ACPI / CPPC: Add support for functional fixed hardware address
[cascardo/linux.git] / drivers / acpi / cppc_acpi.c
index 2e98173..715fe80 100644 (file)
 #include <linux/cpufreq.h>
 #include <linux/delay.h>
 #include <linux/ktime.h>
+#include <linux/rwsem.h>
+#include <linux/wait.h>
 
 #include <acpi/cppc_acpi.h>
-/*
- * Lock to provide mutually exclusive access to the PCC
- * channel. e.g. When the remote updates the shared region
- * with new data, the reader needs to be protected from
- * other CPUs activity on the same channel.
- */
-static DEFINE_SPINLOCK(pcc_lock);
+
+struct cppc_pcc_data {
+       struct mbox_chan *pcc_channel;
+       void __iomem *pcc_comm_addr;
+       int pcc_subspace_idx;
+       bool pcc_channel_acquired;
+       ktime_t deadline;
+       unsigned int pcc_mpar, pcc_mrtt, pcc_nominal;
+
+       bool pending_pcc_write_cmd;     /* Any pending/batched PCC write cmds? */
+       bool platform_owns_pcc;         /* Ownership of PCC subspace */
+       unsigned int pcc_write_cnt;     /* Running count of PCC write commands */
+
+       /*
+        * Lock to provide controlled access to the PCC channel.
+        *
+        * For performance critical usecases(currently cppc_set_perf)
+        *      We need to take read_lock and check if channel belongs to OSPM
+        * before reading or writing to PCC subspace
+        *      We need to take write_lock before transferring the channel
+        * ownership to the platform via a Doorbell
+        *      This allows us to batch a number of CPPC requests if they happen
+        * to originate in about the same time
+        *
+        * For non-performance critical usecases(init)
+        *      Take write_lock for all purposes which gives exclusive access
+        */
+       struct rw_semaphore pcc_lock;
+
+       /* Wait queue for CPUs whose requests were batched */
+       wait_queue_head_t pcc_write_wait_q;
+};
+
+/* Structure to represent the single PCC channel */
+static struct cppc_pcc_data pcc_data = {
+       .pcc_subspace_idx = -1,
+       .platform_owns_pcc = true,
+};
 
 /*
  * The cpc_desc structure contains the ACPI register details
@@ -59,18 +92,25 @@ static DEFINE_SPINLOCK(pcc_lock);
  */
 static DEFINE_PER_CPU(struct cpc_desc *, cpc_desc_ptr);
 
-/* This layer handles all the PCC specifics for CPPC. */
-static struct mbox_chan *pcc_channel;
-static void __iomem *pcc_comm_addr;
-static u64 comm_base_addr;
-static int pcc_subspace_idx = -1;
-static bool pcc_channel_acquired;
-static ktime_t deadline;
-static unsigned int pcc_mpar, pcc_mrtt;
-
 /* pcc mapped address + header size + offset within PCC subspace */
-#define GET_PCC_VADDR(offs) (pcc_comm_addr + 0x8 + (offs))
-
+#define GET_PCC_VADDR(offs) (pcc_data.pcc_comm_addr + 0x8 + (offs))
+
+/* Check if a CPC regsiter is in PCC */
+#define CPC_IN_PCC(cpc) ((cpc)->type == ACPI_TYPE_BUFFER &&            \
+                               (cpc)->cpc_entry.reg.space_id ==        \
+                               ACPI_ADR_SPACE_PLATFORM_COMM)
+
+/* Evalutes to True if reg is a NULL register descriptor */
+#define IS_NULL_REG(reg) ((reg)->space_id ==  ACPI_ADR_SPACE_SYSTEM_MEMORY && \
+                               (reg)->address == 0 &&                  \
+                               (reg)->bit_width == 0 &&                \
+                               (reg)->bit_offset == 0 &&               \
+                               (reg)->access_width == 0)
+
+/* Evalutes to True if an optional cpc field is supported */
+#define CPC_SUPPORTED(cpc) ((cpc)->type == ACPI_TYPE_INTEGER ?         \
+                               !!(cpc)->cpc_entry.int_value :          \
+                               !IS_NULL_REG(&(cpc)->cpc_entry.reg))
 /*
  * Arbitrary Retries in case the remote processor is slow to respond
  * to PCC commands. Keeping it high enough to cover emulators where
@@ -78,11 +118,79 @@ static unsigned int pcc_mpar, pcc_mrtt;
  */
 #define NUM_RETRIES 500
 
