Merge tag 'regulator-fix-v4.9-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git...
[cascardo/linux.git] / arch / mips / kvm / mips.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * KVM/MIPS: MIPS specific KVM APIs
7  *
8  * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
9  * Authors: Sanjay Lal <sanjayl@kymasys.com>
10  */
11
12 #include <linux/bitops.h>
13 #include <linux/errno.h>
14 #include <linux/err.h>
15 #include <linux/kdebug.h>
16 #include <linux/module.h>
17 #include <linux/uaccess.h>
18 #include <linux/vmalloc.h>
19 #include <linux/fs.h>
20 #include <linux/bootmem.h>
21 #include <asm/fpu.h>
22 #include <asm/page.h>
23 #include <asm/cacheflush.h>
24 #include <asm/mmu_context.h>
25 #include <asm/pgtable.h>
26
27 #include <linux/kvm_host.h>
28
29 #include "interrupt.h"
30 #include "commpage.h"
31
32 #define CREATE_TRACE_POINTS
33 #include "trace.h"
34
35 #ifndef VECTORSPACING
36 #define VECTORSPACING 0x100     /* for EI/VI mode */
37 #endif
38
39 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x)
40 struct kvm_stats_debugfs_item debugfs_entries[] = {
41         { "wait",         VCPU_STAT(wait_exits),         KVM_STAT_VCPU },
42         { "cache",        VCPU_STAT(cache_exits),        KVM_STAT_VCPU },
43         { "signal",       VCPU_STAT(signal_exits),       KVM_STAT_VCPU },
44         { "interrupt",    VCPU_STAT(int_exits),          KVM_STAT_VCPU },
45         { "cop_unsuable", VCPU_STAT(cop_unusable_exits), KVM_STAT_VCPU },
46         { "tlbmod",       VCPU_STAT(tlbmod_exits),       KVM_STAT_VCPU },
47         { "tlbmiss_ld",   VCPU_STAT(tlbmiss_ld_exits),   KVM_STAT_VCPU },
48         { "tlbmiss_st",   VCPU_STAT(tlbmiss_st_exits),   KVM_STAT_VCPU },
49         { "addrerr_st",   VCPU_STAT(addrerr_st_exits),   KVM_STAT_VCPU },
50         { "addrerr_ld",   VCPU_STAT(addrerr_ld_exits),   KVM_STAT_VCPU },
51         { "syscall",      VCPU_STAT(syscall_exits),      KVM_STAT_VCPU },
52         { "resvd_inst",   VCPU_STAT(resvd_inst_exits),   KVM_STAT_VCPU },
53         { "break_inst",   VCPU_STAT(break_inst_exits),   KVM_STAT_VCPU },
54         { "trap_inst",    VCPU_STAT(trap_inst_exits),    KVM_STAT_VCPU },
55         { "msa_fpe",      VCPU_STAT(msa_fpe_exits),      KVM_STAT_VCPU },
56         { "fpe",          VCPU_STAT(fpe_exits),          KVM_STAT_VCPU },
57         { "msa_disabled", VCPU_STAT(msa_disabled_exits), KVM_STAT_VCPU },
58         { "flush_dcache", VCPU_STAT(flush_dcache_exits), KVM_STAT_VCPU },
59         { "halt_successful_poll", VCPU_STAT(halt_successful_poll), KVM_STAT_VCPU },
60         { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll), KVM_STAT_VCPU },
61         { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid), KVM_STAT_VCPU },
62         { "halt_wakeup",  VCPU_STAT(halt_wakeup),        KVM_STAT_VCPU },
63         {NULL}
64 };
65
66 static int kvm_mips_reset_vcpu(struct kvm_vcpu *vcpu)
67 {
68         int i;
69
70         for_each_possible_cpu(i) {
71                 vcpu->arch.guest_kernel_asid[i] = 0;
72                 vcpu->arch.guest_user_asid[i] = 0;
73         }
74
75         return 0;
76 }
77
78 /*
79  * XXXKYMA: We are simulatoring a processor that has the WII bit set in
80  * Config7, so we are "runnable" if interrupts are pending
81  */
82 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
83 {
84         return !!(vcpu->arch.pending_exceptions);
85 }
86
87 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
88 {
89         return 1;
90 }
91
92 int kvm_arch_hardware_enable(void)
93 {
94         return 0;
95 }
96
97 int kvm_arch_hardware_setup(void)
98 {
99         return 0;
100 }
101
102 void kvm_arch_check_processor_compat(void *rtn)
103 {
104         *(int *)rtn = 0;
105 }
106
107 static void kvm_mips_init_tlbs(struct kvm *kvm)
108 {
109         unsigned long wired;
110
111         /*
112          * Add a wired entry to the TLB, it is used to map the commpage to
113          * the Guest kernel
114          */
115         wired = read_c0_wired();
116         write_c0_wired(wired + 1);
117         mtc0_tlbw_hazard();
118         kvm->arch.commpage_tlb = wired;
119
120         kvm_debug("[%d] commpage TLB: %d\n", smp_processor_id(),
121                   kvm->arch.commpage_tlb);
122 }
123
124 static void kvm_mips_init_vm_percpu(void *arg)
125 {
126         struct kvm *kvm = (struct kvm *)arg;
127
128         kvm_mips_init_tlbs(kvm);
129         kvm_mips_callbacks->vm_init(kvm);
130
131 }
132
133 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
134 {
135         if (atomic_inc_return(&kvm_mips_instance) == 1) {
136                 kvm_debug("%s: 1st KVM instance, setup host TLB parameters\n",
137                           __func__);
138                 on_each_cpu(kvm_mips_init_vm_percpu, kvm, 1);
139         }
140
141         return 0;
142 }
143
144 bool kvm_arch_has_vcpu_debugfs(void)
145 {
146         return false;
147 }
148
149 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
150 {
151         return 0;
152 }
153
154 void kvm_mips_free_vcpus(struct kvm *kvm)
155 {
156         unsigned int i;
157         struct kvm_vcpu *vcpu;
158
159         /* Put the pages we reserved for the guest pmap */
160         for (i = 0; i < kvm->arch.guest_pmap_npages; i++) {
161                 if (kvm->arch.guest_pmap[i] != KVM_INVALID_PAGE)
162                         kvm_release_pfn_clean(kvm->arch.guest_pmap[i]);
163         }
164         kfree(kvm->arch.guest_pmap);
165
166         kvm_for_each_vcpu(i, vcpu, kvm) {
167                 kvm_arch_vcpu_free(vcpu);
168         }
169
170         mutex_lock(&kvm->lock);
171
172         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
173                 kvm->vcpus[i] = NULL;
174
175         atomic_set(&kvm->online_vcpus, 0);
176
177         mutex_unlock(&kvm->lock);
178 }
179
180 static void kvm_mips_uninit_tlbs(void *arg)
181 {
182         /* Restore wired count */
183         write_c0_wired(0);
184         mtc0_tlbw_hazard();
185         /* Clear out all the TLBs */
186         kvm_local_flush_tlb_all();
187 }
188
189 void kvm_arch_destroy_vm(struct kvm *kvm)
190 {
191         kvm_mips_free_vcpus(kvm);
192
193         /* If this is the last instance, restore wired count */
194         if (atomic_dec_return(&kvm_mips_instance) == 0) {
195                 kvm_debug("%s: last KVM instance, restoring TLB parameters\n",
196                           __func__);
197                 on_each_cpu(kvm_mips_uninit_tlbs, NULL, 1);
198         }
199 }
200
201 long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl,
202                         unsigned long arg)
203 {
204         return -ENOIOCTLCMD;
205 }
206
207 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
208                             unsigned long npages)
209 {
210         return 0;
211 }
212
213 int kvm_arch_prepare_memory_region(struct kvm *kvm,
214                                    struct kvm_memory_slot *memslot,
215                                    const struct kvm_userspace_memory_region *mem,
216                                    enum kvm_mr_change change)
217 {
218         return 0;
219 }
220
221 void kvm_arch_commit_memory_region(struct kvm *kvm,
222                                    const struct kvm_userspace_memory_region *mem,
223                                    const struct kvm_memory_slot *old,
