can write to the bitmap
1054  * concurrently. So, to avoid losing track of dirty pages we keep the
1055  * following order:
1056  *
1057  *    1. Take a snapshot of the bit and clear it if needed.
1058  *    2. Write protect the corresponding page.
1059  *    3. Copy the snapshot to the userspace.
1060  *    4. Upon return caller flushes TLB's if needed.
1061  *
1062  * Between 2 and 4, the guest may write to the page using the remaining TLB
1063  * entry.  This is not a problem because the page is reported dirty using
1064  * the snapshot taken before and step 4 ensures that writes done after
1065  * exiting to userspace will be logged for the next call.
1066  *
1067  */
1068 int kvm_get_dirty_log_protect(struct kvm *kvm,
1069                         struct kvm_dirty_log *log, bool *is_dirty)
1070 {
1071         struct kvm_memslots *slots;
1072         struct kvm_memory_slot *memslot;
1073         int r, i, as_id, id;
1074         unsigned long n;
1075         unsigned long *dirty_bitmap;
1076         unsigned long *dirty_bitmap_buffer;
1077
1078         r = -EINVAL;
1079         as_id = log->slot >> 16;
1080         id = (u16)log->slot;
1081         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1082                 goto out;
1083
1084         slots = __kvm_memslots(kvm, as_id);
1085         memslot = id_to_memslot(slots, id);
1086
1087         dirty_bitmap = memslot->dirty_bitmap;
1088         r = -ENOENT;
1089         if (!dirty_bitmap)
1090                 goto out;
1091
1092         n = kvm_dirty_bitmap_bytes(memslot);
1093
1094         dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1095         memset(dirty_bitmap_buffer, 0, n);
1096
1097         spin_lock(&kvm->mmu_lock);
1098         *is_dirty = false;
1099         for (i = 0; i < n / sizeof(long); i++) {
1100                 unsigned long mask;
1101                 gfn_t offset;
1102
1103                 if (!dirty_bitmap[i])
1104                         continue;
1105
1106                 *is_dirty = true;
1107
1108                 mask = xchg(&dirty_bitmap[i], 0);
1109                 dirty_bitmap_buffer[i] = mask;
1110
1111                 if (mask) {
1112                         offset = i * BITS_PER_LONG;
1113                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1114                                                                 offset, mask);
1115                 }
1116         }
1117
1118         spin_unlock(&kvm->mmu_lock);
1119
1120         r = -EFAULT;
1121         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1122                 goto out;
1123
1124         r = 0;
1125 out:
1126         return r;
1127 }
1128 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1129 #endif
1130
1131 bool kvm_largepages_enabled(void)
1132 {
1133         return largepages_enabled;
1134 }
1135
1136 void kvm_disable_largepages(void)
1137 {
1138         largepages_enabled = false;
1139 }
1140 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1141
1142 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1143 {
1144         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1145 }
1146 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1147
1148 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1149 {
1150         return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1151 }
1152
1153 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1154 {
1155         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1156
1157         if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1158               memslot->flags & KVM_MEMSLOT_INVALID)
1159                 return false;
1160
1161         return true;
1162 }
1163 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1164
1165 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1166 {
1167         struct vm_area_struct *vma;
1168         unsigned long addr, size;
1169
1170         size = PAGE_SIZE;
1171
1172         addr = gfn_to_hva(kvm, gfn);
1173         if (kvm_is_error_hva(addr))
1174                 return PAGE_SIZE;
1175
1176         down_read(&current->mm->mmap_sem);
1177         vma = find_vma(current->mm, addr);
1178         if (!vma)
1179                 goto out;
1180
1181         size = vma_kernel_pagesize(vma);
1182
1183 out:
1184         up_read(&current->mm->mmap_sem);
1185
1186         return size;
1187 }
1188
1189 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1190 {
1191         return slot->flags & KVM_MEM_READONLY;
1192 }
1193
1194 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1195                                        gfn_t *nr_pages, bool write)
1196 {
1197         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1198                 return KVM_HVA_ERR_BAD;
1199
1200         if (memslot_is_readonly(slot) && write)
1201                 return KVM_HVA_ERR_RO_BAD;
1202
1203         if (nr_pages)
1204                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1205
1206         return __gfn_to_hva_memslot(slot, gfn);
1207 }
1208
1209 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1210                                      gfn_t *nr_pages)
1211 {
1212         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1213 }
1214
1215 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1216                                         gfn_t gfn)
1217 {
1218         return gfn_to_hva_many(slot, gfn, NULL);
1219 }
1220 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1221
1222 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1223 {
1224         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1225 }
1226 EXPORT_SYMBOL_GPL(gfn_to_hva);
1227
1228 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1229 {
1230         return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1231 }
1232 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1233
1234 /*
1235  * If writable is set to false, the hva returned by this function is only
1236  * allowed to be read.
1237  */
1238 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1239                                       gfn_t gfn, bool *writable)
1240 {
1241         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1242
1243         if (!kvm_is_error_hva(hva) && writable)
1244                 *writable = !memslot_is_readonly(slot);
1245
1246         return hva;
1247 }
1248
1249 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1250 {
1251         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1252
1253         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1254 }
1255
1256 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1257 {
1258         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1259
1260         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1261 }
1262
1263 static int get_user_page_nowait(unsigned long start, int write,
1264                 struct page **page)
1265 {
1266         int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1267
1268         if (write)
1269                 flags |= FOLL_WRITE;
1270
1271         return __get_user_pages(current, current->mm, start, 1, flags, page,
1272                         NULL, NULL);
1273 }
1274
1275 static inline int check_user_page_hwpoison(unsigned long addr)
1276 {
1277         int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1278
1279         rc = __get_user_pages(current, current->mm, addr, 1,
1280                               flags, NULL, NULL, NULL);
1281         return rc == -EHWPOISON;
1282 }
1283
1284 /*
1285  * The atomic path to get the writable pfn which will be stored in @pfn,
1286  * true indicates success, otherwise false is returned.
1287  */
1288 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1289                             bool write_fault, bool *writable, kvm_pfn_t *pfn)
1290 {
1291         struct page *page[1];
1292         int npages;
1293
1294         if (!(async || atomic))
1295                 return false;
1296
1297         /*
1298          * Fast pin a writable pfn only if it is a write fault request
1299          * or the caller allows to map a writable pfn for a read fault
1300          * request.
1301          */
1302         if (!(write_fault || writable))
1303                 return false;
1304
1305         npages = __get_user_pages_fast(addr, 1, 1, page);
1306         if (npages == 1) {
1307                 *pfn = page_to_pfn(page[0]);
1308
1309                 if (writable)
1310                         *writable = true;
1311                 return true;
1312         }
1313
1314         return false;
1315 }
1316
1317 /*
1318  * The slow path to get the pfn of the specified host virtual address,
1319  * 1 indicates success, -errno is returned if error is detected.
1320  */
1321 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1322                            bool *writable, kvm_pfn_t *pfn)
1323 {
1324         struct page *page[1];
1325         int npages = 0;
1326
1327         might_sleep();
1328
1329         if (writable)
1330                 *writable = write_fault;
1331
1332         if (async) {
1333                 down_read(&current->mm->mmap_sem);
1334                 npages = get_user_page_nowait(addr, write_fault, page);
1335                 up_read(&current->mm->mmap_sem);
1336         } else
1337                 npages = __get_user_pages_unlocked(current, current->mm, addr, 1,
1338                                                    write_fault, 0, page,
1339                                                    FOLL_TOUCH|FOLL_HWPOISON);
1340         if (npages != 1)
1341                 return npages;
1342
1343         /* map read fault as writable if possible */
1344         if (unlikely(!write_fault) && writable) {
1345                 struct page *wpage[1];
1346
1347                 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1348                 if (npages == 1) {
1349                         *writable = true;
1350                         put_page(page[0]);
1351                         page[0] = wpage[0];
1352                 }
1353
1354                 npages = 1;
1355         }
1356         *pfn = page_to_pfn(page[0]);
1357         return npages;
1358 }
1359
1360 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1361 {
1362         if (unlikely(!(vma->vm_flags & VM_READ)))
1363                 return false;
1364
1365         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1366                 return false;
1367
1368         return true;
1369 }
1370
1371 /*
1372  * Pin guest page in memory and return its pfn.
1373  * @addr: host virtual address which maps memory to the guest
1374  * @atomic: whether this function can sleep
1375  * @async: whether this function need to wait IO complete if the
1376  *         host page is not in the memory
1377  * @write_fault: whether we should get a writable host page
1378  * @writable: whether it allows to map a writable host page for !@write_fault
1379  *
1380  * The function will map a writable host page for these two cases:
1381  * 1): @write_fault = true
1382  * 2): @write_fault = false && @writable, @writable will tell the caller
1383  *     whether the mapping is writable.