-static int check_pcc_chan(void)
+struct cppc_attr {
+       struct attribute attr;
+       ssize_t (*show)(struct kobject *kobj,
+                       struct attribute *attr, char *buf);
+       ssize_t (*store)(struct kobject *kobj,
+                       struct attribute *attr, const char *c, ssize_t count);
+};
+
+#define define_one_cppc_ro(_name)              \
+static struct cppc_attr _name =                        \
+__ATTR(_name, 0444, show_##_name, NULL)
+
+#define to_cpc_desc(a) container_of(a, struct cpc_desc, kobj)
+
+static ssize_t show_feedback_ctrs(struct kobject *kobj,
+               struct attribute *attr, char *buf)
+{
+       struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
+       struct cppc_perf_fb_ctrs fb_ctrs = {0};
+
+       cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
+
+       return scnprintf(buf, PAGE_SIZE, "ref:%llu del:%llu\n",
+                       fb_ctrs.reference, fb_ctrs.delivered);
+}
+define_one_cppc_ro(feedback_ctrs);
+
+static ssize_t show_reference_perf(struct kobject *kobj,
+               struct attribute *attr, char *buf)
+{
+       struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
+       struct cppc_perf_fb_ctrs fb_ctrs = {0};
+
+       cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
+
+       return scnprintf(buf, PAGE_SIZE, "%llu\n",
+                       fb_ctrs.reference_perf);
+}
+define_one_cppc_ro(reference_perf);
+
+static ssize_t show_wraparound_time(struct kobject *kobj,
+                               struct attribute *attr, char *buf)
+{
+       struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
+       struct cppc_perf_fb_ctrs fb_ctrs = {0};
+
+       cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
+
+       return scnprintf(buf, PAGE_SIZE, "%llu\n", fb_ctrs.ctr_wrap_time);
+
+}
+define_one_cppc_ro(wraparound_time);
+
+static struct attribute *cppc_attrs[] = {
+       &feedback_ctrs.attr,
+       &reference_perf.attr,
+       &wraparound_time.attr,
+       NULL
+};
+
+static struct kobj_type cppc_ktype = {
+       .sysfs_ops = &kobj_sysfs_ops,
+       .default_attrs = cppc_attrs,
+};
+
+static int check_pcc_chan(bool chk_err_bit)
 {
-       int ret = -EIO;
-       struct acpi_pcct_shared_memory __iomem *generic_comm_base = pcc_comm_addr;
-       ktime_t next_deadline = ktime_add(ktime_get(), deadline);
+       int ret = -EIO, status = 0;
+       struct acpi_pcct_shared_memory __iomem *generic_comm_base = pcc_data.pcc_comm_addr;
+       ktime_t next_deadline = ktime_add(ktime_get(), pcc_data.deadline);
+
+       if (!pcc_data.platform_owns_pcc)
+               return 0;
 
        /* Retry in case the remote processor was too slow to catch up. */
        while (!ktime_after(ktime_get(), next_deadline)) {
@@ -91,8 +199,11 @@ static int check_pcc_chan(void)
                 * platform and should have set the command completion bit when
                 * PCC can be used by OSPM
                 */
-               if (readw_relaxed(&generic_comm_base->status) & PCC_CMD_COMPLETE) {
+               status = readw_relaxed(&generic_comm_base->status);
+               if (status & PCC_CMD_COMPLETE_MASK) {
                        ret = 0;
+                       if (chk_err_bit && (status & PCC_ERROR_MASK))
+                               ret = -EIO;
                        break;
                }
                /*
@@ -102,14 +213,23 @@ static int check_pcc_chan(void)
                udelay(3);
        }
 
+       if (likely(!ret))
+               pcc_data.platform_owns_pcc = false;
+       else
+               pr_err("PCC check channel failed. Status=%x\n", status);
+
        return ret;
 }
 
+/*
+ * This function transfers the ownership of the PCC to the platform
+ * So it must be called while holding write_lock(pcc_lock)
+ */
 static int send_pcc_cmd(u16 cmd)
 {
-       int ret = -EIO;
+       int ret = -EIO, i;
        struct acpi_pcct_shared_memory *generic_comm_base =
-               (struct acpi_pcct_shared_memory *) pcc_comm_addr;
+               (struct acpi_pcct_shared_memory *) pcc_data.pcc_comm_addr;
        static ktime_t last_cmd_cmpl_time, last_mpar_reset;
        static int mpar_count;
        unsigned int time_delta;
@@ -119,20 +239,29 @@ static int send_pcc_cmd(u16 cmd)
         * the channel before writing to PCC space
         */
        if (cmd == CMD_READ) {
-               ret = check_pcc_chan();
+               /*
+                * If there are pending cpc_writes, then we stole the channel
+                * before write completion, so first send a WRITE command to
+                * platform
+                */
+               if (pcc_data.pending_pcc_write_cmd)
+                       send_pcc_cmd(CMD_WRITE);
+
+               ret = check_pcc_chan(false);
                if (ret)
-                       return ret;
-       }
+                       goto end;
+       } else /* CMD_WRITE */
+               pcc_data.pending_pcc_write_cmd = FALSE;
 