224                                    const struct kvm_memory_slot *new,
225                                    enum kvm_mr_change change)
226 {
227         unsigned long npages = 0;
228         int i;
229
230         kvm_debug("%s: kvm: %p slot: %d, GPA: %llx, size: %llx, QVA: %llx\n",
231                   __func__, kvm, mem->slot, mem->guest_phys_addr,
232                   mem->memory_size, mem->userspace_addr);
233
234         /* Setup Guest PMAP table */
235         if (!kvm->arch.guest_pmap) {
236                 if (mem->slot == 0)
237                         npages = mem->memory_size >> PAGE_SHIFT;
238
239                 if (npages) {
240                         kvm->arch.guest_pmap_npages = npages;
241                         kvm->arch.guest_pmap =
242                             kzalloc(npages * sizeof(unsigned long), GFP_KERNEL);
243
244                         if (!kvm->arch.guest_pmap) {
245                                 kvm_err("Failed to allocate guest PMAP\n");
246                                 return;
247                         }
248
249                         kvm_debug("Allocated space for Guest PMAP Table (%ld pages) @ %p\n",
250                                   npages, kvm->arch.guest_pmap);
251
252                         /* Now setup the page table */
253                         for (i = 0; i < npages; i++)
254                                 kvm->arch.guest_pmap[i] = KVM_INVALID_PAGE;
255                 }
256         }
257 }
258
259 static inline void dump_handler(const char *symbol, void *start, void *end)
260 {
261         u32 *p;
262
263         pr_debug("LEAF(%s)\n", symbol);
264
265         pr_debug("\t.set push\n");
266         pr_debug("\t.set noreorder\n");
267
268         for (p = start; p < (u32 *)end; ++p)
269                 pr_debug("\t.word\t0x%08x\t\t# %p\n", *p, p);
270
271         pr_debug("\t.set\tpop\n");
272
273         pr_debug("\tEND(%s)\n", symbol);
274 }
275
276 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
277 {
278         int err, size;
279         void *gebase, *p, *handler;
280         int i;
281
282         struct kvm_vcpu *vcpu = kzalloc(sizeof(struct kvm_vcpu), GFP_KERNEL);
283
284         if (!vcpu) {
285                 err = -ENOMEM;
286                 goto out;
287         }
288
289         err = kvm_vcpu_init(vcpu, kvm, id);
290
291         if (err)
292                 goto out_free_cpu;
293
294         kvm_debug("kvm @ %p: create cpu %d at %p\n", kvm, id, vcpu);
295
296         /*
297          * Allocate space for host mode exception handlers that handle
298          * guest mode exits
299          */
300         if (cpu_has_veic || cpu_has_vint)
301                 size = 0x200 + VECTORSPACING * 64;
302         else
303                 size = 0x4000;
304
305         gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);
306
307         if (!gebase) {
308                 err = -ENOMEM;
309                 goto out_uninit_cpu;
310         }
311         kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
312                   ALIGN(size, PAGE_SIZE), gebase);
313
314         /*
315          * Check new ebase actually fits in CP0_EBase. The lack of a write gate
316          * limits us to the low 512MB of physical address space. If the memory
317          * we allocate is out of range, just give up now.
318          */
319         if (!cpu_has_ebase_wg && virt_to_phys(gebase) >= 0x20000000) {
320                 kvm_err("CP0_EBase.WG required for guest exception base %pK\n",
321                         gebase);
322                 err = -ENOMEM;
323                 goto out_free_gebase;
324         }
325
326         /* Save new ebase */
327         vcpu->arch.guest_ebase = gebase;
328
329         /* Build guest exception vectors dynamically in unmapped memory */
330         handler = gebase + 0x2000;
331
332         /* TLB Refill, EXL = 0 */
333         kvm_mips_build_exception(gebase, handler);
334
335         /* General Exception Entry point */
336         kvm_mips_build_exception(gebase + 0x180, handler);
337
338         /* For vectored interrupts poke the exception code @ all offsets 0-7 */
339         for (i = 0; i < 8; i++) {
340                 kvm_debug("L1 Vectored handler @ %p\n",
341                           gebase + 0x200 + (i * VECTORSPACING));
342                 kvm_mips_build_exception(gebase + 0x200 + i * VECTORSPACING,
343                                          handler);
344         }
345
346         /* General exit handler */
347         p = handler;
348         p = kvm_mips_build_exit(p);
349
350         /* Guest entry routine */
351         vcpu->arch.vcpu_run = p;
352         p = kvm_mips_build_vcpu_run(p);
353
354         /* Dump the generated code */
355         pr_debug("#include <asm/asm.h>\n");
356         pr_debug("#include <asm/regdef.h>\n");
357         pr_debug("\n");
358         dump_handler("kvm_vcpu_run", vcpu->arch.vcpu_run, p);
359         dump_handler("kvm_gen_exc", gebase + 0x180, gebase + 0x200);
360         dump_handler("kvm_exit", gebase + 0x2000, vcpu->arch.vcpu_run);
361
362         /* Invalidate the icache for these ranges */
363         local_flush_icache_range((unsigned long)gebase,
364                                 (unsigned long)gebase + ALIGN(size, PAGE_SIZE));
365
366         /*
367          * Allocate comm page for guest kernel, a TLB will be reserved for
368          * mapping GVA @ 0xFFFF8000 to this page
369          */
370         vcpu->arch.kseg0_commpage = kzalloc(PAGE_SIZE << 1, GFP_KERNEL);
371
372         if (!vcpu->arch.kseg0_commpage) {
373                 err = -ENOMEM;
374                 goto out_free_gebase;
375         }
376
377         kvm_debug("Allocated COMM page @ %p\n", vcpu->arch.kseg0_commpage);
378         kvm_mips_commpage_init(vcpu);
379
380         /* Init */
381         vcpu->arch.last_sched_cpu = -1;
382
383         /* Start off the timer */
384         kvm_mips_init_count(vcpu);
385
386         return vcpu;
387
388 out_free_gebase:
389         kfree(gebase);
390
391 out_uninit_cpu:
392         kvm_vcpu_uninit(vcpu);
393
394 out_free_cpu:
395         kfree(vcpu);
396
397 out:
398         return ERR_PTR(err);
399 }
400
401 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
402 {
403         hrtimer_cancel(&vcpu->arch.comparecount_timer);
404
405         kvm_vcpu_uninit(vcpu);
406
407         kvm_mips_dump_stats(vcpu);
408
409         kfree(vcpu->arch.guest_ebase);
410         kfree(vcpu->arch.kseg0_commpage);
411         kfree(vcpu);
412 }
413
414 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
415 {
416         kvm_arch_vcpu_free(vcpu);
417 }
418
419 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
420                                         struct kvm_guest_debug *dbg)
421 {
422         return -ENOIOCTLCMD;
423 }
424
425 /* Must be called with preemption disabled, just before entering guest */
426 static void kvm_mips_check_asids(struct kvm_vcpu *vcpu)
427 {
428         struct mips_coproc *cop0 = vcpu->arch.cop0;
429         int cpu = smp_processor_id();
430         unsigned int gasid;
431
432         /*
433          * Lazy host ASID regeneration for guest user mode.
434          * If the guest ASID has changed since the last guest usermode
435          * execution, regenerate the host ASID so as to invalidate stale TLB
436          * entries.