1384  */
1385 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1386                         bool write_fault, bool *writable)
1387 {
1388         struct vm_area_struct *vma;
1389         kvm_pfn_t pfn = 0;
1390         int npages;
1391
1392         /* we can do it either atomically or asynchronously, not both */
1393         BUG_ON(atomic && async);
1394
1395         if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1396                 return pfn;
1397
1398         if (atomic)
1399                 return KVM_PFN_ERR_FAULT;
1400
1401         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1402         if (npages == 1)
1403                 return pfn;
1404
1405         down_read(&current->mm->mmap_sem);
1406         if (npages == -EHWPOISON ||
1407               (!async && check_user_page_hwpoison(addr))) {
1408                 pfn = KVM_PFN_ERR_HWPOISON;
1409                 goto exit;
1410         }
1411
1412         vma = find_vma_intersection(current->mm, addr, addr + 1);
1413
1414         if (vma == NULL)
1415                 pfn = KVM_PFN_ERR_FAULT;
1416         else if ((vma->vm_flags & VM_PFNMAP)) {
1417                 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1418                         vma->vm_pgoff;
1419                 BUG_ON(!kvm_is_reserved_pfn(pfn));
1420         } else {
1421                 if (async && vma_is_valid(vma, write_fault))
1422                         *async = true;
1423                 pfn = KVM_PFN_ERR_FAULT;
1424         }
1425 exit:
1426         up_read(&current->mm->mmap_sem);
1427         return pfn;
1428 }
1429
1430 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1431                                bool atomic, bool *async, bool write_fault,
1432                                bool *writable)
1433 {
1434         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1435
1436         if (addr == KVM_HVA_ERR_RO_BAD) {
1437                 if (writable)
1438                         *writable = false;
1439                 return KVM_PFN_ERR_RO_FAULT;
1440         }
1441
1442         if (kvm_is_error_hva(addr)) {
1443                 if (writable)
1444                         *writable = false;
1445                 return KVM_PFN_NOSLOT;
1446         }
1447
1448         /* Do not map writable pfn in the readonly memslot. */
1449         if (writable && memslot_is_readonly(slot)) {
1450                 *writable = false;
1451                 writable = NULL;
1452         }
1453
1454         return hva_to_pfn(addr, atomic, async, write_fault,
1455                           writable);
1456 }
1457 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1458
1459 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1460                       bool *writable)
1461 {
1462         return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1463                                     write_fault, writable);
1464 }
1465 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1466
1467 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1468 {
1469         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1470 }
1471 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1472
1473 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1474 {
1475         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1476 }
1477 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1478
1479 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1480 {
1481         return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1482 }
1483 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1484
1485 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1486 {
1487         return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1488 }
1489 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1490
1491 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1492 {
1493         return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1494 }
1495 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1496
1497 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1498 {
1499         return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1500 }
1501 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1502
1503 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1504                             struct page **pages, int nr_pages)
1505 {
1506         unsigned long addr;
1507         gfn_t entry;
1508
1509         addr = gfn_to_hva_many(slot, gfn, &entry);
1510         if (kvm_is_error_hva(addr))
1511                 return -1;
1512
1513         if (entry < nr_pages)
1514                 return 0;
1515
1516         return __get_user_pages_fast(addr, nr_pages, 1, pages);
1517 }
1518 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1519
1520 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1521 {
1522         if (is_error_noslot_pfn(pfn))
1523                 return KVM_ERR_PTR_BAD_PAGE;
1524
1525         if (kvm_is_reserved_pfn(pfn)) {
1526                 WARN_ON(1);
1527                 return KVM_ERR_PTR_BAD_PAGE;
1528         }
1529
1530         return pfn_to_page(pfn);
1531 }
1532
1533 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1534 {
1535         kvm_pfn_t pfn;
1536
1537         pfn = gfn_to_pfn(kvm, gfn);
1538
1539         return kvm_pfn_to_page(pfn);
1540 }
1541 EXPORT_SYMBOL_GPL(gfn_to_page);
1542
1543 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1544 {
1545         kvm_pfn_t pfn;
1546
1547         pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1548
1549         return kvm_pfn_to_page(pfn);
1550 }
1551 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1552
1553 void kvm_release_page_clean(struct page *page)
1554 {
1555         WARN_ON(is_error_page(page));
1556
1557         kvm_release_pfn_clean(page_to_pfn(page));
1558 }
1559 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1560
1561 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1562 {
1563         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1564                 put_page(pfn_to_page(pfn));
1565 }
1566 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1567
1568 void kvm_release_page_dirty(struct page *page)
1569 {
1570         WARN_ON(is_error_page(page));
1571
1572         kvm_release_pfn_dirty(page_to_pfn(page));
1573 }
1574 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1575
1576 static void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1577 {
1578         kvm_set_pfn_dirty(pfn);
1579         kvm_release_pfn_clean(pfn);
1580 }
1581
1582 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1583 {
1584         if (!kvm_is_reserved_pfn(pfn)) {
1585                 struct page *page = pfn_to_page(pfn);
1586
1587                 if (!PageReserved(page))
1588                         SetPageDirty(page);
1589         }
1590 }
1591 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1592
1593 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1594 {
1595         if (!kvm_is_reserved_pfn(pfn))
1596                 mark_page_accessed(pfn_to_page(pfn));
1597 }
1598 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1599
1600 void kvm_get_pfn(kvm_pfn_t pfn)
1601 {
1602         if (!kvm_is_reserved_pfn(pfn))
1603                 get_page(pfn_to_page(pfn));
1604 }
1605 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1606
1607 static int next_segment(unsigned long len, int offset)
1608 {
1609         if (len > PAGE_SIZE - offset)
1610                 return PAGE_SIZE - offset;
1611         else
1612                 return len;
1613 }
1614
1615 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1616                                  void *data, int offset, int len)
1617 {
1618         int r;
1619         unsigned long addr;
1620
1621         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1622         if (kvm_is_error_hva(addr))
1623                 return -EFAULT;
1624         r = __copy_from_user(data, (void __user *)addr + offset, len);
1625         if (r)
1626                 return -EFAULT;
1627         return 0;
1628 }
1629
1630 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1631                         int len)
1632 {
1633         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1634
1635         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1636 }
1637 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1638
1639 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1640                              int offset, int len)
1641 {
1642         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1643
1644         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1645 }
1646 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1647
1648 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1649 {
1650         gfn_t gfn = gpa >> PAGE_SHIFT;
1651         int seg;
1652         int offset = offset_in_page(gpa);
1653         int ret;
1654
1655         while ((seg = next_segment(len, offset)) != 0) {
1656                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1657                 if (ret < 0)
1658                         return ret;
1659                 offset = 0;
1660                 len -= seg;
1661                 data += seg;
1662                 ++gfn;
1663         }
1664         return 0;
1665 }
1666 EXPORT_SYMBOL_GPL(kvm_read_guest);
1667
1668 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1669 {
1670         gfn_t gfn = gpa >> PAGE_SHIFT;
1671         int seg;
1672         int offset = offset_in_page(gpa);
1673         int ret;
1674
1675         while ((seg = next_segment(len, offset)) != 0) {
1676                 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1677                 if (ret < 0)
1678                         return ret;
1679                 offset = 0;
1680                 len -= seg;
1681                 data += seg;
1682                 ++gfn;
1683         }
1684         return 0;
1685 }
1686 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1687
1688 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1689                                    void *data, int offset, unsigned long len)
1690 {
1691         int r;
1692         unsigned long addr;
1693
1694         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1695         if (kvm_is_error_hva(addr))
1696                 return -EFAULT;
1697         pagefault_disable();
1698         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1699         pagefault_enable();
1700         if (r)
1701                 return -EFAULT;
1702         return 0;
1703 }
1704
1705 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1706                           unsigned long len)
1707 {
1708         gfn_t gfn = gpa >> PAGE_SHIFT;
1709         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1710         int offset = offset_in_page(gpa);
1711
1712         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1713 }
1714 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1715
1716 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1717                                void *data, unsigned long len)
1718 {
1719         gfn_t gfn = gpa >> PAGE_SHIFT;
1720         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1721         int offset = offset_in_page(gpa);
1722
1723         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1724 }
1725 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1726
1727 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1728                                   const void *data, int offset, int len)
1729 {
1730         int r;
1731         unsigned long addr;
1732
1733         addr = gfn_to_hva_memslot(memslot, gfn);
1734         if (kvm_is_error_hva(addr))
1735                 return -EFAULT;
1736         r = __copy_to_user((void __user *)addr + offset, data, len);
1737         if (r)
1738                 return -EFAULT;
1739         mark_page_dirty_in_slot(memslot, gfn);
1740         return 0;
1741 }
1742
1743 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1744                          const void *data, int offset, int len)
1745 {
1746         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1747
1748         return __kvm_write_guest_page(slot, gfn, data, offset, len);
1749 }
1750 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1751
1752 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1753                               const void *data, int offset, int len)
1754 {
1755         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1756
1757         return __kvm_write_guest_page(slot, gfn, data, offset, len);
1758 }
1759 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1760
1761 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1762                     unsigned long len)
1763 {
1764         gfn_t gfn = gpa >> PAGE_SHIFT;
1765         int seg;
1766         int offset = offset_in_page(gpa);
1767         int ret;
1768
1769         while ((seg = next_segment(len, offset)) != 0) {
1770                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1771                 if (ret < 0)
1772                         return ret;
1773                 offset = 0;
1774                 len -= seg;
1775                 data += seg;
1776                 ++gfn;
1777         }
1778         return 0;
1779 }
1780 EXPORT_SYMBOL_GPL(kvm_write_guest);
1781
1782 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1783                          unsigned long len)
1784 {
1785         gfn_t gfn = gpa >> PAGE_SHIFT;
1786         int seg;
1787         int offset = offset_in_page(gpa);
1788         int ret;
1789
1790         while ((seg = next_segment(len, offset)) != 0) {
1791                 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1792                 if (ret < 0)
1793                         return ret;
1794                 offset = 0;
1795                 len -= seg;
1796                 data += seg;
1797                 ++gfn;
1798         }
1799         return 0;
1800 }
1801 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1802
1803 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1804                               gpa_t gpa, unsigned long len)
1805 {
1806         struct kvm_memslots *slots = kvm_memslots(kvm);
1807         int offset = offset_in_page(gpa);
1808         gfn_t start_gfn = gpa >> PAGE_SHIFT;
1809         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1810         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1811         gfn_t nr_pages_avail;
1812
1813         ghc->gpa = gpa;
1814         ghc->generation = slots->generation;
1815         ghc->len = len;
1816         ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1817         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1818         if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1819                 ghc->hva += offset;
1820         } else {
1821                 /*
1822                  * If the requested region crosses two memslots, we still
1823                  * verify that the entire region is valid here.