        /*
         * Handle the Minimum Request Turnaround Time(MRTT)
         * "The minimum amount of time that OSPM must wait after the completion
         * of a command before issuing the next command, in microseconds"
         */
-       if (pcc_mrtt) {
+       if (pcc_data.pcc_mrtt) {
                time_delta = ktime_us_delta(ktime_get(), last_cmd_cmpl_time);
-               if (pcc_mrtt > time_delta)
-                       udelay(pcc_mrtt - time_delta);
+               if (pcc_data.pcc_mrtt > time_delta)
+                       udelay(pcc_data.pcc_mrtt - time_delta);
        }
 
        /*
@@ -146,15 +275,16 @@ static int send_pcc_cmd(u16 cmd)
         * not send the request to the platform after hitting the MPAR limit in
         * any 60s window
         */
-       if (pcc_mpar) {
+       if (pcc_data.pcc_mpar) {
                if (mpar_count == 0) {
                        time_delta = ktime_ms_delta(ktime_get(), last_mpar_reset);
                        if (time_delta < 60 * MSEC_PER_SEC) {
                                pr_debug("PCC cmd not sent due to MPAR limit");
-                               return -EIO;
+                               ret = -EIO;
+                               goto end;
                        }
                        last_mpar_reset = ktime_get();
-                       mpar_count = pcc_mpar;
+                       mpar_count = pcc_data.pcc_mpar;
                }
                mpar_count--;
        }
@@ -165,33 +295,40 @@ static int send_pcc_cmd(u16 cmd)
        /* Flip CMD COMPLETE bit */
        writew_relaxed(0, &generic_comm_base->status);
 
+       pcc_data.platform_owns_pcc = true;
+
        /* Ring doorbell */
-       ret = mbox_send_message(pcc_channel, &cmd);
+       ret = mbox_send_message(pcc_data.pcc_channel, &cmd);
        if (ret < 0) {
                pr_err("Err sending PCC mbox message. cmd:%d, ret:%d\n",
                                cmd, ret);
-               return ret;
+               goto end;
        }
 
-       /*
-        * For READs we need to ensure the cmd completed to ensure
-        * the ensuing read()s can proceed. For WRITEs we dont care
-        * because the actual write()s are done before coming here
-        * and the next READ or WRITE will check if the channel
-        * is busy/free at the entry of this call.
-        *
-        * If Minimum Request Turnaround Time is non-zero, we need
-        * to record the completion time of both READ and WRITE
-        * command for proper handling of MRTT, so we need to check
-        * for pcc_mrtt in addition to CMD_READ
-        */
-       if (cmd == CMD_READ || pcc_mrtt) {
-               ret = check_pcc_chan();
-               if (pcc_mrtt)
-                       last_cmd_cmpl_time = ktime_get();
+       /* wait for completion and check for PCC errro bit */
+       ret = check_pcc_chan(true);
+
+       if (pcc_data.pcc_mrtt)
+               last_cmd_cmpl_time = ktime_get();
+
+       mbox_client_txdone(pcc_data.pcc_channel, ret);
+
+end:
+       if (cmd == CMD_WRITE) {
+               if (unlikely(ret)) {
+                       for_each_possible_cpu(i) {
+                               struct cpc_desc *desc = per_cpu(cpc_desc_ptr, i);
+                               if (!desc)
+                                       continue;
+
+                               if (desc->write_cmd_id == pcc_data.pcc_write_cnt)
+                                       desc->write_cmd_status = ret;
+                       }
+               }
+               pcc_data.pcc_write_cnt++;
+               wake_up_all(&pcc_data.pcc_write_wait_q);
        }
 
-       mbox_client_txdone(pcc_channel, ret);
        return ret;
 }
 
@@ -394,14 +531,13 @@ EXPORT_SYMBOL_GPL(acpi_get_psd_map);
 static int register_pcc_channel(int pcc_subspace_idx)
 {
        struct acpi_pcct_hw_reduced *cppc_ss;
-       unsigned int len;
        u64 usecs_lat;
 
        if (pcc_subspace_idx >= 0) {
-               pcc_channel = pcc_mbox_request_channel(&cppc_mbox_cl,
+               pcc_data.pcc_channel = pcc_mbox_request_channel(&cppc_mbox_cl,
                                pcc_subspace_idx);
 
-               if (IS_ERR(pcc_channel)) {
+               if (IS_ERR(pcc_data.pcc_channel)) {
                        pr_err("Failed to find PCC communication channel\n");
                        return -ENODEV;
                }
@@ -412,43 +548,50 @@ static int register_pcc_channel(int pcc_subspace_idx)
                 * PCC channels) and stored pointers to the
                 * subspace communication region in con_priv.
                 */
-               cppc_ss = pcc_channel->con_priv;
+               cppc_ss = (pcc_data.pcc_channel)->con_priv;
 
                if (!cppc_ss) {
                        pr_err("No PCC subspace found for CPPC\n");
                        return -ENODEV;
                }
 
