X-Git-Url: http://git.cascardo.eti.br/?a=blobdiff_plain;f=lib%2Fflow.c;h=2a7116b675da824ecec7280347a60891eb6246a1;hb=1589ee5ae97c3f71c50413db64ddd0546daeecc0;hp=b1b9f989a7710961e1bcf1a145a698ce31e150f5;hpb=1bf02876a46e3e86a59f959fdac57db7f6b0a4ad;p=cascardo%2Fovs.git diff --git a/lib/flow.c b/lib/flow.c index b1b9f989a..2a7116b67 100644 --- a/lib/flow.c +++ b/lib/flow.c @@ -1,5 +1,5 @@ /* - * Copyright (c) 2008, 2009, 2010, 2011, 2012, 2013 Nicira, Inc. + * Copyright (c) 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015 Nicira, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. @@ -32,477 +32,781 @@ #include "hash.h" #include "jhash.h" #include "match.h" -#include "ofpbuf.h" +#include "dp-packet.h" #include "openflow/openflow.h" #include "packets.h" +#include "odp-util.h" #include "random.h" #include "unaligned.h" COVERAGE_DEFINE(flow_extract); COVERAGE_DEFINE(miniflow_malloc); -/* U32 indices for segmented flow classification. */ -const uint8_t flow_segment_u32s[4] = { - FLOW_SEGMENT_1_ENDS_AT / 4, - FLOW_SEGMENT_2_ENDS_AT / 4, - FLOW_SEGMENT_3_ENDS_AT / 4, - FLOW_U32S +/* U64 indices for segmented flow classification. */ +const uint8_t flow_segment_u64s[4] = { + FLOW_SEGMENT_1_ENDS_AT / sizeof(uint64_t), + FLOW_SEGMENT_2_ENDS_AT / sizeof(uint64_t), + FLOW_SEGMENT_3_ENDS_AT / sizeof(uint64_t), + FLOW_U64S }; -static struct arp_eth_header * -pull_arp(struct ofpbuf *packet) -{ - return ofpbuf_try_pull(packet, ARP_ETH_HEADER_LEN); -} - -static struct ip_header * -pull_ip(struct ofpbuf *packet) -{ - if (packet->size >= IP_HEADER_LEN) { - struct ip_header *ip = packet->data; - int ip_len = IP_IHL(ip->ip_ihl_ver) * 4; - if (ip_len >= IP_HEADER_LEN && packet->size >= ip_len) { - return ofpbuf_pull(packet, ip_len); - } - } - return NULL; -} - -static struct tcp_header * -pull_tcp(struct ofpbuf *packet) -{ - if (packet->size >= TCP_HEADER_LEN) { - struct tcp_header *tcp = packet->data; - int tcp_len = TCP_OFFSET(tcp->tcp_ctl) * 4; - if (tcp_len >= TCP_HEADER_LEN && packet->size >= tcp_len) { - return ofpbuf_pull(packet, tcp_len); - } - } - return NULL; -} +/* Asserts that field 'f1' follows immediately after 'f0' in struct flow, + * without any intervening padding. */ +#define ASSERT_SEQUENTIAL(f0, f1) \ + BUILD_ASSERT_DECL(offsetof(struct flow, f0) \ + + MEMBER_SIZEOF(struct flow, f0) \ + == offsetof(struct flow, f1)) + +/* Asserts that fields 'f0' and 'f1' are in the same 32-bit aligned word within + * struct flow. */ +#define ASSERT_SAME_WORD(f0, f1) \ + BUILD_ASSERT_DECL(offsetof(struct flow, f0) / 4 \ + == offsetof(struct flow, f1) / 4) + +/* Asserts that 'f0' and 'f1' are both sequential and within the same 32-bit + * aligned word in struct flow. */ +#define ASSERT_SEQUENTIAL_SAME_WORD(f0, f1) \ + ASSERT_SEQUENTIAL(f0, f1); \ + ASSERT_SAME_WORD(f0, f1) + +/* miniflow_extract() assumes the following to be true to optimize the + * extraction process. */ +ASSERT_SEQUENTIAL_SAME_WORD(dl_type, vlan_tci); + +ASSERT_SEQUENTIAL_SAME_WORD(nw_frag, nw_tos); +ASSERT_SEQUENTIAL_SAME_WORD(nw_tos, nw_ttl); +ASSERT_SEQUENTIAL_SAME_WORD(nw_ttl, nw_proto); + +/* TCP flags in the middle of a BE64, zeroes in the other half. */ +BUILD_ASSERT_DECL(offsetof(struct flow, tcp_flags) % 8 == 4); + +#if WORDS_BIGENDIAN +#define TCP_FLAGS_BE32(tcp_ctl) ((OVS_FORCE ovs_be32)TCP_FLAGS_BE16(tcp_ctl) \ + << 16) +#else +#define TCP_FLAGS_BE32(tcp_ctl) ((OVS_FORCE ovs_be32)TCP_FLAGS_BE16(tcp_ctl)) +#endif + +ASSERT_SEQUENTIAL_SAME_WORD(tp_src, tp_dst); + +/* Removes 'size' bytes from the head end of '*datap', of size '*sizep', which + * must contain at least 'size' bytes of data. Returns the first byte of data + * removed. */ +static inline const void * +data_pull(const void **datap, size_t *sizep, size_t size) +{ + const char *data = *datap; + *datap = data + size; + *sizep -= size; + return data; +} + +/* If '*datap' has at least 'size' bytes of data, removes that many bytes from + * the head end of '*datap' and returns the first byte removed. Otherwise, + * returns a null pointer without modifying '*datap'. */ +static inline const void * +data_try_pull(const void **datap, size_t *sizep, size_t size) +{ + return OVS_LIKELY(*sizep >= size) ? data_pull(datap, sizep, size) : NULL; +} + +/* Context for pushing data to a miniflow. */ +struct mf_ctx { + struct flowmap map; + uint64_t *data; + uint64_t * const end; +}; -static struct udp_header * -pull_udp(struct ofpbuf *packet) -{ - return ofpbuf_try_pull(packet, UDP_HEADER_LEN); -} +/* miniflow_push_* macros allow filling in a miniflow data values in order. + * Assertions are needed only when the layout of the struct flow is modified. + * 'ofs' is a compile-time constant, which allows most of the code be optimized + * away. Some GCC versions gave warnings on ALWAYS_INLINE, so these are + * defined as macros. */ + +#if (FLOW_WC_SEQ != 35) +#define MINIFLOW_ASSERT(X) ovs_assert(X) +BUILD_MESSAGE("FLOW_WC_SEQ changed: miniflow_extract() will have runtime " + "assertions enabled. Consider updating FLOW_WC_SEQ after " + "testing") +#else +#define MINIFLOW_ASSERT(X) +#endif + +/* True if 'IDX' and higher bits are not set. */ +#define ASSERT_FLOWMAP_NOT_SET(FM, IDX) \ +{ \ + MINIFLOW_ASSERT(!((FM)->bits[(IDX) / MAP_T_BITS] & \ + (MAP_MAX << ((IDX) % MAP_T_BITS)))); \ + for (size_t i = (IDX) / MAP_T_BITS + 1; i < FLOWMAP_UNITS; i++) { \ + MINIFLOW_ASSERT(!(FM)->bits[i]); \ + } \ +} + +#define miniflow_set_map(MF, OFS) \ + { \ + ASSERT_FLOWMAP_NOT_SET(&MF.map, (OFS)); \ + flowmap_set(&MF.map, (OFS), 1); \ +} + +#define miniflow_assert_in_map(MF, OFS) \ + MINIFLOW_ASSERT(flowmap_is_set(&MF.map, (OFS))); \ + ASSERT_FLOWMAP_NOT_SET(&MF.map, (OFS) + 1) + +#define miniflow_push_uint64_(MF, OFS, VALUE) \ +{ \ + MINIFLOW_ASSERT(MF.data < MF.end && (OFS) % 8 == 0); \ + *MF.data++ = VALUE; \ + miniflow_set_map(MF, OFS / 8); \ +} + +#define miniflow_push_be64_(MF, OFS, VALUE) \ + miniflow_push_uint64_(MF, OFS, (OVS_FORCE uint64_t)(VALUE)) + +#define miniflow_push_uint32_(MF, OFS, VALUE) \ + { \ + MINIFLOW_ASSERT(MF.data < MF.end); \ + \ + if ((OFS) % 8 == 0) { \ + miniflow_set_map(MF, OFS / 8); \ + *(uint32_t *)MF.data = VALUE; \ + } else if ((OFS) % 8 == 4) { \ + miniflow_assert_in_map(MF, OFS / 8); \ + *((uint32_t *)MF.data + 1) = VALUE; \ + MF.data++; \ + } \ +} + +#define miniflow_push_be32_(MF, OFS, VALUE) \ + miniflow_push_uint32_(MF, OFS, (OVS_FORCE uint32_t)(VALUE)) + +#define miniflow_push_uint16_(MF, OFS, VALUE) \ +{ \ + MINIFLOW_ASSERT(MF.data < MF.end); \ + \ + if ((OFS) % 8 == 0) { \ + miniflow_set_map(MF, OFS / 8); \ + *(uint16_t *)MF.data = VALUE; \ + } else if ((OFS) % 8 == 2) { \ + miniflow_assert_in_map(MF, OFS / 8); \ + *((uint16_t *)MF.data + 1) = VALUE; \ + } else if ((OFS) % 8 == 4) { \ + miniflow_assert_in_map(MF, OFS / 8); \ + *((uint16_t *)MF.data + 2) = VALUE; \ + } else if ((OFS) % 8 == 6) { \ + miniflow_assert_in_map(MF, OFS / 8); \ + *((uint16_t *)MF.data + 3) = VALUE; \ + MF.data++; \ + } \ +} + +#define miniflow_push_uint8_(MF, OFS, VALUE) \ +{ \ + MINIFLOW_ASSERT(MF.data < MF.end); \ + \ + if ((OFS) % 8 == 0) { \ + miniflow_set_map(MF, OFS / 8); \ + *(uint8_t *)MF.data = VALUE; \ + } else if ((OFS) % 8 == 7) { \ + miniflow_assert_in_map(MF, OFS / 8); \ + *((uint8_t *)MF.data + 7) = VALUE; \ + MF.data++; \ + } else { \ + miniflow_assert_in_map(MF, OFS / 8); \ + *((uint8_t *)MF.data + ((OFS) % 8)) = VALUE; \ + } \ +} + +#define miniflow_pad_to_64_(MF, OFS) \ +{ \ + MINIFLOW_ASSERT((OFS) % 8 != 0); \ + miniflow_assert_in_map(MF, OFS / 8); \ + \ + memset((uint8_t *)MF.data + (OFS) % 8, 0, 8 - (OFS) % 8); \ + MF.data++; \ +} + +#define miniflow_pad_from_64_(MF, OFS) \ +{ \ + MINIFLOW_ASSERT(MF.data < MF.end); \ + \ + MINIFLOW_ASSERT((OFS) % 8 != 0); \ + miniflow_set_map(MF, OFS / 8); \ + \ + memset((uint8_t *)MF.data, 0, (OFS) % 8); \ +} + +#define miniflow_push_be16_(MF, OFS, VALUE) \ + miniflow_push_uint16_(MF, OFS, (OVS_FORCE uint16_t)VALUE); + +#define miniflow_push_be8_(MF, OFS, VALUE) \ + miniflow_push_uint8_(MF, OFS, (OVS_FORCE uint8_t)VALUE); + +#define miniflow_set_maps(MF, OFS, N_WORDS) \ +{ \ + size_t ofs = (OFS); \ + size_t n_words = (N_WORDS); \ + \ + MINIFLOW_ASSERT(n_words && MF.data + n_words <= MF.end); \ + ASSERT_FLOWMAP_NOT_SET(&MF.map, ofs); \ + flowmap_set(&MF.map, ofs, n_words); \ +} + +/* Data at 'valuep' may be unaligned. */ +#define miniflow_push_words_(MF, OFS, VALUEP, N_WORDS) \ +{ \ + MINIFLOW_ASSERT((OFS) % 8 == 0); \ + miniflow_set_maps(MF, (OFS) / 8, (N_WORDS)); \ + memcpy(MF.data, (VALUEP), (N_WORDS) * sizeof *MF.data); \ + MF.data += (N_WORDS); \ +} + +/* Push 32-bit words padded to 64-bits. */ +#define miniflow_push_words_32_(MF, OFS, VALUEP, N_WORDS) \ +{ \ + miniflow_set_maps(MF, (OFS) / 8, DIV_ROUND_UP(N_WORDS, 2)); \ + memcpy(MF.data, (VALUEP), (N_WORDS) * sizeof(uint32_t)); \ + MF.data += DIV_ROUND_UP(N_WORDS, 2); \ + if ((N_WORDS) & 1) { \ + *((uint32_t *)MF.data - 1) = 0; \ + } \ +} + +/* Data at 'valuep' may be unaligned. */ +/* MACs start 64-aligned, and must be followed by other data or padding. */ +#define miniflow_push_macs_(MF, OFS, VALUEP) \ +{ \ + miniflow_set_maps(MF, (OFS) / 8, 2); \ + memcpy(MF.data, (VALUEP), 2 * ETH_ADDR_LEN); \ + MF.data += 1; /* First word only. */ \ +} + +#define miniflow_push_uint32(MF, FIELD, VALUE) \ + miniflow_push_uint32_(MF, offsetof(struct flow, FIELD), VALUE) + +#define miniflow_push_be32(MF, FIELD, VALUE) \ + miniflow_push_be32_(MF, offsetof(struct flow, FIELD), VALUE) + +#define miniflow_push_uint16(MF, FIELD, VALUE) \ + miniflow_push_uint16_(MF, offsetof(struct flow, FIELD), VALUE) + +#define miniflow_push_be16(MF, FIELD, VALUE) \ + miniflow_push_be16_(MF, offsetof(struct flow, FIELD), VALUE) + +#define miniflow_push_uint8(MF, FIELD, VALUE) \ + miniflow_push_uint8_(MF, offsetof(struct flow, FIELD), VALUE) + +#define miniflow_pad_to_64(MF, FIELD) \ + miniflow_pad_to_64_(MF, OFFSETOFEND(struct flow, FIELD)) -static struct sctp_header * -pull_sctp(struct ofpbuf *packet) -{ - return ofpbuf_try_pull(packet, SCTP_HEADER_LEN); -} +#define miniflow_pad_from_64(MF, FIELD) \ + miniflow_pad_from_64_(MF, offsetof(struct flow, FIELD)) + +#define miniflow_push_words(MF, FIELD, VALUEP, N_WORDS) \ + miniflow_push_words_(MF, offsetof(struct flow, FIELD), VALUEP, N_WORDS) + +#define miniflow_push_words_32(MF, FIELD, VALUEP, N_WORDS) \ + miniflow_push_words_32_(MF, offsetof(struct flow, FIELD), VALUEP, N_WORDS) -static struct icmp_header * -pull_icmp(struct ofpbuf *packet) -{ - return ofpbuf_try_pull(packet, ICMP_HEADER_LEN); -} - -static struct icmp6_hdr * -pull_icmpv6(struct ofpbuf *packet) -{ - return ofpbuf_try_pull(packet, sizeof(struct icmp6_hdr)); -} +#define miniflow_push_macs(MF, FIELD, VALUEP) \ + miniflow_push_macs_(MF, offsetof(struct flow, FIELD), VALUEP) -static void -parse_mpls(struct ofpbuf *b, struct flow *flow) +/* Pulls the MPLS headers at '*datap' and returns the count of them. */ +static inline int +parse_mpls(const void **datap, size_t *sizep) { - struct mpls_hdr *mh; - bool top = true; + const struct mpls_hdr *mh; + int count = 0; - while ((mh = ofpbuf_try_pull(b, sizeof *mh))) { - if (top) { - top = false; - flow->mpls_lse = mh->mpls_lse; - } - if (mh->mpls_lse & htonl(MPLS_BOS_MASK)) { + while ((mh = data_try_pull(datap, sizep, sizeof *mh))) { + count++; + if (mh->mpls_lse.lo & htons(1 << MPLS_BOS_SHIFT)) { break; } } + return MIN(count, FLOW_MAX_MPLS_LABELS); } -static void -parse_vlan(struct ofpbuf *b, struct flow *flow) +static inline ovs_be16 +parse_vlan(const void **datap, size_t *sizep) { + const struct eth_header *eth = *datap; + struct qtag_prefix { ovs_be16 