437          */
438         if (!KVM_GUEST_KERNEL_MODE(vcpu)) {
439                 gasid = kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID;
440                 if (gasid != vcpu->arch.last_user_gasid) {
441                         kvm_get_new_mmu_context(&vcpu->arch.guest_user_mm, cpu,
442                                                 vcpu);
443                         vcpu->arch.guest_user_asid[cpu] =
444                                 vcpu->arch.guest_user_mm.context.asid[cpu];
445                         vcpu->arch.last_user_gasid = gasid;
446                 }
447         }
448 }
449
450 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
451 {
452         int r = 0;
453         sigset_t sigsaved;
454
455         if (vcpu->sigset_active)
456                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
457
458         if (vcpu->mmio_needed) {
459                 if (!vcpu->mmio_is_write)
460                         kvm_mips_complete_mmio_load(vcpu, run);
461                 vcpu->mmio_needed = 0;
462         }
463
464         lose_fpu(1);
465
466         local_irq_disable();
467         /* Check if we have any exceptions/interrupts pending */
468         kvm_mips_deliver_interrupts(vcpu,
469                                     kvm_read_c0_guest_cause(vcpu->arch.cop0));
470
471         guest_enter_irqoff();
472
473         /* Disable hardware page table walking while in guest */
474         htw_stop();
475
476         trace_kvm_enter(vcpu);
477
478         kvm_mips_check_asids(vcpu);
479
480         r = vcpu->arch.vcpu_run(run, vcpu);
481         trace_kvm_out(vcpu);
482
483         /* Re-enable HTW before enabling interrupts */
484         htw_start();
485
486         guest_exit_irqoff();
487         local_irq_enable();
488
489         if (vcpu->sigset_active)
490                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
491
492         return r;
493 }
494
495 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
496                              struct kvm_mips_interrupt *irq)
497 {
498         int intr = (int)irq->irq;
499         struct kvm_vcpu *dvcpu = NULL;
500
501         if (intr == 3 || intr == -3 || intr == 4 || intr == -4)
502                 kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
503                           (int)intr);
504
505         if (irq->cpu == -1)
506                 dvcpu = vcpu;
507         else
508                 dvcpu = vcpu->kvm->vcpus[irq->cpu];
509
510         if (intr == 2 || intr == 3 || intr == 4) {
511                 kvm_mips_callbacks->queue_io_int(dvcpu, irq);
512
513         } else if (intr == -2 || intr == -3 || intr == -4) {
514                 kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
515         } else {
516                 kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
517                         irq->cpu, irq->irq);
518                 return -EINVAL;
519         }
520
521         dvcpu->arch.wait = 0;
522
523         if (swait_active(&dvcpu->wq))
524                 swake_up(&dvcpu->wq);
525
526         return 0;
527 }
528
529 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
530                                     struct kvm_mp_state *mp_state)
531 {
532         return -ENOIOCTLCMD;
533 }
534
535 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
536                                     struct kvm_mp_state *mp_state)
537 {
538         return -ENOIOCTLCMD;
539 }
540
541 static u64 kvm_mips_get_one_regs[] = {
542         KVM_REG_MIPS_R0,
543         KVM_REG_MIPS_R1,
544         KVM_REG_MIPS_R2,
545         KVM_REG_MIPS_R3,
546         KVM_REG_MIPS_R4,
547         KVM_REG_MIPS_R5,
548         KVM_REG_MIPS_R6,
549         KVM_REG_MIPS_R7,
550         KVM_REG_MIPS_R8,
551         KVM_REG_MIPS_R9,
552         KVM_REG_MIPS_R10,
553         KVM_REG_MIPS_R11,
554         KVM_REG_MIPS_R12,
555         KVM_REG_MIPS_R13,
556         KVM_REG_MIPS_R14,
557         KVM_REG_MIPS_R15,
558         KVM_REG_MIPS_R16,
559         KVM_REG_MIPS_R17,
560         KVM_REG_MIPS_R18,
561         KVM_REG_MIPS_R19,
562         KVM_REG_MIPS_R20,
563         KVM_REG_MIPS_R21,
564         KVM_REG_MIPS_R22,
565         KVM_REG_MIPS_R23,
566         KVM_REG_MIPS_R24,
567         KVM_REG_MIPS_R25,
568         KVM_REG_MIPS_R26,
569         KVM_REG_MIPS_R27,
570         KVM_REG_MIPS_R28,
571         KVM_REG_MIPS_R29,
572         KVM_REG_MIPS_R30,
573         KVM_REG_MIPS_R31,
574
575 #ifndef CONFIG_CPU_MIPSR6
576         KVM_REG_MIPS_HI,
577         KVM_REG_MIPS_LO,
578 #endif
579         KVM_REG_MIPS_PC,
580
581         KVM_REG_MIPS_CP0_INDEX,
582         KVM_REG_MIPS_CP0_CONTEXT,
583         KVM_REG_MIPS_CP0_USERLOCAL,
584         KVM_REG_MIPS_CP0_PAGEMASK,
585         KVM_REG_MIPS_CP0_WIRED,
586         KVM_REG_MIPS_CP0_HWRENA,
587         KVM_REG_MIPS_CP0_BADVADDR,
588         KVM_REG_MIPS_CP0_COUNT,
589         KVM_REG_MIPS_CP0_ENTRYHI,
590         KVM_REG_MIPS_CP0_COMPARE,
591         KVM_REG_MIPS_CP0_STATUS,
592         KVM_REG_MIPS_CP0_CAUSE,
593         KVM_REG_MIPS_CP0_EPC,
594         KVM_REG_MIPS_CP0_PRID,
595         KVM_REG_MIPS_CP0_CONFIG,
596         KVM_REG_MIPS_CP0_CONFIG1,
597         KVM_REG_MIPS_CP0_CONFIG2,
598         KVM_REG_MIPS_CP0_CONFIG3,
599         KVM_REG_MIPS_CP0_CONFIG4,
600         KVM_REG_MIPS_CP0_CONFIG5,
601         KVM_REG_MIPS_CP0_CONFIG7,
602         KVM_REG_MIPS_CP0_ERROREPC,
603
604         KVM_REG_MIPS_COUNT_CTL,
605         KVM_REG_MIPS_COUNT_RESUME,
606         KVM_REG_MIPS_COUNT_HZ,
607 };
608
609 static u64 kvm_mips_get_one_regs_fpu[] = {
610         KVM_REG_MIPS_FCR_IR,
611         KVM_REG_MIPS_FCR_CSR,
612 };
613
614 static u64 kvm_mips_get_one_regs_msa[] = {
615         KVM_REG_MIPS_MSA_IR,
616         KVM_REG_MIPS_MSA_CSR,
617 };
618
619 static u64 kvm_mips_get_one_regs_kscratch[] = {
620         KVM_REG_MIPS_CP0_KSCRATCH1,
621         KVM_REG_MIPS_CP0_KSCRATCH2,
622         KVM_REG_MIPS_CP0_KSCRATCH3,
623         KVM_REG_MIPS_CP0_KSCRATCH4,
624         KVM_REG_MIPS_CP0_KSCRATCH5,
625         KVM_REG_MIPS_CP0_KSCRATCH6,
626 };
627
628 static unsigned long kvm_mips_num_regs(struct kvm_vcpu *vcpu)
629 {
630         unsigned long ret;
631
632         ret = ARRAY_SIZE(kvm_mips_get_one_regs);
633         if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
634                 ret += ARRAY_SIZE(kvm_mips_get_one_regs_fpu) + 48;
635                 /* odd doubles */
636                 if (boot_cpu_data.fpu_id & MIPS_FPIR_F64)
637                         ret += 16;
638         }
639         if (kvm_mips_guest_can_have_msa(&vcpu->arch))
640                 ret += ARRAY_SIZE(kvm_mips_get_one_regs_msa) + 32;
641         ret += __arch_hweight8(vcpu->arch.kscratch_enabled);
642         ret += kvm_mips_callbacks->num_regs(vcpu);
643
644         return ret;
645 }
646
647 static int kvm_mips_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices)
648 {
649         u64 index;
650         unsigned int i;
651
652         if (copy_to_user(indices, kvm_mips_get_one_regs,
653                          sizeof(kvm_mips_get_one_regs)))
654                 return -EFAULT;
655         indices += ARRAY_SIZE(kvm_mips_get_one_regs);
656
657         if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
658                 if (copy_to_user(indices, kvm_mips_get_one_regs_fpu,
659                                  sizeof(kvm_mips_get_one_regs_fpu)))
660                         return -EFAULT;
661                 indices += ARRAY_SIZE(kvm_mips_get_one_regs_fpu);
662
663                 for (i = 0; i < 32; ++i) {
664                         index = KVM_REG_MIPS_FPR_32(i);
665                         if (copy_to_user(indices, &index, sizeof(index)))
666                                 return -EFAULT;
667                         ++indices;
668
669                         /* skip odd doubles if no F64 */
670                         if (i & 1 && !(boot_cpu_data.fpu_id & MIPS_FPIR_F64))
671                                 continue;
672
673                         index = KVM_REG_MIPS_FPR_64(i);
674                         if (copy_to_user(indices, &index, sizeof(index)))
675                                 return -EFAULT;
676                         ++indices;
677                 }
678         }
679
680         if (kvm_mips_guest_can_have_msa(&vcpu->arch)) {