-               /*
-                * This is the shared communication region
-                * for the OS and Platform to communicate over.
-                */
-               comm_base_addr = cppc_ss->base_address;
-               len = cppc_ss->length;
-
                /*
                 * cppc_ss->latency is just a Nominal value. In reality
                 * the remote processor could be much slower to reply.
                 * So add an arbitrary amount of wait on top of Nominal.
                 */
                usecs_lat = NUM_RETRIES * cppc_ss->latency;
-               deadline = ns_to_ktime(usecs_lat * NSEC_PER_USEC);
-               pcc_mrtt = cppc_ss->min_turnaround_time;
-               pcc_mpar = cppc_ss->max_access_rate;
+               pcc_data.deadline = ns_to_ktime(usecs_lat * NSEC_PER_USEC);
+               pcc_data.pcc_mrtt = cppc_ss->min_turnaround_time;
+               pcc_data.pcc_mpar = cppc_ss->max_access_rate;
+               pcc_data.pcc_nominal = cppc_ss->latency;
 
-               pcc_comm_addr = acpi_os_ioremap(comm_base_addr, len);
-               if (!pcc_comm_addr) {
+               pcc_data.pcc_comm_addr = acpi_os_ioremap(cppc_ss->base_address, cppc_ss->length);
+               if (!pcc_data.pcc_comm_addr) {
                        pr_err("Failed to ioremap PCC comm region mem\n");
                        return -ENOMEM;
                }
 
                /* Set flag so that we dont come here for each CPU. */
-               pcc_channel_acquired = true;
+               pcc_data.pcc_channel_acquired = true;
        }
 
        return 0;
 }
 
+/**
+ * cpc_ffh_supported() - check if FFH reading supported
+ *
+ * Check if the architecture has support for functional fixed hardware
+ * read/write capability.
+ *
+ * Return: true for supported, false for not supported
+ */
+bool __weak cpc_ffh_supported(void)
+{
+       return false;
+}
+
 /*
  * An example CPC table looks like the following.
  *
@@ -507,6 +650,7 @@ int acpi_cppc_processor_probe(struct acpi_processor *pr)
        union acpi_object *out_obj, *cpc_obj;
        struct cpc_desc *cpc_ptr;
        struct cpc_reg *gas_t;
+       struct device *cpu_dev;
        acpi_handle handle = pr->handle;
        unsigned int num_ent, i, cpc_rev;
        acpi_status status;
@@ -545,6 +689,8 @@ int acpi_cppc_processor_probe(struct acpi_processor *pr)
                goto out_free;
        }
 
+       cpc_ptr->num_entries = num_ent;
+
        /* Second entry should be revision. */
        cpc_obj = &out_obj->package.elements[1];
        if (cpc_obj->type == ACPI_TYPE_INTEGER) {
@@ -579,16 +725,27 @@ int acpi_cppc_processor_probe(struct acpi_processor *pr)
                         * so extract it only once.
                         */
                        if (gas_t->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
-                               if (pcc_subspace_idx < 0)
-                                       pcc_subspace_idx = gas_t->access_width;
-                               else if (pcc_subspace_idx != gas_t->access_width) {
+                               if (pcc_data.pcc_subspace_idx < 0)
+                                       pcc_data.pcc_subspace_idx = gas_t->access_width;
+                               else if (pcc_data.pcc_subspace_idx != gas_t->access_width) {
                                        pr_debug("Mismatched PCC ids.\n");
                                        goto out_free;
                                }
-                       } else if (gas_t->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY) {
-                               /* Support only PCC and SYS MEM type regs */
-                               pr_debug("Unsupported register type: %d\n", gas_t->space_id);
-                               goto out_free;
+                       } else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
+                               if (gas_t->address) {
+                                       void __iomem *addr;
+
+                                       addr = ioremap(gas_t->address, gas_t->bit_width/8);
+                                       if (!addr)
+                                               goto out_free;
+                                       cpc_ptr->cpc_regs[i-2].sys_mem_vaddr = addr;
+                               }
+                       } else {
+                               if (gas_t->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE || !cpc_ffh_supported()) {
+                                       /* Support only PCC ,SYS MEM and FFH type regs */
+                                       pr_debug("Unsupported register type: %d\n", gas_t->space_id);
+                                       goto out_free;
+                               }
                        }
 
                        cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_BUFFER;
@@ -607,10 +764,13 @@ int acpi_cppc_processor_probe(struct acpi_processor *pr)
                goto out_free;
 
        /* Register PCC channel once for all CPUs. */
-       if (!pcc_channel_acquired) {
-               ret = register_pcc_channel(pcc_subspace_idx);
+       if (!pcc_data.pcc_channel_acquired) {
+               ret = register_pcc_channel(pcc_data.pcc_subspace_idx);
                if (ret)
                        goto out_free;
+
+               init_rwsem(&pcc_data.pcc_lock);
+               init_waitqueue_head(&pcc_data.pcc_write_wait_q);
        }
 