eth_type; /* ETH_TYPE_VLAN */ ovs_be16 tci; }; - if (b->size >= sizeof(struct qtag_prefix) + sizeof(ovs_be16)) { - struct qtag_prefix *qp = ofpbuf_pull(b, sizeof *qp); - flow->vlan_tci = qp->tci | htons(VLAN_CFI); + data_pull(datap, sizep, ETH_ADDR_LEN * 2); + + if (eth->eth_type == htons(ETH_TYPE_VLAN)) { + if (OVS_LIKELY(*sizep + >= sizeof(struct qtag_prefix) + sizeof(ovs_be16))) { + const struct qtag_prefix *qp = data_pull(datap, sizep, sizeof *qp); + return qp->tci | htons(VLAN_CFI); + } } + return 0; } -static ovs_be16 -parse_ethertype(struct ofpbuf *b) +static inline ovs_be16 +parse_ethertype(const void **datap, size_t *sizep) { - struct llc_snap_header *llc; + const struct llc_snap_header *llc; ovs_be16 proto; - proto = *(ovs_be16 *) ofpbuf_pull(b, sizeof proto); - if (ntohs(proto) >= ETH_TYPE_MIN) { + proto = *(ovs_be16 *) data_pull(datap, sizep, sizeof proto); + if (OVS_LIKELY(ntohs(proto) >= ETH_TYPE_MIN)) { return proto; } - if (b->size < sizeof *llc) { + if (OVS_UNLIKELY(*sizep < sizeof *llc)) { return htons(FLOW_DL_TYPE_NONE); } - llc = b->data; - if (llc->llc.llc_dsap != LLC_DSAP_SNAP - || llc->llc.llc_ssap != LLC_SSAP_SNAP - || llc->llc.llc_cntl != LLC_CNTL_SNAP - || memcmp(llc->snap.snap_org, SNAP_ORG_ETHERNET, - sizeof llc->snap.snap_org)) { + llc = *datap; + if (OVS_UNLIKELY(llc->llc.llc_dsap != LLC_DSAP_SNAP + || llc->llc.llc_ssap != LLC_SSAP_SNAP + || llc->llc.llc_cntl != LLC_CNTL_SNAP + || memcmp(llc->snap.snap_org, SNAP_ORG_ETHERNET, + sizeof llc->snap.snap_org))) { return htons(FLOW_DL_TYPE_NONE); } - ofpbuf_pull(b, sizeof *llc); + data_pull(datap, sizep, sizeof *llc); - if (ntohs(llc->snap.snap_type) >= ETH_TYPE_MIN) { + if (OVS_LIKELY(ntohs(llc->snap.snap_type) >= ETH_TYPE_MIN)) { return llc->snap.snap_type; } return htons(FLOW_DL_TYPE_NONE); } -static int -parse_ipv6(struct ofpbuf *packet, struct flow *flow) -{ - const struct ovs_16aligned_ip6_hdr *nh; - ovs_be32 tc_flow; - int nexthdr; - - nh = ofpbuf_try_pull(packet, sizeof *nh); - if (!nh) { - return EINVAL; - } - - nexthdr = nh->ip6_nxt; - - memcpy(&flow->ipv6_src, &nh->ip6_src, sizeof flow->ipv6_src); - memcpy(&flow->ipv6_dst, &nh->ip6_dst, sizeof flow->ipv6_dst); - - tc_flow = get_16aligned_be32(&nh->ip6_flow); - flow->nw_tos = ntohl(tc_flow) >> 20; - flow->ipv6_label = tc_flow & htonl(IPV6_LABEL_MASK); - flow->nw_ttl = nh->ip6_hlim; - flow->nw_proto = IPPROTO_NONE; - - while (1) { - if ((nexthdr != IPPROTO_HOPOPTS) - && (nexthdr != IPPROTO_ROUTING) - && (nexthdr != IPPROTO_DSTOPTS) - && (nexthdr != IPPROTO_AH) - && (nexthdr != IPPROTO_FRAGMENT)) { - /* It's either a terminal header (e.g., TCP, UDP) or one we - * don't understand. In either case, we're done with the - * packet, so use it to fill in 'nw_proto'. */ - break; - } - - /* We only verify that at least 8 bytes of the next header are - * available, but many of these headers are longer. Ensure that - * accesses within the extension header are within those first 8 - * bytes. All extension headers are required to be at least 8 - * bytes. */ - if (packet->size < 8) { - return EINVAL; - } - - if ((nexthdr == IPPROTO_HOPOPTS) - || (nexthdr == IPPROTO_ROUTING) - || (nexthdr == IPPROTO_DSTOPTS)) { - /* These headers, while different, have the fields we care about - * in the same location and with the same interpretation. */ - const struct ip6_ext *ext_hdr = packet->data; - nexthdr = ext_hdr->ip6e_nxt; - if (!ofpbuf_try_pull(packet, (ext_hdr->ip6e_len + 1) * 8)) { - return EINVAL; - } - } else if (nexthdr == IPPROTO_AH) { - /* A standard AH definition isn't available, but the fields - * we care about are in the same location as the generic - * option header--only the header length is calculated - * differently. */ - const struct ip6_ext *ext_hdr = packet->data; - nexthdr = ext_hdr->ip6e_nxt; - if (!ofpbuf_try_pull(packet, (ext_hdr->ip6e_len + 2) * 4)) { - return EINVAL; - } - } else if (nexthdr == IPPROTO_FRAGMENT) { - const struct ovs_16aligned_ip6_frag *frag_hdr = packet->data; - - nexthdr = frag_hdr->ip6f_nxt; - if (!ofpbuf_try_pull(packet, sizeof *frag_hdr)) { - return EINVAL; - } - - /* We only process the first fragment. */ - if (frag_hdr->ip6f_offlg != htons(0)) { - flow->nw_frag = FLOW_NW_FRAG_ANY; - if ((frag_hdr->ip6f_offlg & IP6F_OFF_MASK) != htons(0)) { - flow->nw_frag |= FLOW_NW_FRAG_LATER; - nexthdr = IPPROTO_FRAGMENT; - break; - } - } - } - } - - flow->nw_proto = nexthdr; - return 0; -} - -static void -parse_tcp(struct ofpbuf *packet, struct ofpbuf *b, struct flow *flow) -{ - const struct tcp_header *tcp = pull_tcp(b); - if (tcp) { - flow->tp_src = tcp->tcp_src; - flow->tp_dst = tcp->tcp_dst; - flow->tcp_flags = tcp->tcp_ctl & htons(0x0fff); - packet->l7 = b->data; - } -} - -static void -parse_udp(struct ofpbuf *packet, struct ofpbuf *b, struct flow *flow) -{ - const struct udp_header *udp = pull_udp(b); - if (udp) { - flow->tp_src = udp->udp_src; - flow->tp_dst = udp->udp_dst; - packet->l7 = b->data; - } -} - -static void -parse_sctp(struct ofpbuf *packet, struct ofpbuf *b, struct flow *flow) +static inline void +parse_icmpv6(const void **datap, size_t *sizep, const struct icmp6_hdr *icmp, + const struct in6_addr **nd_target, + struct eth_addr arp_buf[2]) { - const struct sctp_header *sctp = pull_sctp(b); - if (sctp) { - flow->tp_src = sctp->sctp_src; - flow->tp_dst = sctp->sctp_dst; - packet->l7 = b->data; - } -} - -static bool -parse_icmpv6(struct ofpbuf *b, struct flow *flow) -{ - const struct icmp6_hdr *icmp = pull_icmpv6(b); - - if (!icmp) { - return false; - } - - /* The ICMPv6 type and code fields use the 16-bit transport port - * fields, so we need to store them in 16-bit network byte order. */ - flow->tp_src = htons(icmp->icmp6_type); - flow->tp_dst = htons(icmp->icmp6_code); - if (icmp->icmp6_code == 0 && (icmp->icmp6_type == ND_NEIGHBOR_SOLICIT || icmp->icmp6_type == ND_NEIGHBOR_ADVERT)) { - const struct in6_addr *nd_target; - nd_target = ofpbuf_try_pull(b, sizeof *nd_target); - if (!nd_target) { - return false; + *nd_target = data_try_pull(datap, sizep, sizeof **nd_target); + if (OVS_UNLIKELY(!*nd_target)) { + return; } - flow->nd_target = *nd_target; - while (b->size >= 8) { + while (*sizep >= 8) { /* The minimum size of an option is 8 bytes, which also is * the size of Ethernet link-layer options. */ - const struct nd_opt_hdr *nd_opt = b->data; - int opt_len = nd_opt->nd_opt_len * 8; + const struct ovs_nd_opt *nd_opt = *datap; + int opt_len = nd_opt->nd_opt_len * ND_OPT_LEN; - if (!opt_len || opt_len > b->size) { - goto invalid; + if (!opt_len || opt_len > *sizep) { + return; } /* Store the link layer address if the appropriate option is * provided. It is considered an error if the same link * layer option is specified twice. */ if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LINKADDR - && opt_len == 8) { - if (eth_addr_is_zero(flow->arp_sha)) { - memcpy(flow->arp_sha, nd_opt + 1, ETH_ADDR_LEN); + && opt_len == 8) { + if (OVS_LIKELY(eth_addr_is_zero(arp_buf[0]))) { + arp_buf[0] = nd_opt->nd_opt_mac; } else { goto invalid; } } else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LINKADDR - && opt_len == 8) { - if (eth_addr_is_zero(flow->arp_tha)) { - memcpy(flow->arp_tha, nd_opt + 1, ETH_ADDR_LEN); + && opt_len == 8) { + if (OVS_LIKELY(eth_addr_is_zero(arp_buf[1]))) { + arp_buf[1] = nd_opt->nd_opt_mac; } else { goto invalid; } } - if (!ofpbuf_try_pull(b, opt_len)) { - goto invalid; + if (OVS_UNLIKELY(!data_try_pull(datap, sizep, opt_len))) { + return; } } } - return true; + return; invalid: - memset(&flow->nd_target, 0, sizeof(flow->nd_target)); - memset(flow->arp_sha, 0, sizeof(flow->arp_sha)); - memset(flow->arp_tha, 0, sizeof(flow->arp_tha)); - - return false; - + *nd_target = NULL; + arp_buf[0] = eth_addr_zero; + arp_buf[1] = eth_addr_zero; } -/* Initializes 'flow' members from 'packet', 'skb_priority', 'tnl', and - * 'in_port'. +/* Initializes 'flow' members from 'packet' and 'md' * - * Initializes 'packet' header pointers as follows: + * Initializes 'packet' header l2 pointer to the start of the Ethernet + * header, and the layer offsets as follows: * - * - packet->l2 to the start of the Ethernet header. + * - packet->l2_5_ofs to the start of the MPLS shim header, or UINT16_MAX + * when there is no MPLS shim header. * - * - packet->l2_5 to the start of the MPLS shim header. - * - * - packet->l3 to just past the Ethernet header, or just past the + * - packet->l3_ofs to just past the Ethernet header, or just past the * vlan_header if one is present, to the first byte of the payload of the - * Ethernet frame. - * - * - packet->l4 to just past the IPv4 header, if one is present and has a - * correct length, and otherwise NULL. + * Ethernet frame. UINT16_MAX if the frame is too short to contain an + * Ethernet header. * - * - packet->l7 to just past the TCP/UDP/SCTP/ICMP header, if one is - * present and has a correct length, and otherwise NULL. + * - packet->l4_ofs to just past the IPv4 header, if one is present and + * has at least the content used for the fields of interest for the flow, + * otherwise UINT16_MAX. */ void -flow_extract(struct ofpbuf *packet, uint32_t skb_priority, uint32_t pkt_mark, - const struct flow_tnl *tnl, const union flow_in_port *in_port, - struct flow *flow) +flow_extract(struct dp_packet *packet, struct flow *flow) { - struct ofpbuf b = *packet; - struct eth_header *eth; + struct { + struct miniflow mf; + uint64_t buf[FLOW_U64S]; + } m; COVERAGE_INC(flow_extract); - memset(flow, 0, sizeof *flow); + miniflow_extract(packet, &m.mf); + miniflow_expand(&m.mf, flow); +} - if (tnl) { - ovs_assert(tnl != &flow->tunnel); - flow->tunnel = *tnl; +/* Caller is responsible for initializing 'dst' with enough storage for + * FLOW_U64S * 8 bytes. */ +void +miniflow_extract(struct dp_packet *packet, struct miniflow *dst) +{ + const struct pkt_metadata *md = &packet->md; + const void *data = dp_packet_data(packet); + size_t size = dp_packet_size(packet); + uint64_t *values = miniflow_values(dst); + struct mf_ctx mf = { FLOWMAP_EMPTY_INITIALIZER, values, + values + FLOW_U64S }; + const char *l2; + ovs_be16 dl_type; + uint8_t nw_frag, nw_tos, nw_ttl, nw_proto; + + /* Metadata. */ + if (flow_tnl_dst_is_set(&md->tunnel)) { + miniflow_push_words(mf, tunnel, &md->tunnel, + offsetof(struct flow_tnl, metadata) / + sizeof(uint64_t)); + + if (!