681                 if (copy_to_user(indices, kvm_mips_get_one_regs_msa,
682                                  sizeof(kvm_mips_get_one_regs_msa)))
683                         return -EFAULT;
684                 indices += ARRAY_SIZE(kvm_mips_get_one_regs_msa);
685
686                 for (i = 0; i < 32; ++i) {
687                         index = KVM_REG_MIPS_VEC_128(i);
688                         if (copy_to_user(indices, &index, sizeof(index)))
689                                 return -EFAULT;
690                         ++indices;
691                 }
692         }
693
694         for (i = 0; i < 6; ++i) {
695                 if (!(vcpu->arch.kscratch_enabled & BIT(i + 2)))
696                         continue;
697
698                 if (copy_to_user(indices, &kvm_mips_get_one_regs_kscratch[i],
699                                  sizeof(kvm_mips_get_one_regs_kscratch[i])))
700                         return -EFAULT;
701                 ++indices;
702         }
703
704         return kvm_mips_callbacks->copy_reg_indices(vcpu, indices);
705 }
706
707 static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
708                             const struct kvm_one_reg *reg)
709 {
710         struct mips_coproc *cop0 = vcpu->arch.cop0;
711         struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
712         int ret;
713         s64 v;
714         s64 vs[2];
715         unsigned int idx;
716
717         switch (reg->id) {
718         /* General purpose registers */
719         case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
720                 v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
721                 break;
722 #ifndef CONFIG_CPU_MIPSR6
723         case KVM_REG_MIPS_HI:
724                 v = (long)vcpu->arch.hi;
725                 break;
726         case KVM_REG_MIPS_LO:
727                 v = (long)vcpu->arch.lo;
728                 break;
729 #endif
730         case KVM_REG_MIPS_PC:
731                 v = (long)vcpu->arch.pc;
732                 break;
733
734         /* Floating point registers */
735         case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
736                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
737                         return -EINVAL;
738                 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
739                 /* Odd singles in top of even double when FR=0 */
740                 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
741                         v = get_fpr32(&fpu->fpr[idx], 0);
742                 else
743                         v = get_fpr32(&fpu->fpr[idx & ~1], idx & 1);
744                 break;
745         case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
746                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
747                         return -EINVAL;
748                 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
749                 /* Can't access odd doubles in FR=0 mode */
750                 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
751                         return -EINVAL;
752                 v = get_fpr64(&fpu->fpr[idx], 0);
753                 break;
754         case KVM_REG_MIPS_FCR_IR:
755                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
756                         return -EINVAL;
757                 v = boot_cpu_data.fpu_id;
758                 break;
759         case KVM_REG_MIPS_FCR_CSR:
760                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
761                         return -EINVAL;
762                 v = fpu->fcr31;
763                 break;
764
765         /* MIPS SIMD Architecture (MSA) registers */
766         case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
767                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
768                         return -EINVAL;
769                 /* Can't access MSA registers in FR=0 mode */
770                 if (!(kvm_read_c0_guest_status(cop0) & ST0_FR))
771                         return -EINVAL;
772                 idx = reg->id - KVM_REG_MIPS_VEC_128(0);
773 #ifdef CONFIG_CPU_LITTLE_ENDIAN
774                 /* least significant byte first */
775                 vs[0] = get_fpr64(&fpu->fpr[idx], 0);
776                 vs[1] = get_fpr64(&fpu->fpr[idx], 1);
777 #else
778                 /* most significant byte first */
779                 vs[0] = get_fpr64(&fpu->fpr[idx], 1);
780                 vs[1] = get_fpr64(&fpu->fpr[idx], 0);
781 #endif
782                 break;
783         case KVM_REG_MIPS_MSA_IR:
784                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
785                         return -EINVAL;
786                 v = boot_cpu_data.msa_id;
787                 break;
788         case KVM_REG_MIPS_MSA_CSR:
789                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
790                         return -EINVAL;
791                 v = fpu->msacsr;
792                 break;
793
794         /* Co-processor 0 registers */
795         case KVM_REG_MIPS_CP0_INDEX:
796                 v = (long)kvm_read_c0_guest_index(cop0);
797                 break;
798         case KVM_REG_MIPS_CP0_CONTEXT:
799                 v = (long)kvm_read_c0_guest_context(cop0);
800                 break;
801         case KVM_REG_MIPS_CP0_USERLOCAL:
802                 v = (long)kvm_read_c0_guest_userlocal(cop0);
803                 break;
804         case KVM_REG_MIPS_CP0_PAGEMASK:
805                 v = (long)kvm_read_c0_guest_pagemask(cop0);
806                 break;
807         case KVM_REG_MIPS_CP0_WIRED:
808                 v = (long)kvm_read_c0_guest_wired(cop0);
809                 break;
810         case KVM_REG_MIPS_CP0_HWRENA:
811                 v = (long)kvm_read_c0_guest_hwrena(cop0);
812                 break;
813         case KVM_REG_MIPS_CP0_BADVADDR:
814                 v = (long)kvm_read_c0_guest_badvaddr(cop0);
815                 break;
816         case KVM_REG_MIPS_CP0_ENTRYHI:
817                 v = (long)kvm_read_c0_guest_entryhi(cop0);
818                 break;
819         case KVM_REG_MIPS_CP0_COMPARE:
820                 v = (long)kvm_read_c0_guest_compare(cop0);
821                 break;
822         case KVM_REG_MIPS_CP0_STATUS:
823                 v = (long)kvm_read_c0_guest_status(cop0);
824                 break;
825         case KVM_REG_MIPS_CP0_CAUSE:
826                 v = (long)kvm_read_c0_guest_cause(cop0);
827                 break;
828         case KVM_REG_MIPS_CP0_EPC:
829                 v = (long)kvm_read_c0_guest_epc(cop0);
830                 break;
831         case KVM_REG_MIPS_CP0_PRID:
832                 v = (long)kvm_read_c0_guest_prid(cop0);
833                 break;
834         case KVM_REG_MIPS_CP0_CONFIG:
835                 v = (long)kvm_read_c0_guest_config(cop0);
836                 break;
837         case KVM_REG_MIPS_CP0_CONFIG1:
838                 v = (long)kvm_read_c0_guest_config1(cop0);
839                 break;
840         case KVM_REG_MIPS_CP0_CONFIG2:
841                 v = (long)kvm_read_c0_guest_config2(cop0);
842                 break;
843         case KVM_REG_MIPS_CP0_CONFIG3:
844                 v = (long)kvm_read_c0_guest_config3(cop0);
845                 break;
846         case KVM_REG_MIPS_CP0_CONFIG4:
847                 v = (long)kvm_read_c0_guest_config4(cop0);
848                 break;
849         case KVM_REG_MIPS_CP0_CONFIG5:
850                 v = (long)kvm_read_c0_guest_config5(cop0);
851                 break;
852         case KVM_REG_MIPS_CP0_CONFIG7:
853                 v = (long)kvm_read_c0_guest_config7(cop0);
854                 break;
855         case KVM_REG_MIPS_CP0_ERROREPC:
856                 v = (long)kvm_read_c0_guest_errorepc(cop0);
857                 break;
858         case KVM_REG_MIPS_CP0_KSCRATCH1 ... KVM_REG_MIPS_CP0_KSCRATCH6:
859                 idx = reg->id - KVM_REG_MIPS_CP0_KSCRATCH1 + 2;
860                 if (!(vcpu->arch.kscratch_enabled & BIT(idx)))
861                         return -EINVAL;
862                 switch (idx) {
863                 case 2:
864                         v = (long)kvm_read_c0_guest_kscratch1(cop0);
865                         break;
866                 case 3:
867                         v = (long)kvm_read_c0_guest_kscratch2(cop0);