        /* Plug PSD data into this CPUs CPC descriptor. */
@@ -619,10 +779,27 @@ int acpi_cppc_processor_probe(struct acpi_processor *pr)
        /* Everything looks okay */
        pr_debug("Parsed CPC struct for CPU: %d\n", pr->id);
 
+       /* Add per logical CPU nodes for reading its feedback counters. */
+       cpu_dev = get_cpu_device(pr->id);
+       if (!cpu_dev)
+               goto out_free;
+
+       ret = kobject_init_and_add(&cpc_ptr->kobj, &cppc_ktype, &cpu_dev->kobj,
+                       "acpi_cppc");
+       if (ret)
+               goto out_free;
+
        kfree(output.pointer);
        return 0;
 
 out_free:
+       /* Free all the mapped sys mem areas for this CPU */
+       for (i = 2; i < cpc_ptr->num_entries; i++) {
+               void __iomem *addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
+
+               if (addr)
+                       iounmap(addr);
+       }
        kfree(cpc_ptr);
 
 out_buf_free:
@@ -640,26 +817,82 @@ EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe);
 void acpi_cppc_processor_exit(struct acpi_processor *pr)
 {
        struct cpc_desc *cpc_ptr;
+       unsigned int i;
+       void __iomem *addr;
+
        cpc_ptr = per_cpu(cpc_desc_ptr, pr->id);
+
+       /* Free all the mapped sys mem areas for this CPU */
+       for (i = 2; i < cpc_ptr->num_entries; i++) {
+               addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
+               if (addr)
+                       iounmap(addr);
+       }
+
+       kobject_put(&cpc_ptr->kobj);
        kfree(cpc_ptr);
 }
 EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit);
 
+/**
+ * cpc_read_ffh() - Read FFH register
+ * @cpunum:    cpu number to read
+ * @reg:       cppc register information
+ * @val:       place holder for return value
+ *
+ * Read bit_width bits from a specified address and bit_offset
+ *
+ * Return: 0 for success and error code
+ */
+int __weak cpc_read_ffh(int cpunum, struct cpc_reg *reg, u64 *val)
+{
+       return -ENOTSUPP;
+}
+
+/**
+ * cpc_write_ffh() - Write FFH register
+ * @cpunum:    cpu number to write
+ * @reg:       cppc register information
+ * @val:       value to write
+ *
+ * Write value of bit_width bits to a specified address and bit_offset
+ *
+ * Return: 0 for success and error code
+ */
+int __weak cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val)
+{
+       return -ENOTSUPP;
+}
+
 /*
  * Since cpc_read and cpc_write are called while holding pcc_lock, it should be
  * as fast as possible. We have already mapped the PCC subspace during init, so
  * we can directly write to it.
  */
 
-static int cpc_read(struct cpc_reg *reg, u64 *val)
+static int cpc_read(int cpu, struct cpc_register_resource *reg_res, u64 *val)
 {
        int ret_val = 0;
+       void __iomem *vaddr = 0;
+       struct cpc_reg *reg = &reg_res->cpc_entry.reg;
+
+       if (reg_res->type == ACPI_TYPE_INTEGER) {
+               *val = reg_res->cpc_entry.int_value;
+               return ret_val;
+       }
 
        *val = 0;
-       if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
-               void __iomem *vaddr = GET_PCC_VADDR(reg->address);
+       if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM)
+               vaddr = GET_PCC_VADDR(reg->address);
+       else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
+               vaddr = reg_res->sys_mem_vaddr;
+       else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
+               return cpc_read_ffh(cpu, reg, val);
+       else
+               return acpi_os_read_memory((acpi_physical_address)reg->address,
+                               val, reg->bit_width);
 
-               switch (reg->bit_width) {
+       switch (reg->bit_width) {
                case 8:
                        *val = readb_relaxed(vaddr);
                        break;
@@ -674,23 +907,30 @@ static int cpc_read(struct cpc_reg *reg, u64 *val)
                        break;
                default:
                        pr_debug("Error: Cannot read %u bit width from PCC\n",
-                               reg->bit_width);
+                                       reg->bit_width);
                        ret_val = -EFAULT;
-               }
-       } else
-               ret_val = acpi_os_read_memory((acpi_physical_address)reg->address,
-                                       val, reg->bit_width);
+       }
+
        return ret_val;
 }
 
-static int cpc_write(struct cpc_reg *reg, u64 val)
+static int cpc_write(int cpu, struct cpc_register_resource *reg_res, u64 val)
 {
        int ret_val = 0;
+       void __iomem *vaddr = 0;
+       struct cpc_reg *reg = &reg_res->cpc_entry.reg;
+
+       if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM)
+               vaddr = GET_PCC_VADDR(reg->address);
+       else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
+               vaddr = reg_res->sys_mem_vaddr;
+       else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
+               return cpc_write_ffh(cpu, reg, val);
+       else
+               return acpi_os_write_memory((acpi_physical_address)reg->address,
+                               val, reg->bit_width);
 