(md->tunnel.flags & FLOW_TNL_F_UDPIF)) { + if (md->tunnel.metadata.present.map) { + miniflow_push_words(mf, tunnel.metadata, &md->tunnel.metadata, + sizeof md->tunnel.metadata / + sizeof(uint64_t)); + } + } else { + if (md->tunnel.metadata.present.len) { + miniflow_push_words(mf, tunnel.metadata.present, + &md->tunnel.metadata.present, 1); + miniflow_push_words(mf, tunnel.metadata.opts.gnv, + md->tunnel.metadata.opts.gnv, + DIV_ROUND_UP(md->tunnel.metadata.present.len, + sizeof(uint64_t))); + } + } } - if (in_port) { - flow->in_port = *in_port; + if (md->skb_priority || md->pkt_mark) { + miniflow_push_uint32(mf, skb_priority, md->skb_priority); + miniflow_push_uint32(mf, pkt_mark, md->pkt_mark); + } + miniflow_push_uint32(mf, dp_hash, md->dp_hash); + miniflow_push_uint32(mf, in_port, odp_to_u32(md->in_port.odp_port)); + if (md->recirc_id || md->ct_state) { + miniflow_push_uint32(mf, recirc_id, md->recirc_id); + miniflow_push_uint16(mf, ct_state, md->ct_state); + miniflow_push_uint16(mf, ct_zone, md->ct_zone); } - flow->skb_priority = skb_priority; - flow->pkt_mark = pkt_mark; - packet->l2 = b.data; - packet->l2_5 = NULL; - packet->l3 = NULL; - packet->l4 = NULL; - packet->l7 = NULL; + if (md->ct_state) { + miniflow_push_uint32(mf, ct_mark, md->ct_mark); + miniflow_pad_to_64(mf, ct_mark); - if (b.size < sizeof *eth) { - return; + if (!ovs_u128_is_zero(&md->ct_label)) { + miniflow_push_words(mf, ct_label, &md->ct_label, + sizeof md->ct_label / sizeof(uint64_t)); + } } - /* Link layer. */ - eth = b.data; - memcpy(flow->dl_src, eth->eth_src, ETH_ADDR_LEN); - memcpy(flow->dl_dst, eth->eth_dst, ETH_ADDR_LEN); + /* Initialize packet's layer pointer and offsets. */ + l2 = data; + dp_packet_reset_offsets(packet); - /* dl_type, vlan_tci. */ - ofpbuf_pull(&b, ETH_ADDR_LEN * 2); - if (eth->eth_type == htons(ETH_TYPE_VLAN)) { - parse_vlan(&b, flow); + /* Must have full Ethernet header to proceed. */ + if (OVS_UNLIKELY(size < sizeof(struct eth_header))) { + goto out; + } else { + ovs_be16 vlan_tci; + + /* Link layer. */ + ASSERT_SEQUENTIAL(dl_dst, dl_src); + miniflow_push_macs(mf, dl_dst, data); + /* dl_type, vlan_tci. */ + vlan_tci = parse_vlan(&data, &size); + dl_type = parse_ethertype(&data, &size); + miniflow_push_be16(mf, dl_type, dl_type); + miniflow_push_be16(mf, vlan_tci, vlan_tci); } - flow->dl_type = parse_ethertype(&b); - /* Parse mpls, copy l3 ttl. */ - if (eth_type_mpls(flow->dl_type)) { - packet->l2_5 = b.data; - parse_mpls(&b, flow); + /* Parse mpls. */ + if (OVS_UNLIKELY(eth_type_mpls(dl_type))) { + int count; + const void *mpls = data; + + packet->l2_5_ofs = (char *)data - l2; + count = parse_mpls(&data, &size); + miniflow_push_words_32(mf, mpls_lse, mpls, count); } /* Network layer. */ - packet->l3 = b.data; - if (flow->dl_type == htons(ETH_TYPE_IP)) { - const struct ip_header *nh = pull_ip(&b); - if (nh) { - packet->l4 = b.data; - - flow->nw_src = get_16aligned_be32(&nh->ip_src); - flow->nw_dst = get_16aligned_be32(&nh->ip_dst); - flow->nw_proto = nh->ip_proto; - - flow->nw_tos = nh->ip_tos; - if (IP_IS_FRAGMENT(nh->ip_frag_off)) { - flow->nw_frag = FLOW_NW_FRAG_ANY; - if (nh->ip_frag_off & htons(IP_FRAG_OFF_MASK)) { - flow->nw_frag |= FLOW_NW_FRAG_LATER; - } + packet->l3_ofs = (char *)data - l2; + + nw_frag = 0; + if (OVS_LIKELY(dl_type == htons(ETH_TYPE_IP))) { + const struct ip_header *nh = data; + int ip_len; + uint16_t tot_len; + + if (OVS_UNLIKELY(size < IP_HEADER_LEN)) { + goto out; + } + ip_len = IP_IHL(nh->ip_ihl_ver) * 4; + + if (OVS_UNLIKELY(ip_len < IP_HEADER_LEN)) { + goto out; + } + if (OVS_UNLIKELY(size < ip_len)) { + goto out; + } + tot_len = ntohs(nh->ip_tot_len); + if (OVS_UNLIKELY(tot_len > size)) { + goto out; + } + if (OVS_UNLIKELY(size - tot_len > UINT8_MAX)) { + goto out; + } + dp_packet_set_l2_pad_size(packet, size - tot_len); + size = tot_len; /* Never pull padding. */ + + /* Push both source and destination address at once. */ + miniflow_push_words(mf, nw_src, &nh->ip_src, 1); + + miniflow_push_be32(mf, ipv6_label, 0); /* Padding for IPv4. */ + + nw_tos = nh->ip_tos; + nw_ttl = nh->ip_ttl; + nw_proto = nh->ip_proto; + if (OVS_UNLIKELY(IP_IS_FRAGMENT(nh->ip_frag_off))) { + nw_frag = FLOW_NW_FRAG_ANY; + if (nh->ip_frag_off & htons(IP_FRAG_OFF_MASK)) { + nw_frag |= FLOW_NW_FRAG_LATER; } - flow->nw_ttl = nh->ip_ttl; - - if (!(nh->ip_frag_off & htons(IP_FRAG_OFF_MASK))) { - if (flow->nw_proto == IPPROTO_TCP) { - parse_tcp(packet, &b, flow); - } else if (flow->nw_proto == IPPROTO_UDP) { - parse_udp(packet, &b, flow); - } else if (flow->nw_proto == IPPROTO_SCTP) { - parse_sctp(packet, &b, flow); - } else if (flow->nw_proto == IPPROTO_ICMP) { - const struct icmp_header *icmp = pull_icmp(&b); - if (icmp) { - flow->tp_src = htons(icmp->icmp_type); - flow->tp_dst = htons(icmp->icmp_code); - packet->l7 = b.data; + } + data_pull(&data, &size, ip_len); + } else if (dl_type == htons(ETH_TYPE_IPV6)) { + const struct ovs_16aligned_ip6_hdr *nh; + ovs_be32 tc_flow; + uint16_t plen; + + if (OVS_UNLIKELY(size < sizeof *nh)) { + goto out; + } + nh = data_pull(&data, &size, sizeof *nh); + + plen = ntohs(nh->ip6_plen); + if (OVS_UNLIKELY(plen > size)) { + goto out; + } + /* Jumbo Payload option not supported yet. */ + if (OVS_UNLIKELY(size - plen > UINT8_MAX)) { + goto out; + } + dp_packet_set_l2_pad_size(packet, size - plen); + size = plen; /* Never pull padding. */ + + miniflow_push_words(mf, ipv6_src, &nh->ip6_src, + sizeof nh->ip6_src / 8); + miniflow_push_words(mf, ipv6_dst, &nh->ip6_dst, + sizeof nh->ip6_dst / 8); + + tc_flow = get_16aligned_be32(&nh->ip6_flow); + { + ovs_be32 label = tc_flow & htonl(IPV6_LABEL_MASK); + miniflow_push_be32(mf, ipv6_label, label); + } + + nw_tos = ntohl(tc_flow) >> 20; + nw_ttl = nh->ip6_hlim; + nw_proto = nh->ip6_nxt; + + while (1) { + if (OVS_LIKELY((nw_proto != IPPROTO_HOPOPTS) + && (nw_proto != IPPROTO_ROUTING) + && (nw_proto != IPPROTO_DSTOPTS) + && (nw_proto != IPPROTO_AH) + && (nw_proto != IPPROTO_FRAGMENT))) { + /* It's either a terminal header (e.g., TCP, UDP) or one we + * don't understand. In either case, we're done with the + * packet, so use it to fill in 'nw_proto'. */ + break; + } + + /* We only verify that at least 8 bytes of the next header are + * available, but many of these headers are longer. Ensure that + * accesses within the extension header are within those first 8 + * bytes. All extension headers are required to be at least 8 + * bytes. */ + if (OVS_UNLIKELY(size < 8)) { + goto out; + } + + if ((nw_proto == IPPROTO_HOPOPTS) + || (nw_proto == IPPROTO_ROUTING) + || (nw_proto == IPPROTO_DSTOPTS)) { + /* These headers, while different, have the fields we care + * about in the same location and with the same + * interpretation. */ + const struct ip6_ext *ext_hdr = data; + nw_proto = ext_hdr->ip6e_nxt; + if (OVS_UNLIKELY(!data_try_pull(&data, &size, + (ext_hdr->ip6e_len + 1) * 8))) { + goto out; + } + } else if (nw_proto == IPPROTO_AH) { + /* A standard AH definition isn't available, but the fields + * we care about are in the same location as the generic + * option header--only the header length is calculated + * differently. */ + const struct ip6_ext *ext_hdr = data; + nw_proto = ext_hdr->ip6e_nxt; + if (OVS_UNLIKELY(!data_try_pull(&data, &size, + (ext_hdr->ip6e_len + 2) * 4))) { + goto out; + } + } else if (nw_proto == IPPROTO_FRAGMENT) { + const struct ovs_16aligned_ip6_frag *frag_hdr = data; + + nw_proto = frag_hdr->ip6f_nxt; + if (!data_try_pull(&data, &size, sizeof *frag_hdr)) { + goto out; + } + + /* We only process the first fragment. */ + if (frag_hdr->ip6f_offlg != htons(0)) { + nw_frag = FLOW_NW_FRAG_ANY; + if ((frag_hdr->ip6f_offlg & IP6F_OFF_MASK) != htons(0)) { + nw_frag |= FLOW_NW_FRAG_LATER; + nw_proto = IPPROTO_FRAGMENT; + break; } } } } - } else if (flow->dl_type == htons(ETH_TYPE_IPV6)) { - if (parse_ipv6(&b, flow)) { - return; - } + } else { + if (dl_type == htons(ETH_TYPE_ARP) || + dl_type == htons(ETH_TYPE_RARP)) { + struct eth_addr arp_buf[2]; + const struct arp_eth_header *arp = (const struct arp_eth_header *) + data_try_pull(&data, &size, ARP_ETH_HEADER_LEN); + + if (OVS_LIKELY(arp) && OVS_LIKELY(arp->ar_hrd == htons(1)) + && OVS_LIKELY(arp->ar_pro == htons(ETH_TYPE_IP)) + && OVS_LIKELY(arp->ar_hln == ETH_ADDR_LEN) + && OVS_LIKELY(arp->ar_pln == 4)) { + miniflow_push_be32(mf, nw_src, + get_16aligned_be32(&arp->ar_spa)); + miniflow_push_be32(mf, nw_dst, + get_16aligned_be32(&arp->ar_tpa)); + + /* We only match on the lower 8 bits of the opcode. */ + if (OVS_LIKELY(ntohs(arp->ar_op) <= 0xff)) { + miniflow_push_be32(mf, ipv6_label, 0); /* Pad with ARP. */ + miniflow_push_be32(mf, nw_frag, htonl(ntohs(arp->ar_op))); + } - packet->l4 = b.data; - if (flow->nw_proto == IPPROTO_TCP) { - parse_tcp(packet, &b, flow); - } else if (flow->nw_proto == IPPROTO_UDP) { - parse_udp(packet, &b, flow); - } else if (flow->nw_proto == IPPROTO_SCTP) { - parse_sctp(packet, &b, flow); - } else if (flow->nw_proto == IPPROTO_ICMPV6) { - if (parse_icmpv6(&b, flow)) { - packet->l7 = b.data; + /* Must be adjacent. */ + ASSERT_SEQUENTIAL(arp_sha, arp_tha); + + arp_buf[0] = arp->ar_sha; + arp_buf[1] = arp->ar_tha; + miniflow_push_macs(mf, arp_sha, arp_buf); + miniflow_pad_to_64(mf, arp_tha); } } - } else if (flow->dl_type == htons(ETH_TYPE_ARP) || - flow->dl_type == htons(ETH_TYPE_RARP)) { - const struct arp_eth_header *arp = pull_arp(&b); - if (arp && arp->ar_hrd == htons(1) - && arp->ar_pro == htons(ETH_TYPE_IP) - && arp->ar_hln == ETH_ADDR_LEN - && arp->ar_pln == 4) { - /* We only match on the lower 8 bits of the opcode. */ - if (ntohs(arp->ar_op) <= 0xff) { - flow->nw_proto = ntohs(arp->ar_op); + goto out; + } + + packet->l4_ofs = (char *)data - l2; + miniflow_push_be32(mf, nw_frag, + BYTES_TO_BE32(nw_frag, nw_tos, nw_ttl, nw_proto)); + + if (OVS_LIKELY(!(nw_frag & FLOW_NW_FRAG_LATER))) { + if (OVS_LIKELY(nw_proto == IPPROTO_TCP)) { + if (OVS_LIKELY(size >= TCP_HEADER_LEN)) { + const struct tcp_header *tcp = data; + + miniflow_push_be32(mf, arp_tha.ea[2], 0); + miniflow_push_be32(mf, tcp_flags, + TCP_FLAGS_BE32(tcp->tcp_ctl)); + miniflow_push_be16(mf, tp_src, tcp->tcp_src); + miniflow_push_be16(mf, tp_dst, tcp->tcp_dst); + miniflow_pad_to_64(mf, tp_dst); + } + } else if (OVS_LIKELY(nw_proto == IPPROTO_UDP)) { + if (OVS_LIKELY(size >= UDP_HEADER_LEN)) { + const struct udp_header *udp = data; + + miniflow_push_be16(mf, tp_src, udp->udp_src); + miniflow_push_be16(mf, tp_dst, udp->udp_dst); + miniflow_pad_to_64(mf, tp_dst); } + } else if (OVS_LIKELY(nw_proto == IPPROTO_SCTP)) { + if (OVS_LIKELY(size >= SCTP_HEADER_LEN)) { + const struct sctp_header *sctp = data; - flow->nw_src = get_16aligned_be32(&arp->ar_spa); - flow->nw_dst = get_16aligned_be32(&arp->ar_tpa); - memcpy(flow->arp_sha, arp->ar_sha, ETH_ADDR_LEN); - memcpy(flow->arp_tha, arp->ar_tha, ETH_ADDR_LEN); + miniflow_push_be16(mf, tp_src, sctp->sctp_src); + miniflow_push_be16(mf, tp_dst, sctp->sctp_dst); + miniflow_pad_to_64(mf, tp_dst); + } + } else if (OVS_LIKELY(nw_proto == IPPROTO_ICMP)) { + if (OVS_LIKELY(size >= ICMP_HEADER_LEN)) { + const struct icmp_header *icmp = data; + + miniflow_push_be16(mf, tp_src, htons(icmp->icmp_type)); + miniflow_push_be16(mf, tp_dst, htons(icmp->icmp_code)); + miniflow_pad_to_64(mf, tp_dst); + } + } else if (OVS_LIKELY(nw_proto == IPPROTO_IGMP)) { + if (OVS_LIKELY(size >= IGMP_HEADER_LEN)) { + const struct igmp_header *igmp = data; + + miniflow_push_be16(mf, tp_src, htons(igmp->igmp_type)); + miniflow_push_be16(mf, tp_dst, htons(igmp->igmp_code)); + miniflow_push_be32(mf, igmp_group_ip4, + get_16aligned_be32(&igmp->group)); + } + } else if (OVS_LIKELY(nw_proto == IPPROTO_ICMPV6)) { + if (OVS_LIKELY(size >= sizeof(struct icmp6_hdr))) { + const struct in6_addr *nd_target = NULL; + struct eth_addr arp_buf[2] = { { { { 0 } } } }; + const struct icmp6_hdr *icmp = data_pull(&data, &size, + sizeof *icmp); + parse_icmpv6(&data, &size, icmp, &nd_target, arp_buf); + if (nd_target) { + miniflow_push_words(mf, nd_target, nd_target, + sizeof *nd_target / sizeof(uint64_t)); + } + miniflow_push_macs(mf, arp_sha, arp_buf); + miniflow_pad_to_64(mf, arp_tha); + miniflow_push_be16(mf, tp_src, htons(icmp->icmp6_type)); + miniflow_push_be16(mf, tp_dst, htons(icmp->icmp6_code)); + miniflow_pad_to_64(mf, tp_dst); + } } } + out: + dst->map = mf.map; } /* For every bit of a field that is wildcarded in 'wildcards', sets the @@ -510,12 +814,12 @@ flow_extract(struct ofpbuf *packet, uint32_t skb_priority, uint32_t pkt_mark, void flow_zero_wildcards(struct flow *flow, const struct flow_wildcards *wildcards) { - uint32_t *flow_u32 = (uint32_t *) flow; - const uint32_t *wc_u32 = (const uint32_t *) &wildcards->masks; + uint64_t *flow_u64 = (uint64_t *) flow; + const uint64_t *wc_u64 = (const uint64_t *) &wildcards->masks; size_t i; - for (i = 0; i < FLOW_U32S; i++) { - flow_u32[i] &= wc_u32[i]; + for (i = 0; i < FLOW_U64S; i++) { + flow_u64[i] &= wc_u64[i]; } } @@ -531,19 +835,92 @@ flow_unwildcard_tp_ports(const struct flow *flow, struct flow_wildcards *wc) } } -/* Initializes 'fmd' with the metadata found in 'flow'. */ +/* Initializes 'flow_metadata' with the metadata found in 'flow'. */ void -flow_get_metadata(const struct flow *flow, struct flow_metadata *fmd) +flow_get_metadata(const struct flow *flow, struct match *flow_metadata) { - BUILD_ASSERT_DECL(FLOW_WC_SEQ == 23); + int i; + + BUILD_ASSERT_DECL(FLOW_WC_SEQ == 35); + + match_init_catchall(flow_metadata); + if (flow->tunnel.tun_id != htonll(0)) { + match_set_tun_id(flow_metadata, flow->tunnel.tun_id); + } + if (flow->tunnel.flags & FLOW_TNL_PUB_F_MASK) { + match_set_tun_flags(flow_metadata, + flow->tunnel.flags & FLOW_TNL_PUB_F_MASK); + } + if (flow->tunnel.ip_src) { + match_set_tun_src(flow_metadata, flow->tunnel.ip_src); + } + if (flow->tunnel.ip_dst) { + match_set_tun_dst(flow_metadata, flow->tunnel.ip_dst); + } + if (ipv6_addr_is_set(&flow->tunnel.ipv6_src)) { + match_set_tun_ipv6_src(flow_metadata, &flow->tunnel.ipv6_src); + } + if (ipv6_addr_is_set(&flow->tunnel.ipv6_dst)) { + match_set_tun_ipv6_dst(flow_metadata, &flow->tunnel.ipv6_dst); + } + if (flow->tunnel.gbp_id != htons(0)) { + match_set_tun_gbp_id(flow_metadata, flow->tunnel.gbp_id); + } + if (flow->tunnel.gbp_flags) { + match_set_tun_gbp_flags(flow_metadata, flow->tunnel.gbp_flags); + } + tun_metadata_get_fmd(&flow->tunnel, flow_metadata); + if (flow->metadata != htonll(0)) { + match_set_metadata(flow_metadata, flow->metadata); + } + + for (i = 0; i < FLOW_N_REGS; i++) { + if (flow->regs[i]) { + match_set_reg(flow_metadata, i, flow->regs[i]); + } + } - fmd->tun_id = flow->tunnel.tun_id; - fmd->tun_src = flow->tunnel.ip_src; - fmd->tun_dst = flow->tunnel.ip_dst; - fmd->metadata = flow->metadata; - memcpy(fmd->regs, flow->regs, sizeof fmd->regs); - fmd->pkt_mark = flow->pkt_mark; - fmd->in_port = flow->in_port.ofp_port; + if (flow->pkt_mark != 0) { + match_set_pkt_mark(flow_metadata, flow->pkt_mark); + } + + match_set_in_port(flow_metadata, flow->in_port.ofp_port); + if (flow->ct_state != 0) { + match_set_ct_state(flow_metadata, flow->ct_state); + } + if (flow->ct_zone != 0) { + match_set_ct_zone(flow_metadata, flow->ct_zone); + } + if (flow->ct_mark != 0) { + match_set_ct_mark(flow_metadata, flow->ct_mark); + } + if (!ovs_u128_is_zero(&flow->ct_label)) { + match_set_ct_label(flow_metadata, flow->ct_label); + } +} + +const char *ct_state_to_string(uint32_t state) +{ + switch (state) { + case CS_REPLY_DIR: + return "rpl"; + case CS_TRACKED: + return "trk"; + case CS_NEW: + return "new"; + case CS_ESTABLISHED: + return "est"; + case CS_RELATED: + return "rel"; + case CS_INVALID: + return "inv"; + case CS_SRC_NAT: + return "snat"; + case CS_DST_NAT: + return "dnat"; + default: + return NULL; + } } char * @@ -564,6 +941,8 @@ flow_tun_flag_to_string(uint32_t flags) return "csum"; case FLOW_TNL_F_KEY: return "key"; + case FLOW_TNL_F_OAM: + return "oam"; default: return NULL; } @@ -576,6 +955,7 @@ format_flags(struct ds *ds, const char *(*bit_to_string)(uint32_t), uint32_t bad = 0; if (!flags) { + ds_put_char(ds, '0'); return; } while (flags) { @@ -601,11 +981,22 @@ format_flags(struct ds *ds, const char *(*bit_to_string)(uint32_t), void format_flags_masked(struct ds *ds, const char *name, const char *(*bit_to_string)(uint32_t), uint32_t flags, - uint32_t mask) + uint32_t mask, uint32_t max_mask) { if (name) { ds_put_format(ds, "%s=", name); } + + if (mask == max_mask) { + format_flags(ds, bit_to_string, flags, '|'); + return; + } + + if (!mask) { + ds_put_cstr(ds, "0/0"); + return; + } + while (mask) { uint32_t bit = rightmost_1bit(mask); const char *s = bit_to_string(bit); @@ -616,12 +1007,216 @@ format_flags_masked(struct ds *ds, const char *name, } } +/* Scans a string 's' of flags to determine their numerical value and + * returns the number of characters parsed using 'bit_to_string' to + * lookup flag names. Scanning continues until the character 'end' is + * reached. + * + * In the event of a failure, a negative error code will be returned. In + * addition, if 'res_string' is non-NULL then a descriptive string will + * be returned incorporating the identifying string 'field_name'. This + * error string must be freed by the caller. + * + * Upon success, the flag values will be stored in 'res_flags' and + * optionally 'res_mask', if it is non-NULL (if it is NULL then any masks + * present in the original string will be considered an error). The + * caller may restrict the acceptable set of values through the mask + * 'allowed'. */ +int +parse_flags(const char *s, const char *(*bit_to_string)(uint32_t), + char end, const char *field_name, char **res_string, + uint32_t *res_flags, uint32_t allowed, uint32_t *res_mask) +{ + uint32_t result = 0; + int n; + + /* Parse masked flags in numeric format? */ + if (res_mask && ovs_scan(s, "%"SCNi32"/%"SCNi32"%n", + res_flags, res_mask, &n) && n > 0) { + if (*res_flags & ~allowed || *res_mask & ~allowed) { + goto unknown; + } + return n; + } + + n = 0; + + if (res_mask && (*s == '+' || *s == '-')) { + uint32_t flags = 0, mask = 0; + + /* Parse masked flags. */ + while (s[0] != end) { + bool set; + uint32_t bit; + size_t len; + + if (s[0] == '+') { + set = true; + } else if (s[0] == '-') { + set = false; + } else { + if (res_string) { + *res_string = xasprintf("%s: %s must be preceded by '+' " + "(for SET) or '-' (NOT SET)", s, + field_name); + } + return -EINVAL; + } + s++; + n++; + + for (bit = 1; bit; bit <<= 1) { + const char *fname = bit_to_string(bit); + + if (!fname) { + continue; + } + + len = strlen(fname); + if (strncmp(s, fname, len) || + (s[len] != '+' && s[len] != '-' && s[len] != end)) { + continue; + } + + if (mask & bit) { + /* bit already set. */ + if (res_string) { + *res_string = xasprintf("%s: Each %s flag can be " + "specified only once", s, + field_name); + } + return -EINVAL; + } + if (!(bit & allowed)) { + goto unknown; + } + if (set) { + flags |= bit; + } + mask |= bit; + break; + } + + if (!bit) { + goto unknown; + } + s += len; + n += len; + } + + *res_flags = flags; + *res_mask = mask; + return n; + } + + /* Parse unmasked flags. If a flag is present, it is set, otherwise + * it is not set. */ + while (s[n] != end) { + unsigned long long int flags; + uint32_t bit; + int n0; + + if (ovs_scan(&s[n], "%lli%n", &flags, &n0)) { + if (flags & ~allowed) { + goto unknown; + } + n += n0 + (s[n + n0] == '|'); + result |= flags; + continue; + } + + for (bit = 1; bit; bit <<= 1) { + const char *name = bit_to_string(bit); + size_t len; + + if (!name) { + continue; + } + + len = strlen(name); + if (!strncmp(s + n, name, len) && + (s[n + len] == '|' || s[n + len] == end)) { + if (!(bit & allowed)) { + goto unknown; + } + result |= bit; + n += len + (s[n + len] == '|'); + break; + } + } + + if (!bit) { + goto unknown; + } + } + + *res_flags = result; + if (res_mask) { + *res_mask = UINT32_MAX; + } + if (res_string) { + *res_string = NULL; + } + return n; + +unknown: + if (res_string) { + *res_string = xasprintf("%s: unknown %s flag(s)", s, field_name); + } + return -EINVAL; +} + void flow_format(struct ds *ds, const struct flow *flow) { struct match match; + struct flow_wildcards *wc = &match.wc; match_wc_init(&match, flow); + + /* As this function is most often used for formatting a packet in a + * packet-in message, skip formatting the packet context fields that are + * all-zeroes to make the print-out easier on the eyes. This means that a + * missing context field implies a zero value for that field. This is + * similar to OpenFlow encoding of these fields, as the specification + * states that all-zeroes context fields should not be encoded in the + * packet-in messages. */ + if (!flow->in_port.ofp_port) { + WC_UNMASK_FIELD(wc, in_port); + } + if (!flow->skb_priority) { + WC_UNMASK_FIELD(wc, skb_priority); + } + if (!flow->pkt_mark) { + WC_UNMASK_FIELD(wc, pkt_mark); + } + if (!flow->recirc_id) { + WC_UNMASK_FIELD(wc, recirc_id); + } + if (!flow->dp_hash) { + WC_UNMASK_FIELD(wc, dp_hash); + } + if (!flow->ct_state) { + WC_UNMASK_FIELD(wc, ct_state); + } + if (!flow->ct_zone) { + WC_UNMASK_FIELD(wc, ct_zone); + } + if (!flow->ct_mark) { + WC_UNMASK_FIELD(wc, ct_mark); + } + if (ovs_u128_is_zero(&flow->ct_label)) { + WC_UNMASK_FIELD(wc, ct_label); + } + for (int i = 0; i < FLOW_N_REGS; i++) { + if (!flow->regs[i]) { + WC_UNMASK_FIELD(wc, regs[i]); + } + } + if (!flow->metadata) { + WC_UNMASK_FIELD(wc, metadata); + } + match_format(&match, ds, OFP_DEFAULT_PRIORITY); } @@ -642,13 +1237,223 @@ flow_wildcards_init_catchall(struct flow_wildcards *wc) memset(&wc->masks, 0, sizeof wc->masks); } +/* Converts a flow into flow wildcards. It sets the wildcard masks based on + * the packet headers extracted to 'flow'. It will not set the mask for fields + * that do not make sense for the packet type. OpenFlow-only metadata is + * wildcarded, but other metadata is unconditionally exact-matched. */ +void flow_wildcards_init_for_packet(struct flow_wildcards *wc, + const struct flow *flow) +{ + memset(&wc->masks, 0x0, sizeof wc->masks); + + /* Update this function whenever struct flow changes. */ + BUILD_ASSERT_DECL(FLOW_WC_SEQ == 35); + + if (flow_tnl_dst_is_set(&flow->tunnel)) { + if (flow->tunnel.flags & FLOW_TNL_F_KEY) { + WC_MASK_FIELD(wc, tunnel.tun_id); + } + WC_MASK_FIELD(wc, tunnel.ip_src); + WC_MASK_FIELD(wc, tunnel.ip_dst); + WC_MASK_FIELD(wc, tunnel.ipv6_src); + WC_MASK_FIELD(wc, tunnel.ipv6_dst); + WC_MASK_FIELD(wc, tunnel.flags); + WC_MASK_FIELD(wc, tunnel.ip_tos); + WC_MASK_FIELD(wc, tunnel.ip_ttl); + WC_MASK_FIELD(wc, tunnel.tp_src); + WC_MASK_FIELD(wc, tunnel.tp_dst); + WC_MASK_FIELD(wc, tunnel.gbp_id); + WC_MASK_FIELD(wc, tunnel.gbp_flags); + + if (!(flow->tunnel.flags & FLOW_TNL_F_UDPIF)) { + if (flow->tunnel.metadata.present.map) { + wc->masks.tunnel.metadata.present.map = + flow->tunnel.metadata.present.map; + WC_MASK_FIELD(wc, tunnel.metadata.opts.u8); + } + } else { + WC_MASK_FIELD(wc, tunnel.metadata.present.len); + memset(wc->masks.tunnel.metadata.opts.gnv, 0xff, + flow->tunnel.metadata.present.len); + } + } else if (flow->tunnel.tun_id) { + WC_MASK_FIELD(wc, tunnel.tun_id); + } + + /* metadata, regs, and conj_id wildcarded. */ + + WC_MASK_FIELD(wc, skb_priority); + WC_MASK_FIELD(wc, pkt_mark); + WC_MASK_FIELD(wc, ct_state); + WC_MASK_FIELD(wc, ct_zone); + WC_MASK_FIELD(wc, ct_mark); + WC_MASK_FIELD(wc, ct_label); + WC_MASK_FIELD(wc, recirc_id); + WC_MASK_FIELD(wc, dp_hash); + WC_MASK_FIELD(wc, in_port); + + /* actset_output wildcarded. */ + + WC_MASK_FIELD(wc, dl_dst); + WC_MASK_FIELD(wc, dl_src); + WC_MASK_FIELD(wc, dl_type); + WC_MASK_FIELD(wc, vlan_tci); + + if (flow->dl_type == htons(ETH_TYPE_IP)) { + WC_MASK_FIELD(wc, nw_src); + WC_MASK_FIELD(wc, nw_dst); + } else if (flow->dl_type == htons(ETH_TYPE_IPV6)) { + WC_MASK_FIELD(wc, ipv6_src); + WC_MASK_FIELD(wc, ipv6_dst); + WC_MASK_FIELD(wc, ipv6_label); + } else if (flow->dl_type == htons(ETH_TYPE_ARP) || + flow->dl_type == htons(ETH_TYPE_RARP)) { + WC_MASK_FIELD(wc, nw_src); + WC_MASK_FIELD(wc, nw_dst); + WC_MASK_FIELD(wc, nw_proto); + WC_MASK_FIELD(wc, arp_sha); + WC_MASK_FIELD(wc, arp_tha); + return; + } else if (eth_type_mpls(flow->dl_type)) { + for (int i = 0; i < FLOW_MAX_MPLS_LABELS; i++) { + WC_MASK_FIELD(wc, mpls_lse[i]); + if (flow->mpls_lse[i] & htonl(MPLS_BOS_MASK)) { + break; + } + } + return; + } else { + return; /* Unknown ethertype. */ + } + + /* IPv4 or IPv6. */ + WC_MASK_FIELD(wc, nw_frag); + WC_MASK_FIELD(wc, nw_tos); + WC_MASK_FIELD(wc, nw_ttl); + WC_MASK_FIELD(wc, nw_proto); + + /* No transport layer header in later fragments. */ + if (!