1824                  */
1825                 while (start_gfn <= end_gfn) {
1826                         ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1827                         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1828                                                    &nr_pages_avail);
1829                         if (kvm_is_error_hva(ghc->hva))
1830                                 return -EFAULT;
1831                         start_gfn += nr_pages_avail;
1832                 }
1833                 /* Use the slow path for cross page reads and writes. */
1834                 ghc->memslot = NULL;
1835         }
1836         return 0;
1837 }
1838 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1839
1840 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1841                            void *data, unsigned long len)
1842 {
1843         struct kvm_memslots *slots = kvm_memslots(kvm);
1844         int r;
1845
1846         BUG_ON(len > ghc->len);
1847
1848         if (slots->generation != ghc->generation)
1849                 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1850
1851         if (unlikely(!ghc->memslot))
1852                 return kvm_write_guest(kvm, ghc->gpa, data, len);
1853
1854         if (kvm_is_error_hva(ghc->hva))
1855                 return -EFAULT;
1856
1857         r = __copy_to_user((void __user *)ghc->hva, data, len);
1858         if (r)
1859                 return -EFAULT;
1860         mark_page_dirty_in_slot(ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1861
1862         return 0;
1863 }
1864 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1865
1866 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1867                            void *data, unsigned long len)
1868 {
1869         struct kvm_memslots *slots = kvm_memslots(kvm);
1870         int r;
1871
1872         BUG_ON(len > ghc->len);
1873
1874         if (slots->generation != ghc->generation)
1875                 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1876
1877         if (unlikely(!ghc->memslot))
1878                 return kvm_read_guest(kvm, ghc->gpa, data, len);
1879
1880         if (kvm_is_error_hva(ghc->hva))
1881                 return -EFAULT;
1882
1883         r = __copy_from_user(data, (void __user *)ghc->hva, len);
1884         if (r)
1885                 return -EFAULT;
1886
1887         return 0;
1888 }
1889 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1890
1891 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1892 {
1893         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
1894
1895         return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
1896 }
1897 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1898
1899 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1900 {
1901         gfn_t gfn = gpa >> PAGE_SHIFT;
1902         int seg;
1903         int offset = offset_in_page(gpa);
1904         int ret;
1905
1906         while ((seg = next_segment(len, offset)) != 0) {
1907                 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1908                 if (ret < 0)
1909                         return ret;
1910                 offset = 0;
1911                 len -= seg;
1912                 ++gfn;
1913         }
1914         return 0;
1915 }
1916 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1917
1918 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
1919                                     gfn_t gfn)
1920 {
1921         if (memslot && memslot->dirty_bitmap) {
1922                 unsigned long rel_gfn = gfn - memslot->base_gfn;
1923
1924                 set_bit_le(rel_gfn, memslot->dirty_bitmap);
1925         }
1926 }
1927
1928 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1929 {
1930         struct kvm_memory_slot *memslot;
1931
1932         memslot = gfn_to_memslot(kvm, gfn);
1933         mark_page_dirty_in_slot(memslot, gfn);
1934 }
1935 EXPORT_SYMBOL_GPL(mark_page_dirty);
1936
1937 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
1938 {
1939         struct kvm_memory_slot *memslot;
1940
1941         memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1942         mark_page_dirty_in_slot(memslot, gfn);
1943 }
1944 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
1945
1946 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
1947 {
1948         unsigned int old, val, grow;
1949
1950         old = val = vcpu->halt_poll_ns;
1951         grow = READ_ONCE(halt_poll_ns_grow);
1952         /* 10us base */
1953         if (val == 0 && grow)
1954                 val = 10000;
1955         else
1956                 val *= grow;
1957
1958         if (val > halt_poll_ns)
1959                 val = halt_poll_ns;
1960
1961         vcpu->halt_poll_ns = val;
1962         trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
1963 }
1964
1965 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
1966 {
1967         unsigned int old, val, shrink;
1968
1969         old = val = vcpu->halt_poll_ns;
1970         shrink = READ_ONCE(halt_poll_ns_shrink);
1971         if (shrink == 0)
1972                 val = 0;
1973         else
1974                 val /= shrink;
1975
1976         vcpu->halt_poll_ns = val;
1977         trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
1978 }
1979
1980 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
1981 {
1982         if (kvm_arch_vcpu_runnable(vcpu)) {
1983                 kvm_make_request(KVM_REQ_UNHALT, vcpu);
1984                 return -EINTR;
1985         }
1986         if (kvm_cpu_has_pending_timer(vcpu))
1987                 return -EINTR;
1988         if (signal_pending(current))
1989                 return -EINTR;
1990
1991         return 0;
1992 }
1993
1994 /*
1995  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1996  */
1997 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1998 {
1999         ktime_t start, cur;
2000         DECLARE_SWAITQUEUE(wait);
2001         bool waited = false;
2002         u64 block_ns;
2003
2004         start = cur = ktime_get();
2005         if (vcpu->halt_poll_ns) {
2006                 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2007
2008                 ++vcpu->stat.halt_attempted_poll;
2009                 do {
2010                         /*
2011                          * This sets KVM_REQ_UNHALT if an interrupt
2012                          * arrives.
2013                          */
2014                         if (kvm_vcpu_check_block(vcpu) < 0) {
2015                                 ++vcpu->stat.halt_successful_poll;
2016                                 goto out;
2017                         }
2018                         cur = ktime_get();
2019                 } while (single_task_running() && ktime_before(cur, stop));
2020         }
2021
2022         kvm_arch_vcpu_blocking(vcpu);
2023
2024         for (;;) {
2025                 prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2026
2027                 if (kvm_vcpu_check_block(vcpu) < 0)
2028                         break;
2029
2030                 waited = true;
2031                 schedule();
2032         }
2033
2034         finish_swait(&vcpu->wq, &wait);
2035         cur = ktime_get();
2036
2037         kvm_arch_vcpu_unblocking(vcpu);
2038 out:
2039         block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2040
2041         if (halt_poll_ns) {
2042                 if (block_ns <= vcpu->halt_poll_ns)
2043                         ;
2044                 /* we had a long block, shrink polling */
2045                 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2046                         shrink_halt_poll_ns(vcpu);
2047                 /* we had a short halt and our poll time is too small */
2048                 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2049                         block_ns < halt_poll_ns)
2050                         grow_halt_poll_ns(vcpu);
2051         } else
2052                 vcpu->halt_poll_ns = 0;
2053
2054         trace_kvm_vcpu_wakeup(block_ns, waited);
2055 }
2056 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2057
2058 #ifndef CONFIG_S390
2059 /*
2060  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2061  */
2062 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2063 {
2064         int me;
2065         int cpu = vcpu->cpu;
2066         struct swait_queue_head *wqp;
2067
2068         wqp = kvm_arch_vcpu_wq(vcpu);
2069         if (swait_active(wqp)) {
2070                 swake_up(wqp);
2071                 ++vcpu->stat.halt_wakeup;
2072         }
2073
2074         me = get_cpu();
2075         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2076                 if (kvm_arch_vcpu_should_kick(vcpu))
2077                         smp_send_reschedule(cpu);
2078         put_cpu();
2079 }
2080 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2081 #endif /* !CONFIG_S390 */
2082
2083 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2084 {
2085         struct pid *pid;
2086         struct task_struct *task = NULL;
2087         int ret = 0;
2088
2089         rcu_read_lock();
2090         pid = rcu_dereference(target->pid);
2091         if (pid)
2092                 task = get_pid_task(pid, PIDTYPE_PID);
2093         rcu_read_unlock();
2094         if (!task)
2095                 return ret;
2096         ret = yield_to(task, 1);
2097         put_task_struct(task);
2098
2099         return ret;
2100 }
2101 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2102
2103 /*
2104  * Helper that checks whether a VCPU is eligible for directed yield.