-       if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
-               void __iomem *vaddr = GET_PCC_VADDR(reg->address);
-
-               switch (reg->bit_width) {
+       switch (reg->bit_width) {
                case 8:
                        writeb_relaxed(val, vaddr);
                        break;
@@ -705,13 +945,11 @@ static int cpc_write(struct cpc_reg *reg, u64 val)
                        break;
                default:
                        pr_debug("Error: Cannot write %u bit width to PCC\n",
-                               reg->bit_width);
+                                       reg->bit_width);
                        ret_val = -EFAULT;
                        break;
-               }
-       } else
-               ret_val = acpi_os_write_memory((acpi_physical_address)reg->address,
-                               val, reg->bit_width);
+       }
+
        return ret_val;
 }
 
@@ -727,8 +965,8 @@ int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps)
        struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
        struct cpc_register_resource *highest_reg, *lowest_reg, *ref_perf,
                                                                 *nom_perf;
-       u64 high, low, ref, nom;
-       int ret = 0;
+       u64 high, low, nom;
+       int ret = 0, regs_in_pcc = 0;
 
        if (!cpc_desc) {
                pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
@@ -740,13 +978,11 @@ int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps)
        ref_perf = &cpc_desc->cpc_regs[REFERENCE_PERF];
        nom_perf = &cpc_desc->cpc_regs[NOMINAL_PERF];
 
-       spin_lock(&pcc_lock);
-
        /* Are any of the regs PCC ?*/
-       if ((highest_reg->cpc_entry.reg.space_id == ACPI_ADR_SPACE_PLATFORM_COMM) ||
-                       (lowest_reg->cpc_entry.reg.space_id == ACPI_ADR_SPACE_PLATFORM_COMM) ||
-                       (ref_perf->cpc_entry.reg.space_id == ACPI_ADR_SPACE_PLATFORM_COMM) ||
-                       (nom_perf->cpc_entry.reg.space_id == ACPI_ADR_SPACE_PLATFORM_COMM)) {
+       if (CPC_IN_PCC(highest_reg) || CPC_IN_PCC(lowest_reg) ||
+               CPC_IN_PCC(ref_perf) || CPC_IN_PCC(nom_perf)) {
+               regs_in_pcc = 1;
+               down_write(&pcc_data.pcc_lock);
                /* Ring doorbell once to update PCC subspace */
                if (send_pcc_cmd(CMD_READ) < 0) {
                        ret = -EIO;
@@ -754,26 +990,21 @@ int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps)
                }
        }
 
-       cpc_read(&highest_reg->cpc_entry.reg, &high);
+       cpc_read(cpunum, highest_reg, &high);
        perf_caps->highest_perf = high;
 
-       cpc_read(&lowest_reg->cpc_entry.reg, &low);
+       cpc_read(cpunum, lowest_reg, &low);
        perf_caps->lowest_perf = low;
 
-       cpc_read(&ref_perf->cpc_entry.reg, &ref);
-       perf_caps->reference_perf = ref;
-
-       cpc_read(&nom_perf->cpc_entry.reg, &nom);
+       cpc_read(cpunum, nom_perf, &nom);
        perf_caps->nominal_perf = nom;
 
-       if (!ref)
-               perf_caps->reference_perf = perf_caps->nominal_perf;
-
        if (!high || !low || !nom)
                ret = -EFAULT;
 
 out_err:
-       spin_unlock(&pcc_lock);
+       if (regs_in_pcc)
+               up_write(&pcc_data.pcc_lock);
        return ret;
 }
 EXPORT_SYMBOL_GPL(cppc_get_perf_caps);
@@ -788,9 +1019,10 @@ EXPORT_SYMBOL_GPL(cppc_get_perf_caps);
 int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs)
 {
        struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
-       struct cpc_register_resource *delivered_reg, *reference_reg;
-       u64 delivered, reference;
-       int ret = 0;
+       struct cpc_register_resource *delivered_reg, *reference_reg,
+               *ref_perf_reg, *ctr_wrap_reg;
+       u64 delivered, reference, ref_perf, ctr_wrap_time;
+       int ret = 0, regs_in_pcc = 0;
 
        if (!cpc_desc) {
                pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
@@ -799,12 +1031,21 @@ int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs)
 
        delivered_reg = &cpc_desc->cpc_regs[DELIVERED_CTR];
        reference_reg = &cpc_desc->cpc_regs[REFERENCE_CTR];
+       ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
+       ctr_wrap_reg = &cpc_desc->cpc_regs[CTR_WRAP_TIME];
 
-       spin_lock(&pcc_lock);
+       /*
+        * If refernce perf register is not supported then we should
+        * use the nominal perf value
+        */
+       if (!CPC_SUPPORTED(ref_perf_reg))
+               ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
 