(flow->nw_frag & FLOW_NW_FRAG_LATER) && + (flow->nw_proto == IPPROTO_ICMP || + flow->nw_proto == IPPROTO_ICMPV6 || + flow->nw_proto == IPPROTO_TCP || + flow->nw_proto == IPPROTO_UDP || + flow->nw_proto == IPPROTO_SCTP || + flow->nw_proto == IPPROTO_IGMP)) { + WC_MASK_FIELD(wc, tp_src); + WC_MASK_FIELD(wc, tp_dst); + + if (flow->nw_proto == IPPROTO_TCP) { + WC_MASK_FIELD(wc, tcp_flags); + } else if (flow->nw_proto == IPPROTO_ICMPV6) { + WC_MASK_FIELD(wc, arp_sha); + WC_MASK_FIELD(wc, arp_tha); + WC_MASK_FIELD(wc, nd_target); + } else if (flow->nw_proto == IPPROTO_IGMP) { + WC_MASK_FIELD(wc, igmp_group_ip4); + } + } +} + +/* Return a map of possible fields for a packet of the same type as 'flow'. + * Including extra bits in the returned mask is not wrong, it is just less + * optimal. + * + * This is a less precise version of flow_wildcards_init_for_packet() above. */ +void +flow_wc_map(const struct flow *flow, struct flowmap *map) +{ + /* Update this function whenever struct flow changes. */ + BUILD_ASSERT_DECL(FLOW_WC_SEQ == 35); + + flowmap_init(map); + + if (flow_tnl_dst_is_set(&flow->tunnel)) { + FLOWMAP_SET__(map, tunnel, offsetof(struct flow_tnl, metadata)); + if (!(flow->tunnel.flags & FLOW_TNL_F_UDPIF)) { + if (flow->tunnel.metadata.present.map) { + FLOWMAP_SET(map, tunnel.metadata); + } + } else { + FLOWMAP_SET(map, tunnel.metadata.present.len); + FLOWMAP_SET__(map, tunnel.metadata.opts.gnv, + flow->tunnel.metadata.present.len); + } + } + + /* Metadata fields that can appear on packet input. */ + FLOWMAP_SET(map, skb_priority); + FLOWMAP_SET(map, pkt_mark); + FLOWMAP_SET(map, recirc_id); + FLOWMAP_SET(map, dp_hash); + FLOWMAP_SET(map, in_port); + FLOWMAP_SET(map, dl_dst); + FLOWMAP_SET(map, dl_src); + FLOWMAP_SET(map, dl_type); + FLOWMAP_SET(map, vlan_tci); + FLOWMAP_SET(map, ct_state); + FLOWMAP_SET(map, ct_zone); + FLOWMAP_SET(map, ct_mark); + FLOWMAP_SET(map, ct_label); + + /* Ethertype-dependent fields. */ + if (OVS_LIKELY(flow->dl_type == htons(ETH_TYPE_IP))) { + FLOWMAP_SET(map, nw_src); + FLOWMAP_SET(map, nw_dst); + FLOWMAP_SET(map, nw_proto); + FLOWMAP_SET(map, nw_frag); + FLOWMAP_SET(map, nw_tos); + FLOWMAP_SET(map, nw_ttl); + + if (OVS_UNLIKELY(flow->nw_proto == IPPROTO_IGMP)) { + FLOWMAP_SET(map, igmp_group_ip4); + } else { + FLOWMAP_SET(map, tcp_flags); + FLOWMAP_SET(map, tp_src); + FLOWMAP_SET(map, tp_dst); + } + } else if (flow->dl_type == htons(ETH_TYPE_IPV6)) { + FLOWMAP_SET(map, ipv6_src); + FLOWMAP_SET(map, ipv6_dst); + FLOWMAP_SET(map, ipv6_label); + FLOWMAP_SET(map, nw_proto); + FLOWMAP_SET(map, nw_frag); + FLOWMAP_SET(map, nw_tos); + FLOWMAP_SET(map, nw_ttl); + + if (OVS_UNLIKELY(flow->nw_proto == IPPROTO_ICMPV6)) { + FLOWMAP_SET(map, nd_target); + FLOWMAP_SET(map, arp_sha); + FLOWMAP_SET(map, arp_tha); + } else { + FLOWMAP_SET(map, tcp_flags); + FLOWMAP_SET(map, tp_src); + FLOWMAP_SET(map, tp_dst); + } + } else if (eth_type_mpls(flow->dl_type)) { + FLOWMAP_SET(map, mpls_lse); + } else if (flow->dl_type == htons(ETH_TYPE_ARP) || + flow->dl_type == htons(ETH_TYPE_RARP)) { + FLOWMAP_SET(map, nw_src); + FLOWMAP_SET(map, nw_dst); + FLOWMAP_SET(map, nw_proto); + FLOWMAP_SET(map, arp_sha); + FLOWMAP_SET(map, arp_tha); + } +} + /* Clear the metadata and register wildcard masks. They are not packet * header fields. */ void flow_wildcards_clear_non_packet_fields(struct flow_wildcards *wc) { + /* Update this function whenever struct flow changes. */ + BUILD_ASSERT_DECL(FLOW_WC_SEQ == 35); + memset(&wc->masks.metadata, 0, sizeof wc->masks.metadata); memset(&wc->masks.regs, 0, sizeof wc->masks.regs); + wc->masks.actset_output = 0; + wc->masks.conj_id = 0; } /* Returns true if 'wc' matches every packet, false if 'wc' fixes any bits or @@ -656,11 +1461,11 @@ flow_wildcards_clear_non_packet_fields(struct flow_wildcards *wc) bool flow_wildcards_is_catchall(const struct flow_wildcards *wc) { - const uint32_t *wc_u32 = (const uint32_t *) &wc->masks; + const uint64_t *wc_u64 = (const uint64_t *) &wc->masks; size_t i; - for (i = 0; i < FLOW_U32S; i++) { - if (wc_u32[i]) { + for (i = 0; i < FLOW_U64S; i++) { + if (wc_u64[i]) { return false; } } @@ -675,13 +1480,13 @@ flow_wildcards_and(struct flow_wildcards *dst, const struct flow_wildcards *src1, const struct flow_wildcards *src2) { - uint32_t *dst_u32 = (uint32_t *) &dst->masks; - const uint32_t *src1_u32 = (const uint32_t *) &src1->masks; - const uint32_t *src2_u32 = (const uint32_t *) &src2->masks; + uint64_t *dst_u64 = (uint64_t *) &dst->masks; + const uint64_t *src1_u64 = (const uint64_t *) &src1->masks; + const uint64_t *src2_u64 = (const uint64_t *) &src2->masks; size_t i; - for (i = 0; i < FLOW_U32S; i++) { - dst_u32[i] = src1_u32[i] & src2_u32[i]; + for (i = 0; i < FLOW_U64S; i++) { + dst_u64[i] = src1_u64[i] & src2_u64[i]; } } @@ -693,72 +1498,13 @@ flow_wildcards_or(struct flow_wildcards *dst, const struct flow_wildcards *src1, const struct flow_wildcards *src2) { - uint32_t *dst_u32 = (uint32_t *) &dst->masks; - const uint32_t *src1_u32 = (const uint32_t *) &src1->masks; - const uint32_t *src2_u32 = (const uint32_t *) &src2->masks; + uint64_t *dst_u64 = (uint64_t *) &dst->masks; + const uint64_t *src1_u64 = (const uint64_t *) &src1->masks; + const uint64_t *src2_u64 = (const uint64_t *) &src2->masks; size_t i; - for (i = 0; i < FLOW_U32S; i++) { - dst_u32[i] = src1_u32[i] | src2_u32[i]; - } -} - -/* Perform a bitwise OR of miniflow 'src' flow data with the equivalent - * fields in 'dst', storing the result in 'dst'. */ -static void -flow_union_with_miniflow(struct flow *dst, const struct miniflow *src) -{ - uint32_t *dst_u32 = (uint32_t *) dst; - const uint32_t *p = src->values; - uint64_t map; - - for (map = src->map; map; map = zero_rightmost_1bit(map)) { - dst_u32[raw_ctz(map)] |= *p++; - } -} - -/* Fold minimask 'mask''s wildcard mask into 'wc's wildcard mask. */ -void -flow_wildcards_fold_minimask(struct flow_wildcards *wc, - const struct minimask *mask) -{ - flow_union_with_miniflow(&wc->masks, &mask->masks); -} - -uint64_t -miniflow_get_map_in_range(const struct miniflow *miniflow, - uint8_t start, uint8_t end, unsigned int *offset) -{ - uint64_t map = miniflow->map; - *offset = 0; - - if (start > 0) { - uint64_t msk = (UINT64_C(1) << start) - 1; /* 'start' LSBs set */ - *offset = count_1bits(map & msk); - map &= ~msk; - } - if (end < FLOW_U32S) { - uint64_t msk = (UINT64_C(1) << end) - 1; /* 'end' LSBs set */ - map &= msk; - } - return map; -} - -/* Fold minimask 'mask''s wildcard mask into 'wc's wildcard mask - * in range [start, end). */ -void -flow_wildcards_fold_minimask_range(struct flow_wildcards *wc, - const struct minimask *mask, - uint8_t start, uint8_t end) -{ - uint32_t *dst_u32 = (uint32_t *)&wc->masks; - unsigned int offset; - uint64_t map = miniflow_get_map_in_range(&mask->masks, start, end, - &offset); - const uint32_t *p = mask->masks.values + offset; - - for (; map; map = zero_rightmost_1bit(map)) { - dst_u32[raw_ctz(map)] |= *p++; + for (i = 0; i < FLOW_U64S; i++) { + dst_u64[i] = src1_u64[i] | src2_u64[i]; } } @@ -784,12 +1530,12 @@ bool flow_wildcards_has_extra(const struct flow_wildcards *a, const struct flow_wildcards *b) { - const uint32_t *a_u32 = (const uint32_t *) &a->masks; - const uint32_t *b_u32 = (const uint32_t *) &b->masks; + const uint64_t *a_u64 = (const uint64_t *) &a->masks; + const uint64_t *b_u64 = (const uint64_t *) &b->masks; size_t i; - for (i = 0; i < FLOW_U32S; i++) { - if ((a_u32[i] & b_u32[i]) != b_u32[i]) { + for (i = 0; i < FLOW_U64S; i++) { + if ((a_u64[i] & b_u64[i]) != b_u64[i]) { return true; } } @@ -802,25 +1548,101 @@ bool flow_equal_except(const struct flow *a, const struct flow *b, const struct flow_wildcards *wc) { - const uint32_t *a_u32 = (const uint32_t *) a; - const uint32_t *b_u32 = (const uint32_t *) b; - const uint32_t *wc_u32 = (const uint32_t *) &wc->masks; + const uint64_t *a_u64 = (const uint64_t *) a; + const uint64_t *b_u64 = (const uint64_t *) b; + const uint64_t *wc_u64 = (const uint64_t *) &wc->masks; size_t i; - for (i = 0; i < FLOW_U32S; i++) { - if ((a_u32[i] ^ b_u32[i]) & wc_u32[i]) { - return false; + for (i = 0; i < FLOW_U64S; i++) { + if ((a_u64[i] ^ b_u64[i]) & wc_u64[i]) { + return false; + } + } + return true; +} + +/* Sets the wildcard mask for register 'idx' in 'wc' to 'mask'. + * (A 0-bit indicates a wildcard bit.) */ +void +flow_wildcards_set_reg_mask(struct flow_wildcards *wc, int idx, uint32_t mask) +{ + wc->masks.regs[idx] = mask; +} + +/* Sets the wildcard mask for register 'idx' in 'wc' to 'mask'. + * (A 0-bit indicates a wildcard bit.) */ +void +flow_wildcards_set_xreg_mask(struct flow_wildcards *wc, int idx, uint64_t mask) +{ + flow_set_xreg(&wc->masks, idx, mask); +} + +/* Calculates the 5-tuple hash from the given miniflow. + * This returns the same value as flow_hash_5tuple for the corresponding + * flow. */ +uint32_t +miniflow_hash_5tuple(const struct miniflow *flow, uint32_t basis) +{ + uint32_t hash = basis; + + if (flow) { + ovs_be16 dl_type = MINIFLOW_GET_BE16(flow, dl_type); + + hash = hash_add(hash, MINIFLOW_GET_U8(flow, nw_proto)); + + /* Separate loops for better optimization. */ + if (dl_type == htons(ETH_TYPE_IPV6)) { + struct flowmap map = FLOWMAP_EMPTY_INITIALIZER; + uint64_t value; + + FLOWMAP_SET(&map, ipv6_src); + FLOWMAP_SET(&map, ipv6_dst); + + MINIFLOW_FOR_EACH_IN_FLOWMAP(value, flow, map) { + hash = hash_add64(hash, value); + } + } else { + hash = hash_add(hash, MINIFLOW_GET_U32(flow, nw_src)); + hash = hash_add(hash, MINIFLOW_GET_U32(flow, nw_dst)); } + /* Add both ports at once. */ + hash = hash_add(hash, MINIFLOW_GET_U32(flow, tp_src)); + hash = hash_finish(hash, 42); /* Arbitrary number. */ } - return true; + return hash; } -/* Sets the wildcard mask for register 'idx' in 'wc' to 'mask'. - * (A 0-bit indicates a wildcard bit.) */ -void -flow_wildcards_set_reg_mask(struct flow_wildcards *wc, int idx, uint32_t mask) +ASSERT_SEQUENTIAL_SAME_WORD(tp_src, tp_dst); +ASSERT_SEQUENTIAL(ipv6_src, ipv6_dst); + +/* Calculates the 5-tuple hash from the given flow. */ +uint32_t +flow_hash_5tuple(const struct flow *flow, uint32_t basis) { - wc->masks.regs[idx] = mask; + uint32_t hash = basis; + + if (flow) { + hash = hash_add(hash, flow->nw_proto); + + if (flow->dl_type == htons(ETH_TYPE_IPV6)) { + const uint64_t *flow_u64 = (const uint64_t *)flow; + int ofs = offsetof(struct flow, ipv6_src) / 8; + int end = ofs + 2 * sizeof flow->ipv6_src / 8; + + for (;ofs < end; ofs++) { + hash = hash_add64(hash, flow_u64[ofs]); + } + } else { + hash = hash_add(hash, (OVS_FORCE uint32_t) flow->nw_src); + hash = hash_add(hash, (OVS_FORCE uint32_t) flow->nw_dst); + } + /* Add both ports at once. */ + hash = hash_add(hash, + ((const uint32_t *)flow)[offsetof(struct flow, tp_src) + / sizeof(uint32_t)]); + hash = hash_finish(hash, 42); /* Arbitrary number. */ + } + return hash; } /* Hashes 'flow' based on its L2 through L4 protocol information. */ @@ -835,15 +1657,15 @@ flow_hash_symmetric_l4(const struct flow *flow, uint32_t basis) ovs_be16 eth_type; ovs_be16 vlan_tci; ovs_be16 tp_port; - uint8_t eth_addr[ETH_ADDR_LEN]; + struct eth_addr eth_addr; uint8_t ip_proto; } fields; int i; memset(&fields, 0, sizeof fields); - for (i = 0; i < ETH_ADDR_LEN; i++) { - fields.eth_addr[i] = flow->dl_src[i] ^ flow->dl_dst[i]; + for (i = 0; i < ARRAY_SIZE(fields.eth_addr.be16); i++) { + fields.eth_addr.be16[i] = flow->dl_src.be16[i] ^ flow->dl_dst.be16[i]; } fields.vlan_tci = flow->vlan_tci & htons(VLAN_VID_MASK); fields.eth_type = flow->dl_type; @@ -872,6 +1694,40 @@ flow_hash_symmetric_l4(const struct flow *flow, uint32_t basis) return jhash_bytes(&fields, sizeof fields, basis); } +/* Hashes 'flow' based on its L3 through L4 protocol information */ +uint32_t +flow_hash_symmetric_l3l4(const struct flow *flow, uint32_t basis, + bool inc_udp_ports) +{ + uint32_t hash = basis; + + /* UDP source and destination port are also taken into account. */ + if (flow->dl_type == htons(ETH_TYPE_IP)) { + hash = hash_add(hash, + (OVS_FORCE uint32_t) (flow->nw_src ^ flow->nw_dst)); + } else if (flow->dl_type == htons(ETH_TYPE_IPV6)) { + /* IPv6 addresses are 64-bit aligned inside struct flow. */ + const uint64_t *a = ALIGNED_CAST(uint64_t *, flow->ipv6_src.s6_addr); + const uint64_t *b = ALIGNED_CAST(uint64_t *, flow->ipv6_dst.s6_addr); + + for (int i = 0; i < 4; i++) { + hash = hash_add64(hash, a[i] ^ b[i]); + } + } else { + /* Cannot hash non-IP flows */ + return 0; + } + + hash = hash_add(hash, flow->nw_proto); + if (flow->nw_proto == IPPROTO_TCP || flow->nw_proto == IPPROTO_SCTP || + (inc_udp_ports && flow->nw_proto == IPPROTO_UDP)) { + hash = hash_add(hash, + (OVS_FORCE uint16_t) (flow->tp_src ^ flow->tp_dst)); + } + + return hash_finish(hash, basis); +} + /* Initialize a flow with random fields that matter for nx_hash_fields. */ void flow_random_hash_fields(struct flow *flow) @@ -881,8 +1737,8 @@ flow_random_hash_fields(struct flow *flow) /* Initialize to all zeros. */ memset(flow, 0, sizeof *flow); - eth_addr_random(flow->dl_src); - eth_addr_random(flow->dl_dst); + eth_addr_random(&flow->dl_src); + eth_addr_random(&flow->dl_dst); flow->vlan_tci = (OVS_FORCE ovs_be16) (random_uint16() & VLAN_VID_MASK); @@ -939,6 +1795,30 @@ flow_mask_hash_fields(const struct flow *flow, struct flow_wildcards *wc, wc->masks.vlan_tci |= htons(VLAN_VID_MASK | VLAN_CFI); break; + case NX_HASH_FIELDS_SYMMETRIC_L3L4_UDP: + if (is_ip_any(flow) && flow->nw_proto == IPPROTO_UDP) { + memset(&wc->masks.tp_src, 0xff, sizeof wc->masks.tp_src); + memset(&wc->masks.tp_dst, 0xff, sizeof wc->masks.tp_dst); + } + /* no break */ + case NX_HASH_FIELDS_SYMMETRIC_L3L4: + if (flow->dl_type == htons(ETH_TYPE_IP)) { + memset(&wc->masks.nw_src, 0xff, sizeof wc->masks.nw_src); + memset(&wc->masks.nw_dst, 0xff, sizeof wc->masks.nw_dst); + } else if (flow->dl_type == htons(ETH_TYPE_IPV6)) { + memset(&wc->masks.ipv6_src, 0xff, sizeof wc->masks.ipv6_src); + memset(&wc->masks.ipv6_dst, 0xff, sizeof wc->masks.ipv6_dst); + } else { + break; /* non-IP flow */ + } + + memset(&wc->masks.nw_proto, 0xff, sizeof wc->masks.nw_proto); + if (flow->nw_proto == IPPROTO_TCP || flow->nw_proto == IPPROTO_SCTP) { + memset(&wc->masks.tp_src, 0xff, sizeof wc->masks.tp_src); + memset(&wc->masks.tp_dst, 0xff, sizeof wc->masks.tp_dst); + } + break; + default: OVS_NOT_REACHED(); } @@ -952,10 +1832,17 @@ flow_hash_fields(const struct flow *flow, enum nx_hash_fields fields, switch (fields) { case NX_HASH_FIELDS_ETH_SRC: - return jhash_bytes(flow->dl_src, sizeof flow->dl_src, basis); + return jhash_bytes(&flow->dl_src, sizeof flow->dl_src, basis); case NX_HASH_FIELDS_SYMMETRIC_L4: return flow_hash_symmetric_l4(flow, basis); + + case NX_HASH_FIELDS_SYMMETRIC_L3L4: + return flow_hash_symmetric_l3l4(flow, basis, false); + + case NX_HASH_FIELDS_SYMMETRIC_L3L4_UDP: + return flow_hash_symmetric_l3l4(flow, basis, true); + } OVS_NOT_REACHED(); @@ -968,6 +1855,8 @@ flow_hash_fields_to_str(enum nx_hash_fields fields) switch (fields) { case NX_HASH_FIELDS_ETH_SRC: return "eth_src"; case NX_HASH_FIELDS_SYMMETRIC_L4: return "symmetric_l4"; + case NX_HASH_FIELDS_SYMMETRIC_L3L4: return "symmetric_l3l4"; + case NX_HASH_FIELDS_SYMMETRIC_L3L4_UDP: return "symmetric_l3l4+udp"; default: return ""; } } @@ -977,7 +1866,9 @@ bool flow_hash_fields_valid(enum nx_hash_fields fields) { return fields == NX_HASH_FIELDS_ETH_SRC - || fields == NX_HASH_FIELDS_SYMMETRIC_L4; + || fields == NX_HASH_FIELDS_SYMMETRIC_L4 + || fields == NX_HASH_FIELDS_SYMMETRIC_L3L4 + || fields == NX_HASH_FIELDS_SYMMETRIC_L3L4_UDP; } /* Returns a hash value for the bits of 'flow' that are active based on @@ -986,16 +1877,16 @@ uint32_t flow_hash_in_wildcards(const struct flow *flow, const struct flow_wildcards *wc, uint32_t basis) { - const uint32_t *wc_u32 = (const uint32_t *) &wc->masks; - const uint32_t *flow_u32 = (const uint32_t *) flow; + const uint64_t *wc_u64 = (const uint64_t *) &wc->masks; + const uint64_t *flow_u64 = (const uint64_t *) flow; uint32_t hash; size_t i; hash = basis; - for (i = 0; i < FLOW_U32S; i++) { - hash = mhash_add(hash, flow_u32[i] & wc_u32[i]); + for (i = 0; i < FLOW_U64S; i++) { + hash = hash_add64(hash, flow_u64[i] & wc_u64[i]); } - return mhash_finish(hash, 4 * FLOW_U32S); + return hash_finish(hash, 8 * FLOW_U64S); } /* Sets the VLAN VID that 'flow' matches to 'vid', which is interpreted as an @@ -1047,77 +1938,276 @@ flow_set_vlan_pcp(struct flow *flow, uint8_t pcp) flow->vlan_tci |= htons((pcp << VLAN_PCP_SHIFT) | VLAN_CFI); } +/* Returns the number of MPLS LSEs present in 'flow' + * + * Returns 0 if the 'dl_type' of 'flow' is not an MPLS ethernet type. + * Otherwise traverses 'flow''s MPLS label stack stopping at the + * first entry that has the BoS bit set. If no such entry exists then + * the maximum number of LSEs that can be stored in 'flow' is returned. + */ +int +flow_count_mpls_labels(const struct flow *flow, struct flow_wildcards *wc) +{ + /* dl_type is always masked. */ + if (eth_type_mpls(flow->dl_type)) { + int i; + int cnt; + + cnt = 0; + for (i = 0; i < FLOW_MAX_MPLS_LABELS; i++) { + if (wc) { + wc->masks.mpls_lse[i] |= htonl(MPLS_BOS_MASK); + } + if (flow->mpls_lse[i] & htonl(MPLS_BOS_MASK)) { + return i + 1; + } + if (flow->mpls_lse[i]) { + cnt++; + } + } + return cnt; + } else { + return 0; + } +} + +/* Returns the number consecutive of MPLS LSEs, starting at the + * innermost LSE, that are common in 'a' and 'b'. + * + * 'an' must be flow_count_mpls_labels(a). + * 'bn' must be flow_count_mpls_labels(b). + */ +int +flow_count_common_mpls_labels(const struct flow *a, int an, + const struct flow *b, int bn, + struct flow_wildcards *wc) +{ + int min_n = MIN(an, bn); + if (min_n == 0) { + return 0; + } else { + int common_n = 0; + int a_last = an - 1; + int b_last = bn - 1; + int i; + + for (i = 0; i < min_n; i++) { + if (wc) { + wc->masks.mpls_lse[a_last - i] = OVS_BE32_MAX; + wc->masks.mpls_lse[b_last - i] = OVS_BE32_MAX; + } + if (a->mpls_lse[a_last - i] != b->mpls_lse[b_last - i]) { + break; + } else { + common_n++; + } + } + + return common_n; + } +} + +/* Adds a new outermost MPLS label to 'flow' and changes 'flow''s Ethernet type + * to 'mpls_eth_type', which must be an MPLS Ethertype. + * + * If the new label is the first MPLS label in 'flow', it is generated as; + * + * - label: 2, if 'flow' is IPv6, otherwise 0. + * + * - TTL: IPv4 or IPv6 TTL, if present and nonzero, otherwise 64. + * + * - TC: IPv4 or IPv6 TOS, if present, otherwise 0. + * + * - BoS: 1. + * + * If the new label is the second or later label MPLS label in 'flow', it is + * generated as; + * + * - label: Copied from outer label. + * + * - TTL: Copied from outer label. + * + * - TC: Copied from outer label. + * + * - BoS: 0. + * + * 'n' must be flow_count_mpls_labels(flow). 'n' must be less than + * FLOW_MAX_MPLS_LABELS (because otherwise flow->mpls_lse[] would overflow). + */ +void +flow_push_mpls(struct flow *flow, int n, ovs_be16 mpls_eth_type, + struct flow_wildcards *wc) +{ + ovs_assert(eth_type_mpls(mpls_eth_type)); + ovs_assert(n < FLOW_MAX_MPLS_LABELS); + + if (n) { + int i; + + if (wc) { + memset(&wc->masks.mpls_lse, 0xff, sizeof *wc->masks.mpls_lse * n); + } + for (i = n; i >= 1; i--) { + flow->mpls_lse[i] = flow->mpls_lse[i - 1]; + } + flow->mpls_lse[0] = (flow->mpls_lse[1] & htonl(~MPLS_BOS_MASK)); + } else { + int label = 0; /* IPv4 Explicit Null. */ + int tc = 0; + int ttl = 64; + + if (flow->dl_type == htons(ETH_TYPE_IPV6)) { + label = 2; + } + + if (is_ip_any(flow)) { + tc = (flow->nw_tos & IP_DSCP_MASK) >> 2; + if (wc) { + wc->masks.nw_tos |= IP_DSCP_MASK; + wc->masks.nw_ttl = 0xff; + } + + if (flow->nw_ttl) { + ttl = flow->nw_ttl; + } + } + + flow->mpls_lse[0] = set_mpls_lse_values(ttl, tc, 1, htonl(label)); + + /* Clear all L3 and L4 fields and dp_hash. */ + BUILD_ASSERT(FLOW_WC_SEQ == 35); + memset((char *) flow + FLOW_SEGMENT_2_ENDS_AT, 0, + sizeof(struct flow) - FLOW_SEGMENT_2_ENDS_AT); + flow->dp_hash = 0; + } + flow->dl_type = mpls_eth_type; +} + +/* Tries to remove the outermost MPLS label from 'flow'. Returns true if + * successful, false otherwise. On success, sets 'flow''s Ethernet type to + * 'eth_type'. + * + * 'n' must be flow_count_mpls_labels(flow). */ +bool +flow_pop_mpls(struct flow *flow, int n, ovs_be16 eth_type, + struct flow_wildcards *wc) +{ + int i; + + if (n == 0) { + /* Nothing to pop. */ + return false; + } else if (n == FLOW_MAX_MPLS_LABELS) { + if (wc) { + wc->masks.mpls_lse[n - 1] |= htonl(MPLS_BOS_MASK); + } + if (!(flow->mpls_lse[n - 1] & htonl(MPLS_BOS_MASK))) { + /* Can't pop because don't know what to fill in mpls_lse[n - 1]. */ + return false; + } + } + + if (wc) { + memset(&wc->masks.mpls_lse[1], 0xff, + sizeof *wc->masks.mpls_lse * (n - 1)); + } + for (i = 1; i < n; i++) { + flow->mpls_lse[i - 1] = flow->mpls_lse[i]; + } + flow->mpls_lse[n - 1] = 0; + flow->dl_type = eth_type; + return true; +} + /* Sets the MPLS Label that 'flow' matches to 'label', which is interpreted * as an OpenFlow 1.1 "mpls_label" value. */ void -flow_set_mpls_label(struct flow *flow, ovs_be32 label) +flow_set_mpls_label(struct flow *flow, int idx, ovs_be32 label) { - set_mpls_lse_label(&flow->mpls_lse, label); + set_mpls_lse_label(&flow->mpls_lse[idx], label); } /* Sets the MPLS TTL that 'flow' matches to 'ttl', which should be in the * range 0...255. */ void -flow_set_mpls_ttl(struct flow *flow, uint8_t ttl) +flow_set_mpls_ttl(struct flow *flow, int idx, uint8_t ttl) { - set_mpls_lse_ttl(&flow->mpls_lse, ttl); + set_mpls_lse_ttl(&flow->mpls_lse[idx], ttl); } /* Sets the MPLS TC that 'flow' matches to 'tc', which should be in the * range 0...7. */ void -flow_set_mpls_tc(struct flow *flow, uint8_t tc) +flow_set_mpls_tc(struct flow *flow, int idx, uint8_t tc) { - set_mpls_lse_tc(&flow->mpls_lse, tc); + set_mpls_lse_tc(&flow->mpls_lse[idx], tc); } /* Sets the MPLS BOS bit that 'flow' matches to which should be 0 or 1. */ void -flow_set_mpls_bos(struct flow *flow, uint8_t bos) +flow_set_mpls_bos(struct flow *flow, int idx, uint8_t bos) { - set_mpls_lse_bos(&flow->mpls_lse, bos); + set_mpls_lse_bos(&flow->mpls_lse[idx], bos); } +/* Sets the entire MPLS LSE. */ +void +flow_set_mpls_lse(struct flow *flow, int idx, ovs_be32 lse) +{ + flow->mpls_lse[idx] = lse; +} -static void -flow_compose_l4(struct ofpbuf *b, const struct flow *flow) +static size_t +flow_compose_l4(struct dp_packet *p, const struct flow *flow) { + size_t l4_len = 0; + if (!(flow->nw_frag & FLOW_NW_FRAG_ANY) || !