868                         break;
869                 case 4:
870                         v = (long)kvm_read_c0_guest_kscratch3(cop0);
871                         break;
872                 case 5:
873                         v = (long)kvm_read_c0_guest_kscratch4(cop0);
874                         break;
875                 case 6:
876                         v = (long)kvm_read_c0_guest_kscratch5(cop0);
877                         break;
878                 case 7:
879                         v = (long)kvm_read_c0_guest_kscratch6(cop0);
880                         break;
881                 }
882                 break;
883         /* registers to be handled specially */
884         default:
885                 ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v);
886                 if (ret)
887                         return ret;
888                 break;
889         }
890         if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
891                 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
892
893                 return put_user(v, uaddr64);
894         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
895                 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
896                 u32 v32 = (u32)v;
897
898                 return put_user(v32, uaddr32);
899         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
900                 void __user *uaddr = (void __user *)(long)reg->addr;
901
902                 return copy_to_user(uaddr, vs, 16) ? -EFAULT : 0;
903         } else {
904                 return -EINVAL;
905         }
906 }
907
908 static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
909                             const struct kvm_one_reg *reg)
910 {
911         struct mips_coproc *cop0 = vcpu->arch.cop0;
912         struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
913         s64 v;
914         s64 vs[2];
915         unsigned int idx;
916
917         if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
918                 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
919
920                 if (get_user(v, uaddr64) != 0)
921                         return -EFAULT;
922         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
923                 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
924                 s32 v32;
925
926                 if (get_user(v32, uaddr32) != 0)
927                         return -EFAULT;
928                 v = (s64)v32;
929         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
930                 void __user *uaddr = (void __user *)(long)reg->addr;
931
932                 return copy_from_user(vs, uaddr, 16) ? -EFAULT : 0;
933         } else {
934                 return -EINVAL;
935         }
936
937         switch (reg->id) {
938         /* General purpose registers */
939         case KVM_REG_MIPS_R0:
940                 /* Silently ignore requests to set $0 */
941                 break;
942         case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
943                 vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
944                 break;
945 #ifndef CONFIG_CPU_MIPSR6
946         case KVM_REG_MIPS_HI:
947                 vcpu->arch.hi = v;
948                 break;
949         case KVM_REG_MIPS_LO:
950                 vcpu->arch.lo = v;
951                 break;
952 #endif
953         case KVM_REG_MIPS_PC:
954                 vcpu->arch.pc = v;
955                 break;
956
957         /* Floating point registers */
958         case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
959                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
960                         return -EINVAL;
961                 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
962                 /* Odd singles in top of even double when FR=0 */
963                 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
964                         set_fpr32(&fpu->fpr[idx], 0, v);
965                 else
966                         set_fpr32(&fpu->fpr[idx & ~1], idx & 1, v);
967                 break;
968         case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
969                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
970                         return -EINVAL;
971                 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
972                 /* Can't access odd doubles in FR=0 mode */
973                 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
974                         return -EINVAL;
975                 set_fpr64(&fpu->fpr[idx], 0, v);
976                 break;
977         case KVM_REG_MIPS_FCR_IR:
978                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
979                         return -EINVAL;
980                 /* Read-only */
981                 break;
982         case KVM_REG_MIPS_FCR_CSR:
983                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
984                         return -EINVAL;
985                 fpu->fcr31 = v;
986                 break;
987
988         /* MIPS SIMD Architecture (MSA) registers */
989         case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
990                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
991                         return -EINVAL;
992                 idx = reg->id - KVM_REG_MIPS_VEC_128(0);
993 #ifdef CONFIG_CPU_LITTLE_ENDIAN
994                 /* least significant byte first */
995                 set_fpr64(&fpu->fpr[idx], 0, vs[0]);
996                 set_fpr64(&fpu->fpr[idx], 1, vs[1]);
997 #else
998                 /* most significant byte first */
999                 set_fpr64(&fpu->fpr[idx], 1, vs[0]);
1000                 set_fpr64(&fpu->fpr[idx], 0, vs[1]);
1001 #endif
1002                 break;
1003         case KVM_REG_MIPS_MSA_IR:
1004                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
1005                         return -EINVAL;
1006                 /* Read-only */
1007                 break;
1008         case KVM_REG_MIPS_MSA_CSR:
1009                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
1010                         return -EINVAL;
1011                 fpu->msacsr = v;
1012                 break;
1013
1014         /* Co-processor 0 registers */
1015         case KVM_REG_MIPS_CP0_INDEX:
1016                 kvm_write_c0_guest_index(cop0, v);
1017                 break;
1018         case KVM_REG_MIPS_CP0_CONTEXT:
1019                 kvm_write_c0_guest_context(cop0, v);
1020                 break;
1021         case KVM_REG_MIPS_CP0_USERLOCAL:
1022                 kvm_write_c0_guest_userlocal(cop0, v);
1023                 break;
1024         case KVM_REG_MIPS_CP0_PAGEMASK:
1025                 kvm_write_c0_guest_pagemask(cop0, v);
1026                 break;
1027         case KVM_REG_MIPS_CP0_WIRED:
1028                 kvm_write_c0_guest_wired(cop0, v);
1029                 break;
1030         case KVM_REG_MIPS_CP0_HWRENA:
1031                 kvm_write_c0_guest_hwrena(cop0, v);
1032                 break;
1033         case KVM_REG_MIPS_CP0_BADVADDR:
1034                 kvm_write_c0_guest_badvaddr(cop0, v);
1035                 break;
1036         case KVM_REG_MIPS_CP0_ENTRYHI:
1037                 kvm_write_c0_guest_entryhi(cop0, v);
1038                 break;
1039         case KVM_REG_MIPS_CP0_STATUS:
1040                 kvm_write_c0_guest_status(cop0, v);
1041                 break;
1042         case KVM_REG_MIPS_CP0_EPC:
1043                 kvm_write_c0_guest_epc(cop0, v);
1044                 break;
1045         case KVM_REG_MIPS_CP0_PRID:
1046                 kvm_write_c0_guest_prid(cop0, v);
1047                 break;
1048         case KVM_REG_MIPS_CP0_ERROREPC:
1049                 kvm_write_c0_guest_errorepc(cop0, v);
1050                 break;
1051         case KVM_REG_MIPS_CP0_KSCRATCH1 ... KVM_REG_MIPS_CP0_KSCRATCH6:
1052                 idx = reg->id - KVM_REG_MIPS_CP0_KSCRATCH1 + 2;
1053                 if (!(vcpu->arch.kscratch_enabled & BIT(idx)))
1054                         return -EINVAL;
1055                 switch (idx) {
1056                 case 2:
1057                         kvm_write_c0_guest_kscratch1(cop0, v);
1058                         break;
1059                 case 3:
1060                         kvm_write_c0_guest_kscratch2(cop0, v);
1061                         break;
1062                 case 4:
1063                         kvm_write_c0_guest_kscratch3(cop0, v);
1064                         break;
1065                 case 5:
1066                         kvm_write_c0_guest_kscratch4(cop0, v);
1067                         break;
1068                 case 6:
1069                         kvm_write_c0_guest_kscratch5(cop0, v);
1070                         break;
1071                 case 7:
1072                         kvm_write_c0_guest_kscratch6(cop0, v);
1073                         break;
1074                 }
1075                 break;
1076         /* registers to be handled specially */
1077         default:
1078                 return kvm_mips_callbacks->set_one_reg(vcpu, reg, v);
1079         }
1080         return 0;
1081 }
1082
1083 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
1084                                      struct kvm_enable_cap *cap)
1085 {
1086         int r = 0;
1087
1088         if (!kvm_vm_ioctl_check_extension(vcpu->kvm, cap->cap))
1089                 return -EINVAL;
1090         if (cap->flags)
1091                 return -EINVAL;
1092         if (cap->args[0])
1093                 return -EINVAL;
1094
1095         switch (cap->cap) {
1096         case KVM_CAP_MIPS_FPU:
1097                 vcpu->arch.fpu_enabled = true;
1098                 break;
1099         case KVM_CAP_MIPS_MSA:
1100                 vcpu->arch.msa_enabled = true;
1101                 break;
1102         default:
1103                 r = -EINVAL;
1104                 break;
1105         }
1106
1107         return r;
1108 }
1109
1110 long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl,
1111                          unsigned long arg)
1112 {
1113         struct kvm_vcpu *vcpu = filp->private_data;
1114         void __user *argp = (void __user *)arg;
1115         long r;
1116
1117         switch (ioctl) {
1118         case KVM_SET_ONE_REG:
1119         case KVM_GET_ONE_REG: {
1120                 struct kvm_one_reg reg;
1121
1122                 if (copy_from_user(&reg, argp, sizeof(reg)))
1123                         return -EFAULT;
1124                 if (ioctl == KVM_SET_ONE_REG)
1125                         return kvm_mips_set_reg(vcpu, &reg);
1126                 else
1127                         return kvm_mips_get_reg(vcpu, &reg);
1128         }
1129         case KVM_GET_REG_LIST: {
1130                 struct kvm_reg_list __user *user_list = argp;
1131                 struct kvm_reg_list reg_list;
1132                 unsigned n;
1133
1134                 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1135                         return -EFAULT;
1136                 n = reg_list.n;
1137                 reg_list.n = kvm_mips_num_regs(vcpu);
1138                 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1139                         return -EFAULT;
1140                 if (n < reg_list.n)
1141                         return -E2BIG;
1142                 return kvm_mips_copy_reg_indices(vcpu, user_list->reg);
1143         }
1144         case KVM_NMI:
1145                 /* Treat the NMI as a CPU reset */
1146                 r = kvm_mips_reset_vcpu(vcpu);
1147                 break;
1148         case KVM_INTERRUPT:
1149                 {
1150                         struct kvm_mips_interrupt irq;
1151
1152                         r = -EFAULT;
1153                         if (copy_from_user(&irq, argp, sizeof(irq)))
1154                                 goto out;
1155
1156                         kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
1157                                   irq.irq);
1158
1159                         r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1160                         break;
1161                 }
1162         case KVM_ENABLE_CAP: {
1163                 struct kvm_enable_cap cap;
1164
1165                 r = -EFAULT;
1166                 if (copy_from_user(&cap, argp, sizeof(cap)))
1167                         goto out;
1168                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
1169                 break;
1170         }
1171         default:
1172                 r = -ENOIOCTLCMD;
1173         }
1174
1175 out:
1176         return r;
1177 }
1178
1179 /* Get (and clear) the dirty memory log for a memory slot. */
1180 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
1181 {
1182         struct kvm_memslots *slots;
1183         struct kvm_memory_slot *memslot;
1184         unsigned long ga, ga_end;
1185         int is_dirty = 0;
1186         int r;
1187         unsigned long n;
1188
1189         mutex_lock(&kvm->slots_lock);
1190
1191         r = kvm_get_dirty_log(kvm, log, &is_dirty);
1192         if (r)
1193                 goto out;
1194
1195         /* If nothing is dirty, don't bother messing with page tables. */
1196         if (is_dirty) {
1197                 slots = kvm_memslots(kvm);
1198                 memslot = id_to_memslot(slots, log->slot);
1199
1200                 ga = memslot->base_gfn << PAGE_SHIFT;
1201                 ga_end = ga + (memslot->npages << PAGE_SHIFT);
1202
1203                 kvm_info("%s: dirty, ga: %#lx, ga_end %#lx\n", __func__, ga,
1204                          ga_end);
1205
1206                 n = kvm_dirty_bitmap_bytes(memslot);
1207                 memset(memslot->dirty_bitmap, 0, n);
1208         }
1209
1210         r = 0;
1211 out:
1212         mutex_unlock(&kvm->slots_lock);
1213         return r;
1214
1215 }
1216
1217 long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
1218 {
1219         long r;
1220
1221         switch (ioctl) {
1222         default:
1223                 r = -ENOIOCTLCMD;
1224         }
1225
1226         return r;
1227 }
1228
1229 int kvm_arch_init(void *opaque)
1230 {
1231         if (kvm_mips_callbacks) {
1232                 kvm_err("kvm: module already exists\n");
1233                 return -EEXIST;
1234         }
1235
1236         return kvm_mips_emulation_init(&kvm_mips_callbacks);
1237 }
1238
1239 void kvm_arch_exit(void)
1240 {
1241         kvm_mips_callbacks = NULL;
1242 }
1243
1244 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1245                                   struct kvm_sregs *sregs)
1246 {
1247         return -ENOIOCTLCMD;
1248 }
1249
1250 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1251                                   struct kvm_sregs *sregs)
1252 {
1253         return -ENOIOCTLCMD;
1254 }
1255
1256 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1257 {
1258 }
1259
1260 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1261 {
1262         return -ENOIOCTLCMD;
1263 }
1264
1265 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1266 {
1267         return -ENOIOCTLCMD;
1268 }
1269
1270 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1271 {
1272         return VM_FAULT_SIGBUS;
1273 }
1274
1275 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
1276 {
1277         int r;
1278
1279         switch (ext) {
1280         case KVM_CAP_ONE_REG:
1281         case KVM_CAP_ENABLE_CAP:
1282                 r = 1;
1283                 break;
1284         case KVM_CAP_COALESCED_MMIO:
1285                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1286                 break;
1287         case KVM_CAP_MIPS_FPU:
1288                 /* We don't handle systems with inconsistent cpu_has_fpu */
1289                 r = !!raw_cpu_has_fpu;
1290                 break;
1291         case KVM_CAP_MIPS_MSA:
1292                 /*
1293                  * We don't support MSA vector partitioning yet:
1294                  * 1) It would require explicit support which can't be tested
1295                  *    yet due to lack of support in current hardware.
1296                  * 2) It extends the state that would need to be saved/restored
1297                  *    by e.g. QEMU for migration.
1298                  *
1299                  * When vector partitioning hardware becomes available, support
1300                  * could be added by requiring a flag when enabling
1301                  * KVM_CAP_MIPS_MSA capability to indicate that userland knows
1302                  * to save/restore the appropriate extra state.