        /* Are any of the regs PCC ?*/
-       if ((delivered_reg->cpc_entry.reg.space_id == ACPI_ADR_SPACE_PLATFORM_COMM) ||
-                       (reference_reg->cpc_entry.reg.space_id == ACPI_ADR_SPACE_PLATFORM_COMM)) {
+       if (CPC_IN_PCC(delivered_reg) || CPC_IN_PCC(reference_reg) ||
+               CPC_IN_PCC(ctr_wrap_reg) || CPC_IN_PCC(ref_perf_reg)) {
+               down_write(&pcc_data.pcc_lock);
+               regs_in_pcc = 1;
                /* Ring doorbell once to update PCC subspace */
                if (send_pcc_cmd(CMD_READ) < 0) {
                        ret = -EIO;
@@ -812,25 +1053,31 @@ int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs)
                }
        }
 
-       cpc_read(&delivered_reg->cpc_entry.reg, &delivered);
-       cpc_read(&reference_reg->cpc_entry.reg, &reference);
+       cpc_read(cpunum, delivered_reg, &delivered);
+       cpc_read(cpunum, reference_reg, &reference);
+       cpc_read(cpunum, ref_perf_reg, &ref_perf);
 
-       if (!delivered || !reference) {
+       /*
+        * Per spec, if ctr_wrap_time optional register is unsupported, then the
+        * performance counters are assumed to never wrap during the lifetime of
+        * platform
+        */
+       ctr_wrap_time = (u64)(~((u64)0));
+       if (CPC_SUPPORTED(ctr_wrap_reg))
+               cpc_read(cpunum, ctr_wrap_reg, &ctr_wrap_time);
+
+       if (!delivered || !reference || !ref_perf) {
                ret = -EFAULT;
                goto out_err;
        }
 
        perf_fb_ctrs->delivered = delivered;
        perf_fb_ctrs->reference = reference;
-
-       perf_fb_ctrs->delivered -= perf_fb_ctrs->prev_delivered;
-       perf_fb_ctrs->reference -= perf_fb_ctrs->prev_reference;
-
-       perf_fb_ctrs->prev_delivered = delivered;
-       perf_fb_ctrs->prev_reference = reference;
-
+       perf_fb_ctrs->reference_perf = ref_perf;
+       perf_fb_ctrs->ctr_wrap_time = ctr_wrap_time;
 out_err:
-       spin_unlock(&pcc_lock);
+       if (regs_in_pcc)
+               up_write(&pcc_data.pcc_lock);
        return ret;
 }
 EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs);
@@ -855,30 +1102,142 @@ int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls)
 
        desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
 
-       spin_lock(&pcc_lock);
-
-       /* If this is PCC reg, check if channel is free before writing */
-       if (desired_reg->cpc_entry.reg.space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
-               ret = check_pcc_chan();
-               if (ret)
-                       goto busy_channel;
+       /*
+        * This is Phase-I where we want to write to CPC registers
+        * -> We want all CPUs to be able to execute this phase in parallel
+        *
+        * Since read_lock can be acquired by multiple CPUs simultaneously we
+        * achieve that goal here
+        */
+       if (CPC_IN_PCC(desired_reg)) {
+               down_read(&pcc_data.pcc_lock);  /* BEGIN Phase-I */
+               if (pcc_data.platform_owns_pcc) {
+                       ret = check_pcc_chan(false);
+                       if (ret) {
+                               up_read(&pcc_data.pcc_lock);
+                               return ret;
+                       }
+               }
+               /*
+                * Update the pending_write to make sure a PCC CMD_READ will not
+                * arrive and steal the channel during the switch to write lock
+                */
+               pcc_data.pending_pcc_write_cmd = true;
+               cpc_desc->write_cmd_id = pcc_data.pcc_write_cnt;
+               cpc_desc->write_cmd_status = 0;
        }
 
        /*
         * Skip writing MIN/MAX until Linux knows how to come up with
         * useful values.
         */
-       cpc_write(&desired_reg->cpc_entry.reg, perf_ctrls->desired_perf);
+       cpc_write(cpu, desired_reg, perf_ctrls->desired_perf);
 