2105  * Most eligible candidate to yield is decided by following heuristics:
2106  *
2107  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2108  *  (preempted lock holder), indicated by @in_spin_loop.
2109  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2110  *
2111  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2112  *  chance last time (mostly it has become eligible now since we have probably
2113  *  yielded to lockholder in last iteration. This is done by toggling
2114  *  @dy_eligible each time a VCPU checked for eligibility.)
2115  *
2116  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2117  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2118  *  burning. Giving priority for a potential lock-holder increases lock
2119  *  progress.
2120  *
2121  *  Since algorithm is based on heuristics, accessing another VCPU data without
2122  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2123  *  and continue with next VCPU and so on.
2124  */
2125 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2126 {
2127 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2128         bool eligible;
2129
2130         eligible = !vcpu->spin_loop.in_spin_loop ||
2131                     vcpu->spin_loop.dy_eligible;
2132
2133         if (vcpu->spin_loop.in_spin_loop)
2134                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2135
2136         return eligible;
2137 #else
2138         return true;
2139 #endif
2140 }
2141
2142 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
2143 {
2144         struct kvm *kvm = me->kvm;
2145         struct kvm_vcpu *vcpu;
2146         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2147         int yielded = 0;
2148         int try = 3;
2149         int pass;
2150         int i;
2151
2152         kvm_vcpu_set_in_spin_loop(me, true);
2153         /*
2154          * We boost the priority of a VCPU that is runnable but not
2155          * currently running, because it got preempted by something
2156          * else and called schedule in __vcpu_run.  Hopefully that
2157          * VCPU is holding the lock that we need and will release it.
2158          * We approximate round-robin by starting at the last boosted VCPU.
2159          */
2160         for (pass = 0; pass < 2 && !yielded && try; pass++) {
2161                 kvm_for_each_vcpu(i, vcpu, kvm) {
2162                         if (!pass && i <= last_boosted_vcpu) {
2163                                 i = last_boosted_vcpu;
2164                                 continue;
2165                         } else if (pass && i > last_boosted_vcpu)
2166                                 break;
2167                         if (!ACCESS_ONCE(vcpu->preempted))
2168                                 continue;
2169                         if (vcpu == me)
2170                                 continue;
2171                         if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2172                                 continue;
2173                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2174                                 continue;
2175
2176                         yielded = kvm_vcpu_yield_to(vcpu);
2177                         if (yielded > 0) {
2178                                 kvm->last_boosted_vcpu = i;
2179                                 break;
2180                         } else if (yielded < 0) {
2181                                 try--;
2182                                 if (!try)
2183                                         break;
2184                         }
2185                 }
2186         }
2187         kvm_vcpu_set_in_spin_loop(me, false);
2188
2189         /* Ensure vcpu is not eligible during next spinloop */
2190         kvm_vcpu_set_dy_eligible(me, false);
2191 }
2192 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2193
2194 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2195 {
2196         struct kvm_vcpu *vcpu = vma->vm_file->private_data;
2197         struct page *page;
2198
2199         if (vmf->pgoff == 0)
2200                 page = virt_to_page(vcpu->run);
2201 #ifdef CONFIG_X86
2202         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2203                 page = virt_to_page(vcpu->arch.pio_data);
2204 #endif
2205 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2206         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2207                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2208 #endif
2209         else
2210                 return kvm_arch_vcpu_fault(vcpu, vmf);
2211         get_page(page);
2212         vmf->page = page;
2213         return 0;
2214 }
2215
2216 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2217         .fault = kvm_vcpu_fault,
2218 };
2219
2220 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2221 {
2222         vma->vm_ops = &kvm_vcpu_vm_ops;
2223         return 0;
2224 }
2225
2226 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2227 {
2228         struct kvm_vcpu *vcpu = filp->private_data;
2229
2230         kvm_put_kvm(vcpu->kvm);
2231         return 0;
2232 }
2233
2234 static struct file_operations kvm_vcpu_fops = {
2235         .release        = kvm_vcpu_release,
2236         .unlocked_ioctl = kvm_vcpu_ioctl,
2237 #ifdef CONFIG_KVM_COMPAT
2238         .compat_ioctl   = kvm_vcpu_compat_ioctl,
2239 #endif
2240         .mmap           = kvm_vcpu_mmap,
2241         .llseek         = noop_llseek,
2242 };
2243
2244 /*
2245  * Allocates an inode for the vcpu.
2246  */
2247 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2248 {
2249         return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2250 }
2251
2252 /*
2253  * Creates some virtual cpus.  Good luck creating more than one.
2254  */
2255 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2256 {
2257         int r;
2258         struct kvm_vcpu *vcpu;
2259
2260         if (id >= KVM_MAX_VCPUS)
2261                 return -EINVAL;
2262
2263         vcpu = kvm_arch_vcpu_create(kvm, id);
2264         if (IS_ERR(vcpu))
2265                 return PTR_ERR(vcpu);
2266
2267         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2268
2269         r = kvm_arch_vcpu_setup(vcpu);
2270         if (r)
2271                 goto vcpu_destroy;
2272
2273         mutex_lock(&kvm->lock);
2274         if (!kvm_vcpu_compatible(vcpu)) {
2275                 r = -EINVAL;
2276                 goto unlock_vcpu_destroy;
2277         }
2278         if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
2279                 r = -EINVAL;
2280                 goto unlock_vcpu_destroy;
2281         }
2282         if (kvm_get_vcpu_by_id(kvm, id)) {
2283                 r = -EEXIST;
2284                 goto unlock_vcpu_destroy;
2285         }
2286
2287         BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2288
2289         /* Now it's all set up, let userspace reach it */
2290         kvm_get_kvm(kvm);
2291         r = create_vcpu_fd(vcpu);
2292         if (r < 0) {
2293                 kvm_put_kvm(kvm);
2294                 goto unlock_vcpu_destroy;
2295         }
2296
2297         kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2298
2299         /*
2300          * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2301          * before kvm->online_vcpu's incremented value.
2302          */
2303         smp_wmb();
2304         atomic_inc(&kvm->online_vcpus);
2305
2306         mutex_unlock(&kvm->lock);
2307         kvm_arch_vcpu_postcreate(vcpu);
2308         return r;
2309
2310 unlock_vcpu_destroy:
2311         mutex_unlock(&kvm->lock);
2312 vcpu_destroy:
2313         kvm_arch_vcpu_destroy(vcpu);
2314         return r;
2315 }
2316
2317 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2318 {
2319         if (sigset) {
2320                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2321                 vcpu->sigset_active = 1;
2322                 vcpu->sigset = *sigset;
2323         } else
2324                 vcpu->sigset_active = 0;
2325         return 0;
2326 }
2327
2328 static long kvm_vcpu_ioctl(struct file *filp,
2329                            unsigned int ioctl, unsigned long arg)
2330 {
2331         struct kvm_vcpu *vcpu = filp->private_data;
2332         void __user *argp = (void __user *)arg;
2333         int r;
2334         struct kvm_fpu *fpu = NULL;
2335         struct kvm_sregs *kvm_sregs = NULL;
2336
2337         if (vcpu->kvm->mm != current->mm)
2338                 return -EIO;
2339
2340         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2341                 return -EINVAL;
2342
2343 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2344         /*
2345          * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2346          * so vcpu_load() would break it.