1303                  */
1304                 r = cpu_has_msa && !(boot_cpu_data.msa_id & MSA_IR_WRPF);
1305                 break;
1306         default:
1307                 r = 0;
1308                 break;
1309         }
1310         return r;
1311 }
1312
1313 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1314 {
1315         return kvm_mips_pending_timer(vcpu);
1316 }
1317
1318 int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
1319 {
1320         int i;
1321         struct mips_coproc *cop0;
1322
1323         if (!vcpu)
1324                 return -1;
1325
1326         kvm_debug("VCPU Register Dump:\n");
1327         kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc);
1328         kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
1329
1330         for (i = 0; i < 32; i += 4) {
1331                 kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
1332                        vcpu->arch.gprs[i],
1333                        vcpu->arch.gprs[i + 1],
1334                        vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
1335         }
1336         kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi);
1337         kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo);
1338
1339         cop0 = vcpu->arch.cop0;
1340         kvm_debug("\tStatus: 0x%08lx, Cause: 0x%08lx\n",
1341                   kvm_read_c0_guest_status(cop0),
1342                   kvm_read_c0_guest_cause(cop0));
1343
1344         kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
1345
1346         return 0;
1347 }
1348
1349 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1350 {
1351         int i;
1352
1353         for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1354                 vcpu->arch.gprs[i] = regs->gpr[i];
1355         vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
1356         vcpu->arch.hi = regs->hi;
1357         vcpu->arch.lo = regs->lo;
1358         vcpu->arch.pc = regs->pc;
1359
1360         return 0;
1361 }
1362
1363 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1364 {
1365         int i;
1366
1367         for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1368                 regs->gpr[i] = vcpu->arch.gprs[i];
1369
1370         regs->hi = vcpu->arch.hi;
1371         regs->lo = vcpu->arch.lo;
1372         regs->pc = vcpu->arch.pc;
1373
1374         return 0;
1375 }
1376
1377 static void kvm_mips_comparecount_func(unsigned long data)
1378 {
1379         struct kvm_vcpu *vcpu = (struct kvm_vcpu *)data;
1380
1381         kvm_mips_callbacks->queue_timer_int(vcpu);
1382
1383         vcpu->arch.wait = 0;
1384         if (swait_active(&vcpu->wq))
1385                 swake_up(&vcpu->wq);
1386 }
1387
1388 /* low level hrtimer wake routine */
1389 static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
1390 {
1391         struct kvm_vcpu *vcpu;
1392
1393         vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
1394         kvm_mips_comparecount_func((unsigned long) vcpu);
1395         return kvm_mips_count_timeout(vcpu);
1396 }
1397
1398 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
1399 {
1400         kvm_mips_callbacks->vcpu_init(vcpu);
1401         hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
1402                      HRTIMER_MODE_REL);
1403         vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
1404         return 0;
1405 }
1406
1407 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1408                                   struct kvm_translation *tr)
1409 {
1410         return 0;
1411 }
1412
1413 /* Initial guest state */
1414 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
1415 {
1416         return kvm_mips_callbacks->vcpu_setup(vcpu);
1417 }
1418
1419 static void kvm_mips_set_c0_status(void)
1420 {
1421         u32 status = read_c0_status();
1422
1423         if (cpu_has_dsp)
1424                 status |= (ST0_MX);
1425
1426         write_c0_status(status);
1427         ehb();
1428 }
1429
1430 /*
1431  * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
1432  */
1433 int kvm_mips_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
1434 {
1435         u32 cause = vcpu->arch.host_cp0_cause;
1436         u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
1437         u32 __user *opc = (u32 __user *) vcpu->arch.pc;
1438         unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
1439         enum emulation_result er = EMULATE_DONE;
1440         int ret = RESUME_GUEST;
1441
1442         /* re-enable HTW before enabling interrupts */
1443         htw_start();
1444
1445         /* Set a default exit reason */
1446         run->exit_reason = KVM_EXIT_UNKNOWN;
1447         run->ready_for_interrupt_injection = 1;
1448
1449         /*
1450          * Set the appropriate status bits based on host CPU features,
1451          * before we hit the scheduler
1452          */
1453         kvm_mips_set_c0_status();
1454
1455         local_irq_enable();
1456
1457         kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
1458                         cause, opc, run, vcpu);
1459         trace_kvm_exit(vcpu, exccode);
1460
1461         /*
1462          * Do a privilege check, if in UM most of these exit conditions end up
1463          * causing an exception to be delivered to the Guest Kernel
1464          */
1465         er = kvm_mips_check_privilege(cause, opc, run, vcpu);
1466         if (er == EMULATE_PRIV_FAIL) {
1467                 goto skip_emul;
1468         } else if (er == EMULATE_FAIL) {
1469                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1470                 ret = RESUME_HOST;
1471                 goto skip_emul;
1472         }
1473
1474         switch (exccode) {
1475         case EXCCODE_INT:
1476                 kvm_debug("[%d]EXCCODE_INT @ %p\n", vcpu->vcpu_id, opc);
1477
1478                 ++vcpu->stat.int_exits;
1479
1480                 if (need_resched())
1481                         cond_resched();
1482
1483                 ret = RESUME_GUEST;
1484                 break;
1485
1486         case EXCCODE_CPU:
1487                 kvm_debug("EXCCODE_CPU: @ PC: %p\n", opc);
1488
1489                 ++vcpu->stat.cop_unusable_exits;
1490                 ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
1491                 /* XXXKYMA: Might need to return to user space */
1492                 if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN)
1493                         ret = RESUME_HOST;
1494                 break;
1495
1496         case EXCCODE_MOD:
1497                 ++vcpu->stat.tlbmod_exits;
1498                 ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
1499                 break;
1500
1501         case EXCCODE_TLBS:
1502                 kvm_debug("TLB ST fault:  cause %#x, status %#lx, PC: %p, BadVaddr: %#lx\n",
1503                           cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc,
1504                           badvaddr);
1505
1506                 ++vcpu->stat.tlbmiss_st_exits;
1507                 ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
1508                 break;
1509
1510         case EXCCODE_TLBL:
1511                 kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
1512                           cause, opc, badvaddr);
1513
1514                 ++vcpu->stat.tlbmiss_ld_exits;
1515                 ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
1516                 break;
1517
1518         case EXCCODE_ADES:
1519                 ++vcpu->stat.addrerr_st_exits;
1520                 ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
1521                 break;
1522
1523         case EXCCODE_ADEL:
1524                 ++vcpu->stat.addrerr_ld_exits;
1525                 ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
1526                 break;
1527
1528         case EXCCODE_SYS:
1529                 ++vcpu->stat.syscall_exits;
1530                 ret = kvm_mips_callbacks->handle_syscall(vcpu);
1531                 break;
1532
1533         case EXCCODE_RI:
1534                 ++vcpu->stat.resvd_inst_exits;
1535                 ret = kvm_mips_callbacks->handle_res_inst(vcpu);
1536                 break;
1537
1538         case EXCCODE_BP:
1539                 ++vcpu->stat.break_inst_exits;
1540                 ret = kvm_mips_callbacks->handle_break(vcpu);
1541                 break;
1542
1543         case EXCCODE_TR:
1544                 ++vcpu->stat.trap_inst_exits;
1545                 ret = kvm_mips_callbacks->handle_trap(vcpu);
1546                 break;
1547
1548         case EXCCODE_MSAFPE:
1549                 ++vcpu->stat.msa_fpe_exits;
1550                 ret = kvm_mips_callbacks->handle_msa_fpe(vcpu);
1551                 break;
1552
1553         case EXCCODE_FPE:
1554                 ++vcpu->stat.fpe_exits;
1555                 ret = kvm_mips_callbacks->handle_fpe(vcpu);
1556                 break;
1557
1558         case EXCCODE_MSADIS:
1559                 ++vcpu->stat.msa_disabled_exits;
1560                 ret = kvm_mips_callbacks->handle_msa_disabled(vcpu);
1561                 break;
1562
1563         default:
1564                 kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x  BadVaddr: %#lx Status: %#lx\n",
1565                         exccode, opc, kvm_get_inst(opc, vcpu), badvaddr,
1566                         kvm_read_c0_guest_status(vcpu->arch.cop0));
1567                 kvm_arch_vcpu_dump_regs(vcpu);
1568                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1569                 ret = RESUME_HOST;
1570                 break;
1571
1572         }
1573
1574 skip_emul:
1575         local_irq_disable();
1576
1577         if (er == EMULATE_DONE && !(ret & RESUME_HOST))
1578                 kvm_mips_deliver_interrupts(vcpu, cause);
1579
1580         if (!(ret & RESUME_HOST)) {
1581                 /* Only check for signals if not already exiting to userspace */
1582                 if (signal_pending(current)) {
1583                         run->exit_reason = KVM_EXIT_INTR;
1584                         ret = (-EINTR << 2) | RESUME_HOST;
1585                         ++vcpu->stat.signal_exits;
1586                         trace_kvm_exit(vcpu, KVM_TRACE_EXIT_SIGNAL);
1587                 }
1588         }
1589
1590         if (ret == RESUME_GUEST) {
1591                 trace_kvm_reenter(vcpu);
1592
1593                 kvm_mips_check_asids(vcpu);
1594
1595                 /*
1596                  * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context
1597                  * is live), restore FCR31 / MSACSR.
1598                  *
1599                  * This should be before returning to the guest exception
1600                  * vector, as it may well cause an [MSA] FP exception if there
1601                  * are pending exception bits unmasked. (see
1602                  * kvm_mips_csr_die_notifier() for how that is handled).
1603                  */
1604                 if (kvm_mips_guest_has_fpu(&vcpu->arch) &&
1605                     read_c0_status() & ST0_CU1)
1606                         __kvm_restore_fcsr(&vcpu->arch);
1607
1608                 if (kvm_mips_guest_has_msa(&vcpu->arch) &&
1609                     read_c0_config5() & MIPS_CONF5_MSAEN)
1610                         __kvm_restore_msacsr(&vcpu->arch);
1611         }
1612
1613         /* Disable HTW before returning to guest or host */
1614         htw_stop();
1615
1616         return ret;
1617 }
1618
1619 /* Enable FPU for guest and restore context */
1620 void kvm_own_fpu(struct kvm_vcpu *vcpu)
1621 {
1622         struct mips_coproc *cop0 = vcpu->arch.cop0;
1623         unsigned int sr, cfg5;
1624
1625         preempt_disable();
1626
1627         sr = kvm_read_c0_guest_status(cop0);
1628
1629         /*
1630          * If MSA state is already live, it is undefined how it interacts with
1631          * FR=0 FPU state, and we don't want to hit reserved instruction
1632          * exceptions trying to save the MSA state later when CU=1 && FR=1, so
1633          * play it safe and save it first.