(flow->nw_frag & FLOW_NW_FRAG_LATER)) { if (flow->nw_proto == IPPROTO_TCP) { struct tcp_header *tcp; - tcp = ofpbuf_put_zeros(b, sizeof *tcp); + l4_len = sizeof *tcp; + tcp = dp_packet_put_zeros(p, l4_len); tcp->tcp_src = flow->tp_src; tcp->tcp_dst = flow->tp_dst; tcp->tcp_ctl = TCP_CTL(ntohs(flow->tcp_flags), 5); - b->l7 = ofpbuf_tail(b); } else if (flow->nw_proto == IPPROTO_UDP) { struct udp_header *udp; - udp = ofpbuf_put_zeros(b, sizeof *udp); + l4_len = sizeof *udp; + udp = dp_packet_put_zeros(p, l4_len); udp->udp_src = flow->tp_src; udp->udp_dst = flow->tp_dst; - b->l7 = ofpbuf_tail(b); } else if (flow->nw_proto == IPPROTO_SCTP) { struct sctp_header *sctp; - sctp = ofpbuf_put_zeros(b, sizeof *sctp); + l4_len = sizeof *sctp; + sctp = dp_packet_put_zeros(p, l4_len); sctp->sctp_src = flow->tp_src; sctp->sctp_dst = flow->tp_dst; - b->l7 = ofpbuf_tail(b); } else if (flow->nw_proto == IPPROTO_ICMP) { struct icmp_header *icmp; - icmp = ofpbuf_put_zeros(b, sizeof *icmp); + l4_len = sizeof *icmp; + icmp = dp_packet_put_zeros(p, l4_len); icmp->icmp_type = ntohs(flow->tp_src); icmp->icmp_code = ntohs(flow->tp_dst); icmp->icmp_csum = csum(icmp, ICMP_HEADER_LEN); - b->l7 = ofpbuf_tail(b); + } else if (flow->nw_proto == IPPROTO_IGMP) { + struct igmp_header *igmp; + + l4_len = sizeof *igmp; + igmp = dp_packet_put_zeros(p, l4_len); + igmp->igmp_type = ntohs(flow->tp_src); + igmp->igmp_code = ntohs(flow->tp_dst); + put_16aligned_be32(&igmp->group, flow->igmp_group_ip4); + igmp->igmp_csum = csum(igmp, IGMP_HEADER_LEN); } else if (flow->nw_proto == IPPROTO_ICMPV6) { struct icmp6_hdr *icmp; - icmp = ofpbuf_put_zeros(b, sizeof *icmp); + l4_len = sizeof *icmp; + icmp = dp_packet_put_zeros(p, l4_len); icmp->icmp6_type = ntohs(flow->tp_src); icmp->icmp6_code = ntohs(flow->tp_dst); @@ -1125,29 +2215,32 @@ flow_compose_l4(struct ofpbuf *b, const struct flow *flow) (icmp->icmp6_type == ND_NEIGHBOR_SOLICIT || icmp->icmp6_type == ND_NEIGHBOR_ADVERT)) { struct in6_addr *nd_target; - struct nd_opt_hdr *nd_opt; + struct ovs_nd_opt *nd_opt; - nd_target = ofpbuf_put_zeros(b, sizeof *nd_target); + l4_len += sizeof *nd_target; + nd_target = dp_packet_put_zeros(p, sizeof *nd_target); *nd_target = flow->nd_target; if (!eth_addr_is_zero(flow->arp_sha)) { - nd_opt = ofpbuf_put_zeros(b, 8); + l4_len += 8; + nd_opt = dp_packet_put_zeros(p, 8); nd_opt->nd_opt_len = 1; nd_opt->nd_opt_type = ND_OPT_SOURCE_LINKADDR; - memcpy(nd_opt + 1, flow->arp_sha, ETH_ADDR_LEN); + nd_opt->nd_opt_mac = flow->arp_sha; } if (!eth_addr_is_zero(flow->arp_tha)) { - nd_opt = ofpbuf_put_zeros(b, 8); + l4_len += 8; + nd_opt = dp_packet_put_zeros(p, 8); nd_opt->nd_opt_len = 1; nd_opt->nd_opt_type = ND_OPT_TARGET_LINKADDR; - memcpy(nd_opt + 1, flow->arp_tha, ETH_ADDR_LEN); + nd_opt->nd_opt_mac = flow->arp_tha; } } icmp->icmp6_cksum = (OVS_FORCE uint16_t) - csum(icmp, (char *)ofpbuf_tail(b) - (char *)icmp); - b->l7 = ofpbuf_tail(b); + csum(icmp, (char *)dp_packet_tail(p) - (char *)icmp); } } + return l4_len; } /* Puts into 'b' a packet that flow_extract() would parse as having the given @@ -1157,24 +2250,26 @@ flow_compose_l4(struct ofpbuf *b, const struct flow *flow) * valid. It hasn't got some checksums filled in, for one, and lots of fields * are just zeroed.) */ void -flow_compose(struct ofpbuf *b, const struct flow *flow) +flow_compose(struct dp_packet *p, const struct flow *flow) { + size_t l4_len; + /* eth_compose() sets l3 pointer and makes sure it is 32-bit aligned. */ - eth_compose(b, flow->dl_dst, flow->dl_src, ntohs(flow->dl_type), 0); + eth_compose(p, flow->dl_dst, flow->dl_src, ntohs(flow->dl_type), 0); if (flow->dl_type == htons(FLOW_DL_TYPE_NONE)) { - struct eth_header *eth = b->l2; - eth->eth_type = htons(b->size); + struct eth_header *eth = dp_packet_l2(p); + eth->eth_type = htons(dp_packet_size(p)); return; } if (flow->vlan_tci & htons(VLAN_CFI)) { - eth_push_vlan(b, htons(ETH_TYPE_VLAN), flow->vlan_tci); + eth_push_vlan(p, htons(ETH_TYPE_VLAN), flow->vlan_tci); } if (flow->dl_type == htons(ETH_TYPE_IP)) { struct ip_header *ip; - ip = ofpbuf_put_zeros(b, sizeof *ip); + ip = dp_packet_put_zeros(p, sizeof *ip); ip->ip_ihl_ver = IP_IHL_VER(5, 4); ip->ip_tos = flow->nw_tos; ip->ip_ttl = flow->nw_ttl; @@ -1189,17 +2284,17 @@ flow_compose(struct ofpbuf *b, const struct flow *flow) } } - b->l4 = ofpbuf_tail(b); + dp_packet_set_l4(p, dp_packet_tail(p)); - flow_compose_l4(b, flow); + l4_len = flow_compose_l4(p, flow); - ip->ip_tot_len = htons((uint8_t *) b->data + b->size - - (uint8_t *) b->l3); + ip = dp_packet_l3(p); + ip->ip_tot_len = htons(p->l4_ofs - p->l3_ofs + l4_len); ip->ip_csum = csum(ip, sizeof *ip); } else if (flow->dl_type == htons(ETH_TYPE_IPV6)) { struct ovs_16aligned_ip6_hdr *nh; - nh = ofpbuf_put_zeros(b, sizeof *nh); + nh = dp_packet_put_zeros(p, sizeof *nh); put_16aligned_be32(&nh->ip6_flow, htonl(6 << 28) | htonl(flow->nw_tos << 20) | flow->ipv6_label); nh->ip6_hlim = flow->nw_ttl; @@ -1208,17 +2303,18 @@ flow_compose(struct ofpbuf *b, const struct flow *flow) memcpy(&nh->ip6_src, &flow->ipv6_src, sizeof(nh->ip6_src)); memcpy(&nh->ip6_dst, &flow->ipv6_dst, sizeof(nh->ip6_dst)); - b->l4 = ofpbuf_tail(b); + dp_packet_set_l4(p, dp_packet_tail(p)); - flow_compose_l4(b, flow); + l4_len = flow_compose_l4(p, flow); - nh->ip6_plen = - b->l7 ? htons((uint8_t *) b->l7 - (uint8_t *) b->l4) : htons(0); + nh = dp_packet_l3(p); + nh->ip6_plen = htons(l4_len); } else if (flow->dl_type == htons(ETH_TYPE_ARP) || flow->dl_type == htons(ETH_TYPE_RARP)) { struct arp_eth_header *arp; - b->l3 = arp = ofpbuf_put_zeros(b, sizeof *arp); + arp = dp_packet_put_zeros(p, sizeof *arp); + dp_packet_set_l3(p, arp); arp->ar_hrd = htons(1); arp->ar_pro = htons(ETH_TYPE_IP); arp->ar_hln = ETH_ADDR_LEN; @@ -1229,129 +2325,105 @@ flow_compose(struct ofpbuf *b, const struct flow *flow) flow->nw_proto == ARP_OP_REPLY) { put_16aligned_be32(&arp->ar_spa, flow->nw_src); put_16aligned_be32(&arp->ar_tpa, flow->nw_dst); - memcpy(arp->ar_sha, flow->arp_sha, ETH_ADDR_LEN); - memcpy(arp->ar_tha, flow->arp_tha, ETH_ADDR_LEN); + arp->ar_sha = flow->arp_sha; + arp->ar_tha = flow->arp_tha; } } if (eth_type_mpls(flow->dl_type)) { - b->l2_5 = b->l3; - push_mpls(b, flow->dl_type, flow->mpls_lse); + int n; + + p->l2_5_ofs = p->l3_ofs; + for (n = 1; n < FLOW_MAX_MPLS_LABELS; n++) { + if (flow->mpls_lse[n - 1] & htonl(MPLS_BOS_MASK)) { + break; + } + } + while (n > 0) { + push_mpls(p, flow->dl_type, flow->mpls_lse[--n]); + } } } /* Compressed flow. */ -static int -miniflow_n_values(const struct miniflow *flow) -{ - return count_1bits(flow->map); -} - -static uint32_t * -miniflow_alloc_values(struct miniflow *flow, int n) -{ - if (n <= MINI_N_INLINE) { - return flow->inline_values; - } else { - COVERAGE_INC(miniflow_malloc); - return xmalloc(n * sizeof *flow->values); - } -} - /* Completes an initialization of 'dst' as a miniflow copy of 'src' begun by - * the caller. The caller must have already initialized 'dst->map' properly - * to indicate the significant uint32_t elements of 'src'. 'n' must be the - * number of 1-bits in 'dst->map'. + * the caller. The caller must have already computed 'dst->map' properly to + * indicate the significant uint64_t elements of 'src'. * * Normally the significant elements are the ones that are non-zero. However, * when a miniflow is initialized from a (mini)mask, the values can be zeroes, - * so that the flow and mask always have the same maps. - * - * This function initializes 'dst->values' (either inline if possible or with - * malloc() otherwise) and copies the uint32_t elements of 'src' indicated by - * 'dst->map' into it. */ -static void -miniflow_init__(struct miniflow *dst, const struct flow *src, int n) + * so that the flow and mask always have the same maps. */ +void +miniflow_init(struct miniflow *dst, const struct flow *src) { - const uint32_t *src_u32 = (const uint32_t *) src; - unsigned int ofs; - uint64_t map; + uint64_t *dst_u64 = miniflow_values(dst); + size_t idx; - dst->values = miniflow_alloc_values(dst, n); - ofs = 0; - for (map = dst->map; map; map = zero_rightmost_1bit(map)) { - dst->values[ofs++] = src_u32[raw_ctz(map)]; + FLOWMAP_FOR_EACH_INDEX(idx, dst->map) { + *dst_u64++ = flow_u64_value(src, idx); } } -/* Initializes 'dst' as a copy of 'src'. The caller must eventually free 'dst' - * with miniflow_destroy(). */ +/* Initialize the maps of 'flow' from 'src'. */ void -miniflow_init(struct miniflow *dst, const struct flow *src) +miniflow_map_init(struct miniflow *flow, const struct flow *src) { - const uint32_t *src_u32 = (const uint32_t *) src; - unsigned int i; - int n; - - /* Initialize dst->map, counting the number of nonzero elements. */ - n = 0; - dst->map = 0; - - for (i = 0; i < FLOW_U32S; i++) { - if (src_u32[i]) { - dst->map |= UINT64_C(1) << i; - n++; + /* Initialize map, counting the number of nonzero elements. */ + flowmap_init(&flow->map); + for (size_t i = 0; i < FLOW_U64S; i++) { + if (flow_u64_value(src, i)) { + flowmap_set(&flow->map, i, 1); } } - - miniflow_init__(dst, src, n); } -/* Initializes 'dst' as a copy of 'src', using 'mask->map' as 'dst''s map. The - * caller must eventually free 'dst' with miniflow_destroy(). */ -void -miniflow_init_with_minimask(struct miniflow *dst, const struct flow *src, - const struct minimask *mask) +/* Allocates 'n' count of miniflows, consecutive in memory, initializing the + * map of each from 'src'. + * Returns the size of the miniflow data. */ +size_t +miniflow_alloc(struct miniflow *dsts[], size_t n, const struct miniflow *src) { - dst->map = mask->masks.map; - miniflow_init__(dst, src, miniflow_n_values(dst)); -} + size_t n_values = miniflow_n_values(src); + size_t data_size = MINIFLOW_VALUES_SIZE(n_values); + struct miniflow *dst = xmalloc(n * (sizeof *src + data_size)); + size_t i; -/* Initializes 'dst' as a copy of 'src'. The caller must eventually free 'dst' - * with miniflow_destroy(). */ -void -miniflow_clone(struct miniflow *dst, const struct miniflow *src) -{ - int n = miniflow_n_values(src); - dst->map = src->map; - dst->values = miniflow_alloc_values(dst, n); - memcpy(dst->values, src->values, n * sizeof *dst->values); + COVERAGE_INC(miniflow_malloc); + + for (i = 0; i < n; i++) { + *dst = *src; /* Copy maps. */ + dsts[i] = dst; + dst += 1; /* Just past the maps. */ + dst = (struct miniflow *)((uint64_t *)dst + n_values); /* Skip data. */ + } + return data_size; } -/* Initializes 'dst' with the data in 'src', destroying 'src'. - * The caller must eventually free 'dst' with miniflow_destroy(). */ -void -miniflow_move(struct miniflow *dst, struct miniflow *src) +/* Returns a miniflow copy of 'src'. The caller must eventually free() the + * returned miniflow. */ +struct miniflow * +miniflow_create(const struct flow *src) { - if (src->values == src->inline_values) { - dst->values = dst->inline_values; - memcpy(dst->values, src->values, - miniflow_n_values(src) * sizeof *dst->values); - } else { - dst->values = src->values; - } - dst->map = src->map; + struct miniflow tmp; + struct miniflow *dst; + + miniflow_map_init(&tmp, src); + + miniflow_alloc(&dst, 1, &tmp); + miniflow_init(dst, src); + return dst; } -/* Frees any memory owned by 'flow'. Does not free the storage in which 'flow' - * itself resides; the caller is responsible for that. */ +/* Initializes 'dst' as a copy of 'src'. The caller must have allocated + * 'dst' to have inline space for 'n_values' data in 'src'. */ void -miniflow_destroy(struct miniflow *flow) +miniflow_clone(struct miniflow *dst, const struct miniflow *src, + size_t n_values) { - if (flow->values != flow->inline_values) { - free(flow->values); - } + *dst = *src; /* Copy maps. */ + memcpy(miniflow_values(dst), miniflow_get_values(src), + MINIFLOW_VALUES_SIZE(n_values)); } /* Initializes 'dst' as a copy of 'src'. */ @@ -1362,67 +2434,23 @@ miniflow_expand(const struct miniflow *src, struct flow *dst) flow_union_with_miniflow(dst, src); } -static const uint32_t * -miniflow_get__(const struct miniflow *flow, unsigned int u32_ofs) -{ - if (!