2347          */
2348         if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2349                 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2350 #endif
2351
2352
2353         r = vcpu_load(vcpu);
2354         if (r)
2355                 return r;
2356         switch (ioctl) {
2357         case KVM_RUN:
2358                 r = -EINVAL;
2359                 if (arg)
2360                         goto out;
2361                 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
2362                         /* The thread running this VCPU changed. */
2363                         struct pid *oldpid = vcpu->pid;
2364                         struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2365
2366                         rcu_assign_pointer(vcpu->pid, newpid);
2367                         if (oldpid)
2368                                 synchronize_rcu();
2369                         put_pid(oldpid);
2370                 }
2371                 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2372                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2373                 break;
2374         case KVM_GET_REGS: {
2375                 struct kvm_regs *kvm_regs;
2376
2377                 r = -ENOMEM;
2378                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2379                 if (!kvm_regs)
2380                         goto out;
2381                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2382                 if (r)
2383                         goto out_free1;
2384                 r = -EFAULT;
2385                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2386                         goto out_free1;
2387                 r = 0;
2388 out_free1:
2389                 kfree(kvm_regs);
2390                 break;
2391         }
2392         case KVM_SET_REGS: {
2393                 struct kvm_regs *kvm_regs;
2394
2395                 r = -ENOMEM;
2396                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2397                 if (IS_ERR(kvm_regs)) {
2398                         r = PTR_ERR(kvm_regs);
2399                         goto out;
2400                 }
2401                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2402                 kfree(kvm_regs);
2403                 break;
2404         }
2405         case KVM_GET_SREGS: {
2406                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2407                 r = -ENOMEM;
2408                 if (!kvm_sregs)
2409                         goto out;
2410                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2411                 if (r)
2412                         goto out;
2413                 r = -EFAULT;
2414                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2415                         goto out;
2416                 r = 0;
2417                 break;
2418         }
2419         case KVM_SET_SREGS: {
2420                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2421                 if (IS_ERR(kvm_sregs)) {
2422                         r = PTR_ERR(kvm_sregs);
2423                         kvm_sregs = NULL;
2424                         goto out;
2425                 }
2426                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2427                 break;
2428         }
2429         case KVM_GET_MP_STATE: {
2430                 struct kvm_mp_state mp_state;
2431
2432                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2433                 if (r)
2434                         goto out;
2435                 r = -EFAULT;
2436                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2437                         goto out;
2438                 r = 0;
2439                 break;
2440         }
2441         case KVM_SET_MP_STATE: {
2442                 struct kvm_mp_state mp_state;
2443
2444                 r = -EFAULT;
2445                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2446                         goto out;
2447                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2448                 break;
2449         }
2450         case KVM_TRANSLATE: {
2451                 struct kvm_translation tr;
2452
2453                 r = -EFAULT;
2454                 if (copy_from_user(&tr, argp, sizeof(tr)))
2455                         goto out;
2456                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2457                 if (r)
2458                         goto out;
2459                 r = -EFAULT;
2460                 if (copy_to_user(argp, &tr, sizeof(tr)))
2461                         goto out;
2462                 r = 0;
2463                 break;
2464         }
2465         case KVM_SET_GUEST_DEBUG: {
2466                 struct kvm_guest_debug dbg;
2467
2468                 r = -EFAULT;
2469                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2470                         goto out;
2471                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2472                 break;
2473         }
2474         case KVM_SET_SIGNAL_MASK: {
2475                 struct kvm_signal_mask __user *sigmask_arg = argp;
2476                 struct kvm_signal_mask kvm_sigmask;
2477                 sigset_t sigset, *p;
2478
2479                 p = NULL;
2480                 if (argp) {
2481                         r = -EFAULT;
2482                         if (copy_from_user(&kvm_sigmask, argp,
2483                                            sizeof(kvm_sigmask)))
2484                                 goto out;
2485                         r = -EINVAL;
2486                         if (kvm_sigmask.len != sizeof(sigset))
2487                                 goto out;
2488                         r = -EFAULT;
2489                         if (copy_from_user(&sigset, sigmask_arg->sigset,
2490                                            sizeof(sigset)))
2491                                 goto out;
2492                         p = &sigset;
2493                 }
2494                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2495                 break;
2496         }
2497         case KVM_GET_FPU: {
2498                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2499                 r = -ENOMEM;
2500                 if (!fpu)
2501                         goto out;
2502                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2503                 if (r)
2504                         goto out;
2505                 r = -EFAULT;
2506                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2507                         goto out;
2508                 r = 0;
2509                 break;
2510         }
2511         case KVM_SET_FPU: {
2512                 fpu = memdup_user(argp, sizeof(*fpu));
2513                 if (IS_ERR(fpu)) {
2514                         r = PTR_ERR(fpu);
2515                         fpu = NULL;
2516                         goto out;
2517                 }
2518                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2519                 break;
2520         }
2521         default:
2522                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2523         }
2524 out:
2525         vcpu_put(vcpu);
2526         kfree(fpu);
2527         kfree(kvm_sregs);
2528         return r;
2529 }
2530
2531 #ifdef CONFIG_KVM_COMPAT
2532 static long kvm_vcpu_compat_ioctl(struct file *filp,
2533                                   unsigned int ioctl, unsigned long arg)
2534 {
2535         struct kvm_vcpu *vcpu = filp->private_data;
2536         void __user *argp = compat_ptr(arg);
2537         int r;
2538
2539         if (vcpu->kvm->mm != current->mm)
2540                 return -EIO;
2541
2542         switch (ioctl) {
2543         case KVM_SET_SIGNAL_MASK: {
2544                 struct kvm_signal_mask __user *sigmask_arg = argp;
2545                 struct kvm_signal_mask kvm_sigmask;
2546                 compat_sigset_t csigset;
2547                 sigset_t sigset;
2548
2549                 if (argp) {
2550                         r = -EFAULT;
2551                         if (copy_from_user(&kvm_sigmask, argp,
2552                                            sizeof(kvm_sigmask)))
2553                                 goto out;
2554                         r = -EINVAL;
2555                         if (kvm_sigmask.len != sizeof(csigset))
2556                                 goto out;
2557                         r = -EFAULT;
2558                         if (copy_from_user(&csigset, sigmask_arg->sigset,
2559                                            sizeof(csigset)))
2560                                 goto out;
2561                         sigset_from_compat(&sigset, &csigset);
2562                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2563                 } else
2564                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2565                 break;
2566         }
2567         default:
2568                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2569         }
2570
2571 out:
2572         return r;
2573 }
2574 #endif
2575
2576 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2577                                  int (*accessor)(struct kvm_device *dev,
2578                                                  struct kvm_device_attr *attr),
2579                                  unsigned long arg)
2580 {
2581         struct kvm_device_attr attr;
2582
2583         if (!accessor)
2584                 return -EPERM;
2585
2586         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2587                 return -EFAULT;
2588
2589         return accessor(dev, &attr);
2590 }
2591
2592 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2593                              unsigned long arg)
2594 {
2595         struct kvm_device *dev = filp->private_data;
2596
2597         switch (ioctl) {
2598         case KVM_SET_DEVICE_ATTR:
2599                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2600         case KVM_GET_DEVICE_ATTR:
2601                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2602         case KVM_HAS_DEVICE_ATTR:
2603                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2604         default:
2605                 if (dev->ops->ioctl)
2606                         return dev->ops->ioctl(dev, ioctl, arg);
2607
2608                 return -ENOTTY;
2609         }
2610 }
2611
2612 static int kvm_device_release(struct inode *inode, struct file *filp)
2613 {
2614         struct kvm_device *dev = filp->private_data;
2615         struct kvm *kvm = dev->kvm;
2616
2617         kvm_put_kvm(kvm);
2618         return 0;
2619 }
2620
2621 static const struct file_operations kvm_device_fops = {
2622         .unlocked_ioctl = kvm_device_ioctl,
2623 #ifdef CONFIG_KVM_COMPAT
2624         .compat_ioctl = kvm_device_ioctl,
2625 #endif
2626         .release = kvm_device_release,
2627 };
2628
2629 struct kvm_device *kvm_device_from_filp(struct file *filp)