1634          *
1635          * In theory we shouldn't ever hit this case since kvm_lose_fpu() should
1636          * get called when guest CU1 is set, however we can't trust the guest
1637          * not to clobber the status register directly via the commpage.
1638          */
1639         if (cpu_has_msa && sr & ST0_CU1 && !(sr & ST0_FR) &&
1640             vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1641                 kvm_lose_fpu(vcpu);
1642
1643         /*
1644          * Enable FPU for guest
1645          * We set FR and FRE according to guest context
1646          */
1647         change_c0_status(ST0_CU1 | ST0_FR, sr);
1648         if (cpu_has_fre) {
1649                 cfg5 = kvm_read_c0_guest_config5(cop0);
1650                 change_c0_config5(MIPS_CONF5_FRE, cfg5);
1651         }
1652         enable_fpu_hazard();
1653
1654         /* If guest FPU state not active, restore it now */
1655         if (!(vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)) {
1656                 __kvm_restore_fpu(&vcpu->arch);
1657                 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1658                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_FPU);
1659         } else {
1660                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_FPU);
1661         }
1662
1663         preempt_enable();
1664 }
1665
1666 #ifdef CONFIG_CPU_HAS_MSA
1667 /* Enable MSA for guest and restore context */
1668 void kvm_own_msa(struct kvm_vcpu *vcpu)
1669 {
1670         struct mips_coproc *cop0 = vcpu->arch.cop0;
1671         unsigned int sr, cfg5;
1672
1673         preempt_disable();
1674
1675         /*
1676          * Enable FPU if enabled in guest, since we're restoring FPU context
1677          * anyway. We set FR and FRE according to guest context.
1678          */
1679         if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
1680                 sr = kvm_read_c0_guest_status(cop0);
1681
1682                 /*
1683                  * If FR=0 FPU state is already live, it is undefined how it
1684                  * interacts with MSA state, so play it safe and save it first.
1685                  */
1686                 if (!(sr & ST0_FR) &&
1687                     (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU |
1688                                 KVM_MIPS_AUX_MSA)) == KVM_MIPS_AUX_FPU)
1689                         kvm_lose_fpu(vcpu);
1690
1691                 change_c0_status(ST0_CU1 | ST0_FR, sr);
1692                 if (sr & ST0_CU1 && cpu_has_fre) {
1693                         cfg5 = kvm_read_c0_guest_config5(cop0);
1694                         change_c0_config5(MIPS_CONF5_FRE, cfg5);
1695                 }
1696         }
1697
1698         /* Enable MSA for guest */
1699         set_c0_config5(MIPS_CONF5_MSAEN);
1700         enable_fpu_hazard();
1701
1702         switch (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA)) {
1703         case KVM_MIPS_AUX_FPU:
1704                 /*
1705                  * Guest FPU state already loaded, only restore upper MSA state
1706                  */
1707                 __kvm_restore_msa_upper(&vcpu->arch);
1708                 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1709                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_MSA);
1710                 break;
1711         case 0:
1712                 /* Neither FPU or MSA already active, restore full MSA state */
1713                 __kvm_restore_msa(&vcpu->arch);
1714                 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1715                 if (kvm_mips_guest_has_fpu(&vcpu->arch))
1716                         vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1717                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE,
1718                               KVM_TRACE_AUX_FPU_MSA);
1719                 break;
1720         default:
1721                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_MSA);
1722                 break;
1723         }
1724
1725         preempt_enable();
1726 }
1727 #endif
1728
1729 /* Drop FPU & MSA without saving it */
1730 void kvm_drop_fpu(struct kvm_vcpu *vcpu)
1731 {
1732         preempt_disable();
1733         if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1734                 disable_msa();
1735                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_MSA);
1736                 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_MSA;
1737         }
1738         if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1739                 clear_c0_status(ST0_CU1 | ST0_FR);
1740                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_FPU);
1741                 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1742         }
1743         preempt_enable();
1744 }
1745
1746 /* Save and disable FPU & MSA */
1747 void kvm_lose_fpu(struct kvm_vcpu *vcpu)
1748 {
1749         /*
1750          * FPU & MSA get disabled in root context (hardware) when it is disabled
1751          * in guest context (software), but the register state in the hardware
1752          * may still be in use. This is why we explicitly re-enable the hardware
1753          * before saving.
1754          */
1755
1756         preempt_disable();
1757         if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1758                 set_c0_config5(MIPS_CONF5_MSAEN);
1759                 enable_fpu_hazard();
1760
1761                 __kvm_save_msa(&vcpu->arch);
1762                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU_MSA);
1763
1764                 /* Disable MSA & FPU */
1765                 disable_msa();
1766                 if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1767                         clear_c0_status(ST0_CU1 | ST0_FR);
1768                         disable_fpu_hazard();
1769                 }
1770                 vcpu->arch.aux_inuse &= ~(KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA);
1771         } else if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1772                 set_c0_status(ST0_CU1);
1773                 enable_fpu_hazard();
1774
1775                 __kvm_save_fpu(&vcpu->arch);
1776                 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1777                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU);
1778
1779                 /* Disable FPU */
1780                 clear_c0_status(ST0_CU1 | ST0_FR);
1781                 disable_fpu_hazard();
1782         }
1783         preempt_enable();
1784 }
1785
1786 /*
1787  * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are
1788  * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP
1789  * exception if cause bits are set in the value being written.
1790  */
1791 static int kvm_mips_csr_die_notify(struct notifier_block *self,
1792                                    unsigned long cmd, void *ptr)
1793 {
1794         struct die_args *args = (struct die_args *)ptr;
1795         struct pt_regs *regs = args->regs;
1796         unsigned long pc;
1797
1798         /* Only interested in FPE and MSAFPE */
1799         if (cmd != DIE_FP && cmd != DIE_MSAFP)
1800                 return NOTIFY_DONE;
1801
1802         /* Return immediately if guest context isn't active */
1803         if (!(current->flags & PF_VCPU))
1804                 return NOTIFY_DONE;
1805
1806         /* Should never get here from user mode */
1807         BUG_ON(user_mode(regs));
1808
1809         pc = instruction_pointer(regs);
1810         switch (cmd) {
1811         case DIE_FP:
1812                 /* match 2nd instruction in __kvm_restore_fcsr */
1813                 if (pc != (unsigned long)&__kvm_restore_fcsr + 4)
1814                         return NOTIFY_DONE;
1815                 break;
1816         case DIE_MSAFP:
1817                 /* match 2nd/3rd instruction in __kvm_restore_msacsr */
1818                 if (!cpu_has_msa ||
1819                     pc < (unsigned long)&__kvm_restore_msacsr + 4 ||
1820                     pc > (unsigned long)&__kvm_restore_msacsr + 8)
1821                         return NOTIFY_DONE;
1822                 break;
1823         }
1824
1825         /* Move PC forward a little and continue executing */
1826         instruction_pointer(regs) += 4;
1827
1828         return NOTIFY_STOP;
1829 }
1830
1831 static struct notifier_block kvm_mips_csr_die_notifier = {
1832         .notifier_call = kvm_mips_csr_die_notify,
1833 };
1834
1835 static int __init kvm_mips_init(void)
1836 {
1837         int ret;
1838
1839         ret = kvm_mips_entry_setup();
1840         if (ret)
1841                 return ret;
1842
1843         ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1844
1845         if (ret)
1846                 return ret;
1847
1848         register_die_notifier(&kvm_mips_csr_die_notifier);
1849
1850         return 0;
1851 }
1852
1853 static void __exit kvm_mips_exit(void)
1854 {
1855         kvm_exit();
1856
1857         unregister_die_notifier(&kvm_mips_csr_die_notifier);
1858 }
1859
1860 module_init(kvm_mips_init);
1861 module_exit(kvm_mips_exit);
1862
1863 EXPORT_TRACEPOINT_SYMBOL(kvm_exit);