(flow->map & (UINT64_C(1) << u32_ofs))) { - static const uint32_t zero = 0; - return &zero; - } - return flow->values + - count_1bits(flow->map & ((UINT64_C(1) << u32_ofs) - 1)); -} - -/* Returns the uint32_t that would be at byte offset '4 * u32_ofs' if 'flow' - * were expanded into a "struct flow". */ -uint32_t -miniflow_get(const struct miniflow *flow, unsigned int u32_ofs) -{ - return *miniflow_get__(flow, u32_ofs); -} - -/* Returns the ovs_be16 that would be at byte offset 'u8_ofs' if 'flow' were - * expanded into a "struct flow". */ -static ovs_be16 -miniflow_get_be16(const struct miniflow *flow, unsigned int u8_ofs) -{ - const uint32_t *u32p = miniflow_get__(flow, u8_ofs / 4); - const ovs_be16 *be16p = (const ovs_be16 *) u32p; - return be16p[u8_ofs % 4 != 0]; -} - -/* Returns the VID within the vlan_tci member of the "struct flow" represented - * by 'flow'. */ -uint16_t -miniflow_get_vid(const struct miniflow *flow) -{ - ovs_be16 tci = miniflow_get_be16(flow, offsetof(struct flow, vlan_tci)); - return vlan_tci_to_vid(tci); -} - -/* Returns true if 'a' and 'b' are the same flow, false otherwise. */ +/* Returns true if 'a' and 'b' are equal miniflows, false otherwise. */ bool miniflow_equal(const struct miniflow *a, const struct miniflow *b) { - const uint32_t *ap = a->values; - const uint32_t *bp = b->values; - const uint64_t a_map = a->map; - const uint64_t b_map = b->map; - uint64_t map; + const uint64_t *ap = miniflow_get_values(a); + const uint64_t *bp = miniflow_get_values(b); - if (a_map == b_map) { - for (map = a_map; map; map = zero_rightmost_1bit(map)) { - if (*ap++ != *bp++) { - return false; - } - } + /* This is mostly called after a matching hash, so it is highly likely that + * the maps are equal as well. */ + if (OVS_LIKELY(flowmap_equal(a->map, b->map))) { + return !memcmp(ap, bp, miniflow_n_values(a) * sizeof *ap); } else { - for (map = a_map | b_map; map; map = zero_rightmost_1bit(map)) { - uint64_t bit = rightmost_1bit(map); - uint64_t a_value = a_map & bit ? *ap++ : 0; - uint64_t b_value = b_map & bit ? *bp++ : 0; + size_t idx; - if (a_value != b_value) { + FLOWMAP_FOR_EACH_INDEX (idx, flowmap_or(a->map, b->map)) { + if ((flowmap_is_set(&a->map, idx) ? *ap++ : 0) + != (flowmap_is_set(&b->map, idx) ? *bp++ : 0)) { return false; } } @@ -1431,24 +2459,19 @@ miniflow_equal(const struct miniflow *a, const struct miniflow *b) return true; } -/* Returns true if 'a' and 'b' are equal at the places where there are 1-bits - * in 'mask', false if they differ. */ +/* Returns false if 'a' and 'b' differ at the places where there are 1-bits + * in 'mask', true otherwise. */ bool miniflow_equal_in_minimask(const struct miniflow *a, const struct miniflow *b, const struct minimask *mask) { - const uint32_t *p; - uint64_t map; - - p = mask->masks.values; + const uint64_t *p = miniflow_get_values(&mask->masks); + size_t idx; - for (map = mask->masks.map; map; map = zero_rightmost_1bit(map)) { - int ofs = raw_ctz(map); - - if ((miniflow_get(a, ofs) ^ miniflow_get(b, ofs)) & *p) { + FLOWMAP_FOR_EACH_INDEX(idx, mask->masks.map) { + if ((miniflow_get(a, idx) ^ miniflow_get(b, idx)) & *p++) { return false; } - p++; } return true; @@ -1460,249 +2483,97 @@ bool miniflow_equal_flow_in_minimask(const struct miniflow *a, const struct flow *b, const struct minimask *mask) { - const uint32_t *b_u32 = (const uint32_t *) b; - const uint32_t *p; - uint64_t map; - - p = mask->masks.values; + const uint64_t *p = miniflow_get_values(&mask->masks); + size_t idx; - for (map = mask->masks.map; map; map = zero_rightmost_1bit(map)) { - int ofs = raw_ctz(map); - - if ((miniflow_get(a, ofs) ^ b_u32[ofs]) & *p) { + FLOWMAP_FOR_EACH_INDEX(idx, mask->masks.map) { + if ((miniflow_get(a, idx) ^ flow_u64_value(b, idx)) & *p++) { return false; } - p++; } return true; } -/* Returns a hash value for 'flow', given 'basis'. */ -uint32_t -miniflow_hash(const struct miniflow *flow, uint32_t basis) -{ - const uint32_t *p = flow->values; - uint32_t hash = basis; - uint64_t hash_map = 0; - uint64_t map; - - for (map = flow->map; map; map = zero_rightmost_1bit(map)) { - if (*p) { - hash = mhash_add(hash, *p); - hash_map |= rightmost_1bit(map); - } - p++; - } - hash = mhash_add(hash, hash_map); - hash = mhash_add(hash, hash_map >> 32); - - return mhash_finish(hash, p - flow->values); -} - -/* Returns a hash value for the bits of 'flow' where there are 1-bits in - * 'mask', given 'basis'. - * - * The hash values returned by this function are the same as those returned by - * flow_hash_in_minimask(), only the form of the arguments differ. */ -uint32_t -miniflow_hash_in_minimask(const struct miniflow *flow, - const struct minimask *mask, uint32_t basis) -{ - const uint32_t *p = mask->masks.values; - uint32_t hash; - uint64_t map; - - hash = basis; - - for (map = mask->masks.map; map; map = zero_rightmost_1bit(map)) { - hash = mhash_add(hash, miniflow_get(flow, raw_ctz(map)) & *p++); - } - - return mhash_finish(hash, (p - mask->masks.values) * 4); -} - -/* Returns a hash value for the bits of 'flow' where there are 1-bits in - * 'mask', given 'basis'. - * - * The hash values returned by this function are the same as those returned by - * miniflow_hash_in_minimask(), only the form of the arguments differ. */ -uint32_t -flow_hash_in_minimask(const struct flow *flow, const struct minimask *mask, - uint32_t basis) -{ - const uint32_t *flow_u32 = (const uint32_t *)flow; - const uint32_t *p = mask->masks.values; - uint32_t hash; - uint64_t map; - - hash = basis; - for (map = mask->masks.map; map; map = zero_rightmost_1bit(map)) { - hash = mhash_add(hash, flow_u32[raw_ctz(map)] & *p++); - } - - return mhash_finish(hash, (p - mask->masks.values) * 4); -} - -/* Returns a hash value for the bits of range [start, end) in 'flow', - * where there are 1-bits in 'mask', given 'hash'. - * - * The hash values returned by this function are the same as those returned by - * minimatch_hash_range(), only the form of the arguments differ. */ -uint32_t -flow_hash_in_minimask_range(const struct flow *flow, - const struct minimask *mask, - uint8_t start, uint8_t end, uint32_t *basis) -{ - const uint32_t *flow_u32 = (const uint32_t *)flow; - unsigned int offset; - uint64_t map = miniflow_get_map_in_range(&mask->masks, start, end, - &offset); - const uint32_t *p = mask->masks.values + offset; - uint32_t hash = *basis; - - for (; map; map = zero_rightmost_1bit(map)) { - hash = mhash_add(hash, flow_u32[raw_ctz(map)] & *p++); - } - - *basis = hash; /* Allow continuation from the unfinished value. */ - return mhash_finish(hash, (p - mask->masks.values) * 4); -} - -/* Initializes 'dst' as a copy of 'src'. The caller must eventually free 'dst' - * with minimask_destroy(). */ void minimask_init(struct minimask *mask, const struct flow_wildcards *wc) { miniflow_init(&mask->masks, &wc->masks); } -/* Initializes 'dst' as a copy of 'src'. The caller must eventually free 'dst' - * with minimask_destroy(). */ -void -minimask_clone(struct minimask *dst, const struct minimask *src) -{ - miniflow_clone(&dst->masks, &src->masks); -} - -/* Initializes 'dst' with the data in 'src', destroying 'src'. - * The caller must eventually free 'dst' with minimask_destroy(). */ -void -minimask_move(struct minimask *dst, struct minimask *src) +/* Returns a minimask copy of 'wc'. The caller must eventually free the + * returned minimask with free(). */ +struct minimask * +minimask_create(const struct flow_wildcards *wc) { - miniflow_move(&dst->masks, &src->masks); + return (struct minimask *)miniflow_create(&wc->masks); } /* Initializes 'dst_' as the bit-wise "and" of 'a_' and 'b_'. * - * The caller must provide room for FLOW_U32S "uint32_t"s in 'storage', for use - * by 'dst_'. The caller must *not* free 'dst_' with minimask_destroy(). */ + * The caller must provide room for FLOW_U64S "uint64_t"s in 'storage', which + * must follow '*dst_' in memory, for use by 'dst_'. The caller must *not* + * free 'dst_' free(). */ void minimask_combine(struct minimask *dst_, const struct minimask *a_, const struct minimask *b_, - uint32_t storage[FLOW_U32S]) + uint64_t storage[FLOW_U64S]) { struct miniflow *dst = &dst_->masks; + uint64_t *dst_values = storage; const struct miniflow *a = &a_->masks; const struct miniflow *b = &b_->masks; - uint64_t map; - int n = 0; + size_t idx; - dst->values = storage; + flowmap_init(&dst->map); - dst->map = 0; - for (map = a->map & b->map; map; map = zero_rightmost_1bit(map)) { - int ofs = raw_ctz(map); - uint32_t mask = miniflow_get(a, ofs) & miniflow_get(b, ofs); + FLOWMAP_FOR_EACH_INDEX(idx, flowmap_and(a->map, b->map)) { + /* Both 'a' and 'b' have non-zero data at 'idx'. */ + uint64_t mask = *miniflow_get__(a, idx) & *miniflow_get__(b, idx); if (mask) { - dst->map |= rightmost_1bit(map); - dst->values[n++] = mask; + flowmap_set(&dst->map, idx, 1); + *dst_values++ = mask; } } } -/* Frees any memory owned by 'mask'. Does not free the storage in which 'mask' - * itself resides; the caller is responsible for that. */ -void -minimask_destroy(struct minimask *mask) -{ - miniflow_destroy(&mask->masks); -} - -/* Initializes 'dst' as a copy of 'src'. */ +/* Initializes 'wc' as a copy of 'mask'. */ void minimask_expand(const struct minimask *mask, struct flow_wildcards *wc) { miniflow_expand(&mask->masks, &wc->masks); } -/* Returns the uint32_t that would be at byte offset '4 * u32_ofs' if 'mask' - * were expanded into a "struct flow_wildcards". */ -uint32_t -minimask_get(const struct minimask *mask, unsigned int u32_ofs) -{ - return miniflow_get(&mask->masks, u32_ofs); -} - -/* Returns the VID mask within the vlan_tci member of the "struct - * flow_wildcards" represented by 'mask'. */ -uint16_t -minimask_get_vid_mask(const struct minimask *mask) -{ - return miniflow_get_vid(&mask->masks); -} - -/* Returns true if 'a' and 'b' are the same flow mask, false otherwise. */ +/* Returns true if 'a' and 'b' are the same flow mask, false otherwise. + * Minimasks may not have zero data values, so for the minimasks to be the + * same, they need to have the same map and the same data values. */ bool minimask_equal(const struct minimask *a, const struct minimask *b) { - return miniflow_equal(&a->masks, &b->masks); + return !memcmp(a, b, sizeof *a + + MINIFLOW_VALUES_SIZE(miniflow_n_values(&a->masks))); } -/* Returns a hash value for 'mask', given 'basis'. */ -uint32_t -minimask_hash(const struct minimask *mask, uint32_t basis) -{ - return miniflow_hash(&mask->masks, basis); -} - -/* Returns true if at least one bit is wildcarded in 'a_' but not in 'b_', +/* Returns true if at least one bit matched by 'b' is wildcarded by 'a', * false otherwise. */ bool -minimask_has_extra(const struct minimask *a_, const struct minimask *b_) +minimask_has_extra(const struct minimask *a, const struct minimask *b) { - const struct miniflow *a = &a_->masks; - const struct miniflow *b = &b_->masks; - uint64_t map; + const uint64_t *bp = miniflow_get_values(&b->masks); + size_t idx; - for (map = a->map | b->map; map; map = zero_rightmost_1bit(map)) { - int ofs = raw_ctz(map); - uint32_t a_u32 = miniflow_get(a, ofs); - uint32_t b_u32 = miniflow_get(b, ofs); + FLOWMAP_FOR_EACH_INDEX(idx, b->masks.map) { + uint64_t b_u64 = *bp++; - if ((a_u32 & b_u32) != b_u32) { - return true; + /* 'b_u64' is non-zero, check if the data in 'a' is either zero + * or misses some of the bits in 'b_u64'. */ + if (!MINIFLOW_IN_MAP(&a->masks, idx) + || ((*miniflow_get__(&a->masks, idx) & b_u64) != b_u64)) { + return true; /* 'a' wildcards some bits 'b' doesn't. */ } } return false; } - -/* Returns true if 'mask' matches every packet, false if 'mask' fixes any bits - * or fields. */ -bool -minimask_is_catchall(const struct minimask *mask_) -{ - const struct miniflow *mask = &mask_->masks; - const uint32_t *p = mask->values; - uint64_t map; - - for (map = mask->map; map; map = zero_rightmost_1bit(map)) { - if (*p++) { - return false; - } - } - return true; -}