2630 {
2631         if (filp->f_op != &kvm_device_fops)
2632                 return NULL;
2633
2634         return filp->private_data;
2635 }
2636
2637 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2638 #ifdef CONFIG_KVM_MPIC
2639         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
2640         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
2641 #endif
2642
2643 #ifdef CONFIG_KVM_XICS
2644         [KVM_DEV_TYPE_XICS]             = &kvm_xics_ops,
2645 #endif
2646 };
2647
2648 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2649 {
2650         if (type >= ARRAY_SIZE(kvm_device_ops_table))
2651                 return -ENOSPC;
2652
2653         if (kvm_device_ops_table[type] != NULL)
2654                 return -EEXIST;
2655
2656         kvm_device_ops_table[type] = ops;
2657         return 0;
2658 }
2659
2660 void kvm_unregister_device_ops(u32 type)
2661 {
2662         if (kvm_device_ops_table[type] != NULL)
2663                 kvm_device_ops_table[type] = NULL;
2664 }
2665
2666 static int kvm_ioctl_create_device(struct kvm *kvm,
2667                                    struct kvm_create_device *cd)
2668 {
2669         struct kvm_device_ops *ops = NULL;
2670         struct kvm_device *dev;
2671         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2672         int ret;
2673
2674         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2675                 return -ENODEV;
2676
2677         ops = kvm_device_ops_table[cd->type];
2678         if (ops == NULL)
2679                 return -ENODEV;
2680
2681         if (test)
2682                 return 0;
2683
2684         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2685         if (!dev)
2686                 return -ENOMEM;
2687
2688         dev->ops = ops;
2689         dev->kvm = kvm;
2690
2691         ret = ops->create(dev, cd->type);
2692         if (ret < 0) {
2693                 kfree(dev);
2694                 return ret;
2695         }
2696
2697         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2698         if (ret < 0) {
2699                 ops->destroy(dev);
2700                 return ret;
2701         }
2702
2703         list_add(&dev->vm_node, &kvm->devices);
2704         kvm_get_kvm(kvm);
2705         cd->fd = ret;
2706         return 0;
2707 }
2708
2709 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2710 {
2711         switch (arg) {
2712         case KVM_CAP_USER_MEMORY:
2713         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2714         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2715         case KVM_CAP_INTERNAL_ERROR_DATA:
2716 #ifdef CONFIG_HAVE_KVM_MSI
2717         case KVM_CAP_SIGNAL_MSI:
2718 #endif
2719 #ifdef CONFIG_HAVE_KVM_IRQFD
2720         case KVM_CAP_IRQFD:
2721         case KVM_CAP_IRQFD_RESAMPLE:
2722 #endif
2723         case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2724         case KVM_CAP_CHECK_EXTENSION_VM:
2725                 return 1;
2726 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2727         case KVM_CAP_IRQ_ROUTING:
2728                 return KVM_MAX_IRQ_ROUTES;
2729 #endif
2730 #if KVM_ADDRESS_SPACE_NUM > 1
2731         case KVM_CAP_MULTI_ADDRESS_SPACE:
2732                 return KVM_ADDRESS_SPACE_NUM;
2733 #endif
2734         default:
2735                 break;
2736         }
2737         return kvm_vm_ioctl_check_extension(kvm, arg);
2738 }
2739
2740 static long kvm_vm_ioctl(struct file *filp,
2741                            unsigned int ioctl, unsigned long arg)
2742 {
2743         struct kvm *kvm = filp->private_data;
2744         void __user *argp = (void __user *)arg;
2745         int r;
2746
2747         if (kvm->mm != current->mm)
2748                 return -EIO;
2749         switch (ioctl) {
2750         case KVM_CREATE_VCPU:
2751                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2752                 break;
2753         case KVM_SET_USER_MEMORY_REGION: {
2754                 struct kvm_userspace_memory_region kvm_userspace_mem;
2755
2756                 r = -EFAULT;
2757                 if (copy_from_user(&kvm_userspace_mem, argp,
2758                                                 sizeof(kvm_userspace_mem)))
2759                         goto out;
2760
2761                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2762                 break;
2763         }
2764         case KVM_GET_DIRTY_LOG: {
2765                 struct kvm_dirty_log log;
2766
2767                 r = -EFAULT;
2768                 if (copy_from_user(&log, argp, sizeof(log)))
2769                         goto out;
2770                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2771                 break;
2772         }
2773 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2774         case KVM_REGISTER_COALESCED_MMIO: {
2775                 struct kvm_coalesced_mmio_zone zone;
2776
2777                 r = -EFAULT;
2778                 if (copy_from_user(&zone, argp, sizeof(zone)))
2779                         goto out;
2780                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2781                 break;
2782         }
2783         case KVM_UNREGISTER_COALESCED_MMIO: {
2784                 struct kvm_coalesced_mmio_zone zone;
2785
2786                 r = -EFAULT;
2787                 if (copy_from_user(&zone, argp, sizeof(zone)))
2788                         goto out;
2789                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2790                 break;
2791         }
2792 #endif
2793         case KVM_IRQFD: {
2794                 struct kvm_irqfd data;
2795
2796                 r = -EFAULT;
2797                 if (copy_from_user(&data, argp, sizeof(data)))
2798                         goto out;
2799                 r = kvm_irqfd(kvm, &data);
2800                 break;
2801         }
2802         case KVM_IOEVENTFD: {
2803                 struct kvm_ioeventfd data;
2804
2805                 r = -EFAULT;
2806                 if (copy_from_user(&data, argp, sizeof(data)))
2807                         goto out;
2808                 r = kvm_ioeventfd(kvm, &data);
2809                 break;
2810         }
2811 #ifdef CONFIG_HAVE_KVM_MSI
2812         case KVM_SIGNAL_MSI: {
2813                 struct kvm_msi msi;
2814
2815                 r = -EFAULT;
2816                 if (copy_from_user(&msi, argp, sizeof(msi)))
2817                         goto out;
2818                 r = kvm_send_userspace_msi(kvm, &msi);
2819                 break;
2820         }
2821 #endif
2822 #ifdef __KVM_HAVE_IRQ_LINE
2823         case KVM_IRQ_LINE_STATUS:
2824         case KVM_IRQ_LINE: {
2825                 struct kvm_irq_level irq_event;
2826
2827                 r = -EFAULT;
2828                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
2829                         goto out;
2830
2831                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
2832                                         ioctl == KVM_IRQ_LINE_STATUS);
2833                 if (r)
2834                         goto out;
2835
2836                 r = -EFAULT;
2837                 if (ioctl == KVM_IRQ_LINE_STATUS) {
2838                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
2839                                 goto out;
2840                 }
2841
2842                 r = 0;
2843                 break;
2844         }
2845 #endif
2846 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2847         case KVM_SET_GSI_ROUTING: {
2848                 struct kvm_irq_routing routing;
2849                 struct kvm_irq_routing __user *urouting;
2850                 struct kvm_irq_routing_entry *entries;
2851
2852                 r = -EFAULT;
2853                 if (copy_from_user(&routing, argp, sizeof(routing)))
2854                         goto out;
2855                 r = -EINVAL;
2856                 if (routing.nr >= KVM_MAX_IRQ_ROUTES)
2857                         goto out;
2858                 if (routing.flags)
2859                         goto out;
2860                 r = -ENOMEM;
2861                 entries = vmalloc(routing.nr * sizeof(*entries));
2862                 if (!entries)
2863                         goto out;
2864                 r = -EFAULT;
2865                 urouting = argp;
2866                 if (copy_from_user(entries, urouting->entries,
2867                                    routing.nr * sizeof(*entries)))
2868                         goto out_free_irq_routing;
2869                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
2870                                         routing.flags);
2871 out_free_irq_routing:
2872                 vfree(entries);
2873                 break;
2874         }
2875 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
2876         case KVM_CREATE_DEVICE: {
2877                 struct kvm_create_device cd;
2878
2879                 r = -EFAULT;
2880                 if (copy_from_user(&cd, argp, sizeof(cd)))
2881                         goto out;
2882
2883                 r = kvm_ioctl_create_device(kvm, &cd);
2884                 if (r)
2885                         goto out;
2886
2887                 r = -EFAULT;
2888                 if (copy_to_user(argp, &cd, sizeof(cd)))
2889                         goto out;
2890
2891                 r = 0;
2892                 break;
2893         }
2894         case KVM_CHECK_EXTENSION:
2895                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
2896                 break;
2897         default:
2898                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2899         }
2900 out:
2901         return r;
2902 }
2903
2904 #ifdef CONFIG_KVM_COMPAT
2905 struct compat_kvm_dirty_log {
2906         __u32 slot;
2907         __u32 padding1;
2908         union {
2909                 compat_uptr_t dirty_bitmap; /* one bit per page */
2910                 __u64 padding2;
2911         };
2912 };
2913
2914 static long kvm_vm_compat_ioctl(struct file *filp,
2915                            unsigned int ioctl, unsigned long arg)
2916 {
2917         struct kvm *kvm = filp->private_data;
2918         int r;
2919
2920         if (kvm->mm != current->mm)
2921                 return -EIO;
2922         switch (ioctl) {
2923         case KVM_GET_DIRTY_LOG: {
2924                 struct compat_kvm_dirty_log compat_log;
2925                 struct kvm_dirty_log log;
2926
2927                 r = -EFAULT;
2928                 if (copy_from_user(&compat_log, (void __user *)arg,
2929                                    sizeof(compat_log)))
2930                         goto out;
2931                 log.slot         = compat_log.slot;
2932                 log.padding1     = compat_log.padding1;
2933                 log.padding2     = compat_log.padding2;
2934                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2935
2936                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2937                 break;
2938         }
2939         default:
2940                 r = kvm_vm_ioctl(filp, ioctl, arg);