-       /* Is this a PCC reg ?*/
-       if (desired_reg->cpc_entry.reg.space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
-               /* Ring doorbell so Remote can get our perf request. */
-               if (send_pcc_cmd(CMD_WRITE) < 0)
-                       ret = -EIO;
+       if (CPC_IN_PCC(desired_reg))
+               up_read(&pcc_data.pcc_lock);    /* END Phase-I */
+       /*
+        * This is Phase-II where we transfer the ownership of PCC to Platform
+        *
+        * Short Summary: Basically if we think of a group of cppc_set_perf
+        * requests that happened in short overlapping interval. The last CPU to
+        * come out of Phase-I will enter Phase-II and ring the doorbell.
+        *
+        * We have the following requirements for Phase-II:
+        *     1. We want to execute Phase-II only when there are no CPUs
+        * currently executing in Phase-I
+        *     2. Once we start Phase-II we want to avoid all other CPUs from
+        * entering Phase-I.
+        *     3. We want only one CPU among all those who went through Phase-I
+        * to run phase-II
+        *
+        * If write_trylock fails to get the lock and doesn't transfer the
+        * PCC ownership to the platform, then one of the following will be TRUE
+        *     1. There is at-least one CPU in Phase-I which will later execute
+        * write_trylock, so the CPUs in Phase-I will be responsible for
+        * executing the Phase-II.
+        *     2. Some other CPU has beaten this CPU to successfully execute the
+        * write_trylock and has already acquired the write_lock. We know for a
+        * fact it(other CPU acquiring the write_lock) couldn't have happened
+        * before this CPU's Phase-I as we held the read_lock.
+        *     3. Some other CPU executing pcc CMD_READ has stolen the
+        * down_write, in which case, send_pcc_cmd will check for pending
+        * CMD_WRITE commands by checking the pending_pcc_write_cmd.
+        * So this CPU can be certain that its request will be delivered
+        *    So in all cases, this CPU knows that its request will be delivered
+        * by another CPU and can return
+        *
+        * After getting the down_write we still need to check for
+        * pending_pcc_write_cmd to take care of the following scenario
+        *    The thread running this code could be scheduled out between
+        * Phase-I and Phase-II. Before it is scheduled back on, another CPU
+        * could have delivered the request to Platform by triggering the
+        * doorbell and transferred the ownership of PCC to platform. So this
+        * avoids triggering an unnecessary doorbell and more importantly before
+        * triggering the doorbell it makes sure that the PCC channel ownership
+        * is still with OSPM.
+        *   pending_pcc_write_cmd can also be cleared by a different CPU, if
+        * there was a pcc CMD_READ waiting on down_write and it steals the lock
+        * before the pcc CMD_WRITE is completed. pcc_send_cmd checks for this
+        * case during a CMD_READ and if there are pending writes it delivers
+        * the write command before servicing the read command
+        */
+       if (CPC_IN_PCC(desired_reg)) {
+               if (down_write_trylock(&pcc_data.pcc_lock)) {   /* BEGIN Phase-II */
+                       /* Update only if there are pending write commands */
+                       if (pcc_data.pending_pcc_write_cmd)
+                               send_pcc_cmd(CMD_WRITE);
+                       up_write(&pcc_data.pcc_lock);           /* END Phase-II */
+               } else
+                       /* Wait until pcc_write_cnt is updated by send_pcc_cmd */
+                       wait_event(pcc_data.pcc_write_wait_q,
+                               cpc_desc->write_cmd_id != pcc_data.pcc_write_cnt);
+
+               /* send_pcc_cmd updates the status in case of failure */
+               ret = cpc_desc->write_cmd_status;
        }
-busy_channel:
-       spin_unlock(&pcc_lock);
-
        return ret;
 }
 EXPORT_SYMBOL_GPL(cppc_set_perf);
+
+/**
+ * cppc_get_transition_latency - returns frequency transition latency in ns
+ *
+ * ACPI CPPC does not explicitly specifiy how a platform can specify the
+ * transition latency for perfromance change requests. The closest we have
+ * is the timing information from the PCCT tables which provides the info
+ * on the number and frequency of PCC commands the platform can handle.
+ */
+unsigned int cppc_get_transition_latency(int cpu_num)
+{
+       /*
+        * Expected transition latency is based on the PCCT timing values
+        * Below are definition from ACPI spec:
+        * pcc_nominal- Expected latency to process a command, in microseconds
+        * pcc_mpar   - The maximum number of periodic requests that the subspace
+        *              channel can support, reported in commands per minute. 0
+        *              indicates no limitation.
+        * pcc_mrtt   - The minimum amount of time that OSPM must wait after the
+        *              completion of a command before issuing the next command,
+        *              in microseconds.
+        */
+       unsigned int latency_ns = 0;
+       struct cpc_desc *cpc_desc;
+       struct cpc_register_resource *desired_reg;
+
+       cpc_desc = per_cpu(cpc_desc_ptr, cpu_num);
+       if (!cpc_desc)
+               return CPUFREQ_ETERNAL;
+
+       desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
+       if (!CPC_IN_PCC(desired_reg))
+               return CPUFREQ_ETERNAL;
+
+       if (pcc_data.pcc_mpar)
+               latency_ns = 60 * (1000 * 1000 * 1000 / pcc_data.pcc_mpar);
+
+       latency_ns = max(latency_ns, pcc_data.pcc_nominal * 1000);
+       latency_ns = max(latency_ns, pcc_data.pcc_mrtt * 1000);
+
+       return latency_ns;
+}
+EXPORT_SYMBOL_GPL(cppc_get_transition_latency);