2941         }
2942
2943 out:
2944         return r;
2945 }
2946 #endif
2947
2948 static struct file_operations kvm_vm_fops = {
2949         .release        = kvm_vm_release,
2950         .unlocked_ioctl = kvm_vm_ioctl,
2951 #ifdef CONFIG_KVM_COMPAT
2952         .compat_ioctl   = kvm_vm_compat_ioctl,
2953 #endif
2954         .llseek         = noop_llseek,
2955 };
2956
2957 static int kvm_dev_ioctl_create_vm(unsigned long type)
2958 {
2959         int r;
2960         struct kvm *kvm;
2961
2962         kvm = kvm_create_vm(type);
2963         if (IS_ERR(kvm))
2964                 return PTR_ERR(kvm);
2965 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2966         r = kvm_coalesced_mmio_init(kvm);
2967         if (r < 0) {
2968                 kvm_put_kvm(kvm);
2969                 return r;
2970         }
2971 #endif
2972         r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR | O_CLOEXEC);
2973         if (r < 0)
2974                 kvm_put_kvm(kvm);
2975
2976         return r;
2977 }
2978
2979 static long kvm_dev_ioctl(struct file *filp,
2980                           unsigned int ioctl, unsigned long arg)
2981 {
2982         long r = -EINVAL;
2983
2984         switch (ioctl) {
2985         case KVM_GET_API_VERSION:
2986                 if (arg)
2987                         goto out;
2988                 r = KVM_API_VERSION;
2989                 break;
2990         case KVM_CREATE_VM:
2991                 r = kvm_dev_ioctl_create_vm(arg);
2992                 break;
2993         case KVM_CHECK_EXTENSION:
2994                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
2995                 break;
2996         case KVM_GET_VCPU_MMAP_SIZE:
2997                 if (arg)
2998                         goto out;
2999                 r = PAGE_SIZE;     /* struct kvm_run */
3000 #ifdef CONFIG_X86
3001                 r += PAGE_SIZE;    /* pio data page */
3002 #endif
3003 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
3004                 r += PAGE_SIZE;    /* coalesced mmio ring page */
3005 #endif
3006                 break;
3007         case KVM_TRACE_ENABLE:
3008         case KVM_TRACE_PAUSE:
3009         case KVM_TRACE_DISABLE:
3010                 r = -EOPNOTSUPP;
3011                 break;
3012         default:
3013                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3014         }
3015 out:
3016         return r;
3017 }
3018
3019 static struct file_operations kvm_chardev_ops = {
3020         .unlocked_ioctl = kvm_dev_ioctl,
3021         .compat_ioctl   = kvm_dev_ioctl,
3022         .llseek         = noop_llseek,
3023 };
3024
3025 static struct miscdevice kvm_dev = {
3026         KVM_MINOR,
3027         "kvm",
3028         &kvm_chardev_ops,
3029 };
3030
3031 static void hardware_enable_nolock(void *junk)
3032 {
3033         int cpu = raw_smp_processor_id();
3034         int r;
3035
3036         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3037                 return;
3038
3039         cpumask_set_cpu(cpu, cpus_hardware_enabled);
3040
3041         r = kvm_arch_hardware_enable();
3042
3043         if (r) {
3044                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3045                 atomic_inc(&hardware_enable_failed);
3046                 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3047         }
3048 }
3049
3050 static void hardware_enable(void)
3051 {
3052         raw_spin_lock(&kvm_count_lock);
3053         if (kvm_usage_count)
3054                 hardware_enable_nolock(NULL);
3055         raw_spin_unlock(&kvm_count_lock);
3056 }
3057
3058 static void hardware_disable_nolock(void *junk)
3059 {
3060         int cpu = raw_smp_processor_id();
3061
3062         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3063                 return;
3064         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3065         kvm_arch_hardware_disable();
3066 }
3067
3068 static void hardware_disable(void)
3069 {
3070         raw_spin_lock(&kvm_count_lock);
3071         if (kvm_usage_count)
3072                 hardware_disable_nolock(NULL);
3073         raw_spin_unlock(&kvm_count_lock);
3074 }
3075
3076 static void hardware_disable_all_nolock(void)
3077 {
3078         BUG_ON(!kvm_usage_count);
3079
3080         kvm_usage_count--;
3081         if (!kvm_usage_count)
3082                 on_each_cpu(hardware_disable_nolock, NULL, 1);
3083 }
3084
3085 static void hardware_disable_all(void)
3086 {
3087         raw_spin_lock(&kvm_count_lock);
3088         hardware_disable_all_nolock();
3089         raw_spin_unlock(&kvm_count_lock);
3090 }
3091
3092 static int hardware_enable_all(void)
3093 {
3094         int r = 0;
3095
3096         raw_spin_lock(&kvm_count_lock);
3097
3098         kvm_usage_count++;
3099         if (kvm_usage_count == 1) {
3100                 atomic_set(&hardware_enable_failed, 0);
3101                 on_each_cpu(hardware_enable_nolock, NULL, 1);
3102
3103                 if (atomic_read(&hardware_enable_failed)) {
3104                         hardware_disable_all_nolock();
3105                         r = -EBUSY;
3106                 }
3107         }
3108
3109         raw_spin_unlock(&kvm_count_lock);
3110
3111         return r;
3112 }
3113
3114 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
3115                            void *v)
3116 {
3117         val &= ~CPU_TASKS_FROZEN;
3118         switch (val) {
3119         case CPU_DYING:
3120                 hardware_disable();
3121                 break;
3122         case CPU_STARTING:
3123                 hardware_enable();
3124                 break;
3125         }
3126         return NOTIFY_OK;
3127 }
3128
3129 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3130                       void *v)
3131 {
3132         /*
3133          * Some (well, at least mine) BIOSes hang on reboot if
3134          * in vmx root mode.
3135          *
3136          * And Intel TXT required VMX off for all cpu when system shutdown.
3137          */
3138         pr_info("kvm: exiting hardware virtualization\n");
3139         kvm_rebooting = true;
3140         on_each_cpu(hardware_disable_nolock, NULL, 1);
3141         return NOTIFY_OK;
3142 }
3143
3144 static struct notifier_block kvm_reboot_notifier = {
3145         .notifier_call = kvm_reboot,
3146         .priority = 0,
3147 };
3148
3149 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3150 {
3151         int i;
3152
3153         for (i = 0; i < bus->dev_count; i++) {
3154                 struct kvm_io_device *pos = bus->range[i].dev;
3155
3156                 kvm_iodevice_destructor(pos);
3157         }
3158         kfree(bus);
3159 }
3160
3161 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3162                                  const struct kvm_io_range *r2)
3163 {
3164         gpa_t addr1 = r1->addr;
3165         gpa_t addr2 = r2->addr;
3166
3167         if (addr1 < addr2)
3168                 return -1;
3169
3170         /* If r2->len == 0, match the exact address.  If r2->len != 0,
3171          * accept any overlapping write.  Any order is acceptable for
3172          * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3173          * we process all of them.
3174          */
3175         if (r2->len) {
3176                 addr1 += r1->len;
3177                 addr2 += r2->len;
3178         }
3179
3180         if (addr1 > addr2)
3181                 return 1;
3182
3183         return 0;
3184 }
3185
3186 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3187 {
3188         return kvm_io_bus_cmp(p1, p2);
3189 }
3190
3191 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3192                           gpa_t addr, int len)
3193 {
3194         bus->range[bus->dev_count++] = (struct kvm_io_range) {
3195                 .addr = addr,
3196                 .len = len,
3197                 .dev = dev,
3198         };
3199
3200         sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3201                 kvm_io_bus_sort_cmp, NULL);
3202
3203         return 0;
3204 }
3205
3206 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3207                              gpa_t addr, int len)
3208 {
3209         struct kvm_io_range *range, key;
3210         int off;
3211
3212         key = (struct kvm_io_range) {
3213                 .addr = addr,
3214                 .len = len,
3215         };
3216
3217         range = bsearch(&key, bus->range, bus->dev_count,
3218                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3219         if (range == NULL)
3220                 return -ENOENT;
3221
3222         off = range - bus->range;
3223
3224         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3225                 off--;
3226
3227         return off;
3228 }
3229
3230 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3231                               struct kvm_io_range *range, const void *val)
3232 {
3233         int idx;
3234
3235         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3236         if (idx < 0)
3237                 return -EOPNOTSUPP;
3238
3239         while (idx < bus->dev_count &&
3240                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3241                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3242                                         range->len, val))
3243                         return idx;
3244                 idx++;
3245         }
3246
3247         return -EOPNOTSUPP;
3248 }
3249
3250 /* kvm_io_bus_write - called under kvm->slots_lock */
3251 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3252                      int len, const void *val)
3253 {
3254         struct kvm_io_bus *bus;
3255         struct kvm_io_range range;
3256         int r;
3257
3258         range = (struct kvm_io_range) {
3259                 .addr = addr,
3260                 .len = len,
3261         };
3262
3263         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3264         r = __kvm_io_bus_write(vcpu, bus, &range, val);
3265         return r < 0 ? r : 0;
3266 }
3267
3268 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3269 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3270                             gpa_t addr, int len, const void *val, long cookie)
3271 {
3272         struct kvm_io_bus *bus;
3273         struct kvm_io_range range;
3274
3275         range = (struct kvm_io_range) {
3276                 .addr = addr,
3277                 .len = len,
3278         };
3279
3280         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3281
3282         /* First try the device referenced by cookie. */
3283         if ((cookie >= 0) && (cookie < bus->dev_count) &&
3284             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3285                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3286                                         val))
3287                         return cookie;
3288
3289         /*
3290          * cookie contained garbage; fall back to search and return the
3291          * correct cookie value.
3292          */
3293         return __kvm_io_bus_write(vcpu, bus, &range, val);
3294 }
3295
3296 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3297                              struct kvm_io_range *range, void *val)
3298 {
3299         int idx;
3300
3301         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3302         if (idx < 0)
3303                 return -EOPNOTSUPP;
3304
3305         while (idx < bus->dev_count &&
3306                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3307                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3308                                        range->len, val))
3309                         return idx;
3310                 idx++;
3311         }
3312
3313         return -EOPNOTSUPP;
3314 }
3315 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3316
3317 /* kvm_io_bus_read - called under kvm->slots_lock */
3318 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3319                     int len, void *val)
3320 {
3321         struct kvm_io_bus *bus;
3322         struct kvm_io_range range;
3323         int r;
3324
3325         range = (struct kvm_io_range) {
3326                 .addr = addr,
3327                 .len = len,
3328         };
3329
3330         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3331         r = __kvm_io_bus_read(vcpu, bus, &range, val);
3332         return r < 0 ? r : 0;
3333 }
3334
3335
3336 /* Caller must hold slots_lock. */
3337 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3338                             int len, struct kvm_io_device *dev)
3339 {
3340         struct kvm_io_bus *new_bus, *bus;
3341
3342         bus = kvm->buses[bus_idx];
3343         /* exclude ioeventfd which is limited by maximum fd */
3344         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3345                 return -ENOSPC;
3346
3347         new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3348                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3349         if (!new_bus)
3350                 return -ENOMEM;
3351         memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3352                sizeof(struct kvm_io_range)));
3353         kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3354         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3355         synchronize_srcu_expedited(&kvm->srcu);
3356         kfree(bus);
3357
3358         return 0;
3359 }
3360
3361 /* Caller must hold slots_lock. */
3362 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3363                               struct kvm_io_device *dev)
3364 {
3365         int i, r;
3366         struct kvm_io_bus *new_bus, *bus;
3367
3368         bus = kvm->buses[bus_idx];
3369         r = -ENOENT;
3370         for (i = 0; i < bus->dev_count; i++)
3371                 if (bus->range[i].dev == dev) {
3372                         r = 0;
3373                         break;
3374                 }
3375
3376         if (r)
3377                 return r;
3378
3379         new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3380                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3381         if (!new_bus)
3382                 return -ENOMEM;
3383
3384         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3385         new_bus->dev_count--;
3386         memcpy(new_bus->range + i, bus->range + i + 1,
3387                (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3388
3389         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3390         synchronize_srcu_expedited(&kvm->srcu);
3391         kfree(bus);
3392         return r;
3393 }
3394
3395 static struct notifier_block kvm_cpu_notifier = {
3396         .notifier_call = kvm_cpu_hotplug,
3397 };
3398
3399 static int vm_stat_get(void *_offset, u64 *val)
3400 {
3401         unsigned offset = (long)_offset;
3402         struct kvm *kvm;
3403
3404         *val = 0;
3405         spin_lock(&kvm_lock);
3406         list_for_each_entry(kvm, &vm_list, vm_list)
3407                 *val += *(u32 *)((void *)kvm + offset);
3408         spin_unlock(&kvm_lock);
3409         return 0;
3410 }
3411
3412 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3413
3414 static int vcpu_stat_get(void *_offset, u64 *val)
3415 {
3416         unsigned offset = (long)_offset;
3417         struct kvm *kvm;
3418         struct kvm_vcpu *vcpu;
3419         int i;
3420
3421         *val = 0;
3422         spin_lock(&kvm_lock);
3423         list_for_each_entry(kvm, &vm_list, vm_list)
3424                 kvm_for_each_vcpu(i, vcpu, kvm)
3425                         *val += *(u32 *)((void *)vcpu + offset);
3426
3427         spin_unlock(&kvm_lock);
3428         return 0;
3429 }
3430
3431 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3432
3433 static const struct file_operations *stat_fops[] = {
3434         [KVM_STAT_VCPU] = &vcpu_stat_fops,
3435         [KVM_STAT_VM]   = &vm_stat_fops,
3436 };
3437
3438 static int kvm_init_debug(void)
3439 {
3440         int r = -EEXIST;
3441         struct kvm_stats_debugfs_item *p;
3442
3443         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3444         if (kvm_debugfs_dir == NULL)
3445                 goto out;
3446
3447         for (p = debugfs_entries; p->name; ++p) {
3448                 if (!debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3449                                          (void *)(long)p->offset,
3450                                          stat_fops[p->kind]))
3451                         goto out_dir;
3452         }
3453
3454         return 0;
3455
3456 out_dir:
3457         debugfs_remove_recursive(kvm_debugfs_dir);
3458 out:
3459         return r;
3460 }
3461
3462 static int kvm_suspend(void)
3463 {
3464         if (kvm_usage_count)
3465                 hardware_disable_nolock(NULL);
3466         return 0;
3467 }
3468
3469 static void kvm_resume(void)
3470 {
3471         if (kvm_usage_count) {
3472                 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3473                 hardware_enable_nolock(NULL);
3474         }
3475 }
3476
3477 static struct syscore_ops kvm_syscore_ops = {
3478         .suspend = kvm_suspend,
3479         .resume = kvm_resume,
3480 };
3481
3482 static inline
3483 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3484 {
3485         return container_of(pn, struct kvm_vcpu, preempt_notifier);
3486 }
3487
3488 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3489 {
3490         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3491
3492         if (vcpu->preempted)
3493                 vcpu->preempted = false;
3494
3495         kvm_arch_sched_in(vcpu, cpu);
3496
3497         kvm_arch_vcpu_load(vcpu, cpu);
3498 }
3499
3500 static void kvm_sched_out(struct preempt_notifier *pn,
3501                           struct task_struct *next)
3502 {
3503         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3504
3505         if (current->state == TASK_RUNNING)
3506                 vcpu->preempted = true;
3507         kvm_arch_vcpu_put(vcpu);
3508 }
3509
3510 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3511                   struct module *module)
3512 {
3513         int r;
3514         int cpu;
3515
3516         r = kvm_arch_init(opaque);
3517         if (r)
3518                 goto out_fail;
3519
3520         /*
3521          * kvm_arch_init makes sure there's at most one caller
3522          * for architectures that support multiple implementations,
3523          * like intel and amd on x86.
3524          * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3525          * conflicts in case kvm is already setup for another implementation.
3526          */
3527         r = kvm_irqfd_init();
3528         if (r)
3529                 goto out_irqfd;
3530
3531         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3532                 r = -ENOMEM;
3533                 goto out_free_0;
3534         }
3535
3536         r = kvm_arch_hardware_setup();
3537         if (r < 0)
3538                 goto out_free_0a;
3539
3540         for_each_online_cpu(cpu) {
3541                 smp_call_function_single(cpu,
3542                                 kvm_arch_check_processor_compat,
3543                                 &r, 1);
3544                 if (r < 0)
3545                         goto out_free_1;
3546         }
3547
3548         r = register_cpu_notifier(&kvm_cpu_notifier);
3549         if (r)
3550                 goto out_free_2;
3551         register_reboot_notifier(&kvm_reboot_notifier);
3552
3553         /* A kmem cache lets us meet the alignment requirements of fx_save. */
3554         if (!vcpu_align)
3555                 vcpu_align = __alignof__(struct kvm_vcpu);
3556         kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3557                                            0, NULL);
3558         if (!kvm_vcpu_cache) {
3559                 r = -ENOMEM;
3560                 goto out_free_3;
3561         }
3562
3563         r = kvm_async_pf_init();
3564         if (r)
3565                 goto out_free;
3566
3567         kvm_chardev_ops.owner = module;
3568         kvm_vm_fops.owner = module;
3569         kvm_vcpu_fops.owner = module;
3570
3571         r = misc_register(&kvm_dev);
3572         if (r) {
3573                 pr_err("kvm: misc device register failed\n");
3574                 goto out_unreg;
3575         }
3576
3577         register_syscore_ops(&kvm_syscore_ops);
3578
3579         kvm_preempt_ops.sched_in = kvm_sched_in;
3580         kvm_preempt_ops.sched_out = kvm_sched_out;
3581
3582         r = kvm_init_debug();
3583         if (r) {
3584                 pr_err("kvm: create debugfs files failed\n");
3585                 goto out_undebugfs;
3586         }
3587
3588         r = kvm_vfio_ops_init();
3589         WARN_ON(r);
3590
3591         return 0;
3592
3593 out_undebugfs:
3594         unregister_syscore_ops(&kvm_syscore_ops);
3595         misc_deregister(&kvm_dev);
3596 out_unreg:
3597         kvm_async_pf_deinit();
3598 out_free:
3599         kmem_cache_destroy(kvm_vcpu_cache);
3600 out_free_3:
3601         unregister_reboot_notifier(&kvm_reboot_notifier);
3602         unregister_cpu_notifier(&kvm_cpu_notifier);
3603 out_free_2:
3604 out_free_1:
3605         kvm_arch_hardware_unsetup();
3606 out_free_0a:
3607         free_cpumask_var(cpus_hardware_enabled);
3608 out_free_0:
3609         kvm_irqfd_exit();
3610 out_irqfd:
3611         kvm_arch_exit();
3612 out_fail:
3613         return r;
3614 }
3615 EXPORT_SYMBOL_GPL(kvm_init);
3616
3617 void kvm_exit(void)
3618 {
3619         debugfs_remove_recursive(kvm_debugfs_dir);
3620         misc_deregister(&kvm_dev);
3621         kmem_cache_destroy(kvm_vcpu_cache);
3622         kvm_async_pf_deinit();
3623         unregister_syscore_ops(&kvm_syscore_ops);
3624         unregister_reboot_notifier(&kvm_reboot_notifier);
3625         unregister_cpu_notifier(&kvm_cpu_notifier);
3626         on_each_cpu(hardware_disable_nolock, NULL, 1);
3627         kvm_arch_hardware_unsetup();
3628         kvm_arch_exit();
3629         kvm_irqfd_exit();
3630         free_cpumask_var(cpus_hardware_enabled);
3631         kvm_vfio_ops_exit();
3632 }
3633 EXPORT_SYMBOL_GPL(kvm_exit);